Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
 
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
 
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
 
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "direct-io.h"
  38#include "props.h"
  39#include "xattr.h"
  40#include "bio.h"
 
  41#include "export.h"
  42#include "compression.h"
  43#include "dev-replace.h"
  44#include "free-space-cache.h"
  45#include "backref.h"
  46#include "space-info.h"
  47#include "sysfs.h"
  48#include "zoned.h"
  49#include "tests/btrfs-tests.h"
  50#include "block-group.h"
  51#include "discard.h"
  52#include "qgroup.h"
  53#include "raid56.h"
  54#include "fs.h"
  55#include "accessors.h"
  56#include "defrag.h"
  57#include "dir-item.h"
  58#include "ioctl.h"
  59#include "scrub.h"
  60#include "verity.h"
  61#include "super.h"
  62#include "extent-tree.h"
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/btrfs.h>
  65
  66static const struct super_operations btrfs_super_ops;
  67static struct file_system_type btrfs_fs_type;
  68
  69static void btrfs_put_super(struct super_block *sb)
 
  70{
  71	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  72
  73	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  74	close_ctree(fs_info);
  75}
  76
  77/* Store the mount options related information. */
  78struct btrfs_fs_context {
  79	char *subvol_name;
  80	u64 subvol_objectid;
  81	u64 max_inline;
  82	u32 commit_interval;
  83	u32 metadata_ratio;
  84	u32 thread_pool_size;
  85	unsigned long long mount_opt;
  86	unsigned long compress_type:4;
  87	unsigned int compress_level;
  88	refcount_t refs;
  89};
  90
  91enum {
  92	Opt_acl,
  93	Opt_clear_cache,
  94	Opt_commit_interval,
  95	Opt_compress,
  96	Opt_compress_force,
  97	Opt_compress_force_type,
  98	Opt_compress_type,
  99	Opt_degraded,
 100	Opt_device,
 101	Opt_fatal_errors,
 102	Opt_flushoncommit,
 103	Opt_max_inline,
 104	Opt_barrier,
 105	Opt_datacow,
 106	Opt_datasum,
 107	Opt_defrag,
 108	Opt_discard,
 109	Opt_discard_mode,
 110	Opt_ratio,
 111	Opt_rescan_uuid_tree,
 112	Opt_skip_balance,
 113	Opt_space_cache,
 114	Opt_space_cache_version,
 115	Opt_ssd,
 116	Opt_ssd_spread,
 117	Opt_subvol,
 118	Opt_subvol_empty,
 119	Opt_subvolid,
 120	Opt_thread_pool,
 121	Opt_treelog,
 122	Opt_user_subvol_rm_allowed,
 123	Opt_norecovery,
 124
 125	/* Rescue options */
 126	Opt_rescue,
 127	Opt_usebackuproot,
 128	Opt_nologreplay,
 129
 130	/* Debugging options */
 131	Opt_enospc_debug,
 132#ifdef CONFIG_BTRFS_DEBUG
 133	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 134#endif
 135#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 136	Opt_ref_verify,
 137#endif
 138	Opt_err,
 139};
 140
 141enum {
 142	Opt_fatal_errors_panic,
 143	Opt_fatal_errors_bug,
 144};
 145
 146static const struct constant_table btrfs_parameter_fatal_errors[] = {
 147	{ "panic", Opt_fatal_errors_panic },
 148	{ "bug", Opt_fatal_errors_bug },
 149	{}
 150};
 151
 152enum {
 153	Opt_discard_sync,
 154	Opt_discard_async,
 155};
 156
 157static const struct constant_table btrfs_parameter_discard[] = {
 158	{ "sync", Opt_discard_sync },
 159	{ "async", Opt_discard_async },
 160	{}
 161};
 162
 163enum {
 164	Opt_space_cache_v1,
 165	Opt_space_cache_v2,
 166};
 167
 168static const struct constant_table btrfs_parameter_space_cache[] = {
 169	{ "v1", Opt_space_cache_v1 },
 170	{ "v2", Opt_space_cache_v2 },
 171	{}
 172};
 173
 174enum {
 175	Opt_rescue_usebackuproot,
 176	Opt_rescue_nologreplay,
 177	Opt_rescue_ignorebadroots,
 178	Opt_rescue_ignoredatacsums,
 179	Opt_rescue_ignoremetacsums,
 180	Opt_rescue_ignoresuperflags,
 181	Opt_rescue_parameter_all,
 182};
 183
 184static const struct constant_table btrfs_parameter_rescue[] = {
 185	{ "usebackuproot", Opt_rescue_usebackuproot },
 186	{ "nologreplay", Opt_rescue_nologreplay },
 187	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 188	{ "ibadroots", Opt_rescue_ignorebadroots },
 189	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 190	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
 191	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
 192	{ "idatacsums", Opt_rescue_ignoredatacsums },
 193	{ "imetacsums", Opt_rescue_ignoremetacsums},
 194	{ "isuperflags", Opt_rescue_ignoresuperflags},
 195	{ "all", Opt_rescue_parameter_all },
 196	{}
 197};
 198
 199#ifdef CONFIG_BTRFS_DEBUG
 200enum {
 201	Opt_fragment_parameter_data,
 202	Opt_fragment_parameter_metadata,
 203	Opt_fragment_parameter_all,
 204};
 205
 206static const struct constant_table btrfs_parameter_fragment[] = {
 207	{ "data", Opt_fragment_parameter_data },
 208	{ "metadata", Opt_fragment_parameter_metadata },
 209	{ "all", Opt_fragment_parameter_all },
 210	{}
 211};
 212#endif
 213
 214static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 215	fsparam_flag_no("acl", Opt_acl),
 216	fsparam_flag_no("autodefrag", Opt_defrag),
 217	fsparam_flag_no("barrier", Opt_barrier),
 218	fsparam_flag("clear_cache", Opt_clear_cache),
 219	fsparam_u32("commit", Opt_commit_interval),
 220	fsparam_flag("compress", Opt_compress),
 221	fsparam_string("compress", Opt_compress_type),
 222	fsparam_flag("compress-force", Opt_compress_force),
 223	fsparam_string("compress-force", Opt_compress_force_type),
 224	fsparam_flag_no("datacow", Opt_datacow),
 225	fsparam_flag_no("datasum", Opt_datasum),
 226	fsparam_flag("degraded", Opt_degraded),
 227	fsparam_string("device", Opt_device),
 228	fsparam_flag_no("discard", Opt_discard),
 229	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 230	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 231	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 232	fsparam_string("max_inline", Opt_max_inline),
 233	fsparam_u32("metadata_ratio", Opt_ratio),
 234	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 235	fsparam_flag("skip_balance", Opt_skip_balance),
 236	fsparam_flag_no("space_cache", Opt_space_cache),
 237	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 238	fsparam_flag_no("ssd", Opt_ssd),
 239	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 240	fsparam_string("subvol", Opt_subvol),
 241	fsparam_flag("subvol=", Opt_subvol_empty),
 242	fsparam_u64("subvolid", Opt_subvolid),
 243	fsparam_u32("thread_pool", Opt_thread_pool),
 244	fsparam_flag_no("treelog", Opt_treelog),
 245	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 246
 247	/* Rescue options. */
 248	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 249	/* Deprecated, with alias rescue=nologreplay */
 250	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 251	/* Deprecated, with alias rescue=usebackuproot */
 252	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 253	/* For compatibility only, alias for "rescue=nologreplay". */
 254	fsparam_flag("norecovery", Opt_norecovery),
 255
 256	/* Debugging options. */
 257	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 258#ifdef CONFIG_BTRFS_DEBUG
 259	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 260#endif
 261#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 262	fsparam_flag("ref_verify", Opt_ref_verify),
 263#endif
 264	{}
 265};
 266
 267/* No support for restricting writes to btrfs devices yet... */
 268static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 269{
 270	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 271}
 272
 273static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 274{
 275	struct btrfs_fs_context *ctx = fc->fs_private;
 276	struct fs_parse_result result;
 277	int opt;
 278
 279	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 280	if (opt < 0)
 281		return opt;
 282
 283	switch (opt) {
 284	case Opt_degraded:
 285		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 286		break;
 287	case Opt_subvol_empty:
 288		/*
 289		 * This exists because we used to allow it on accident, so we're
 290		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 291		 * empty subvol= again").
 292		 */
 293		break;
 294	case Opt_subvol:
 295		kfree(ctx->subvol_name);
 296		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 297		if (!ctx->subvol_name)
 298			return -ENOMEM;
 299		break;
 300	case Opt_subvolid:
 301		ctx->subvol_objectid = result.uint_64;
 302
 303		/* subvolid=0 means give me the original fs_tree. */
 304		if (!ctx->subvol_objectid)
 305			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 306		break;
 307	case Opt_device: {
 308		struct btrfs_device *device;
 309		blk_mode_t mode = btrfs_open_mode(fc);
 310
 311		mutex_lock(&uuid_mutex);
 312		device = btrfs_scan_one_device(param->string, mode, false);
 313		mutex_unlock(&uuid_mutex);
 314		if (IS_ERR(device))
 315			return PTR_ERR(device);
 316		break;
 317	}
 318	case Opt_datasum:
 319		if (result.negated) {
 320			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 321		} else {
 322			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 323			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 324		}
 325		break;
 326	case Opt_datacow:
 327		if (result.negated) {
 328			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 329			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 330			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 331			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 332		} else {
 333			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 334		}
 335		break;
 336	case Opt_compress_force:
 337	case Opt_compress_force_type:
 338		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 339		fallthrough;
 340	case Opt_compress:
 341	case Opt_compress_type:
 342		/*
 343		 * Provide the same semantics as older kernels that don't use fs
 344		 * context, specifying the "compress" option clears
 345		 * "force-compress" without the need to pass
 346		 * "compress-force=[no|none]" before specifying "compress".
 347		 */
 348		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
 349			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 350
 351		if (opt == Opt_compress || opt == Opt_compress_force) {
 352			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 353			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 354			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 355			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 356			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 357		} else if (strncmp(param->string, "zlib", 4) == 0) {
 358			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 359			ctx->compress_level =
 360				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 361							 param->string + 4);
 362			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 363			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 364			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 365		} else if (strncmp(param->string, "lzo", 3) == 0) {
 366			ctx->compress_type = BTRFS_COMPRESS_LZO;
 367			ctx->compress_level = 0;
 368			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 369			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 370			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 371		} else if (strncmp(param->string, "zstd", 4) == 0) {
 372			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 373			ctx->compress_level =
 374				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 375							 param->string + 4);
 376			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 377			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 378			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 379		} else if (strncmp(param->string, "no", 2) == 0) {
 380			ctx->compress_level = 0;
 381			ctx->compress_type = 0;
 382			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 383			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 384		} else {
 385			btrfs_err(NULL, "unrecognized compression value %s",
 386				  param->string);
 387			return -EINVAL;
 388		}
 389		break;
 390	case Opt_ssd:
 391		if (result.negated) {
 392			btrfs_set_opt(ctx->mount_opt, NOSSD);
 393			btrfs_clear_opt(ctx->mount_opt, SSD);
 394			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 395		} else {
 396			btrfs_set_opt(ctx->mount_opt, SSD);
 397			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 398		}
 399		break;
 400	case Opt_ssd_spread:
 401		if (result.negated) {
 402			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 403		} else {
 404			btrfs_set_opt(ctx->mount_opt, SSD);
 405			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 406			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 407		}
 408		break;
 409	case Opt_barrier:
 410		if (result.negated)
 411			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 412		else
 413			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 414		break;
 415	case Opt_thread_pool:
 416		if (result.uint_32 == 0) {
 417			btrfs_err(NULL, "invalid value 0 for thread_pool");
 418			return -EINVAL;
 419		}
 420		ctx->thread_pool_size = result.uint_32;
 421		break;
 422	case Opt_max_inline:
 423		ctx->max_inline = memparse(param->string, NULL);
 424		break;
 425	case Opt_acl:
 426		if (result.negated) {
 427			fc->sb_flags &= ~SB_POSIXACL;
 428		} else {
 429#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 430			fc->sb_flags |= SB_POSIXACL;
 431#else
 432			btrfs_err(NULL, "support for ACL not compiled in");
 433			return -EINVAL;
 434#endif
 435		}
 436		/*
 437		 * VFS limits the ability to toggle ACL on and off via remount,
 438		 * despite every file system allowing this.  This seems to be
 439		 * an oversight since we all do, but it'll fail if we're
 440		 * remounting.  So don't set the mask here, we'll check it in
 441		 * btrfs_reconfigure and do the toggling ourselves.
 442		 */
 443		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 444			fc->sb_flags_mask |= SB_POSIXACL;
 445		break;
 446	case Opt_treelog:
 447		if (result.negated)
 448			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 449		else
 450			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 451		break;
 452	case Opt_nologreplay:
 453		btrfs_warn(NULL,
 454		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 455		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 456		break;
 457	case Opt_norecovery:
 458		btrfs_info(NULL,
 459"'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
 460		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 461		break;
 462	case Opt_flushoncommit:
 463		if (result.negated)
 464			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 465		else
 466			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 467		break;
 468	case Opt_ratio:
 469		ctx->metadata_ratio = result.uint_32;
 470		break;
 471	case Opt_discard:
 472		if (result.negated) {
 473			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 474			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 475			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 476		} else {
 477			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 478			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 479		}
 480		break;
 481	case Opt_discard_mode:
 482		switch (result.uint_32) {
 483		case Opt_discard_sync:
 484			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 485			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 486			break;
 487		case Opt_discard_async:
 488			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 489			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 490			break;
 491		default:
 492			btrfs_err(NULL, "unrecognized discard mode value %s",
 493				  param->key);
 494			return -EINVAL;
 495		}
 496		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 497		break;
 498	case Opt_space_cache:
 499		if (result.negated) {
 500			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 501			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 502			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 503		} else {
 504			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 505			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 506		}
 507		break;
 508	case Opt_space_cache_version:
 509		switch (result.uint_32) {
 510		case Opt_space_cache_v1:
 511			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 512			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 513			break;
 514		case Opt_space_cache_v2:
 515			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 516			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 517			break;
 518		default:
 519			btrfs_err(NULL, "unrecognized space_cache value %s",
 520				  param->key);
 521			return -EINVAL;
 522		}
 523		break;
 524	case Opt_rescan_uuid_tree:
 525		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 526		break;
 527	case Opt_clear_cache:
 528		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 529		break;
 530	case Opt_user_subvol_rm_allowed:
 531		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 532		break;
 533	case Opt_enospc_debug:
 534		if (result.negated)
 535			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 536		else
 537			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 538		break;
 539	case Opt_defrag:
 540		if (result.negated)
 541			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 542		else
 543			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 544		break;
 545	case Opt_usebackuproot:
 546		btrfs_warn(NULL,
 547			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 548		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 549
 550		/* If we're loading the backup roots we can't trust the space cache. */
 551		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 552		break;
 553	case Opt_skip_balance:
 554		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 555		break;
 556	case Opt_fatal_errors:
 557		switch (result.uint_32) {
 558		case Opt_fatal_errors_panic:
 559			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 560			break;
 561		case Opt_fatal_errors_bug:
 562			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 563			break;
 564		default:
 565			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 566				  param->key);
 567			return -EINVAL;
 568		}
 569		break;
 570	case Opt_commit_interval:
 571		ctx->commit_interval = result.uint_32;
 572		if (ctx->commit_interval == 0)
 573			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 574		break;
 575	case Opt_rescue:
 576		switch (result.uint_32) {
 577		case Opt_rescue_usebackuproot:
 578			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 579			break;
 580		case Opt_rescue_nologreplay:
 581			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 582			break;
 583		case Opt_rescue_ignorebadroots:
 584			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 585			break;
 586		case Opt_rescue_ignoredatacsums:
 587			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 588			break;
 589		case Opt_rescue_ignoremetacsums:
 590			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
 591			break;
 592		case Opt_rescue_ignoresuperflags:
 593			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
 594			break;
 595		case Opt_rescue_parameter_all:
 596			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 597			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
 598			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
 599			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 600			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 601			break;
 602		default:
 603			btrfs_info(NULL, "unrecognized rescue option '%s'",
 604				   param->key);
 605			return -EINVAL;
 606		}
 607		break;
 608#ifdef CONFIG_BTRFS_DEBUG
 609	case Opt_fragment:
 610		switch (result.uint_32) {
 611		case Opt_fragment_parameter_all:
 612			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 613			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 614			break;
 615		case Opt_fragment_parameter_metadata:
 616			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 617			break;
 618		case Opt_fragment_parameter_data:
 619			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 620			break;
 621		default:
 622			btrfs_info(NULL, "unrecognized fragment option '%s'",
 623				   param->key);
 624			return -EINVAL;
 625		}
 626		break;
 627#endif
 628#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 629	case Opt_ref_verify:
 630		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 631		break;
 632#endif
 633	default:
 634		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 635		return -EINVAL;
 636	}
 637
 638	return 0;
 639}
 640
 641/*
 642 * Some options only have meaning at mount time and shouldn't persist across
 643 * remounts, or be displayed. Clear these at the end of mount and remount code
 644 * paths.
 645 */
 646static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 647{
 648	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 649	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 650	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 
 
