Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166}
167
168static void free_devices(struct list_head *devices, struct mapped_device *md)
169{
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180}
181
182static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
184void dm_table_destroy(struct dm_table *t)
185{
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213}
214
215/*
216 * See if we've already got a device in the list.
217 */
218static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219{
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227}
228
229/*
230 * If possible, this checks an area of a destination device is invalid.
231 */
232static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234{
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (start & (zone_sectors - 1)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (len & (zone_sectors - 1)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306}
307
308/*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
314static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316{
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331}
332
333/*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
337int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338{
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351#ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354#endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360}
361EXPORT_SYMBOL(dm_devt_from_path);
362
363/*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
367int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369{
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418}
419EXPORT_SYMBOL(dm_get_device);
420
421static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423{
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 if (blk_stack_limits(limits, &q->limits,
435 get_start_sect(bdev) + start) < 0)
436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 "physical_block_size=%u, logical_block_size=%u, "
438 "alignment_offset=%u, start=%llu",
439 dm_device_name(ti->table->md), bdev,
440 q->limits.physical_block_size,
441 q->limits.logical_block_size,
442 q->limits.alignment_offset,
443 (unsigned long long) start << SECTOR_SHIFT);
444
445 /*
446 * Only stack the integrity profile if the target doesn't have native
447 * integrity support.
448 */
449 if (!dm_target_has_integrity(ti->type))
450 queue_limits_stack_integrity_bdev(limits, bdev);
451 return 0;
452}
453
454/*
455 * Decrement a device's use count and remove it if necessary.
456 */
457void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458{
459 int found = 0;
460 struct dm_table *t = ti->table;
461 struct list_head *devices = &t->devices;
462 struct dm_dev_internal *dd;
463
464 down_write(&t->devices_lock);
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMERR("%s: device %s not in table devices list",
474 dm_device_name(t->md), d->name);
475 goto unlock_ret;
476 }
477 if (refcount_dec_and_test(&dd->count)) {
478 dm_put_table_device(t->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482
483unlock_ret:
484 up_write(&t->devices_lock);
485}
486EXPORT_SYMBOL(dm_put_device);
487
488/*
489 * Checks to see if the target joins onto the end of the table.
490 */
491static int adjoin(struct dm_table *t, struct dm_target *ti)
492{
493 struct dm_target *prev;
494
495 if (!t->num_targets)
496 return !ti->begin;
497
498 prev = &t->targets[t->num_targets - 1];
499 return (ti->begin == (prev->begin + prev->len));
500}
501
502/*
503 * Used to dynamically allocate the arg array.
504 *
505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506 * process messages even if some device is suspended. These messages have a
507 * small fixed number of arguments.
508 *
509 * On the other hand, dm-switch needs to process bulk data using messages and
510 * excessive use of GFP_NOIO could cause trouble.
511 */
512static char **realloc_argv(unsigned int *size, char **old_argv)
513{
514 char **argv;
515 unsigned int new_size;
516 gfp_t gfp;
517
518 if (*size) {
519 new_size = *size * 2;
520 gfp = GFP_KERNEL;
521 } else {
522 new_size = 8;
523 gfp = GFP_NOIO;
524 }
525 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 if (argv && old_argv) {
527 memcpy(argv, old_argv, *size * sizeof(*argv));
528 *size = new_size;
529 }
530
531 kfree(old_argv);
532 return argv;
533}
534
535/*
536 * Destructively splits up the argument list to pass to ctr.
537 */
538int dm_split_args(int *argc, char ***argvp, char *input)
539{
540 char *start, *end = input, *out, **argv = NULL;
541 unsigned int array_size = 0;
542
543 *argc = 0;
544
545 if (!input) {
546 *argvp = NULL;
547 return 0;
548 }
549
550 argv = realloc_argv(&array_size, argv);
551 if (!argv)
552 return -ENOMEM;
553
554 while (1) {
555 /* Skip whitespace */
556 start = skip_spaces(end);
557
558 if (!*start)
559 break; /* success, we hit the end */
560
561 /* 'out' is used to remove any back-quotes */
562 end = out = start;
563 while (*end) {
564 /* Everything apart from '\0' can be quoted */
565 if (*end == '\\' && *(end + 1)) {
566 *out++ = *(end + 1);
567 end += 2;
568 continue;
569 }
570
571 if (isspace(*end))
572 break; /* end of token */
573
574 *out++ = *end++;
575 }
576
577 /* have we already filled the array ? */
578 if ((*argc + 1) > array_size) {
579 argv = realloc_argv(&array_size, argv);
580 if (!argv)
581 return -ENOMEM;
582 }
583
584 /* we know this is whitespace */
585 if (*end)
586 end++;
587
588 /* terminate the string and put it in the array */
589 *out = '\0';
590 argv[*argc] = start;
591 (*argc)++;
592 }
593
594 *argvp = argv;
595 return 0;
596}
597
598static void dm_set_stacking_limits(struct queue_limits *limits)
599{
600 blk_set_stacking_limits(limits);
601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602}
603
604/*
605 * Impose necessary and sufficient conditions on a devices's table such
606 * that any incoming bio which respects its logical_block_size can be
607 * processed successfully. If it falls across the boundary between
608 * two or more targets, the size of each piece it gets split into must
609 * be compatible with the logical_block_size of the target processing it.
610 */
611static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 struct queue_limits *limits)
613{
614 /*
615 * This function uses arithmetic modulo the logical_block_size
616 * (in units of 512-byte sectors).
617 */
618 unsigned short device_logical_block_size_sects =
619 limits->logical_block_size >> SECTOR_SHIFT;
620
621 /*
622 * Offset of the start of the next table entry, mod logical_block_size.
623 */
624 unsigned short next_target_start = 0;
625
626 /*
627 * Given an aligned bio that extends beyond the end of a
628 * target, how many sectors must the next target handle?
629 */
630 unsigned short remaining = 0;
631
632 struct dm_target *ti;
633 struct queue_limits ti_limits;
634 unsigned int i;
635
636 /*
637 * Check each entry in the table in turn.
638 */
639 for (i = 0; i < t->num_targets; i++) {
640 ti = dm_table_get_target(t, i);
641
642 dm_set_stacking_limits(&ti_limits);
643
644 /* combine all target devices' limits */
645 if (ti->type->iterate_devices)
646 ti->type->iterate_devices(ti, dm_set_device_limits,
647 &ti_limits);
648
649 /*
650 * If the remaining sectors fall entirely within this
651 * table entry are they compatible with its logical_block_size?
