Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/types.h>
   3#include <linux/string.h>
   4#include <linux/init.h>
   5#include <linux/module.h>
   6#include <linux/ctype.h>
   7#include <linux/dmi.h>
   8#include <linux/efi.h>
   9#include <linux/memblock.h>
  10#include <linux/random.h>
  11#include <asm/dmi.h>
  12#include <linux/unaligned.h>
  13
  14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
  15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
  16#endif
  17
  18struct kobject *dmi_kobj;
  19EXPORT_SYMBOL_GPL(dmi_kobj);
  20
  21/*
  22 * DMI stands for "Desktop Management Interface".  It is part
  23 * of and an antecedent to, SMBIOS, which stands for System
  24 * Management BIOS.  See further: https://www.dmtf.org/standards
  25 */
  26static const char dmi_empty_string[] = "";
  27
  28static u32 dmi_ver __initdata;
  29static u32 dmi_len;
  30static u16 dmi_num;
  31static u8 smbios_entry_point[32];
  32static int smbios_entry_point_size;
  33
 
 
 
 
 
  34/* DMI system identification string used during boot */
  35static char dmi_ids_string[128] __initdata;
  36
  37static struct dmi_memdev_info {
  38	const char *device;
  39	const char *bank;
  40	u64 size;		/* bytes */
  41	u16 handle;
  42	u8 type;		/* DDR2, DDR3, DDR4 etc */
  43} *dmi_memdev;
  44static int dmi_memdev_nr;
  45static int dmi_memdev_populated_nr __initdata;
  46
  47static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  48{
  49	const u8 *bp = ((u8 *) dm) + dm->length;
  50	const u8 *nsp;
  51
  52	if (s) {
  53		while (--s > 0 && *bp)
 
  54			bp += strlen(bp) + 1;
 
 
 
 
 
 
  55
  56		/* Strings containing only spaces are considered empty */
  57		nsp = bp;
  58		while (*nsp == ' ')
  59			nsp++;
  60		if (*nsp != '\0')
  61			return bp;
 
  62	}
  63
  64	return dmi_empty_string;
  65}
  66
  67static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
  68{
  69	const char *bp = dmi_string_nosave(dm, s);
  70	char *str;
  71	size_t len;
  72
  73	if (bp == dmi_empty_string)
  74		return dmi_empty_string;
  75
  76	len = strlen(bp) + 1;
  77	str = dmi_alloc(len);
  78	if (str != NULL)
  79		strcpy(str, bp);
  80
  81	return str;
  82}
  83
  84/*
  85 *	We have to be cautious here. We have seen BIOSes with DMI pointers
  86 *	pointing to completely the wrong place for example
  87 */
  88static void dmi_decode_table(u8 *buf,
  89			     void (*decode)(const struct dmi_header *, void *),
  90			     void *private_data)
  91{
  92	u8 *data = buf;
  93	int i = 0;
  94
  95	/*
  96	 * Stop when we have seen all the items the table claimed to have
  97	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
  98	 * >= 3.0 only) OR we run off the end of the table (should never
  99	 * happen but sometimes does on bogus implementations.)
 100	 */
 101	while ((!dmi_num || i < dmi_num) &&
 102	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
 103		const struct dmi_header *dm = (const struct dmi_header *)data;
 104
 105		/*
 106		 * If a short entry is found (less than 4 bytes), not only it
 107		 * is invalid, but we cannot reliably locate the next entry.
 108		 */
 109		if (dm->length < sizeof(struct dmi_header)) {
 110			pr_warn(FW_BUG
 111				"Corrupted DMI table, offset %zd (only %d entries processed)\n",
 112				data - buf, i);
 113			break;
 114		}
 115
 116		/*
 117		 *  We want to know the total length (formatted area and
 118		 *  strings) before decoding to make sure we won't run off the
 119		 *  table in dmi_decode or dmi_string
 120		 */
 121		data += dm->length;
 122		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 123			data++;
 124		if (data - buf < dmi_len - 1)
 125			decode(dm, private_data);
 126
 127		data += 2;
 128		i++;
 129
 130		/*
 131		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 132		 * For tables behind a 64-bit entry point, we have no item
 133		 * count and no exact table length, so stop on end-of-table
 134		 * marker. For tables behind a 32-bit entry point, we have
 135		 * seen OEM structures behind the end-of-table marker on
 136		 * some systems, so don't trust it.
 137		 */
 138		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 139			break;
 140	}
 141
 142	/* Trim DMI table length if needed */
 143	if (dmi_len > data - buf)
 144		dmi_len = data - buf;
 145}
 146
 147static phys_addr_t dmi_base;
 148
 149static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 150		void *))
 151{
 152	u8 *buf;
 153	u32 orig_dmi_len = dmi_len;
 154
 155	buf = dmi_early_remap(dmi_base, orig_dmi_len);
 156	if (buf == NULL)
 157		return -ENOMEM;
 158
 159	dmi_decode_table(buf, decode, NULL);
 160
 161	add_device_randomness(buf, dmi_len);
 162
 163	dmi_early_unmap(buf, orig_dmi_len);
 164	return 0;
 165}
 166
 167static int __init dmi_checksum(const u8 *buf, u8 len)
 168{
 169	u8 sum = 0;
 170	int a;
 171
 172	for (a = 0; a < len; a++)
 173		sum += buf[a];
 174
 175	return sum == 0;
 176}
 177
 178static const char *dmi_ident[DMI_STRING_MAX];
 179static LIST_HEAD(dmi_devices);
 180int dmi_available;
 181EXPORT_SYMBOL_GPL(dmi_available);
 182
 183/*
 184 *	Save a DMI string
 185 */
 186static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 187		int string)
 188{
 189	const char *d = (const char *) dm;
 190	const char *p;
 191
 192	if (dmi_ident[slot] || dm->length <= string)
 193		return;
 194
 195	p = dmi_string(dm, d[string]);
 196	if (p == NULL)
 197		return;
 198
 199	dmi_ident[slot] = p;
 200}
 201
 202static void __init dmi_save_release(const struct dmi_header *dm, int slot,
 203		int index)
 204{
 205	const u8 *minor, *major;
 206	char *s;
 207
 208	/* If the table doesn't have the field, let's return */
 209	if (dmi_ident[slot] || dm->length < index)
 210		return;
 211
 212	minor = (u8 *) dm + index;
 213	major = (u8 *) dm + index - 1;
 214
 215	/* As per the spec, if the system doesn't support this field,
 216	 * the value is FF
 217	 */
 218	if (*major == 0xFF && *minor == 0xFF)
 219		return;
 220
 221	s = dmi_alloc(8);
 222	if (!s)
