Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
 
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
 
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
 
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "direct-io.h"
 
  38#include "props.h"
  39#include "xattr.h"
  40#include "bio.h"
  41#include "export.h"
  42#include "compression.h"
 
  43#include "dev-replace.h"
  44#include "free-space-cache.h"
  45#include "backref.h"
  46#include "space-info.h"
  47#include "sysfs.h"
  48#include "zoned.h"
  49#include "tests/btrfs-tests.h"
  50#include "block-group.h"
  51#include "discard.h"
  52#include "qgroup.h"
  53#include "raid56.h"
  54#include "fs.h"
  55#include "accessors.h"
  56#include "defrag.h"
  57#include "dir-item.h"
  58#include "ioctl.h"
  59#include "scrub.h"
  60#include "verity.h"
  61#include "super.h"
  62#include "extent-tree.h"
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/btrfs.h>
  65
  66static const struct super_operations btrfs_super_ops;
  67static struct file_system_type btrfs_fs_type;
  68
  69static void btrfs_put_super(struct super_block *sb)
 
 
  70{
  71	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  72
  73	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  74	close_ctree(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75}
  76
  77/* Store the mount options related information. */
  78struct btrfs_fs_context {
  79	char *subvol_name;
  80	u64 subvol_objectid;
  81	u64 max_inline;
  82	u32 commit_interval;
  83	u32 metadata_ratio;
  84	u32 thread_pool_size;
  85	unsigned long long mount_opt;
  86	unsigned long compress_type:4;
  87	unsigned int compress_level;
  88	refcount_t refs;
  89};
  90
  91enum {
  92	Opt_acl,
  93	Opt_clear_cache,
  94	Opt_commit_interval,
  95	Opt_compress,
  96	Opt_compress_force,
  97	Opt_compress_force_type,
  98	Opt_compress_type,
  99	Opt_degraded,
 100	Opt_device,
 101	Opt_fatal_errors,
 102	Opt_flushoncommit,
 103	Opt_max_inline,
 104	Opt_barrier,
 105	Opt_datacow,
 106	Opt_datasum,
 107	Opt_defrag,
 108	Opt_discard,
 109	Opt_discard_mode,
 110	Opt_ratio,
 111	Opt_rescan_uuid_tree,
 112	Opt_skip_balance,
 113	Opt_space_cache,
 114	Opt_space_cache_version,
 115	Opt_ssd,
 116	Opt_ssd_spread,
 117	Opt_subvol,
 118	Opt_subvol_empty,
 119	Opt_subvolid,
 120	Opt_thread_pool,
 121	Opt_treelog,
 122	Opt_user_subvol_rm_allowed,
 123	Opt_norecovery,
 124
 125	/* Rescue options */
 126	Opt_rescue,
 127	Opt_usebackuproot,
 128	Opt_nologreplay,
 129
 130	/* Debugging options */
 131	Opt_enospc_debug,
 132#ifdef CONFIG_BTRFS_DEBUG
 133	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134#endif
 135#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 136	Opt_ref_verify,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137#endif
 138	Opt_err,
 139};
 140
 141enum {
 142	Opt_fatal_errors_panic,
 143	Opt_fatal_errors_bug,
 144};
 
 145
 146static const struct constant_table btrfs_parameter_fatal_errors[] = {
 147	{ "panic", Opt_fatal_errors_panic },
 148	{ "bug", Opt_fatal_errors_bug },
 149	{}
 
 
 
 
 
 
 
 
 
 
 
 150};
 151
 152enum {
 153	Opt_discard_sync,
 154	Opt_discard_async,
 155};
 156
 157static const struct constant_table btrfs_parameter_discard[] = {
 158	{ "sync", Opt_discard_sync },
 159	{ "async", Opt_discard_async },
 160	{}
 
 
 
 
 
 
 
 
 
 161};
 162
 163enum {
 164	Opt_space_cache_v1,
 165	Opt_space_cache_v2,
 166};
 
 
 
 
 
 167
 168static const struct constant_table btrfs_parameter_space_cache[] = {
 169	{ "v1", Opt_space_cache_v1 },
 170	{ "v2", Opt_space_cache_v2 },
 171	{}
 172};
 173
 174enum {
 175	Opt_rescue_usebackuproot,
 176	Opt_rescue_nologreplay,
 177	Opt_rescue_ignorebadroots,
 178	Opt_rescue_ignoredatacsums,
 179	Opt_rescue_ignoremetacsums,
 180	Opt_rescue_ignoresuperflags,
 181	Opt_rescue_parameter_all,
 182};
 183
 184static const struct constant_table btrfs_parameter_rescue[] = {
 185	{ "usebackuproot", Opt_rescue_usebackuproot },
 186	{ "nologreplay", Opt_rescue_nologreplay },
 187	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 188	{ "ibadroots", Opt_rescue_ignorebadroots },
 189	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 190	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
 191	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
 192	{ "idatacsums", Opt_rescue_ignoredatacsums },
 193	{ "imetacsums", Opt_rescue_ignoremetacsums},
 194	{ "isuperflags", Opt_rescue_ignoresuperflags},
 195	{ "all", Opt_rescue_parameter_all },
 196	{}
 197};
 198
 199#ifdef CONFIG_BTRFS_DEBUG
 200enum {
 201	Opt_fragment_parameter_data,
 202	Opt_fragment_parameter_metadata,
 203	Opt_fragment_parameter_all,
 204};
 205
 206static const struct constant_table btrfs_parameter_fragment[] = {
 207	{ "data", Opt_fragment_parameter_data },
 208	{ "metadata", Opt_fragment_parameter_metadata },
 209	{ "all", Opt_fragment_parameter_all },
 210	{}
 211};
 212#endif
 213
 214static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 215	fsparam_flag_no("acl", Opt_acl),
 216	fsparam_flag_no("autodefrag", Opt_defrag),
 217	fsparam_flag_no("barrier", Opt_barrier),
 218	fsparam_flag("clear_cache", Opt_clear_cache),
 219	fsparam_u32("commit", Opt_commit_interval),
 220	fsparam_flag("compress", Opt_compress),
 221	fsparam_string("compress", Opt_compress_type),
 222	fsparam_flag("compress-force", Opt_compress_force),
 223	fsparam_string("compress-force", Opt_compress_force_type),
 224	fsparam_flag_no("datacow", Opt_datacow),
 225	fsparam_flag_no("datasum", Opt_datasum),
 226	fsparam_flag("degraded", Opt_degraded),
 227	fsparam_string("device", Opt_device),
 228	fsparam_flag_no("discard", Opt_discard),
 229	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 230	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 231	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 232	fsparam_string("max_inline", Opt_max_inline),
 233	fsparam_u32("metadata_ratio", Opt_ratio),
 234	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 235	fsparam_flag("skip_balance", Opt_skip_balance),
 236	fsparam_flag_no("space_cache", Opt_space_cache),
 237	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 238	fsparam_flag_no("ssd", Opt_ssd),
 239	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 240	fsparam_string("subvol", Opt_subvol),
 241	fsparam_flag("subvol=", Opt_subvol_empty),
 242	fsparam_u64("subvolid", Opt_subvolid),
 243	fsparam_u32("thread_pool", Opt_thread_pool),
 244	fsparam_flag_no("treelog", Opt_treelog),
 245	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 246
 247	/* Rescue options. */
 248	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 249	/* Deprecated, with alias rescue=nologreplay */
 250	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 251	/* Deprecated, with alias rescue=usebackuproot */
 252	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 253	/* For compatibility only, alias for "rescue=nologreplay". */
 254	fsparam_flag("norecovery", Opt_norecovery),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256	/* Debugging options. */
 257	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258#ifdef CONFIG_BTRFS_DEBUG
 259	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 260#endif
 261#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 262	fsparam_flag("ref_verify", Opt_ref_verify),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263#endif
 264	{}
 265};
 266
 267/* No support for restricting writes to btrfs devices yet... */
 268static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 
 
 
 
 
 269{
 270	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 271}
 
 
 
 
 
 
 
 
 272
 273static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 274{
 275	struct btrfs_fs_context *ctx = fc->fs_private;
 276	struct fs_parse_result result;
 277	int opt;
 278
 279	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 280	if (opt < 0)
 281		return opt;
 
 
 
 282
 283	switch (opt) {
 284	case Opt_degraded:
 285		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 286		break;
 287	case Opt_subvol_empty:
 288		/*
 289		 * This exists because we used to allow it on accident, so we're
 290		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 291		 * empty subvol= again").
 292		 */
 293		break;
 294	case Opt_subvol:
 295		kfree(ctx->subvol_name);
 296		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 297		if (!ctx->subvol_name)
 298			return -ENOMEM;
 299		break;
 300	case Opt_subvolid:
 301		ctx->subvol_objectid = result.uint_64;
 302
 303		/* subvolid=0 means give me the original fs_tree. */
 304		if (!ctx->subvol_objectid)
 305			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 306		break;
 307	case Opt_device: {
 308		struct btrfs_device *device;
 309		blk_mode_t mode = btrfs_open_mode(fc);
 310
 311		mutex_lock(&uuid_mutex);
 312		device = btrfs_scan_one_device(param->string, mode, false);
 313		mutex_unlock(&uuid_mutex);
 314		if (IS_ERR(device))
 315			return PTR_ERR(device);
 316		break;
 317	}
 318	case Opt_datasum:
 319		if (result.negated) {
 320			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 321		} else {
 322			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 323			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 324		}
 325		break;
 326	case Opt_datacow:
 327		if (result.negated) {
 328			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 329			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 330			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 331			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 332		} else {
 333			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 334		}
 335		break;
 336	case Opt_compress_force:
 337	case Opt_compress_force_type:
 338		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 339		fallthrough;
 340	case Opt_compress:
 341	case Opt_compress_type:
 342		/*
 343		 * Provide the same semantics as older kernels that don't use fs
 344		 * context, specifying the "compress" option clears
 345		 * "force-compress" without the need to pass
 346		 * "compress-force=[no|none]" before specifying "compress".
 347		 */
 348		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
 349			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 350
 351		if (opt == Opt_compress || opt == Opt_compress_force) {
 352			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 353			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 354			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 355			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 356			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 357		} else if (strncmp(param->string, "zlib", 4) == 0) {
 358			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 359			ctx->compress_level =
 360				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 361							 param->string + 4);
 362			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 363			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 364			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 365		} else if (strncmp(param->string, "lzo", 3) == 0) {
 366			ctx->compress_type = BTRFS_COMPRESS_LZO;
 367			ctx->compress_level = 0;
 368			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 369			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 370			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 371		} else if (strncmp(param->string, "zstd", 4) == 0) {
 372			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 373			ctx->compress_level =
 374				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 375							 param->string + 4);
 376			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 377			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 378			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 379		} else if (strncmp(param->string, "no", 2) == 0) {
 380			ctx->compress_level = 0;
 381			ctx->compress_type = 0;
 382			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 383			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 384		} else {
 385			btrfs_err(NULL, "unrecognized compression value %s",
 386				  param->string);
 387			return -EINVAL;
 388		}
 389		break;
 390	case Opt_ssd:
 391		if (result.negated) {
 392			btrfs_set_opt(ctx->mount_opt, NOSSD);
 393			btrfs_clear_opt(ctx->mount_opt, SSD);
 394			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 395		} else {
 396			btrfs_set_opt(ctx->mount_opt, SSD);
 397			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 398		}
 399		break;
 400	case Opt_ssd_spread:
 401		if (result.negated) {
 402			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 403		} else {
 404			btrfs_set_opt(ctx->mount_opt, SSD);
 405			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 406			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 407		}
 408		break;
 409	case Opt_barrier:
 410		if (result.negated)
 411			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 412		else
 413			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 414		break;
 415	case Opt_thread_pool:
 416		if (result.uint_32 == 0) {
 417			btrfs_err(NULL, "invalid value 0 for thread_pool");
 418			return -EINVAL;
 419		}
 420		ctx->thread_pool_size = result.uint_32;
 421		break;
 422	case Opt_max_inline:
 423		ctx->max_inline = memparse(param->string, NULL);
 424		break;
 425	case Opt_acl:
 426		if (result.negated) {
 427			fc->sb_flags &= ~SB_POSIXACL;
 428		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 430			fc->sb_flags |= SB_POSIXACL;
 
 431#else
 432			btrfs_err(NULL, "support for ACL not compiled in");
 433			return -EINVAL;
 
 434#endif
 435		}
 436		/*
 437		 * VFS limits the ability to toggle ACL on and off via remount,
 438		 * despite every file system allowing this.  This seems to be
 439		 * an oversight since we all do, but it'll fail if we're
 440		 * remounting.  So don't set the mask here, we'll check it in
 441		 * btrfs_reconfigure and do the toggling ourselves.
 442		 */
 443		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 444			fc->sb_flags_mask |= SB_POSIXACL;
 445		break;
 446	case Opt_treelog:
 447		if (result.negated)
 448			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 449		else
 450			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 451		break;
 452	case Opt_nologreplay:
 453		btrfs_warn(NULL,
 454		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 455		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 456		break;
 457	case Opt_norecovery:
 458		btrfs_info(NULL,
 459"'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
 460		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 461		break;
 462	case Opt_flushoncommit:
 463		if (result.negated)
 464			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 465		else
 466			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 467		break;
 468	case Opt_ratio:
 469		ctx->metadata_ratio = result.uint_32;
 470		break;
 471	case Opt_discard:
 472		if (result.negated) {
 473			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 474			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 475			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 476		} else {
 477			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 478			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 479		}
 480		break;
 481	case Opt_discard_mode:
 482		switch (result.uint_32) {
 483		case Opt_discard_sync:
 484			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 485			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 486			break;
 487		case Opt_discard_async:
 488			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 489			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 490			break;
 491		default:
 492			btrfs_err(NULL, "unrecognized discard mode value %s",
 493				  param->key);
 494			return -EINVAL;
 495		}
 496		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 497		break;
 498	case Opt_space_cache:
 499		if (result.negated) {
 500			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 501			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 502			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 503		} else {
 504			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 505			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 506		}
 507		break;
 508	case Opt_space_cache_version:
 509		switch (result.uint_32) {
 510		case Opt_space_cache_v1:
 511			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 512			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 513			break;
 514		case Opt_space_cache_v2:
 515			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 516			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 517			break;
 518		default:
 519			btrfs_err(NULL, "unrecognized space_cache value %s",
 520				  param->key);
 521			return -EINVAL;
 522		}
 523		break;
 524	case Opt_rescan_uuid_tree:
 525		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 526		break;
 527	case Opt_clear_cache:
 528		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 529		break;
 530	case Opt_user_subvol_rm_allowed:
 531		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 532		break;
 533	case Opt_enospc_debug:
 534		if (result.negated)
 535			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 536		else
 537			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 538		break;
 539	case Opt_defrag:
 540		if (result.negated)
 541			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 542		else
 543			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 544		break;
 545	case Opt_usebackuproot:
 546		btrfs_warn(NULL,
 547			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 548		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 549
 550		/* If we're loading the backup roots we can't trust the space cache. */
 551		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 552		break;
 553	case Opt_skip_balance:
 554		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 555		break;
 556	case Opt_fatal_errors:
 557		switch (result.uint_32) {
 558		case Opt_fatal_errors_panic:
 559			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 560			break;
 561		case Opt_fatal_errors_bug:
 562			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 
 
 563			break;
 564		default:
 565			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 566				  param->key);
 567			return -EINVAL;
 568		}
 569		break;
 570	case Opt_commit_interval:
 571		ctx->commit_interval = result.uint_32;
 572		if (ctx->commit_interval == 0)
 573			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 574		break;
 575	case Opt_rescue:
 576		switch (result.uint_32) {
 577		case Opt_rescue_usebackuproot:
 578			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 579			break;
 580		case Opt_rescue_nologreplay:
 581			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 582			break;
 583		case Opt_rescue_ignorebadroots:
 584			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 585			break;
 586		case Opt_rescue_ignoredatacsums:
 587			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 588			break;
 589		case Opt_rescue_ignoremetacsums:
 590			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
 591			break;
 592		case Opt_rescue_ignoresuperflags:
 593			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
 594			break;
 595		case Opt_rescue_parameter_all:
 596			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 597			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
 598			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
 599			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 600			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601			break;
 602		default:
 603			btrfs_info(NULL, "unrecognized rescue option '%s'",
 604				   param->key);
 605			return -EINVAL;
 606		}
 607		break;
 608#ifdef CONFIG_BTRFS_DEBUG
 609	case Opt_fragment:
 610		switch (result.uint_32) {
 611		case Opt_fragment_parameter_all:
 612			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 613			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 614			break;
 615		case Opt_fragment_parameter_metadata:
 616			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 
 
 617			break;
 618		case Opt_fragment_parameter_data:
 619			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 
 620			break;
 
 
 
 
 
 621		default:
 622			btrfs_info(NULL, "unrecognized fragment option '%s'",
 623				   param->key);
 624			return -EINVAL;
 625		}
 626		break;
 627#endif
 628#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 629	case Opt_ref_verify:
 630		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 631		break;
 632#endif
 633	default:
 634		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 635		return -EINVAL;
 636	}
 637
 638	return 0;
 639}
 640
 641/*
 642 * Some options only have meaning at mount time and shouldn't persist across
 643 * remounts, or be displayed. Clear these at the end of mount and remount code
 644 * paths.
 645 */
 646static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 647{
 648	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 649	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 650	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 651}
 652
 653static bool check_ro_option(const struct btrfs_fs_info *fs_info,
 654			    unsigned long long mount_opt, unsigned long long opt,
 655			    const char *opt_name)
 656{
 657	if (mount_opt & opt) {
 658		btrfs_err(fs_info, "%s must be used with ro mount option",
 659			  opt_name);
 660		return true;
 661	}
 662	return false;
 663}
 664
 665bool btrfs_check_options(const struct btrfs_fs_info *info,
 666			 unsigned long long *mount_opt,
 667			 unsigned long flags)
 668{
 669	bool ret = true;
 670
 671	if (!(flags & SB_RDONLY) &&
 672	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 673	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 674	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
 675	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
 676	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
 677		ret = false;
 678
 679	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 680	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 681	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 682		btrfs_err(info, "cannot disable free-space-tree");
 683		ret = false;
 684	}
 685	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 686	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 687		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 688		ret = false;
 689	}
 690
 691	if (btrfs_check_mountopts_zoned(info, mount_opt))
 692		ret = false;
 693
 694	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 695		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
 696			btrfs_info(info, "disk space caching is enabled");
 697			btrfs_warn(info,
 698"space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
 699		}
 700		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 701			btrfs_info(info, "using free-space-tree");
 702	}
 703
 
 
 
 
 