652 */
653 if (remaining < ti->len &&
654 remaining & ((ti_limits.logical_block_size >>
655 SECTOR_SHIFT) - 1))
656 break; /* Error */
657
658 next_target_start =
659 (unsigned short) ((next_target_start + ti->len) &
660 (device_logical_block_size_sects - 1));
661 remaining = next_target_start ?
662 device_logical_block_size_sects - next_target_start : 0;
663 }
664
665 if (remaining) {
666 DMERR("%s: table line %u (start sect %llu len %llu) "
667 "not aligned to h/w logical block size %u",
668 dm_device_name(t->md), i,
669 (unsigned long long) ti->begin,
670 (unsigned long long) ti->len,
671 limits->logical_block_size);
672 return -EINVAL;
673 }
674
675 return 0;
676}
677
678int dm_table_add_target(struct dm_table *t, const char *type,
679 sector_t start, sector_t len, char *params)
680{
681 int r = -EINVAL, argc;
682 char **argv;
683 struct dm_target *ti;
684
685 if (t->singleton) {
686 DMERR("%s: target type %s must appear alone in table",
687 dm_device_name(t->md), t->targets->type->name);
688 return -EINVAL;
689 }
690
691 BUG_ON(t->num_targets >= t->num_allocated);
692
693 ti = t->targets + t->num_targets;
694 memset(ti, 0, sizeof(*ti));
695
696 if (!len) {
697 DMERR("%s: zero-length target", dm_device_name(t->md));
698 return -EINVAL;
699 }
700
701 ti->type = dm_get_target_type(type);
702 if (!ti->type) {
703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
704 return -EINVAL;
705 }
706
707 if (dm_target_needs_singleton(ti->type)) {
708 if (t->num_targets) {
709 ti->error = "singleton target type must appear alone in table";
710 goto bad;
711 }
712 t->singleton = true;
713 }
714
715 if (dm_target_always_writeable(ti->type) &&
716 !(t->mode & BLK_OPEN_WRITE)) {
717 ti->error = "target type may not be included in a read-only table";
718 goto bad;
719 }
720
721 if (t->immutable_target_type) {
722 if (t->immutable_target_type != ti->type) {
723 ti->error = "immutable target type cannot be mixed with other target types";
724 goto bad;
725 }
726 } else if (dm_target_is_immutable(ti->type)) {
727 if (t->num_targets) {
728 ti->error = "immutable target type cannot be mixed with other target types";
729 goto bad;
730 }
731 t->immutable_target_type = ti->type;
732 }
733
734 ti->table = t;
735 ti->begin = start;
736 ti->len = len;
737 ti->error = "Unknown error";
738
739 /*
740 * Does this target adjoin the previous one ?
741 */
742 if (!adjoin(t, ti)) {
743 ti->error = "Gap in table";
744 goto bad;
745 }
746
747 r = dm_split_args(&argc, &argv, params);
748 if (r) {
749 ti->error = "couldn't split parameters";
750 goto bad;
751 }
752
753 r = ti->type->ctr(ti, argc, argv);
754 kfree(argv);
755 if (r)
756 goto bad;
757
758 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
759
760 if (!ti->num_discard_bios && ti->discards_supported)
761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 dm_device_name(t->md), type);
763
764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
765 static_branch_enable(&swap_bios_enabled);
766
767 if (!ti->flush_bypasses_map)
768 t->flush_bypasses_map = false;
769
770 return 0;
771
772 bad:
773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
774 dm_put_target_type(ti->type);
775 return r;
776}
777
778/*
779 * Target argument parsing helpers.
780 */
781static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
782 unsigned int *value, char **error, unsigned int grouped)
783{
784 const char *arg_str = dm_shift_arg(arg_set);
785 char dummy;
786
787 if (!arg_str ||
788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789 (*value < arg->min) ||
790 (*value > arg->max) ||
791 (grouped && arg_set->argc < *value)) {
792 *error = arg->error;
793 return -EINVAL;
794 }
795
796 return 0;
797}
798
799int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
800 unsigned int *value, char **error)
801{
802 return validate_next_arg(arg, arg_set, value, error, 0);
803}
804EXPORT_SYMBOL(dm_read_arg);
805
806int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned int *value, char **error)
808{
809 return validate_next_arg(arg, arg_set, value, error, 1);
810}
811EXPORT_SYMBOL(dm_read_arg_group);
812
813const char *dm_shift_arg(struct dm_arg_set *as)
814{
815 char *r;
816
817 if (as->argc) {
818 as->argc--;
819 r = *as->argv;
820 as->argv++;
821 return r;
822 }
823
824 return NULL;
825}
826EXPORT_SYMBOL(dm_shift_arg);
827
828void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
829{
830 BUG_ON(as->argc < num_args);
831 as->argc -= num_args;
832 as->argv += num_args;
833}
834EXPORT_SYMBOL(dm_consume_args);
835
836static bool __table_type_bio_based(enum dm_queue_mode table_type)
837{
838 return (table_type == DM_TYPE_BIO_BASED ||
839 table_type == DM_TYPE_DAX_BIO_BASED);
840}
841
842static bool __table_type_request_based(enum dm_queue_mode table_type)
843{
844 return table_type == DM_TYPE_REQUEST_BASED;
845}
846
847void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
848{
849 t->type = type;
850}
851EXPORT_SYMBOL_GPL(dm_table_set_type);
852
853/* validate the dax capability of the target device span */
854static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
855 sector_t start, sector_t len, void *data)
856{
857 if (dev->dax_dev)
858 return false;
859
860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
861 return true;
862}
863
864/* Check devices support synchronous DAX */
865static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
866 sector_t start, sector_t len, void *data)
867{
868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
869}
870
871static bool dm_table_supports_dax(struct dm_table *t,
872 iterate_devices_callout_fn iterate_fn)
873{
874 /* Ensure that all targets support DAX. */
875 for (unsigned int i = 0; i < t->num_targets; i++) {
876 struct dm_target *ti = dm_table_get_target(t, i);
877
878 if (!ti->type->direct_access)
879 return false;
880
881 if (dm_target_is_wildcard(ti->type) ||
882 !ti->type->iterate_devices ||
883 ti->type->iterate_devices(ti, iterate_fn, NULL))
884 return false;
885 }
886
887 return true;
888}
889
890static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
891 sector_t start, sector_t len, void *data)
892{
893 struct block_device *bdev = dev->bdev;
894 struct request_queue *q = bdev_get_queue(bdev);
895
896 /* request-based cannot stack on partitions! */
897 if (bdev_is_partition(bdev))
898 return false;
899
900 return queue_is_mq(q);
901}
902
903static int dm_table_determine_type(struct dm_table *t)
904{
905 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
906 struct dm_target *ti;
907 struct list_head *devices = dm_table_get_devices(t);
908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
909
910 if (t->type != DM_TYPE_NONE) {
911 /* target already set the table's type */
912 if (t->type == DM_TYPE_BIO_BASED) {
913 /* possibly upgrade to a variant of bio-based */
914 goto verify_bio_based;
915 }
916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
917 goto verify_rq_based;
918 }
919
920 for (unsigned int i = 0; i < t->num_targets; i++) {
921 ti = dm_table_get_target(t, i);
922 if (dm_target_hybrid(ti))
923 hybrid = 1;
924 else if (dm_target_request_based(ti))
925 request_based = 1;
926 else
927 bio_based = 1;
928
929 if (bio_based && request_based) {
930 DMERR("Inconsistent table: different target types can't be mixed up");
931 return -EINVAL;
932 }
933 }
934
935 if (hybrid && !bio_based && !request_based) {
936 /*
937 * The targets can work either way.