 651}
 652
 653static bool check_ro_option(const struct btrfs_fs_info *fs_info,
 654			    unsigned long long mount_opt, unsigned long long opt,
 655			    const char *opt_name)
 
 
 656{
 657	if (mount_opt & opt) {
 658		btrfs_err(fs_info, "%s must be used with ro mount option",
 659			  opt_name);
 660		return true;
 661	}
 662	return false;
 663}
 664
 665bool btrfs_check_options(const struct btrfs_fs_info *info,
 666			 unsigned long long *mount_opt,
 667			 unsigned long flags)
 668{
 669	bool ret = true;
 670
 671	if (!(flags & SB_RDONLY) &&
 672	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 673	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 674	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
 675	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
 676	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
 677		ret = false;
 678
 679	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 680	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 681	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 682		btrfs_err(info, "cannot disable free-space-tree");
 683		ret = false;
 684	}
 685	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 686	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 687		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 688		ret = false;
 689	}
 
 690
 691	if (btrfs_check_mountopts_zoned(info, mount_opt))
 692		ret = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693
 694	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 695		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
 696			btrfs_info(info, "disk space caching is enabled");
 697			btrfs_warn(info,
 698"space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
 699		}
 700		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 701			btrfs_info(info, "using free-space-tree");
 702	}
 703
 704	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705}
 706
 707/*
 708 * This is subtle, we only call this during open_ctree().  We need to pre-load
 709 * the mount options with the on-disk settings.  Before the new mount API took
 710 * effect we would do this on mount and remount.  With the new mount API we'll
 711 * only do this on the initial mount.
 
 
 
 
 712 *
 713 * This isn't a change in behavior, because we're using the current state of the
 714 * file system to set the current mount options.  If you mounted with special
 715 * options to disable these features and then remounted we wouldn't revert the
 716 * settings, because mounting without these features cleared the on-disk
 717 * settings, so this being called on re-mount is not needed.
 718 */
 719void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 720{
 721	if (fs_info->sectorsize < PAGE_SIZE) {
 722		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 723		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 724			btrfs_info(fs_info,
 725				   "forcing free space tree for sector size %u with page size %lu",
 726				   fs_info->sectorsize, PAGE_SIZE);
 727			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 728		}
 729	}
 730
 731	/*
 732	 * At this point our mount options are populated, so we only mess with
 733	 * these settings if we don't have any settings already.
 734	 */
 735	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 736		return;
 737
 738	if (btrfs_is_zoned(fs_info) &&
 739	    btrfs_free_space_cache_v1_active(fs_info)) {
 740		btrfs_info(fs_info, "zoned: clearing existing space cache");
 741		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 742		return;
 743	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744
 745	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 746		return;
 747
 748	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 749		return;
 750
 751	/*
 752	 * At this point we don't have explicit options set by the user, set
 753	 * them ourselves based on the state of the file system.
 754	 */
 755	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 756		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 757	else if (btrfs_free_space_cache_v1_active(fs_info))
 758		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 
 759}
 760
 761static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 762{
 763	if (!btrfs_test_opt(fs_info, NOSSD) &&
 764	    !fs_info->fs_devices->rotating)
 765		btrfs_set_opt(fs_info->mount_opt, SSD);
 766
 767	/*
 768	 * For devices supporting discard turn on discard=async automatically,
 769	 * unless it's already set or disabled. This could be turned off by
 770	 * nodiscard for the same mount.
 771	 *
 772	 * The zoned mode piggy backs on the discard functionality for
 773	 * resetting a zone. There is no reason to delay the zone reset as it is
 774	 * fast enough. So, do not enable async discard for zoned mode.
 775	 */
 776	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 777	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 778	      btrfs_test_opt(fs_info, NODISCARD)) &&
 779	    fs_info->fs_devices->discardable &&
 780	    !btrfs_is_zoned(fs_info))
 781		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 782}
 783
 784char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 785					  u64 subvol_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786{
 787	struct btrfs_root *root = fs_info->tree_root;
 788	struct btrfs_root *fs_root = NULL;
 789	struct btrfs_root_ref *root_ref;
 790	struct btrfs_inode_ref *inode_ref;
 791	struct btrfs_key key;
 792	struct btrfs_path *path = NULL;
 793	char *name = NULL, *ptr;
 794	u64 dirid;
 795	int len;
 796	int ret;
 797
 798	path = btrfs_alloc_path();
 799	if (!path) {
 800		ret = -ENOMEM;
 801		goto err;
 802	}
 803
 804	name = kmalloc(PATH_MAX, GFP_KERNEL);
 805	if (!name) {
 806		ret = -ENOMEM;
 807		goto err;
 808	}
 809	ptr = name + PATH_MAX - 1;
 810	ptr[0] = '\0';
 811
 812	/*
 813	 * Walk up the subvolume trees in the tree of tree roots by root
 814	 * backrefs until we hit the top-level subvolume.
 815	 */
 816	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 817		key.objectid = subvol_objectid;
 818		key.type = BTRFS_ROOT_BACKREF_KEY;
 819		key.offset = (u64)-1;
 820
 821		ret = btrfs_search_backwards(root, &key, path);
 822		if (ret < 0) {
 823			goto err;
 824		} else if (ret > 0) {
 825			ret = -ENOENT;
 826			goto err;
 827		}
 828
 829		subvol_objectid = key.offset;
 830
 831		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 832					  struct btrfs_root_ref);
 833		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 834		ptr -= len + 1;
 835		if (ptr < name) {
 836			ret = -ENAMETOOLONG;
 837			goto err;
 838		}
 839		read_extent_buffer(path->nodes[0], ptr + 1,
 840				   (unsigned long)(root_ref + 1), len);
 841		ptr[0] = '/';
 842		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 843		btrfs_release_path(path);
 844
 845		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 846		if (IS_ERR(fs_root)) {
 847			ret = PTR_ERR(fs_root);
 848			fs_root = NULL;
 849			goto err;
 850		}
 851
 852		/*
 853		 * Walk up the filesystem tree by inode refs until we hit the
 854		 * root directory.
 855		 */
 856		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 857			key.objectid = dirid;
 858			key.type = BTRFS_INODE_REF_KEY;
 859			key.offset = (u64)-1;
 860
 861			ret = btrfs_search_backwards(fs_root, &key, path);
 862			if (ret < 0) {
 863				goto err;
 864			} else if (ret > 0) {
 865				ret = -ENOENT;
 866				goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867			}
 868
 869			dirid = key.offset;
 870
 871			inode_ref = btrfs_item_ptr(path->nodes[0],
 872						   path->slots[0],
 873						   struct btrfs_inode_ref);
 874			len = btrfs_inode_ref_name_len(path->nodes[0],
 875						       inode_ref);
 876			ptr -= len + 1;
 877			if (ptr < name) {
 878				ret = -ENAMETOOLONG;
 879				goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880			}
 881			read_extent_buffer(path->nodes[0], ptr + 1,
 882					   (unsigned long)(inode_ref + 1), len);
 883			ptr[0] = '/';
 884			btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885		}
 886		btrfs_put_root(fs_root);
 887		fs_root = NULL;
 888	}
 
 
 
 
 
 
 889
 890	btrfs_free_path(path);
 891	if (ptr == name + PATH_MAX - 1) {
 892		name[0] = '/';
 893		name[1] = '\0';
 894	} else {
 895		memmove(name, ptr, name + PATH_MAX - ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896	}
 897	return name;
 898
 899err:
 900	btrfs_put_root(fs_root);
 901	btrfs_free_path(path);
 902	kfree(name);
 903	return ERR_PTR(ret);
 904}
 905
 906static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 
 907{
 
 908	struct btrfs_root *root = fs_info->tree_root;
 
 909	struct btrfs_dir_item *di;
 910	struct btrfs_path *path;
 911	struct btrfs_key location;
 912	struct fscrypt_str name = FSTR_INIT("default", 7);
 913	u64 dir_id;
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915	path = btrfs_alloc_path();
 916	if (!path)
 917		return -ENOMEM;
 
 918
 919	/*
 920	 * Find the "default" dir item which points to the root item that we
 921	 * will mount by default if we haven't been given a specific subvolume
 922	 * to mount.
 923	 */
 924	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 925	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 926	if (IS_ERR(di)) {
 927		btrfs_free_path(path);
 928		return PTR_ERR(di);
 929	}
 930	if (!di) {
 931		/*
 932		 * Ok the default dir item isn't there.  This is weird since
 933		 * it's always been there, but don't freak out, just try and
 934		 * mount the top-level subvolume.
 935		 */
 936		btrfs_free_path(path);
 937		*objectid = BTRFS_FS_TREE_OBJECTID;
 938		return 0;
 
 939	}
 940
 941	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 942	btrfs_free_path(path);
 943	*objectid = location.objectid;
 944	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945}
 946
 947static int btrfs_fill_super(struct super_block *sb,
 948			    struct btrfs_fs_devices *fs_devices)
 
 949{
 950	struct inode *inode;
 951	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 952	int err;
 953
 954	sb->s_maxbytes = MAX_LFS_FILESIZE;
 955	sb->s_magic = BTRFS_SUPER_MAGIC;
 956	sb->s_op = &btrfs_super_ops;
 957	sb->s_d_op = &btrfs_dentry_operations;
 958	sb->s_export_op = &btrfs_export_ops;
 959#ifdef CONFIG_FS_VERITY
 960	sb->s_vop = &btrfs_verityops;
 961#endif
 962	sb->s_xattr = btrfs_xattr_handlers;
 963	sb->s_time_gran = 1;
 964	sb->s_iflags |= SB_I_CGROUPWB;
 965
 966	err = super_setup_bdi(sb);
 967	if (err) {
 968		btrfs_err(fs_info, "super_setup_bdi failed");
 969		return err;
 970	}
 971
 972	err = open_ctree(sb, fs_devices);
 973	if (err) {
 974		btrfs_err(fs_info, "open_ctree failed: %d", err);
 975		return err;
 976	}
 977
 978	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
 979	if (IS_ERR(inode)) {
 980		err = PTR_ERR(inode);
 981		btrfs_handle_fs_error(fs_info, err, NULL);
 982		goto fail_close;
 983	}
 984
 985	sb->s_root = d_make_root(inode);
 986	if (!sb->s_root) {
 987		err = -ENOMEM;
 988		goto fail_close;
 989	}
 990
 991	sb->s_flags |= SB_ACTIVE;
 
 
 992	return 0;
 993
 994fail_close:
 995	close_ctree(fs_info);
 996	return err;
 997}
 998
 999int btrfs_sync_fs(struct super_block *sb, int wait)
1000{
1001	struct btrfs_trans_handle *trans;
1002	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1003	struct btrfs_root *root = fs_info->tree_root;
 
1004
1005	trace_btrfs_sync_fs(fs_info, wait);
1006
1007	if (!wait) {
1008		filemap_flush(fs_info->btree_inode->i_mapping);
1009		return 0;
1010	}
1011
1012	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1013
1014	trans = btrfs_attach_transaction_barrier(root);
1015	if (IS_ERR(trans)) {
1016		/* no transaction, don't bother */
1017		if (PTR_ERR(trans) == -ENOENT) {
1018			/*
1019			 * Exit unless we have some pending changes
1020			 * that need to go through commit
1021			 */
1022			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1023				      &fs_info->flags))
1024				return 0;
1025			/*
1026			 * A non-blocking test if the fs is frozen. We must not
1027			 * start a new transaction here otherwise a deadlock
1028			 * happens. The pending operations are delayed to the
1029			 * next commit after thawing.
1030			 */
1031			if (sb_start_write_trylock(sb))
1032				sb_end_write(sb);
1033			else
1034				return 0;
1035			trans = btrfs_start_transaction(root, 0);
1036		}
1037		if (IS_ERR(trans))
1038			return PTR_ERR(trans);
1039	}
1040	return btrfs_commit_transaction(trans);
1041}
1042
1043static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1044{
1045	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1046	*printed = true;
 
1047}
1048
1049static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1050{
1051	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1052	const char *compress_type;
1053	const char *subvol_name;
1054	bool printed = false;
1055
1056	if (btrfs_test_opt(info, DEGRADED))
1057		seq_puts(seq, ",degraded");
1058	if (btrfs_test_opt(info, NODATASUM))
1059		seq_puts(seq, ",nodatasum");
1060	if (btrfs_test_opt(info, NODATACOW))
1061		seq_puts(seq, ",nodatacow");
1062	if (btrfs_test_opt(info, NOBARRIER))
1063		seq_puts(seq, ",nobarrier");
1064	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1065		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
 
 
 
1066	if (info->thread_pool_size !=  min_t(unsigned long,
1067					     num_online_cpus() + 2, 8))
1068		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1069	if (btrfs_test_opt(info, COMPRESS)) {
1070		compress_type = btrfs_compress_type2str(info->compress_type);
1071		if (btrfs_test_opt(info, FORCE_COMPRESS))
 
 
 
1072			seq_printf(seq, ",compress-force=%s", compress_type);
1073		else
1074			seq_printf(seq, ",compress=%s", compress_type);
1075		if (info->compress_level)
1076			seq_printf(seq, ":%d", info->compress_level);
1077	}
1078	if (btrfs_test_opt(info, NOSSD))
1079		seq_puts(seq, ",nossd");
1080	if (btrfs_test_opt(info, SSD_SPREAD))
1081		seq_puts(seq, ",ssd_spread");
1082	else if (btrfs_test_opt(info, SSD))
1083		seq_puts(seq, ",ssd");
1084	if (btrfs_test_opt(info, NOTREELOG))
1085		seq_puts(seq, ",notreelog");
1086	if (btrfs_test_opt(info, NOLOGREPLAY))
1087		print_rescue_option(seq, "nologreplay", &printed);
1088	if (btrfs_test_opt(info, USEBACKUPROOT))
1089		print_rescue_option(seq, "usebackuproot", &printed);
1090	if (btrfs_test_opt(info, IGNOREBADROOTS))
1091		print_rescue_option(seq, "ignorebadroots", &printed);
1092	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1093		print_rescue_option(seq, "ignoredatacsums", &printed);
1094	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1095		print_rescue_option(seq, "ignoremetacsums", &printed);
1096	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1097		print_rescue_option(seq, "ignoresuperflags", &printed);
1098	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1099		seq_puts(seq, ",flushoncommit");
1100	if (btrfs_test_opt(info, DISCARD_SYNC))
1101		seq_puts(seq, ",discard");
1102	if (btrfs_test_opt(info, DISCARD_ASYNC))
1103		seq_puts(seq, ",discard=async");
1104	if (!(info->sb->s_flags & SB_POSIXACL))
1105		seq_puts(seq, ",noacl");
1106	if (btrfs_free_space_cache_v1_active(info))
1107		seq_puts(seq, ",space_cache");
1108	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1109		seq_puts(seq, ",space_cache=v2");
1110	else
1111		seq_puts(seq, ",nospace_cache");
1112	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1113		seq_puts(seq, ",rescan_uuid_tree");
1114	if (btrfs_test_opt(info, CLEAR_CACHE))
1115		seq_puts(seq, ",clear_cache");
1116	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1117		seq_puts(seq, ",user_subvol_rm_allowed");
1118	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1119		seq_puts(seq, ",enospc_debug");
1120	if (btrfs_test_opt(info, AUTO_DEFRAG))
1121		seq_puts(seq, ",autodefrag");
1122	if (btrfs_test_opt(info, SKIP_BALANCE))
 