 223		return;
 224
 225	sprintf(s, "%u.%u", *major, *minor);
 226
 227	dmi_ident[slot] = s;
 228}
 229
 230static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 231		int index)
 232{
 233	const u8 *d;
 234	char *s;
 235	int is_ff = 1, is_00 = 1, i;
 236
 237	if (dmi_ident[slot] || dm->length < index + 16)
 238		return;
 239
 240	d = (u8 *) dm + index;
 241	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 242		if (d[i] != 0x00)
 243			is_00 = 0;
 244		if (d[i] != 0xFF)
 245			is_ff = 0;
 246	}
 247
 248	if (is_ff || is_00)
 249		return;
 250
 251	s = dmi_alloc(16*2+4+1);
 252	if (!s)
 253		return;
 254
 255	/*
 256	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 257	 * the UUID are supposed to be little-endian encoded.  The specification
 258	 * says that this is the defacto standard.
 259	 */
 260	if (dmi_ver >= 0x020600)
 261		sprintf(s, "%pUl", d);
 262	else
 263		sprintf(s, "%pUb", d);
 264
 265	dmi_ident[slot] = s;
 266}
 267
 268static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 269		int index)
 270{
 271	const u8 *d;
 272	char *s;
 273
 274	if (dmi_ident[slot] || dm->length <= index)
 275		return;
 276
 277	s = dmi_alloc(4);
 278	if (!s)
 279		return;
 280
 281	d = (u8 *) dm + index;
 282	sprintf(s, "%u", *d & 0x7F);
 283	dmi_ident[slot] = s;
 284}
 285
 286static void __init dmi_save_one_device(int type, const char *name)
 287{
 288	struct dmi_device *dev;
 289
 290	/* No duplicate device */
 291	if (dmi_find_device(type, name, NULL))
 292		return;
 293
 294	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 295	if (!dev)
 296		return;
 297
 298	dev->type = type;
 299	strcpy((char *)(dev + 1), name);
 300	dev->name = (char *)(dev + 1);
 301	dev->device_data = NULL;
 302	list_add(&dev->list, &dmi_devices);
 303}
 304
 305static void __init dmi_save_devices(const struct dmi_header *dm)
 306{
 307	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 308
 309	for (i = 0; i < count; i++) {
 310		const char *d = (char *)(dm + 1) + (i * 2);
 311
 312		/* Skip disabled device */
 313		if ((*d & 0x80) == 0)
 314			continue;
 315
 316		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 317	}
 318}
 319
 320static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 321{
 322	int i, count;
 323	struct dmi_device *dev;
 324
 325	if (dm->length < 0x05)
 326		return;
 327
 328	count = *(u8 *)(dm + 1);
 329	for (i = 1; i <= count; i++) {
 330		const char *devname = dmi_string(dm, i);
 331
 332		if (devname == dmi_empty_string)
 333			continue;
 334
 335		dev = dmi_alloc(sizeof(*dev));
 336		if (!dev)
 337			break;
 338
 339		dev->type = DMI_DEV_TYPE_OEM_STRING;
 340		dev->name = devname;
 341		dev->device_data = NULL;
 342
 343		list_add(&dev->list, &dmi_devices);
 344	}
 345}
 346
 347static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 348{
 349	struct dmi_device *dev;
 350	void *data;
 351
 352	data = dmi_alloc(dm->length);
 353	if (data == NULL)
 354		return;
 355
 356	memcpy(data, dm, dm->length);
 357
 358	dev = dmi_alloc(sizeof(*dev));
 359	if (!dev)
 360		return;
 361
 362	dev->type = DMI_DEV_TYPE_IPMI;
 363	dev->name = "IPMI controller";
 364	dev->device_data = data;
 365
 366	list_add_tail(&dev->list, &dmi_devices);
 367}
 368
 369static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 370					int devfn, const char *name, int type)
 371{
 372	struct dmi_dev_onboard *dev;
 373
 374	/* Ignore invalid values */
 375	if (type == DMI_DEV_TYPE_DEV_SLOT &&
 376	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 377		return;
 378
 379	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 380	if (!dev)
 381		return;
 382
 383	dev->instance = instance;
 384	dev->segment = segment;
 385	dev->bus = bus;
 386	dev->devfn = devfn;
 387
 388	strcpy((char *)&dev[1], name);
 389	dev->dev.type = type;
 390	dev->dev.name = (char *)&dev[1];
 391	dev->dev.device_data = dev;
 392
 393	list_add(&dev->dev.list, &dmi_devices);
 394}
 395
 396static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 397{
 398	const char *name;
 399	const u8 *d = (u8 *)dm;
 400
 401	if (dm->length < 0x0B)
 402		return;
 403
 404	/* Skip disabled device */
 405	if ((d[0x5] & 0x80) == 0)
 406		return;
 407
 408	name = dmi_string_nosave(dm, d[0x4]);
 409	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 410			     DMI_DEV_TYPE_DEV_ONBOARD);
 411	dmi_save_one_device(d[0x5] & 0x7f, name);
 412}
 413
 414static void __init dmi_save_system_slot(const struct dmi_header *dm)
 415{
 416	const u8 *d = (u8 *)dm;
 417
 418	/* Need SMBIOS 2.6+ structure */
 419	if (dm->length < 0x11)
 420		return;
 421	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 422			     d[0x10], dmi_string_nosave(dm, d[0x4]),
 423			     DMI_DEV_TYPE_DEV_SLOT);
 424}
 425
 426static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 427{
 428	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 429		return;
 430	dmi_memdev_nr++;
 431}
 432
 433static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 434{
 435	const char *d = (const char *)dm;
 436	static int nr;
 437	u64 bytes;
 438	u16 size;
 439
 440	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
 441		return;
 442	if (nr >= dmi_memdev_nr) {
 443		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 444		return;
 445	}
 446	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 447	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 448	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 449	dmi_memdev[nr].type = d[0x12];
 450
 451	size = get_unaligned((u16 *)&d[0xC]);
 452	if (size == 0)
 453		bytes = 0;
 454	else if (size == 0xffff)
 455		bytes = ~0ull;
 456	else if (size & 0x8000)
 457		bytes = (u64)(size & 0x7fff) << 10;
 458	else if (size != 0x7fff || dm->length < 0x20)
 459		bytes = (u64)size << 20;
 460	else
 461		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
 462
 463	if (bytes)
 464		dmi_memdev_populated_nr++;
 465
 466	dmi_memdev[nr].size = bytes;
 467	nr++;
 468}
 469
 470static void __init dmi_memdev_walk(void)
 471{
 