 
 704	return ret;
 705}
 706
 707/*
 708 * This is subtle, we only call this during open_ctree().  We need to pre-load
 709 * the mount options with the on-disk settings.  Before the new mount API took
 710 * effect we would do this on mount and remount.  With the new mount API we'll
 711 * only do this on the initial mount.
 712 *
 713 * This isn't a change in behavior, because we're using the current state of the
 714 * file system to set the current mount options.  If you mounted with special
 715 * options to disable these features and then remounted we wouldn't revert the
 716 * settings, because mounting without these features cleared the on-disk
 717 * settings, so this being called on re-mount is not needed.
 718 */
 719void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 720{
 721	if (fs_info->sectorsize < PAGE_SIZE) {
 722		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 723		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 724			btrfs_info(fs_info,
 725				   "forcing free space tree for sector size %u with page size %lu",
 726				   fs_info->sectorsize, PAGE_SIZE);
 727			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 728		}
 729	}
 730
 731	/*
 732	 * At this point our mount options are populated, so we only mess with
 733	 * these settings if we don't have any settings already.
 734	 */
 735	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 736		return;
 737
 738	if (btrfs_is_zoned(fs_info) &&
 739	    btrfs_free_space_cache_v1_active(fs_info)) {
 740		btrfs_info(fs_info, "zoned: clearing existing space cache");
 741		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 742		return;
 743	}
 744
 745	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 746		return;
 747
 748	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 749		return;
 750
 751	/*
 752	 * At this point we don't have explicit options set by the user, set
 753	 * them ourselves based on the state of the file system.
 754	 */
 755	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 756		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 757	else if (btrfs_free_space_cache_v1_active(fs_info))
 758		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 759}
 760
 761static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 762{
 763	if (!btrfs_test_opt(fs_info, NOSSD) &&
 764	    !fs_info->fs_devices->rotating)
 765		btrfs_set_opt(fs_info->mount_opt, SSD);
 766
 767	/*
 768	 * For devices supporting discard turn on discard=async automatically,
 769	 * unless it's already set or disabled. This could be turned off by
 770	 * nodiscard for the same mount.
 771	 *
 772	 * The zoned mode piggy backs on the discard functionality for
 773	 * resetting a zone. There is no reason to delay the zone reset as it is
 774	 * fast enough. So, do not enable async discard for zoned mode.
 775	 */
 776	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 777	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 778	      btrfs_test_opt(fs_info, NODISCARD)) &&
 779	    fs_info->fs_devices->discardable &&
 780	    !btrfs_is_zoned(fs_info))
 781		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782}
 783
 784char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 785					  u64 subvol_objectid)
 786{
 787	struct btrfs_root *root = fs_info->tree_root;
 788	struct btrfs_root *fs_root = NULL;
 789	struct btrfs_root_ref *root_ref;
 790	struct btrfs_inode_ref *inode_ref;
 791	struct btrfs_key key;
 792	struct btrfs_path *path = NULL;
 793	char *name = NULL, *ptr;
 794	u64 dirid;
 795	int len;
 796	int ret;
 797
 798	path = btrfs_alloc_path();
 799	if (!path) {
 800		ret = -ENOMEM;
 801		goto err;
 802	}
 
 803
 804	name = kmalloc(PATH_MAX, GFP_KERNEL);
 805	if (!name) {
 806		ret = -ENOMEM;
 807		goto err;
 808	}
 809	ptr = name + PATH_MAX - 1;
 810	ptr[0] = '\0';
 811
 812	/*
 813	 * Walk up the subvolume trees in the tree of tree roots by root
 814	 * backrefs until we hit the top-level subvolume.
 815	 */
 816	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 817		key.objectid = subvol_objectid;
 818		key.type = BTRFS_ROOT_BACKREF_KEY;
 819		key.offset = (u64)-1;
 820
 821		ret = btrfs_search_backwards(root, &key, path);
 822		if (ret < 0) {
 823			goto err;
 824		} else if (ret > 0) {
 825			ret = -ENOENT;
 826			goto err;
 
 
 
 
 
 
 827		}
 828
 
 829		subvol_objectid = key.offset;
 830
 831		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 832					  struct btrfs_root_ref);
 833		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 834		ptr -= len + 1;
 835		if (ptr < name) {
 836			ret = -ENAMETOOLONG;
 837			goto err;
 838		}
 839		read_extent_buffer(path->nodes[0], ptr + 1,
 840				   (unsigned long)(root_ref + 1), len);
 841		ptr[0] = '/';
 842		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 843		btrfs_release_path(path);
 844
 845		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 
 
 
 846		if (IS_ERR(fs_root)) {
 847			ret = PTR_ERR(fs_root);
 848			fs_root = NULL;
 849			goto err;
 850		}
 851
 852		/*
 853		 * Walk up the filesystem tree by inode refs until we hit the
 854		 * root directory.
 855		 */
 856		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 857			key.objectid = dirid;
 858			key.type = BTRFS_INODE_REF_KEY;
 859			key.offset = (u64)-1;
 860
 861			ret = btrfs_search_backwards(fs_root, &key, path);
 862			if (ret < 0) {
 863				goto err;
 864			} else if (ret > 0) {
 865				ret = -ENOENT;
 866				goto err;
 
 
 
 
 
 
 867			}
 868
 
 869			dirid = key.offset;
 870
 871			inode_ref = btrfs_item_ptr(path->nodes[0],
 872						   path->slots[0],
 873						   struct btrfs_inode_ref);
 874			len = btrfs_inode_ref_name_len(path->nodes[0],
 875						       inode_ref);
 876			ptr -= len + 1;
 877			if (ptr < name) {
 878				ret = -ENAMETOOLONG;
 879				goto err;
 880			}
 881			read_extent_buffer(path->nodes[0], ptr + 1,
 882					   (unsigned long)(inode_ref + 1), len);
 883			ptr[0] = '/';
 884			btrfs_release_path(path);
 885		}
 886		btrfs_put_root(fs_root);
 887		fs_root = NULL;
 888	}
 889
 890	btrfs_free_path(path);
 891	if (ptr == name + PATH_MAX - 1) {
 892		name[0] = '/';
 893		name[1] = '\0';
 894	} else {
 895		memmove(name, ptr, name + PATH_MAX - ptr);
 896	}
 897	return name;
 898
 899err:
 900	btrfs_put_root(fs_root);
 901	btrfs_free_path(path);
 902	kfree(name);
 903	return ERR_PTR(ret);
 904}
 905
 906static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 907{
 908	struct btrfs_root *root = fs_info->tree_root;
 909	struct btrfs_dir_item *di;
 910	struct btrfs_path *path;
 911	struct btrfs_key location;
 912	struct fscrypt_str name = FSTR_INIT("default", 7);
 913	u64 dir_id;
 914
 915	path = btrfs_alloc_path();
 916	if (!path)
 917		return -ENOMEM;
 
 918
 919	/*
 920	 * Find the "default" dir item which points to the root item that we
 921	 * will mount by default if we haven't been given a specific subvolume
 922	 * to mount.
 923	 */
 924	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 925	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 926	if (IS_ERR(di)) {
 927		btrfs_free_path(path);
 928		return PTR_ERR(di);
 929	}
 930	if (!di) {
 931		/*
 932		 * Ok the default dir item isn't there.  This is weird since
 933		 * it's always been there, but don't freak out, just try and
 934		 * mount the top-level subvolume.
 935		 */
 936		btrfs_free_path(path);
 937		*objectid = BTRFS_FS_TREE_OBJECTID;
 938		return 0;
 939	}
 940
 941	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 942	btrfs_free_path(path);
 943	*objectid = location.objectid;
 944	return 0;
 945}
 946
 947static int btrfs_fill_super(struct super_block *sb,
 948			    struct btrfs_fs_devices *fs_devices)
 
 949{
 950	struct inode *inode;
 951	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 952	int err;
 953
 954	sb->s_maxbytes = MAX_LFS_FILESIZE;
 955	sb->s_magic = BTRFS_SUPER_MAGIC;
 956	sb->s_op = &btrfs_super_ops;
 957	sb->s_d_op = &btrfs_dentry_operations;
 958	sb->s_export_op = &btrfs_export_ops;
 959#ifdef CONFIG_FS_VERITY
 960	sb->s_vop = &btrfs_verityops;
 961#endif
 962	sb->s_xattr = btrfs_xattr_handlers;
 963	sb->s_time_gran = 1;
 
 
 
 
 964	sb->s_iflags |= SB_I_CGROUPWB;
 965
 966	err = super_setup_bdi(sb);
 967	if (err) {
 968		btrfs_err(fs_info, "super_setup_bdi failed");
 969		return err;
 970	}
 971
 972	err = open_ctree(sb, fs_devices);
 973	if (err) {
 974		btrfs_err(fs_info, "open_ctree failed: %d", err);
 975		return err;
 976	}
 977
 978	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 979	if (IS_ERR(inode)) {
 980		err = PTR_ERR(inode);
 981		btrfs_handle_fs_error(fs_info, err, NULL);
 982		goto fail_close;
 983	}
 984
 985	sb->s_root = d_make_root(inode);
 986	if (!sb->s_root) {
 987		err = -ENOMEM;
 988		goto fail_close;
 989	}
 990
 991	sb->s_flags |= SB_ACTIVE;
 
 
 992	return 0;
 993
 994fail_close:
 995	close_ctree(fs_info);
 996	return err;
 997}
 998
 999int btrfs_sync_fs(struct super_block *sb, int wait)
1000{
1001	struct btrfs_trans_handle *trans;
1002	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1003	struct btrfs_root *root = fs_info->tree_root;
1004
1005	trace_btrfs_sync_fs(fs_info, wait);
1006
1007	if (!wait) {
1008		filemap_flush(fs_info->btree_inode->i_mapping);
1009		return 0;
1010	}
1011
1012	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1013
1014	trans = btrfs_attach_transaction_barrier(root);
1015	if (IS_ERR(trans)) {
1016		/* no transaction, don't bother */
1017		if (PTR_ERR(trans) == -ENOENT) {
1018			/*
1019			 * Exit unless we have some pending changes
1020			 * that need to go through commit
1021			 */
1022			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1023				      &fs_info->flags))
1024				return 0;
1025			/*
1026			 * A non-blocking test if the fs is frozen. We must not
1027			 * start a new transaction here otherwise a deadlock
1028			 * happens. The pending operations are delayed to the
1029			 * next commit after thawing.
1030			 */
1031			if (sb_start_write_trylock(sb))
1032				sb_end_write(sb);
1033			else
1034				return 0;
1035			trans = btrfs_start_transaction(root, 0);
1036		}
1037		if (IS_ERR(trans))
1038			return PTR_ERR(trans);
1039	}
1040	return btrfs_commit_transaction(trans);
1041}
1042
1043static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1044{
1045	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1046	*printed = true;
1047}
1048
1049static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1050{
1051	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1052	const char *compress_type;
1053	const char *subvol_name;
1054	bool printed = false;
1055
1056	if (btrfs_test_opt(info, DEGRADED))
1057		seq_puts(seq, ",degraded");
1058	if (btrfs_test_opt(info, NODATASUM))
1059		seq_puts(seq, ",nodatasum");
1060	if (btrfs_test_opt(info, NODATACOW))
1061		seq_puts(seq, ",nodatacow");
1062	if (btrfs_test_opt(info, NOBARRIER))
1063		seq_puts(seq, ",nobarrier");
1064	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1065		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
 
1066	if (info->thread_pool_size !=  min_t(unsigned long,
1067					     num_online_cpus() + 2, 8))
1068		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1069	if (btrfs_test_opt(info, COMPRESS)) {
1070		compress_type = btrfs_compress_type2str(info->compress_type);
 
 
 
1071		if (btrfs_test_opt(info, FORCE_COMPRESS))
1072			seq_printf(seq, ",compress-force=%s", compress_type);
1073		else
1074			seq_printf(seq, ",compress=%s", compress_type);
1075		if (info->compress_level)
1076			seq_printf(seq, ":%d", info->compress_level);
1077	}
1078	if (btrfs_test_opt(info, NOSSD))
1079		seq_puts(seq, ",nossd");
1080	if (btrfs_test_opt(info, SSD_SPREAD))
1081		seq_puts(seq, ",ssd_spread");
1082	else if (btrfs_test_opt(info, SSD))
1083		seq_puts(seq, ",ssd");
1084	if (btrfs_test_opt(info, NOTREELOG))
1085		seq_puts(seq, ",notreelog");
1086	if (btrfs_test_opt(info, NOLOGREPLAY))
1087		print_rescue_option(seq, "nologreplay", &printed);
1088	if (btrfs_test_opt(info, USEBACKUPROOT))
1089		print_rescue_option(seq, "usebackuproot", &printed);
1090	if (btrfs_test_opt(info, IGNOREBADROOTS))
1091		print_rescue_option(seq, "ignorebadroots", &printed);
1092	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1093		print_rescue_option(seq, "ignoredatacsums", &printed);
1094	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1095		print_rescue_option(seq, "ignoremetacsums", &printed);
1096	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1097		print_rescue_option(seq, "ignoresuperflags", &printed);
1098	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1099		seq_puts(seq, ",flushoncommit");
1100	if (btrfs_test_opt(info, DISCARD_SYNC))
1101		seq_puts(seq, ",discard");
1102	if (btrfs_test_opt(info, DISCARD_ASYNC))
1103		seq_puts(seq, ",discard=async");
1104	if (!(info->sb->s_flags & SB_POSIXACL))
1105		seq_puts(seq, ",noacl");
1106	if (btrfs_free_space_cache_v1_active(info))
1107		seq_puts(seq, ",space_cache");
1108	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1109		seq_puts(seq, ",space_cache=v2");
1110	else
1111		seq_puts(seq, ",nospace_cache");
1112	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1113		seq_puts(seq, ",rescan_uuid_tree");
1114	if (btrfs_test_opt(info, CLEAR_CACHE))
1115		seq_puts(seq, ",clear_cache");
1116	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1117		seq_puts(seq, ",user_subvol_rm_allowed");
1118	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1119		seq_puts(seq, ",enospc_debug");
1120	if (btrfs_test_opt(info, AUTO_DEFRAG))
1121		seq_puts(seq, ",autodefrag");
 
 
1122	if (btrfs_test_opt(info, SKIP_BALANCE))
1123		seq_puts(seq, ",skip_balance");
 
 
 
 
 
 
 
 
 
1124	if (info->metadata_ratio)
1125		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
 
1126	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1127		seq_puts(seq, ",fatal_errors=panic");
1128	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1129		seq_printf(seq, ",commit=%u", info->commit_interval);
1130#ifdef CONFIG_BTRFS_DEBUG
1131	if (btrfs_test_opt(info, FRAGMENT_DATA))
1132		seq_puts(seq, ",fragment=data");
1133	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1134		seq_puts(seq, ",fragment=metadata");
1135#endif
1136	if (btrfs_test_opt(info, REF_VERIFY))
1137		seq_puts(seq, ",ref_verify");
1138	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1139	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1140			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1141	if (!IS_ERR(subvol_name)) {
1142		seq_puts(seq, ",subvol=");
1143		seq_escape(seq, subvol_name, " \t\n\\");
1144		kfree(subvol_name);
1145	}
1146	return 0;
1147}
1148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149/*
1150 * subvolumes are identified by ino 256
1151 */
1152static inline int is_subvolume_inode(struct inode *inode)
1153{
1154	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1155		return 1;
1156	return 0;
1157}
1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1160				   struct vfsmount *mnt)
 
1161{
1162	struct dentry *root;
 
 
1163	int ret;
1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165	if (!subvol_name) {
1166		if (!subvol_objectid) {
1167			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1168							  &subvol_objectid);
1169			if (ret) {
1170				root = ERR_PTR(ret);
1171				goto out;
1172			}
1173		}
1174		subvol_name = btrfs_get_subvol_name_from_objectid(
1175					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1176		if (IS_ERR(subvol_name)) {
1177			root = ERR_CAST(subvol_name);
1178			subvol_name = NULL;
1179			goto out;
1180		}
1181
1182	}
1183
1184	root = mount_subtree(mnt, subvol_name);
1185	/* mount_subtree() drops our reference on the vfsmount. */
1186	mnt = NULL;
1187
1188	if (!IS_ERR(root)) {
1189		struct super_block *s = root->d_sb;
1190		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1191		struct inode *root_inode = d_inode(root);
1192		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1193
1194		ret = 0;
1195		if (!is_subvolume_inode(root_inode)) {
1196			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1197			       subvol_name);
1198			ret = -EINVAL;
1199		}
1200		if (subvol_objectid && root_objectid != subvol_objectid) {
1201			/*
1202			 * This will also catch a race condition where a
1203			 * subvolume which was passed by ID is renamed and
1204			 * another subvolume is renamed over the old location.
1205			 */
1206			btrfs_err(fs_info,
1207				  "subvol '%s' does not match subvolid %llu",
1208				  subvol_name, subvol_objectid);
1209			ret = -EINVAL;
1210		}
1211		if (ret) {
1212			dput(root);
1213			root = ERR_PTR(ret);
1214			deactivate_locked_super(s);
1215		}
1216	}
1217
1218out:
1219	mntput(mnt);
 
1220	kfree(subvol_name);
1221	return root;
1222}
1223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1225				     u32 new_pool_size, u32 old_pool_size)
1226{
1227	if (new_pool_size == old_pool_size)
1228		return;
1229
1230	fs_info->thread_pool_size = new_pool_size;
1231
1232	btrfs_info(fs_info, "resize thread pool %d -> %d",
1233	       old_pool_size, new_pool_size);
1234
1235	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1236	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
 
1237	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1238	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1239	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
 
 
1240	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1241	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1242	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
 
 
 
 
 
 
 
 
1243}
1244
1245static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1246				       unsigned long long old_opts, int flags)
1247{
1248	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1249	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1250	     (flags & SB_RDONLY))) {
1251		/* wait for any defraggers to finish */
1252		wait_event(fs_info->transaction_wait,
1253			   (atomic_read(&fs_info->defrag_running) == 0));
1254		if (flags & SB_RDONLY)
1255			sync_filesystem(fs_info->sb);
1256	}
1257}
1258
1259static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1260					 unsigned long long old_opts)
1261{
1262	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1263
1264	/*
1265	 * We need to cleanup all defragable inodes if the autodefragment is
1266	 * close or the filesystem is read only.
1267	 */
1268	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1269	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
 
1270		btrfs_cleanup_defrag_inodes(fs_info);
1271	}
1272
1273	/* If we toggled discard async */
1274	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1275	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1276		btrfs_discard_resume(fs_info);
1277	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1278		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1279		btrfs_discard_cleanup(fs_info);
1280
1281	/* If we toggled space cache */
1282	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1283		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1284}
1285
1286static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1287{
 
 
 
 
 
 
 
 
 
1288	int ret;
1289
1290	if (BTRFS_FS_ERROR(fs_info)) {
1291		btrfs_err(fs_info,
1292			  "remounting read-write after error is not allowed");
1293		return -EINVAL;
1294	}
1295
1296	if (fs_info->fs_devices->rw_devices == 0)
1297		return -EACCES;
1298
1299	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1300		btrfs_warn(fs_info,
1301			   "too many missing devices, writable remount is not allowed");
1302		return -EACCES;
 
 
 
 
 