938 * Determine the type from the live device.
939 * Default to bio-based if device is new.
940 */
941 if (__table_type_request_based(live_md_type))
942 request_based = 1;
943 else
944 bio_based = 1;
945 }
946
947 if (bio_based) {
948verify_bio_based:
949 /* We must use this table as bio-based */
950 t->type = DM_TYPE_BIO_BASED;
951 if (dm_table_supports_dax(t, device_not_dax_capable) ||
952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
953 t->type = DM_TYPE_DAX_BIO_BASED;
954 }
955 return 0;
956 }
957
958 BUG_ON(!request_based); /* No targets in this table */
959
960 t->type = DM_TYPE_REQUEST_BASED;
961
962verify_rq_based:
963 /*
964 * Request-based dm supports only tables that have a single target now.
965 * To support multiple targets, request splitting support is needed,
966 * and that needs lots of changes in the block-layer.
967 * (e.g. request completion process for partial completion.)
968 */
969 if (t->num_targets > 1) {
970 DMERR("request-based DM doesn't support multiple targets");
971 return -EINVAL;
972 }
973
974 if (list_empty(devices)) {
975 int srcu_idx;
976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
977
978 /* inherit live table's type */
979 if (live_table)
980 t->type = live_table->type;
981 dm_put_live_table(t->md, srcu_idx);
982 return 0;
983 }
984
985 ti = dm_table_get_immutable_target(t);
986 if (!ti) {
987 DMERR("table load rejected: immutable target is required");
988 return -EINVAL;
989 } else if (ti->max_io_len) {
990 DMERR("table load rejected: immutable target that splits IO is not supported");
991 return -EINVAL;
992 }
993
994 /* Non-request-stackable devices can't be used for request-based dm */
995 if (!ti->type->iterate_devices ||
996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
997 DMERR("table load rejected: including non-request-stackable devices");
998 return -EINVAL;
999 }
1000
1001 return 0;
1002}
1003
1004enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005{
1006 return t->type;
1007}
1008
1009struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010{
1011 return t->immutable_target_type;
1012}
1013
1014struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015{
1016 /* Immutable target is implicitly a singleton */
1017 if (t->num_targets > 1 ||
1018 !dm_target_is_immutable(t->targets[0].type))
1019 return NULL;
1020
1021 return t->targets;
1022}
1023
1024struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025{
1026 for (unsigned int i = 0; i < t->num_targets; i++) {
1027 struct dm_target *ti = dm_table_get_target(t, i);
1028
1029 if (dm_target_is_wildcard(ti->type))
1030 return ti;
1031 }
1032
1033 return NULL;
1034}
1035
1036bool dm_table_request_based(struct dm_table *t)
1037{
1038 return __table_type_request_based(dm_table_get_type(t));
1039}
1040
1041static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1042{
1043 enum dm_queue_mode type = dm_table_get_type(t);
1044 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1045 unsigned int min_pool_size = 0, pool_size;
1046 struct dm_md_mempools *pools;
1047 unsigned int bioset_flags = 0;
1048 bool mempool_needs_integrity = t->integrity_supported;
1049
1050 if (unlikely(type == DM_TYPE_NONE)) {
1051 DMERR("no table type is set, can't allocate mempools");
1052 return -EINVAL;
1053 }
1054
1055 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1056 if (!pools)
1057 return -ENOMEM;
1058
1059 if (type == DM_TYPE_REQUEST_BASED) {
1060 pool_size = dm_get_reserved_rq_based_ios();
1061 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1062 goto init_bs;
1063 }
1064
1065 if (md->queue->limits.features & BLK_FEAT_POLL)
1066 bioset_flags |= BIOSET_PERCPU_CACHE;
1067
1068 for (unsigned int i = 0; i < t->num_targets; i++) {
1069 struct dm_target *ti = dm_table_get_target(t, i);
1070
1071 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1072 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1073
1074 mempool_needs_integrity |= ti->mempool_needs_integrity;
1075 }
1076 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1077 front_pad = roundup(per_io_data_size,
1078 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1079
1080 io_front_pad = roundup(per_io_data_size,
1081 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1082 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1083 goto out_free_pools;
1084 if (mempool_needs_integrity &&
1085 bioset_integrity_create(&pools->io_bs, pool_size))
1086 goto out_free_pools;
1087init_bs:
1088 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1089 goto out_free_pools;
1090 if (mempool_needs_integrity &&
1091 bioset_integrity_create(&pools->bs, pool_size))
1092 goto out_free_pools;
1093
1094 t->mempools = pools;
1095 return 0;
1096
1097out_free_pools:
1098 dm_free_md_mempools(pools);
1099 return -ENOMEM;
1100}
1101
1102static int setup_indexes(struct dm_table *t)
1103{
1104 int i;
1105 unsigned int total = 0;
1106 sector_t *indexes;
1107
1108 /* allocate the space for *all* the indexes */
1109 for (i = t->depth - 2; i >= 0; i--) {
1110 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1111 total += t->counts[i];
1112 }
1113
1114 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1115 if (!indexes)
1116 return -ENOMEM;
1117
1118 /* set up internal nodes, bottom-up */
1119 for (i = t->depth - 2; i >= 0; i--) {
1120 t->index[i] = indexes;
1121 indexes += (KEYS_PER_NODE * t->counts[i]);
1122 setup_btree_index(i, t);
1123 }
1124
1125 return 0;
1126}
1127
1128/*
1129 * Builds the btree to index the map.