 
1123		seq_puts(seq, ",skip_balance");
1124	if (info->metadata_ratio)
1125		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1126	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1127		seq_puts(seq, ",fatal_errors=panic");
1128	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1129		seq_printf(seq, ",commit=%u", info->commit_interval);
1130#ifdef CONFIG_BTRFS_DEBUG
1131	if (btrfs_test_opt(info, FRAGMENT_DATA))
1132		seq_puts(seq, ",fragment=data");
1133	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1134		seq_puts(seq, ",fragment=metadata");
1135#endif
1136	if (btrfs_test_opt(info, REF_VERIFY))
1137		seq_puts(seq, ",ref_verify");
1138	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1139	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1140			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1141	if (!IS_ERR(subvol_name)) {
1142		seq_puts(seq, ",subvol=");
1143		seq_escape(seq, subvol_name, " \t\n\\");
1144		kfree(subvol_name);
1145	}
1146	return 0;
1147}
1148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149/*
1150 * subvolumes are identified by ino 256
1151 */
1152static inline int is_subvolume_inode(struct inode *inode)
1153{
1154	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1155		return 1;
1156	return 0;
1157}
1158
1159static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1160				   struct vfsmount *mnt)
 
 
 
 
1161{
1162	struct dentry *root;
1163	int ret;
1164
1165	if (!subvol_name) {
1166		if (!subvol_objectid) {
1167			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1168							  &subvol_objectid);
1169			if (ret) {
1170				root = ERR_PTR(ret);
1171				goto out;
1172			}
1173		}
1174		subvol_name = btrfs_get_subvol_name_from_objectid(
1175					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1176		if (IS_ERR(subvol_name)) {
1177			root = ERR_CAST(subvol_name);
1178			subvol_name = NULL;
1179			goto out;
1180		}
1181
1182	}
 
 
 
1183
1184	root = mount_subtree(mnt, subvol_name);
1185	/* mount_subtree() drops our reference on the vfsmount. */
1186	mnt = NULL;
1187
1188	if (!IS_ERR(root)) {
1189		struct super_block *s = root->d_sb;
1190		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1191		struct inode *root_inode = d_inode(root);
1192		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1193
1194		ret = 0;
1195		if (!is_subvolume_inode(root_inode)) {
1196			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1197			       subvol_name);
1198			ret = -EINVAL;
1199		}
1200		if (subvol_objectid && root_objectid != subvol_objectid) {
1201			/*
1202			 * This will also catch a race condition where a
1203			 * subvolume which was passed by ID is renamed and
1204			 * another subvolume is renamed over the old location.
1205			 */
1206			btrfs_err(fs_info,
1207				  "subvol '%s' does not match subvolid %llu",
1208				  subvol_name, subvol_objectid);
1209			ret = -EINVAL;
1210		}
1211		if (ret) {
1212			dput(root);
1213			root = ERR_PTR(ret);
1214			deactivate_locked_super(s);
1215		}
1216	}
1217
1218out:
1219	mntput(mnt);
1220	kfree(subvol_name);
1221	return root;
 
 
 
 
 
 
 
 
1222}
1223
1224static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1225				     u32 new_pool_size, u32 old_pool_size)
1226{
1227	if (new_pool_size == old_pool_size)
1228		return;
 
1229
1230	fs_info->thread_pool_size = new_pool_size;
 
 
 
 
 
 
 
1231
1232	btrfs_info(fs_info, "resize thread pool %d -> %d",
1233	       old_pool_size, new_pool_size);
1234
1235	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1236	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1237	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1238	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1239	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1240	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1241	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1242	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1243}
1244
1245static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1246				       unsigned long long old_opts, int flags)
1247{
1248	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1249	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1250	     (flags & SB_RDONLY))) {
1251		/* wait for any defraggers to finish */
1252		wait_event(fs_info->transaction_wait,
1253			   (atomic_read(&fs_info->defrag_running) == 0));
1254		if (flags & SB_RDONLY)
1255			sync_filesystem(fs_info->sb);
1256	}
 
 
1257}
1258
1259static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1260					 unsigned long long old_opts)
 
 
 
 
 
 
1261{
1262	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264	/*
1265	 * We need to cleanup all defragable inodes if the autodefragment is
1266	 * close or the filesystem is read only.
1267	 */
1268	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1269	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1270		btrfs_cleanup_defrag_inodes(fs_info);
1271	}
1272
1273	/* If we toggled discard async */
1274	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1275	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1276		btrfs_discard_resume(fs_info);
1277	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1278		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1279		btrfs_discard_cleanup(fs_info);
1280
1281	/* If we toggled space cache */
1282	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1283		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1284}
 
 
 
 
 
1285
1286static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1287{
1288	int ret;
1289
1290	if (BTRFS_FS_ERROR(fs_info)) {
1291		btrfs_err(fs_info,
1292			  "remounting read-write after error is not allowed");
1293		return -EINVAL;
 
1294	}
1295
1296	if (fs_info->fs_devices->rw_devices == 0)
1297		return -EACCES;
 
1298
1299	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1300		btrfs_warn(fs_info,
1301			   "too many missing devices, writable remount is not allowed");
1302		return -EACCES;
1303	}
1304
1305	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1306		btrfs_warn(fs_info,
1307			   "mount required to replay tree-log, cannot remount read-write");
1308		return -EINVAL;
 
1309	}
1310
1311	/*
1312	 * NOTE: when remounting with a change that does writes, don't put it
1313	 * anywhere above this point, as we are not sure to be safe to write
1314	 * until we pass the above checks.
1315	 */
1316	ret = btrfs_start_pre_rw_mount(fs_info);
1317	if (ret)
1318		return ret;
1319
1320	btrfs_clear_sb_rdonly(fs_info->sb);
 
 
 
 
 
1321
1322	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 
 
1323
1324	/*
1325	 * If we've gone from readonly -> read-write, we need to get our
1326	 * sync/async discard lists in the right state.
1327	 */
1328	btrfs_discard_resume(fs_info);
1329
1330	return 0;
 
 
 
 
1331}
1332
1333static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1334{
1335	/*
1336	 * This also happens on 'umount -rf' or on shutdown, when the
1337	 * filesystem is busy.
1338	 */
1339	cancel_work_sync(&fs_info->async_reclaim_work);
1340	cancel_work_sync(&fs_info->async_data_reclaim_work);
1341
1342	btrfs_discard_cleanup(fs_info);
1343
1344	/* Wait for the uuid_scan task to finish */
1345	down(&fs_info->uuid_tree_rescan_sem);
1346	/* Avoid complains from lockdep et al. */
1347	up(&fs_info->uuid_tree_rescan_sem);
1348
1349	btrfs_set_sb_rdonly(fs_info->sb);
1350
1351	/*
1352	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1353	 * loop if it's already active.  If it's already asleep, we'll leave
1354	 * unused block groups on disk until we're mounted read-write again
1355	 * unless we clean them up here.
1356	 */
1357	btrfs_delete_unused_bgs(fs_info);
1358
1359	/*
1360	 * The cleaner task could be already running before we set the flag
1361	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1362	 * sure that after we finish the remount, i.e. after we call
1363	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1364	 * - either because it was dropping a dead root, running delayed iputs
1365	 *   or deleting an unused block group (the cleaner picked a block
1366	 *   group from the list of unused block groups before we were able to
1367	 *   in the previous call to btrfs_delete_unused_bgs()).
1368	 */
1369	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1370
1371	/*
1372	 * We've set the superblock to RO mode, so we might have made the
1373	 * cleaner task sleep without running all pending delayed iputs. Go
1374	 * through all the delayed iputs here, so that if an unmount happens
1375	 * without remounting RW we don't end up at finishing close_ctree()
1376	 * with a non-empty list of delayed iputs.
1377	 */
1378	btrfs_run_delayed_iputs(fs_info);
1379
1380	btrfs_dev_replace_suspend_for_unmount(fs_info);
1381	btrfs_scrub_cancel(fs_info);
1382	btrfs_pause_balance(fs_info);
1383
1384	/*
1385	 * Pause the qgroup rescan worker if it is running. We don't want it to
1386	 * be still running after we are in RO mode, as after that, by the time
1387	 * we unmount, it might have left a transaction open, so we would leak
1388	 * the transaction and/or crash.
1389	 */
1390	btrfs_qgroup_wait_for_completion(fs_info, false);
1391
1392	return btrfs_commit_super(fs_info);
1393}
1394
1395static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
 
1396{
1397	fs_info->max_inline = ctx->max_inline;
1398	fs_info->commit_interval = ctx->commit_interval;
1399	fs_info->metadata_ratio = ctx->metadata_ratio;
1400	fs_info->thread_pool_size = ctx->thread_pool_size;
1401	fs_info->mount_opt = ctx->mount_opt;
1402	fs_info->compress_type = ctx->compress_type;
1403	fs_info->compress_level = ctx->compress_level;
1404}
1405
1406static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1407{
1408	ctx->max_inline = fs_info->max_inline;
1409	ctx->commit_interval = fs_info->commit_interval;
1410	ctx->metadata_ratio = fs_info->metadata_ratio;
1411	ctx->thread_pool_size = fs_info->thread_pool_size;
1412	ctx->mount_opt = fs_info->mount_opt;
1413	ctx->compress_type = fs_info->compress_type;
1414	ctx->compress_level = fs_info->compress_level;
1415}
1416
1417#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1418do {										\
1419	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1420	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1421		btrfs_info(fs_info, fmt, ##args);				\
1422} while (0)
1423
1424#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1425do {									\
1426	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1427	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1428		btrfs_info(fs_info, fmt, ##args);			\
1429} while (0)
1430
1431static void btrfs_emit_options(struct btrfs_fs_info *info,
1432			       struct btrfs_fs_context *old)
1433{
1434	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1435	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1436	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1437	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1438	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1439	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1440	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1441	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1442	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1443	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1444	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1445	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1446	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1447	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1448	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1449	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1450	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1451	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1452	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1453	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1454	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1455	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1456	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1457
1458	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1459	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1460	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1461	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1462	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1463	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1464	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1465	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1466	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1467
1468	/* Did the compression settings change? */
1469	if (btrfs_test_opt(info, COMPRESS) &&
1470	    (!old ||
1471	     old->compress_type != info->compress_type ||
1472	     old->compress_level != info->compress_level ||
1473	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1474	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1475		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1476
1477		btrfs_info(info, "%s %s compression, level %d",
1478			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1479			   compress_type, info->compress_level);
1480	}
1481
1482	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1483		btrfs_info(info, "max_inline set to %llu", info->max_inline);
 
 
 
 
 
 
 
 
 
 
 
 
1484}
1485
1486static int btrfs_reconfigure(struct fs_context *fc)
1487{
1488	struct super_block *sb = fc->root->d_sb;
1489	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1490	struct btrfs_fs_context *ctx = fc->fs_private;
1491	struct btrfs_fs_context old_ctx;
1492	int ret = 0;
1493	bool mount_reconfigure = (fc->s_fs_info != NULL);
1494
1495	btrfs_info_to_ctx(fs_info, &old_ctx);
 
 
 
1496
1497	/*
1498	 * This is our "bind mount" trick, we don't want to allow the user to do
1499	 * anything other than mount a different ro/rw and a different subvol,
1500	 * all of the mount options should be maintained.
1501	 */
1502	if (mount_reconfigure)
1503		ctx->mount_opt = old_ctx.mount_opt;
1504
1505	sync_filesystem(sb);
1506	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1507
1508	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1509		return -EINVAL;
1510
1511	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1512	if (ret < 0)
1513		return ret;
1514
1515	btrfs_ctx_to_info(fs_info, ctx);
1516	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1517	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1518				 old_ctx.thread_pool_size);
1519
1520	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1521	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1522	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1523		btrfs_warn(fs_info,
1524		"remount supports changing free space tree only from RO to RW");
1525		/* Make sure free space cache options match the state on disk. */
1526		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1527			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1528			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1529		}
1530		if (btrfs_free_space_cache_v1_active(fs_info)) {
1531			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1532			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 
1533		}
1534	}
1535
1536	ret = 0;
1537	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1538		ret = btrfs_remount_ro(fs_info);
1539	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1540		ret = btrfs_remount_rw(fs_info);
1541	if (ret)
1542		goto restore;
1543
1544	/*
1545	 * If we set the mask during the parameter parsing VFS would reject the
1546	 * remount.  Here we can set the mask and the value will be updated
1547	 * appropriately.
1548	 */
1549	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1550		fc->sb_flags_mask |= SB_POSIXACL;
 
1551
1552	btrfs_emit_options(fs_info, &old_ctx);
1553	wake_up_process(fs_info->transaction_kthread);
1554	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1555	btrfs_clear_oneshot_options(fs_info);
1556	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1557
1558	return 0;
 
1559restore:
1560	btrfs_ctx_to_info(fs_info, &old_ctx);
1561	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1562	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
 
 
1563	return ret;
1564}
1565
1566/* Used to sort the devices by max_avail(descending sort) */
1567static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
 
1568{
1569	const struct btrfs_device_info *dev_info1 = a;
1570	const struct btrfs_device_info *dev_info2 = b;
1571
1572	if (dev_info1->max_avail > dev_info2->max_avail)
1573		return -1;
1574	else if (dev_info1->max_avail < dev_info2->max_avail)
 
1575		return 1;
 
1576	return 0;
1577}
1578
1579/*
1580 * sort the devices by max_avail, in which max free extent size of each device
1581 * is stored.(Descending Sort)
1582 */
1583static inline void btrfs_descending_sort_devices(
1584					struct btrfs_device_info *devices,
1585					size_t nr_devices)
1586{
1587	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1588	     btrfs_cmp_device_free_bytes, NULL);
1589}
1590
1591/*
1592 * The helper to calc the free space on the devices that can be used to store
1593 * file data.
1594 */
1595static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1596					      u64 *free_bytes)
1597{
 
1598	struct btrfs_device_info *devices_info;
1599	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1600	struct btrfs_device *device;
 
1601	u64 type;
1602	u64 avail_space;
 
1603	u64 min_stripe_size;
1604	int num_stripes = 1;
1605	int i = 0, nr_devices;
1606	const struct btrfs_raid_attr *rattr;
1607
1608	/*
1609	 * We aren't under the device list lock, so this is racy-ish, but good
1610	 * enough for our purposes.
1611	 */
1612	nr_devices = fs_info->fs_devices->open_devices;
1613	if (!nr_devices) {
1614		smp_mb();
1615		nr_devices = fs_info->fs_devices->open_devices;
1616		ASSERT(nr_devices);
1617		if (!nr_devices) {
1618			*free_bytes = 0;
1619			return 0;
1620		}
1621	}
1622
1623	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1624			       GFP_KERNEL);
1625	if (!devices_info)
1626		return -ENOMEM;
1627
1628	/* calc min stripe number for data space allocation */
1629	type = btrfs_data_alloc_profile(fs_info);
1630	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1631
1632	if (type & BTRFS_BLOCK_GROUP_RAID0)
1633		num_stripes = nr_devices;
1634	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1635		num_stripes = rattr->ncopies;
1636	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 
 
1637		num_stripes = 4;
 
1638
1639	/* Adjust for more than 1 stripe per device */
1640	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
 
 
1641
1642	rcu_read_lock();
1643	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1644		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1645						&device->dev_state) ||
1646		    !device->bdev ||
1647		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1648			continue;
1649
1650		if (i >= nr_devices)
1651			break;
1652
1653		avail_space = device->total_bytes - device->bytes_used;
1654
1655		/* align with stripe_len */
1656		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
 
1657
1658		/*
1659		 * Ensure we have at least min_stripe_size on top of the
1660		 * reserved space on the device.
 