 
1303	}
1304
1305	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1306		btrfs_warn(fs_info,
1307			   "mount required to replay tree-log, cannot remount read-write");
1308		return -EINVAL;
1309	}
1310
1311	/*
1312	 * NOTE: when remounting with a change that does writes, don't put it
1313	 * anywhere above this point, as we are not sure to be safe to write
1314	 * until we pass the above checks.
1315	 */
1316	ret = btrfs_start_pre_rw_mount(fs_info);
1317	if (ret)
1318		return ret;
1319
1320	btrfs_clear_sb_rdonly(fs_info->sb);
1321
1322	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1323
1324	/*
1325	 * If we've gone from readonly -> read-write, we need to get our
1326	 * sync/async discard lists in the right state.
1327	 */
1328	btrfs_discard_resume(fs_info);
1329
1330	return 0;
1331}
1332
1333static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1334{
1335	/*
1336	 * This also happens on 'umount -rf' or on shutdown, when the
1337	 * filesystem is busy.
1338	 */
1339	cancel_work_sync(&fs_info->async_reclaim_work);
1340	cancel_work_sync(&fs_info->async_data_reclaim_work);
1341
1342	btrfs_discard_cleanup(fs_info);
1343
1344	/* Wait for the uuid_scan task to finish */
1345	down(&fs_info->uuid_tree_rescan_sem);
1346	/* Avoid complains from lockdep et al. */
1347	up(&fs_info->uuid_tree_rescan_sem);
1348
1349	btrfs_set_sb_rdonly(fs_info->sb);
1350
1351	/*
1352	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1353	 * loop if it's already active.  If it's already asleep, we'll leave
1354	 * unused block groups on disk until we're mounted read-write again
1355	 * unless we clean them up here.
1356	 */
1357	btrfs_delete_unused_bgs(fs_info);
1358
1359	/*
1360	 * The cleaner task could be already running before we set the flag
1361	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1362	 * sure that after we finish the remount, i.e. after we call
1363	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1364	 * - either because it was dropping a dead root, running delayed iputs
1365	 *   or deleting an unused block group (the cleaner picked a block
1366	 *   group from the list of unused block groups before we were able to
1367	 *   in the previous call to btrfs_delete_unused_bgs()).
1368	 */
1369	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1370
1371	/*
1372	 * We've set the superblock to RO mode, so we might have made the
1373	 * cleaner task sleep without running all pending delayed iputs. Go
1374	 * through all the delayed iputs here, so that if an unmount happens
1375	 * without remounting RW we don't end up at finishing close_ctree()
1376	 * with a non-empty list of delayed iputs.
1377	 */
1378	btrfs_run_delayed_iputs(fs_info);
1379
1380	btrfs_dev_replace_suspend_for_unmount(fs_info);
1381	btrfs_scrub_cancel(fs_info);
1382	btrfs_pause_balance(fs_info);
1383
1384	/*
1385	 * Pause the qgroup rescan worker if it is running. We don't want it to
1386	 * be still running after we are in RO mode, as after that, by the time
1387	 * we unmount, it might have left a transaction open, so we would leak
1388	 * the transaction and/or crash.
1389	 */
1390	btrfs_qgroup_wait_for_completion(fs_info, false);
1391
1392	return btrfs_commit_super(fs_info);
1393}
 
 
1394
1395static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1396{
1397	fs_info->max_inline = ctx->max_inline;
1398	fs_info->commit_interval = ctx->commit_interval;
1399	fs_info->metadata_ratio = ctx->metadata_ratio;
1400	fs_info->thread_pool_size = ctx->thread_pool_size;
1401	fs_info->mount_opt = ctx->mount_opt;
1402	fs_info->compress_type = ctx->compress_type;
1403	fs_info->compress_level = ctx->compress_level;
1404}
1405
1406static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1407{
1408	ctx->max_inline = fs_info->max_inline;
1409	ctx->commit_interval = fs_info->commit_interval;
1410	ctx->metadata_ratio = fs_info->metadata_ratio;
1411	ctx->thread_pool_size = fs_info->thread_pool_size;
1412	ctx->mount_opt = fs_info->mount_opt;
1413	ctx->compress_type = fs_info->compress_type;
1414	ctx->compress_level = fs_info->compress_level;
1415}
1416
1417#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1418do {										\
1419	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1420	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1421		btrfs_info(fs_info, fmt, ##args);				\
1422} while (0)
1423
1424#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1425do {									\
1426	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1427	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1428		btrfs_info(fs_info, fmt, ##args);			\
1429} while (0)
1430
1431static void btrfs_emit_options(struct btrfs_fs_info *info,
1432			       struct btrfs_fs_context *old)
1433{
1434	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1435	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1436	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1437	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1438	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1439	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1440	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1441	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1442	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1443	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1444	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1445	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1446	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1447	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1448	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1449	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1450	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1451	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1452	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1453	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1454	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1455	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1456	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1457
1458	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1459	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1460	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1461	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1462	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1463	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1464	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1465	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1466	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1467
1468	/* Did the compression settings change? */
1469	if (btrfs_test_opt(info, COMPRESS) &&
1470	    (!old ||
1471	     old->compress_type != info->compress_type ||
1472	     old->compress_level != info->compress_level ||
1473	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1474	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1475		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1476
1477		btrfs_info(info, "%s %s compression, level %d",
1478			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1479			   compress_type, info->compress_level);
1480	}
1481
1482	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1483		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1484}
 
 
 
 
 
1485
1486static int btrfs_reconfigure(struct fs_context *fc)
1487{
1488	struct super_block *sb = fc->root->d_sb;
1489	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1490	struct btrfs_fs_context *ctx = fc->fs_private;
1491	struct btrfs_fs_context old_ctx;
1492	int ret = 0;
1493	bool mount_reconfigure = (fc->s_fs_info != NULL);
 
 
 
 
 
 
 
 
 
 
1494
1495	btrfs_info_to_ctx(fs_info, &old_ctx);
 
 
 
 
 
 
 
1496
1497	/*
1498	 * This is our "bind mount" trick, we don't want to allow the user to do
1499	 * anything other than mount a different ro/rw and a different subvol,
1500	 * all of the mount options should be maintained.
1501	 */
1502	if (mount_reconfigure)
1503		ctx->mount_opt = old_ctx.mount_opt;
1504
1505	sync_filesystem(sb);
1506	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
1507
1508	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1509		return -EINVAL;
 
 
 
 
1510
1511	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1512	if (ret < 0)
1513		return ret;
1514
1515	btrfs_ctx_to_info(fs_info, ctx);
1516	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1517	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1518				 old_ctx.thread_pool_size);
1519
1520	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1521	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1522	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1523		btrfs_warn(fs_info,
1524		"remount supports changing free space tree only from RO to RW");
1525		/* Make sure free space cache options match the state on disk. */
1526		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1527			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1528			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1529		}
1530		if (btrfs_free_space_cache_v1_active(fs_info)) {
1531			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1532			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1533		}
1534	}
1535
1536	ret = 0;
1537	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1538		ret = btrfs_remount_ro(fs_info);
1539	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1540		ret = btrfs_remount_rw(fs_info);
1541	if (ret)
1542		goto restore;
1543
1544	/*
1545	 * If we set the mask during the parameter parsing VFS would reject the
1546	 * remount.  Here we can set the mask and the value will be updated
1547	 * appropriately.
1548	 */
1549	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1550		fc->sb_flags_mask |= SB_POSIXACL;
 
 
 
 
1551
1552	btrfs_emit_options(fs_info, &old_ctx);
 
 
1553	wake_up_process(fs_info->transaction_kthread);
1554	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1555	btrfs_clear_oneshot_options(fs_info);
1556	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1557
1558	return 0;
 
1559restore:
1560	btrfs_ctx_to_info(fs_info, &old_ctx);
1561	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1562	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 
 
1563	return ret;
1564}
1565
1566/* Used to sort the devices by max_avail(descending sort) */
1567static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
 
1568{
1569	const struct btrfs_device_info *dev_info1 = a;
1570	const struct btrfs_device_info *dev_info2 = b;
1571
1572	if (dev_info1->max_avail > dev_info2->max_avail)
1573		return -1;
1574	else if (dev_info1->max_avail < dev_info2->max_avail)
 
1575		return 1;
 
1576	return 0;
1577}
1578
1579/*
1580 * sort the devices by max_avail, in which max free extent size of each device
1581 * is stored.(Descending Sort)
1582 */
1583static inline void btrfs_descending_sort_devices(
1584					struct btrfs_device_info *devices,
1585					size_t nr_devices)
1586{
1587	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1588	     btrfs_cmp_device_free_bytes, NULL);
1589}
1590
1591/*
1592 * The helper to calc the free space on the devices that can be used to store
1593 * file data.
1594 */
1595static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1596					      u64 *free_bytes)
1597{
 
1598	struct btrfs_device_info *devices_info;
1599	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1600	struct btrfs_device *device;
 
1601	u64 type;
1602	u64 avail_space;
 
1603	u64 min_stripe_size;
1604	int num_stripes = 1;
1605	int i = 0, nr_devices;
1606	const struct btrfs_raid_attr *rattr;
1607
1608	/*
1609	 * We aren't under the device list lock, so this is racy-ish, but good
1610	 * enough for our purposes.
1611	 */
1612	nr_devices = fs_info->fs_devices->open_devices;
1613	if (!nr_devices) {
1614		smp_mb();
1615		nr_devices = fs_info->fs_devices->open_devices;
1616		ASSERT(nr_devices);
1617		if (!nr_devices) {
1618			*free_bytes = 0;
1619			return 0;
1620		}
1621	}
1622
1623	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1624			       GFP_KERNEL);
1625	if (!devices_info)
1626		return -ENOMEM;
1627
1628	/* calc min stripe number for data space allocation */
1629	type = btrfs_data_alloc_profile(fs_info);
1630	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1631
1632	if (type & BTRFS_BLOCK_GROUP_RAID0)
1633		num_stripes = nr_devices;
1634	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1635		num_stripes = rattr->ncopies;
1636	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 
 
1637		num_stripes = 4;
 
1638
1639	/* Adjust for more than 1 stripe per device */
1640	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
 
 
1641
 
 
1642	rcu_read_lock();
1643	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1644		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1645						&device->dev_state) ||
1646		    !device->bdev ||
1647		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1648			continue;
1649
1650		if (i >= nr_devices)
1651			break;
1652
1653		avail_space = device->total_bytes - device->bytes_used;
1654
1655		/* align with stripe_len */
1656		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
 
1657
1658		/*
1659		 * Ensure we have at least min_stripe_size on top of the
1660		 * reserved space on the device.
 
1661		 */
1662		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1663			continue;
1664
1665		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667		devices_info[i].dev = device;
1668		devices_info[i].max_avail = avail_space;
1669
1670		i++;
1671	}
1672	rcu_read_unlock();
 
 
1673
1674	nr_devices = i;
1675
1676	btrfs_descending_sort_devices(devices_info, nr_devices);
1677
1678	i = nr_devices - 1;
1679	avail_space = 0;
1680	while (nr_devices >= rattr->devs_min) {
1681		num_stripes = min(num_stripes, nr_devices);
 
1682
1683		if (devices_info[i].max_avail >= min_stripe_size) {
1684			int j;
1685			u64 alloc_size;
1686
1687			avail_space += devices_info[i].max_avail * num_stripes;
1688			alloc_size = devices_info[i].max_avail;
1689			for (j = i + 1 - num_stripes; j <= i; j++)
1690				devices_info[j].max_avail -= alloc_size;
1691		}
1692		i--;
1693		nr_devices--;
1694	}
1695
1696	kfree(devices_info);
1697	*free_bytes = avail_space;
1698	return 0;
1699}
1700
1701/*
1702 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1703 *
1704 * If there's a redundant raid level at DATA block groups, use the respective
1705 * multiplier to scale the sizes.
1706 *
1707 * Unused device space usage is based on simulating the chunk allocator
1708 * algorithm that respects the device sizes and order of allocations.  This is
1709 * a close approximation of the actual use but there are other factors that may
1710 * change the result (like a new metadata chunk).
 
1711 *
1712 * If metadata is exhausted, f_bavail will be 0.
1713 */
1714static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1715{
1716	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1717	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
1718	struct btrfs_space_info *found;
1719	u64 total_used = 0;
1720	u64 total_free_data = 0;
1721	u64 total_free_meta = 0;
1722	u32 bits = fs_info->sectorsize_bits;
1723	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1724	unsigned factor = 1;
1725	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1726	int ret;
1727	u64 thresh = 0;
1728	int mixed = 0;
1729
1730	list_for_each_entry(found, &fs_info->space_info, list) {
 
1731		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1732			int i;
1733
1734			total_free_data += found->disk_total - found->disk_used;
1735			total_free_data -=
1736				btrfs_account_ro_block_groups_free_space(found);
1737
1738			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1739				if (!list_empty(&found->block_groups[i]))
1740					factor = btrfs_bg_type_to_factor(
1741						btrfs_raid_array[i].bg_flag);
 
 
 
 
 
1742			}
1743		}
1744
1745		/*
1746		 * Metadata in mixed block group profiles are accounted in data
1747		 */
1748		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1749			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1750				mixed = 1;
1751			else
1752				total_free_meta += found->disk_total -
1753					found->disk_used;
1754		}
1755
1756		total_used += found->disk_used;
1757	}
1758
 