1130 */
1131static int dm_table_build_index(struct dm_table *t)
1132{
1133 int r = 0;
1134 unsigned int leaf_nodes;
1135
1136 /* how many indexes will the btree have ? */
1137 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1138 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1139
1140 /* leaf layer has already been set up */
1141 t->counts[t->depth - 1] = leaf_nodes;
1142 t->index[t->depth - 1] = t->highs;
1143
1144 if (t->depth >= 2)
1145 r = setup_indexes(t);
1146
1147 return r;
1148}
1149
1150#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1151
1152struct dm_crypto_profile {
1153 struct blk_crypto_profile profile;
1154 struct mapped_device *md;
1155};
1156
1157static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1158 sector_t start, sector_t len, void *data)
1159{
1160 const struct blk_crypto_key *key = data;
1161
1162 blk_crypto_evict_key(dev->bdev, key);
1163 return 0;
1164}
1165
1166/*
1167 * When an inline encryption key is evicted from a device-mapper device, evict
1168 * it from all the underlying devices.
1169 */
1170static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1171 const struct blk_crypto_key *key, unsigned int slot)
1172{
1173 struct mapped_device *md =
1174 container_of(profile, struct dm_crypto_profile, profile)->md;
1175 struct dm_table *t;
1176 int srcu_idx;
1177
1178 t = dm_get_live_table(md, &srcu_idx);
1179 if (!t)
1180 return 0;
1181
1182 for (unsigned int i = 0; i < t->num_targets; i++) {
1183 struct dm_target *ti = dm_table_get_target(t, i);
1184
1185 if (!ti->type->iterate_devices)
1186 continue;
1187 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1188 (void *)key);
1189 }
1190
1191 dm_put_live_table(md, srcu_idx);
1192 return 0;
1193}
1194
1195static int
1196device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1197 sector_t start, sector_t len, void *data)
1198{
1199 struct blk_crypto_profile *parent = data;
1200 struct blk_crypto_profile *child =
1201 bdev_get_queue(dev->bdev)->crypto_profile;
1202
1203 blk_crypto_intersect_capabilities(parent, child);
1204 return 0;
1205}
1206
1207void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1208{
1209 struct dm_crypto_profile *dmcp = container_of(profile,
1210 struct dm_crypto_profile,
1211 profile);
1212
1213 if (!profile)
1214 return;
1215
1216 blk_crypto_profile_destroy(profile);
1217 kfree(dmcp);
1218}
1219
1220static void dm_table_destroy_crypto_profile(struct dm_table *t)
1221{
1222 dm_destroy_crypto_profile(t->crypto_profile);
1223 t->crypto_profile = NULL;
1224}
1225
1226/*
1227 * Constructs and initializes t->crypto_profile with a crypto profile that
1228 * represents the common set of crypto capabilities of the devices described by
1229 * the dm_table. However, if the constructed crypto profile doesn't support all
1230 * crypto capabilities that are supported by the current mapped_device, it
1231 * returns an error instead, since we don't support removing crypto capabilities
1232 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1233 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1234 */
1235static int dm_table_construct_crypto_profile(struct dm_table *t)
1236{
1237 struct dm_crypto_profile *dmcp;
1238 struct blk_crypto_profile *profile;
1239 unsigned int i;
1240 bool empty_profile = true;
1241
1242 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1243 if (!dmcp)
1244 return -ENOMEM;
1245 dmcp->md = t->md;
1246
1247 profile = &dmcp->profile;
1248 blk_crypto_profile_init(profile, 0);
1249 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1250 profile->max_dun_bytes_supported = UINT_MAX;
1251 memset(profile->modes_supported, 0xFF,
1252 sizeof(profile->modes_supported));
1253
1254 for (i = 0; i < t->num_targets; i++) {
1255 struct dm_target *ti = dm_table_get_target(t, i);
1256
1257 if (!dm_target_passes_crypto(ti->type)) {
1258 blk_crypto_intersect_capabilities(profile, NULL);
1259 break;
1260 }
1261 if (!ti->type->iterate_devices)
1262 continue;
1263 ti->type->iterate_devices(ti,
1264 device_intersect_crypto_capabilities,
1265 profile);
1266 }
1267
1268 if (t->md->queue &&
1269 !blk_crypto_has_capabilities(profile,
1270 t->md->queue->crypto_profile)) {
1271 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1272 dm_destroy_crypto_profile(profile);
1273 return -EINVAL;
1274 }
1275
1276 /*
1277 * If the new profile doesn't actually support any crypto capabilities,
1278 * we may as well represent it with a NULL profile.
1279 */
1280 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1281 if (profile->modes_supported[i]) {
1282 empty_profile = false;
1283 break;
1284 }
1285 }
1286
1287 if (empty_profile) {
1288 dm_destroy_crypto_profile(profile);
1289 profile = NULL;
1290 }
1291
1292 /*
1293 * t->crypto_profile is only set temporarily while the table is being
1294 * set up, and it gets set to NULL after the profile has been
1295 * transferred to the request_queue.
1296 */
1297 t->crypto_profile = profile;
1298
1299 return 0;
1300}
1301
1302static void dm_update_crypto_profile(struct request_queue *q,
1303 struct dm_table *t)
1304{
1305 if (!t->crypto_profile)
1306 return;
1307
1308 /* Make the crypto profile less restrictive. */
1309 if (!q->crypto_profile) {
1310 blk_crypto_register(t->crypto_profile, q);
1311 } else {
1312 blk_crypto_update_capabilities(q->crypto_profile,
1313 t->crypto_profile);
1314 dm_destroy_crypto_profile(t->crypto_profile);
1315 }
1316 t->crypto_profile = NULL;
1317}
1318
1319#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1320
1321static int dm_table_construct_crypto_profile(struct dm_table *t)
1322{
1323 return 0;
1324}
1325
1326void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1327{
1328}
1329
1330static void dm_table_destroy_crypto_profile(struct dm_table *t)
1331{
1332}
1333
1334static void dm_update_crypto_profile(struct request_queue *q,
1335 struct dm_table *t)
1336{
1337}
1338
1339#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1340
1341/*
1342 * Prepares the table for use by building the indices,
1343 * setting the type, and allocating mempools.