 
 
 472	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 473		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 474		if (dmi_memdev)
 475			dmi_walk_early(save_mem_devices);
 476	}
 477}
 478
 479/*
 480 *	Process a DMI table entry. Right now all we care about are the BIOS
 481 *	and machine entries. For 2.5 we should pull the smbus controller info
 482 *	out of here.
 483 */
 484static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 485{
 486	switch (dm->type) {
 487	case 0:		/* BIOS Information */
 488		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 489		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 490		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 491		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
 492		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
 493		break;
 494	case 1:		/* System Information */
 495		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 496		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 497		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 498		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 499		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 500		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
 501		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
 502		break;
 503	case 2:		/* Base Board Information */
 504		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 505		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 506		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 507		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 508		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 509		break;
 510	case 3:		/* Chassis Information */
 511		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 512		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 513		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 514		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 515		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 516		break;
 517	case 9:		/* System Slots */
 518		dmi_save_system_slot(dm);
 519		break;
 520	case 10:	/* Onboard Devices Information */
 521		dmi_save_devices(dm);
 522		break;
 523	case 11:	/* OEM Strings */
 524		dmi_save_oem_strings_devices(dm);
 525		break;
 526	case 38:	/* IPMI Device Information */
 527		dmi_save_ipmi_device(dm);
 528		break;
 529	case 41:	/* Onboard Devices Extended Information */
 530		dmi_save_extended_devices(dm);
 531	}
 532}
 533
 534static int __init print_filtered(char *buf, size_t len, const char *info)
 535{
 536	int c = 0;
 537	const char *p;
 538
 539	if (!info)
 540		return c;
 541
 542	for (p = info; *p; p++)
 543		if (isprint(*p))
 544			c += scnprintf(buf + c, len - c, "%c", *p);
 545		else
 546			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 547	return c;
 548}
 549
 550static void __init dmi_format_ids(char *buf, size_t len)
 551{
 552	int c = 0;
 553	const char *board;	/* Board Name is optional */
 554
 555	c += print_filtered(buf + c, len - c,
 556			    dmi_get_system_info(DMI_SYS_VENDOR));
 557	c += scnprintf(buf + c, len - c, " ");
 558	c += print_filtered(buf + c, len - c,
 559			    dmi_get_system_info(DMI_PRODUCT_NAME));
 560
 561	board = dmi_get_system_info(DMI_BOARD_NAME);
 562	if (board) {
 563		c += scnprintf(buf + c, len - c, "/");
 564		c += print_filtered(buf + c, len - c, board);
 565	}
 566	c += scnprintf(buf + c, len - c, ", BIOS ");
 567	c += print_filtered(buf + c, len - c,
 568			    dmi_get_system_info(DMI_BIOS_VERSION));
 569	c += scnprintf(buf + c, len - c, " ");
 570	c += print_filtered(buf + c, len - c,
 571			    dmi_get_system_info(DMI_BIOS_DATE));
 572}
 573
 574/*
 575 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 576 * SMBIOS header must start 16 bytes before the DMI header, so take a
 577 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 578 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 579 * takes precedence) and return 0.  Otherwise return 1.
 580 */
 581static int __init dmi_present(const u8 *buf)
 582{
 583	u32 smbios_ver;
 584
 585	/*
 586	 * The size of this structure is 31 bytes, but we also accept value
 587	 * 30 due to a mistake in SMBIOS specification version 2.1.
 588	 */
 589	if (memcmp(buf, "_SM_", 4) == 0 &&
 590	    buf[5] >= 30 && buf[5] <= 32 &&
 591	    dmi_checksum(buf, buf[5])) {
 592		smbios_ver = get_unaligned_be16(buf + 6);
 593		smbios_entry_point_size = buf[5];
 594		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 595
 596		/* Some BIOS report weird SMBIOS version, fix that up */
 597		switch (smbios_ver) {
 598		case 0x021F:
 599		case 0x0221:
 600			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 601				 smbios_ver & 0xFF, 3);
 602			smbios_ver = 0x0203;
 603			break;
 604		case 0x0233:
 605			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 606			smbios_ver = 0x0206;
 607			break;
 608		}
 609	} else {
 610		smbios_ver = 0;
 611	}
 612
 613	buf += 16;
 614
 615	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 616		if (smbios_ver)
 617			dmi_ver = smbios_ver;
 618		else
 619			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 620		dmi_ver <<= 8;
 621		dmi_num = get_unaligned_le16(buf + 12);
 622		dmi_len = get_unaligned_le16(buf + 6);
 623		dmi_base = get_unaligned_le32(buf + 8);
 624
 625		if (dmi_walk_early(dmi_decode) == 0) {
 626			if (smbios_ver) {
 627				pr_info("SMBIOS %d.%d present.\n",
 628					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 629			} else {
 630				smbios_entry_point_size = 15;
 631				memcpy(smbios_entry_point, buf,
 632				       smbios_entry_point_size);
 633				pr_info("Legacy DMI %d.%d present.\n",
 634					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 635			}
 636			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 637			pr_info("DMI: %s\n", dmi_ids_string);
 638			return 0;
 639		}
 640	}
 641
 642	return 1;
 643}
 644
 645/*
 646 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 647 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 648 */
 649static int __init dmi_smbios3_present(const u8 *buf)
 650{
 651	if (memcmp(buf, "_SM3_", 5) == 0 &&
 652	    buf[6] >= 24 && buf[6] <= 32 &&
 653	    dmi_checksum(buf, buf[6])) {
 654		dmi_ver = get_unaligned_be24(buf + 7);
 655		dmi_num = 0;			/* No longer specified */
 656		dmi_len = get_unaligned_le32(buf + 12);
 657		dmi_base = get_unaligned_le64(buf + 16);
 658		smbios_entry_point_size = buf[6];
 659		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 660
 661		if (dmi_walk_early(dmi_decode) == 0) {
 662			pr_info("SMBIOS %d.%d.%d present.\n",
 663				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 664				dmi_ver & 0xFF);
 665			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 666			pr_info("DMI: %s\n", dmi_ids_string);
 667			return 0;
 668		}
 669	}
 670	return 1;
 671}
 672
 673static void __init dmi_scan_machine(void)
 674{
 675	char __iomem *p, *q;
 676	char buf[32];
 677
 678	if (efi_enabled(EFI_CONFIG_TABLES)) {
 679		/*
 680		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 681		 * allowed to define both the 64-bit entry point (smbios3) and
 682		 * the 32-bit entry point (smbios), in which case they should
 683		 * either both point to the same SMBIOS structure table, or the
 684		 * table pointed to by the 64-bit entry point should contain a
 685		 * superset of the table contents pointed to by the 32-bit entry
 686		 * point (section 5.2)
 687		 * This implies that the 64-bit entry point should have
 688		 * precedence if it is defined and supported by the OS. If we
 689		 * have the 64-bit entry point, but fail to decode it, fall
 690		 * back to the legacy one (if available)
 691		 */
 692		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 693			p = dmi_early_remap(efi.smbios3, 32);
 694			if (p == NULL)
 695				goto error;
 696			memcpy_fromio(buf, p, 32);
 697			dmi_early_unmap(p, 32);
 698
 699			if (!dmi_smbios3_present(buf)) {
 700				dmi_available = 1;
 701				return;
 702			}
 703		}
 704		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 705			goto error;
 706
 707		/* This is called as a core_initcall() because it isn't
 708		 * needed during early boot.  This also means we can
 709		 * iounmap the space when we're done with it.
 710		 */
 711		p = dmi_early_remap(efi.smbios, 32);
 712		if (p == NULL)
 713			goto error;
 714		memcpy_fromio(buf, p, 32);
 715		dmi_early_unmap(p, 32);
 716
 717		if (!dmi_present(buf)) {
 718			dmi_available = 1;
 719			return;
 720		}
 721	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 722		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
 723		if (p == NULL)
 724			goto error;
 725
 726		/*
 727		 * Same logic as above, look for a 64-bit entry point
 728		 * first, and if not found, fall back to 32-bit entry point.
 729		 */
 730		memcpy_fromio(buf, p, 16);
 731		for (q = p + 16; q < p + 0x10000; q += 16) {
 732			memcpy_fromio(buf + 16, q, 16);
 733			if (!dmi_smbios3_present(buf)) {
 734				dmi_available = 1;
 735				dmi_early_unmap(p, 0x10000);
 736				return;
 737			}
 738			memcpy(buf, buf + 16, 16);
 739		}
 740
 741		/*
 742		 * Iterate over all possible DMI header addresses q.
 743		 * Maintain the 32 bytes around q in buf.  On the
 744		 * first iteration, substitute zero for the
 745		 * out-of-range bytes so there is no chance of falsely
 746		 * detecting an SMBIOS header.
 747		 */
 748		memset(buf, 0, 16);
 749		for (q = p; q < p + 0x10000; q += 16) {
 750			memcpy_fromio(buf + 16, q, 16);
 751			if (!dmi_present(buf)) {
 752				dmi_available = 1;
 753				dmi_early_unmap(p, 0x10000);
 754				return;
 755			}
 756			memcpy(buf, buf + 16, 16);
 757		}
 758		dmi_early_unmap(p, 0x10000);
 759	}
 760 error:
 761	pr_info("DMI not present or invalid.\n");
 
 
 762}
 763
 764static BIN_ATTR_SIMPLE_ADMIN_RO(smbios_entry_point);
 765static BIN_ATTR_SIMPLE_ADMIN_RO(DMI);
 
 
 
 
 
 
 
 
 766
 767static int __init dmi_init(void)
 768{
 769	struct kobject *tables_kobj;
 770	u8 *dmi_table;
 771	int ret = -ENOMEM;
 772
 773	if (!dmi_available)
 774		return 0;
 
 
 775
 776	/*
 777	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 778	 * even after farther error, as it can be used by other modules like
 779	 * dmi-sysfs.
 780	 */
 781	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 782	if (!dmi_kobj)
 783		goto err;
 784
 785	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 786	if (!tables_kobj)
 787		goto err;
 788
 789	dmi_table = dmi_remap(dmi_base, dmi_len);
 790	if (!dmi_table)
 791		goto err_tables;
 792
 793	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 794	bin_attr_smbios_entry_point.private = smbios_entry_point;
 795	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 796	if (ret)
 797		goto err_unmap;
 798
 799	bin_attr_DMI.size = dmi_len;
 800	bin_attr_DMI.private = dmi_table;
 801	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 802	if (!ret)
 803		return 0;
 804
 805	sysfs_remove_bin_file(tables_kobj,
 806			      &bin_attr_smbios_entry_point);
 807 err_unmap:
 808	dmi_unmap(dmi_table);
 809 err_tables:
 810	kobject_del(tables_kobj);
 811	kobject_put(tables_kobj);
 812 err:
 813	pr_err("dmi: Firmware registration failed.\n");
 814
 815	return ret;
 816}
 817subsys_initcall(dmi_init);
 818
 819/**
 820 *	dmi_setup - scan and setup DMI system information
 821 *
 822 *	Scan the DMI system information. This setups DMI identifiers
 823 *	(dmi_system_id) for printing it out on task dumps and prepares
 824 *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
 825 *	for using this when reporting memory errors.
 826 */
 827void __init dmi_setup(void)
 828{
 829	dmi_scan_machine();
 830	if (!dmi_available)
 831		return;
 832
 833	dmi_memdev_walk();
 834	pr_info("DMI: Memory slots populated: %d/%d\n",
 835		dmi_memdev_populated_nr, dmi_memdev_nr);
 836	dump_stack_set_arch_desc("%s", dmi_ids_string);
 837}
 838
 839/**
 840 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 841 *	@dmi: pointer to the dmi_system_id structure to check
 842 */
 843static bool dmi_matches(const struct dmi_system_id *dmi)
 844{
 845	int i;
 846
 