 
1759	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1760	buf->f_blocks >>= bits;
1761	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1762
1763	/* Account global block reserve as used, it's in logical size already */
1764	spin_lock(&block_rsv->lock);
1765	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1766	if (buf->f_bfree >= block_rsv->size >> bits)
1767		buf->f_bfree -= block_rsv->size >> bits;
1768	else
1769		buf->f_bfree = 0;
1770	spin_unlock(&block_rsv->lock);
1771
1772	buf->f_bavail = div_u64(total_free_data, factor);
1773	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1774	if (ret)
1775		return ret;
1776	buf->f_bavail += div_u64(total_free_data, factor);
1777	buf->f_bavail = buf->f_bavail >> bits;
1778
1779	/*
1780	 * We calculate the remaining metadata space minus global reserve. If
1781	 * this is (supposedly) smaller than zero, there's no space. But this
1782	 * does not hold in practice, the exhausted state happens where's still
1783	 * some positive delta. So we apply some guesswork and compare the
1784	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1785	 *
1786	 * We probably cannot calculate the exact threshold value because this
1787	 * depends on the internal reservations requested by various
1788	 * operations, so some operations that consume a few metadata will
1789	 * succeed even if the Avail is zero. But this is better than the other
1790	 * way around.
1791	 */
1792	thresh = SZ_4M;
1793
1794	/*
1795	 * We only want to claim there's no available space if we can no longer
1796	 * allocate chunks for our metadata profile and our global reserve will
1797	 * not fit in the free metadata space.  If we aren't ->full then we
1798	 * still can allocate chunks and thus are fine using the currently
1799	 * calculated f_bavail.
1800	 */
1801	if (!mixed && block_rsv->space_info->full &&
1802	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1803		buf->f_bavail = 0;
1804
1805	buf->f_type = BTRFS_SUPER_MAGIC;
1806	buf->f_bsize = fs_info->sectorsize;
1807	buf->f_namelen = BTRFS_NAME_LEN;
1808
1809	/* We treat it as constant endianness (it doesn't matter _which_)
1810	   because we want the fsid to come out the same whether mounted
1811	   on a big-endian or little-endian host */
1812	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1813	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1814	/* Mask in the root object ID too, to disambiguate subvols */
1815	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1816	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1817
1818	return 0;
1819}
1820
1821static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1822{
1823	struct btrfs_fs_info *p = fc->s_fs_info;
1824	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1825
1826	return fs_info->fs_devices == p->fs_devices;
1827}
1828
1829static int btrfs_get_tree_super(struct fs_context *fc)
1830{
1831	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1832	struct btrfs_fs_context *ctx = fc->fs_private;
1833	struct btrfs_fs_devices *fs_devices = NULL;
1834	struct block_device *bdev;
1835	struct btrfs_device *device;
1836	struct super_block *sb;
1837	blk_mode_t mode = btrfs_open_mode(fc);
1838	int ret;
1839
1840	btrfs_ctx_to_info(fs_info, ctx);
1841	mutex_lock(&uuid_mutex);
1842
1843	/*
1844	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1845	 * either a valid device or an error.
1846	 */
1847	device = btrfs_scan_one_device(fc->source, mode, true);
1848	ASSERT(device != NULL);
1849	if (IS_ERR(device)) {
1850		mutex_unlock(&uuid_mutex);
1851		return PTR_ERR(device);
1852	}
1853
1854	fs_devices = device->fs_devices;
1855	fs_info->fs_devices = fs_devices;
1856
1857	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1858	mutex_unlock(&uuid_mutex);
1859	if (ret)
1860		return ret;
1861
1862	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1863		ret = -EACCES;
1864		goto error;
1865	}
1866
1867	bdev = fs_devices->latest_dev->bdev;
1868
1869	/*
1870	 * From now on the error handling is not straightforward.
1871	 *
1872	 * If successful, this will transfer the fs_info into the super block,
1873	 * and fc->s_fs_info will be NULL.  However if there's an existing
1874	 * super, we'll still have fc->s_fs_info populated.  If we error
1875	 * completely out it'll be cleaned up when we drop the fs_context,
1876	 * otherwise it's tied to the lifetime of the super_block.
1877	 */
1878	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1879	if (IS_ERR(sb)) {
1880		ret = PTR_ERR(sb);
1881		goto error;
1882	}
1883
1884	set_device_specific_options(fs_info);
1885
1886	if (sb->s_root) {
1887		btrfs_close_devices(fs_devices);
1888		/*
1889		 * At this stage we may have RO flag mismatch between
1890		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1891		 * mismatch and reconfigure with sb->s_umount rwsem held if
1892		 * needed.
1893		 */
1894	} else {
1895		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1896		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1897		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1898		ret = btrfs_fill_super(sb, fs_devices);
1899		if (ret) {
1900			deactivate_locked_super(sb);
1901			return ret;
1902		}
1903	}
1904
1905	btrfs_clear_oneshot_options(fs_info);
1906
1907	fc->root = dget(sb->s_root);
1908	return 0;
1909
1910error:
1911	btrfs_close_devices(fs_devices);
1912	return ret;
1913}
1914
1915/*
1916 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1917 * with different ro/rw options") the following works:
1918 *
1919 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1920 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1921 *
1922 * which looks nice and innocent but is actually pretty intricate and deserves
1923 * a long comment.
1924 *
1925 * On another filesystem a subvolume mount is close to something like:
1926 *
1927 *	(iii) # create rw superblock + initial mount
1928 *	      mount -t xfs /dev/sdb /opt/
1929 *
1930 *	      # create ro bind mount
1931 *	      mount --bind -o ro /opt/foo /mnt/foo
1932 *
1933 *	      # unmount initial mount
1934 *	      umount /opt
1935 *
1936 * Of course, there's some special subvolume sauce and there's the fact that the
1937 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1938 * it's very close and will help us understand the issue.
1939 *
1940 * The old mount API didn't cleanly distinguish between a mount being made ro
1941 * and a superblock being made ro.  The only way to change the ro state of
1942 * either object was by passing ms_rdonly. If a new mount was created via
1943 * mount(2) such as:
1944 *
1945 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1946 *
1947 * the MS_RDONLY flag being specified had two effects:
1948 *
1949 * (1) MNT_READONLY was raised -> the resulting mount got
1950 *     @mnt->mnt_flags |= MNT_READONLY raised.
1951 *
1952 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1953 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1954 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1955 *
1956 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1957 * subtree mounted ro.
1958 *
1959 * But consider the effect on the old mount API on btrfs subvolume mounting
1960 * which combines the distinct step in (iii) into a single step.
1961 *
1962 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1963 * is issued the superblock is ro and thus even if the mount created for (ii) is
1964 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1965 * to rw for (ii) which it did using an internal remount call.
1966 *
1967 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1968 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1969 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1970 * passed by mount(8) to mount(2).
1971 *
1972 * Enter the new mount API. The new mount API disambiguates making a mount ro
1973 * and making a superblock ro.
1974 *
1975 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1976 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1977 *     specific mount or mount tree that is never seen by the filesystem itself.
1978 *
1979 * (4) To turn a superblock ro the "ro" flag must be used with
1980 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1981 *     in fc->sb_flags.
1982 *
1983 * But, currently the util-linux mount command already utilizes the new mount
1984 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1985 * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1986 * work with different options work we need to keep backward compatibility.
1987 */
1988static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1989{
1990	int ret = 0;
1991
1992	if (fc->sb_flags & SB_RDONLY)
1993		return ret;
1994
1995	down_write(&mnt->mnt_sb->s_umount);
1996	if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
1997		ret = btrfs_reconfigure(fc);
1998	up_write(&mnt->mnt_sb->s_umount);
1999	return ret;
2000}
2001
2002static int btrfs_get_tree_subvol(struct fs_context *fc)
2003{
2004	struct btrfs_fs_info *fs_info = NULL;
2005	struct btrfs_fs_context *ctx = fc->fs_private;
2006	struct fs_context *dup_fc;
2007	struct dentry *dentry;
2008	struct vfsmount *mnt;
2009	int ret = 0;
2010
2011	/*
2012	 * Setup a dummy root and fs_info for test/set super.  This is because
2013	 * we don't actually fill this stuff out until open_ctree, but we need
2014	 * then open_ctree will properly initialize the file system specific
2015	 * settings later.  btrfs_init_fs_info initializes the static elements
2016	 * of the fs_info (locks and such) to make cleanup easier if we find a
2017	 * superblock with our given fs_devices later on at sget() time.
2018	 */
2019	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2020	if (!fs_info)
2021		return -ENOMEM;
2022
2023	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2024	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2025	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2026		btrfs_free_fs_info(fs_info);
2027		return -ENOMEM;
2028	}
2029	btrfs_init_fs_info(fs_info);
2030
2031	dup_fc = vfs_dup_fs_context(fc);
2032	if (IS_ERR(dup_fc)) {
2033		btrfs_free_fs_info(fs_info);
2034		return PTR_ERR(dup_fc);
2035	}
2036
2037	/*
2038	 * When we do the sget_fc this gets transferred to the sb, so we only
2039	 * need to set it on the dup_fc as this is what creates the super block.
2040	 */
2041	dup_fc->s_fs_info = fs_info;
2042
2043	/*
2044	 * We'll do the security settings in our btrfs_get_tree_super() mount
2045	 * loop, they were duplicated into dup_fc, we can drop the originals
2046	 * here.
2047	 */
2048	security_free_mnt_opts(&fc->security);
2049	fc->security = NULL;
2050
2051	mnt = fc_mount(dup_fc);
2052	if (IS_ERR(mnt)) {
2053		put_fs_context(dup_fc);
2054		return PTR_ERR(mnt);
2055	}
2056	ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2057	put_fs_context(dup_fc);
2058	if (ret) {
2059		mntput(mnt);
2060		return ret;
2061	}
2062
2063	/*
2064	 * This free's ->subvol_name, because if it isn't set we have to
2065	 * allocate a buffer to hold the subvol_name, so we just drop our
2066	 * reference to it here.
2067	 */
2068	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2069	ctx->subvol_name = NULL;
2070	if (IS_ERR(dentry))
2071		return PTR_ERR(dentry);
2072
2073	fc->root = dentry;
2074	return 0;
2075}
2076
2077static int btrfs_get_tree(struct fs_context *fc)
2078{
2079	/*
2080	 * Since we use mount_subtree to mount the default/specified subvol, we
2081	 * have to do mounts in two steps.
2082	 *
2083	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2084	 * wrapper around fc_mount() to call back into here again, and this time
2085	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2086	 * everything to open the devices and file system.  Then we return back
2087	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2088	 * from there we can do our mount_subvol() call, which will lookup
2089	 * whichever subvol we're mounting and setup this fc with the
2090	 * appropriate dentry for the subvol.
2091	 */
2092	if (fc->s_fs_info)
2093		return btrfs_get_tree_super(fc);
2094	return btrfs_get_tree_subvol(fc);
2095}
2096
2097static void btrfs_kill_super(struct super_block *sb)
2098{
2099	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2100	kill_anon_super(sb);
2101	btrfs_free_fs_info(fs_info);
2102}
2103
2104static void btrfs_free_fs_context(struct fs_context *fc)
2105{
2106	struct btrfs_fs_context *ctx = fc->fs_private;
2107	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2108
2109	if (fs_info)
2110		btrfs_free_fs_info(fs_info);
2111
2112	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2113		kfree(ctx->subvol_name);
2114		kfree(ctx);
2115	}
2116}
2117
2118static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2119{
2120	struct btrfs_fs_context *ctx = src_fc->fs_private;
2121
2122	/*
2123	 * Give a ref to our ctx to this dup, as we want to keep it around for
2124	 * our original fc so we can have the subvolume name or objectid.
2125	 *
2126	 * We unset ->source in the original fc because the dup needs it for
2127	 * mounting, and then once we free the dup it'll free ->source, so we
2128	 * need to make sure we're only pointing to it in one fc.
2129	 */
2130	refcount_inc(&ctx->refs);
2131	fc->fs_private = ctx;
2132	fc->source = src_fc->source;
2133	src_fc->source = NULL;
2134	return 0;
2135}
2136
2137static const struct fs_context_operations btrfs_fs_context_ops = {
2138	.parse_param	= btrfs_parse_param,
2139	.reconfigure	= btrfs_reconfigure,
2140	.get_tree	= btrfs_get_tree,
2141	.dup		= btrfs_dup_fs_context,
2142	.free		= btrfs_free_fs_context,
2143};
2144
2145static int btrfs_init_fs_context(struct fs_context *fc)
2146{
2147	struct btrfs_fs_context *ctx;
2148
2149	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2150	if (!ctx)
2151		return -ENOMEM;
2152
2153	refcount_set(&ctx->refs, 1);
2154	fc->fs_private = ctx;
2155	fc->ops = &btrfs_fs_context_ops;
2156
2157	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2158		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2159	} else {
2160		ctx->thread_pool_size =
2161			min_t(unsigned long, num_online_cpus() + 2, 8);
2162		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2163		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2164	}
2165
2166#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2167	fc->sb_flags |= SB_POSIXACL;
2168#endif
2169	fc->sb_flags |= SB_I_VERSION;
2170
2171	return 0;
2172}
2173
2174static struct file_system_type btrfs_fs_type = {
2175	.owner			= THIS_MODULE,
2176	.name			= "btrfs",
2177	.init_fs_context	= btrfs_init_fs_context,
2178	.parameters		= btrfs_fs_parameters,
2179	.kill_sb		= btrfs_kill_super,
2180	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2181				  FS_ALLOW_IDMAP | FS_MGTIME,
2182 };
2183
2184MODULE_ALIAS_FS("btrfs");
2185
2186static int btrfs_control_open(struct inode *inode, struct file *file)
2187{
2188	/*
2189	 * The control file's private_data is used to hold the
2190	 * transaction when it is started and is used to keep
2191	 * track of whether a transaction is already in progress.
2192	 */
2193	file->private_data = NULL;
2194	return 0;
2195}
2196
2197/*
2198 * Used by /dev/btrfs-control for devices ioctls.
2199 */
2200static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2201				unsigned long arg)
2202{
2203	struct btrfs_ioctl_vol_args *vol;
2204	struct btrfs_device *device = NULL;
2205	dev_t devt = 0;
2206	int ret = -ENOTTY;
2207
2208	if (!capable(CAP_SYS_ADMIN))
2209		return -EPERM;
2210
2211	vol = memdup_user((void __user *)arg, sizeof(*vol));
2212	if (IS_ERR(vol))
2213		return PTR_ERR(vol);
2214	ret = btrfs_check_ioctl_vol_args_path(vol);
2215	if (ret < 0)
2216		goto out;
2217
2218	switch (cmd) {
2219	case BTRFS_IOC_SCAN_DEV:
2220		mutex_lock(&uuid_mutex);
2221		/*
2222		 * Scanning outside of mount can return NULL which would turn
2223		 * into 0 error code.
2224		 */
2225		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2226		ret = PTR_ERR_OR_ZERO(device);
2227		mutex_unlock(&uuid_mutex);
2228		break;
2229	case BTRFS_IOC_FORGET_DEV:
2230		if (vol->name[0] != 0) {
2231			ret = lookup_bdev(vol->name, &devt);
2232			if (ret)
2233				break;
2234		}
2235		ret = btrfs_forget_devices(devt);
2236		break;
2237	case BTRFS_IOC_DEVICES_READY:
2238		mutex_lock(&uuid_mutex);
2239		/*
2240		 * Scanning outside of mount can return NULL which would turn
2241		 * into 0 error code.
2242		 */
2243		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2244		if (IS_ERR_OR_NULL(device)) {
2245			mutex_unlock(&uuid_mutex);
2246			if (IS_ERR(device))
2247				ret = PTR_ERR(device);
2248			else
2249				ret = 0;
2250			break;
2251		}
2252		ret = !(device->fs_devices->num_devices ==
2253			device->fs_devices->total_devices);
2254		mutex_unlock(&uuid_mutex);
2255		break;
2256	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2257		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2258		break;
2259	}
2260
2261out:
2262	kfree(vol);
2263	return ret;
2264}
2265
2266static int btrfs_freeze(struct super_block *sb)
2267{
 
2268	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
2269
2270	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2271	/*
2272	 * We don't need a barrier here, we'll wait for any transaction that
2273	 * could be in progress on other threads (and do delayed iputs that
2274	 * we want to avoid on a frozen filesystem), or do the commit
2275	 * ourselves.
2276	 */
2277	return btrfs_commit_current_transaction(fs_info->tree_root);
2278}
2279
2280static int check_dev_super(struct btrfs_device *dev)
2281{
2282	struct btrfs_fs_info *fs_info = dev->fs_info;
2283	struct btrfs_super_block *sb;
2284	u64 last_trans;
2285	u16 csum_type;
2286	int ret = 0;
2287
2288	/* This should be called with fs still frozen. */
2289	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2290
2291	/* Missing dev, no need to check. */
2292	if (!dev->bdev)
2293		return 0;
2294
2295	/* Only need to check the primary super block. */
2296	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2297	if (IS_ERR(sb))
2298		return PTR_ERR(sb);
2299
2300	/* Verify the checksum. */
2301	csum_type = btrfs_super_csum_type(sb);
2302	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2303		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2304			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2305		ret = -EUCLEAN;
2306		goto out;
2307	}
2308
2309	if (btrfs_check_super_csum(fs_info, sb)) {
2310		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2311		ret = -EUCLEAN;
2312		goto out;
2313	}
2314
2315	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2316	ret = btrfs_validate_super(fs_info, sb, 0);
2317	if (ret < 0)
2318		goto out;
2319
2320	last_trans = btrfs_get_last_trans_committed(fs_info);
2321	if (btrfs_super_generation(sb) != last_trans) {
2322		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2323			  btrfs_super_generation(sb), last_trans);
2324		ret = -EUCLEAN;
2325		goto out;
2326	}
2327out:
2328	btrfs_release_disk_super(sb);
2329	return ret;
2330}
2331
2332static int btrfs_unfreeze(struct super_block *sb)
2333{
2334	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2335	struct btrfs_device *device;
2336	int ret = 0;
2337
2338	/*
2339	 * Make sure the fs is not changed by accident (like hibernation then
2340	 * modified by other OS).
2341	 * If we found anything wrong, we mark the fs error immediately.
2342	 *
2343	 * And since the fs is frozen, no one can modify the fs yet, thus
2344	 * we don't need to hold device_list_mutex.
2345	 */
2346	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2347		ret = check_dev_super(device);
2348		if (ret < 0) {
2349			btrfs_handle_fs_error(fs_info, ret,
2350				"super block on devid %llu got modified unexpectedly",
2351				device->devid);
2352			break;
2353		}
2354	}
2355	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2356
2357	/*
2358	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2359	 * above checks failed. Since the fs is either fine or read-only, we're
2360	 * safe to continue, without causing further damage.
2361	 */
2362	return 0;
2363}
2364
2365static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2366{
2367	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2368
2369	/*
2370	 * There should be always a valid pointer in latest_dev, it may be stale
2371	 * for a short moment in case it's being deleted but still valid until
2372	 * the end of RCU grace period.
2373	 */
2374	rcu_read_lock();
2375	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2376	rcu_read_unlock();
2377
2378	return 0;
2379}
2380
2381static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2382{
2383	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2384	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2385
2386	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2387
2388	return nr;
2389}
2390
2391static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2392{
2393	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2394	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2395
2396	btrfs_free_extent_maps(fs_info, nr_to_scan);
2397
2398	/* The extent map shrinker runs asynchronously, so always return 0. */
2399	return 0;
2400}
2401
2402static const struct super_operations btrfs_super_ops = {
2403	.drop_inode	= btrfs_drop_inode,
2404	.evict_inode	= btrfs_evict_inode,
2405	.put_super	= btrfs_put_super,
2406	.sync_fs	= btrfs_sync_fs,
2407	.show_options	= btrfs_show_options,
2408	.show_devname	= btrfs_show_devname,
 
2409	.alloc_inode	= btrfs_alloc_inode,
2410	.destroy_inode	= btrfs_destroy_inode,
2411	.free_inode	= btrfs_free_inode,
2412	.statfs		= btrfs_statfs,
 
2413	.freeze_fs	= btrfs_freeze,
2414	.unfreeze_fs	= btrfs_unfreeze,
2415	.nr_cached_objects = btrfs_nr_cached_objects,
2416	.free_cached_objects = btrfs_free_cached_objects,
2417};
2418
2419static const struct file_operations btrfs_ctl_fops = {
2420	.open = btrfs_control_open,
2421	.unlocked_ioctl	 = btrfs_control_ioctl,
2422	.compat_ioctl = compat_ptr_ioctl,
2423	.owner	 = THIS_MODULE,
2424	.llseek = noop_llseek,
2425};
2426
2427static struct miscdevice btrfs_misc = {
2428	.minor		= BTRFS_MINOR,
2429	.name		= "btrfs-control",
2430	.fops		= &btrfs_ctl_fops
2431};
2432
2433MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2434MODULE_ALIAS("devname:btrfs-control");
2435
2436static int __init btrfs_interface_init(void)
2437{
2438	return misc_register(&btrfs_misc);
2439}
2440
2441static __cold void btrfs_interface_exit(void)
2442{
2443	misc_deregister(&btrfs_misc);
2444}
2445
2446static int __init btrfs_print_mod_info(void)
2447{
2448	static const char options[] = ""
2449#ifdef CONFIG_BTRFS_DEBUG
2450			", debug=on"
2451#endif
2452#ifdef CONFIG_BTRFS_ASSERT
2453			", assert=on"
2454#endif
2455#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2456			", ref-verify=on"
2457#endif
2458#ifdef CONFIG_BLK_DEV_ZONED
2459			", zoned=yes"
2460#else
2461			", zoned=no"
2462#endif
2463#ifdef CONFIG_FS_VERITY
2464			", fsverity=yes"
2465#else
2466			", fsverity=no"
2467#endif
2468			;
2469	pr_info("Btrfs loaded%s\n", options);
2470	return 0;
2471}
2472
2473static int register_btrfs(void)
2474{
2475	return register_filesystem(&btrfs_fs_type);
2476}
2477
2478static void unregister_btrfs(void)
2479{
2480	unregister_filesystem(&btrfs_fs_type);
2481}
2482
2483/* Helper structure for long init/exit functions. */
2484struct init_sequence {
2485	int (*init_func)(void);
2486	/* Can be NULL if the init_func doesn't need cleanup. */
2487	void (*exit_func)(void);
2488};
2489
2490static const struct init_sequence mod_init_seq[] = {
2491	{
2492		.init_func = btrfs_props_init,
2493		.exit_func = NULL,
2494	}, {
2495		.init_func = btrfs_init_sysfs,
2496		.exit_func = btrfs_exit_sysfs,
2497	}, {
2498		.init_func = btrfs_init_compress,
2499		.exit_func = btrfs_exit_compress,
2500	}, {
2501		.init_func = btrfs_init_cachep,
2502		.exit_func = btrfs_destroy_cachep,
2503	}, {
2504		.init_func = btrfs_init_dio,
2505		.exit_func = btrfs_destroy_dio,
2506	}, {
2507		.init_func = btrfs_transaction_init,
2508		.exit_func = btrfs_transaction_exit,
2509	}, {
2510		.init_func = btrfs_ctree_init,
2511		.exit_func = btrfs_ctree_exit,
2512	}, {
2513		.init_func = btrfs_free_space_init,
2514		.exit_func = btrfs_free_space_exit,
2515	}, {
2516		.init_func = extent_state_init_cachep,
2517		.exit_func = extent_state_free_cachep,
2518	}, {
2519		.init_func = extent_buffer_init_cachep,
2520		.exit_func = extent_buffer_free_cachep,
2521	}, {
2522		.init_func = btrfs_bioset_init,
2523		.exit_func = btrfs_bioset_exit,
2524	}, {
2525		.init_func = extent_map_init,
2526		.exit_func = extent_map_exit,
2527	}, {
2528		.init_func = ordered_data_init,
2529		.exit_func = ordered_data_exit,
2530	}, {
2531		.init_func = btrfs_delayed_inode_init,
2532		.exit_func = btrfs_delayed_inode_exit,
2533	}, {
2534		.init_func = btrfs_auto_defrag_init,
2535		.exit_func = btrfs_auto_defrag_exit,
2536	}, {
2537		.init_func = btrfs_delayed_ref_init,
2538		.exit_func = btrfs_delayed_ref_exit,
2539	}, {
2540		.init_func = btrfs_prelim_ref_init,
2541		.exit_func = btrfs_prelim_ref_exit,
2542	}, {
2543		.init_func = btrfs_interface_init,
2544		.exit_func = btrfs_interface_exit,
2545	}, {
2546		.init_func = btrfs_print_mod_info,
2547		.exit_func = NULL,
2548	}, {
2549		.init_func = btrfs_run_sanity_tests,
2550		.exit_func = NULL,
2551	}, {
2552		.init_func = register_btrfs,
2553		.exit_func = unregister_btrfs,
2554	}
2555};
2556
2557static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2558
2559static __always_inline void btrfs_exit_btrfs_fs(void)
2560{
2561	int i;
2562
2563	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2564		if (!mod_init_result[i])
2565			continue;
2566		if (mod_init_seq[i].exit_func)
2567			mod_init_seq[i].exit_func();
2568		mod_init_result[i] = false;
2569	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570}
2571
2572static void __exit exit_btrfs_fs(void)
2573{
2574	btrfs_exit_btrfs_fs();
 
 
 
 
 
 
 
 
 
 
 
2575	btrfs_cleanup_fs_uuids();
2576}
2577
2578static int __init init_btrfs_fs(void)
2579{
2580	int ret;
2581	int i;
2582
2583	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2584		ASSERT(!mod_init_result[i]);
2585		ret = mod_init_seq[i].init_func();
2586		if (ret < 0) {
2587			btrfs_exit_btrfs_fs();
2588			return ret;
2589		}
2590		mod_init_result[i] = true;
2591	}
2592	return 0;
2593}
2594
2595late_initcall(init_btrfs_fs);
2596module_exit(exit_btrfs_fs)
2597
2598MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2599MODULE_LICENSE("GPL");
2600MODULE_SOFTDEP("pre: crc32c");
2601MODULE_SOFTDEP("pre: xxhash64");
2602MODULE_SOFTDEP("pre: sha256");
2603MODULE_SOFTDEP("pre: blake2b-256");
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
 
