Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166}
167
168static void free_devices(struct list_head *devices, struct mapped_device *md)
169{
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180}
181
182static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
184void dm_table_destroy(struct dm_table *t)
185{
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213}
214
215/*
216 * See if we've already got a device in the list.
217 */
218static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219{
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227}
228
229/*
230 * If possible, this checks an area of a destination device is invalid.
231 */
232static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234{
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (start & (zone_sectors - 1)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (len & (zone_sectors - 1)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306}
307
308/*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
314static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316{
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331}
332
333/*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
337int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338{
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351#ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354#endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360}
361EXPORT_SYMBOL(dm_devt_from_path);
362
363/*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
367int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369{
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418}
419EXPORT_SYMBOL(dm_get_device);
420
421static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423{
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 if (blk_stack_limits(limits, &q->limits,
435 get_start_sect(bdev) + start) < 0)
436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 "physical_block_size=%u, logical_block_size=%u, "
438 "alignment_offset=%u, start=%llu",
439 dm_device_name(ti->table->md), bdev,
440 q->limits.physical_block_size,
441 q->limits.logical_block_size,
442 q->limits.alignment_offset,
443 (unsigned long long) start << SECTOR_SHIFT);
444
445 /*
446 * Only stack the integrity profile if the target doesn't have native
447 * integrity support.
448 */
449 if (!dm_target_has_integrity(ti->type))
450 queue_limits_stack_integrity_bdev(limits, bdev);
451 return 0;
452}
453
454/*
455 * Decrement a device's use count and remove it if necessary.
456 */
457void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458{
459 int found = 0;
460 struct dm_table *t = ti->table;
461 struct list_head *devices = &t->devices;
462 struct dm_dev_internal *dd;
463
464 down_write(&t->devices_lock);
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMERR("%s: device %s not in table devices list",
474 dm_device_name(t->md), d->name);
475 goto unlock_ret;
476 }
477 if (refcount_dec_and_test(&dd->count)) {
478 dm_put_table_device(t->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482
483unlock_ret:
484 up_write(&t->devices_lock);
485}
486EXPORT_SYMBOL(dm_put_device);
487
488/*
489 * Checks to see if the target joins onto the end of the table.
490 */
491static int adjoin(struct dm_table *t, struct dm_target *ti)
492{
493 struct dm_target *prev;
494
495 if (!t->num_targets)
496 return !ti->begin;
497
498 prev = &t->targets[t->num_targets - 1];
499 return (ti->begin == (prev->begin + prev->len));
500}
501
502/*
503 * Used to dynamically allocate the arg array.
504 *
505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506 * process messages even if some device is suspended. These messages have a
507 * small fixed number of arguments.
508 *
509 * On the other hand, dm-switch needs to process bulk data using messages and
510 * excessive use of GFP_NOIO could cause trouble.
511 */
512static char **realloc_argv(unsigned int *size, char **old_argv)
513{
514 char **argv;
515 unsigned int new_size;
516 gfp_t gfp;
517
518 if (*size) {
519 new_size = *size * 2;
520 gfp = GFP_KERNEL;
521 } else {
522 new_size = 8;
523 gfp = GFP_NOIO;
524 }
525 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 if (argv && old_argv) {
527 memcpy(argv, old_argv, *size * sizeof(*argv));
528 *size = new_size;
529 }
530
531 kfree(old_argv);
532 return argv;
533}
534
535/*
536 * Destructively splits up the argument list to pass to ctr.
537 */
538int dm_split_args(int *argc, char ***argvp, char *input)
539{
540 char *start, *end = input, *out, **argv = NULL;
541 unsigned int array_size = 0;
542
543 *argc = 0;
544
545 if (!input) {
546 *argvp = NULL;
547 return 0;
548 }
549
550 argv = realloc_argv(&array_size, argv);
551 if (!argv)
552 return -ENOMEM;
553
554 while (1) {
555 /* Skip whitespace */
556 start = skip_spaces(end);
557
558 if (!*start)
559 break; /* success, we hit the end */
560
561 /* 'out' is used to remove any back-quotes */
562 end = out = start;
563 while (*end) {
564 /* Everything apart from '\0' can be quoted */
565 if (*end == '\\' && *(end + 1)) {
566 *out++ = *(end + 1);
567 end += 2;
568 continue;
569 }
570
571 if (isspace(*end))
572 break; /* end of token */
573
574 *out++ = *end++;
575 }
576
577 /* have we already filled the array ? */
578 if ((*argc + 1) > array_size) {
579 argv = realloc_argv(&array_size, argv);
580 if (!argv)
581 return -ENOMEM;
582 }
583
584 /* we know this is whitespace */
585 if (*end)
586 end++;
587
588 /* terminate the string and put it in the array */
589 *out = '\0';
590 argv[*argc] = start;
591 (*argc)++;
592 }
593
594 *argvp = argv;
595 return 0;
596}
597
598static void dm_set_stacking_limits(struct queue_limits *limits)
599{
600 blk_set_stacking_limits(limits);
601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602}
603
604/*
605 * Impose necessary and sufficient conditions on a devices's table such
606 * that any incoming bio which respects its logical_block_size can be
607 * processed successfully. If it falls across the boundary between
608 * two or more targets, the size of each piece it gets split into must
609 * be compatible with the logical_block_size of the target processing it.
610 */
611static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 struct queue_limits *limits)
613{
614 /*
615 * This function uses arithmetic modulo the logical_block_size
616 * (in units of 512-byte sectors).
617 */
618 unsigned short device_logical_block_size_sects =
619 limits->logical_block_size >> SECTOR_SHIFT;
620
621 /*
622 * Offset of the start of the next table entry, mod logical_block_size.
623 */
624 unsigned short next_target_start = 0;
625
626 /*
627 * Given an aligned bio that extends beyond the end of a
628 * target, how many sectors must the next target handle?
629 */
630 unsigned short remaining = 0;
631
632 struct dm_target *ti;
633 struct queue_limits ti_limits;
634 unsigned int i;
635
636 /*
637 * Check each entry in the table in turn.
638 */
639 for (i = 0; i < t->num_targets; i++) {
640 ti = dm_table_get_target(t, i);
641
642 dm_set_stacking_limits(&ti_limits);
643
644 /* combine all target devices' limits */
645 if (ti->type->iterate_devices)
646 ti->type->iterate_devices(ti, dm_set_device_limits,
647 &ti_limits);
648
649 /*
650 * If the remaining sectors fall entirely within this
651 * table entry are they compatible with its logical_block_size?
652 */
653 if (remaining < ti->len &&
654 remaining & ((ti_limits.logical_block_size >>
655 SECTOR_SHIFT) - 1))
656 break; /* Error */
657
658 next_target_start =
659 (unsigned short) ((next_target_start + ti->len) &
660 (device_logical_block_size_sects - 1));
661 remaining = next_target_start ?
662 device_logical_block_size_sects - next_target_start : 0;
663 }
664
665 if (remaining) {
666 DMERR("%s: table line %u (start sect %llu len %llu) "
667 "not aligned to h/w logical block size %u",
668 dm_device_name(t->md), i,
669 (unsigned long long) ti->begin,
670 (unsigned long long) ti->len,
671 limits->logical_block_size);
672 return -EINVAL;
673 }
674
675 return 0;
676}
677
678int dm_table_add_target(struct dm_table *t, const char *type,
679 sector_t start, sector_t len, char *params)
680{
681 int r = -EINVAL, argc;
682 char **argv;
683 struct dm_target *ti;
684
685 if (t->singleton) {
686 DMERR("%s: target type %s must appear alone in table",
687 dm_device_name(t->md), t->targets->type->name);
688 return -EINVAL;
689 }
690
691 BUG_ON(t->num_targets >= t->num_allocated);
692
693 ti = t->targets + t->num_targets;
694 memset(ti, 0, sizeof(*ti));
695
696 if (!len) {
697 DMERR("%s: zero-length target", dm_device_name(t->md));
698 return -EINVAL;
699 }
700
701 ti->type = dm_get_target_type(type);
702 if (!ti->type) {
703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
704 return -EINVAL;
705 }
706
707 if (dm_target_needs_singleton(ti->type)) {
708 if (t->num_targets) {
709 ti->error = "singleton target type must appear alone in table";
710 goto bad;
711 }
712 t->singleton = true;
713 }
714
715 if (dm_target_always_writeable(ti->type) &&
716 !(t->mode & BLK_OPEN_WRITE)) {
717 ti->error = "target type may not be included in a read-only table";
718 goto bad;
719 }
720
721 if (t->immutable_target_type) {
722 if (t->immutable_target_type != ti->type) {
723 ti->error = "immutable target type cannot be mixed with other target types";
724 goto bad;
725 }
726 } else if (dm_target_is_immutable(ti->type)) {
727 if (t->num_targets) {
728 ti->error = "immutable target type cannot be mixed with other target types";
729 goto bad;
730 }
731 t->immutable_target_type = ti->type;
732 }
733
734 ti->table = t;
735 ti->begin = start;
736 ti->len = len;
737 ti->error = "Unknown error";
738
739 /*
740 * Does this target adjoin the previous one ?
741 */
742 if (!adjoin(t, ti)) {
743 ti->error = "Gap in table";
744 goto bad;
745 }
746
747 r = dm_split_args(&argc, &argv, params);
748 if (r) {
749 ti->error = "couldn't split parameters";
750 goto bad;
751 }
752
753 r = ti->type->ctr(ti, argc, argv);
754 kfree(argv);
755 if (r)
756 goto bad;
757
758 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
759
760 if (!ti->num_discard_bios && ti->discards_supported)
761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 dm_device_name(t->md), type);
763
764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
765 static_branch_enable(&swap_bios_enabled);
766
767 if (!ti->flush_bypasses_map)
768 t->flush_bypasses_map = false;
769
770 return 0;
771
772 bad:
773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
774 dm_put_target_type(ti->type);
775 return r;
776}
777
778/*
779 * Target argument parsing helpers.