1344 */
1345int dm_table_complete(struct dm_table *t)
1346{
1347 int r;
1348
1349 r = dm_table_determine_type(t);
1350 if (r) {
1351 DMERR("unable to determine table type");
1352 return r;
1353 }
1354
1355 r = dm_table_build_index(t);
1356 if (r) {
1357 DMERR("unable to build btrees");
1358 return r;
1359 }
1360
1361 r = dm_table_construct_crypto_profile(t);
1362 if (r) {
1363 DMERR("could not construct crypto profile.");
1364 return r;
1365 }
1366
1367 r = dm_table_alloc_md_mempools(t, t->md);
1368 if (r)
1369 DMERR("unable to allocate mempools");
1370
1371 return r;
1372}
1373
1374static DEFINE_MUTEX(_event_lock);
1375void dm_table_event_callback(struct dm_table *t,
1376 void (*fn)(void *), void *context)
1377{
1378 mutex_lock(&_event_lock);
1379 t->event_fn = fn;
1380 t->event_context = context;
1381 mutex_unlock(&_event_lock);
1382}
1383
1384void dm_table_event(struct dm_table *t)
1385{
1386 mutex_lock(&_event_lock);
1387 if (t->event_fn)
1388 t->event_fn(t->event_context);
1389 mutex_unlock(&_event_lock);
1390}
1391EXPORT_SYMBOL(dm_table_event);
1392
1393inline sector_t dm_table_get_size(struct dm_table *t)
1394{
1395 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1396}
1397EXPORT_SYMBOL(dm_table_get_size);
1398
1399/*
1400 * Search the btree for the correct target.
1401 *
1402 * Caller should check returned pointer for NULL
1403 * to trap I/O beyond end of device.
1404 */
1405struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1406{
1407 unsigned int l, n = 0, k = 0;
1408 sector_t *node;
1409
1410 if (unlikely(sector >= dm_table_get_size(t)))
1411 return NULL;
1412
1413 for (l = 0; l < t->depth; l++) {
1414 n = get_child(n, k);
1415 node = get_node(t, l, n);
1416
1417 for (k = 0; k < KEYS_PER_NODE; k++)
1418 if (node[k] >= sector)
1419 break;
1420 }
1421
1422 return &t->targets[(KEYS_PER_NODE * n) + k];
1423}
1424
1425/*
1426 * type->iterate_devices() should be called when the sanity check needs to
1427 * iterate and check all underlying data devices. iterate_devices() will
1428 * iterate all underlying data devices until it encounters a non-zero return
1429 * code, returned by whether the input iterate_devices_callout_fn, or
1430 * iterate_devices() itself internally.
1431 *
1432 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1433 * iterate multiple underlying devices internally, in which case a non-zero
1434 * return code returned by iterate_devices_callout_fn will stop the iteration
1435 * in advance.
1436 *
1437 * Cases requiring _any_ underlying device supporting some kind of attribute,
1438 * should use the iteration structure like dm_table_any_dev_attr(), or call
1439 * it directly. @func should handle semantics of positive examples, e.g.
1440 * capable of something.
1441 *
1442 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1443 * should use the iteration structure like dm_table_supports_nowait() or
1444 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1445 * uses an @anti_func that handle semantics of counter examples, e.g. not
1446 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1447 */
1448static bool dm_table_any_dev_attr(struct dm_table *t,
1449 iterate_devices_callout_fn func, void *data)
1450{
1451 for (unsigned int i = 0; i < t->num_targets; i++) {
1452 struct dm_target *ti = dm_table_get_target(t, i);
1453
1454 if (ti->type->iterate_devices &&
1455 ti->type->iterate_devices(ti, func, data))
1456 return true;
1457 }
1458
1459 return false;
1460}
1461
1462static int count_device(struct dm_target *ti, struct dm_dev *dev,
1463 sector_t start, sector_t len, void *data)
1464{
1465 unsigned int *num_devices = data;
1466
1467 (*num_devices)++;
1468
1469 return 0;
1470}
1471
1472/*
1473 * Check whether a table has no data devices attached using each
1474 * target's iterate_devices method.
1475 * Returns false if the result is unknown because a target doesn't
1476 * support iterate_devices.
1477 */
1478bool dm_table_has_no_data_devices(struct dm_table *t)
1479{
1480 for (unsigned int i = 0; i < t->num_targets; i++) {
1481 struct dm_target *ti = dm_table_get_target(t, i);
1482 unsigned int num_devices = 0;
1483
1484 if (!ti->type->iterate_devices)
1485 return false;
1486
1487 ti->type->iterate_devices(ti, count_device, &num_devices);
1488 if (num_devices)
1489 return false;
1490 }
1491
1492 return true;
1493}
1494
1495static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1496 sector_t start, sector_t len, void *data)
1497{
1498 bool *zoned = data;
1499
1500 return bdev_is_zoned(dev->bdev) != *zoned;
1501}
1502
1503static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1504 sector_t start, sector_t len, void *data)
1505{
1506 return bdev_is_zoned(dev->bdev);
1507}
1508
1509/*
1510 * Check the device zoned model based on the target feature flag. If the target
1511 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1512 * also accepted but all devices must have the same zoned model. If the target
1513 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1514 * zoned model with all zoned devices having the same zone size.
1515 */
1516static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1517{
1518 for (unsigned int i = 0; i < t->num_targets; i++) {
1519 struct dm_target *ti = dm_table_get_target(t, i);
1520
1521 /*
1522 * For the wildcard target (dm-error), if we do not have a
1523 * backing device, we must always return false. If we have a
1524 * backing device, the result must depend on checking zoned
1525 * model, like for any other target. So for this, check directly
1526 * if the target backing device is zoned as we get "false" when
1527 * dm-error was set without a backing device.
1528 */
1529 if (dm_target_is_wildcard(ti->type) &&
1530 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1531 return false;
1532
1533 if (dm_target_supports_zoned_hm(ti->type)) {
1534 if (!ti->type->iterate_devices ||
1535 ti->type->iterate_devices(ti, device_not_zoned,
1536 &zoned))
1537 return false;
1538 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1539 if (zoned)
1540 return false;
1541 }
1542 }
1543
1544 return true;
1545}
1546
1547static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1548 sector_t start, sector_t len, void *data)
1549{
1550 unsigned int *zone_sectors = data;
1551
1552 if (!bdev_is_zoned(dev->bdev))
1553 return 0;
1554 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1555}
1556
1557/*
1558 * Check consistency of zoned model and zone sectors across all targets. For
1559 * zone sectors, if the destination device is a zoned block device, it shall
1560 * have the specified zone_sectors.
1561 */
1562static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1563 unsigned int zone_sectors)
1564{
1565 if (!zoned)
1566 return 0;
1567
1568 if (!dm_table_supports_zoned(t, zoned)) {
1569 DMERR("%s: zoned model is not consistent across all devices",
1570 dm_device_name(t->md));
1571 return -EINVAL;
1572 }
1573
1574 /* Check zone size validity and compatibility */
1575 if (!zone_sectors || !is_power_of_2(zone_sectors))
1576 return -EINVAL;
1577
1578 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1579 DMERR("%s: zone sectors is not consistent across all zoned devices",
1580 dm_device_name(t->md));
1581 return -EINVAL;
1582 }
1583
1584 return 0;
1585}
1586
1587/*
1588 * Establish the new table's queue_limits and validate them.