  44#include <linux/btrfs.h>
 
 
 
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "hash.h"
  52#include "props.h"
  53#include "xattr.h"
  54#include "volumes.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58#include "dev-replace.h"
  59#include "free-space-cache.h"
  60#include "backref.h"
 
 
 
  61#include "tests/btrfs-tests.h"
  62
 
  63#include "qgroup.h"
 
 
 
 
 
 
 
 
 
 
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/btrfs.h>
  66
  67static const struct super_operations btrfs_super_ops;
  68static struct file_system_type btrfs_fs_type;
  69
  70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  71
  72const char *btrfs_decode_error(int errno)
  73{
  74	char *errstr = "unknown";
  75
  76	switch (errno) {
  77	case -EIO:
  78		errstr = "IO failure";
  79		break;
  80	case -ENOMEM:
  81		errstr = "Out of memory";
  82		break;
  83	case -EROFS:
  84		errstr = "Readonly filesystem";
  85		break;
  86	case -EEXIST:
  87		errstr = "Object already exists";
  88		break;
  89	case -ENOSPC:
  90		errstr = "No space left";
  91		break;
  92	case -ENOENT:
  93		errstr = "No such entry";
  94		break;
  95	}
  96
  97	return errstr;
  98}
  99
 100/* btrfs handle error by forcing the filesystem readonly */
 101static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 102{
 103	struct super_block *sb = fs_info->sb;
 
 
 
 
 
 
 
 
 
 104
 105	if (sb->s_flags & MS_RDONLY)
 106		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107
 108	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 109		sb->s_flags |= MS_RDONLY;
 110		btrfs_info(fs_info, "forced readonly");
 111		/*
 112		 * Note that a running device replace operation is not
 113		 * canceled here although there is no way to update
 114		 * the progress. It would add the risk of a deadlock,
 115		 * therefore the canceling is omitted. The only penalty
 116		 * is that some I/O remains active until the procedure
 117		 * completes. The next time when the filesystem is
 118		 * mounted writeable again, the device replace
 119		 * operation continues.
 120		 */
 121	}
 122}
 123
 124/*
 125 * __btrfs_handle_fs_error decodes expected errors from the caller and
 126 * invokes the approciate error response.
 127 */
 128__cold
 129void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 130		       unsigned int line, int errno, const char *fmt, ...)
 131{
 132	struct super_block *sb = fs_info->sb;
 133#ifdef CONFIG_PRINTK
 134	const char *errstr;
 135#endif
 136
 137	/*
 138	 * Special case: if the error is EROFS, and we're already
 139	 * under MS_RDONLY, then it is safe here.
 140	 */
 141	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 142  		return;
 143
 144#ifdef CONFIG_PRINTK
 145	errstr = btrfs_decode_error(errno);
 146	if (fmt) {
 147		struct va_format vaf;
 148		va_list args;
 149
 150		va_start(args, fmt);
 151		vaf.fmt = fmt;
 152		vaf.va = &args;
 153
 154		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 155			sb->s_id, function, line, errno, errstr, &vaf);
 156		va_end(args);
 157	} else {
 158		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 159			sb->s_id, function, line, errno, errstr);
 160	}
 161#endif
 
 
 162
 163	/*
 164	 * Today we only save the error info to memory.  Long term we'll
 165	 * also send it down to the disk
 166	 */
 167	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 168
 169	/* Don't go through full error handling during mount */
 170	if (sb->s_flags & MS_BORN)
 171		btrfs_handle_error(fs_info);
 172}
 173
 174#ifdef CONFIG_PRINTK
 175static const char * const logtypes[] = {
 176	"emergency",
 177	"alert",
 178	"critical",
 179	"error",
 180	"warning",
 181	"notice",
 182	"info",
 183	"debug",
 184};
 185
 
 
 
 
 186
 187/*
 188 * Use one ratelimit state per log level so that a flood of less important
 189 * messages doesn't cause more important ones to be dropped.
 190 */
 191static struct ratelimit_state printk_limits[] = {
 192	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 193	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 194	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 195	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 196	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 197	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 198	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 199	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 200};
 201
 202void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 203{
 204	struct super_block *sb = fs_info->sb;
 205	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 206	struct va_format vaf;
 207	va_list args;
 208	int kern_level;
 209	const char *type = logtypes[4];
 210	struct ratelimit_state *ratelimit = &printk_limits[4];
 211
 212	va_start(args, fmt);
 
 
 
 
 213
 214	while ((kern_level = printk_get_level(fmt)) != 0) {
 215		size_t size = printk_skip_level(fmt) - fmt;
 
 
 
 
 
 
 
 216
 217		if (kern_level >= '0' && kern_level <= '7') {
 218			memcpy(lvl, fmt,  size);
 219			lvl[size] = '\0';
 220			type = logtypes[kern_level - '0'];
 221			ratelimit = &printk_limits[kern_level - '0'];
 222		}
 223		fmt += size;
 224	}
 
 
 
 
 
 
 225
 226	vaf.fmt = fmt;
 227	vaf.va = &args;
 
 
 
 
 228
 229	if (__ratelimit(ratelimit))
 230		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
 231
 232	va_end(args);
 233}
 
 234#endif
 235
 236/*
 237 * We only mark the transaction aborted and then set the file system read-only.
 238 * This will prevent new transactions from starting or trying to join this
 239 * one.
 240 *
 241 * This means that error recovery at the call site is limited to freeing
 242 * any local memory allocations and passing the error code up without
 243 * further cleanup. The transaction should complete as it normally would
 244 * in the call path but will return -EIO.
 245 *
 246 * We'll complete the cleanup in btrfs_end_transaction and
 247 * btrfs_commit_transaction.
 248 */
 249__cold
 250void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 251			       const char *function,
 252			       unsigned int line, int errno)
 253{
 254	struct btrfs_fs_info *fs_info = trans->fs_info;
 255
 256	trans->aborted = errno;
 257	/* Nothing used. The other threads that have joined this
 258	 * transaction may be able to continue. */
 259	if (!trans->dirty && list_empty(&trans->new_bgs)) {
 260		const char *errstr;
 261
 262		errstr = btrfs_decode_error(errno);
 263		btrfs_warn(fs_info,
 264		           "%s:%d: Aborting unused transaction(%s).",
 265		           function, line, errstr);
 266		return;
 267	}
 268	ACCESS_ONCE(trans->transaction->aborted) = errno;
 269	/* Wake up anybody who may be waiting on this transaction */
 270	wake_up(&fs_info->transaction_wait);
 271	wake_up(&fs_info->transaction_blocked_wait);
 272	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 273}
 274/*
 275 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 276 * issues an alert, and either panics or BUGs, depending on mount options.
 277 */
 278__cold
 279void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 280		   unsigned int line, int errno, const char *fmt, ...)
 281{
 282	char *s_id = "<unknown>";
 283	const char *errstr;
 284	struct va_format vaf = { .fmt = fmt };
 285	va_list args;
 286
 287	if (fs_info)
 288		s_id = fs_info->sb->s_id;
 289
 290	va_start(args, fmt);
 291	vaf.va = &args;
 292
 293	errstr = btrfs_decode_error(errno);
 294	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
 295		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 296			s_id, function, line, &vaf, errno, errstr);
 297
 298	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 299		   function, line, &vaf, errno, errstr);
 300	va_end(args);
 301	/* Caller calls BUG() */
 302}
 303
 304static void btrfs_put_super(struct super_block *sb)
 305{
 306	close_ctree(btrfs_sb(sb));
 307}
 308
 309enum {
 310	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 311	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 312	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 313	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 314	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 315	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
 316	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
 317	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
 318	Opt_skip_balance, Opt_check_integrity,
 319	Opt_check_integrity_including_extent_data,
 320	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
 321	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
 322	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
 323	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
 324	Opt_nologreplay, Opt_norecovery,
 325#ifdef CONFIG_BTRFS_DEBUG
 326	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 327#endif
 328	Opt_err,
 329};
 330
 331static const match_table_t tokens = {
 332	{Opt_degraded, "degraded"},
 333	{Opt_subvol, "subvol=%s"},
 334	{Opt_subvolid, "subvolid=%s"},
 335	{Opt_device, "device=%s"},
 336	{Opt_nodatasum, "nodatasum"},
 337	{Opt_datasum, "datasum"},
 338	{Opt_nodatacow, "nodatacow"},
 339	{Opt_datacow, "datacow"},
 340	{Opt_nobarrier, "nobarrier"},
 341	{Opt_barrier, "barrier"},
 342	{Opt_max_inline, "max_inline=%s"},
 343	{Opt_alloc_start, "alloc_start=%s"},
 344	{Opt_thread_pool, "thread_pool=%d"},
 345	{Opt_compress, "compress"},
 346	{Opt_compress_type, "compress=%s"},
 347	{Opt_compress_force, "compress-force"},
 348	{Opt_compress_force_type, "compress-force=%s"},
 349	{Opt_ssd, "ssd"},
 350	{Opt_ssd_spread, "ssd_spread"},
 351	{Opt_nossd, "nossd"},
 352	{Opt_acl, "acl"},
 353	{Opt_noacl, "noacl"},
 354	{Opt_notreelog, "notreelog"},
 355	{Opt_treelog, "treelog"},
 356	{Opt_nologreplay, "nologreplay"},
 357	{Opt_norecovery, "norecovery"},
 358	{Opt_flushoncommit, "flushoncommit"},
 359	{Opt_noflushoncommit, "noflushoncommit"},
 360	{Opt_ratio, "metadata_ratio=%d"},
 361	{Opt_discard, "discard"},
 362	{Opt_nodiscard, "nodiscard"},
 363	{Opt_space_cache, "space_cache"},
 364	{Opt_space_cache_version, "space_cache=%s"},
 365	{Opt_clear_cache, "clear_cache"},
 366	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 367	{Opt_enospc_debug, "enospc_debug"},
 368	{Opt_noenospc_debug, "noenospc_debug"},
 369	{Opt_subvolrootid, "subvolrootid=%d"},
 370	{Opt_defrag, "autodefrag"},
 371	{Opt_nodefrag, "noautodefrag"},
 372	{Opt_inode_cache, "inode_cache"},
 373	{Opt_noinode_cache, "noinode_cache"},
 374	{Opt_no_space_cache, "nospace_cache"},
 375	{Opt_recovery, "recovery"}, /* deprecated */
 376	{Opt_usebackuproot, "usebackuproot"},
 377	{Opt_skip_balance, "skip_balance"},
 378	{Opt_check_integrity, "check_int"},
 379	{Opt_check_integrity_including_extent_data, "check_int_data"},
 380	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 381	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 382	{Opt_fatal_errors, "fatal_errors=%s"},
 383	{Opt_commit_interval, "commit=%d"},
 384#ifdef CONFIG_BTRFS_DEBUG
 385	{Opt_fragment_data, "fragment=data"},
 386	{Opt_fragment_metadata, "fragment=metadata"},
 387	{Opt_fragment_all, "fragment=all"},
 388#endif
 389	{Opt_err, NULL},
 390};
 391
 392/*
 393 * Regular mount options parser.  Everything that is needed only when
 394 * reading in a new superblock is parsed here.
 395 * XXX JDM: This needs to be cleaned up for remount.
 396 */
 397int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 398			unsigned long new_flags)
 399{
 400	substring_t args[MAX_OPT_ARGS];
 401	char *p, *num, *orig = NULL;
 402	u64 cache_gen;
 403	int intarg;
 404	int ret = 0;
 405	char *compress_type;
 406	bool compress_force = false;
 407	enum btrfs_compression_type saved_compress_type;
 408	bool saved_compress_force;
 409	int no_compress = 0;
 410
 411	cache_gen = btrfs_super_cache_generation(info->super_copy);
 412	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 413		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 414	else if (cache_gen)
 415		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 416
 417	/*
 418	 * Even the options are empty, we still need to do extra check
 419	 * against new flags
 420	 */
 421	if (!options)
 422		goto check;
 423
 424	/*
 425	 * strsep changes the string, duplicate it because parse_options
 426	 * gets called twice
 427	 */
 428	options = kstrdup(options, GFP_NOFS);
 429	if (!options)
 430		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 431
 432	orig = options;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434	while ((p = strsep(&options, ",")) != NULL) {
 435		int token;
 436		if (!*p)
 437			continue;
 438
 439		token = match_token(p, tokens, args);
 440		switch (token) {
 441		case Opt_degraded:
 442			btrfs_info(info, "allowing degraded mounts");
 443			btrfs_set_opt(info->mount_opt, DEGRADED);
 444			break;
 445		case Opt_subvol:
 446		case Opt_subvolid:
 447		case Opt_subvolrootid:
 448		case Opt_device:
 449			/*
 450			 * These are parsed by btrfs_parse_early_options
 451			 * and can be happily ignored here.
 452			 */
 453			break;
 454		case Opt_nodatasum:
 455			btrfs_set_and_info(info, NODATASUM,
 456					   "setting nodatasum");
 457			break;
 458		case Opt_datasum:
 459			if (btrfs_test_opt(info, NODATASUM)) {
 460				if (btrfs_test_opt(info, NODATACOW))
 461					btrfs_info(info,
 462						   "setting datasum, datacow enabled");
 463				else
 464					btrfs_info(info, "setting datasum");
 465			}
 466			btrfs_clear_opt(info->mount_opt, NODATACOW);
 467			btrfs_clear_opt(info->mount_opt, NODATASUM);
 468			break;
 469		case Opt_nodatacow:
 470			if (!btrfs_test_opt(info, NODATACOW)) {
 471				if (!btrfs_test_opt(info, COMPRESS) ||
 472				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 473					btrfs_info(info,
 474						   "setting nodatacow, compression disabled");
 475				} else {
 476					btrfs_info(info, "setting nodatacow");
 477				}
 478			}
 479			btrfs_clear_opt(info->mount_opt, COMPRESS);
 480			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 481			btrfs_set_opt(info->mount_opt, NODATACOW);
 482			btrfs_set_opt(info->mount_opt, NODATASUM);
 483			break;
 484		case Opt_datacow:
 485			btrfs_clear_and_info(info, NODATACOW,
 486					     "setting datacow");
 487			break;
 488		case Opt_compress_force:
 489		case Opt_compress_force_type:
 490			compress_force = true;
 491			/* Fallthrough */
 492		case Opt_compress:
 493		case Opt_compress_type:
 494			saved_compress_type = btrfs_test_opt(info,
 495							     COMPRESS) ?
 496				info->compress_type : BTRFS_COMPRESS_NONE;
 497			saved_compress_force =
 498				btrfs_test_opt(info, FORCE_COMPRESS);
 499			if (token == Opt_compress ||
 500			    token == Opt_compress_force ||
 501			    strcmp(args[0].from, "zlib") == 0) {
 502				compress_type = "zlib";
 503				info->compress_type = BTRFS_COMPRESS_ZLIB;
 504				btrfs_set_opt(info->mount_opt, COMPRESS);
 505				btrfs_clear_opt(info->mount_opt, NODATACOW);
 506				btrfs_clear_opt(info->mount_opt, NODATASUM);
 507				no_compress = 0;
 508			} else if (strcmp(args[0].from, "lzo") == 0) {
 509				compress_type = "lzo";
 510				info->compress_type = BTRFS_COMPRESS_LZO;
 511				btrfs_set_opt(info->mount_opt, COMPRESS);
 512				btrfs_clear_opt(info->mount_opt, NODATACOW);
 513				btrfs_clear_opt(info->mount_opt, NODATASUM);
 514				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 515				no_compress = 0;
 516			} else if (strncmp(args[0].from, "no", 2) == 0) {
 517				compress_type = "no";
 518				btrfs_clear_opt(info->mount_opt, COMPRESS);
 519				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 520				compress_force = false;
 521				no_compress++;
 522			} else {
 523				ret = -EINVAL;
 524				goto out;
 525			}
 526
 527			if (compress_force) {
 528				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 529			} else {
 530				/*
 531				 * If we remount from compress-force=xxx to
 532				 * compress=xxx, we need clear FORCE_COMPRESS
 533				 * flag, otherwise, there is no way for users
 534				 * to disable forcible compression separately.
 535				 */
 536				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 537			}
 538			if ((btrfs_test_opt(info, COMPRESS) &&
 539			     (info->compress_type != saved_compress_type ||
 540			      compress_force != saved_compress_force)) ||
 541			    (!btrfs_test_opt(info, COMPRESS) &&
 542			     no_compress == 1)) {
 543				btrfs_info(info, "%s %s compression",
 544					   (compress_force) ? "force" : "use",
 545					   compress_type);
 546			}
 547			compress_force = false;
 548			break;
 549		case Opt_ssd:
 550			btrfs_set_and_info(info, SSD,
 551					   "use ssd allocation scheme");
 552			break;
 553		case Opt_ssd_spread:
 554			btrfs_set_and_info(info, SSD_SPREAD,
 555					   "use spread ssd allocation scheme");
 556			btrfs_set_opt(info->mount_opt, SSD);
 557			break;
 558		case Opt_nossd:
 559			btrfs_set_and_info(info, NOSSD,
 560					     "not using ssd allocation scheme");
 561			btrfs_clear_opt(info->mount_opt, SSD);
 562			break;
 563		case Opt_barrier:
 564			btrfs_clear_and_info(info, NOBARRIER,
 565					     "turning on barriers");
 566			break;
 567		case Opt_nobarrier:
 568			btrfs_set_and_info(info, NOBARRIER,
 569					   "turning off barriers");
 570			break;
 571		case Opt_thread_pool:
 572			ret = match_int(&args[0], &intarg);
 573			if (ret) {
 574				goto out;
 575			} else if (intarg > 0) {
 576				info->thread_pool_size = intarg;
 577			} else {
 578				ret = -EINVAL;
 579				goto out;
 580			}
 581			break;
 582		case Opt_max_inline:
 583			num = match_strdup(&args[0]);
 584			if (num) {
 585				info->max_inline = memparse(num, NULL);
 586				kfree(num);
 587
 588				if (info->max_inline) {
 589					info->max_inline = min_t(u64,
 590						info->max_inline,
 591						info->sectorsize);
 592				}
 593				btrfs_info(info, "max_inline at %llu",
 594					   info->max_inline);
 595			} else {
 596				ret = -ENOMEM;
 597				goto out;
 598			}
 599			break;
 600		case Opt_alloc_start:
 601			num = match_strdup(&args[0]);
 602			if (num) {
 603				mutex_lock(&info->chunk_mutex);
 604				info->alloc_start = memparse(num, NULL);
 605				mutex_unlock(&info->chunk_mutex);
 606				kfree(num);
 607				btrfs_info(info, "allocations start at %llu",
 608					   info->alloc_start);
 609			} else {
 610				ret = -ENOMEM;
 611				goto out;
 612			}
 613			break;
 614		case Opt_acl:
 615#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 616			info->sb->s_flags |= MS_POSIXACL;
 617			break;
 618#else
 619			btrfs_err(info, "support for ACL not compiled in!");
 620			ret = -EINVAL;
 621			goto out;
 622#endif
 623		case Opt_noacl:
 624			info->sb->s_flags &= ~MS_POSIXACL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625			break;
 626		case Opt_notreelog:
 627			btrfs_set_and_info(info, NOTREELOG,
 628					   "disabling tree log");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629			break;
 630		case Opt_treelog:
 631			btrfs_clear_and_info(info, NOTREELOG,
 632					     "enabling tree log");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633			break;
 634		case Opt_norecovery:
 635		case Opt_nologreplay:
 636			btrfs_set_and_info(info, NOLOGREPLAY,
 637					   "disabling log replay at mount time");
 638			break;
 639		case Opt_flushoncommit:
 640			btrfs_set_and_info(info, FLUSHONCOMMIT,
 641					   "turning on flush-on-commit");
 642			break;
 643		case Opt_noflushoncommit:
 644			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 645					     "turning off flush-on-commit");
 646			break;
 647		case Opt_ratio:
 648			ret = match_int(&args[0], &intarg);
 649			if (ret) {
 650				goto out;
 651			} else if (intarg >= 0) {
 652				info->metadata_ratio = intarg;
 653				btrfs_info(info, "metadata ratio %d",
 654					   info->metadata_ratio);
 655			} else {
 656				ret = -EINVAL;
 657				goto out;
 658			}
 659			break;
 660		case Opt_discard:
 661			btrfs_set_and_info(info, DISCARD,
 662					   "turning on discard");
 663			break;
 664		case Opt_nodiscard:
 665			btrfs_clear_and_info(info, DISCARD,
 666					     "turning off discard");
 667			break;
 668		case Opt_space_cache:
 669		case Opt_space_cache_version:
 670			if (token == Opt_space_cache ||
 671			    strcmp(args[0].from, "v1") == 0) {
 672				btrfs_clear_opt(info->mount_opt,
 673						FREE_SPACE_TREE);
 674				btrfs_set_and_info(info, SPACE_CACHE,
 675					   "enabling disk space caching");
 676			} else if (strcmp(args[0].from, "v2") == 0) {
 677				btrfs_clear_opt(info->mount_opt,
 678						SPACE_CACHE);
 679				btrfs_set_and_info(info, FREE_SPACE_TREE,
 680						   "enabling free space tree");
 681			} else {
 682				ret = -EINVAL;
 683				goto out;
 684			}
 685			break;
 686		case Opt_rescan_uuid_tree:
 687			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 688			break;
 689		case Opt_no_space_cache:
 690			if (btrfs_test_opt(info, SPACE_CACHE)) {
 691				btrfs_clear_and_info(info, SPACE_CACHE,
 692					     "disabling disk space caching");
 693			}
 694			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 695				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 696					     "disabling free space tree");
 697			}
 698			break;
 699		case Opt_inode_cache:
 700			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 701					   "enabling inode map caching");
 702			break;
 703		case Opt_noinode_cache:
 704			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 705					     "disabling inode map caching");
 706			break;
 707		case Opt_clear_cache:
 708			btrfs_set_and_info(info, CLEAR_CACHE,
 709					   "force clearing of disk cache");
 710			break;
 711		case Opt_user_subvol_rm_allowed:
 712			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 713			break;
 714		case Opt_enospc_debug:
 715			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 716			break;
 717		case Opt_noenospc_debug:
 718			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 719			break;
 720		case Opt_defrag:
 721			btrfs_set_and_info(info, AUTO_DEFRAG,
 722					   "enabling auto defrag");
 723			break;
 724		case Opt_nodefrag:
 725			btrfs_clear_and_info(info, AUTO_DEFRAG,
 726					     "disabling auto defrag");
 727			break;
 728		case Opt_recovery:
 729			btrfs_warn(info,
 730				   "'recovery' is deprecated, use 'usebackuproot' instead");
 731		case Opt_usebackuproot:
 732			btrfs_info(info,
 733				   "trying to use backup root at mount time");
 734			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 735			break;
 736		case Opt_skip_balance:
 737			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 738			break;
 739#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 740		case Opt_check_integrity_including_extent_data:
 741			btrfs_info(info,
 742				   "enabling check integrity including extent data");
 743			btrfs_set_opt(info->mount_opt,
 744				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 745			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 746			break;
 747		case Opt_check_integrity:
 748			btrfs_info(info, "enabling check integrity");
 749			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 750			break;
 751		case Opt_check_integrity_print_mask:
 752			ret = match_int(&args[0], &intarg);
 753			if (ret) {
 754				goto out;
 755			} else if (intarg >= 0) {
 756				info->check_integrity_print_mask = intarg;
 757				btrfs_info(info,
 758					   "check_integrity_print_mask 0x%x",
 759					   info->check_integrity_print_mask);
 760			} else {
 761				ret = -EINVAL;
 762				goto out;
 763			}
 764			break;
 765#else
 766		case Opt_check_integrity_including_extent_data:
 767		case Opt_check_integrity:
 768		case Opt_check_integrity_print_mask:
 769			btrfs_err(info,
 770				  "support for check_integrity* not compiled in!");
 771			ret = -EINVAL;
 772			goto out;
 773#endif
 774		case Opt_fatal_errors:
 775			if (strcmp(args[0].from, "panic") == 0)
 776				btrfs_set_opt(info->mount_opt,
 777					      PANIC_ON_FATAL_ERROR);
 778			else if (strcmp(args[0].from, "bug") == 0)
 779				btrfs_clear_opt(info->mount_opt,
 780					      PANIC_ON_FATAL_ERROR);
 781			else {
 782				ret = -EINVAL;
 783				goto out;
 784			}
 785			break;
 786		case Opt_commit_interval:
 787			intarg = 0;
 788			ret = match_int(&args[0], &intarg);
 789			if (ret < 0) {
 790				btrfs_err(info, "invalid commit interval");
 791				ret = -EINVAL;
 792				goto out;
 793			}
 794			if (intarg > 0) {
 795				if (intarg > 300) {
 796					btrfs_warn(info,
 797						"excessive commit interval %d",
 798						intarg);
 799				}
 800				info->commit_interval = intarg;
 801			} else {
 802				btrfs_info(info,
 803					   "using default commit interval %ds",
 804					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 805				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 806			}
 807			break;
 