1661		 */
1662		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1663			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
1665		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
 
1666
1667		devices_info[i].dev = device;
1668		devices_info[i].max_avail = avail_space;
1669
1670		i++;
1671	}
1672	rcu_read_unlock();
1673
1674	nr_devices = i;
1675
1676	btrfs_descending_sort_devices(devices_info, nr_devices);
1677
1678	i = nr_devices - 1;
1679	avail_space = 0;
1680	while (nr_devices >= rattr->devs_min) {
1681		num_stripes = min(num_stripes, nr_devices);
 
1682
1683		if (devices_info[i].max_avail >= min_stripe_size) {
1684			int j;
1685			u64 alloc_size;
1686
1687			avail_space += devices_info[i].max_avail * num_stripes;
1688			alloc_size = devices_info[i].max_avail;
1689			for (j = i + 1 - num_stripes; j <= i; j++)
1690				devices_info[j].max_avail -= alloc_size;
1691		}
1692		i--;
1693		nr_devices--;
1694	}
1695
1696	kfree(devices_info);
1697	*free_bytes = avail_space;
1698	return 0;
1699}
1700
1701/*
1702 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1703 *
1704 * If there's a redundant raid level at DATA block groups, use the respective
1705 * multiplier to scale the sizes.
1706 *
1707 * Unused device space usage is based on simulating the chunk allocator
1708 * algorithm that respects the device sizes and order of allocations.  This is
1709 * a close approximation of the actual use but there are other factors that may
1710 * change the result (like a new metadata chunk).
1711 *
1712 * If metadata is exhausted, f_bavail will be 0.
1713 */
1714static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1715{
1716	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1717	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
1718	struct btrfs_space_info *found;
1719	u64 total_used = 0;
1720	u64 total_free_data = 0;
1721	u64 total_free_meta = 0;
1722	u32 bits = fs_info->sectorsize_bits;
1723	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1724	unsigned factor = 1;
1725	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1726	int ret;
1727	u64 thresh = 0;
1728	int mixed = 0;
1729
1730	list_for_each_entry(found, &fs_info->space_info, list) {
 
 
 
1731		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1732			int i;
1733
1734			total_free_data += found->disk_total - found->disk_used;
1735			total_free_data -=
1736				btrfs_account_ro_block_groups_free_space(found);
1737
1738			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1739				if (!list_empty(&found->block_groups[i]))
1740					factor = btrfs_bg_type_to_factor(
1741						btrfs_raid_array[i].bg_flag);
1742			}
1743		}
1744
1745		/*
1746		 * Metadata in mixed block group profiles are accounted in data
1747		 */
1748		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1749			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1750				mixed = 1;
1751			else
1752				total_free_meta += found->disk_total -
1753					found->disk_used;
1754		}
1755
1756		total_used += found->disk_used;
1757	}
 
1758
1759	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1760	buf->f_blocks >>= bits;
1761	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1762
1763	/* Account global block reserve as used, it's in logical size already */
1764	spin_lock(&block_rsv->lock);
1765	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1766	if (buf->f_bfree >= block_rsv->size >> bits)
1767		buf->f_bfree -= block_rsv->size >> bits;
1768	else
1769		buf->f_bfree = 0;
1770	spin_unlock(&block_rsv->lock);
1771
1772	buf->f_bavail = div_u64(total_free_data, factor);
1773	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1774	if (ret)
1775		return ret;
1776	buf->f_bavail += div_u64(total_free_data, factor);
 
1777	buf->f_bavail = buf->f_bavail >> bits;
1778
1779	/*
1780	 * We calculate the remaining metadata space minus global reserve. If
1781	 * this is (supposedly) smaller than zero, there's no space. But this
1782	 * does not hold in practice, the exhausted state happens where's still
1783	 * some positive delta. So we apply some guesswork and compare the
1784	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1785	 *
1786	 * We probably cannot calculate the exact threshold value because this
1787	 * depends on the internal reservations requested by various
1788	 * operations, so some operations that consume a few metadata will
1789	 * succeed even if the Avail is zero. But this is better than the other
1790	 * way around.
1791	 */
1792	thresh = SZ_4M;
1793
1794	/*
1795	 * We only want to claim there's no available space if we can no longer
1796	 * allocate chunks for our metadata profile and our global reserve will
1797	 * not fit in the free metadata space.  If we aren't ->full then we
1798	 * still can allocate chunks and thus are fine using the currently
1799	 * calculated f_bavail.
1800	 */
1801	if (!mixed && block_rsv->space_info->full &&
1802	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1803		buf->f_bavail = 0;
1804
1805	buf->f_type = BTRFS_SUPER_MAGIC;
1806	buf->f_bsize = fs_info->sectorsize;
1807	buf->f_namelen = BTRFS_NAME_LEN;
1808
1809	/* We treat it as constant endianness (it doesn't matter _which_)
1810	   because we want the fsid to come out the same whether mounted
1811	   on a big-endian or little-endian host */
1812	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1813	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1814	/* Mask in the root object ID too, to disambiguate subvols */
1815	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1816	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1817
1818	return 0;
1819}
1820
1821static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1822{
1823	struct btrfs_fs_info *p = fc->s_fs_info;
1824	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1825
1826	return fs_info->fs_devices == p->fs_devices;
1827}
1828
1829static int btrfs_get_tree_super(struct fs_context *fc)
1830{
1831	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1832	struct btrfs_fs_context *ctx = fc->fs_private;
1833	struct btrfs_fs_devices *fs_devices = NULL;
1834	struct block_device *bdev;
1835	struct btrfs_device *device;
1836	struct super_block *sb;
1837	blk_mode_t mode = btrfs_open_mode(fc);
1838	int ret;
1839
1840	btrfs_ctx_to_info(fs_info, ctx);
1841	mutex_lock(&uuid_mutex);
1842
1843	/*
1844	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1845	 * either a valid device or an error.
1846	 */
1847	device = btrfs_scan_one_device(fc->source, mode, true);
1848	ASSERT(device != NULL);
1849	if (IS_ERR(device)) {
1850		mutex_unlock(&uuid_mutex);
1851		return PTR_ERR(device);
1852	}
1853
1854	fs_devices = device->fs_devices;
1855	fs_info->fs_devices = fs_devices;
1856
1857	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1858	mutex_unlock(&uuid_mutex);
1859	if (ret)
1860		return ret;
1861
1862	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1863		ret = -EACCES;
1864		goto error;
1865	}
1866
1867	bdev = fs_devices->latest_dev->bdev;
1868
1869	/*
1870	 * From now on the error handling is not straightforward.
1871	 *
1872	 * If successful, this will transfer the fs_info into the super block,
1873	 * and fc->s_fs_info will be NULL.  However if there's an existing
1874	 * super, we'll still have fc->s_fs_info populated.  If we error
1875	 * completely out it'll be cleaned up when we drop the fs_context,
1876	 * otherwise it's tied to the lifetime of the super_block.
1877	 */
1878	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1879	if (IS_ERR(sb)) {
1880		ret = PTR_ERR(sb);
1881		goto error;
1882	}
1883
1884	set_device_specific_options(fs_info);
1885
1886	if (sb->s_root) {
1887		btrfs_close_devices(fs_devices);
1888		/*
1889		 * At this stage we may have RO flag mismatch between
1890		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1891		 * mismatch and reconfigure with sb->s_umount rwsem held if
1892		 * needed.
1893		 */
1894	} else {
1895		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1896		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1897		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1898		ret = btrfs_fill_super(sb, fs_devices);
1899		if (ret) {
1900			deactivate_locked_super(sb);
1901			return ret;
1902		}
1903	}
1904
1905	btrfs_clear_oneshot_options(fs_info);
1906
1907	fc->root = dget(sb->s_root);
1908	return 0;
1909
1910error:
1911	btrfs_close_devices(fs_devices);
1912	return ret;
1913}
1914
1915/*
1916 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1917 * with different ro/rw options") the following works:
1918 *
1919 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1920 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1921 *
1922 * which looks nice and innocent but is actually pretty intricate and deserves
1923 * a long comment.
1924 *
1925 * On another filesystem a subvolume mount is close to something like:
1926 *
1927 *	(iii) # create rw superblock + initial mount
1928 *	      mount -t xfs /dev/sdb /opt/
1929 *
1930 *	      # create ro bind mount
1931 *	      mount --bind -o ro /opt/foo /mnt/foo
1932 *
1933 *	      # unmount initial mount
1934 *	      umount /opt
1935 *
1936 * Of course, there's some special subvolume sauce and there's the fact that the
1937 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1938 * it's very close and will help us understand the issue.
1939 *
1940 * The old mount API didn't cleanly distinguish between a mount being made ro
1941 * and a superblock being made ro.  The only way to change the ro state of
1942 * either object was by passing ms_rdonly. If a new mount was created via
1943 * mount(2) such as:
1944 *
1945 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1946 *
1947 * the MS_RDONLY flag being specified had two effects:
1948 *
1949 * (1) MNT_READONLY was raised -> the resulting mount got
1950 *     @mnt->mnt_flags |= MNT_READONLY raised.
1951 *
1952 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1953 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1954 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1955 *
1956 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1957 * subtree mounted ro.
1958 *
1959 * But consider the effect on the old mount API on btrfs subvolume mounting
1960 * which combines the distinct step in (iii) into a single step.
1961 *
1962 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1963 * is issued the superblock is ro and thus even if the mount created for (ii) is
1964 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1965 * to rw for (ii) which it did using an internal remount call.
1966 *
1967 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1968 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1969 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1970 * passed by mount(8) to mount(2).
1971 *
1972 * Enter the new mount API. The new mount API disambiguates making a mount ro
1973 * and making a superblock ro.
1974 *
1975 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1976 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1977 *     specific mount or mount tree that is never seen by the filesystem itself.
1978 *
1979 * (4) To turn a superblock ro the "ro" flag must be used with
1980 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1981 *     in fc->sb_flags.
1982 *
1983 * But, currently the util-linux mount command already utilizes the new mount
1984 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1985 * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1986 * work with different options work we need to keep backward compatibility.
1987 */
1988static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1989{
1990	int ret = 0;
1991
1992	if (fc->sb_flags & SB_RDONLY)
1993		return ret;
1994
1995	down_write(&mnt->mnt_sb->s_umount);
1996	if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
1997		ret = btrfs_reconfigure(fc);
1998	up_write(&mnt->mnt_sb->s_umount);
1999	return ret;
2000}
2001
2002static int btrfs_get_tree_subvol(struct fs_context *fc)
2003{
2004	struct btrfs_fs_info *fs_info = NULL;
2005	struct btrfs_fs_context *ctx = fc->fs_private;
2006	struct fs_context *dup_fc;
2007	struct dentry *dentry;
2008	struct vfsmount *mnt;
2009	int ret = 0;
2010
2011	/*
2012	 * Setup a dummy root and fs_info for test/set super.  This is because
2013	 * we don't actually fill this stuff out until open_ctree, but we need
2014	 * then open_ctree will properly initialize the file system specific
2015	 * settings later.  btrfs_init_fs_info initializes the static elements
2016	 * of the fs_info (locks and such) to make cleanup easier if we find a
2017	 * superblock with our given fs_devices later on at sget() time.
2018	 */
2019	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2020	if (!fs_info)
2021		return -ENOMEM;
2022
2023	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2024	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2025	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2026		btrfs_free_fs_info(fs_info);
2027		return -ENOMEM;
2028	}
2029	btrfs_init_fs_info(fs_info);
2030
2031	dup_fc = vfs_dup_fs_context(fc);
2032	if (IS_ERR(dup_fc)) {
2033		btrfs_free_fs_info(fs_info);
2034		return PTR_ERR(dup_fc);
2035	}
2036
2037	/*
2038	 * When we do the sget_fc this gets transferred to the sb, so we only
2039	 * need to set it on the dup_fc as this is what creates the super block.
2040	 */
2041	dup_fc->s_fs_info = fs_info;
2042
2043	/*
2044	 * We'll do the security settings in our btrfs_get_tree_super() mount
2045	 * loop, they were duplicated into dup_fc, we can drop the originals
2046	 * here.
2047	 */
2048	security_free_mnt_opts(&fc->security);
2049	fc->security = NULL;
2050
2051	mnt = fc_mount(dup_fc);
2052	if (IS_ERR(mnt)) {
2053		put_fs_context(dup_fc);
2054		return PTR_ERR(mnt);
2055	}
2056	ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2057	put_fs_context(dup_fc);
2058	if (ret) {
2059		mntput(mnt);
2060		return ret;
2061	}
2062
2063	/*
2064	 * This free's ->subvol_name, because if it isn't set we have to
2065	 * allocate a buffer to hold the subvol_name, so we just drop our
2066	 * reference to it here.
2067	 */
2068	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2069	ctx->subvol_name = NULL;
2070	if (IS_ERR(dentry))
2071		return PTR_ERR(dentry);
2072
2073	fc->root = dentry;
2074	return 0;
2075}
2076
2077static int btrfs_get_tree(struct fs_context *fc)
2078{
2079	/*
2080	 * Since we use mount_subtree to mount the default/specified subvol, we
2081	 * have to do mounts in two steps.
2082	 *
2083	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2084	 * wrapper around fc_mount() to call back into here again, and this time
2085	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2086	 * everything to open the devices and file system.  Then we return back
2087	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2088	 * from there we can do our mount_subvol() call, which will lookup
2089	 * whichever subvol we're mounting and setup this fc with the
2090	 * appropriate dentry for the subvol.
2091	 */
2092	if (fc->s_fs_info)
2093		return btrfs_get_tree_super(fc);
2094	return btrfs_get_tree_subvol(fc);
2095}
2096
2097static void btrfs_kill_super(struct super_block *sb)
2098{
2099	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2100	kill_anon_super(sb);
2101	btrfs_free_fs_info(fs_info);
2102}
2103
2104static void btrfs_free_fs_context(struct fs_context *fc)
2105{
2106	struct btrfs_fs_context *ctx = fc->fs_private;
2107	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2108
2109	if (fs_info)
2110		btrfs_free_fs_info(fs_info);
2111
2112	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2113		kfree(ctx->subvol_name);
2114		kfree(ctx);
2115	}
2116}
2117
2118static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2119{
2120	struct btrfs_fs_context *ctx = src_fc->fs_private;
2121
2122	/*
2123	 * Give a ref to our ctx to this dup, as we want to keep it around for
2124	 * our original fc so we can have the subvolume name or objectid.
2125	 *
2126	 * We unset ->source in the original fc because the dup needs it for
2127	 * mounting, and then once we free the dup it'll free ->source, so we
2128	 * need to make sure we're only pointing to it in one fc.
2129	 */
2130	refcount_inc(&ctx->refs);
2131	fc->fs_private = ctx;
2132	fc->source = src_fc->source;
2133	src_fc->source = NULL;
2134	return 0;
2135}
2136
2137static const struct fs_context_operations btrfs_fs_context_ops = {
2138	.parse_param	= btrfs_parse_param,
2139	.reconfigure	= btrfs_reconfigure,
2140	.get_tree	= btrfs_get_tree,
2141	.dup		= btrfs_dup_fs_context,
2142	.free		= btrfs_free_fs_context,
2143};
2144
2145static int btrfs_init_fs_context(struct fs_context *fc)
2146{
2147	struct btrfs_fs_context *ctx;
2148
2149	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2150	if (!ctx)
2151		return -ENOMEM;
2152
2153	refcount_set(&ctx->refs, 1);
2154	fc->fs_private = ctx;
2155	fc->ops = &btrfs_fs_context_ops;
2156
2157	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2158		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2159	} else {
2160		ctx->thread_pool_size =
2161			min_t(unsigned long, num_online_cpus() + 2, 8);
2162		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2163		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2164	}
2165
2166#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2167	fc->sb_flags |= SB_POSIXACL;
2168#endif
2169	fc->sb_flags |= SB_I_VERSION;
2170
2171	return 0;
2172}
2173
2174static struct file_system_type btrfs_fs_type = {
2175	.owner			= THIS_MODULE,
2176	.name			= "btrfs",
2177	.init_fs_context	= btrfs_init_fs_context,
2178	.parameters		= btrfs_fs_parameters,
2179	.kill_sb		= btrfs_kill_super,
2180	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2181				  FS_ALLOW_IDMAP | FS_MGTIME,
2182 };
2183
2184MODULE_ALIAS_FS("btrfs");
2185
2186static int btrfs_control_open(struct inode *inode, struct file *file)
2187{
2188	/*
2189	 * The control file's private_data is used to hold the
2190	 * transaction when it is started and is used to keep
2191	 * track of whether a transaction is already in progress.
2192	 */
2193	file->private_data = NULL;
2194	return 0;
2195}
2196
2197/*
2198 * Used by /dev/btrfs-control for devices ioctls.
2199 */
2200static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2201				unsigned long arg)
2202{
2203	struct btrfs_ioctl_vol_args *vol;
2204	struct btrfs_device *device = NULL;
2205	dev_t devt = 0;
2206	int ret = -ENOTTY;
2207
2208	if (!capable(CAP_SYS_ADMIN))
2209		return -EPERM;
2210
2211	vol = memdup_user((void __user *)arg, sizeof(*vol));
2212	if (IS_ERR(vol))
2213		return PTR_ERR(vol);
2214	ret = btrfs_check_ioctl_vol_args_path(vol);
2215	if (ret < 0)
2216		goto out;
2217
2218	switch (cmd) {
2219	case BTRFS_IOC_SCAN_DEV:
2220		mutex_lock(&uuid_mutex);
2221		/*
2222		 * Scanning outside of mount can return NULL which would turn
2223		 * into 0 error code.
2224		 */
2225		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2226		ret = PTR_ERR_OR_ZERO(device);
2227		mutex_unlock(&uuid_mutex);
2228		break;
2229	case BTRFS_IOC_FORGET_DEV:
2230		if (vol->name[0] != 0) {
2231			ret = lookup_bdev(vol->name, &devt);
2232			if (ret)
2233				break;
2234		}
2235		ret = btrfs_forget_devices(devt);
2236		break;
2237	case BTRFS_IOC_DEVICES_READY:
2238		mutex_lock(&uuid_mutex);
2239		/*
2240		 * Scanning outside of mount can return NULL which would turn
2241		 * into 0 error code.
2242		 */
2243		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2244		if (IS_ERR_OR_NULL(device)) {
2245			mutex_unlock(&uuid_mutex);
2246			if (IS_ERR(device))
2247				ret = PTR_ERR(device);
2248			else
2249				ret = 0;
2250			break;
2251		}
2252		ret = !(device->fs_devices->num_devices ==
2253			device->fs_devices->total_devices);
2254		mutex_unlock(&uuid_mutex);
2255		break;
2256	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2257		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2258		break;
2259	}
2260
2261out:
2262	kfree(vol);
2263	return ret;
2264}
2265
2266static int btrfs_freeze(struct super_block *sb)
2267{
2268	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2269
2270	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2271	/*
2272	 * We don't need a barrier here, we'll wait for any transaction that
2273	 * could be in progress on other threads (and do delayed iputs that
2274	 * we want to avoid on a frozen filesystem), or do the commit
2275	 * ourselves.
2276	 */
2277	return btrfs_commit_current_transaction(fs_info->tree_root);
2278}
2279
2280static int check_dev_super(struct btrfs_device *dev)
2281{
2282	struct btrfs_fs_info *fs_info = dev->fs_info;
2283	struct btrfs_super_block *sb;
2284	u64 last_trans;
2285	u16 csum_type;
2286	int ret = 0;
2287
2288	/* This should be called with fs still frozen. */
2289	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2290
2291	/* Missing dev, no need to check. */
2292	if (!dev->bdev)
2293		return 0;
2294
2295	/* Only need to check the primary super block. */
2296	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2297	if (IS_ERR(sb))
2298		return PTR_ERR(sb);
2299
2300	/* Verify the checksum. */
2301	csum_type = btrfs_super_csum_type(sb);
2302	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2303		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2304			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2305		ret = -EUCLEAN;
2306		goto out;
2307	}
2308
2309	if (btrfs_check_super_csum(fs_info, sb)) {
2310		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2311		ret = -EUCLEAN;
2312		goto out;
2313	}
2314
2315	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2316	ret = btrfs_validate_super(fs_info, sb, 0);
2317	if (ret < 0)
2318		goto out;
2319
2320	last_trans = btrfs_get_last_trans_committed(fs_info);
2321	if (btrfs_super_generation(sb) != last_trans) {
2322		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2323			  btrfs_super_generation(sb), last_trans);
2324		ret = -EUCLEAN;
2325		goto out;
2326	}
2327out:
2328	btrfs_release_disk_super(sb);
2329	return ret;
2330}
2331
2332static int btrfs_unfreeze(struct super_block *sb)
2333{
2334	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2335	struct btrfs_device *device;
2336	int ret = 0;
2337
2338	/*
2339	 * Make sure the fs is not changed by accident (like hibernation then
2340	 * modified by other OS).
2341	 * If we found anything wrong, we mark the fs error immediately.
2342	 *
2343	 * And since the fs is frozen, no one can modify the fs yet, thus
2344	 * we don't need to hold device_list_mutex.
2345	 */
2346	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2347		ret = check_dev_super(device);
2348		if (ret < 0) {
2349			btrfs_handle_fs_error(fs_info, ret,
2350				"super block on devid %llu got modified unexpectedly",
2351				device->devid);
2352			break;
2353		}
2354	}
2355	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2356
2357	/*
2358	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2359	 * above checks failed. Since the fs is either fine or read-only, we're
2360	 * safe to continue, without causing further damage.
2361	 */
2362	return 0;
2363}
2364
2365static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2366{
2367	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2368
2369	/*
2370	 * There should be always a valid pointer in latest_dev, it may be stale
2371	 * for a short moment in case it's being deleted but still valid until
2372	 * the end of RCU grace period.
2373	 */
2374	rcu_read_lock();
2375	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2376	rcu_read_unlock();
2377
2378	return 0;
2379}
2380
2381static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2382{
2383	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2384	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2385
2386	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2387
2388	return nr;
 