 
 847	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 848		int s = dmi->matches[i].slot;
 849		if (s == DMI_NONE)
 850			break;
 851		if (s == DMI_OEM_STRING) {
 852			/* DMI_OEM_STRING must be exact match */
 853			const struct dmi_device *valid;
 854
 855			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
 856						dmi->matches[i].substr, NULL);
 857			if (valid)
 858				continue;
 859		} else if (dmi_ident[s]) {
 860			if (dmi->matches[i].exact_match) {
 861				if (!strcmp(dmi_ident[s],
 862					    dmi->matches[i].substr))
 863					continue;
 864			} else {
 865				if (strstr(dmi_ident[s],
 866					   dmi->matches[i].substr))
 867					continue;
 868			}
 869		}
 870
 871		/* No match */
 872		return false;
 873	}
 874	return true;
 875}
 876
 877/**
 878 *	dmi_is_end_of_table - check for end-of-table marker
 879 *	@dmi: pointer to the dmi_system_id structure to check
 880 */
 881static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 882{
 883	return dmi->matches[0].slot == DMI_NONE;
 884}
 885
 886/**
 887 *	dmi_check_system - check system DMI data
 888 *	@list: array of dmi_system_id structures to match against
 889 *		All non-null elements of the list must match
 890 *		their slot's (field index's) data (i.e., each
 891 *		list string must be a substring of the specified
 892 *		DMI slot's string data) to be considered a
 893 *		successful match.
 894 *
 895 *	Walk the blacklist table running matching functions until someone
 896 *	returns non zero or we hit the end. Callback function is called for
 897 *	each successful match. Returns the number of matches.
 898 *
 899 *	dmi_setup must be called before this function is called.
 900 */
 901int dmi_check_system(const struct dmi_system_id *list)
 902{
 903	int count = 0;
 904	const struct dmi_system_id *d;
 905
 906	for (d = list; !dmi_is_end_of_table(d); d++)
 907		if (dmi_matches(d)) {
 908			count++;
 909			if (d->callback && d->callback(d))
 910				break;
 911		}
 912
 913	return count;
 914}
 915EXPORT_SYMBOL(dmi_check_system);
 916
 917/**
 918 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 919 *	@list: array of dmi_system_id structures to match against
 920 *		All non-null elements of the list must match
 921 *		their slot's (field index's) data (i.e., each
 922 *		list string must be a substring of the specified
 923 *		DMI slot's string data) to be considered a
 924 *		successful match.
 925 *
 926 *	Walk the blacklist table until the first match is found.  Return the
 927 *	pointer to the matching entry or NULL if there's no match.
 928 *
 929 *	dmi_setup must be called before this function is called.
 930 */
 931const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 932{
 933	const struct dmi_system_id *d;
 934
 935	for (d = list; !dmi_is_end_of_table(d); d++)
 936		if (dmi_matches(d))
 937			return d;
 938
 939	return NULL;
 940}
 941EXPORT_SYMBOL(dmi_first_match);
 942
 943/**
 944 *	dmi_get_system_info - return DMI data value
 945 *	@field: data index (see enum dmi_field)
 946 *
 947 *	Returns one DMI data value, can be used to perform
 948 *	complex DMI data checks.
 949 */
 950const char *dmi_get_system_info(int field)
 951{
 952	return dmi_ident[field];
 953}
 954EXPORT_SYMBOL(dmi_get_system_info);
 955
 956/**
 957 * dmi_name_in_serial - Check if string is in the DMI product serial information
 958 * @str: string to check for
 959 */
 960int dmi_name_in_serial(const char *str)
 961{
 962	int f = DMI_PRODUCT_SERIAL;
 963	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 964		return 1;
 965	return 0;
 966}
 967
 968/**
 969 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 970 *	@str: Case sensitive Name
 971 */
 972int dmi_name_in_vendors(const char *str)
 973{
 974	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 975	int i;
 976	for (i = 0; fields[i] != DMI_NONE; i++) {
 977		int f = fields[i];
 978		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 979			return 1;
 980	}
 981	return 0;
 982}
 983EXPORT_SYMBOL(dmi_name_in_vendors);
 984
 985/**
 986 *	dmi_find_device - find onboard device by type/name
 987 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 988 *	@name: device name string or %NULL to match all
 989 *	@from: previous device found in search, or %NULL for new search.
 990 *
 991 *	Iterates through the list of known onboard devices. If a device is
 992 *	found with a matching @type and @name, a pointer to its device
 993 *	structure is returned.  Otherwise, %NULL is returned.
 994 *	A new search is initiated by passing %NULL as the @from argument.
 995 *	If @from is not %NULL, searches continue from next device.
 996 */
 997const struct dmi_device *dmi_find_device(int type, const char *name,
 998				    const struct dmi_device *from)
 999{
1000	const struct list_head *head = from ? &from->list : &dmi_devices;
1001	struct list_head *d;
1002
1003	for (d = head->next; d != &dmi_devices; d = d->next) {
1004		const struct dmi_device *dev =
1005			list_entry(d, struct dmi_device, list);
1006
1007		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
1008		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
1009			return dev;
1010	}
1011
1012	return NULL;
1013}
1014EXPORT_SYMBOL(dmi_find_device);
1015
1016/**
1017 *	dmi_get_date - parse a DMI date
1018 *	@field:	data index (see enum dmi_field)
1019 *	@yearp: optional out parameter for the year
1020 *	@monthp: optional out parameter for the month
1021 *	@dayp: optional out parameter for the day
1022 *
1023 *	The date field is assumed to be in the form resembling
1024 *	[mm[/dd]]/yy[yy] and the result is stored in the out
1025 *	parameters any or all of which can be omitted.
1026 *
1027 *	If the field doesn't exist, all out parameters are set to zero
1028 *	and false is returned.  Otherwise, true is returned with any
1029 *	invalid part of date set to zero.
1030 *
1031 *	On return, year, month and day are guaranteed to be in the
1032 *	range of [0,9999], [0,12] and [0,31] respectively.
1033 */
1034bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1035{
1036	int year = 0, month = 0, day = 0;
1037	bool exists;
1038	const char *s, *y;
1039	char *e;
1040
1041	s = dmi_get_system_info(field);
1042	exists = s;
1043	if (!exists)
1044		goto out;
1045
1046	/*
1047	 * Determine year first.  We assume the date string resembles
1048	 * mm/dd/yy[yy] but the original code extracted only the year
1049	 * from the end.  Keep the behavior in the spirit of no
1050	 * surprises.
1051	 */
1052	y = strrchr(s, '/');
1053	if (!y)
1054		goto out;
1055
1056	y++;
1057	year = simple_strtoul(y, &e, 10);
1058	if (y != e && year < 100) {	/* 2-digit year */
1059		year += 1900;
1060		if (year < 1996)	/* no dates < spec 1.0 */
1061			year += 100;
1062	}
1063	if (year > 9999)		/* year should fit in %04d */
1064		year = 0;
1065
1066	/* parse the mm and dd */
1067	month = simple_strtoul(s, &e, 10);
1068	if (s == e || *e != '/' || !month || month > 12) {
1069		month = 0;
1070		goto out;
1071	}
1072
1073	s = e + 1;
1074	day = simple_strtoul(s, &e, 10);
1075	if (s == y || s == e || *e != '/' || day > 31)
1076		day = 0;
1077out:
1078	if (yearp)
1079		*yearp = year;
1080	if (monthp)
1081		*monthp = month;
1082	if (dayp)
1083		*dayp = day;
1084	return exists;
1085}
1086EXPORT_SYMBOL(dmi_get_date);
1087
1088/**
1089 *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1090 *
1091 *	Returns year on success, -ENXIO if DMI is not selected,
1092 *	or a different negative error code if DMI field is not present
1093 *	or not parseable.
1094 */
1095int dmi_get_bios_year(void)
1096{
1097	bool exists;
1098	int year;
1099
1100	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1101	if (!exists)
1102		return -ENODATA;
1103
1104	return year ? year : -ERANGE;
1105}
1106EXPORT_SYMBOL(dmi_get_bios_year);
1107
1108/**
1109 *	dmi_walk - Walk the DMI table and get called back for every record
1110 *	@decode: Callback function
1111 *	@private_data: Private data to be passed to the callback function
1112 *
1113 *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1114 *	or a different negative error code if DMI walking fails.
1115 */
1116int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1117	     void *private_data)
1118{
1119	u8 *buf;
1120
1121	if (!dmi_available)
1122		return -ENXIO;
1123
1124	buf = dmi_remap(dmi_base, dmi_len);
1125	if (buf == NULL)
1126		return -ENOMEM;
1127
1128	dmi_decode_table(buf, decode, private_data);
1129
1130	dmi_unmap(buf);
1131	return 0;
1132}
1133EXPORT_SYMBOL_GPL(dmi_walk);
1134
1135/**
1136 * dmi_match - compare a string to the dmi field (if exists)
1137 * @f: DMI field identifier
1138 * @str: string to compare the DMI field to
1139 *
1140 * Returns true if the requested field equals to the str (including NULL).
1141 */
1142bool dmi_match(enum dmi_field f, const char *str)
1143{
1144	const char *info = dmi_get_system_info(f);
1145
1146	if (info == NULL || str == NULL)
1147		return info == str;
1148
1149	return !strcmp(info, str);
1150}
1151EXPORT_SYMBOL_GPL(dmi_match);
1152
1153void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1154{
1155	int n;
1156
1157	if (dmi_memdev == NULL)
1158		return;
1159
1160	for (n = 0; n < dmi_memdev_nr; n++) {
1161		if (handle == dmi_memdev[n].handle) {
1162			*bank = dmi_memdev[n].bank;
1163			*device = dmi_memdev[n].device;
1164			break;
1165		}
1166	}
1167}
1168EXPORT_SYMBOL_GPL(dmi_memdev_name);
1169
1170u64 dmi_memdev_size(u16 handle)
1171{
1172	int n;
1173
1174	if (dmi_memdev) {
1175		for (n = 0; n < dmi_memdev_nr; n++) {
1176			if (handle == dmi_memdev[n].handle)
1177				return dmi_memdev[n].size;
1178		}
1179	}
1180	return ~0ull;
1181}
1182EXPORT_SYMBOL_GPL(dmi_memdev_size);
1183
1184/**
1185 * dmi_memdev_type - get the memory type
1186 * @handle: DMI structure handle
1187 *
1188 * Return the DMI memory type of the module in the slot associated with the
1189 * given DMI handle, or 0x0 if no such DMI handle exists.
1190 */
1191u8 dmi_memdev_type(u16 handle)
1192{
1193	int n;
1194
1195	if (dmi_memdev) {
1196		for (n = 0; n < dmi_memdev_nr; n++) {
1197			if (handle == dmi_memdev[n].handle)
1198				return dmi_memdev[n].type;
1199		}
1200	}
1201	return 0x0;	/* Not a valid value */
1202}
1203EXPORT_SYMBOL_GPL(dmi_memdev_type);
1204
1205/**
1206 *	dmi_memdev_handle - get the DMI handle of a memory slot
1207 *	@slot: slot number
1208 *
1209 *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1210 *      if there is no such slot.
1211 */
1212u16 dmi_memdev_handle(int slot)
1213{
1214	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1215		return dmi_memdev[slot].handle;
1216
1217	return 0xffff;	/* Not a valid value */
1218}
1219EXPORT_SYMBOL_GPL(dmi_memdev_handle);
v4.10.11
 