 
 
 
 
 
 808#ifdef CONFIG_BTRFS_DEBUG
 809		case Opt_fragment_all:
 810			btrfs_info(info, "fragmenting all space");
 811			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 812			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 
 813			break;
 814		case Opt_fragment_metadata:
 815			btrfs_info(info, "fragmenting metadata");
 816			btrfs_set_opt(info->mount_opt,
 817				      FRAGMENT_METADATA);
 818			break;
 819		case Opt_fragment_data:
 820			btrfs_info(info, "fragmenting data");
 821			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 822			break;
 823#endif
 824		case Opt_err:
 825			btrfs_info(info, "unrecognized mount option '%s'", p);
 826			ret = -EINVAL;
 827			goto out;
 828		default:
 829			break;
 
 
 830		}
 
 
 
 
 
 
 
 
 
 
 831	}
 832check:
 833	/*
 834	 * Extra check for current option against current flag
 835	 */
 836	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
 837		btrfs_err(info,
 838			  "nologreplay must be used with ro mount option");
 839		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840	}
 841out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 843	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 844	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 845		btrfs_err(info, "cannot disable free space tree");
 846		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847
 848	}
 849	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
 850		btrfs_info(info, "disk space caching is enabled");
 851	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
 852		btrfs_info(info, "using free space tree");
 853	kfree(orig);
 854	return ret;
 855}
 856
 857/*
 858 * Parse mount options that are required early in the mount process.
 
 
 
 859 *
 860 * All other options will be parsed on much later in the mount process and
 861 * only when we need to allocate a new super block.
 
 
 
 862 */
 863static int btrfs_parse_early_options(const char *options, fmode_t flags,
 864		void *holder, char **subvol_name, u64 *subvol_objectid,
 865		struct btrfs_fs_devices **fs_devices)
 866{
 867	substring_t args[MAX_OPT_ARGS];
 868	char *device_name, *opts, *orig, *p;
 869	char *num = NULL;
 870	int error = 0;
 
 
 
 871
 872	if (!options)
 873		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	/*
 876	 * strsep changes the string, duplicate it because parse_options
 877	 * gets called twice
 878	 */
 879	opts = kstrdup(options, GFP_KERNEL);
 880	if (!opts)
 881		return -ENOMEM;
 882	orig = opts;
 
 883
 884	while ((p = strsep(&opts, ",")) != NULL) {
 885		int token;
 886		if (!*p)
 887			continue;
 
 888
 889		token = match_token(p, tokens, args);
 890		switch (token) {
 891		case Opt_subvol:
 892			kfree(*subvol_name);
 893			*subvol_name = match_strdup(&args[0]);
 894			if (!*subvol_name) {
 895				error = -ENOMEM;
 896				goto out;
 897			}
 898			break;
 899		case Opt_subvolid:
 900			num = match_strdup(&args[0]);
 901			if (num) {
 902				*subvol_objectid = memparse(num, NULL);
 903				kfree(num);
 904				/* we want the original fs_tree */
 905				if (!*subvol_objectid)
 906					*subvol_objectid =
 907						BTRFS_FS_TREE_OBJECTID;
 908			} else {
 909				error = -EINVAL;
 910				goto out;
 911			}
 912			break;
 913		case Opt_subvolrootid:
 914			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
 915			break;
 916		case Opt_device:
 917			device_name = match_strdup(&args[0]);
 918			if (!device_name) {
 919				error = -ENOMEM;
 920				goto out;
 921			}
 922			error = btrfs_scan_one_device(device_name,
 923					flags, holder, fs_devices);
 924			kfree(device_name);
 925			if (error)
 926				goto out;
 927			break;
 928		default:
 929			break;
 930		}
 931	}
 932
 933out:
 934	kfree(orig);
 935	return error;
 936}
 937
 938static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 939					   u64 subvol_objectid)
 940{
 941	struct btrfs_root *root = fs_info->tree_root;
 942	struct btrfs_root *fs_root;
 943	struct btrfs_root_ref *root_ref;
 944	struct btrfs_inode_ref *inode_ref;
 945	struct btrfs_key key;
 946	struct btrfs_path *path = NULL;
 947	char *name = NULL, *ptr;
 948	u64 dirid;
 949	int len;
 950	int ret;
 951
 952	path = btrfs_alloc_path();
 953	if (!path) {
 954		ret = -ENOMEM;
 955		goto err;
 956	}
 957	path->leave_spinning = 1;
 958
 959	name = kmalloc(PATH_MAX, GFP_NOFS);
 960	if (!name) {
 961		ret = -ENOMEM;
 962		goto err;
 963	}
 964	ptr = name + PATH_MAX - 1;
 965	ptr[0] = '\0';
 966
 967	/*
 968	 * Walk up the subvolume trees in the tree of tree roots by root
 969	 * backrefs until we hit the top-level subvolume.
 970	 */
 971	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 972		key.objectid = subvol_objectid;
 973		key.type = BTRFS_ROOT_BACKREF_KEY;
 974		key.offset = (u64)-1;
 975
 976		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 977		if (ret < 0) {
 978			goto err;
 979		} else if (ret > 0) {
 980			ret = btrfs_previous_item(root, path, subvol_objectid,
 981						  BTRFS_ROOT_BACKREF_KEY);
 982			if (ret < 0) {
 983				goto err;
 984			} else if (ret > 0) {
 985				ret = -ENOENT;
 986				goto err;
 987			}
 988		}
 989
 990		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 991		subvol_objectid = key.offset;
 992
 993		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 994					  struct btrfs_root_ref);
 995		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 996		ptr -= len + 1;
 997		if (ptr < name) {
 998			ret = -ENAMETOOLONG;
 999			goto err;
1000		}
1001		read_extent_buffer(path->nodes[0], ptr + 1,
1002				   (unsigned long)(root_ref + 1), len);
1003		ptr[0] = '/';
1004		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1005		btrfs_release_path(path);
1006
1007		key.objectid = subvol_objectid;
1008		key.type = BTRFS_ROOT_ITEM_KEY;
1009		key.offset = (u64)-1;
1010		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1011		if (IS_ERR(fs_root)) {
1012			ret = PTR_ERR(fs_root);
 
1013			goto err;
1014		}
1015
1016		/*
1017		 * Walk up the filesystem tree by inode refs until we hit the
1018		 * root directory.
1019		 */
1020		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1021			key.objectid = dirid;
1022			key.type = BTRFS_INODE_REF_KEY;
1023			key.offset = (u64)-1;
1024
1025			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1026			if (ret < 0) {
1027				goto err;
1028			} else if (ret > 0) {
1029				ret = btrfs_previous_item(fs_root, path, dirid,
1030							  BTRFS_INODE_REF_KEY);
1031				if (ret < 0) {
1032					goto err;
1033				} else if (ret > 0) {
1034					ret = -ENOENT;
1035					goto err;
1036				}
1037			}
1038
1039			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1040			dirid = key.offset;
1041
1042			inode_ref = btrfs_item_ptr(path->nodes[0],
1043						   path->slots[0],
1044						   struct btrfs_inode_ref);
1045			len = btrfs_inode_ref_name_len(path->nodes[0],
1046						       inode_ref);
1047			ptr -= len + 1;
1048			if (ptr < name) {
1049				ret = -ENAMETOOLONG;
1050				goto err;
1051			}
1052			read_extent_buffer(path->nodes[0], ptr + 1,
1053					   (unsigned long)(inode_ref + 1), len);
1054			ptr[0] = '/';
1055			btrfs_release_path(path);
1056		}
 
 
1057	}
1058
1059	btrfs_free_path(path);
1060	if (ptr == name + PATH_MAX - 1) {
1061		name[0] = '/';
1062		name[1] = '\0';
1063	} else {
1064		memmove(name, ptr, name + PATH_MAX - ptr);
1065	}
1066	return name;
1067
1068err:
 
1069	btrfs_free_path(path);
1070	kfree(name);
1071	return ERR_PTR(ret);
1072}
1073
1074static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1075{
1076	struct btrfs_root *root = fs_info->tree_root;
1077	struct btrfs_dir_item *di;
1078	struct btrfs_path *path;
1079	struct btrfs_key location;
 
1080	u64 dir_id;
1081
1082	path = btrfs_alloc_path();
1083	if (!path)
1084		return -ENOMEM;
1085	path->leave_spinning = 1;
1086
1087	/*
1088	 * Find the "default" dir item which points to the root item that we
1089	 * will mount by default if we haven't been given a specific subvolume
1090	 * to mount.
1091	 */
1092	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1093	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1094	if (IS_ERR(di)) {
1095		btrfs_free_path(path);
1096		return PTR_ERR(di);
1097	}
1098	if (!di) {
1099		/*
1100		 * Ok the default dir item isn't there.  This is weird since
1101		 * it's always been there, but don't freak out, just try and
1102		 * mount the top-level subvolume.
1103		 */
1104		btrfs_free_path(path);
1105		*objectid = BTRFS_FS_TREE_OBJECTID;
1106		return 0;
1107	}
1108
1109	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1110	btrfs_free_path(path);
1111	*objectid = location.objectid;
1112	return 0;
1113}
1114
1115static int btrfs_fill_super(struct super_block *sb,
1116			    struct btrfs_fs_devices *fs_devices,
1117			    void *data, int silent)
1118{
1119	struct inode *inode;
1120	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1121	struct btrfs_key key;
1122	int err;
1123
1124	sb->s_maxbytes = MAX_LFS_FILESIZE;
1125	sb->s_magic = BTRFS_SUPER_MAGIC;
1126	sb->s_op = &btrfs_super_ops;
1127	sb->s_d_op = &btrfs_dentry_operations;
1128	sb->s_export_op = &btrfs_export_ops;
 
 
 
1129	sb->s_xattr = btrfs_xattr_handlers;
1130	sb->s_time_gran = 1;
1131#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1132	sb->s_flags |= MS_POSIXACL;
1133#endif
1134	sb->s_flags |= MS_I_VERSION;
1135	sb->s_iflags |= SB_I_CGROUPWB;
1136	err = open_ctree(sb, fs_devices, (char *)data);
 
1137	if (err) {
1138		btrfs_err(fs_info, "open_ctree failed");
1139		return err;
1140	}
1141
1142	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1143	key.type = BTRFS_INODE_ITEM_KEY;
1144	key.offset = 0;
1145	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 
 
 
1146	if (IS_ERR(inode)) {
1147		err = PTR_ERR(inode);
 
1148		goto fail_close;
1149	}
1150
1151	sb->s_root = d_make_root(inode);
1152	if (!sb->s_root) {
1153		err = -ENOMEM;
1154		goto fail_close;
1155	}
1156
1157	save_mount_options(sb, data);
1158	cleancache_init_fs(sb);
1159	sb->s_flags |= MS_ACTIVE;
1160	return 0;
1161
1162fail_close:
1163	close_ctree(fs_info);
1164	return err;
1165}
1166
1167int btrfs_sync_fs(struct super_block *sb, int wait)
1168{
1169	struct btrfs_trans_handle *trans;
1170	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1171	struct btrfs_root *root = fs_info->tree_root;
1172
1173	trace_btrfs_sync_fs(fs_info, wait);
1174
1175	if (!wait) {
1176		filemap_flush(fs_info->btree_inode->i_mapping);
1177		return 0;
1178	}
1179
1180	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1181
1182	trans = btrfs_attach_transaction_barrier(root);
1183	if (IS_ERR(trans)) {
1184		/* no transaction, don't bother */
1185		if (PTR_ERR(trans) == -ENOENT) {
1186			/*
1187			 * Exit unless we have some pending changes
1188			 * that need to go through commit
1189			 */
1190			if (fs_info->pending_changes == 0)
 
1191				return 0;
1192			/*
1193			 * A non-blocking test if the fs is frozen. We must not
1194			 * start a new transaction here otherwise a deadlock
1195			 * happens. The pending operations are delayed to the
1196			 * next commit after thawing.
1197			 */
1198			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1199				__sb_end_write(sb, SB_FREEZE_WRITE);
1200			else
1201				return 0;
1202			trans = btrfs_start_transaction(root, 0);
1203		}
1204		if (IS_ERR(trans))
1205			return PTR_ERR(trans);
1206	}
1207	return btrfs_commit_transaction(trans);
1208}
1209
 
 
 
 
 
 
1210static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1211{
1212	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1213	char *compress_type;
 
 
1214
1215	if (btrfs_test_opt(info, DEGRADED))
1216		seq_puts(seq, ",degraded");
1217	if (btrfs_test_opt(info, NODATASUM))
1218		seq_puts(seq, ",nodatasum");
1219	if (btrfs_test_opt(info, NODATACOW))
1220		seq_puts(seq, ",nodatacow");
1221	if (btrfs_test_opt(info, NOBARRIER))
1222		seq_puts(seq, ",nobarrier");
1223	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1224		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1225	if (info->alloc_start != 0)
1226		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1227	if (info->thread_pool_size !=  min_t(unsigned long,
1228					     num_online_cpus() + 2, 8))
1229		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1230	if (btrfs_test_opt(info, COMPRESS)) {
1231		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1232			compress_type = "zlib";
1233		else
1234			compress_type = "lzo";
1235		if (btrfs_test_opt(info, FORCE_COMPRESS))
1236			seq_printf(seq, ",compress-force=%s", compress_type);
1237		else
1238			seq_printf(seq, ",compress=%s", compress_type);
 