 
 
2389}
2390
2391static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2392{
2393	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2394	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2395
2396	btrfs_free_extent_maps(fs_info, nr_to_scan);
2397
2398	/* The extent map shrinker runs asynchronously, so always return 0. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399	return 0;
2400}
2401
2402static const struct super_operations btrfs_super_ops = {
2403	.drop_inode	= btrfs_drop_inode,
2404	.evict_inode	= btrfs_evict_inode,
2405	.put_super	= btrfs_put_super,
2406	.sync_fs	= btrfs_sync_fs,
2407	.show_options	= btrfs_show_options,
2408	.show_devname	= btrfs_show_devname,
 
 
2409	.alloc_inode	= btrfs_alloc_inode,
2410	.destroy_inode	= btrfs_destroy_inode,
2411	.free_inode	= btrfs_free_inode,
2412	.statfs		= btrfs_statfs,
 
2413	.freeze_fs	= btrfs_freeze,
2414	.unfreeze_fs	= btrfs_unfreeze,
2415	.nr_cached_objects = btrfs_nr_cached_objects,
2416	.free_cached_objects = btrfs_free_cached_objects,
2417};
2418
2419static const struct file_operations btrfs_ctl_fops = {
2420	.open = btrfs_control_open,
2421	.unlocked_ioctl	 = btrfs_control_ioctl,
2422	.compat_ioctl = compat_ptr_ioctl,
2423	.owner	 = THIS_MODULE,
2424	.llseek = noop_llseek,
2425};
2426
2427static struct miscdevice btrfs_misc = {
2428	.minor		= BTRFS_MINOR,
2429	.name		= "btrfs-control",
2430	.fops		= &btrfs_ctl_fops
2431};
2432
2433MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2434MODULE_ALIAS("devname:btrfs-control");
2435
2436static int __init btrfs_interface_init(void)
2437{
2438	return misc_register(&btrfs_misc);
2439}
2440
2441static __cold void btrfs_interface_exit(void)
2442{
2443	misc_deregister(&btrfs_misc);
 
2444}
2445
2446static int __init btrfs_print_mod_info(void)
2447{
2448	static const char options[] = ""
2449#ifdef CONFIG_BTRFS_DEBUG
2450			", debug=on"
2451#endif
2452#ifdef CONFIG_BTRFS_ASSERT
2453			", assert=on"
2454#endif
2455#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2456			", ref-verify=on"
2457#endif
2458#ifdef CONFIG_BLK_DEV_ZONED
2459			", zoned=yes"
2460#else
2461			", zoned=no"
2462#endif
2463#ifdef CONFIG_FS_VERITY
2464			", fsverity=yes"
2465#else
2466			", fsverity=no"
2467#endif
2468			;
2469	pr_info("Btrfs loaded%s\n", options);
2470	return 0;
2471}
2472
2473static int register_btrfs(void)
2474{
2475	return register_filesystem(&btrfs_fs_type);
2476}
2477
2478static void unregister_btrfs(void)
2479{
2480	unregister_filesystem(&btrfs_fs_type);
2481}
2482
2483/* Helper structure for long init/exit functions. */
2484struct init_sequence {
2485	int (*init_func)(void);
2486	/* Can be NULL if the init_func doesn't need cleanup. */
2487	void (*exit_func)(void);
2488};
2489
2490static const struct init_sequence mod_init_seq[] = {
2491	{
2492		.init_func = btrfs_props_init,
2493		.exit_func = NULL,
2494	}, {
2495		.init_func = btrfs_init_sysfs,
2496		.exit_func = btrfs_exit_sysfs,
2497	}, {
2498		.init_func = btrfs_init_compress,
2499		.exit_func = btrfs_exit_compress,
2500	}, {
2501		.init_func = btrfs_init_cachep,
2502		.exit_func = btrfs_destroy_cachep,
2503	}, {
2504		.init_func = btrfs_init_dio,
2505		.exit_func = btrfs_destroy_dio,
2506	}, {
2507		.init_func = btrfs_transaction_init,
2508		.exit_func = btrfs_transaction_exit,
2509	}, {
2510		.init_func = btrfs_ctree_init,
2511		.exit_func = btrfs_ctree_exit,
2512	}, {
2513		.init_func = btrfs_free_space_init,
2514		.exit_func = btrfs_free_space_exit,
2515	}, {
2516		.init_func = extent_state_init_cachep,
2517		.exit_func = extent_state_free_cachep,
2518	}, {
2519		.init_func = extent_buffer_init_cachep,
2520		.exit_func = extent_buffer_free_cachep,
2521	}, {
2522		.init_func = btrfs_bioset_init,
2523		.exit_func = btrfs_bioset_exit,
2524	}, {
2525		.init_func = extent_map_init,
2526		.exit_func = extent_map_exit,
2527	}, {
2528		.init_func = ordered_data_init,
2529		.exit_func = ordered_data_exit,
2530	}, {
2531		.init_func = btrfs_delayed_inode_init,
2532		.exit_func = btrfs_delayed_inode_exit,
2533	}, {
2534		.init_func = btrfs_auto_defrag_init,
2535		.exit_func = btrfs_auto_defrag_exit,
2536	}, {
2537		.init_func = btrfs_delayed_ref_init,
2538		.exit_func = btrfs_delayed_ref_exit,
2539	}, {
2540		.init_func = btrfs_prelim_ref_init,
2541		.exit_func = btrfs_prelim_ref_exit,
2542	}, {
2543		.init_func = btrfs_interface_init,
2544		.exit_func = btrfs_interface_exit,
2545	}, {
2546		.init_func = btrfs_print_mod_info,
2547		.exit_func = NULL,
2548	}, {
2549		.init_func = btrfs_run_sanity_tests,
2550		.exit_func = NULL,
2551	}, {
2552		.init_func = register_btrfs,
2553		.exit_func = unregister_btrfs,
2554	}
2555};
2556
2557static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
 
 
2558
2559static __always_inline void btrfs_exit_btrfs_fs(void)
2560{
2561	int i;
2562
2563	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2564		if (!mod_init_result[i])
2565			continue;
2566		if (mod_init_seq[i].exit_func)
2567			mod_init_seq[i].exit_func();
2568		mod_init_result[i] = false;
2569	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570}
2571
2572static void __exit exit_btrfs_fs(void)
2573{
2574	btrfs_exit_btrfs_fs();
 
 
 
 
 
 
2575	btrfs_cleanup_fs_uuids();
 
2576}
2577
2578static int __init init_btrfs_fs(void)
2579{
2580	int ret;
2581	int i;
2582
2583	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2584		ASSERT(!mod_init_result[i]);
2585		ret = mod_init_seq[i].init_func();
2586		if (ret < 0) {
2587			btrfs_exit_btrfs_fs();
2588			return ret;
2589		}
2590		mod_init_result[i] = true;
2591	}
2592	return 0;
2593}
2594
2595late_initcall(init_btrfs_fs);
2596module_exit(exit_btrfs_fs)
2597
2598MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2599MODULE_LICENSE("GPL");
2600MODULE_SOFTDEP("pre: crc32c");
2601MODULE_SOFTDEP("pre: xxhash64");
2602MODULE_SOFTDEP("pre: sha256");
2603MODULE_SOFTDEP("pre: blake2b-256");
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
  44#include "compat.h"
 
 
 
 
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "ioctl.h"
  51#include "print-tree.h"
  52#include "xattr.h"
  53#include "volumes.h"
  54#include "version.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/btrfs.h>
  61
  62static const struct super_operations btrfs_super_ops;
  63static struct file_system_type btrfs_fs_type;
  64
  65static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  66				      char nbuf[16])
  67{
  68	char *errstr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70	switch (errno) {
  71	case -EIO:
  72		errstr = "IO failure";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73		break;
  74	case -ENOMEM:
  75		errstr = "Out of memory";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76		break;
  77	case -EROFS:
  78		errstr = "Readonly filesystem";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79		break;
  80	case -EEXIST:
  81		errstr = "Object already exists";
 
 
 
 
 
 
 
  82		break;
  83	default:
  84		if (nbuf) {
  85			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  86				errstr = nbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87		}
  88		break;
 
 
 
 
 
 
 
 
 
  89	}
  90
  91	return errstr;
  92}
  93
  94static void __save_error_info(struct btrfs_fs_info *fs_info)
 
 
 
 
 
  95{
  96	/*
  97	 * today we only save the error info into ram.  Long term we'll
  98	 * also send it down to the disk
  99	 */
 100	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
 101}
 102
 103/* NOTE:
 104 *	We move write_super stuff at umount in order to avoid deadlock
 105 *	for umount hold all lock.
 106 */
 107static void save_error_info(struct btrfs_fs_info *fs_info)
 108{
 109	__save_error_info(fs_info);
 
 
 
 
 
 110}
 111
 112/* btrfs handle error by forcing the filesystem readonly */
 113static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 
 114{
 115	struct super_block *sb = fs_info->sb;
 116
 117	if (sb->s_flags & MS_RDONLY)
 118		return;
 
 
 
 
 
 119
 120	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 121		sb->s_flags |= MS_RDONLY;
 122		printk(KERN_INFO "btrfs is forced readonly\n");
 123		__btrfs_scrub_cancel(fs_info);
 124//		WARN_ON(1);
 