   1#include <linux/types.h>
   2#include <linux/string.h>
   3#include <linux/init.h>
   4#include <linux/module.h>
   5#include <linux/ctype.h>
   6#include <linux/dmi.h>
   7#include <linux/efi.h>
   8#include <linux/bootmem.h>
   9#include <linux/random.h>
  10#include <asm/dmi.h>
  11#include <asm/unaligned.h>
 
 
 
 
  12
  13struct kobject *dmi_kobj;
  14EXPORT_SYMBOL_GPL(dmi_kobj);
  15
  16/*
  17 * DMI stands for "Desktop Management Interface".  It is part
  18 * of and an antecedent to, SMBIOS, which stands for System
  19 * Management BIOS.  See further: http://www.dmtf.org/standards
  20 */
  21static const char dmi_empty_string[] = "        ";
  22
  23static u32 dmi_ver __initdata;
  24static u32 dmi_len;
  25static u16 dmi_num;
  26static u8 smbios_entry_point[32];
  27static int smbios_entry_point_size;
  28
  29/*
  30 * Catch too early calls to dmi_check_system():
  31 */
  32static int dmi_initialized;
  33
  34/* DMI system identification string used during boot */
  35static char dmi_ids_string[128] __initdata;
  36
  37static struct dmi_memdev_info {
  38	const char *device;
  39	const char *bank;
 
  40	u16 handle;
 
  41} *dmi_memdev;
  42static int dmi_memdev_nr;
 
  43
  44static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  45{
  46	const u8 *bp = ((u8 *) dm) + dm->length;
 
  47
  48	if (s) {
  49		s--;
  50		while (s > 0 && *bp) {
  51			bp += strlen(bp) + 1;
  52			s--;
  53		}
  54
  55		if (*bp != 0) {
  56			size_t len = strlen(bp)+1;
  57			size_t cmp_len = len > 8 ? 8 : len;
  58
  59			if (!memcmp(bp, dmi_empty_string, cmp_len))
  60				return dmi_empty_string;
 
 
 
  61			return bp;
  62		}
  63	}
  64
  65	return "";
  66}
  67
  68static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
  69{
  70	const char *bp = dmi_string_nosave(dm, s);
  71	char *str;
  72	size_t len;
  73
  74	if (bp == dmi_empty_string)
  75		return dmi_empty_string;
  76
  77	len = strlen(bp) + 1;
  78	str = dmi_alloc(len);
  79	if (str != NULL)
  80		strcpy(str, bp);
  81
  82	return str;
  83}
  84
  85/*
  86 *	We have to be cautious here. We have seen BIOSes with DMI pointers
  87 *	pointing to completely the wrong place for example
  88 */
  89static void dmi_decode_table(u8 *buf,
  90			     void (*decode)(const struct dmi_header *, void *),
  91			     void *private_data)
  92{
  93	u8 *data = buf;
  94	int i = 0;
  95
  96	/*
  97	 * Stop when we have seen all the items the table claimed to have
  98	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
  99	 * >= 3.0 only) OR we run off the end of the table (should never
 100	 * happen but sometimes does on bogus implementations.)
 101	 */
 102	while ((!dmi_num || i < dmi_num) &&
 103	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
 104		const struct dmi_header *dm = (const struct dmi_header *)data;
 105
 106		/*
 
 
 
 
 
 
 
 
 
 
 
 107		 *  We want to know the total length (formatted area and
 108		 *  strings) before decoding to make sure we won't run off the
 109		 *  table in dmi_decode or dmi_string
 110		 */
 111		data += dm->length;
 112		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 113			data++;
 114		if (data - buf < dmi_len - 1)
 115			decode(dm, private_data);
 116
 117		data += 2;
 118		i++;
 119
 120		/*
 121		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 122		 * For tables behind a 64-bit entry point, we have no item
 123		 * count and no exact table length, so stop on end-of-table
 124		 * marker. For tables behind a 32-bit entry point, we have
 125		 * seen OEM structures behind the end-of-table marker on
 126		 * some systems, so don't trust it.
 127		 */
 128		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 129			break;
 130	}
 131
 132	/* Trim DMI table length if needed */
 133	if (dmi_len > data - buf)
 134		dmi_len = data - buf;
 135}
 136
 137static phys_addr_t dmi_base;
 138
 139static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 140		void *))
 141{
 142	u8 *buf;
 143	u32 orig_dmi_len = dmi_len;
 144
 145	buf = dmi_early_remap(dmi_base, orig_dmi_len);
 146	if (buf == NULL)
 147		return -1;
 148
 149	dmi_decode_table(buf, decode, NULL);
 150
 151	add_device_randomness(buf, dmi_len);
 152
 153	dmi_early_unmap(buf, orig_dmi_len);
 154	return 0;
 155}
 156
 157static int __init dmi_checksum(const u8 *buf, u8 len)
 158{
 159	u8 sum = 0;
 160	int a;
 161
 162	for (a = 0; a < len; a++)
 163		sum += buf[a];
 164
 165	return sum == 0;
 166}
 167
 168static const char *dmi_ident[DMI_STRING_MAX];
 169static LIST_HEAD(dmi_devices);
 170int dmi_available;
 
 171
 172/*
 173 *	Save a DMI string
 174 */
 175static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 176		int string)
 177{
 178	const char *d = (const char *) dm;
 179	const char *p;
 180
 181	if (dmi_ident[slot])
 182		return;
 183
 184	p = dmi_string(dm, d[string]);
 185	if (p == NULL)
 186		return;
 187
 188	dmi_ident[slot] = p;
 189}
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 192		int index)
 193{
 194	const u8 *d = (u8 *) dm + index;
 195	char *s;
 196	int is_ff = 1, is_00 = 1, i;
 197
 198	if (dmi_ident[slot])
 199		return;
 200
 