780 */
781static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
782 unsigned int *value, char **error, unsigned int grouped)
783{
784 const char *arg_str = dm_shift_arg(arg_set);
785 char dummy;
786
787 if (!arg_str ||
788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789 (*value < arg->min) ||
790 (*value > arg->max) ||
791 (grouped && arg_set->argc < *value)) {
792 *error = arg->error;
793 return -EINVAL;
794 }
795
796 return 0;
797}
798
799int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
800 unsigned int *value, char **error)
801{
802 return validate_next_arg(arg, arg_set, value, error, 0);
803}
804EXPORT_SYMBOL(dm_read_arg);
805
806int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned int *value, char **error)
808{
809 return validate_next_arg(arg, arg_set, value, error, 1);
810}
811EXPORT_SYMBOL(dm_read_arg_group);
812
813const char *dm_shift_arg(struct dm_arg_set *as)
814{
815 char *r;
816
817 if (as->argc) {
818 as->argc--;
819 r = *as->argv;
820 as->argv++;
821 return r;
822 }
823
824 return NULL;
825}
826EXPORT_SYMBOL(dm_shift_arg);
827
828void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
829{
830 BUG_ON(as->argc < num_args);
831 as->argc -= num_args;
832 as->argv += num_args;
833}
834EXPORT_SYMBOL(dm_consume_args);
835
836static bool __table_type_bio_based(enum dm_queue_mode table_type)
837{
838 return (table_type == DM_TYPE_BIO_BASED ||
839 table_type == DM_TYPE_DAX_BIO_BASED);
840}
841
842static bool __table_type_request_based(enum dm_queue_mode table_type)
843{
844 return table_type == DM_TYPE_REQUEST_BASED;
845}
846
847void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
848{
849 t->type = type;
850}
851EXPORT_SYMBOL_GPL(dm_table_set_type);
852
853/* validate the dax capability of the target device span */
854static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
855 sector_t start, sector_t len, void *data)
856{
857 if (dev->dax_dev)
858 return false;
859
860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
861 return true;
862}
863
864/* Check devices support synchronous DAX */
865static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
866 sector_t start, sector_t len, void *data)
867{
868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
869}
870
871static bool dm_table_supports_dax(struct dm_table *t,
872 iterate_devices_callout_fn iterate_fn)
873{
874 /* Ensure that all targets support DAX. */
875 for (unsigned int i = 0; i < t->num_targets; i++) {
876 struct dm_target *ti = dm_table_get_target(t, i);
877
878 if (!ti->type->direct_access)
879 return false;
880
881 if (dm_target_is_wildcard(ti->type) ||
882 !ti->type->iterate_devices ||
883 ti->type->iterate_devices(ti, iterate_fn, NULL))
884 return false;
885 }
886
887 return true;
888}
889
890static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
891 sector_t start, sector_t len, void *data)
892{
893 struct block_device *bdev = dev->bdev;
894 struct request_queue *q = bdev_get_queue(bdev);
895
896 /* request-based cannot stack on partitions! */
897 if (bdev_is_partition(bdev))
898 return false;
899
900 return queue_is_mq(q);
901}
902
903static int dm_table_determine_type(struct dm_table *t)
904{
905 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
906 struct dm_target *ti;
907 struct list_head *devices = dm_table_get_devices(t);
908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
909
910 if (t->type != DM_TYPE_NONE) {
911 /* target already set the table's type */
912 if (t->type == DM_TYPE_BIO_BASED) {
913 /* possibly upgrade to a variant of bio-based */
914 goto verify_bio_based;
915 }
916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
917 goto verify_rq_based;
918 }
919
920 for (unsigned int i = 0; i < t->num_targets; i++) {
921 ti = dm_table_get_target(t, i);
922 if (dm_target_hybrid(ti))
923 hybrid = 1;
924 else if (dm_target_request_based(ti))
925 request_based = 1;
926 else
927 bio_based = 1;
928
929 if (bio_based && request_based) {
930 DMERR("Inconsistent table: different target types can't be mixed up");
931 return -EINVAL;
932 }
933 }
934
935 if (hybrid && !bio_based && !request_based) {
936 /*
937 * The targets can work either way.
938 * Determine the type from the live device.
939 * Default to bio-based if device is new.
940 */
941 if (__table_type_request_based(live_md_type))
942 request_based = 1;
943 else
944 bio_based = 1;
945 }
946
947 if (bio_based) {
948verify_bio_based:
949 /* We must use this table as bio-based */
950 t->type = DM_TYPE_BIO_BASED;
951 if (dm_table_supports_dax(t, device_not_dax_capable) ||
952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
953 t->type = DM_TYPE_DAX_BIO_BASED;
954 }
955 return 0;
956 }
957
958 BUG_ON(!request_based); /* No targets in this table */
959
960 t->type = DM_TYPE_REQUEST_BASED;
961
962verify_rq_based:
963 /*
964 * Request-based dm supports only tables that have a single target now.
965 * To support multiple targets, request splitting support is needed,
966 * and that needs lots of changes in the block-layer.
967 * (e.g. request completion process for partial completion.)
968 */
969 if (t->num_targets > 1) {
970 DMERR("request-based DM doesn't support multiple targets");
971 return -EINVAL;
972 }
973
974 if (list_empty(devices)) {
975 int srcu_idx;
976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
977
978 /* inherit live table's type */
979 if (live_table)
980 t->type = live_table->type;
981 dm_put_live_table(t->md, srcu_idx);
982 return 0;
983 }
984
985 ti = dm_table_get_immutable_target(t);
986 if (!ti) {
987 DMERR("table load rejected: immutable target is required");
988 return -EINVAL;
989 } else if (ti->max_io_len) {
990 DMERR("table load rejected: immutable target that splits IO is not supported");
991 return -EINVAL;
992 }
993
994 /* Non-request-stackable devices can't be used for request-based dm */
995 if (!ti->type->iterate_devices ||
996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
997 DMERR("table load rejected: including non-request-stackable devices");
998 return -EINVAL;
999 }
1000
1001 return 0;
1002}
1003
1004enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005{
1006 return t->type;
1007}
1008
1009struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010{
1011 return t->immutable_target_type;
1012}
1013
1014struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015{
1016 /* Immutable target is implicitly a singleton */
1017 if (t->num_targets > 1 ||
1018 !dm_target_is_immutable(t->targets[0].type))
1019 return NULL;
1020
1021 return t->targets;
1022}
1023
1024struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025{
1026 for (unsigned int i = 0; i < t->num_targets; i++) {
1027 struct dm_target *ti = dm_table_get_target(t, i);
1028
1029 if (dm_target_is_wildcard(ti->type))
1030 return ti;
1031 }
1032
1033 return NULL;
1034}
1035
1036bool dm_table_request_based(struct dm_table *t)
1037{
1038 return __table_type_request_based(dm_table_get_type(t));
1039}
1040
1041static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1042{
1043 enum dm_queue_mode type = dm_table_get_type(t);
1044 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1045 unsigned int min_pool_size = 0, pool_size;
1046 struct dm_md_mempools *pools;
1047 unsigned int bioset_flags = 0;
1048 bool mempool_needs_integrity = t->integrity_supported;
1049
1050 if (unlikely(type == DM_TYPE_NONE)) {
1051 DMERR("no table type is set, can't allocate mempools");
1052 return -EINVAL;
1053 }
1054
1055 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1056 if (!pools)
1057 return -ENOMEM;
1058
1059 if (type == DM_TYPE_REQUEST_BASED) {
1060 pool_size = dm_get_reserved_rq_based_ios();
1061 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1062 goto init_bs;
1063 }
1064
1065 if (md->queue->limits.features & BLK_FEAT_POLL)
1066 bioset_flags |= BIOSET_PERCPU_CACHE;
1067
1068 for (unsigned int i = 0; i < t->num_targets; i++) {
1069 struct dm_target *ti = dm_table_get_target(t, i);
1070
1071 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1072 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1073
1074 mempool_needs_integrity |= ti->mempool_needs_integrity;
1075 }
1076 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1077 front_pad = roundup(per_io_data_size,
1078 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1079
1080 io_front_pad = roundup(per_io_data_size,
1081 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1082 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1083 goto out_free_pools;
1084 if (mempool_needs_integrity &&
1085 bioset_integrity_create(&pools->io_bs, pool_size))
1086 goto out_free_pools;
1087init_bs:
1088 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1089 goto out_free_pools;
1090 if (mempool_needs_integrity &&
1091 bioset_integrity_create(&pools->bs, pool_size))
1092 goto out_free_pools;
1093
1094 t->mempools = pools;
1095 return 0;
1096
1097out_free_pools:
1098 dm_free_md_mempools(pools);
1099 return -ENOMEM;
1100}
1101
1102static int setup_indexes(struct dm_table *t)
1103{
1104 int i;
1105 unsigned int total = 0;
1106 sector_t *indexes;
1107
1108 /* allocate the space for *all* the indexes */
1109 for (i = t->depth - 2; i >= 0; i--) {
1110 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1111 total += t->counts[i];
1112 }
1113
1114 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1115 if (!indexes)
1116 return -ENOMEM;
1117
1118 /* set up internal nodes, bottom-up */
1119 for (i = t->depth - 2; i >= 0; i--) {
1120 t->index[i] = indexes;
1121 indexes += (KEYS_PER_NODE * t->counts[i]);
1122 setup_btree_index(i, t);
1123 }
1124
1125 return 0;
1126}
1127
1128/*
1129 * Builds the btree to index the map.
1130 */
1131static int dm_table_build_index(struct dm_table *t)
1132{
1133 int r = 0;
1134 unsigned int leaf_nodes;
1135
1136 /* how many indexes will the btree have ? */
1137 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1138 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1139
1140 /* leaf layer has already been set up */
1141 t->counts[t->depth - 1] = leaf_nodes;
1142 t->index[t->depth - 1] = t->highs;
1143
1144 if (t->depth >= 2)
1145 r = setup_indexes(t);
1146
1147 return r;
1148}
1149
1150#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1151
1152struct dm_crypto_profile {
1153 struct blk_crypto_profile profile;
1154 struct mapped_device *md;
1155};
1156
1157static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1158 sector_t start, sector_t len, void *data)
1159{
1160 const struct blk_crypto_key *key = data;
1161
1162 blk_crypto_evict_key(dev->bdev, key);
1163 return 0;
1164}
1165
1166/*
1167 * When an inline encryption key is evicted from a device-mapper device, evict
1168 * it from all the underlying devices.
1169 */
1170static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1171 const struct blk_crypto_key *key, unsigned int slot)
1172{
1173 struct mapped_device *md =
1174 container_of(profile, struct dm_crypto_profile, profile)->md;
1175 struct dm_table *t;
1176 int srcu_idx;
1177
1178 t = dm_get_live_table(md, &srcu_idx);
1179 if (!t)
1180 return 0;
1181
1182 for (unsigned int i = 0; i < t->num_targets; i++) {
1183 struct dm_target *ti = dm_table_get_target(t, i);
1184
1185 if (!ti->type->iterate_devices)
1186 continue;
1187 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1188 (void *)key);
1189 }
1190
1191 dm_put_live_table(md, srcu_idx);
1192 return 0;
1193}
1194
1195static int
1196device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1197 sector_t start, sector_t len, void *data)
1198{
1199 struct blk_crypto_profile *parent = data;
1200 struct blk_crypto_profile *child =
1201 bdev_get_queue(dev->bdev)->crypto_profile;
1202
1203 blk_crypto_intersect_capabilities(parent, child);
1204 return 0;
1205}
1206
1207void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1208{
1209 struct dm_crypto_profile *dmcp = container_of(profile,
1210 struct dm_crypto_profile,
1211 profile);
1212
1213 if (!profile)
1214 return;
1215
1216 blk_crypto_profile_destroy(profile);
1217 kfree(dmcp);
1218}
1219
1220static void dm_table_destroy_crypto_profile(struct dm_table *t)
1221{
1222 dm_destroy_crypto_profile(t->crypto_profile);
1223 t->crypto_profile = NULL;
1224}
1225
1226/*
1227 * Constructs and initializes t->crypto_profile with a crypto profile that
1228 * represents the common set of crypto capabilities of the devices described by
1229 * the dm_table. However, if the constructed crypto profile doesn't support all
1230 * crypto capabilities that are supported by the current mapped_device, it
1231 * returns an error instead, since we don't support removing crypto capabilities
1232 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1233 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1234 */
1235static int dm_table_construct_crypto_profile(struct dm_table *t)
1236{
1237 struct dm_crypto_profile *dmcp;
1238 struct blk_crypto_profile *profile;
1239 unsigned int i;
1240 bool empty_profile = true;
1241
1242 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1243 if (!dmcp)
1244 return -ENOMEM;
1245 dmcp->md = t->md;
1246
1247 profile = &dmcp->profile;
1248 blk_crypto_profile_init(profile, 0);
1249 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1250 profile->max_dun_bytes_supported = UINT_MAX;
1251 memset(profile->modes_supported, 0xFF,
1252 sizeof(profile->modes_supported));
1253
1254 for (i = 0; i < t->num_targets; i++) {
1255 struct dm_target *ti = dm_table_get_target(t, i);
1256
1257 if (!dm_target_passes_crypto(ti->type)) {
1258 blk_crypto_intersect_capabilities(profile, NULL);
1259 break;
1260 }
1261 if (!ti->type->iterate_devices)
1262 continue;
1263 ti->type->iterate_devices(ti,
1264 device_intersect_crypto_capabilities,
1265 profile);
1266 }
1267
1268 if (t->md->queue &&
1269 !blk_crypto_has_capabilities(profile,
1270 t->md->queue->crypto_profile)) {
1271 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1272 dm_destroy_crypto_profile(profile);
1273 return -EINVAL;
1274 }
1275
1276 /*
1277 * If the new profile doesn't actually support any crypto capabilities,
1278 * we may as well represent it with a NULL profile.