 
 
 
 
 125	}
 126}
 127
 128/*
 129 * __btrfs_std_error decodes expected errors from the caller and
 130 * invokes the approciate error response.
 131 */
 132void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 133		       unsigned int line, int errno, const char *fmt, ...)
 134{
 135	struct super_block *sb = fs_info->sb;
 136	char nbuf[16];
 137	const char *errstr;
 138	va_list args;
 139	va_start(args, fmt);
 140
 141	/*
 142	 * Special case: if the error is EROFS, and we're already
 143	 * under MS_RDONLY, then it is safe here.
 144	 */
 145	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 146  		return;
 147
 148  	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 149	if (fmt) {
 150		struct va_format vaf = {
 151			.fmt = fmt,
 152			.va = &args,
 153		};
 154
 155		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
 156			sb->s_id, function, line, errstr, &vaf);
 157	} else {
 158		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 159			sb->s_id, function, line, errstr);
 
 
 
 160	}
 161
 162	/* Don't go through full error handling during mount */
 163	if (sb->s_flags & MS_BORN) {
 164		save_error_info(fs_info);
 165		btrfs_handle_error(fs_info);
 166	}
 167	va_end(args);
 168}
 169
 170const char *logtypes[] = {
 171	"emergency",
 172	"alert",
 173	"critical",
 174	"error",
 175	"warning",
 176	"notice",
 177	"info",
 178	"debug",
 179};
 180
 181void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
 182{
 183	struct super_block *sb = fs_info->sb;
 184	char lvl[4];
 185	struct va_format vaf;
 186	va_list args;
 187	const char *type = logtypes[4];
 188
 189	va_start(args, fmt);
 190
 191	if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
 192		memcpy(lvl, fmt, 3);
 193		lvl[3] = '\0';
 194		fmt += 3;
 195		type = logtypes[fmt[1] - '0'];
 196	} else
 197		*lvl = '\0';
 198
 199	vaf.fmt = fmt;
 200	vaf.va = &args;
 201	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
 202}
 203
 204/*
 205 * We only mark the transaction aborted and then set the file system read-only.
 206 * This will prevent new transactions from starting or trying to join this
 207 * one.
 208 *
 209 * This means that error recovery at the call site is limited to freeing
 210 * any local memory allocations and passing the error code up without
 211 * further cleanup. The transaction should complete as it normally would
 212 * in the call path but will return -EIO.
 213 *
 214 * We'll complete the cleanup in btrfs_end_transaction and
 215 * btrfs_commit_transaction.
 
 
 
 216 */
 217void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 218			       struct btrfs_root *root, const char *function,
 219			       unsigned int line, int errno)
 220{
 221	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
 222	trans->aborted = errno;
 223	/* Nothing used. The other threads that have joined this
 224	 * transaction may be able to continue. */
 225	if (!trans->blocks_used) {
 226		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 227		return;
 228	}
 229	trans->transaction->aborted = errno;
 230	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
 231}
 232/*
 233 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 234 * issues an alert, and either panics or BUGs, depending on mount options.
 235 */
 236void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 237		   unsigned int line, int errno, const char *fmt, ...)
 238{
 239	char nbuf[16];
 240	char *s_id = "<unknown>";
 241	const char *errstr;
 242	struct va_format vaf = { .fmt = fmt };
 243	va_list args;
 244
 245	if (fs_info)
 246		s_id = fs_info->sb->s_id;
 247
 248	va_start(args, fmt);
 249	vaf.va = &args;
 250
 251	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 252	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
 253		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
 254			s_id, function, line, &vaf, errstr);
 255
 256	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
 257	       s_id, function, line, &vaf, errstr);
 258	va_end(args);
 259	/* Caller calls BUG() */
 260}
 261
 262static void btrfs_put_super(struct super_block *sb)
 263{
 264	(void)close_ctree(btrfs_sb(sb)->tree_root);
 265	/* FIXME: need to fix VFS to return error? */
 266	/* AV: return it _where_?  ->put_super() can be triggered by any number
 267	 * of async events, up to and including delivery of SIGKILL to the
 268	 * last process that kept it busy.  Or segfault in the aforementioned
 269	 * process...  Whom would you report that to?
 
 
 
 
 
 
 270	 */
 
 
 
 
 
 
 271}
 272
 273enum {
 274	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 275	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 276	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 277	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 278	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 279	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 280	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
 281	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
 282	Opt_check_integrity, Opt_check_integrity_including_extent_data,
 283	Opt_check_integrity_print_mask, Opt_fatal_errors,
 284	Opt_err,
 285};
 286
 287static match_table_t tokens = {
 288	{Opt_degraded, "degraded"},
 289	{Opt_subvol, "subvol=%s"},
 290	{Opt_subvolid, "subvolid=%d"},
 291	{Opt_device, "device=%s"},
 292	{Opt_nodatasum, "nodatasum"},
 293	{Opt_nodatacow, "nodatacow"},
 294	{Opt_nobarrier, "nobarrier"},
 295	{Opt_max_inline, "max_inline=%s"},
 296	{Opt_alloc_start, "alloc_start=%s"},
 297	{Opt_thread_pool, "thread_pool=%d"},
 298	{Opt_compress, "compress"},
 299	{Opt_compress_type, "compress=%s"},
 300	{Opt_compress_force, "compress-force"},
 301	{Opt_compress_force_type, "compress-force=%s"},
 302	{Opt_ssd, "ssd"},
 303	{Opt_ssd_spread, "ssd_spread"},
 304	{Opt_nossd, "nossd"},
 305	{Opt_noacl, "noacl"},
 306	{Opt_notreelog, "notreelog"},
 307	{Opt_flushoncommit, "flushoncommit"},
 308	{Opt_ratio, "metadata_ratio=%d"},
 309	{Opt_discard, "discard"},
 310	{Opt_space_cache, "space_cache"},
 311	{Opt_clear_cache, "clear_cache"},
 312	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 313	{Opt_enospc_debug, "enospc_debug"},
 314	{Opt_subvolrootid, "subvolrootid=%d"},
 315	{Opt_defrag, "autodefrag"},
 316	{Opt_inode_cache, "inode_cache"},
 317	{Opt_no_space_cache, "nospace_cache"},
 318	{Opt_recovery, "recovery"},
 319	{Opt_skip_balance, "skip_balance"},
 320	{Opt_check_integrity, "check_int"},
 321	{Opt_check_integrity_including_extent_data, "check_int_data"},
 322	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 323	{Opt_fatal_errors, "fatal_errors=%s"},
 324	{Opt_err, NULL},
 325};
 326
 327/*
 328 * Regular mount options parser.  Everything that is needed only when
 329 * reading in a new superblock is parsed here.
 330 * XXX JDM: This needs to be cleaned up for remount.
 331 */
 332int btrfs_parse_options(struct btrfs_root *root, char *options)
 333{
 334	struct btrfs_fs_info *info = root->fs_info;
 335	substring_t args[MAX_OPT_ARGS];
 336	char *p, *num, *orig = NULL;
 337	u64 cache_gen;
 338	int intarg;
 339	int ret = 0;
 340	char *compress_type;
 341	bool compress_force = false;
 
 
 342
 343	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 344	if (cache_gen)
 345		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 346
 347	if (!options)
 348		goto out;
 
 
 
 
 
 349
 350	/*
 351	 * strsep changes the string, duplicate it because parse_options
 352	 * gets called twice
 353	 */
 354	options = kstrdup(options, GFP_NOFS);
 355	if (!options)
 356		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 357
 358	orig = options;
 359
 360	while ((p = strsep(&options, ",")) != NULL) {
 361		int token;
 362		if (!*p)
 363			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364
 365		token = match_token(p, tokens, args);
 366		switch (token) {
 367		case Opt_degraded:
 368			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 369			btrfs_set_opt(info->mount_opt, DEGRADED);
 370			break;
 371		case Opt_subvol:
 372		case Opt_subvolid:
 373		case Opt_subvolrootid:
 374		case Opt_device:
 375			/*
 376			 * These are parsed by btrfs_parse_early_options
 377			 * and can be happily ignored here.
 378			 */
 379			break;
 380		case Opt_nodatasum:
 381			printk(KERN_INFO "btrfs: setting nodatasum\n");
 382			btrfs_set_opt(info->mount_opt, NODATASUM);
 383			break;
 384		case Opt_nodatacow:
 385			printk(KERN_INFO "btrfs: setting nodatacow\n");
 386			btrfs_set_opt(info->mount_opt, NODATACOW);
 387			btrfs_set_opt(info->mount_opt, NODATASUM);
 388			break;
 389		case Opt_compress_force:
 390		case Opt_compress_force_type:
 391			compress_force = true;
 392		case Opt_compress:
 393		case Opt_compress_type:
 394			if (token == Opt_compress ||
 395			    token == Opt_compress_force ||
 396			    strcmp(args[0].from, "zlib") == 0) {
 397				compress_type = "zlib";
 398				info->compress_type = BTRFS_COMPRESS_ZLIB;
 399			} else if (strcmp(args[0].from, "lzo") == 0) {
 400				compress_type = "lzo";
 401				info->compress_type = BTRFS_COMPRESS_LZO;
 402			} else {
 403				ret = -EINVAL;
 404				goto out;
 405			}
 406
 407			btrfs_set_opt(info->mount_opt, COMPRESS);
 408			if (compress_force) {
 409				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 410				pr_info("btrfs: force %s compression\n",
 411					compress_type);
 412			} else
 413				pr_info("btrfs: use %s compression\n",
 414					compress_type);
 415			break;
 416		case Opt_ssd:
 417			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 418			btrfs_set_opt(info->mount_opt, SSD);
 419			break;
 420		case Opt_ssd_spread:
 421			printk(KERN_INFO "btrfs: use spread ssd "
 422			       "allocation scheme\n");
 423			btrfs_set_opt(info->mount_opt, SSD);
 424			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 425			break;
 426		case Opt_nossd:
 427			printk(KERN_INFO "btrfs: not using ssd allocation "
 428			       "scheme\n");
 429			btrfs_set_opt(info->mount_opt, NOSSD);
 430			btrfs_clear_opt(info->mount_opt, SSD);
 431			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 432			break;
 433		case Opt_nobarrier:
 434			printk(KERN_INFO "btrfs: turning off barriers\n");
 435			btrfs_set_opt(info->mount_opt, NOBARRIER);
 436			break;
 437		case Opt_thread_pool:
 438			intarg = 0;
 439			match_int(&args[0], &intarg);
 440			if (intarg)
 441				info->thread_pool_size = intarg;
 442			break;
 443		case Opt_max_inline:
 444			num = match_strdup(&args[0]);
 445			if (num) {
 446				info->max_inline = memparse(num, NULL);
 447				kfree(num);
 448
 449				if (info->max_inline) {
 450					info->max_inline = max_t(u64,
 451						info->max_inline,
 452						root->sectorsize);
 453				}
 454				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 455					(unsigned long long)info->max_inline);
 456			}
 457			break;
 458		case Opt_alloc_start:
 459			num = match_strdup(&args[0]);
 460			if (num) {
 461				info->alloc_start = memparse(num, NULL);
 462				kfree(num);
 463				printk(KERN_INFO
 464					"btrfs: allocations start at %llu\n",
 465					(unsigned long long)info->alloc_start);
 466			}
 467			break;
 468		case Opt_noacl:
 469			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 470			break;
 471		case Opt_notreelog:
 472			printk(KERN_INFO "btrfs: disabling tree log\n");
 473			btrfs_set_opt(info->mount_opt, NOTREELOG);
 474			break;
 475		case Opt_flushoncommit:
 476			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 477			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 478			break;
 479		case Opt_ratio:
 480			intarg = 0;
 481			match_int(&args[0], &intarg);
 482			if (intarg) {
 483				info->metadata_ratio = intarg;
 484				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 485				       info->metadata_ratio);
 486			}
 487			break;
 488		case Opt_discard:
 489			btrfs_set_opt(info->mount_opt, DISCARD);
 490			break;
 491		case Opt_space_cache:
 492			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 493			break;
 494		case Opt_no_space_cache:
 495			printk(KERN_INFO "btrfs: disabling disk space caching\n");
 496			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
 497			break;
 498		case Opt_inode_cache:
 499			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 500			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 501			break;
 502		case Opt_clear_cache:
 503			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 504			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 505			break;
 506		case Opt_user_subvol_rm_allowed:
 507			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 508			break;
 509		case Opt_enospc_debug:
 510			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 511			break;
 512		case Opt_defrag:
 513			printk(KERN_INFO "btrfs: enabling auto defrag");
 514			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 515			break;
 516		case Opt_recovery:
 517			printk(KERN_INFO "btrfs: enabling auto recovery");
 518			btrfs_set_opt(info->mount_opt, RECOVERY);
 519			break;
 520		case Opt_skip_balance:
 521			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 522			break;
 523#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 524		case Opt_check_integrity_including_extent_data:
 525			printk(KERN_INFO "btrfs: enabling check integrity"
 526			       " including extent data\n");
 527			btrfs_set_opt(info->mount_opt,
 528				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 529			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 530			break;
 531		case Opt_check_integrity:
 532			printk(KERN_INFO "btrfs: enabling check integrity\n");
 533			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 534			break;
 535		case Opt_check_integrity_print_mask:
 536			intarg = 0;
 537			match_int(&args[0], &intarg);
 538			if (intarg) {
 539				info->check_integrity_print_mask = intarg;
 540				printk(KERN_INFO "btrfs:"
 541				       " check_integrity_print_mask 0x%x\n",
 542				       info->check_integrity_print_mask);
 543			}
 544			break;
 545#else
 546		case Opt_check_integrity_including_extent_data:
 547		case Opt_check_integrity:
 548		case Opt_check_integrity_print_mask:
 549			printk(KERN_ERR "btrfs: support for check_integrity*"
 550			       " not compiled in!\n");
 551			ret = -EINVAL;
 552			goto out;
 553#endif
 554		case Opt_fatal_errors:
 555			if (strcmp(args[0].from, "panic") == 0)
 556				btrfs_set_opt(info->mount_opt,
 557					      PANIC_ON_FATAL_ERROR);
 558			else if (strcmp(args[0].from, "bug") == 0)
 559				btrfs_clear_opt(info->mount_opt,
 560					      PANIC_ON_FATAL_ERROR);
 561			else {
 562				ret = -EINVAL;
 563				goto out;
 564			}
 565			break;
 566		case Opt_err:
 567			printk(KERN_INFO "btrfs: unrecognized mount option "
 568			       "'%s'\n", p);
 569			ret = -EINVAL;
 570			goto out;
 571		default:
 572			break;
 573		}
 
 
 574	}
 575out:
 576	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
 577		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
 578	kfree(orig);
 579	return ret;
 580}
 581
 582/*
 583 * Parse mount options that are required early in the mount process.
 584 *
 585 * All other options will be parsed on much later in the mount process and
 586 * only when we need to allocate a new super block.
 587 */
 588static int btrfs_parse_early_options(const char *options, fmode_t flags,
 589		void *holder, char **subvol_name, u64 *subvol_objectid,
 590		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 591{
 592	substring_t args[MAX_OPT_ARGS];
 593	char *device_name, *opts, *orig, *p;
 594	int error = 0;
 595	int intarg;
 596
 597	if (!options)
 598		return 0;
 599
 600	/*
 601	 * strsep changes the string, duplicate it because parse_options
 602	 * gets called twice
 603	 */
 604	opts = kstrdup(options, GFP_KERNEL);
 605	if (!opts)
 606		return -ENOMEM;
 607	orig = opts;
 608
 609	while ((p = strsep(&opts, ",")) != NULL) {
 610		int token;
 611		if (!*p)
 612			continue;
 613
 614		token = match_token(p, tokens, args);
 615		switch (token) {
 616		case Opt_subvol:
 617			kfree(*subvol_name);
 618			*subvol_name = match_strdup(&args[0]);
 619			break;
 620		case Opt_subvolid:
 621			intarg = 0;
 622			error = match_int(&args[0], &intarg);
 623			if (!error) {
 624				/* we want the original fs_tree */
 625				if (!intarg)
 626					*subvol_objectid =
 627						BTRFS_FS_TREE_OBJECTID;
 628				else
 629					*subvol_objectid = intarg;
 630			}
 631			break;
 632		case Opt_subvolrootid:
 633			intarg = 0;
 634			error = match_int(&args[0], &intarg);
 635			if (!error) {
 636				/* we want the original fs_tree */
 637				if (!intarg)
 638					*subvol_rootid =
 639						BTRFS_FS_TREE_OBJECTID;
 640				else
 641					*subvol_rootid = intarg;
 642			}
 643			break;
 644		case Opt_device:
 645			device_name = match_strdup(&args[0]);
 646			if (!device_name) {
 647				error = -ENOMEM;
 648				goto out;
 649			}
 650			error = btrfs_scan_one_device(device_name,
 651					flags, holder, fs_devices);
 652			kfree(device_name);
 653			if (error)
 654				goto out;
 655			break;
 656		default:
 657			break;
 658		}
 659	}
 