 201	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 202		if (d[i] != 0x00)
 203			is_00 = 0;
 204		if (d[i] != 0xFF)
 205			is_ff = 0;
 206	}
 207
 208	if (is_ff || is_00)
 209		return;
 210
 211	s = dmi_alloc(16*2+4+1);
 212	if (!s)
 213		return;
 214
 215	/*
 216	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 217	 * the UUID are supposed to be little-endian encoded.  The specification
 218	 * says that this is the defacto standard.
 219	 */
 220	if (dmi_ver >= 0x020600)
 221		sprintf(s, "%pUL", d);
 222	else
 223		sprintf(s, "%pUB", d);
 224
 225	dmi_ident[slot] = s;
 226}
 227
 228static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 229		int index)
 230{
 231	const u8 *d = (u8 *) dm + index;
 232	char *s;
 233
 234	if (dmi_ident[slot])
 235		return;
 236
 237	s = dmi_alloc(4);
 238	if (!s)
 239		return;
 240
 
 241	sprintf(s, "%u", *d & 0x7F);
 242	dmi_ident[slot] = s;
 243}
 244
 245static void __init dmi_save_one_device(int type, const char *name)
 246{
 247	struct dmi_device *dev;
 248
 249	/* No duplicate device */
 250	if (dmi_find_device(type, name, NULL))
 251		return;
 252
 253	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 254	if (!dev)
 255		return;
 256
 257	dev->type = type;
 258	strcpy((char *)(dev + 1), name);
 259	dev->name = (char *)(dev + 1);
 260	dev->device_data = NULL;
 261	list_add(&dev->list, &dmi_devices);
 262}
 263
 264static void __init dmi_save_devices(const struct dmi_header *dm)
 265{
 266	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 267
 268	for (i = 0; i < count; i++) {
 269		const char *d = (char *)(dm + 1) + (i * 2);
 270
 271		/* Skip disabled device */
 272		if ((*d & 0x80) == 0)
 273			continue;
 274
 275		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 276	}
 277}
 278
 279static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 280{
 281	int i, count = *(u8 *)(dm + 1);
 282	struct dmi_device *dev;
 283
 
 
 
 
 284	for (i = 1; i <= count; i++) {
 285		const char *devname = dmi_string(dm, i);
 286
 287		if (devname == dmi_empty_string)
 288			continue;
 289
 290		dev = dmi_alloc(sizeof(*dev));
 291		if (!dev)
 292			break;
 293
 294		dev->type = DMI_DEV_TYPE_OEM_STRING;
 295		dev->name = devname;
 296		dev->device_data = NULL;
 297
 298		list_add(&dev->list, &dmi_devices);
 299	}
 300}
 301
 302static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 303{
 304	struct dmi_device *dev;
 305	void *data;
 306
 307	data = dmi_alloc(dm->length);
 308	if (data == NULL)
 309		return;
 310
 311	memcpy(data, dm, dm->length);
 312
 313	dev = dmi_alloc(sizeof(*dev));
 314	if (!dev)
 315		return;
 316
 317	dev->type = DMI_DEV_TYPE_IPMI;
 318	dev->name = "IPMI controller";
 319	dev->device_data = data;
 320
 321	list_add_tail(&dev->list, &dmi_devices);
 322}
 323
 324static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 325					int devfn, const char *name, int type)
 326{
 327	struct dmi_dev_onboard *dev;
 328
 329	/* Ignore invalid values */
 330	if (type == DMI_DEV_TYPE_DEV_SLOT &&
 331	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 332		return;
 333
 334	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 335	if (!dev)
 336		return;
 337
 338	dev->instance = instance;
 339	dev->segment = segment;
 340	dev->bus = bus;
 341	dev->devfn = devfn;
 342
 343	strcpy((char *)&dev[1], name);
 344	dev->dev.type = type;
 345	dev->dev.name = (char *)&dev[1];
 346	dev->dev.device_data = dev;
 347
 348	list_add(&dev->dev.list, &dmi_devices);
 349}
 350
 351static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 352{
 353	const char *name;
 354	const u8 *d = (u8 *)dm;
 355
 
 
 
 356	/* Skip disabled device */
 357	if ((d[0x5] & 0x80) == 0)
 358		return;
 359
 360	name = dmi_string_nosave(dm, d[0x4]);
 361	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 362			     DMI_DEV_TYPE_DEV_ONBOARD);
 363	dmi_save_one_device(d[0x5] & 0x7f, name);
 364}
 365
 366static void __init dmi_save_system_slot(const struct dmi_header *dm)
 367{
 368	const u8 *d = (u8 *)dm;
 369
 370	/* Need SMBIOS 2.6+ structure */
 371	if (dm->length < 0x11)
 372		return;
 373	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 374			     d[0x10], dmi_string_nosave(dm, d[0x4]),
 375			     DMI_DEV_TYPE_DEV_SLOT);
 376}
 377
 378static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 379{
 380	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 381		return;
 382	dmi_memdev_nr++;
 383}
 384
 385static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 386{
 387	const char *d = (const char *)dm;
 388	static int nr;
 
 
 389
 390	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 391		return;
 392	if (nr >= dmi_memdev_nr) {
 393		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 394		return;
 395	}
 396	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 397	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 398	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	nr++;
 400}
 401
 402void __init dmi_memdev_walk(void)
 403{
 404	if (!dmi_available)
 405		return;
 406
 407	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 408		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 409		if (dmi_memdev)
 410			dmi_walk_early(save_mem_devices);
 411	}
 412}
 413
 414/*
 415 *	Process a DMI table entry. Right now all we care about are the BIOS
 416 *	and machine entries. For 2.5 we should pull the smbus controller info
 417 *	out of here.
 418 */
 419static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 420{
 421	switch (dm->type) {
 422	case 0:		/* BIOS Information */
 423		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 424		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 425		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 
 
 426		break;
 427	case 1:		/* System Information */
 428		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 429		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 430		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 431		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 432		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 
 
 433		break;
 434	case 2:		/* Base Board Information */
 435		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 436		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 437		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 438		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 439		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 440		break;
 441	case 3:		/* Chassis Information */
 442		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 443		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 444		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 445		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 446		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 447		break;
 448	case 9:		/* System Slots */
 449		dmi_save_system_slot(dm);
 450		break;
 451	case 10:	/* Onboard Devices Information */
 452		dmi_save_devices(dm);
 453		break;
 454	case 11:	/* OEM Strings */
 455		dmi_save_oem_strings_devices(dm);
 456		break;
 457	case 38:	/* IPMI Device Information */
 458		dmi_save_ipmi_device(dm);
 459		break;
 460	case 41:	/* Onboard Devices Extended Information */
 461		dmi_save_extended_devices(dm);
 462	}
 463}
 464
 465static int __init print_filtered(char *buf, size_t len, const char *info)
 466{
 467	int c = 0;
 468	const char *p;
 469
 470	if (!info)
 471		return c;
 472
 473	for (p = info; *p; p++)
 474		if (isprint(*p))
 475			c += scnprintf(buf + c, len - c, "%c", *p);
 476		else
 477			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 478	return c;
 479}
 480
 481static void __init dmi_format_ids(char *buf, size_t len)
 482{
 483	int c = 0;
 484	const char *board;	/* Board Name is optional */
 485
 486	c += print_filtered(buf + c, len - c,
 487			    dmi_get_system_info(DMI_SYS_VENDOR));
 488	c += scnprintf(buf + c, len - c, " ");
 489	c += print_filtered(buf + c, len - c,
 490			    dmi_get_system_info(DMI_PRODUCT_NAME));
 491
 492	board = dmi_get_system_info(DMI_BOARD_NAME);
 493	if (board) {
 494		c += scnprintf(buf + c, len - c, "/");
 495		c += print_filtered(buf + c, len - c, board);
 496	}
 497	c += scnprintf(buf + c, len - c, ", BIOS ");
 498	c += print_filtered(buf + c, len - c,
 499			    dmi_get_system_info(DMI_BIOS_VERSION));
 500	c += scnprintf(buf + c, len - c, " ");
 501	c += print_filtered(buf + c, len - c,
 502			    dmi_get_system_info(DMI_BIOS_DATE));
 503}
 504
 505/*
 506 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 507 * SMBIOS header must start 16 bytes before the DMI header, so take a
 508 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 509 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 510 * takes precedence) and return 0.  Otherwise return 1.
 511 */
 512static int __init dmi_present(const u8 *buf)
 513{
 514	u32 smbios_ver;
 515
 