1589 */
1590int dm_calculate_queue_limits(struct dm_table *t,
1591 struct queue_limits *limits)
1592{
1593 struct queue_limits ti_limits;
1594 unsigned int zone_sectors = 0;
1595 bool zoned = false;
1596
1597 dm_set_stacking_limits(limits);
1598
1599 t->integrity_supported = true;
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (!dm_target_passes_integrity(ti->type))
1604 t->integrity_supported = false;
1605 }
1606
1607 for (unsigned int i = 0; i < t->num_targets; i++) {
1608 struct dm_target *ti = dm_table_get_target(t, i);
1609
1610 dm_set_stacking_limits(&ti_limits);
1611
1612 if (!ti->type->iterate_devices) {
1613 /* Set I/O hints portion of queue limits */
1614 if (ti->type->io_hints)
1615 ti->type->io_hints(ti, &ti_limits);
1616 goto combine_limits;
1617 }
1618
1619 /*
1620 * Combine queue limits of all the devices this target uses.
1621 */
1622 ti->type->iterate_devices(ti, dm_set_device_limits,
1623 &ti_limits);
1624
1625 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1626 /*
1627 * After stacking all limits, validate all devices
1628 * in table support this zoned model and zone sectors.
1629 */
1630 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1631 zone_sectors = ti_limits.chunk_sectors;
1632 }
1633
1634 /* Set I/O hints portion of queue limits */
1635 if (ti->type->io_hints)
1636 ti->type->io_hints(ti, &ti_limits);
1637
1638 /*
1639 * Check each device area is consistent with the target's
1640 * overall queue limits.
1641 */
1642 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1643 &ti_limits))
1644 return -EINVAL;
1645
1646combine_limits:
1647 /*
1648 * Merge this target's queue limits into the overall limits
1649 * for the table.
1650 */
1651 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1652 DMWARN("%s: adding target device (start sect %llu len %llu) "
1653 "caused an alignment inconsistency",
1654 dm_device_name(t->md),
1655 (unsigned long long) ti->begin,
1656 (unsigned long long) ti->len);
1657
1658 if (t->integrity_supported ||
1659 dm_target_has_integrity(ti->type)) {
1660 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1661 DMWARN("%s: adding target device (start sect %llu len %llu) "
1662 "disabled integrity support due to incompatibility",
1663 dm_device_name(t->md),
1664 (unsigned long long) ti->begin,
1665 (unsigned long long) ti->len);
1666 t->integrity_supported = false;
1667 }
1668 }
1669 }
1670
1671 /*
1672 * Verify that the zoned model and zone sectors, as determined before
1673 * any .io_hints override, are the same across all devices in the table.
1674 * - this is especially relevant if .io_hints is emulating a disk-managed
1675 * zoned model on host-managed zoned block devices.
1676 * BUT...
1677 */
1678 if (limits->features & BLK_FEAT_ZONED) {
1679 /*
1680 * ...IF the above limits stacking determined a zoned model
1681 * validate that all of the table's devices conform to it.
1682 */
1683 zoned = limits->features & BLK_FEAT_ZONED;
1684 zone_sectors = limits->chunk_sectors;
1685 }
1686 if (validate_hardware_zoned(t, zoned, zone_sectors))
1687 return -EINVAL;
1688
1689 return validate_hardware_logical_block_alignment(t, limits);
1690}
1691
1692/*
1693 * Check if a target requires flush support even if none of the underlying
1694 * devices need it (e.g. to persist target-specific metadata).
1695 */
1696static bool dm_table_supports_flush(struct dm_table *t)
1697{
1698 for (unsigned int i = 0; i < t->num_targets; i++) {
1699 struct dm_target *ti = dm_table_get_target(t, i);
1700
1701 if (ti->num_flush_bios && ti->flush_supported)
1702 return true;
1703 }
1704
1705 return false;
1706}
1707
1708static int device_dax_write_cache_enabled(struct dm_target *ti,
1709 struct dm_dev *dev, sector_t start,
1710 sector_t len, void *data)
1711{
1712 struct dax_device *dax_dev = dev->dax_dev;
1713
1714 if (!dax_dev)
1715 return false;
1716
1717 if (dax_write_cache_enabled(dax_dev))
1718 return true;
1719 return false;
1720}
1721
1722static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1723 sector_t start, sector_t len, void *data)
1724{
1725 struct request_queue *q = bdev_get_queue(dev->bdev);
1726
1727 return !q->limits.max_write_zeroes_sectors;
1728}
1729
1730static bool dm_table_supports_write_zeroes(struct dm_table *t)
1731{
1732 for (unsigned int i = 0; i < t->num_targets; i++) {
1733 struct dm_target *ti = dm_table_get_target(t, i);
1734
1735 if (!ti->num_write_zeroes_bios)
1736 return false;
1737
1738 if (!ti->type->iterate_devices ||
1739 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1740 return false;
1741 }
1742
1743 return true;
1744}
1745
1746static bool dm_table_supports_nowait(struct dm_table *t)
1747{
1748 for (unsigned int i = 0; i < t->num_targets; i++) {
1749 struct dm_target *ti = dm_table_get_target(t, i);
1750
1751 if (!dm_target_supports_nowait(ti->type))
1752 return false;
1753 }
1754
1755 return true;
1756}
1757
1758static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1759 sector_t start, sector_t len, void *data)
1760{
1761 return !bdev_max_discard_sectors(dev->bdev);
1762}
1763
1764static bool dm_table_supports_discards(struct dm_table *t)
1765{
1766 for (unsigned int i = 0; i < t->num_targets; i++) {
1767 struct dm_target *ti = dm_table_get_target(t, i);
1768
1769 if (!ti->num_discard_bios)
1770 return false;
1771
1772 /*
1773 * Either the target provides discard support (as implied by setting
1774 * 'discards_supported') or it relies on _all_ data devices having
1775 * discard support.