 
1239	}
1240	if (btrfs_test_opt(info, NOSSD))
1241		seq_puts(seq, ",nossd");
1242	if (btrfs_test_opt(info, SSD_SPREAD))
1243		seq_puts(seq, ",ssd_spread");
1244	else if (btrfs_test_opt(info, SSD))
1245		seq_puts(seq, ",ssd");
1246	if (btrfs_test_opt(info, NOTREELOG))
1247		seq_puts(seq, ",notreelog");
1248	if (btrfs_test_opt(info, NOLOGREPLAY))
1249		seq_puts(seq, ",nologreplay");
 
 
 
 
 
 
 
 
 
 
1250	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1251		seq_puts(seq, ",flushoncommit");
1252	if (btrfs_test_opt(info, DISCARD))
1253		seq_puts(seq, ",discard");
1254	if (!(info->sb->s_flags & MS_POSIXACL))
 
 
1255		seq_puts(seq, ",noacl");
1256	if (btrfs_test_opt(info, SPACE_CACHE))
1257		seq_puts(seq, ",space_cache");
1258	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1259		seq_puts(seq, ",space_cache=v2");
1260	else
1261		seq_puts(seq, ",nospace_cache");
1262	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1263		seq_puts(seq, ",rescan_uuid_tree");
1264	if (btrfs_test_opt(info, CLEAR_CACHE))
1265		seq_puts(seq, ",clear_cache");
1266	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1267		seq_puts(seq, ",user_subvol_rm_allowed");
1268	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1269		seq_puts(seq, ",enospc_debug");
1270	if (btrfs_test_opt(info, AUTO_DEFRAG))
1271		seq_puts(seq, ",autodefrag");
1272	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1273		seq_puts(seq, ",inode_cache");
1274	if (btrfs_test_opt(info, SKIP_BALANCE))
1275		seq_puts(seq, ",skip_balance");
1276#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1277	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1278		seq_puts(seq, ",check_int_data");
1279	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1280		seq_puts(seq, ",check_int");
1281	if (info->check_integrity_print_mask)
1282		seq_printf(seq, ",check_int_print_mask=%d",
1283				info->check_integrity_print_mask);
1284#endif
1285	if (info->metadata_ratio)
1286		seq_printf(seq, ",metadata_ratio=%d",
1287				info->metadata_ratio);
1288	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1289		seq_puts(seq, ",fatal_errors=panic");
1290	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1291		seq_printf(seq, ",commit=%d", info->commit_interval);
1292#ifdef CONFIG_BTRFS_DEBUG
1293	if (btrfs_test_opt(info, FRAGMENT_DATA))
1294		seq_puts(seq, ",fragment=data");
1295	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1296		seq_puts(seq, ",fragment=metadata");
1297#endif
1298	seq_printf(seq, ",subvolid=%llu",
1299		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1300	seq_puts(seq, ",subvol=");
1301	seq_dentry(seq, dentry, " \t\n\\");
 
 
 
 
 
 
1302	return 0;
1303}
1304
1305static int btrfs_test_super(struct super_block *s, void *data)
1306{
1307	struct btrfs_fs_info *p = data;
1308	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1309
1310	return fs_info->fs_devices == p->fs_devices;
1311}
1312
1313static int btrfs_set_super(struct super_block *s, void *data)
1314{
1315	int err = set_anon_super(s, data);
1316	if (!err)
1317		s->s_fs_info = data;
1318	return err;
1319}
1320
1321/*
1322 * subvolumes are identified by ino 256
1323 */
1324static inline int is_subvolume_inode(struct inode *inode)
1325{
1326	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1327		return 1;
1328	return 0;
1329}
1330
1331/*
1332 * This will add subvolid=0 to the argument string while removing any subvol=
1333 * and subvolid= arguments to make sure we get the top-level root for path
1334 * walking to the subvol we want.
1335 */
1336static char *setup_root_args(char *args)
1337{
1338	char *buf, *dst, *sep;
1339
1340	if (!args)
1341		return kstrdup("subvolid=0", GFP_NOFS);
1342
1343	/* The worst case is that we add ",subvolid=0" to the end. */
1344	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1345	if (!buf)
1346		return NULL;
1347
1348	while (1) {
1349		sep = strchrnul(args, ',');
1350		if (!strstarts(args, "subvol=") &&
1351		    !strstarts(args, "subvolid=")) {
1352			memcpy(dst, args, sep - args);
1353			dst += sep - args;
1354			*dst++ = ',';
1355		}
1356		if (*sep)
1357			args = sep + 1;
1358		else
1359			break;
1360	}
1361	strcpy(dst, "subvolid=0");
1362
1363	return buf;
1364}
1365
1366static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1367				   int flags, const char *device_name,
1368				   char *data)
1369{
1370	struct dentry *root;
1371	struct vfsmount *mnt = NULL;
1372	char *newargs;
1373	int ret;
1374
1375	newargs = setup_root_args(data);
1376	if (!newargs) {
1377		root = ERR_PTR(-ENOMEM);
1378		goto out;
1379	}
1380
1381	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1382	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1383		if (flags & MS_RDONLY) {
1384			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1385					     device_name, newargs);
1386		} else {
1387			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1388					     device_name, newargs);
1389			if (IS_ERR(mnt)) {
1390				root = ERR_CAST(mnt);
1391				mnt = NULL;
1392				goto out;
1393			}
1394
1395			down_write(&mnt->mnt_sb->s_umount);
1396			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1397			up_write(&mnt->mnt_sb->s_umount);
1398			if (ret < 0) {
1399				root = ERR_PTR(ret);
1400				goto out;
1401			}
1402		}
1403	}
1404	if (IS_ERR(mnt)) {
1405		root = ERR_CAST(mnt);
1406		mnt = NULL;
1407		goto out;
1408	}
1409
1410	if (!subvol_name) {
1411		if (!subvol_objectid) {
1412			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1413							  &subvol_objectid);
1414			if (ret) {
1415				root = ERR_PTR(ret);
1416				goto out;
1417			}
1418		}
1419		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1420							    subvol_objectid);
1421		if (IS_ERR(subvol_name)) {
1422			root = ERR_CAST(subvol_name);
1423			subvol_name = NULL;
1424			goto out;
1425		}
1426
1427	}
1428
1429	root = mount_subtree(mnt, subvol_name);
1430	/* mount_subtree() drops our reference on the vfsmount. */
1431	mnt = NULL;
1432
1433	if (!IS_ERR(root)) {
1434		struct super_block *s = root->d_sb;
1435		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1436		struct inode *root_inode = d_inode(root);
1437		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1438
1439		ret = 0;
1440		if (!is_subvolume_inode(root_inode)) {
1441			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1442			       subvol_name);
1443			ret = -EINVAL;
1444		}
1445		if (subvol_objectid && root_objectid != subvol_objectid) {
1446			/*
1447			 * This will also catch a race condition where a
1448			 * subvolume which was passed by ID is renamed and
1449			 * another subvolume is renamed over the old location.
1450			 */
1451			btrfs_err(fs_info,
1452				  "subvol '%s' does not match subvolid %llu",
1453				  subvol_name, subvol_objectid);
1454			ret = -EINVAL;
1455		}
1456		if (ret) {
1457			dput(root);
1458			root = ERR_PTR(ret);
1459			deactivate_locked_super(s);
1460		}
1461	}
1462
1463out:
1464	mntput(mnt);
1465	kfree(newargs);
1466	kfree(subvol_name);
1467	return root;
1468}
1469
1470static int parse_security_options(char *orig_opts,
1471				  struct security_mnt_opts *sec_opts)
1472{
1473	char *secdata = NULL;
1474	int ret = 0;
1475
1476	secdata = alloc_secdata();
1477	if (!secdata)
1478		return -ENOMEM;
1479	ret = security_sb_copy_data(orig_opts, secdata);
1480	if (ret) {
1481		free_secdata(secdata);
1482		return ret;
1483	}
1484	ret = security_sb_parse_opts_str(secdata, sec_opts);
1485	free_secdata(secdata);
1486	return ret;
1487}
1488
1489static int setup_security_options(struct btrfs_fs_info *fs_info,
1490				  struct super_block *sb,
1491				  struct security_mnt_opts *sec_opts)
1492{
1493	int ret = 0;
1494
1495	/*
1496	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1497	 * is valid.
1498	 */
1499	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1500	if (ret)
1501		return ret;
1502
1503#ifdef CONFIG_SECURITY
1504	if (!fs_info->security_opts.num_mnt_opts) {
1505		/* first time security setup, copy sec_opts to fs_info */
1506		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1507	} else {
1508		/*
1509		 * Since SELinux (the only one supporting security_mnt_opts)
1510		 * does NOT support changing context during remount/mount of
1511		 * the same sb, this must be the same or part of the same
1512		 * security options, just free it.
1513		 */
1514		security_free_mnt_opts(sec_opts);
1515	}
1516#endif
1517	return ret;
1518}
1519
1520/*
1521 * Find a superblock for the given device / mount point.
1522 *
1523 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1524 *	  for multiple device setup.  Make sure to keep it in sync.
1525 */
1526static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1527		const char *device_name, void *data)
1528{
1529	struct block_device *bdev = NULL;
1530	struct super_block *s;
1531	struct btrfs_fs_devices *fs_devices = NULL;
1532	struct btrfs_fs_info *fs_info = NULL;
1533	struct security_mnt_opts new_sec_opts;
1534	fmode_t mode = FMODE_READ;
1535	char *subvol_name = NULL;
1536	u64 subvol_objectid = 0;
1537	int error = 0;
1538
1539	if (!(flags & MS_RDONLY))
1540		mode |= FMODE_WRITE;
1541
1542	error = btrfs_parse_early_options(data, mode, fs_type,
1543					  &subvol_name, &subvol_objectid,
1544					  &fs_devices);
1545	if (error) {
1546		kfree(subvol_name);
1547		return ERR_PTR(error);
1548	}
1549
1550	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1551		/* mount_subvol() will free subvol_name. */
1552		return mount_subvol(subvol_name, subvol_objectid, flags,
1553				    device_name, data);
1554	}
1555
1556	security_init_mnt_opts(&new_sec_opts);
1557	if (data) {
1558		error = parse_security_options(data, &new_sec_opts);
1559		if (error)
1560			return ERR_PTR(error);
1561	}
1562
1563	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1564	if (error)
1565		goto error_sec_opts;
1566
1567	/*
1568	 * Setup a dummy root and fs_info for test/set super.  This is because
1569	 * we don't actually fill this stuff out until open_ctree, but we need
1570	 * it for searching for existing supers, so this lets us do that and
1571	 * then open_ctree will properly initialize everything later.
1572	 */
1573	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1574	if (!fs_info) {
1575		error = -ENOMEM;
1576		goto error_sec_opts;
1577	}
1578
1579	fs_info->fs_devices = fs_devices;
1580
1581	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1582	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1583	security_init_mnt_opts(&fs_info->security_opts);
1584	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1585		error = -ENOMEM;
1586		goto error_fs_info;
1587	}
1588
1589	error = btrfs_open_devices(fs_devices, mode, fs_type);
1590	if (error)
1591		goto error_fs_info;
1592
1593	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1594		error = -EACCES;
1595		goto error_close_devices;
1596	}
1597
1598	bdev = fs_devices->latest_bdev;
1599	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1600		 fs_info);
1601	if (IS_ERR(s)) {
1602		error = PTR_ERR(s);
1603		goto error_close_devices;
1604	}
1605
1606	if (s->s_root) {
1607		btrfs_close_devices(fs_devices);
1608		free_fs_info(fs_info);
1609		if ((flags ^ s->s_flags) & MS_RDONLY)
1610			error = -EBUSY;
1611	} else {
1612		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1613		btrfs_sb(s)->bdev_holder = fs_type;
1614		error = btrfs_fill_super(s, fs_devices, data,
1615					 flags & MS_SILENT ? 1 : 0);
1616	}
1617	if (error) {
1618		deactivate_locked_super(s);
1619		goto error_sec_opts;
1620	}
1621
1622	fs_info = btrfs_sb(s);
1623	error = setup_security_options(fs_info, s, &new_sec_opts);
1624	if (error) {
1625		deactivate_locked_super(s);
1626		goto error_sec_opts;
1627	}
1628
1629	return dget(s->s_root);
1630
1631error_close_devices:
1632	btrfs_close_devices(fs_devices);
1633error_fs_info:
1634	free_fs_info(fs_info);
1635error_sec_opts:
1636	security_free_mnt_opts(&new_sec_opts);
1637	return ERR_PTR(error);
1638}
1639
1640static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1641				     int new_pool_size, int old_pool_size)
1642{
1643	if (new_pool_size == old_pool_size)
1644		return;
1645
1646	fs_info->thread_pool_size = new_pool_size;
1647
1648	btrfs_info(fs_info, "resize thread pool %d -> %d",
1649	       old_pool_size, new_pool_size);
1650
1651	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1652	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1653	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1654	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1655	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1656	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1657	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1658				new_pool_size);
1659	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1660	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1661	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1662	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1663	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1664				new_pool_size);
1665}
1666
1667static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1668{
1669	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1670}
1671
1672static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1673				       unsigned long old_opts, int flags)
1674{
1675	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1676	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1677	     (flags & MS_RDONLY))) {
1678		/* wait for any defraggers to finish */
1679		wait_event(fs_info->transaction_wait,
1680			   (atomic_read(&fs_info->defrag_running) == 0));
1681		if (flags & MS_RDONLY)
1682			sync_filesystem(fs_info->sb);
1683	}
1684}
1685
1686static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1687					 unsigned long old_opts)
1688{
 
 
1689	/*
1690	 * We need to cleanup all defragable inodes if the autodefragment is
1691	 * close or the filesystem is read only.
1692	 */
1693	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1694	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1695	     (fs_info->sb->s_flags & MS_RDONLY))) {
1696		btrfs_cleanup_defrag_inodes(fs_info);
1697	}
1698
1699	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 
1700}
1701
1702static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1703{
1704	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1705	struct btrfs_root *root = fs_info->tree_root;
1706	unsigned old_flags = sb->s_flags;
1707	unsigned long old_opts = fs_info->mount_opt;
1708	unsigned long old_compress_type = fs_info->compress_type;
1709	u64 old_max_inline = fs_info->max_inline;
1710	u64 old_alloc_start = fs_info->alloc_start;
1711	int old_thread_pool_size = fs_info->thread_pool_size;
1712	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1713	int ret;
1714
1715	sync_filesystem(sb);
1716	btrfs_remount_prepare(fs_info);
 
 
 
1717
1718	if (data) {
1719		struct security_mnt_opts new_sec_opts;
1720
1721		security_init_mnt_opts(&new_sec_opts);
1722		ret = parse_security_options(data, &new_sec_opts);
1723		if (ret)
1724			goto restore;
1725		ret = setup_security_options(fs_info, sb,
1726					     &new_sec_opts);
1727		if (ret) {
1728			security_free_mnt_opts(&new_sec_opts);
1729			goto restore;
1730		}
1731	}
1732
1733	ret = btrfs_parse_options(fs_info, data, *flags);
1734	if (ret) {
1735		ret = -EINVAL;
1736		goto restore;
1737	}
1738
1739	btrfs_remount_begin(fs_info, old_opts, *flags);
1740	btrfs_resize_thread_pool(fs_info,
1741		fs_info->thread_pool_size, old_thread_pool_size);
 
 
 
 
 
1742
1743	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1744		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
1746	if (*flags & MS_RDONLY) {
1747		/*
1748		 * this also happens on 'umount -rf' or on shutdown, when
1749		 * the filesystem is busy.
1750		 */
1751		cancel_work_sync(&fs_info->async_reclaim_work);
 
1752
1753		/* wait for the uuid_scan task to finish */
1754		down(&fs_info->uuid_tree_rescan_sem);
1755		/* avoid complains from lockdep et al. */
1756		up(&fs_info->uuid_tree_rescan_sem);
1757
1758		sb->s_flags |= MS_RDONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1759
1760		/*
1761		 * Setting MS_RDONLY will put the cleaner thread to
1762		 * sleep at the next loop if it's already active.
1763		 * If it's already asleep, we'll leave unused block
1764		 * groups on disk until we're mounted read-write again
1765		 * unless we clean them up here.
1766		 */
1767		btrfs_delete_unused_bgs(fs_info);
1768
1769		btrfs_dev_replace_suspend_for_unmount(fs_info);
1770		btrfs_scrub_cancel(fs_info);
1771		btrfs_pause_balance(fs_info);
1772
1773		ret = btrfs_commit_super(fs_info);
1774		if (ret)
1775			goto restore;
1776	} else {
1777		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1778			btrfs_err(fs_info,
1779				"Remounting read-write after error is not allowed");
1780			ret = -EINVAL;
1781			goto restore;
1782		}
1783		if (fs_info->fs_devices->rw_devices == 0) {
1784			ret = -EACCES;
1785			goto restore;
1786		}
1787
1788		if (fs_info->fs_devices->missing_devices >
1789		     fs_info->num_tolerated_disk_barrier_failures &&
1790		    !(*flags & MS_RDONLY)) {
1791			btrfs_warn(fs_info,
1792				"too many missing devices, writeable remount is not allowed");
1793			ret = -EACCES;
1794			goto restore;
1795		}
1796
1797		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1798			ret = -EINVAL;
1799			goto restore;
1800		}
 
 
 
1801
1802		ret = btrfs_cleanup_fs_roots(fs_info);
1803		if (ret)
1804			goto restore;
1805
1806		/* recover relocation */
1807		mutex_lock(&fs_info->cleaner_mutex);
1808		ret = btrfs_recover_relocation(root);
1809		mutex_unlock(&fs_info->cleaner_mutex);
1810		if (ret)
1811			goto restore;
1812
1813		ret = btrfs_resume_balance_async(fs_info);
1814		if (ret)
1815			goto restore;
1816
1817		ret = btrfs_resume_dev_replace_async(fs_info);
1818		if (ret) {
1819			btrfs_warn(fs_info, "failed to resume dev_replace");
1820			goto restore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821		}
 
 
 
 
 
 
 
 
 
1822
1823		if (!fs_info->uuid_root) {
1824			btrfs_info(fs_info, "creating UUID tree");
1825			ret = btrfs_create_uuid_tree(fs_info);
1826			if (ret) {
1827				btrfs_warn(fs_info,
1828					   "failed to create the UUID tree %d",
1829					   ret);
1830				goto restore;
1831			}
1832		}
1833		sb->s_flags &= ~MS_RDONLY;
1834
1835		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1836	}
1837out:
1838	wake_up_process(fs_info->transaction_kthread);
1839	btrfs_remount_cleanup(fs_info, old_opts);
 
 
 
1840	return 0;
1841
1842restore:
1843	/* We've hit an error - don't reset MS_RDONLY */
1844	if (sb->s_flags & MS_RDONLY)
1845		old_flags |= MS_RDONLY;
1846	sb->s_flags = old_flags;
1847	fs_info->mount_opt = old_opts;
1848	fs_info->compress_type = old_compress_type;
1849	fs_info->max_inline = old_max_inline;
1850	mutex_lock(&fs_info->chunk_mutex);
1851	fs_info->alloc_start = old_alloc_start;
1852	mutex_unlock(&fs_info->chunk_mutex);
1853	btrfs_resize_thread_pool(fs_info,
1854		old_thread_pool_size, fs_info->thread_pool_size);
1855	fs_info->metadata_ratio = old_metadata_ratio;
1856	btrfs_remount_cleanup(fs_info, old_opts);
1857	return ret;
1858}
1859
1860/* Used to sort the devices by max_avail(descending sort) */
1861static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1862				       const void *dev_info2)
1863{
1864	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1865	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 
 