 
 
 
 516	if (memcmp(buf, "_SM_", 4) == 0 &&
 517	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
 
 518		smbios_ver = get_unaligned_be16(buf + 6);
 519		smbios_entry_point_size = buf[5];
 520		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 521
 522		/* Some BIOS report weird SMBIOS version, fix that up */
 523		switch (smbios_ver) {
 524		case 0x021F:
 525		case 0x0221:
 526			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 527				 smbios_ver & 0xFF, 3);
 528			smbios_ver = 0x0203;
 529			break;
 530		case 0x0233:
 531			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 532			smbios_ver = 0x0206;
 533			break;
 534		}
 535	} else {
 536		smbios_ver = 0;
 537	}
 538
 539	buf += 16;
 540
 541	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 542		if (smbios_ver)
 543			dmi_ver = smbios_ver;
 544		else
 545			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 546		dmi_ver <<= 8;
 547		dmi_num = get_unaligned_le16(buf + 12);
 548		dmi_len = get_unaligned_le16(buf + 6);
 549		dmi_base = get_unaligned_le32(buf + 8);
 550
 551		if (dmi_walk_early(dmi_decode) == 0) {
 552			if (smbios_ver) {
 553				pr_info("SMBIOS %d.%d present.\n",
 554					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 555			} else {
 556				smbios_entry_point_size = 15;
 557				memcpy(smbios_entry_point, buf,
 558				       smbios_entry_point_size);
 559				pr_info("Legacy DMI %d.%d present.\n",
 560					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 561			}
 562			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 563			pr_info("DMI: %s\n", dmi_ids_string);
 564			return 0;
 565		}
 566	}
 567
 568	return 1;
 569}
 570
 571/*
 572 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 573 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 574 */
 575static int __init dmi_smbios3_present(const u8 *buf)
 576{
 577	if (memcmp(buf, "_SM3_", 5) == 0 &&
 578	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
 579		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
 
 580		dmi_num = 0;			/* No longer specified */
 581		dmi_len = get_unaligned_le32(buf + 12);
 582		dmi_base = get_unaligned_le64(buf + 16);
 583		smbios_entry_point_size = buf[6];
 584		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 585
 586		if (dmi_walk_early(dmi_decode) == 0) {
 587			pr_info("SMBIOS %d.%d.%d present.\n",
 588				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 589				dmi_ver & 0xFF);
 590			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 591			pr_info("DMI: %s\n", dmi_ids_string);
 592			return 0;
 593		}
 594	}
 595	return 1;
 596}
 597
 598void __init dmi_scan_machine(void)
 599{
 600	char __iomem *p, *q;
 601	char buf[32];
 602
 603	if (efi_enabled(EFI_CONFIG_TABLES)) {
 604		/*
 605		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 606		 * allowed to define both the 64-bit entry point (smbios3) and
 607		 * the 32-bit entry point (smbios), in which case they should
 608		 * either both point to the same SMBIOS structure table, or the
 609		 * table pointed to by the 64-bit entry point should contain a
 610		 * superset of the table contents pointed to by the 32-bit entry
 611		 * point (section 5.2)
 612		 * This implies that the 64-bit entry point should have
 613		 * precedence if it is defined and supported by the OS. If we
 614		 * have the 64-bit entry point, but fail to decode it, fall
 615		 * back to the legacy one (if available)
 616		 */
 617		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 618			p = dmi_early_remap(efi.smbios3, 32);
 619			if (p == NULL)
 620				goto error;
 621			memcpy_fromio(buf, p, 32);
 622			dmi_early_unmap(p, 32);
 623
 624			if (!dmi_smbios3_present(buf)) {
 625				dmi_available = 1;
 626				goto out;
 627			}
 628		}
 629		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 630			goto error;
 631
 632		/* This is called as a core_initcall() because it isn't
 633		 * needed during early boot.  This also means we can
 634		 * iounmap the space when we're done with it.
 635		 */
 636		p = dmi_early_remap(efi.smbios, 32);
 637		if (p == NULL)
 638			goto error;
 639		memcpy_fromio(buf, p, 32);
 640		dmi_early_unmap(p, 32);
 641
 642		if (!dmi_present(buf)) {
 643			dmi_available = 1;
 644			goto out;
 645		}
 646	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 647		p = dmi_early_remap(0xF0000, 0x10000);
 648		if (p == NULL)
 649			goto error;
 650
 651		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		 * Iterate over all possible DMI header addresses q.
 653		 * Maintain the 32 bytes around q in buf.  On the
 654		 * first iteration, substitute zero for the
 655		 * out-of-range bytes so there is no chance of falsely
 656		 * detecting an SMBIOS header.
 657		 */
 658		memset(buf, 0, 16);
 659		for (q = p; q < p + 0x10000; q += 16) {
 660			memcpy_fromio(buf + 16, q, 16);
 661			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
 662				dmi_available = 1;
 663				dmi_early_unmap(p, 0x10000);
 664				goto out;
 665			}
 666			memcpy(buf, buf + 16, 16);
 667		}
 668		dmi_early_unmap(p, 0x10000);
 669	}
 670 error:
 671	pr_info("DMI not present or invalid.\n");
 672 out:
 673	dmi_initialized = 1;
 674}
 675
 676static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
 677			      struct bin_attribute *attr, char *buf,
 678			      loff_t pos, size_t count)
 679{
 680	memcpy(buf, attr->private + pos, count);
 681	return count;
 682}
 683
 684static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
 685static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
 686
 687static int __init dmi_init(void)
 688{
 689	struct kobject *tables_kobj;
 690	u8 *dmi_table;
 691	int ret = -ENOMEM;
 692
 693	if (!dmi_available) {
 694		ret = -ENODATA;
 695		goto err;
 696	}
 697
 698	/*
 699	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 700	 * even after farther error, as it can be used by other modules like
 701	 * dmi-sysfs.
 702	 */
 703	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 704	if (!dmi_kobj)
 705		goto err;
 706
 707	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 708	if (!tables_kobj)
 709		goto err;
 710
 711	dmi_table = dmi_remap(dmi_base, dmi_len);
 712	if (!dmi_table)
 713		goto err_tables;
 714
 715	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 716	bin_attr_smbios_entry_point.private = smbios_entry_point;
 717	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 718	if (ret)
 719		goto err_unmap;
 720
 721	bin_attr_DMI.size = dmi_len;
 722	bin_attr_DMI.private = dmi_table;
 723	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 724	if (!ret)
 725		return 0;
 726
 727	sysfs_remove_bin_file(tables_kobj,
 728			      &bin_attr_smbios_entry_point);
 729 err_unmap:
 730	dmi_unmap(dmi_table);
 731 err_tables:
 732	kobject_del(tables_kobj);
 733	kobject_put(tables_kobj);
 734 err:
 735	pr_err("dmi: Firmware registration failed.\n");
 736
 737	return ret;
 738}
 739subsys_initcall(dmi_init);
 740
 741/**
 742 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
 743 *
 744 * Invoke dump_stack_set_arch_desc() with DMI system information so that
 745 * DMI identifiers are printed out on task dumps.  Arch boot code should
 746 * call this function after dmi_scan_machine() if it wants to print out DMI
 747 * identifiers on task dumps.
 748 */
 749void __init dmi_set_dump_stack_arch_desc(void)
 750{
 
 
 
 
 
 
 
 751	dump_stack_set_arch_desc("%s", dmi_ids_string);
 752}
 753
 754/**
 755 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 756 *	@dmi: pointer to the dmi_system_id structure to check
 757 */
 758static bool dmi_matches(const struct dmi_system_id *dmi)
 759{
 760	int i;
 761
 762	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
 763
 764	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 765		int s = dmi->matches[i].slot;
 766		if (s == DMI_NONE)
 767			break;
 768		if (dmi_ident[s]) {
 769			if (!dmi->matches[i].exact_match &&
 770			    strstr(dmi_ident[s], dmi->matches[i].substr))
 771				continue;
 772			else if (dmi->matches[i].exact_match &&
 773				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
 
 774				continue;
 
 
 
 
 
 
 
 
 
 
 775		}
 776
 777		/* No match */
 778		return false;
 779	}
 780	return true;
 781}
 782
 783/**
 784 *	dmi_is_end_of_table - check for end-of-table marker
 785 *	@dmi: pointer to the dmi_system_id structure to check
 786 */
 787static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 788{
 789	return dmi->matches[0].slot == DMI_NONE;
 790}
 791
 792/**
 793 *	dmi_check_system - check system DMI data
 794 *	@list: array of dmi_system_id structures to match against
 795 *		All non-null elements of the list must match
 796 *		their slot's (field index's) data (i.e., each
 797 *		list string must be a substring of the specified
 798 *		DMI slot's string data) to be considered a
 799 *		successful match.
 800 *
 801 *	Walk the blacklist table running matching functions until someone
 802 *	returns non zero or we hit the end. Callback function is called for
 803 *	each successful match. Returns the number of matches.
 