1776 */
1777 if (!ti->discards_supported &&
1778 (!ti->type->iterate_devices ||
1779 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1780 return false;
1781 }
1782
1783 return true;
1784}
1785
1786static int device_not_secure_erase_capable(struct dm_target *ti,
1787 struct dm_dev *dev, sector_t start,
1788 sector_t len, void *data)
1789{
1790 return !bdev_max_secure_erase_sectors(dev->bdev);
1791}
1792
1793static bool dm_table_supports_secure_erase(struct dm_table *t)
1794{
1795 for (unsigned int i = 0; i < t->num_targets; i++) {
1796 struct dm_target *ti = dm_table_get_target(t, i);
1797
1798 if (!ti->num_secure_erase_bios)
1799 return false;
1800
1801 if (!ti->type->iterate_devices ||
1802 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1803 return false;
1804 }
1805
1806 return true;
1807}
1808
1809int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1810 struct queue_limits *limits)
1811{
1812 int r;
1813
1814 if (!dm_table_supports_nowait(t))
1815 limits->features &= ~BLK_FEAT_NOWAIT;
1816
1817 /*
1818 * The current polling impementation does not support request based
1819 * stacking.
1820 */
1821 if (!__table_type_bio_based(t->type))
1822 limits->features &= ~BLK_FEAT_POLL;
1823
1824 if (!dm_table_supports_discards(t)) {
1825 limits->max_hw_discard_sectors = 0;
1826 limits->discard_granularity = 0;
1827 limits->discard_alignment = 0;
1828 }
1829
1830 if (!dm_table_supports_write_zeroes(t))
1831 limits->max_write_zeroes_sectors = 0;
1832
1833 if (!dm_table_supports_secure_erase(t))
1834 limits->max_secure_erase_sectors = 0;
1835
1836 if (dm_table_supports_flush(t))
1837 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1838
1839 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1840 limits->features |= BLK_FEAT_DAX;
1841 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1842 set_dax_synchronous(t->md->dax_dev);
1843 } else
1844 limits->features &= ~BLK_FEAT_DAX;
1845
1846 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1847 dax_write_cache(t->md->dax_dev, true);
1848
1849 /* For a zoned table, setup the zone related queue attributes. */
1850 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1851 (limits->features & BLK_FEAT_ZONED)) {
1852 r = dm_set_zones_restrictions(t, q, limits);
1853 if (r)
1854 return r;
1855 }
1856
1857 r = queue_limits_set(q, limits);
1858 if (r)
1859 return r;
1860
1861 /*
1862 * Now that the limits are set, check the zones mapped by the table
1863 * and setup the resources for zone append emulation if necessary.
1864 */
1865 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1866 (limits->features & BLK_FEAT_ZONED)) {
1867 r = dm_revalidate_zones(t, q);
1868 if (r)
1869 return r;
1870 }
1871
1872 dm_update_crypto_profile(q, t);
1873 return 0;
1874}
1875
1876struct list_head *dm_table_get_devices(struct dm_table *t)
1877{
1878 return &t->devices;
1879}
1880
1881blk_mode_t dm_table_get_mode(struct dm_table *t)
1882{
1883 return t->mode;
1884}
1885EXPORT_SYMBOL(dm_table_get_mode);
1886
1887enum suspend_mode {
1888 PRESUSPEND,
1889 PRESUSPEND_UNDO,
1890 POSTSUSPEND,
1891};
1892
1893static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1894{
1895 lockdep_assert_held(&t->md->suspend_lock);
1896
1897 for (unsigned int i = 0; i < t->num_targets; i++) {
1898 struct dm_target *ti = dm_table_get_target(t, i);
1899
1900 switch (mode) {
1901 case PRESUSPEND:
1902 if (ti->type->presuspend)
1903 ti->type->presuspend(ti);
1904 break;
1905 case PRESUSPEND_UNDO:
1906 if (ti->type->presuspend_undo)
1907 ti->type->presuspend_undo(ti);
1908 break;
1909 case POSTSUSPEND:
1910 if (ti->type->postsuspend)
1911 ti->type->postsuspend(ti);
1912 break;
1913 }
1914 }
1915}
1916
1917void dm_table_presuspend_targets(struct dm_table *t)
1918{
1919 if (!t)
1920 return;
1921
1922 suspend_targets(t, PRESUSPEND);
1923}
1924
1925void dm_table_presuspend_undo_targets(struct dm_table *t)
1926{
1927 if (!t)
1928 return;
1929
1930 suspend_targets(t, PRESUSPEND_UNDO);
1931}
1932
1933void dm_table_postsuspend_targets(struct dm_table *t)
1934{
1935 if (!t)
1936 return;
1937
1938 suspend_targets(t, POSTSUSPEND);
1939}
1940
1941int dm_table_resume_targets(struct dm_table *t)
1942{
1943 unsigned int i;
1944 int r = 0;
1945
1946 lockdep_assert_held(&t->md->suspend_lock);
1947
1948 for (i = 0; i < t->num_targets; i++) {
1949 struct dm_target *ti = dm_table_get_target(t, i);
1950
1951 if (!ti->type->preresume)
1952 continue;
1953
1954 r = ti->type->preresume(ti);
1955 if (r) {
1956 DMERR("%s: %s: preresume failed, error = %d",
1957 dm_device_name(t->md), ti->type->name, r);
1958 return r;
1959 }
1960 }
1961
1962 for (i = 0; i < t->num_targets; i++) {
1963 struct dm_target *ti = dm_table_get_target(t, i);
1964
1965 if (ti->type->resume)
1966 ti->type->resume(ti);
1967 }
1968
1969 return 0;
1970}
1971
1972struct mapped_device *dm_table_get_md(struct dm_table *t)
1973{
1974 return t->md;
1975}
1976EXPORT_SYMBOL(dm_table_get_md);
1977
1978const char *dm_table_device_name(struct dm_table *t)
1979{
1980 return dm_device_name(t->md);
1981}
1982EXPORT_SYMBOL_GPL(dm_table_device_name);
1983
1984void dm_table_run_md_queue_async(struct dm_table *t)
1985{
1986 if (!dm_table_request_based(t))
1987 return;
1988
1989 if (t->md->queue)
1990 blk_mq_run_hw_queues(t->md->queue, true);
1991}
1992EXPORT_SYMBOL(dm_table_run_md_queue_async);
1993
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21
22#define DM_MSG_PREFIX "table"
23
24#define MAX_DEPTH 16
25#define NODE_SIZE L1_CACHE_BYTES
26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29struct dm_table {
30 struct mapped_device *md;
31 unsigned type;
32
33 /* btree table */
34 unsigned int depth;
35 unsigned int counts[MAX_DEPTH]; /* in nodes */
36 sector_t *index[MAX_DEPTH];
37
38 unsigned int num_targets;
39 unsigned int num_allocated;
40 sector_t *highs;
41 struct dm_target *targets;
42
43 struct target_type *immutable_target_type;
44 unsigned integrity_supported:1;
45 unsigned singleton:1;
46
47 /*
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
50 * and FMODE_WRITE.