1279 */
1280 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1281 if (profile->modes_supported[i]) {
1282 empty_profile = false;
1283 break;
1284 }
1285 }
1286
1287 if (empty_profile) {
1288 dm_destroy_crypto_profile(profile);
1289 profile = NULL;
1290 }
1291
1292 /*
1293 * t->crypto_profile is only set temporarily while the table is being
1294 * set up, and it gets set to NULL after the profile has been
1295 * transferred to the request_queue.
1296 */
1297 t->crypto_profile = profile;
1298
1299 return 0;
1300}
1301
1302static void dm_update_crypto_profile(struct request_queue *q,
1303 struct dm_table *t)
1304{
1305 if (!t->crypto_profile)
1306 return;
1307
1308 /* Make the crypto profile less restrictive. */
1309 if (!q->crypto_profile) {
1310 blk_crypto_register(t->crypto_profile, q);
1311 } else {
1312 blk_crypto_update_capabilities(q->crypto_profile,
1313 t->crypto_profile);
1314 dm_destroy_crypto_profile(t->crypto_profile);
1315 }
1316 t->crypto_profile = NULL;
1317}
1318
1319#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1320
1321static int dm_table_construct_crypto_profile(struct dm_table *t)
1322{
1323 return 0;
1324}
1325
1326void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1327{
1328}
1329
1330static void dm_table_destroy_crypto_profile(struct dm_table *t)
1331{
1332}
1333
1334static void dm_update_crypto_profile(struct request_queue *q,
1335 struct dm_table *t)
1336{
1337}
1338
1339#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1340
1341/*
1342 * Prepares the table for use by building the indices,
1343 * setting the type, and allocating mempools.
1344 */
1345int dm_table_complete(struct dm_table *t)
1346{
1347 int r;
1348
1349 r = dm_table_determine_type(t);
1350 if (r) {
1351 DMERR("unable to determine table type");
1352 return r;
1353 }
1354
1355 r = dm_table_build_index(t);
1356 if (r) {
1357 DMERR("unable to build btrees");
1358 return r;
1359 }
1360
1361 r = dm_table_construct_crypto_profile(t);
1362 if (r) {
1363 DMERR("could not construct crypto profile.");
1364 return r;
1365 }
1366
1367 r = dm_table_alloc_md_mempools(t, t->md);
1368 if (r)
1369 DMERR("unable to allocate mempools");
1370
1371 return r;
1372}
1373
1374static DEFINE_MUTEX(_event_lock);
1375void dm_table_event_callback(struct dm_table *t,
1376 void (*fn)(void *), void *context)
1377{
1378 mutex_lock(&_event_lock);
1379 t->event_fn = fn;
1380 t->event_context = context;
1381 mutex_unlock(&_event_lock);
1382}
1383
1384void dm_table_event(struct dm_table *t)
1385{
1386 mutex_lock(&_event_lock);
1387 if (t->event_fn)
1388 t->event_fn(t->event_context);
1389 mutex_unlock(&_event_lock);
1390}
1391EXPORT_SYMBOL(dm_table_event);
1392
1393inline sector_t dm_table_get_size(struct dm_table *t)
1394{
1395 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1396}
1397EXPORT_SYMBOL(dm_table_get_size);
1398
1399/*
1400 * Search the btree for the correct target.
1401 *
1402 * Caller should check returned pointer for NULL
1403 * to trap I/O beyond end of device.
1404 */
1405struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1406{
1407 unsigned int l, n = 0, k = 0;
1408 sector_t *node;
1409
1410 if (unlikely(sector >= dm_table_get_size(t)))
1411 return NULL;
1412
1413 for (l = 0; l < t->depth; l++) {
1414 n = get_child(n, k);
1415 node = get_node(t, l, n);
1416
1417 for (k = 0; k < KEYS_PER_NODE; k++)
1418 if (node[k] >= sector)
1419 break;
1420 }
1421
1422 return &t->targets[(KEYS_PER_NODE * n) + k];
1423}
1424
1425/*
1426 * type->iterate_devices() should be called when the sanity check needs to
1427 * iterate and check all underlying data devices. iterate_devices() will
1428 * iterate all underlying data devices until it encounters a non-zero return
1429 * code, returned by whether the input iterate_devices_callout_fn, or
1430 * iterate_devices() itself internally.
1431 *
1432 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1433 * iterate multiple underlying devices internally, in which case a non-zero
1434 * return code returned by iterate_devices_callout_fn will stop the iteration
1435 * in advance.
1436 *
1437 * Cases requiring _any_ underlying device supporting some kind of attribute,
1438 * should use the iteration structure like dm_table_any_dev_attr(), or call
1439 * it directly. @func should handle semantics of positive examples, e.g.
1440 * capable of something.
1441 *
1442 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1443 * should use the iteration structure like dm_table_supports_nowait() or
1444 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1445 * uses an @anti_func that handle semantics of counter examples, e.g. not
1446 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1447 */
1448static bool dm_table_any_dev_attr(struct dm_table *t,
1449 iterate_devices_callout_fn func, void *data)
1450{
1451 for (unsigned int i = 0; i < t->num_targets; i++) {
1452 struct dm_target *ti = dm_table_get_target(t, i);
1453
1454 if (ti->type->iterate_devices &&
1455 ti->type->iterate_devices(ti, func, data))
1456 return true;
1457 }
1458
1459 return false;
1460}
1461
1462static int count_device(struct dm_target *ti, struct dm_dev *dev,
1463 sector_t start, sector_t len, void *data)
1464{
1465 unsigned int *num_devices = data;
1466
1467 (*num_devices)++;
1468
1469 return 0;
1470}
1471
1472/*
1473 * Check whether a table has no data devices attached using each
1474 * target's iterate_devices method.
1475 * Returns false if the result is unknown because a target doesn't
1476 * support iterate_devices.
1477 */
1478bool dm_table_has_no_data_devices(struct dm_table *t)
1479{
1480 for (unsigned int i = 0; i < t->num_targets; i++) {
1481 struct dm_target *ti = dm_table_get_target(t, i);
1482 unsigned int num_devices = 0;
1483
1484 if (!ti->type->iterate_devices)
1485 return false;
1486
1487 ti->type->iterate_devices(ti, count_device, &num_devices);
1488 if (num_devices)
1489 return false;
1490 }
1491
1492 return true;
1493}
1494
1495static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1496 sector_t start, sector_t len, void *data)
1497{
1498 bool *zoned = data;
1499
1500 return bdev_is_zoned(dev->bdev) != *zoned;
1501}
1502
1503static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1504 sector_t start, sector_t len, void *data)
1505{
1506 return bdev_is_zoned(dev->bdev);
1507}
1508
1509/*
1510 * Check the device zoned model based on the target feature flag. If the target
1511 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1512 * also accepted but all devices must have the same zoned model. If the target
1513 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1514 * zoned model with all zoned devices having the same zone size.
1515 */
1516static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1517{
1518 for (unsigned int i = 0; i < t->num_targets; i++) {
1519 struct dm_target *ti = dm_table_get_target(t, i);
1520
1521 /*
1522 * For the wildcard target (dm-error), if we do not have a
1523 * backing device, we must always return false. If we have a
1524 * backing device, the result must depend on checking zoned
1525 * model, like for any other target. So for this, check directly
1526 * if the target backing device is zoned as we get "false" when
1527 * dm-error was set without a backing device.
1528 */
1529 if (dm_target_is_wildcard(ti->type) &&
1530 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1531 return false;
1532
1533 if (dm_target_supports_zoned_hm(ti->type)) {
1534 if (!ti->type->iterate_devices ||
1535 ti->type->iterate_devices(ti, device_not_zoned,
1536 &zoned))
1537 return false;
1538 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1539 if (zoned)
1540 return false;
1541 }
1542 }
1543
1544 return true;
1545}
1546
1547static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1548 sector_t start, sector_t len, void *data)
1549{
1550 unsigned int *zone_sectors = data;
1551
1552 if (!bdev_is_zoned(dev->bdev))
1553 return 0;
1554 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1555}
1556
1557/*
1558 * Check consistency of zoned model and zone sectors across all targets. For
1559 * zone sectors, if the destination device is a zoned block device, it shall
1560 * have the specified zone_sectors.
1561 */
1562static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1563 unsigned int zone_sectors)
1564{
1565 if (!zoned)
1566 return 0;
1567
1568 if (!dm_table_supports_zoned(t, zoned)) {
1569 DMERR("%s: zoned model is not consistent across all devices",
1570 dm_device_name(t->md));
1571 return -EINVAL;
1572 }
1573
1574 /* Check zone size validity and compatibility */
1575 if (!zone_sectors || !is_power_of_2(zone_sectors))
1576 return -EINVAL;
1577
1578 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1579 DMERR("%s: zone sectors is not consistent across all zoned devices",
1580 dm_device_name(t->md));
1581 return -EINVAL;
1582 }
1583
1584 return 0;
1585}
1586
1587/*
1588 * Establish the new table's queue_limits and validate them.
1589 */
1590int dm_calculate_queue_limits(struct dm_table *t,
1591 struct queue_limits *limits)
1592{
1593 struct queue_limits ti_limits;
1594 unsigned int zone_sectors = 0;
1595 bool zoned = false;
1596
1597 dm_set_stacking_limits(limits);
1598
1599 t->integrity_supported = true;
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (!dm_target_passes_integrity(ti->type))
1604 t->integrity_supported = false;
1605 }
1606
1607 for (unsigned int i = 0; i < t->num_targets; i++) {
1608 struct dm_target *ti = dm_table_get_target(t, i);
1609
1610 dm_set_stacking_limits(&ti_limits);
1611
1612 if (!ti->type->iterate_devices) {
1613 /* Set I/O hints portion of queue limits */
1614 if (ti->type->io_hints)
1615 ti->type->io_hints(ti, &ti_limits);
1616 goto combine_limits;
1617 }
1618
1619 /*
1620 * Combine queue limits of all the devices this target uses.
1621 */
1622 ti->type->iterate_devices(ti, dm_set_device_limits,
1623 &ti_limits);
1624
1625 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1626 /*
1627 * After stacking all limits, validate all devices
1628 * in table support this zoned model and zone sectors.
1629 */
1630 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1631 zone_sectors = ti_limits.chunk_sectors;
1632 }
1633
1634 /* Set I/O hints portion of queue limits */
1635 if (ti->type->io_hints)
1636 ti->type->io_hints(ti, &ti_limits);
1637
1638 /*
1639 * Check each device area is consistent with the target's
1640 * overall queue limits.
1641 */
1642 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1643 &ti_limits))
1644 return -EINVAL;
1645
1646combine_limits:
1647 /*
1648 * Merge this target's queue limits into the overall limits
1649 * for the table.