 
 804 */
 805int dmi_check_system(const struct dmi_system_id *list)
 806{
 807	int count = 0;
 808	const struct dmi_system_id *d;
 809
 810	for (d = list; !dmi_is_end_of_table(d); d++)
 811		if (dmi_matches(d)) {
 812			count++;
 813			if (d->callback && d->callback(d))
 814				break;
 815		}
 816
 817	return count;
 818}
 819EXPORT_SYMBOL(dmi_check_system);
 820
 821/**
 822 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 823 *	@list: array of dmi_system_id structures to match against
 824 *		All non-null elements of the list must match
 825 *		their slot's (field index's) data (i.e., each
 826 *		list string must be a substring of the specified
 827 *		DMI slot's string data) to be considered a
 828 *		successful match.
 829 *
 830 *	Walk the blacklist table until the first match is found.  Return the
 831 *	pointer to the matching entry or NULL if there's no match.
 
 
 832 */
 833const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 834{
 835	const struct dmi_system_id *d;
 836
 837	for (d = list; !dmi_is_end_of_table(d); d++)
 838		if (dmi_matches(d))
 839			return d;
 840
 841	return NULL;
 842}
 843EXPORT_SYMBOL(dmi_first_match);
 844
 845/**
 846 *	dmi_get_system_info - return DMI data value
 847 *	@field: data index (see enum dmi_field)
 848 *
 849 *	Returns one DMI data value, can be used to perform
 850 *	complex DMI data checks.
 851 */
 852const char *dmi_get_system_info(int field)
 853{
 854	return dmi_ident[field];
 855}
 856EXPORT_SYMBOL(dmi_get_system_info);
 857
 858/**
 859 * dmi_name_in_serial - Check if string is in the DMI product serial information
 860 * @str: string to check for
 861 */
 862int dmi_name_in_serial(const char *str)
 863{
 864	int f = DMI_PRODUCT_SERIAL;
 865	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 866		return 1;
 867	return 0;
 868}
 869
 870/**
 871 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 872 *	@str: Case sensitive Name
 873 */
 874int dmi_name_in_vendors(const char *str)
 875{
 876	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 877	int i;
 878	for (i = 0; fields[i] != DMI_NONE; i++) {
 879		int f = fields[i];
 880		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 881			return 1;
 882	}
 883	return 0;
 884}
 885EXPORT_SYMBOL(dmi_name_in_vendors);
 886
 887/**
 888 *	dmi_find_device - find onboard device by type/name
 889 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 890 *	@name: device name string or %NULL to match all
 891 *	@from: previous device found in search, or %NULL for new search.
 892 *
 893 *	Iterates through the list of known onboard devices. If a device is
 894 *	found with a matching @type and @name, a pointer to its device
 895 *	structure is returned.  Otherwise, %NULL is returned.
 896 *	A new search is initiated by passing %NULL as the @from argument.
 897 *	If @from is not %NULL, searches continue from next device.
 898 */
 899const struct dmi_device *dmi_find_device(int type, const char *name,
 900				    const struct dmi_device *from)
 901{
 902	const struct list_head *head = from ? &from->list : &dmi_devices;
 903	struct list_head *d;
 904
 905	for (d = head->next; d != &dmi_devices; d = d->next) {
 906		const struct dmi_device *dev =
 907			list_entry(d, struct dmi_device, list);
 908
 909		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 910		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
 911			return dev;
 912	}
 913
 914	return NULL;
 915}
 916EXPORT_SYMBOL(dmi_find_device);
 917
 918/**
 919 *	dmi_get_date - parse a DMI date
 920 *	@field:	data index (see enum dmi_field)
 921 *	@yearp: optional out parameter for the year
 922 *	@monthp: optional out parameter for the month
 923 *	@dayp: optional out parameter for the day
 924 *
 925 *	The date field is assumed to be in the form resembling
 926 *	[mm[/dd]]/yy[yy] and the result is stored in the out
 927 *	parameters any or all of which can be omitted.
 928 *
 929 *	If the field doesn't exist, all out parameters are set to zero
 930 *	and false is returned.  Otherwise, true is returned with any
 931 *	invalid part of date set to zero.
 932 *
 933 *	On return, year, month and day are guaranteed to be in the
 934 *	range of [0,9999], [0,12] and [0,31] respectively.
 935 */
 936bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
 937{
 938	int year = 0, month = 0, day = 0;
 939	bool exists;
 940	const char *s, *y;
 941	char *e;
 942
 943	s = dmi_get_system_info(field);
 944	exists = s;
 945	if (!exists)
 946		goto out;
 947
 948	/*
 949	 * Determine year first.  We assume the date string resembles
 950	 * mm/dd/yy[yy] but the original code extracted only the year
 951	 * from the end.  Keep the behavior in the spirit of no
 952	 * surprises.
 953	 */
 954	y = strrchr(s, '/');
 955	if (!y)
 956		goto out;
 957
 958	y++;
 959	year = simple_strtoul(y, &e, 10);
 960	if (y != e && year < 100) {	/* 2-digit year */
 961		year += 1900;
 962		if (year < 1996)	/* no dates < spec 1.0 */
 963			year += 100;
 964	}
 965	if (year > 9999)		/* year should fit in %04d */
 966		year = 0;
 967
 968	/* parse the mm and dd */
 969	month = simple_strtoul(s, &e, 10);
 970	if (s == e || *e != '/' || !month || month > 12) {
 971		month = 0;
 972		goto out;
 973	}
 974
 975	s = e + 1;
 976	day = simple_strtoul(s, &e, 10);
 977	if (s == y || s == e || *e != '/' || day > 31)
 978		day = 0;
 979out:
 980	if (yearp)
 981		*yearp = year;
 982	if (monthp)
 983		*monthp = month;
 984	if (dayp)
 985		*dayp = day;
 986	return exists;
 987}
 988EXPORT_SYMBOL(dmi_get_date);
 989
 990/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991 *	dmi_walk - Walk the DMI table and get called back for every record
 992 *	@decode: Callback function
 993 *	@private_data: Private data to be passed to the callback function
 994 *
 995 *	Returns -1 when the DMI table can't be reached, 0 on success.
 
 996 */
 997int dmi_walk(void (*decode)(const struct dmi_header *, void *),
 998	     void *private_data)
 999{
1000	u8 *buf;
1001
1002	if (!dmi_available)
1003		return -1;
1004
1005	buf = dmi_remap(dmi_base, dmi_len);
1006	if (buf == NULL)
1007		return -1;
1008
1009	dmi_decode_table(buf, decode, private_data);
1010
1011	dmi_unmap(buf);
1012	return 0;
1013}
1014EXPORT_SYMBOL_GPL(dmi_walk);
1015
1016/**
1017 * dmi_match - compare a string to the dmi field (if exists)
1018 * @f: DMI field identifier
1019 * @str: string to compare the DMI field to
1020 *
1021 * Returns true if the requested field equals to the str (including NULL).
1022 */
1023bool dmi_match(enum dmi_field f, const char *str)
1024{
1025	const char *info = dmi_get_system_info(f);
1026
1027	if (info == NULL || str == NULL)
1028		return info == str;
1029
1030	return !strcmp(info, str);
1031}
1032EXPORT_SYMBOL_GPL(dmi_match);
1033
1034void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1035{
1036	int n;
1037
1038	if (dmi_memdev == NULL)
1039		return;
1040
1041	for (n = 0; n < dmi_memdev_nr; n++) {
1042		if (handle == dmi_memdev[n].handle) {
1043			*bank = dmi_memdev[n].bank;
1044			*device = dmi_memdev[n].device;
1045			break;
1046		}
1047	}
1048}
1049EXPORT_SYMBOL_GPL(dmi_memdev_name);