 660
 661out:
 662	kfree(orig);
 663	return error;
 
 
 664}
 665
 666static struct dentry *get_default_root(struct super_block *sb,
 667				       u64 subvol_objectid)
 668{
 669	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 670	struct btrfs_root *root = fs_info->tree_root;
 671	struct btrfs_root *new_root;
 672	struct btrfs_dir_item *di;
 673	struct btrfs_path *path;
 674	struct btrfs_key location;
 675	struct inode *inode;
 676	u64 dir_id;
 677	int new = 0;
 678
 679	/*
 680	 * We have a specific subvol we want to mount, just setup location and
 681	 * go look up the root.
 682	 */
 683	if (subvol_objectid) {
 684		location.objectid = subvol_objectid;
 685		location.type = BTRFS_ROOT_ITEM_KEY;
 686		location.offset = (u64)-1;
 687		goto find_root;
 688	}
 689
 690	path = btrfs_alloc_path();
 691	if (!path)
 692		return ERR_PTR(-ENOMEM);
 693	path->leave_spinning = 1;
 694
 695	/*
 696	 * Find the "default" dir item which points to the root item that we
 697	 * will mount by default if we haven't been given a specific subvolume
 698	 * to mount.
 699	 */
 700	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 701	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 702	if (IS_ERR(di)) {
 703		btrfs_free_path(path);
 704		return ERR_CAST(di);
 705	}
 706	if (!di) {
 707		/*
 708		 * Ok the default dir item isn't there.  This is weird since
 709		 * it's always been there, but don't freak out, just try and
 710		 * mount to root most subvolume.
 711		 */
 712		btrfs_free_path(path);
 713		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 714		new_root = fs_info->fs_root;
 715		goto setup_root;
 716	}
 717
 718	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 719	btrfs_free_path(path);
 720
 721find_root:
 722	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
 723	if (IS_ERR(new_root))
 724		return ERR_CAST(new_root);
 725
 726	if (btrfs_root_refs(&new_root->root_item) == 0)
 727		return ERR_PTR(-ENOENT);
 728
 729	dir_id = btrfs_root_dirid(&new_root->root_item);
 730setup_root:
 731	location.objectid = dir_id;
 732	location.type = BTRFS_INODE_ITEM_KEY;
 733	location.offset = 0;
 734
 735	inode = btrfs_iget(sb, &location, new_root, &new);
 736	if (IS_ERR(inode))
 737		return ERR_CAST(inode);
 738
 739	/*
 740	 * If we're just mounting the root most subvol put the inode and return
 741	 * a reference to the dentry.  We will have already gotten a reference
 742	 * to the inode in btrfs_fill_super so we're good to go.
 743	 */
 744	if (!new && sb->s_root->d_inode == inode) {
 745		iput(inode);
 746		return dget(sb->s_root);
 747	}
 748
 749	return d_obtain_alias(inode);
 750}
 751
 752static int btrfs_fill_super(struct super_block *sb,
 753			    struct btrfs_fs_devices *fs_devices,
 754			    void *data, int silent)
 755{
 756	struct inode *inode;
 757	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 758	struct btrfs_key key;
 759	int err;
 760
 761	sb->s_maxbytes = MAX_LFS_FILESIZE;
 762	sb->s_magic = BTRFS_SUPER_MAGIC;
 763	sb->s_op = &btrfs_super_ops;
 764	sb->s_d_op = &btrfs_dentry_operations;
 765	sb->s_export_op = &btrfs_export_ops;
 
 
 
 766	sb->s_xattr = btrfs_xattr_handlers;
 767	sb->s_time_gran = 1;
 768#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 769	sb->s_flags |= MS_POSIXACL;
 770#endif
 771	sb->s_flags |= MS_I_VERSION;
 772	err = open_ctree(sb, fs_devices, (char *)data);
 
 
 
 
 773	if (err) {
 774		printk("btrfs: open_ctree failed\n");
 775		return err;
 776	}
 777
 778	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 779	key.type = BTRFS_INODE_ITEM_KEY;
 780	key.offset = 0;
 781	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 782	if (IS_ERR(inode)) {
 783		err = PTR_ERR(inode);
 
 784		goto fail_close;
 785	}
 786
 787	sb->s_root = d_make_root(inode);
 788	if (!sb->s_root) {
 789		err = -ENOMEM;
 790		goto fail_close;
 791	}
 792
 793	save_mount_options(sb, data);
 794	cleancache_init_fs(sb);
 795	sb->s_flags |= MS_ACTIVE;
 796	return 0;
 797
 798fail_close:
 799	close_ctree(fs_info->tree_root);
 800	return err;
 801}
 802
 803int btrfs_sync_fs(struct super_block *sb, int wait)
 804{
 805	struct btrfs_trans_handle *trans;
 806	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 807	struct btrfs_root *root = fs_info->tree_root;
 808	int ret;
 809
 810	trace_btrfs_sync_fs(wait);
 811
 812	if (!wait) {
 813		filemap_flush(fs_info->btree_inode->i_mapping);
 814		return 0;
 815	}
 816
 817	btrfs_wait_ordered_extents(root, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819	trans = btrfs_start_transaction(root, 0);
 820	if (IS_ERR(trans))
 821		return PTR_ERR(trans);
 822	ret = btrfs_commit_transaction(trans, root);
 823	return ret;
 824}
 825
 826static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
 827{
 828	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
 829	struct btrfs_root *root = info->tree_root;
 830	char *compress_type;
 
 831
 832	if (btrfs_test_opt(root, DEGRADED))
 833		seq_puts(seq, ",degraded");
 834	if (btrfs_test_opt(root, NODATASUM))
 835		seq_puts(seq, ",nodatasum");
 836	if (btrfs_test_opt(root, NODATACOW))
 837		seq_puts(seq, ",nodatacow");
 838	if (btrfs_test_opt(root, NOBARRIER))
 839		seq_puts(seq, ",nobarrier");
 840	if (info->max_inline != 8192 * 1024)
 841		seq_printf(seq, ",max_inline=%llu",
 842			   (unsigned long long)info->max_inline);
 843	if (info->alloc_start != 0)
 844		seq_printf(seq, ",alloc_start=%llu",
 845			   (unsigned long long)info->alloc_start);
 846	if (info->thread_pool_size !=  min_t(unsigned long,
 847					     num_online_cpus() + 2, 8))
 848		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 849	if (btrfs_test_opt(root, COMPRESS)) {
 850		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 851			compress_type = "zlib";
 852		else
 853			compress_type = "lzo";
 854		if (btrfs_test_opt(root, FORCE_COMPRESS))
 855			seq_printf(seq, ",compress-force=%s", compress_type);
 856		else
 857			seq_printf(seq, ",compress=%s", compress_type);
 
 
 858	}
 859	if (btrfs_test_opt(root, NOSSD))
 860		seq_puts(seq, ",nossd");
 861	if (btrfs_test_opt(root, SSD_SPREAD))
 862		seq_puts(seq, ",ssd_spread");
 863	else if (btrfs_test_opt(root, SSD))
 864		seq_puts(seq, ",ssd");
 865	if (btrfs_test_opt(root, NOTREELOG))
 866		seq_puts(seq, ",notreelog");
 867	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 
 
 
 
 
 
 
 
 
 
 
 
 868		seq_puts(seq, ",flushoncommit");
 869	if (btrfs_test_opt(root, DISCARD))
 870		seq_puts(seq, ",discard");
 871	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 
 
 872		seq_puts(seq, ",noacl");
 873	if (btrfs_test_opt(root, SPACE_CACHE))
 874		seq_puts(seq, ",space_cache");
 
 
 875	else
 876		seq_puts(seq, ",nospace_cache");
 877	if (btrfs_test_opt(root, CLEAR_CACHE))
 
 
 878		seq_puts(seq, ",clear_cache");
 879	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 880		seq_puts(seq, ",user_subvol_rm_allowed");
 881	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 882		seq_puts(seq, ",enospc_debug");
 883	if (btrfs_test_opt(root, AUTO_DEFRAG))
 884		seq_puts(seq, ",autodefrag");
 885	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 886		seq_puts(seq, ",inode_cache");
 887	if (btrfs_test_opt(root, SKIP_BALANCE))
 888		seq_puts(seq, ",skip_balance");
 889	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
 
 
 890		seq_puts(seq, ",fatal_errors=panic");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891	return 0;
 892}
 893
 894static int btrfs_test_super(struct super_block *s, void *data)
 895{
 896	struct btrfs_fs_info *p = data;
 897	struct btrfs_fs_info *fs_info = btrfs_sb(s);
 898
 899	return fs_info->fs_devices == p->fs_devices;
 900}
 901
 902static int btrfs_set_super(struct super_block *s, void *data)
 903{
 904	int err = set_anon_super(s, data);
 905	if (!err)
 906		s->s_fs_info = data;
 907	return err;
 908}
 909
 910/*
 911 * subvolumes are identified by ino 256
 912 */
 913static inline int is_subvolume_inode(struct inode *inode)
 914{
 915	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
 916		return 1;
 917	return 0;
 918}
 919
 920/*
 921 * This will strip out the subvol=%s argument for an argument string and add
 922 * subvolid=0 to make sure we get the actual tree root for path walking to the
 923 * subvol we want.
 924 */
 925static char *setup_root_args(char *args)
 926{
 927	unsigned len = strlen(args) + 2 + 1;
 928	char *src, *dst, *buf;
 929
 930	/*
 931	 * We need the same args as before, but with this substitution:
 932	 * s!subvol=[^,]+!subvolid=0!
 933	 *
 934	 * Since the replacement string is up to 2 bytes longer than the
 935	 * original, allocate strlen(args) + 2 + 1 bytes.
 936	 */
 
 
 
 
 
 
 
 
 
 937
 938	src = strstr(args, "subvol=");
 939	/* This shouldn't happen, but just in case.. */
 940	if (!src)
 941		return NULL;
 942
 943	buf = dst = kmalloc(len, GFP_NOFS);
 944	if (!buf)
 945		return NULL;
 946
 947	/*
 948	 * If the subvol= arg is not at the start of the string,
 949	 * copy whatever precedes it into buf.
 950	 */
 951	if (src != args) {
 952		*src++ = '\0';
 953		strcpy(buf, args);
 954		dst += strlen(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	}
 956
 957	strcpy(dst, "subvolid=0");
 958	dst += strlen("subvolid=0");
 959
 960	/*
 961	 * If there is a "," after the original subvol=... string,
 962	 * copy that suffix into our buffer.  Otherwise, we're done.
 963	 */
 964	src = strchr(src, ',');
 965	if (src)
 966		strcpy(dst, src);
 967
 968	return buf;
 969}
 970
 971static struct dentry *mount_subvol(const char *subvol_name, int flags,
 972				   const char *device_name, char *data)
 973{
 974	struct dentry *root;
 975	struct vfsmount *mnt;
 976	char *newargs;
 977
 978	newargs = setup_root_args(data);
 979	if (!newargs)
 980		return ERR_PTR(-ENOMEM);
 981	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
 982			     newargs);
 983	kfree(newargs);
 984	if (IS_ERR(mnt))
 985		return ERR_CAST(mnt);
 986
 987	root = mount_subtree(mnt, subvol_name);
 
 988
 989	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
 990		struct super_block *s = root->d_sb;
 991		dput(root);
 992		root = ERR_PTR(-EINVAL);
 993		deactivate_locked_super(s);
 994		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
 995				subvol_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996	}
 997
 998	return root;
 999}
1000
1001/*
1002 * Find a superblock for the given device / mount point.
1003 *
1004 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1005 *	  for multiple device setup.  Make sure to keep it in sync.
1006 */
1007static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1008		const char *device_name, void *data)
1009{
1010	struct block_device *bdev = NULL;
1011	struct super_block *s;
1012	struct dentry *root;
1013	struct btrfs_fs_devices *fs_devices = NULL;
1014	struct btrfs_fs_info *fs_info = NULL;
1015	fmode_t mode = FMODE_READ;
1016	char *subvol_name = NULL;
1017	u64 subvol_objectid = 0;
1018	u64 subvol_rootid = 0;
1019	int error = 0;
1020
1021	if (!(flags & MS_RDONLY))
1022		mode |= FMODE_WRITE;
1023
1024	error = btrfs_parse_early_options(data, mode, fs_type,
1025					  &subvol_name, &subvol_objectid,
1026					  &subvol_rootid, &fs_devices);
1027	if (error) {
1028		kfree(subvol_name);
1029		return ERR_PTR(error);
1030	}
1031
1032	if (subvol_name) {
1033		root = mount_subvol(subvol_name, flags, device_name, data);
1034		kfree(subvol_name);
1035		return root;
 
 
 
1036	}
1037
1038	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1039	if (error)
1040		return ERR_PTR(error);
 
 
 
 
1041
1042	/*
1043	 * Setup a dummy root and fs_info for test/set super.  This is because
1044	 * we don't actually fill this stuff out until open_ctree, but we need
1045	 * it for searching for existing supers, so this lets us do that and
1046	 * then open_ctree will properly initialize everything later.
1047	 */
1048	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1049	if (!fs_info)
1050		return ERR_PTR(-ENOMEM);
1051
1052	fs_info->fs_devices = fs_devices;
 
 
1053
1054	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1056	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1057		error = -ENOMEM;
1058		goto error_fs_info;
1059	}
1060
1061	error = btrfs_open_devices(fs_devices, mode, fs_type);
1062	if (error)
1063		goto error_fs_info;
1064
1065	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1066		error = -EACCES;
1067		goto error_close_devices;
 
1068	}
1069
1070	bdev = fs_devices->latest_bdev;
1071	s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1072	if (IS_ERR(s)) {
1073		error = PTR_ERR(s);
1074		goto error_close_devices;
1075	}
1076
1077	if (s->s_root) {
1078		btrfs_close_devices(fs_devices);
1079		free_fs_info(fs_info);
1080		if ((flags ^ s->s_flags) & MS_RDONLY)
1081			error = -EBUSY;
1082	} else {
1083		char b[BDEVNAME_SIZE];
 
1084
1085		s->s_flags = flags | MS_NOSEC;
1086		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1087		btrfs_sb(s)->bdev_holder = fs_type;
1088		error = btrfs_fill_super(s, fs_devices, data,
1089					 flags & MS_SILENT ? 1 : 0);
1090	}
1091
1092	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1093	if (IS_ERR(root))
1094		deactivate_locked_super(s);
1095
1096	return root;
 
 
 