1650 */
1651 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1652 DMWARN("%s: adding target device (start sect %llu len %llu) "
1653 "caused an alignment inconsistency",
1654 dm_device_name(t->md),
1655 (unsigned long long) ti->begin,
1656 (unsigned long long) ti->len);
1657
1658 if (t->integrity_supported ||
1659 dm_target_has_integrity(ti->type)) {
1660 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1661 DMWARN("%s: adding target device (start sect %llu len %llu) "
1662 "disabled integrity support due to incompatibility",
1663 dm_device_name(t->md),
1664 (unsigned long long) ti->begin,
1665 (unsigned long long) ti->len);
1666 t->integrity_supported = false;
1667 }
1668 }
1669 }
1670
1671 /*
1672 * Verify that the zoned model and zone sectors, as determined before
1673 * any .io_hints override, are the same across all devices in the table.
1674 * - this is especially relevant if .io_hints is emulating a disk-managed
1675 * zoned model on host-managed zoned block devices.
1676 * BUT...
1677 */
1678 if (limits->features & BLK_FEAT_ZONED) {
1679 /*
1680 * ...IF the above limits stacking determined a zoned model
1681 * validate that all of the table's devices conform to it.
1682 */
1683 zoned = limits->features & BLK_FEAT_ZONED;
1684 zone_sectors = limits->chunk_sectors;
1685 }
1686 if (validate_hardware_zoned(t, zoned, zone_sectors))
1687 return -EINVAL;
1688
1689 return validate_hardware_logical_block_alignment(t, limits);
1690}
1691
1692/*
1693 * Check if a target requires flush support even if none of the underlying
1694 * devices need it (e.g. to persist target-specific metadata).
1695 */
1696static bool dm_table_supports_flush(struct dm_table *t)
1697{
1698 for (unsigned int i = 0; i < t->num_targets; i++) {
1699 struct dm_target *ti = dm_table_get_target(t, i);
1700
1701 if (ti->num_flush_bios && ti->flush_supported)
1702 return true;
1703 }
1704
1705 return false;
1706}
1707
1708static int device_dax_write_cache_enabled(struct dm_target *ti,
1709 struct dm_dev *dev, sector_t start,
1710 sector_t len, void *data)
1711{
1712 struct dax_device *dax_dev = dev->dax_dev;
1713
1714 if (!dax_dev)
1715 return false;
1716
1717 if (dax_write_cache_enabled(dax_dev))
1718 return true;
1719 return false;
1720}
1721
1722static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1723 sector_t start, sector_t len, void *data)
1724{
1725 struct request_queue *q = bdev_get_queue(dev->bdev);
1726
1727 return !q->limits.max_write_zeroes_sectors;
1728}
1729
1730static bool dm_table_supports_write_zeroes(struct dm_table *t)
1731{
1732 for (unsigned int i = 0; i < t->num_targets; i++) {
1733 struct dm_target *ti = dm_table_get_target(t, i);
1734
1735 if (!ti->num_write_zeroes_bios)
1736 return false;
1737
1738 if (!ti->type->iterate_devices ||
1739 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1740 return false;
1741 }
1742
1743 return true;
1744}
1745
1746static bool dm_table_supports_nowait(struct dm_table *t)
1747{
1748 for (unsigned int i = 0; i < t->num_targets; i++) {
1749 struct dm_target *ti = dm_table_get_target(t, i);
1750
1751 if (!dm_target_supports_nowait(ti->type))
1752 return false;
1753 }
1754
1755 return true;
1756}
1757
1758static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1759 sector_t start, sector_t len, void *data)
1760{
1761 return !bdev_max_discard_sectors(dev->bdev);
1762}
1763
1764static bool dm_table_supports_discards(struct dm_table *t)
1765{
1766 for (unsigned int i = 0; i < t->num_targets; i++) {
1767 struct dm_target *ti = dm_table_get_target(t, i);
1768
1769 if (!ti->num_discard_bios)
1770 return false;
1771
1772 /*
1773 * Either the target provides discard support (as implied by setting
1774 * 'discards_supported') or it relies on _all_ data devices having
1775 * discard support.
1776 */
1777 if (!ti->discards_supported &&
1778 (!ti->type->iterate_devices ||
1779 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1780 return false;
1781 }
1782
1783 return true;
1784}
1785
1786static int device_not_secure_erase_capable(struct dm_target *ti,
1787 struct dm_dev *dev, sector_t start,
1788 sector_t len, void *data)
1789{
1790 return !bdev_max_secure_erase_sectors(dev->bdev);
1791}
1792
1793static bool dm_table_supports_secure_erase(struct dm_table *t)
1794{
1795 for (unsigned int i = 0; i < t->num_targets; i++) {
1796 struct dm_target *ti = dm_table_get_target(t, i);
1797
1798 if (!ti->num_secure_erase_bios)
1799 return false;
1800
1801 if (!ti->type->iterate_devices ||
1802 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1803 return false;
1804 }
1805
1806 return true;
1807}
1808
1809int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1810 struct queue_limits *limits)
1811{
1812 int r;
1813
1814 if (!dm_table_supports_nowait(t))
1815 limits->features &= ~BLK_FEAT_NOWAIT;
1816
1817 /*
1818 * The current polling impementation does not support request based
1819 * stacking.
1820 */
1821 if (!__table_type_bio_based(t->type))
1822 limits->features &= ~BLK_FEAT_POLL;
1823
1824 if (!dm_table_supports_discards(t)) {
1825 limits->max_hw_discard_sectors = 0;
1826 limits->discard_granularity = 0;
1827 limits->discard_alignment = 0;
1828 }
1829
1830 if (!dm_table_supports_write_zeroes(t))
1831 limits->max_write_zeroes_sectors = 0;
1832
1833 if (!dm_table_supports_secure_erase(t))
1834 limits->max_secure_erase_sectors = 0;
1835
1836 if (dm_table_supports_flush(t))
1837 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1838
1839 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1840 limits->features |= BLK_FEAT_DAX;
1841 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1842 set_dax_synchronous(t->md->dax_dev);
1843 } else
1844 limits->features &= ~BLK_FEAT_DAX;
1845
1846 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1847 dax_write_cache(t->md->dax_dev, true);
1848
1849 /* For a zoned table, setup the zone related queue attributes. */
1850 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1851 (limits->features & BLK_FEAT_ZONED)) {
1852 r = dm_set_zones_restrictions(t, q, limits);
1853 if (r)
1854 return r;
1855 }
1856
1857 r = queue_limits_set(q, limits);
1858 if (r)
1859 return r;
1860
1861 /*
1862 * Now that the limits are set, check the zones mapped by the table
1863 * and setup the resources for zone append emulation if necessary.
1864 */
1865 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1866 (limits->features & BLK_FEAT_ZONED)) {
1867 r = dm_revalidate_zones(t, q);
1868 if (r)
1869 return r;
1870 }
1871
1872 dm_update_crypto_profile(q, t);
1873 return 0;
1874}
1875
1876struct list_head *dm_table_get_devices(struct dm_table *t)
1877{
1878 return &t->devices;
1879}
1880
1881blk_mode_t dm_table_get_mode(struct dm_table *t)
1882{
1883 return t->mode;
1884}
1885EXPORT_SYMBOL(dm_table_get_mode);
1886
1887enum suspend_mode {
1888 PRESUSPEND,
1889 PRESUSPEND_UNDO,
1890 POSTSUSPEND,
1891};
1892
1893static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1894{
1895 lockdep_assert_held(&t->md->suspend_lock);
1896
1897 for (unsigned int i = 0; i < t->num_targets; i++) {
1898 struct dm_target *ti = dm_table_get_target(t, i);
1899
1900 switch (mode) {
1901 case PRESUSPEND:
1902 if (ti->type->presuspend)
1903 ti->type->presuspend(ti);
1904 break;
1905 case PRESUSPEND_UNDO:
1906 if (ti->type->presuspend_undo)
1907 ti->type->presuspend_undo(ti);
1908 break;
1909 case POSTSUSPEND:
1910 if (ti->type->postsuspend)
1911 ti->type->postsuspend(ti);
1912 break;
1913 }
1914 }
1915}
1916
1917void dm_table_presuspend_targets(struct dm_table *t)
1918{
1919 if (!t)
1920 return;
1921
1922 suspend_targets(t, PRESUSPEND);
1923}
1924
1925void dm_table_presuspend_undo_targets(struct dm_table *t)
1926{
1927 if (!t)
1928 return;
1929
1930 suspend_targets(t, PRESUSPEND_UNDO);
1931}
1932
1933void dm_table_postsuspend_targets(struct dm_table *t)
1934{
1935 if (!t)
1936 return;
1937
1938 suspend_targets(t, POSTSUSPEND);
1939}
1940
1941int dm_table_resume_targets(struct dm_table *t)
1942{
1943 unsigned int i;
1944 int r = 0;
1945
1946 lockdep_assert_held(&t->md->suspend_lock);
1947
1948 for (i = 0; i < t->num_targets; i++) {
1949 struct dm_target *ti = dm_table_get_target(t, i);
1950
1951 if (!ti->type->preresume)
1952 continue;
1953
1954 r = ti->type->preresume(ti);
1955 if (r) {
1956 DMERR("%s: %s: preresume failed, error = %d",
1957 dm_device_name(t->md), ti->type->name, r);
1958 return r;
1959 }
1960 }
1961
1962 for (i = 0; i < t->num_targets; i++) {
1963 struct dm_target *ti = dm_table_get_target(t, i);
1964
1965 if (ti->type->resume)
1966 ti->type->resume(ti);
1967 }
1968
1969 return 0;
1970}
1971
1972struct mapped_device *dm_table_get_md(struct dm_table *t)
1973{
1974 return t->md;
1975}
1976EXPORT_SYMBOL(dm_table_get_md);
1977
1978const char *dm_table_device_name(struct dm_table *t)
1979{
1980 return dm_device_name(t->md);
1981}
1982EXPORT_SYMBOL_GPL(dm_table_device_name);
1983
1984void dm_table_run_md_queue_async(struct dm_table *t)
1985{
1986 if (!dm_table_request_based(t))
1987 return;
1988
1989 if (t->md->queue)
1990 blk_mq_run_hw_queues(t->md->queue, true);
1991}
1992EXPORT_SYMBOL(dm_table_run_md_queue_async);
1993
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23
24#define DM_MSG_PREFIX "table"
25
26#define MAX_DEPTH 16
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
34
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
39
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
44
45 struct target_type *immutable_target_type;
46
47 bool integrity_supported:1;
48 bool singleton:1;
49 bool all_blk_mq:1;
50
51 /*
52 * Indicates the rw permissions for the new logical
53 * device. This should be a combination of FMODE_READ
54 * and FMODE_WRITE.
55 */
56 fmode_t mode;
57
58 /* a list of devices used by this table */
59 struct list_head devices;
60
61 /* events get handed up using this callback */
62 void (*event_fn)(void *);
63 void *event_context;
64
65 struct dm_md_mempools *mempools;
66
67 struct list_head target_callbacks;
68};
69
70/*
71 * Similar to ceiling(log_size(n))
72 */
73static unsigned int int_log(unsigned int n, unsigned int base)
74{
75 int result = 0;
76
77 while (n > 1) {
78 n = dm_div_up(n, base);
79 result++;
80 }
81
82 return result;
83}
84
85/*
86 * Calculate the index of the child node of the n'th node k'th key.
87 */
88static inline unsigned int get_child(unsigned int n, unsigned int k)
89{
90 return (n * CHILDREN_PER_NODE) + k;
91}
92
93/*
94 * Return the n'th node of level l from table t.