1866		return -1;
1867	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1868		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1869		return 1;
1870	else
1871	return 0;
1872}
1873
1874/*
1875 * sort the devices by max_avail, in which max free extent size of each device
1876 * is stored.(Descending Sort)
1877 */
1878static inline void btrfs_descending_sort_devices(
1879					struct btrfs_device_info *devices,
1880					size_t nr_devices)
1881{
1882	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1883	     btrfs_cmp_device_free_bytes, NULL);
1884}
1885
1886/*
1887 * The helper to calc the free space on the devices that can be used to store
1888 * file data.
1889 */
1890static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1891				       u64 *free_bytes)
1892{
1893	struct btrfs_root *root = fs_info->tree_root;
1894	struct btrfs_device_info *devices_info;
1895	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1896	struct btrfs_device *device;
1897	u64 skip_space;
1898	u64 type;
1899	u64 avail_space;
1900	u64 used_space;
1901	u64 min_stripe_size;
1902	int min_stripes = 1, num_stripes = 1;
1903	int i = 0, nr_devices;
1904	int ret;
1905
1906	/*
1907	 * We aren't under the device list lock, so this is racy-ish, but good
1908	 * enough for our purposes.
1909	 */
1910	nr_devices = fs_info->fs_devices->open_devices;
1911	if (!nr_devices) {
1912		smp_mb();
1913		nr_devices = fs_info->fs_devices->open_devices;
1914		ASSERT(nr_devices);
1915		if (!nr_devices) {
1916			*free_bytes = 0;
1917			return 0;
1918		}
1919	}
1920
1921	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1922			       GFP_NOFS);
1923	if (!devices_info)
1924		return -ENOMEM;
1925
1926	/* calc min stripe number for data space allocation */
1927	type = btrfs_get_alloc_profile(root, 1);
1928	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1929		min_stripes = 2;
 
1930		num_stripes = nr_devices;
1931	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1932		min_stripes = 2;
1933		num_stripes = 2;
1934	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1935		min_stripes = 4;
1936		num_stripes = 4;
1937	}
1938
1939	if (type & BTRFS_BLOCK_GROUP_DUP)
1940		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1941	else
1942		min_stripe_size = BTRFS_STRIPE_LEN;
1943
1944	if (fs_info->alloc_start)
1945		mutex_lock(&fs_devices->device_list_mutex);
1946	rcu_read_lock();
1947	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1948		if (!device->in_fs_metadata || !device->bdev ||
1949		    device->is_tgtdev_for_dev_replace)
 
 
1950			continue;
1951
1952		if (i >= nr_devices)
1953			break;
1954
1955		avail_space = device->total_bytes - device->bytes_used;
1956
1957		/* align with stripe_len */
1958		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1959		avail_space *= BTRFS_STRIPE_LEN;
1960
1961		/*
1962		 * In order to avoid overwriting the superblock on the drive,
1963		 * btrfs starts at an offset of at least 1MB when doing chunk
1964		 * allocation.
1965		 */
1966		skip_space = SZ_1M;
 
1967
1968		/* user can set the offset in fs_info->alloc_start. */
1969		if (fs_info->alloc_start &&
1970		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1971		    device->total_bytes) {
1972			rcu_read_unlock();
1973			skip_space = max(fs_info->alloc_start, skip_space);
1974
1975			/*
1976			 * btrfs can not use the free space in
1977			 * [0, skip_space - 1], we must subtract it from the
1978			 * total. In order to implement it, we account the used
1979			 * space in this range first.
1980			 */
1981			ret = btrfs_account_dev_extents_size(device, 0,
1982							     skip_space - 1,
1983							     &used_space);
1984			if (ret) {
1985				kfree(devices_info);
1986				mutex_unlock(&fs_devices->device_list_mutex);
1987				return ret;
1988			}
1989
1990			rcu_read_lock();
1991
1992			/* calc the free space in [0, skip_space - 1] */
1993			skip_space -= used_space;
1994		}
1995
1996		/*
1997		 * we can use the free space in [0, skip_space - 1], subtract
1998		 * it from the total.
1999		 */
2000		if (avail_space && avail_space >= skip_space)
2001			avail_space -= skip_space;
2002		else
2003			avail_space = 0;
2004
2005		if (avail_space < min_stripe_size)
2006			continue;
2007
2008		devices_info[i].dev = device;
2009		devices_info[i].max_avail = avail_space;
2010
2011		i++;
2012	}
2013	rcu_read_unlock();
2014	if (fs_info->alloc_start)
2015		mutex_unlock(&fs_devices->device_list_mutex);
2016
2017	nr_devices = i;
2018
2019	btrfs_descending_sort_devices(devices_info, nr_devices);
2020
2021	i = nr_devices - 1;
2022	avail_space = 0;
2023	while (nr_devices >= min_stripes) {
2024		if (num_stripes > nr_devices)
2025			num_stripes = nr_devices;
2026
2027		if (devices_info[i].max_avail >= min_stripe_size) {
2028			int j;
2029			u64 alloc_size;
2030
2031			avail_space += devices_info[i].max_avail * num_stripes;
2032			alloc_size = devices_info[i].max_avail;
2033			for (j = i + 1 - num_stripes; j <= i; j++)
2034				devices_info[j].max_avail -= alloc_size;
2035		}
2036		i--;
2037		nr_devices--;
2038	}
2039
2040	kfree(devices_info);
2041	*free_bytes = avail_space;
2042	return 0;
2043}
2044
2045/*
2046 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2047 *
2048 * If there's a redundant raid level at DATA block groups, use the respective
2049 * multiplier to scale the sizes.
2050 *
2051 * Unused device space usage is based on simulating the chunk allocator
2052 * algorithm that respects the device sizes, order of allocations and the
2053 * 'alloc_start' value, this is a close approximation of the actual use but
2054 * there are other factors that may change the result (like a new metadata
2055 * chunk).
2056 *
2057 * If metadata is exhausted, f_bavail will be 0.
2058 */
2059static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2060{
2061	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2062	struct btrfs_super_block *disk_super = fs_info->super_copy;
2063	struct list_head *head = &fs_info->space_info;
2064	struct btrfs_space_info *found;
2065	u64 total_used = 0;
2066	u64 total_free_data = 0;
2067	u64 total_free_meta = 0;
2068	int bits = dentry->d_sb->s_blocksize_bits;
2069	__be32 *fsid = (__be32 *)fs_info->fsid;
2070	unsigned factor = 1;
2071	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2072	int ret;
2073	u64 thresh = 0;
2074	int mixed = 0;
2075
2076	rcu_read_lock();
2077	list_for_each_entry_rcu(found, head, list) {
2078		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2079			int i;
2080
2081			total_free_data += found->disk_total - found->disk_used;
2082			total_free_data -=
2083				btrfs_account_ro_block_groups_free_space(found);
2084
2085			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2086				if (!list_empty(&found->block_groups[i])) {
2087					switch (i) {
2088					case BTRFS_RAID_DUP:
2089					case BTRFS_RAID_RAID1:
2090					case BTRFS_RAID_RAID10:
2091						factor = 2;
2092					}
2093				}
2094			}
2095		}
2096
2097		/*
2098		 * Metadata in mixed block goup profiles are accounted in data
2099		 */
2100		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2101			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2102				mixed = 1;
2103			else
2104				total_free_meta += found->disk_total -
2105					found->disk_used;
2106		}
2107
2108		total_used += found->disk_used;
2109	}
2110
2111	rcu_read_unlock();
2112
2113	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2114	buf->f_blocks >>= bits;
2115	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2116
2117	/* Account global block reserve as used, it's in logical size already */
2118	spin_lock(&block_rsv->lock);
2119	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2120	if (buf->f_bfree >= block_rsv->size >> bits)
2121		buf->f_bfree -= block_rsv->size >> bits;
2122	else
2123		buf->f_bfree = 0;
2124	spin_unlock(&block_rsv->lock);
2125
2126	buf->f_bavail = div_u64(total_free_data, factor);
2127	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2128	if (ret)
2129		return ret;
2130	buf->f_bavail += div_u64(total_free_data, factor);
2131	buf->f_bavail = buf->f_bavail >> bits;
2132
2133	/*
2134	 * We calculate the remaining metadata space minus global reserve. If
2135	 * this is (supposedly) smaller than zero, there's no space. But this
2136	 * does not hold in practice, the exhausted state happens where's still
2137	 * some positive delta. So we apply some guesswork and compare the
2138	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2139	 *
2140	 * We probably cannot calculate the exact threshold value because this
2141	 * depends on the internal reservations requested by various
2142	 * operations, so some operations that consume a few metadata will
2143	 * succeed even if the Avail is zero. But this is better than the other
2144	 * way around.
2145	 */
2146	thresh = 4 * 1024 * 1024;
2147
2148	if (!mixed && total_free_meta - thresh < block_rsv->size)
 
 
 
 
 
 
 
 
2149		buf->f_bavail = 0;
2150
2151	buf->f_type = BTRFS_SUPER_MAGIC;
2152	buf->f_bsize = dentry->d_sb->s_blocksize;
2153	buf->f_namelen = BTRFS_NAME_LEN;
2154
2155	/* We treat it as constant endianness (it doesn't matter _which_)
2156	   because we want the fsid to come out the same whether mounted
2157	   on a big-endian or little-endian host */
2158	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2159	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2160	/* Mask in the root object ID too, to disambiguate subvols */
2161	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2162	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164	return 0;
2165}
2166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167static void btrfs_kill_super(struct super_block *sb)
2168{
2169	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2170	kill_anon_super(sb);
2171	free_fs_info(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172}
2173
2174static struct file_system_type btrfs_fs_type = {
2175	.owner		= THIS_MODULE,
2176	.name		= "btrfs",
2177	.mount		= btrfs_mount,
2178	.kill_sb	= btrfs_kill_super,
2179	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2180};
 
 
 
2181MODULE_ALIAS_FS("btrfs");
2182
2183static int btrfs_control_open(struct inode *inode, struct file *file)
2184{
2185	/*
2186	 * The control file's private_data is used to hold the
2187	 * transaction when it is started and is used to keep
2188	 * track of whether a transaction is already in progress.
2189	 */
2190	file->private_data = NULL;
2191	return 0;
2192}
2193
2194/*
2195 * used by btrfsctl to scan devices when no FS is mounted
2196 */
2197static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2198				unsigned long arg)
2199{
2200	struct btrfs_ioctl_vol_args *vol;
2201	struct btrfs_fs_devices *fs_devices;
 
2202	int ret = -ENOTTY;
2203
2204	if (!capable(CAP_SYS_ADMIN))
2205		return -EPERM;
2206
2207	vol = memdup_user((void __user *)arg, sizeof(*vol));
2208	if (IS_ERR(vol))
2209		return PTR_ERR(vol);
 
 
 
2210
2211	switch (cmd) {
2212	case BTRFS_IOC_SCAN_DEV:
2213		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2214					    &btrfs_fs_type, &fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2215		break;
2216	case BTRFS_IOC_DEVICES_READY:
2217		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2218					    &btrfs_fs_type, &fs_devices);
2219		if (ret)
 
 
 
 
 
 
 
 
 
2220			break;
2221		ret = !(fs_devices->num_devices == fs_devices->total_devices);
 
 
 
2222		break;
2223	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2224		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2225		break;
2226	}
2227
 
2228	kfree(vol);
2229	return ret;
2230}
2231
2232static int btrfs_freeze(struct super_block *sb)
2233{
2234	struct btrfs_trans_handle *trans;
2235	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2236	struct btrfs_root *root = fs_info->tree_root;
2237
2238	fs_info->fs_frozen = 1;
2239	/*
2240	 * We don't need a barrier here, we'll wait for any transaction that
2241	 * could be in progress on other threads (and do delayed iputs that
2242	 * we want to avoid on a frozen filesystem), or do the commit
2243	 * ourselves.
2244	 */
2245	trans = btrfs_attach_transaction_barrier(root);
2246	if (IS_ERR(trans)) {
2247		/* no transaction, don't bother */
2248		if (PTR_ERR(trans) == -ENOENT)
2249			return 0;
2250		return PTR_ERR(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251	}
2252	return btrfs_commit_transaction(trans);
 
 
2253}
2254
2255static int btrfs_unfreeze(struct super_block *sb)
2256{
2257	btrfs_sb(sb)->fs_frozen = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258	return 0;
2259}
2260
2261static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2262{
2263	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2264	struct btrfs_fs_devices *cur_devices;
2265	struct btrfs_device *dev, *first_dev = NULL;
2266	struct list_head *head;
2267	struct rcu_string *name;
2268
2269	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2270	cur_devices = fs_info->fs_devices;
2271	while (cur_devices) {
2272		head = &cur_devices->devices;
2273		list_for_each_entry(dev, head, dev_list) {
2274			if (dev->missing)
2275				continue;
2276			if (!dev->name)
2277				continue;
2278			if (!first_dev || dev->devid < first_dev->devid)
2279				first_dev = dev;
2280		}
2281		cur_devices = cur_devices->seed;
2282	}
2283
2284	if (first_dev) {
2285		rcu_read_lock();
2286		name = rcu_dereference(first_dev->name);
2287		seq_escape(m, name->str, " \t\n\\");
2288		rcu_read_unlock();
2289	} else {
2290		WARN_ON(1);
2291	}
2292	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
2293	return 0;
2294}
2295
2296static const struct super_operations btrfs_super_ops = {
2297	.drop_inode	= btrfs_drop_inode,
2298	.evict_inode	= btrfs_evict_inode,
2299	.put_super	= btrfs_put_super,
2300	.sync_fs	= btrfs_sync_fs,
2301	.show_options	= btrfs_show_options,
2302	.show_devname	= btrfs_show_devname,
2303	.write_inode	= btrfs_write_inode,
2304	.alloc_inode	= btrfs_alloc_inode,
2305	.destroy_inode	= btrfs_destroy_inode,
 
2306	.statfs		= btrfs_statfs,
2307	.remount_fs	= btrfs_remount,
2308	.freeze_fs	= btrfs_freeze,
2309	.unfreeze_fs	= btrfs_unfreeze,
 
 
2310};
2311
2312static const struct file_operations btrfs_ctl_fops = {
2313	.open = btrfs_control_open,
2314	.unlocked_ioctl	 = btrfs_control_ioctl,
2315	.compat_ioctl = btrfs_control_ioctl,
2316	.owner	 = THIS_MODULE,
2317	.llseek = noop_llseek,
2318};
2319
2320static struct miscdevice btrfs_misc = {
2321	.minor		= BTRFS_MINOR,
2322	.name		= "btrfs-control",
2323	.fops		= &btrfs_ctl_fops
2324};
2325
2326MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2327MODULE_ALIAS("devname:btrfs-control");
2328
2329static int btrfs_interface_init(void)
2330{
2331	return misc_register(&btrfs_misc);
2332}
2333
2334static void btrfs_interface_exit(void)
2335{
2336	misc_deregister(&btrfs_misc);
2337}
2338
2339static void btrfs_print_mod_info(void)
2340{
2341	pr_info("Btrfs loaded, crc32c=%s"
2342#ifdef CONFIG_BTRFS_DEBUG
2343			", debug=on"
2344#endif
2345#ifdef CONFIG_BTRFS_ASSERT
2346			", assert=on"
2347#endif
2348#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2349			", integrity-checker=on"
2350#endif
2351			"\n",
2352			btrfs_crc32c_impl());
 
 
 
 
 
 
 
 
 
 
 
2353}
2354
2355static int __init init_btrfs_fs(void)
2356{
2357	int err;
 
2358
2359	err = btrfs_hash_init();
2360	if (err)
2361		return err;
 
2362
2363	btrfs_props_init();
 
 
 
 
 
2364
2365	err = btrfs_init_sysfs();
2366	if (err)
2367		goto free_hash;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2368
2369	btrfs_init_compress();
2370
2371	err = btrfs_init_cachep();
2372	if (err)
2373		goto free_compress;
2374
2375	err = extent_io_init();
2376	if (err)
2377		goto free_cachep;
2378
2379	err = extent_map_init();
2380	if (err)
2381		goto free_extent_io;
2382
2383	err = ordered_data_init();
2384	if (err)
2385		goto free_extent_map;
2386
2387	err = btrfs_delayed_inode_init();
2388	if (err)
2389		goto free_ordered_data;
2390
2391	err = btrfs_auto_defrag_init();
2392	if (err)
2393		goto free_delayed_inode;
2394
2395	err = btrfs_delayed_ref_init();
2396	if (err)
2397		goto free_auto_defrag;
2398
2399	err = btrfs_prelim_ref_init();
2400	if (err)
2401		goto free_delayed_ref;
2402
2403	err = btrfs_end_io_wq_init();
2404	if (err)
2405		goto free_prelim_ref;
2406
2407	err = btrfs_interface_init();
2408	if (err)
2409		goto free_end_io_wq;
2410
2411	btrfs_init_lockdep();
2412
2413	btrfs_print_mod_info();
2414
2415	err = btrfs_run_sanity_tests();
2416	if (err)
2417		goto unregister_ioctl;
2418
2419	err = register_filesystem(&btrfs_fs_type);
2420	if (err)
2421		goto unregister_ioctl;
2422
2423	return 0;
2424
2425unregister_ioctl:
2426	btrfs_interface_exit();
2427free_end_io_wq:
2428	btrfs_end_io_wq_exit();
2429free_prelim_ref:
2430	btrfs_prelim_ref_exit();
2431free_delayed_ref:
2432	btrfs_delayed_ref_exit();
2433free_auto_defrag:
2434	btrfs_auto_defrag_exit();
2435free_delayed_inode:
2436	btrfs_delayed_inode_exit();
2437free_ordered_data:
2438	ordered_data_exit();
2439free_extent_map:
2440	extent_map_exit();
2441free_extent_io:
2442	extent_io_exit();
2443free_cachep:
2444	btrfs_destroy_cachep();
2445free_compress:
2446	btrfs_exit_compress();
2447	btrfs_exit_sysfs();
2448free_hash:
2449	btrfs_hash_exit();
2450	return err;
2451}
2452
2453static void __exit exit_btrfs_fs(void)
2454{
2455	btrfs_destroy_cachep();
2456	btrfs_delayed_ref_exit();
2457	btrfs_auto_defrag_exit();
2458	btrfs_delayed_inode_exit();
2459	btrfs_prelim_ref_exit();
2460	ordered_data_exit();
2461	extent_map_exit();
2462	extent_io_exit();
2463	btrfs_interface_exit();
2464	btrfs_end_io_wq_exit();
2465	unregister_filesystem(&btrfs_fs_type);
2466	btrfs_exit_sysfs();
2467	btrfs_cleanup_fs_uuids();
2468	btrfs_exit_compress();
2469	btrfs_hash_exit();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470}
2471
2472late_initcall(init_btrfs_fs);
2473module_exit(exit_btrfs_fs)
2474
 
2475MODULE_LICENSE("GPL");