 
1097
1098error_close_devices:
1099	btrfs_close_devices(fs_devices);
1100error_fs_info:
1101	free_fs_info(fs_info);
1102	return ERR_PTR(error);
1103}
1104
1105static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1106{
1107	spin_lock_irq(&workers->lock);
1108	workers->max_workers = new_limit;
1109	spin_unlock_irq(&workers->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110}
1111
1112static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1113				     int new_pool_size, int old_pool_size)
1114{
1115	if (new_pool_size == old_pool_size)
1116		return;
1117
1118	fs_info->thread_pool_size = new_pool_size;
1119
1120	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1121	       old_pool_size, new_pool_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122
1123	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1124	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1125	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1126	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1127	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1128	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1129	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1130	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1131	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1132	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1133	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1134	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1135	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1136	btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1137}
1138
1139static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1140{
 
1141	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1142	struct btrfs_root *root = fs_info->tree_root;
1143	unsigned old_flags = sb->s_flags;
1144	unsigned long old_opts = fs_info->mount_opt;
1145	unsigned long old_compress_type = fs_info->compress_type;
1146	u64 old_max_inline = fs_info->max_inline;
1147	u64 old_alloc_start = fs_info->alloc_start;
1148	int old_thread_pool_size = fs_info->thread_pool_size;
1149	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1150	int ret;
1151
1152	ret = btrfs_parse_options(root, data);
1153	if (ret) {
1154		ret = -EINVAL;
1155		goto restore;
1156	}
 
 
1157
1158	btrfs_resize_thread_pool(fs_info,
1159		fs_info->thread_pool_size, old_thread_pool_size);
1160
1161	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1162		return 0;
1163
1164	if (*flags & MS_RDONLY) {
1165		sb->s_flags |= MS_RDONLY;
 
1166
1167		ret = btrfs_commit_super(root);
1168		if (ret)
1169			goto restore;
1170	} else {
1171		if (fs_info->fs_devices->rw_devices == 0) {
1172			ret = -EACCES;
1173			goto restore;
 
 
 
 
 
 
 
1174		}
1175
1176		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1177			ret = -EINVAL;
1178			goto restore;
1179		}
 
1180
1181		ret = btrfs_cleanup_fs_roots(fs_info);
1182		if (ret)
1183			goto restore;
 
 
 
 
1184
1185		/* recover relocation */
1186		ret = btrfs_recover_relocation(root);
1187		if (ret)
1188			goto restore;
1189
1190		ret = btrfs_resume_balance_async(fs_info);
1191		if (ret)
1192			goto restore;
1193
1194		sb->s_flags &= ~MS_RDONLY;
1195	}
 
 
 
1196
1197	return 0;
1198
1199restore:
1200	/* We've hit an error - don't reset MS_RDONLY */
1201	if (sb->s_flags & MS_RDONLY)
1202		old_flags |= MS_RDONLY;
1203	sb->s_flags = old_flags;
1204	fs_info->mount_opt = old_opts;
1205	fs_info->compress_type = old_compress_type;
1206	fs_info->max_inline = old_max_inline;
1207	fs_info->alloc_start = old_alloc_start;
1208	btrfs_resize_thread_pool(fs_info,
1209		old_thread_pool_size, fs_info->thread_pool_size);
1210	fs_info->metadata_ratio = old_metadata_ratio;
1211	return ret;
1212}
1213
1214/* Used to sort the devices by max_avail(descending sort) */
1215static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1216				       const void *dev_info2)
1217{
1218	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1219	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 
 
1220		return -1;
1221	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1222		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1223		return 1;
1224	else
1225	return 0;
1226}
1227
1228/*
1229 * sort the devices by max_avail, in which max free extent size of each device
1230 * is stored.(Descending Sort)
1231 */
1232static inline void btrfs_descending_sort_devices(
1233					struct btrfs_device_info *devices,
1234					size_t nr_devices)
1235{
1236	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1237	     btrfs_cmp_device_free_bytes, NULL);
1238}
1239
1240/*
1241 * The helper to calc the free space on the devices that can be used to store
1242 * file data.
1243 */
1244static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
 
1245{
1246	struct btrfs_fs_info *fs_info = root->fs_info;
1247	struct btrfs_device_info *devices_info;
1248	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1249	struct btrfs_device *device;
1250	u64 skip_space;
1251	u64 type;
1252	u64 avail_space;
1253	u64 used_space;
1254	u64 min_stripe_size;
1255	int min_stripes = 1, num_stripes = 1;
1256	int i = 0, nr_devices;
1257	int ret;
1258
 
 
 
 
1259	nr_devices = fs_info->fs_devices->open_devices;
1260	BUG_ON(!nr_devices);
 
 
 
 
 
 
 
 
1261
1262	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1263			       GFP_NOFS);
1264	if (!devices_info)
1265		return -ENOMEM;
1266
1267	/* calc min stripe number for data space alloction */
1268	type = btrfs_get_alloc_profile(root, 1);
1269	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1270		min_stripes = 2;
 
1271		num_stripes = nr_devices;
1272	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1273		min_stripes = 2;
1274		num_stripes = 2;
1275	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1276		min_stripes = 4;
1277		num_stripes = 4;
1278	}
1279
1280	if (type & BTRFS_BLOCK_GROUP_DUP)
1281		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1282	else
1283		min_stripe_size = BTRFS_STRIPE_LEN;
1284
1285	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1286		if (!device->in_fs_metadata || !device->bdev)
 
 
 
 
1287			continue;
1288
 
 
 
1289		avail_space = device->total_bytes - device->bytes_used;
1290
1291		/* align with stripe_len */
1292		do_div(avail_space, BTRFS_STRIPE_LEN);
1293		avail_space *= BTRFS_STRIPE_LEN;
1294
1295		/*
1296		 * In order to avoid overwritting the superblock on the drive,
1297		 * btrfs starts at an offset of at least 1MB when doing chunk
1298		 * allocation.
1299		 */
1300		skip_space = 1024 * 1024;
1301
1302		/* user can set the offset in fs_info->alloc_start. */
1303		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1304		    device->total_bytes)
1305			skip_space = max(fs_info->alloc_start, skip_space);
1306
1307		/*
1308		 * btrfs can not use the free space in [0, skip_space - 1],
1309		 * we must subtract it from the total. In order to implement
1310		 * it, we account the used space in this range first.
1311		 */
1312		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1313						     &used_space);
1314		if (ret) {
1315			kfree(devices_info);
1316			return ret;
1317		}
1318
1319		/* calc the free space in [0, skip_space - 1] */
1320		skip_space -= used_space;
1321
1322		/*
1323		 * we can use the free space in [0, skip_space - 1], subtract
1324		 * it from the total.
1325		 */
1326		if (avail_space && avail_space >= skip_space)
1327			avail_space -= skip_space;
1328		else
1329			avail_space = 0;
1330
1331		if (avail_space < min_stripe_size)
1332			continue;
1333
1334		devices_info[i].dev = device;
1335		devices_info[i].max_avail = avail_space;
1336
1337		i++;
1338	}
 
1339
1340	nr_devices = i;
1341
1342	btrfs_descending_sort_devices(devices_info, nr_devices);
1343
1344	i = nr_devices - 1;
1345	avail_space = 0;
1346	while (nr_devices >= min_stripes) {
1347		if (num_stripes > nr_devices)
1348			num_stripes = nr_devices;
1349
1350		if (devices_info[i].max_avail >= min_stripe_size) {
1351			int j;
1352			u64 alloc_size;
1353
1354			avail_space += devices_info[i].max_avail * num_stripes;
1355			alloc_size = devices_info[i].max_avail;
1356			for (j = i + 1 - num_stripes; j <= i; j++)
1357				devices_info[j].max_avail -= alloc_size;
1358		}
1359		i--;
1360		nr_devices--;
1361	}
1362
1363	kfree(devices_info);
1364	*free_bytes = avail_space;
1365	return 0;
1366}
1367
 
 
 
 
 
 
 
 
 
 
 
 
 
1368static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1369{
1370	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1371	struct btrfs_super_block *disk_super = fs_info->super_copy;
1372	struct list_head *head = &fs_info->space_info;
1373	struct btrfs_space_info *found;
1374	u64 total_used = 0;
1375	u64 total_free_data = 0;
1376	int bits = dentry->d_sb->s_blocksize_bits;
1377	__be32 *fsid = (__be32 *)fs_info->fsid;
 
 
 
1378	int ret;
 
 
1379
1380	/* holding chunk_muext to avoid allocating new chunks */
1381	mutex_lock(&fs_info->chunk_mutex);
1382	rcu_read_lock();
1383	list_for_each_entry_rcu(found, head, list) {
1384		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
 
 
1385			total_free_data += found->disk_total - found->disk_used;
1386			total_free_data -=
1387				btrfs_account_ro_block_groups_free_space(found);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388		}
1389
1390		total_used += found->disk_used;
1391	}
1392	rcu_read_unlock();
1393
1394	buf->f_namelen = BTRFS_NAME_LEN;
1395	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1396	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1397	buf->f_bsize = dentry->d_sb->s_blocksize;
1398	buf->f_type = BTRFS_SUPER_MAGIC;
1399	buf->f_bavail = total_free_data;
1400	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1401	if (ret) {
1402		mutex_unlock(&fs_info->chunk_mutex);
 
 
 
 
 
 
 
1403		return ret;
1404	}
1405	buf->f_bavail += total_free_data;
1406	buf->f_bavail = buf->f_bavail >> bits;
1407	mutex_unlock(&fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408
1409	/* We treat it as constant endianness (it doesn't matter _which_)
1410	   because we want the fsid to come out the same whether mounted
1411	   on a big-endian or little-endian host */
1412	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1413	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1414	/* Mask in the root object ID too, to disambiguate subvols */
1415	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1416	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418	return 0;
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421static void btrfs_kill_super(struct super_block *sb)
1422{
1423	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1424	kill_anon_super(sb);
1425	free_fs_info(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426}
1427
1428static struct file_system_type btrfs_fs_type = {
1429	.owner		= THIS_MODULE,
1430	.name		= "btrfs",
1431	.mount		= btrfs_mount,
1432	.kill_sb	= btrfs_kill_super,
1433	.fs_flags	= FS_REQUIRES_DEV,
1434};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435
1436/*
1437 * used by btrfsctl to scan devices when no FS is mounted
1438 */
1439static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1440				unsigned long arg)
1441{
1442	struct btrfs_ioctl_vol_args *vol;
1443	struct btrfs_fs_devices *fs_devices;
 
1444	int ret = -ENOTTY;
1445
1446	if (!capable(CAP_SYS_ADMIN))
1447		return -EPERM;
1448
1449	vol = memdup_user((void __user *)arg, sizeof(*vol));
1450	if (IS_ERR(vol))
1451		return PTR_ERR(vol);
 
 
 
1452
1453	switch (cmd) {
1454	case BTRFS_IOC_SCAN_DEV:
1455		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1456					    &btrfs_fs_type, &fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457		break;
1458	}
1459
 
1460	kfree(vol);
1461	return ret;
1462}
1463
1464static int btrfs_freeze(struct super_block *sb)
1465{
1466	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1467	mutex_lock(&fs_info->transaction_kthread_mutex);
1468	mutex_lock(&fs_info->cleaner_mutex);
1469	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470}
1471
1472static int btrfs_unfreeze(struct super_block *sb)
1473{
1474	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1475	mutex_unlock(&fs_info->cleaner_mutex);
1476	mutex_unlock(&fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	return 0;
1478}
1479
1480static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1481{
1482	int ret;
 
 
 
1483
1484	ret = btrfs_dirty_inode(inode);
1485	if (ret)
1486		printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1487				   "error %d\n", btrfs_ino(inode), ret);
1488}
1489
1490static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1491{
1492	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1493	struct btrfs_fs_devices *cur_devices;
1494	struct btrfs_device *dev, *first_dev = NULL;
1495	struct list_head *head;
1496	struct rcu_string *name;
1497
1498	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1499	cur_devices = fs_info->fs_devices;
1500	while (cur_devices) {
1501		head = &cur_devices->devices;
1502		list_for_each_entry(dev, head, dev_list) {
1503			if (!first_dev || dev->devid < first_dev->devid)
1504				first_dev = dev;
1505		}
1506		cur_devices = cur_devices->seed;
1507	}
1508
1509	if (first_dev) {
1510		rcu_read_lock();
1511		name = rcu_dereference(first_dev->name);
1512		seq_escape(m, name->str, " \t\n\\");
1513		rcu_read_unlock();
1514	} else {
1515		WARN_ON(1);
1516	}
1517	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1518	return 0;
1519}
1520
1521static const struct super_operations btrfs_super_ops = {
1522	.drop_inode	= btrfs_drop_inode,
1523	.evict_inode	= btrfs_evict_inode,
1524	.put_super	= btrfs_put_super,
1525	.sync_fs	= btrfs_sync_fs,
1526	.show_options	= btrfs_show_options,
1527	.show_devname	= btrfs_show_devname,
1528	.write_inode	= btrfs_write_inode,
1529	.dirty_inode	= btrfs_fs_dirty_inode,
1530	.alloc_inode	= btrfs_alloc_inode,
1531	.destroy_inode	= btrfs_destroy_inode,
 
1532	.statfs		= btrfs_statfs,
1533	.remount_fs	= btrfs_remount,
1534	.freeze_fs	= btrfs_freeze,
1535	.unfreeze_fs	= btrfs_unfreeze,
 
 
1536};
1537
1538static const struct file_operations btrfs_ctl_fops = {
 
1539	.unlocked_ioctl	 = btrfs_control_ioctl,
1540	.compat_ioctl = btrfs_control_ioctl,
1541	.owner	 = THIS_MODULE,
1542	.llseek = noop_llseek,
1543};
1544
1545static struct miscdevice btrfs_misc = {
1546	.minor		= BTRFS_MINOR,
1547	.name		= "btrfs-control",
1548	.fops		= &btrfs_ctl_fops
1549};
1550
1551MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1552MODULE_ALIAS("devname:btrfs-control");
1553
1554static int btrfs_interface_init(void)
1555{
1556	return misc_register(&btrfs_misc);
1557}
1558
1559static void btrfs_interface_exit(void)
1560{
1561	if (misc_deregister(&btrfs_misc) < 0)
1562		printk(KERN_INFO "misc_deregister failed for control device");
1563}
1564
1565static int __init init_btrfs_fs(void)
1566{
1567	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	err = btrfs_init_sysfs();
1570	if (err)
1571		return err;
 
1572
1573	btrfs_init_compress();
 
 
 
1574
1575	err = btrfs_init_cachep();
1576	if (err)
1577		goto free_compress;
 
 
 
1578
1579	err = extent_io_init();
1580	if (err)
1581		goto free_cachep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582
1583	err = extent_map_init();
1584	if (err)
1585		goto free_extent_io;
1586
1587	err = btrfs_delayed_inode_init();
1588	if (err)
1589		goto free_extent_map;
1590
1591	err = btrfs_interface_init();
1592	if (err)
1593		goto free_delayed_inode;
1594
1595	err = register_filesystem(&btrfs_fs_type);
1596	if (err)
1597		goto unregister_ioctl;
1598
1599	btrfs_init_lockdep();
1600
1601	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1602	return 0;
1603
1604unregister_ioctl:
1605	btrfs_interface_exit();
1606free_delayed_inode:
1607	btrfs_delayed_inode_exit();
1608free_extent_map:
1609	extent_map_exit();
1610free_extent_io:
1611	extent_io_exit();
1612free_cachep:
1613	btrfs_destroy_cachep();
1614free_compress:
1615	btrfs_exit_compress();
1616	btrfs_exit_sysfs();
1617	return err;
1618}
1619
1620static void __exit exit_btrfs_fs(void)
1621{
1622	btrfs_destroy_cachep();
1623	btrfs_delayed_inode_exit();
1624	extent_map_exit();
1625	extent_io_exit();
1626	btrfs_interface_exit();
1627	unregister_filesystem(&btrfs_fs_type);
1628	btrfs_exit_sysfs();
1629	btrfs_cleanup_fs_uuids();
1630	btrfs_exit_compress();
1631}
1632
1633module_init(init_btrfs_fs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634module_exit(exit_btrfs_fs)
1635
 
1636MODULE_LICENSE("GPL");