95 */
96static inline sector_t *get_node(struct dm_table *t,
97 unsigned int l, unsigned int n)
98{
99 return t->index[l] + (n * KEYS_PER_NODE);
100}
101
102/*
103 * Return the highest key that you could lookup from the n'th
104 * node on level l of the btree.
105 */
106static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
107{
108 for (; l < t->depth - 1; l++)
109 n = get_child(n, CHILDREN_PER_NODE - 1);
110
111 if (n >= t->counts[l])
112 return (sector_t) - 1;
113
114 return get_node(t, l, n)[KEYS_PER_NODE - 1];
115}
116
117/*
118 * Fills in a level of the btree based on the highs of the level
119 * below it.
120 */
121static int setup_btree_index(unsigned int l, struct dm_table *t)
122{
123 unsigned int n, k;
124 sector_t *node;
125
126 for (n = 0U; n < t->counts[l]; n++) {
127 node = get_node(t, l, n);
128
129 for (k = 0U; k < KEYS_PER_NODE; k++)
130 node[k] = high(t, l + 1, get_child(n, k));
131 }
132
133 return 0;
134}
135
136void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
137{
138 unsigned long size;
139 void *addr;
140
141 /*
142 * Check that we're not going to overflow.
143 */
144 if (nmemb > (ULONG_MAX / elem_size))
145 return NULL;
146
147 size = nmemb * elem_size;
148 addr = vzalloc(size);
149
150 return addr;
151}
152EXPORT_SYMBOL(dm_vcalloc);
153
154/*
155 * highs, and targets are managed as dynamic arrays during a
156 * table load.
157 */
158static int alloc_targets(struct dm_table *t, unsigned int num)
159{
160 sector_t *n_highs;
161 struct dm_target *n_targets;
162
163 /*
164 * Allocate both the target array and offset array at once.
165 * Append an empty entry to catch sectors beyond the end of
166 * the device.
167 */
168 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169 sizeof(sector_t));
170 if (!n_highs)
171 return -ENOMEM;
172
173 n_targets = (struct dm_target *) (n_highs + num);
174
175 memset(n_highs, -1, sizeof(*n_highs) * num);
176 vfree(t->highs);
177
178 t->num_allocated = num;
179 t->highs = n_highs;
180 t->targets = n_targets;
181
182 return 0;
183}
184
185int dm_table_create(struct dm_table **result, fmode_t mode,
186 unsigned num_targets, struct mapped_device *md)
187{
188 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189
190 if (!t)
191 return -ENOMEM;
192
193 INIT_LIST_HEAD(&t->devices);
194 INIT_LIST_HEAD(&t->target_callbacks);
195
196 if (!num_targets)
197 num_targets = KEYS_PER_NODE;
198
199 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200
201 if (!num_targets) {
202 kfree(t);
203 return -ENOMEM;
204 }
205
206 if (alloc_targets(t, num_targets)) {
207 kfree(t);
208 return -ENOMEM;
209 }
210
211 t->type = DM_TYPE_NONE;
212 t->mode = mode;
213 t->md = md;
214 *result = t;
215 return 0;
216}
217
218static void free_devices(struct list_head *devices, struct mapped_device *md)
219{
220 struct list_head *tmp, *next;
221
222 list_for_each_safe(tmp, next, devices) {
223 struct dm_dev_internal *dd =
224 list_entry(tmp, struct dm_dev_internal, list);
225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 dm_device_name(md), dd->dm_dev->name);
227 dm_put_table_device(md, dd->dm_dev);
228 kfree(dd);
229 }
230}
231
232void dm_table_destroy(struct dm_table *t)
233{
234 unsigned int i;
235
236 if (!t)
237 return;
238
239 /* free the indexes */
240 if (t->depth >= 2)
241 vfree(t->index[t->depth - 2]);
242
243 /* free the targets */
244 for (i = 0; i < t->num_targets; i++) {
245 struct dm_target *tgt = t->targets + i;
246
247 if (tgt->type->dtr)
248 tgt->type->dtr(tgt);
249
250 dm_put_target_type(tgt->type);
251 }
252
253 vfree(t->highs);
254
255 /* free the device list */
256 free_devices(&t->devices, t->md);
257
258 dm_free_md_mempools(t->mempools);
259
260 kfree(t);
261}
262
263/*
264 * See if we've already got a device in the list.
265 */
266static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267{
268 struct dm_dev_internal *dd;
269
270 list_for_each_entry (dd, l, list)
271 if (dd->dm_dev->bdev->bd_dev == dev)
272 return dd;
273
274 return NULL;
275}
276
277/*
278 * If possible, this checks an area of a destination device is invalid.
279 */
280static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281 sector_t start, sector_t len, void *data)
282{
283 struct request_queue *q;
284 struct queue_limits *limits = data;
285 struct block_device *bdev = dev->bdev;
286 sector_t dev_size =
287 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288 unsigned short logical_block_size_sectors =
289 limits->logical_block_size >> SECTOR_SHIFT;
290 char b[BDEVNAME_SIZE];
291
292 /*
293 * Some devices exist without request functions,
294 * such as loop devices not yet bound to backing files.
295 * Forbid the use of such devices.
296 */
297 q = bdev_get_queue(bdev);
298 if (!q || !q->make_request_fn) {
299 DMWARN("%s: %s is not yet initialised: "
300 "start=%llu, len=%llu, dev_size=%llu",
301 dm_device_name(ti->table->md), bdevname(bdev, b),
302 (unsigned long long)start,
303 (unsigned long long)len,
304 (unsigned long long)dev_size);
305 return 1;
306 }
307
308 if (!dev_size)
309 return 0;
310
311 if ((start >= dev_size) || (start + len > dev_size)) {
312 DMWARN("%s: %s too small for target: "
313 "start=%llu, len=%llu, dev_size=%llu",
314 dm_device_name(ti->table->md), bdevname(bdev, b),
315 (unsigned long long)start,
316 (unsigned long long)len,
317 (unsigned long long)dev_size);
318 return 1;
319 }
320
321 if (logical_block_size_sectors <= 1)
322 return 0;
323
324 if (start & (logical_block_size_sectors - 1)) {
325 DMWARN("%s: start=%llu not aligned to h/w "
326 "logical block size %u of %s",
327 dm_device_name(ti->table->md),
328 (unsigned long long)start,
329 limits->logical_block_size, bdevname(bdev, b));
330 return 1;
331 }
332
333 if (len & (logical_block_size_sectors - 1)) {
334 DMWARN("%s: len=%llu not aligned to h/w "
335 "logical block size %u of %s",
336 dm_device_name(ti->table->md),
337 (unsigned long long)len,
338 limits->logical_block_size, bdevname(bdev, b));
339 return 1;
340 }
341
342 return 0;
343}
344
345/*
346 * This upgrades the mode on an already open dm_dev, being
347 * careful to leave things as they were if we fail to reopen the
348 * device and not to touch the existing bdev field in case
349 * it is accessed concurrently inside dm_table_any_congested().
350 */
351static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352 struct mapped_device *md)
353{
354 int r;
355 struct dm_dev *old_dev, *new_dev;
356
357 old_dev = dd->dm_dev;
358
359 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360 dd->dm_dev->mode | new_mode, &new_dev);
361 if (r)
362 return r;
363
364 dd->dm_dev = new_dev;
365 dm_put_table_device(md, old_dev);
366
367 return 0;
368}
369
370/*
371 * Convert the path to a device
372 */
373dev_t dm_get_dev_t(const char *path)
374{
375 dev_t uninitialized_var(dev);
376 struct block_device *bdev;
377
378 bdev = lookup_bdev(path);
379 if (IS_ERR(bdev))
380 dev = name_to_dev_t(path);
381 else {
382 dev = bdev->bd_dev;
383 bdput(bdev);
384 }
385
386 return dev;
387}
388EXPORT_SYMBOL_GPL(dm_get_dev_t);
389
390/*
391 * Add a device to the list, or just increment the usage count if
392 * it's already present.
393 */
394int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395 struct dm_dev **result)
396{
397 int r;
398 dev_t dev;
399 struct dm_dev_internal *dd;
400 struct dm_table *t = ti->table;
401
402 BUG_ON(!t);
403
404 dev = dm_get_dev_t(path);
405 if (!dev)
406 return -ENODEV;
407
408 dd = find_device(&t->devices, dev);
409 if (!dd) {
410 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411 if (!dd)
412 return -ENOMEM;
413
414 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415 kfree(dd);
416 return r;
417 }
418
419 atomic_set(&dd->count, 0);
420 list_add(&dd->list, &t->devices);
421
422 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423 r = upgrade_mode(dd, mode, t->md);
424 if (r)
425 return r;
426 }
427 atomic_inc(&dd->count);
428
429 *result = dd->dm_dev;
430 return 0;
431}
432EXPORT_SYMBOL(dm_get_device);
433
434static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435 sector_t start, sector_t len, void *data)
436{
437 struct queue_limits *limits = data;
438 struct block_device *bdev = dev->bdev;
439 struct request_queue *q = bdev_get_queue(bdev);
440 char b[BDEVNAME_SIZE];
441
442 if (unlikely(!q)) {
443 DMWARN("%s: Cannot set limits for nonexistent device %s",
444 dm_device_name(ti->table->md), bdevname(bdev, b));
445 return 0;
446 }
447
448 if (bdev_stack_limits(limits, bdev, start) < 0)
449 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 "physical_block_size=%u, logical_block_size=%u, "
451 "alignment_offset=%u, start=%llu",
452 dm_device_name(ti->table->md), bdevname(bdev, b),
453 q->limits.physical_block_size,
454 q->limits.logical_block_size,
455 q->limits.alignment_offset,
456 (unsigned long long) start << SECTOR_SHIFT);
457
458 return 0;
459}
460
461/*
462 * Decrement a device's use count and remove it if necessary.
463 */
464void dm_put_device(struct dm_target *ti, struct dm_dev *d)
465{
466 int found = 0;
467 struct list_head *devices = &ti->table->devices;
468 struct dm_dev_internal *dd;
469
470 list_for_each_entry(dd, devices, list) {
471 if (dd->dm_dev == d) {
472 found = 1;
473 break;
474 }
475 }
476 if (!found) {
477 DMWARN("%s: device %s not in table devices list",
478 dm_device_name(ti->table->md), d->name);
479 return;
480 }
481 if (atomic_dec_and_test(&dd->count)) {
482 dm_put_table_device(ti->table->md, d);
483 list_del(&dd->list);
484 kfree(dd);
485 }
486}
487EXPORT_SYMBOL(dm_put_device);
488
489/*
490 * Checks to see if the target joins onto the end of the table.
491 */
492static int adjoin(struct dm_table *table, struct dm_target *ti)
493{
494 struct dm_target *prev;
495
496 if (!table->num_targets)
497 return !ti->begin;
498
499 prev = &table->targets[table->num_targets - 1];
500 return (ti->begin == (prev->begin + prev->len));
501}
502
503/*
504 * Used to dynamically allocate the arg array.
505 *
506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507 * process messages even if some device is suspended. These messages have a
508 * small fixed number of arguments.
509 *
510 * On the other hand, dm-switch needs to process bulk data using messages and
511 * excessive use of GFP_NOIO could cause trouble.
512 */
513static char **realloc_argv(unsigned *array_size, char **old_argv)
514{
515 char **argv;
516 unsigned new_size;
517 gfp_t gfp;
518
519 if (*array_size) {
520 new_size = *array_size * 2;
521 gfp = GFP_KERNEL;
522 } else {
523 new_size = 8;
524 gfp = GFP_NOIO;
525 }
526 argv = kmalloc(new_size * sizeof(*argv), gfp);
527 if (argv) {
528 memcpy(argv, old_argv, *array_size * sizeof(*argv));
529 *array_size = new_size;
530 }
531
532 kfree(old_argv);
533 return argv;
534}
535
536/*
537 * Destructively splits up the argument list to pass to ctr.
538 */
539int dm_split_args(int *argc, char ***argvp, char *input)
540{
541 char *start, *end = input, *out, **argv = NULL;
542 unsigned array_size = 0;
543
544 *argc = 0;
545
546 if (!input) {
547 *argvp = NULL;
548 return 0;
549 }
550
551 argv = realloc_argv(&array_size, argv);
552 if (!argv)
553 return -ENOMEM;
554
555 while (1) {
556 /* Skip whitespace */
557 start = skip_spaces(end);
558
559 if (!*start)
560 break; /* success, we hit the end */
561
562 /* 'out' is used to remove any back-quotes */
563 end = out = start;
564 while (*end) {
565 /* Everything apart from '\0' can be quoted */
566 if (*end == '\\' && *(end + 1)) {
567 *out++ = *(end + 1);
568 end += 2;
569 continue;
570 }
571
572 if (isspace(*end))
573 break; /* end of token */
574
575 *out++ = *end++;
576 }
577
578 /* have we already filled the array ? */
579 if ((*argc + 1) > array_size) {
580 argv = realloc_argv(&array_size, argv);
581 if (!argv)
582 return -ENOMEM;
583 }
584
585 /* we know this is whitespace */
586 if (*end)
587 end++;
588
589 /* terminate the string and put it in the array */
590 *out = '\0';
591 argv[*argc] = start;
592 (*argc)++;
593 }
594
595 *argvp = argv;
596 return 0;
597}
598
599/*
600 * Impose necessary and sufficient conditions on a devices's table such
601 * that any incoming bio which respects its logical_block_size can be
602 * processed successfully. If it falls across the boundary between
603 * two or more targets, the size of each piece it gets split into must
604 * be compatible with the logical_block_size of the target processing it.
605 */
606static int validate_hardware_logical_block_alignment(struct dm_table *table,
607 struct queue_limits *limits)
608{
609 /*
610 * This function uses arithmetic modulo the logical_block_size
611 * (in units of 512-byte sectors).
612 */
613 unsigned short device_logical_block_size_sects =
614 limits->logical_block_size >> SECTOR_SHIFT;
615
616 /*
617 * Offset of the start of the next table entry, mod logical_block_size.
618 */
619 unsigned short next_target_start = 0;
620
621 /*
622 * Given an aligned bio that extends beyond the end of a
623 * target, how many sectors must the next target handle?
624 */
625 unsigned short remaining = 0;
626
627 struct dm_target *uninitialized_var(ti);
628 struct queue_limits ti_limits;
629 unsigned i = 0;
630
631 /*
632 * Check each entry in the table in turn.
633 */
634 while (i < dm_table_get_num_targets(table)) {
635 ti = dm_table_get_target(table, i++);
636
637 blk_set_stacking_limits(&ti_limits);
638
639 /* combine all target devices' limits */
640 if (ti->type->iterate_devices)
641 ti->type->iterate_devices(ti, dm_set_device_limits,
642 &ti_limits);
643
644 /*
645 * If the remaining sectors fall entirely within this
646 * table entry are they compatible with its logical_block_size?
647 */
648 if (remaining < ti->len &&
649 remaining & ((ti_limits.logical_block_size >>
650 SECTOR_SHIFT) - 1))
651 break; /* Error */
652
653 next_target_start =
654 (unsigned short) ((next_target_start + ti->len) &
655 (device_logical_block_size_sects - 1));
656 remaining = next_target_start ?
657 device_logical_block_size_sects - next_target_start : 0;
658 }
659
660 if (remaining) {
661 DMWARN("%s: table line %u (start sect %llu len %llu) "
662 "not aligned to h/w logical block size %u",
663 dm_device_name(table->md), i,
664 (unsigned long long) ti->begin,
665 (unsigned long long) ti->len,
666 limits->logical_block_size);
667 return -EINVAL;
668 }
669
670 return 0;
671}
672
673int dm_table_add_target(struct dm_table *t, const char *type,
674 sector_t start, sector_t len, char *params)
675{
676 int r = -EINVAL, argc;
677 char **argv;
678 struct dm_target *tgt;
679
680 if (t->singleton) {
681 DMERR("%s: target type %s must appear alone in table",
682 dm_device_name(t->md), t->targets->type->name);
683 return -EINVAL;
684 }
685
686 BUG_ON(t->num_targets >= t->num_allocated);
687
688 tgt = t->targets + t->num_targets;
689 memset(tgt, 0, sizeof(*tgt));
690
691 if (!len) {
692 DMERR("%s: zero-length target", dm_device_name(t->md));
693 return -EINVAL;
694 }
695
696 tgt->type = dm_get_target_type(type);
697 if (!tgt->type) {
698 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
699 return -EINVAL;
700 }
701
702 if (dm_target_needs_singleton(tgt->type)) {
703 if (t->num_targets) {
704 tgt->error = "singleton target type must appear alone in table";
705 goto bad;
706 }
707 t->singleton = true;
708 }
709
710 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
711 tgt->error = "target type may not be included in a read-only table";
712 goto bad;
713 }
714
715 if (t->immutable_target_type) {
716 if (t->immutable_target_type != tgt->type) {
717 tgt->error = "immutable target type cannot be mixed with other target types";
718 goto bad;
719 }
720 } else if (dm_target_is_immutable(tgt->type)) {
721 if (t->num_targets) {
722 tgt->error = "immutable target type cannot be mixed with other target types";
723 goto bad;
724 }
725 t->immutable_target_type = tgt->type;
726 }
727
728 tgt->table = t;
729 tgt->begin = start;
730 tgt->len = len;
731 tgt->error = "Unknown error";
732
733 /*
734 * Does this target adjoin the previous one ?
735 */
736 if (!adjoin(t, tgt)) {
737 tgt->error = "Gap in table";
738 goto bad;
739 }
740
741 r = dm_split_args(&argc, &argv, params);
742 if (r) {
743 tgt->error = "couldn't split parameters (insufficient memory)";
744 goto bad;
745 }
746
747 r = tgt->type->ctr(tgt, argc, argv);
748 kfree(argv);
749 if (r)
750 goto bad;
751
752 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
753
754 if (!tgt->num_discard_bios && tgt->discards_supported)
755 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
756 dm_device_name(t->md), type);
757
758 return 0;
759
760 bad:
761 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
762 dm_put_target_type(tgt->type);
763 return r;
764}
765
766/*
767 * Target argument parsing helpers.
768 */
769static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
770 unsigned *value, char **error, unsigned grouped)
771{
772 const char *arg_str = dm_shift_arg(arg_set);
773 char dummy;
774
775 if (!arg_str ||
776 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
777 (*value < arg->min) ||
778 (*value > arg->max) ||
779 (grouped && arg_set->argc < *value)) {
780 *error = arg->error;
781 return -EINVAL;
782 }
783
784 return 0;
785}
786
787int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
788 unsigned *value, char **error)
789{
790 return validate_next_arg(arg, arg_set, value, error, 0);
791}
792EXPORT_SYMBOL(dm_read_arg);
793
794int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
795 unsigned *value, char **error)
796{
797 return validate_next_arg(arg, arg_set, value, error, 1);
798}
799EXPORT_SYMBOL(dm_read_arg_group);
800
801const char *dm_shift_arg(struct dm_arg_set *as)
802{
803 char *r;
804
805 if (as->argc) {
806 as->argc--;
807 r = *as->argv;
808 as->argv++;
809 return r;
810 }
811
812 return NULL;
813}
814EXPORT_SYMBOL(dm_shift_arg);
815
816void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
817{
818 BUG_ON(as->argc < num_args);
819 as->argc -= num_args;
820 as->argv += num_args;
821}
822EXPORT_SYMBOL(dm_consume_args);
823
824static bool __table_type_bio_based(unsigned table_type)
825{
826 return (table_type == DM_TYPE_BIO_BASED ||
827 table_type == DM_TYPE_DAX_BIO_BASED);
828}
829
830static bool __table_type_request_based(unsigned table_type)
831{
832 return (table_type == DM_TYPE_REQUEST_BASED ||
833 table_type == DM_TYPE_MQ_REQUEST_BASED);
834}
835
836void dm_table_set_type(struct dm_table *t, unsigned type)
837{
838 t->type = type;
839}
840EXPORT_SYMBOL_GPL(dm_table_set_type);
841
842static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
843 sector_t start, sector_t len, void *data)
844{
845 struct request_queue *q = bdev_get_queue(dev->bdev);
846
847 return q && blk_queue_dax(q);
848}
849
850static bool dm_table_supports_dax(struct dm_table *t)
851{
852 struct dm_target *ti;
853 unsigned i = 0;
854
855 /* Ensure that all targets support DAX. */
856 while (i < dm_table_get_num_targets(t)) {
857 ti = dm_table_get_target(t, i++);
858
859 if (!ti->type->direct_access)
860 return false;
861
862 if (!ti->type->iterate_devices ||
863 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
864 return false;
865 }
866
867 return true;
868}
869
870static int dm_table_determine_type(struct dm_table *t)
871{
872 unsigned i;
873 unsigned bio_based = 0, request_based = 0, hybrid = 0;
874 unsigned sq_count = 0, mq_count = 0;
875 struct dm_target *tgt;
876 struct dm_dev_internal *dd;
877 struct list_head *devices = dm_table_get_devices(t);
878 unsigned live_md_type = dm_get_md_type(t->md);
879
880 if (t->type != DM_TYPE_NONE) {
881 /* target already set the table's type */
882 if (t->type == DM_TYPE_BIO_BASED)
883 return 0;
884 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
885 goto verify_rq_based;
886 }
887
888 for (i = 0; i < t->num_targets; i++) {
889 tgt = t->targets + i;
890 if (dm_target_hybrid(tgt))
891 hybrid = 1;
892 else if (dm_target_request_based(tgt))
893 request_based = 1;
894 else
895 bio_based = 1;
896
897 if (bio_based && request_based) {
898 DMWARN("Inconsistent table: different target types"
899 " can't be mixed up");
900 return -EINVAL;
901 }
902 }
903
904 if (hybrid && !bio_based && !request_based) {
905 /*
906 * The targets can work either way.
907 * Determine the type from the live device.
908 * Default to bio-based if device is new.
909 */
910 if (__table_type_request_based(live_md_type))
911 request_based = 1;
912 else
913 bio_based = 1;
914 }
915
916 if (bio_based) {
917 /* We must use this table as bio-based */
918 t->type = DM_TYPE_BIO_BASED;
919 if (dm_table_supports_dax(t) ||
920 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
921 t->type = DM_TYPE_DAX_BIO_BASED;
922 return 0;
923 }
924
925 BUG_ON(!request_based); /* No targets in this table */
926
927 /*
928 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
929 * having a compatible target use dm_table_set_type.
930 */
931 t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934 /*
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
939 */
940 if (t->num_targets > 1) {
941 DMWARN("Request-based dm doesn't support multiple targets yet");
942 return -EINVAL;
943 }
944
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949 /* inherit live table's type and all_blk_mq */
950 if (live_table) {
951 t->type = live_table->type;
952 t->all_blk_mq = live_table->all_blk_mq;
953 }
954 dm_put_live_table(t->md, srcu_idx);
955 return 0;
956 }
957
958 /* Non-request-stackable devices can't be used for request-based dm */
959 list_for_each_entry(dd, devices, list) {
960 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
961
962 if (!blk_queue_stackable(q)) {
963 DMERR("table load rejected: including"
964 " non-request-stackable devices");
965 return -EINVAL;
966 }
967
968 if (q->mq_ops)
969 mq_count++;
970 else
971 sq_count++;
972 }
973 if (sq_count && mq_count) {
974 DMERR("table load rejected: not all devices are blk-mq request-stackable");
975 return -EINVAL;
976 }
977 t->all_blk_mq = mq_count > 0;
978
979 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
980 DMERR("table load rejected: all devices are not blk-mq request-stackable");
981 return -EINVAL;
982 }
983
984 return 0;
985}
986
987unsigned dm_table_get_type(struct dm_table *t)
988{
989 return t->type;
990}
991
992struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
993{
994 return t->immutable_target_type;
995}
996
997struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
998{
999 /* Immutable target is implicitly a singleton */
1000 if (t->num_targets > 1 ||
1001 !dm_target_is_immutable(t->targets[0].type))
1002 return NULL;
1003
1004 return t->targets;
1005}
1006
1007struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1008{
1009 struct dm_target *uninitialized_var(ti);
1010 unsigned i = 0;
1011
1012 while (i < dm_table_get_num_targets(t)) {
1013 ti = dm_table_get_target(t, i++);
1014 if (dm_target_is_wildcard(ti->type))
1015 return ti;
1016 }
1017
1018 return NULL;
1019}
1020
1021bool dm_table_bio_based(struct dm_table *t)
1022{
1023 return __table_type_bio_based(dm_table_get_type(t));
1024}
1025
1026bool dm_table_request_based(struct dm_table *t)
1027{
1028 return __table_type_request_based(dm_table_get_type(t));
1029}
1030
1031bool dm_table_all_blk_mq_devices(struct dm_table *t)
1032{
1033 return t->all_blk_mq;
1034}
1035
1036static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1037{
1038 unsigned type = dm_table_get_type(t);
1039 unsigned per_io_data_size = 0;
1040 struct dm_target *tgt;
1041 unsigned i;
1042
1043 if (unlikely(type == DM_TYPE_NONE)) {
1044 DMWARN("no table type is set, can't allocate mempools");
1045 return -EINVAL;
1046 }
1047
1048 if (__table_type_bio_based(type))
1049 for (i = 0; i < t->num_targets; i++) {
1050 tgt = t->targets + i;
1051 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1052 }
1053
1054 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1055 if (!t->mempools)
1056 return -ENOMEM;
1057
1058 return 0;
1059}
1060
1061void dm_table_free_md_mempools(struct dm_table *t)
1062{
1063 dm_free_md_mempools(t->mempools);
1064 t->mempools = NULL;
1065}
1066
1067struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1068{
1069 return t->mempools;
1070}
1071
1072static int setup_indexes(struct dm_table *t)
1073{
1074 int i;
1075 unsigned int total = 0;
1076 sector_t *indexes;
1077
1078 /* allocate the space for *all* the indexes */
1079 for (i = t->depth - 2; i >= 0; i--) {
1080 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1081 total += t->counts[i];
1082 }
1083
1084 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1085 if (!indexes)
1086 return -ENOMEM;
1087
1088 /* set up internal nodes, bottom-up */
1089 for (i = t->depth - 2; i >= 0; i--) {
1090 t->index[i] = indexes;
1091 indexes += (KEYS_PER_NODE * t->counts[i]);
1092 setup_btree_index(i, t);
1093 }
1094
1095 return 0;
1096}
1097
1098/*
1099 * Builds the btree to index the map.
1100 */
1101static int dm_table_build_index(struct dm_table *t)
1102{
1103 int r = 0;
1104 unsigned int leaf_nodes;
1105
1106 /* how many indexes will the btree have ? */
1107 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1108 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1109
1110 /* leaf layer has already been set up */
1111 t->counts[t->depth - 1] = leaf_nodes;
1112 t->index[t->depth - 1] = t->highs;
1113
1114 if (t->depth >= 2)
1115 r = setup_indexes(t);
1116
1117 return r;
1118}
1119
1120static bool integrity_profile_exists(struct gendisk *disk)
1121{
1122 return !!blk_get_integrity(disk);
1123}
1124
1125/*
1126 * Get a disk whose integrity profile reflects the table's profile.
1127 * Returns NULL if integrity support was inconsistent or unavailable.
1128 */
1129static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1130{
1131 struct list_head *devices = dm_table_get_devices(t);
1132 struct dm_dev_internal *dd = NULL;
1133 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1134
1135 list_for_each_entry(dd, devices, list) {
1136 template_disk = dd->dm_dev->bdev->bd_disk;
1137 if (!integrity_profile_exists(template_disk))
1138 goto no_integrity;
1139 else if (prev_disk &&
1140 blk_integrity_compare(prev_disk, template_disk) < 0)
1141 goto no_integrity;
1142 prev_disk = template_disk;
1143 }
1144
1145 return template_disk;
1146
1147no_integrity:
1148 if (prev_disk)
1149 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1150 dm_device_name(t->md),
1151 prev_disk->disk_name,
1152 template_disk->disk_name);
1153 return NULL;
1154}
1155
1156/*
1157 * Register the mapped device for blk_integrity support if the
1158 * underlying devices have an integrity profile. But all devices may
1159 * not have matching profiles (checking all devices isn't reliable
1160 * during table load because this table may use other DM device(s) which
1161 * must be resumed before they will have an initialized integity
1162 * profile). Consequently, stacked DM devices force a 2 stage integrity
1163 * profile validation: First pass during table load, final pass during
1164 * resume.
1165 */
1166static int dm_table_register_integrity(struct dm_table *t)
1167{
1168 struct mapped_device *md = t->md;
1169 struct gendisk *template_disk = NULL;
1170
1171 template_disk = dm_table_get_integrity_disk(t);
1172 if (!template_disk)
1173 return 0;
1174
1175 if (!integrity_profile_exists(dm_disk(md))) {
1176 t->integrity_supported = true;
1177 /*
1178 * Register integrity profile during table load; we can do
1179 * this because the final profile must match during resume.
1180 */
1181 blk_integrity_register(dm_disk(md),
1182 blk_get_integrity(template_disk));
1183 return 0;
1184 }
1185
1186 /*
1187 * If DM device already has an initialized integrity
1188 * profile the new profile should not conflict.
1189 */
1190 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1191 DMWARN("%s: conflict with existing integrity profile: "
1192 "%s profile mismatch",
1193 dm_device_name(t->md),
1194 template_disk->disk_name);
1195 return 1;
1196 }
1197
1198 /* Preserve existing integrity profile */
1199 t->integrity_supported = true;
1200 return 0;
1201}
1202
1203/*
1204 * Prepares the table for use by building the indices,
1205 * setting the type, and allocating mempools.
1206 */
1207int dm_table_complete(struct dm_table *t)
1208{
1209 int r;
1210
1211 r = dm_table_determine_type(t);
1212 if (r) {
1213 DMERR("unable to determine table type");
1214 return r;
1215 }
1216
1217 r = dm_table_build_index(t);
1218 if (r) {
1219 DMERR("unable to build btrees");
1220 return r;
1221 }
1222
1223 r = dm_table_register_integrity(t);
1224 if (r) {
1225 DMERR("could not register integrity profile.");
1226 return r;
1227 }
1228
1229 r = dm_table_alloc_md_mempools(t, t->md);
1230 if (r)
1231 DMERR("unable to allocate mempools");
1232
1233 return r;
1234}
1235
1236static DEFINE_MUTEX(_event_lock);
1237void dm_table_event_callback(struct dm_table *t,
1238 void (*fn)(void *), void *context)
1239{
1240 mutex_lock(&_event_lock);
1241 t->event_fn = fn;
1242 t->event_context = context;
1243 mutex_unlock(&_event_lock);
1244}
1245
1246void dm_table_event(struct dm_table *t)
1247{
1248 /*
1249 * You can no longer call dm_table_event() from interrupt
1250 * context, use a bottom half instead.
1251 */
1252 BUG_ON(in_interrupt());
1253
1254 mutex_lock(&_event_lock);
1255 if (t->event_fn)
1256 t->event_fn(t->event_context);
1257 mutex_unlock(&_event_lock);
1258}
1259EXPORT_SYMBOL(dm_table_event);
1260
1261sector_t dm_table_get_size(struct dm_table *t)
1262{
1263 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1264}
1265EXPORT_SYMBOL(dm_table_get_size);
1266
1267struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1268{
1269 if (index >= t->num_targets)
1270 return NULL;
1271
1272 return t->targets + index;
1273}
1274
1275/*
1276 * Search the btree for the correct target.
1277 *
1278 * Caller should check returned pointer with dm_target_is_valid()
1279 * to trap I/O beyond end of device.
1280 */
1281struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1282{
1283 unsigned int l, n = 0, k = 0;
1284 sector_t *node;
1285
1286 for (l = 0; l < t->depth; l++) {
1287 n = get_child(n, k);
1288 node = get_node(t, l, n);
1289
1290 for (k = 0; k < KEYS_PER_NODE; k++)
1291 if (node[k] >= sector)
1292 break;
1293 }
1294
1295 return &t->targets[(KEYS_PER_NODE * n) + k];
1296}
1297
1298static int count_device(struct dm_target *ti, struct dm_dev *dev,
1299 sector_t start, sector_t len, void *data)
1300{
1301 unsigned *num_devices = data;
1302
1303 (*num_devices)++;
1304
1305 return 0;
1306}
1307
1308/*
1309 * Check whether a table has no data devices attached using each
1310 * target's iterate_devices method.
1311 * Returns false if the result is unknown because a target doesn't
1312 * support iterate_devices.
1313 */
1314bool dm_table_has_no_data_devices(struct dm_table *table)
1315{
1316 struct dm_target *uninitialized_var(ti);
1317 unsigned i = 0, num_devices = 0;
1318
1319 while (i < dm_table_get_num_targets(table)) {
1320 ti = dm_table_get_target(table, i++);
1321
1322 if (!ti->type->iterate_devices)
1323 return false;
1324
1325 ti->type->iterate_devices(ti, count_device, &num_devices);
1326 if (num_devices)
1327 return false;
1328 }
1329
1330 return true;
1331}
1332
1333/*
1334 * Establish the new table's queue_limits and validate them.
1335 */
1336int dm_calculate_queue_limits(struct dm_table *table,
1337 struct queue_limits *limits)
1338{
1339 struct dm_target *uninitialized_var(ti);
1340 struct queue_limits ti_limits;
1341 unsigned i = 0;
1342
1343 blk_set_stacking_limits(limits);
1344
1345 while (i < dm_table_get_num_targets(table)) {
1346 blk_set_stacking_limits(&ti_limits);
1347
1348 ti = dm_table_get_target(table, i++);
1349
1350 if (!ti->type->iterate_devices)
1351 goto combine_limits;
1352
1353 /*
1354 * Combine queue limits of all the devices this target uses.
1355 */
1356 ti->type->iterate_devices(ti, dm_set_device_limits,
1357 &ti_limits);
1358
1359 /* Set I/O hints portion of queue limits */
1360 if (ti->type->io_hints)
1361 ti->type->io_hints(ti, &ti_limits);
1362
1363 /*
1364 * Check each device area is consistent with the target's
1365 * overall queue limits.
1366 */
1367 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1368 &ti_limits))
1369 return -EINVAL;
1370
1371combine_limits:
1372 /*
1373 * Merge this target's queue limits into the overall limits
1374 * for the table.
1375 */
1376 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1377 DMWARN("%s: adding target device "
1378 "(start sect %llu len %llu) "
1379 "caused an alignment inconsistency",
1380 dm_device_name(table->md),
1381 (unsigned long long) ti->begin,
1382 (unsigned long long) ti->len);
1383 }
1384
1385 return validate_hardware_logical_block_alignment(table, limits);
1386}
1387
1388/*
1389 * Verify that all devices have an integrity profile that matches the
1390 * DM device's registered integrity profile. If the profiles don't
1391 * match then unregister the DM device's integrity profile.
1392 */
1393static void dm_table_verify_integrity(struct dm_table *t)
1394{
1395 struct gendisk *template_disk = NULL;
1396
1397 if (t->integrity_supported) {
1398 /*
1399 * Verify that the original integrity profile
1400 * matches all the devices in this table.
1401 */
1402 template_disk = dm_table_get_integrity_disk(t);
1403 if (template_disk &&
1404 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1405 return;
1406 }
1407
1408 if (integrity_profile_exists(dm_disk(t->md))) {
1409 DMWARN("%s: unable to establish an integrity profile",
1410 dm_device_name(t->md));
1411 blk_integrity_unregister(dm_disk(t->md));
1412 }
1413}
1414
1415static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1416 sector_t start, sector_t len, void *data)
1417{
1418 unsigned long flush = (unsigned long) data;
1419 struct request_queue *q = bdev_get_queue(dev->bdev);
1420
1421 return q && (q->queue_flags & flush);
1422}
1423
1424static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1425{
1426 struct dm_target *ti;
1427 unsigned i = 0;
1428
1429 /*
1430 * Require at least one underlying device to support flushes.
1431 * t->devices includes internal dm devices such as mirror logs
1432 * so we need to use iterate_devices here, which targets
1433 * supporting flushes must provide.
1434 */
1435 while (i < dm_table_get_num_targets(t)) {
1436 ti = dm_table_get_target(t, i++);
1437
1438 if (!ti->num_flush_bios)
1439 continue;
1440
1441 if (ti->flush_supported)
1442 return true;
1443
1444 if (ti->type->iterate_devices &&
1445 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1446 return true;
1447 }
1448
1449 return false;
1450}
1451
1452static bool dm_table_discard_zeroes_data(struct dm_table *t)
1453{
1454 struct dm_target *ti;
1455 unsigned i = 0;
1456
1457 /* Ensure that all targets supports discard_zeroes_data. */
1458 while (i < dm_table_get_num_targets(t)) {
1459 ti = dm_table_get_target(t, i++);
1460
1461 if (ti->discard_zeroes_data_unsupported)
1462 return false;
1463 }
1464
1465 return true;
1466}
1467
1468static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1469 sector_t start, sector_t len, void *data)
1470{
1471 struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473 return q && blk_queue_nonrot(q);
1474}
1475
1476static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1477 sector_t start, sector_t len, void *data)
1478{
1479 struct request_queue *q = bdev_get_queue(dev->bdev);
1480
1481 return q && !blk_queue_add_random(q);
1482}
1483
1484static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1485 sector_t start, sector_t len, void *data)
1486{
1487 struct request_queue *q = bdev_get_queue(dev->bdev);
1488
1489 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1490}
1491
1492static bool dm_table_all_devices_attribute(struct dm_table *t,
1493 iterate_devices_callout_fn func)
1494{
1495 struct dm_target *ti;
1496 unsigned i = 0;
1497
1498 while (i < dm_table_get_num_targets(t)) {
1499 ti = dm_table_get_target(t, i++);
1500
1501 if (!ti->type->iterate_devices ||
1502 !ti->type->iterate_devices(ti, func, NULL))
1503 return false;
1504 }
1505
1506 return true;
1507}
1508
1509static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1510 sector_t start, sector_t len, void *data)
1511{
1512 struct request_queue *q = bdev_get_queue(dev->bdev);
1513
1514 return q && !q->limits.max_write_same_sectors;
1515}
1516
1517static bool dm_table_supports_write_same(struct dm_table *t)
1518{
1519 struct dm_target *ti;
1520 unsigned i = 0;
1521
1522 while (i < dm_table_get_num_targets(t)) {
1523 ti = dm_table_get_target(t, i++);
1524
1525 if (!ti->num_write_same_bios)
1526 return false;
1527
1528 if (!ti->type->iterate_devices ||
1529 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1530 return false;
1531 }
1532
1533 return true;
1534}
1535
1536static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1537 sector_t start, sector_t len, void *data)
1538{
1539 struct request_queue *q = bdev_get_queue(dev->bdev);
1540
1541 return q && blk_queue_discard(q);
1542}
1543
1544static bool dm_table_supports_discards(struct dm_table *t)
1545{
1546 struct dm_target *ti;
1547 unsigned i = 0;
1548
1549 /*
1550 * Unless any target used by the table set discards_supported,
1551 * require at least one underlying device to support discards.
1552 * t->devices includes internal dm devices such as mirror logs
1553 * so we need to use iterate_devices here, which targets
1554 * supporting discard selectively must provide.
1555 */
1556 while (i < dm_table_get_num_targets(t)) {
1557 ti = dm_table_get_target(t, i++);
1558
1559 if (!ti->num_discard_bios)
1560 continue;
1561
1562 if (ti->discards_supported)
1563 return true;
1564
1565 if (ti->type->iterate_devices &&
1566 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1567 return true;
1568 }
1569
1570 return false;
1571}
1572
1573void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1574 struct queue_limits *limits)
1575{
1576 bool wc = false, fua = false;
1577
1578 /*
1579 * Copy table's limits to the DM device's request_queue
1580 */
1581 q->limits = *limits;
1582
1583 if (!dm_table_supports_discards(t))
1584 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1585 else
1586 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1587
1588 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1589 wc = true;
1590 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1591 fua = true;
1592 }
1593 blk_queue_write_cache(q, wc, fua);
1594
1595 if (!dm_table_discard_zeroes_data(t))
1596 q->limits.discard_zeroes_data = 0;
1597
1598 /* Ensure that all underlying devices are non-rotational. */
1599 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1600 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1601 else
1602 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1603
1604 if (!dm_table_supports_write_same(t))
1605 q->limits.max_write_same_sectors = 0;
1606
1607 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1608 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1609 else
1610 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1611
1612 dm_table_verify_integrity(t);
1613
1614 /*
1615 * Determine whether or not this queue's I/O timings contribute
1616 * to the entropy pool, Only request-based targets use this.
1617 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1618 * have it set.
1619 */
1620 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1621 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1622
1623 /*
1624 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1625 * visible to other CPUs because, once the flag is set, incoming bios
1626 * are processed by request-based dm, which refers to the queue
1627 * settings.
1628 * Until the flag set, bios are passed to bio-based dm and queued to
1629 * md->deferred where queue settings are not needed yet.
1630 * Those bios are passed to request-based dm at the resume time.
1631 */
1632 smp_mb();
1633 if (dm_table_request_based(t))
1634 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1635}
1636
1637unsigned int dm_table_get_num_targets(struct dm_table *t)
1638{
1639 return t->num_targets;
1640}
1641
1642struct list_head *dm_table_get_devices(struct dm_table *t)
1643{
1644 return &t->devices;
1645}
1646
1647fmode_t dm_table_get_mode(struct dm_table *t)
1648{
1649 return t->mode;
1650}
1651EXPORT_SYMBOL(dm_table_get_mode);
1652
1653enum suspend_mode {
1654 PRESUSPEND,
1655 PRESUSPEND_UNDO,
1656 POSTSUSPEND,
1657};
1658
1659static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1660{
1661 int i = t->num_targets;
1662 struct dm_target *ti = t->targets;
1663
1664 while (i--) {
1665 switch (mode) {
1666 case PRESUSPEND:
1667 if (ti->type->presuspend)
1668 ti->type->presuspend(ti);
1669 break;
1670 case PRESUSPEND_UNDO:
1671 if (ti->type->presuspend_undo)
1672 ti->type->presuspend_undo(ti);
1673 break;
1674 case POSTSUSPEND:
1675 if (ti->type->postsuspend)
1676 ti->type->postsuspend(ti);
1677 break;
1678 }
1679 ti++;
1680 }
1681}
1682
1683void dm_table_presuspend_targets(struct dm_table *t)
1684{
1685 if (!t)
1686 return;
1687
1688 suspend_targets(t, PRESUSPEND);
1689}
1690
1691void dm_table_presuspend_undo_targets(struct dm_table *t)
1692{
1693 if (!t)
1694 return;
1695
1696 suspend_targets(t, PRESUSPEND_UNDO);
1697}
1698
1699void dm_table_postsuspend_targets(struct dm_table *t)
1700{
1701 if (!t)
1702 return;
1703
1704 suspend_targets(t, POSTSUSPEND);
1705}
1706
1707int dm_table_resume_targets(struct dm_table *t)
1708{
1709 int i, r = 0;
1710
1711 for (i = 0; i < t->num_targets; i++) {
1712 struct dm_target *ti = t->targets + i;
1713
1714 if (!ti->type->preresume)
1715 continue;
1716
1717 r = ti->type->preresume(ti);
1718 if (r) {
1719 DMERR("%s: %s: preresume failed, error = %d",
1720 dm_device_name(t->md), ti->type->name, r);
1721 return r;
1722 }
1723 }
1724
1725 for (i = 0; i < t->num_targets; i++) {
1726 struct dm_target *ti = t->targets + i;
1727
1728 if (ti->type->resume)
1729 ti->type->resume(ti);
1730 }
1731
1732 return 0;
1733}
1734
1735void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1736{
1737 list_add(&cb->list, &t->target_callbacks);
1738}
1739EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1740
1741int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1742{
1743 struct dm_dev_internal *dd;
1744 struct list_head *devices = dm_table_get_devices(t);
1745 struct dm_target_callbacks *cb;
1746 int r = 0;
1747
1748 list_for_each_entry(dd, devices, list) {
1749 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1750 char b[BDEVNAME_SIZE];
1751
1752 if (likely(q))
1753 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1754 else
1755 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1756 dm_device_name(t->md),
1757 bdevname(dd->dm_dev->bdev, b));
1758 }
1759
1760 list_for_each_entry(cb, &t->target_callbacks, list)
1761 if (cb->congested_fn)
1762 r |= cb->congested_fn(cb, bdi_bits);
1763
1764 return r;
1765}
1766
1767struct mapped_device *dm_table_get_md(struct dm_table *t)
1768{
1769 return t->md;
1770}
1771EXPORT_SYMBOL(dm_table_get_md);
1772
1773void dm_table_run_md_queue_async(struct dm_table *t)
1774{
1775 struct mapped_device *md;
1776 struct request_queue *queue;
1777 unsigned long flags;
1778
1779 if (!dm_table_request_based(t))
1780 return;
1781
1782 md = dm_table_get_md(t);
1783 queue = dm_get_md_queue(md);
1784 if (queue) {
1785 if (queue->mq_ops)
1786 blk_mq_run_hw_queues(queue, true);
1787 else {
1788 spin_lock_irqsave(queue->queue_lock, flags);
1789 blk_run_queue_async(queue);
1790 spin_unlock_irqrestore(queue->queue_lock, flags);
1791 }
1792 }
1793}
1794EXPORT_SYMBOL(dm_table_run_md_queue_async);
1795