51 */
52 fmode_t mode;
53
54 /* a list of devices used by this table */
55 struct list_head devices;
56
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
60
61 struct dm_md_mempools *mempools;
62
63 struct list_head target_callbacks;
64};
65
66/*
67 * Similar to ceiling(log_size(n))
68 */
69static unsigned int int_log(unsigned int n, unsigned int base)
70{
71 int result = 0;
72
73 while (n > 1) {
74 n = dm_div_up(n, base);
75 result++;
76 }
77
78 return result;
79}
80
81/*
82 * Calculate the index of the child node of the n'th node k'th key.
83 */
84static inline unsigned int get_child(unsigned int n, unsigned int k)
85{
86 return (n * CHILDREN_PER_NODE) + k;
87}
88
89/*
90 * Return the n'th node of level l from table t.
91 */
92static inline sector_t *get_node(struct dm_table *t,
93 unsigned int l, unsigned int n)
94{
95 return t->index[l] + (n * KEYS_PER_NODE);
96}
97
98/*
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
101 */
102static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103{
104 for (; l < t->depth - 1; l++)
105 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107 if (n >= t->counts[l])
108 return (sector_t) - 1;
109
110 return get_node(t, l, n)[KEYS_PER_NODE - 1];
111}
112
113/*
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
116 */
117static int setup_btree_index(unsigned int l, struct dm_table *t)
118{
119 unsigned int n, k;
120 sector_t *node;
121
122 for (n = 0U; n < t->counts[l]; n++) {
123 node = get_node(t, l, n);
124
125 for (k = 0U; k < KEYS_PER_NODE; k++)
126 node[k] = high(t, l + 1, get_child(n, k));
127 }
128
129 return 0;
130}
131
132void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133{
134 unsigned long size;
135 void *addr;
136
137 /*
138 * Check that we're not going to overflow.
139 */
140 if (nmemb > (ULONG_MAX / elem_size))
141 return NULL;
142
143 size = nmemb * elem_size;
144 addr = vzalloc(size);
145
146 return addr;
147}
148EXPORT_SYMBOL(dm_vcalloc);
149
150/*
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
153 */
154static int alloc_targets(struct dm_table *t, unsigned int num)
155{
156 sector_t *n_highs;
157 struct dm_target *n_targets;
158
159 /*
160 * Allocate both the target array and offset array at once.
161 * Append an empty entry to catch sectors beyond the end of
162 * the device.
163 */
164 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
165 sizeof(sector_t));
166 if (!n_highs)
167 return -ENOMEM;
168
169 n_targets = (struct dm_target *) (n_highs + num);
170
171 memset(n_highs, -1, sizeof(*n_highs) * num);
172 vfree(t->highs);
173
174 t->num_allocated = num;
175 t->highs = n_highs;
176 t->targets = n_targets;
177
178 return 0;
179}
180
181int dm_table_create(struct dm_table **result, fmode_t mode,
182 unsigned num_targets, struct mapped_device *md)
183{
184 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
185
186 if (!t)
187 return -ENOMEM;
188
189 INIT_LIST_HEAD(&t->devices);
190 INIT_LIST_HEAD(&t->target_callbacks);
191
192 if (!num_targets)
193 num_targets = KEYS_PER_NODE;
194
195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197 if (!num_targets) {
198 kfree(t);
199 return -ENOMEM;
200 }
201
202 if (alloc_targets(t, num_targets)) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 t->mode = mode;
208 t->md = md;
209 *result = t;
210 return 0;
211}
212
213static void free_devices(struct list_head *devices)
214{
215 struct list_head *tmp, *next;
216
217 list_for_each_safe(tmp, next, devices) {
218 struct dm_dev_internal *dd =
219 list_entry(tmp, struct dm_dev_internal, list);
220 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
221 dd->dm_dev.name);
222 kfree(dd);
223 }
224}
225
226void dm_table_destroy(struct dm_table *t)
227{
228 unsigned int i;
229
230 if (!t)
231 return;
232
233 /* free the indexes */
234 if (t->depth >= 2)
235 vfree(t->index[t->depth - 2]);
236
237 /* free the targets */
238 for (i = 0; i < t->num_targets; i++) {
239 struct dm_target *tgt = t->targets + i;
240
241 if (tgt->type->dtr)
242 tgt->type->dtr(tgt);
243
244 dm_put_target_type(tgt->type);
245 }
246
247 vfree(t->highs);
248
249 /* free the device list */
250 free_devices(&t->devices);
251
252 dm_free_md_mempools(t->mempools);
253
254 kfree(t);
255}
256
257/*
258 * See if we've already got a device in the list.
259 */
260static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
261{
262 struct dm_dev_internal *dd;
263
264 list_for_each_entry (dd, l, list)
265 if (dd->dm_dev.bdev->bd_dev == dev)
266 return dd;
267
268 return NULL;
269}
270
271/*
272 * Open a device so we can use it as a map destination.
273 */
274static int open_dev(struct dm_dev_internal *d, dev_t dev,
275 struct mapped_device *md)
276{
277 static char *_claim_ptr = "I belong to device-mapper";
278 struct block_device *bdev;
279
280 int r;
281
282 BUG_ON(d->dm_dev.bdev);
283
284 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
285 if (IS_ERR(bdev))
286 return PTR_ERR(bdev);
287
288 r = bd_link_disk_holder(bdev, dm_disk(md));
289 if (r) {
290 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
291 return r;
292 }
293
294 d->dm_dev.bdev = bdev;
295 return 0;
296}
297
298/*
299 * Close a device that we've been using.
300 */
301static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
302{
303 if (!d->dm_dev.bdev)
304 return;
305
306 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
307 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
308 d->dm_dev.bdev = NULL;
309}
310
311/*
312 * If possible, this checks an area of a destination device is invalid.
313 */
314static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
315 sector_t start, sector_t len, void *data)
316{
317 struct request_queue *q;
318 struct queue_limits *limits = data;
319 struct block_device *bdev = dev->bdev;
320 sector_t dev_size =
321 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
322 unsigned short logical_block_size_sectors =
323 limits->logical_block_size >> SECTOR_SHIFT;
324 char b[BDEVNAME_SIZE];
325
326 /*
327 * Some devices exist without request functions,
328 * such as loop devices not yet bound to backing files.
329 * Forbid the use of such devices.
330 */
331 q = bdev_get_queue(bdev);
332 if (!q || !q->make_request_fn) {
333 DMWARN("%s: %s is not yet initialised: "
334 "start=%llu, len=%llu, dev_size=%llu",
335 dm_device_name(ti->table->md), bdevname(bdev, b),
336 (unsigned long long)start,
337 (unsigned long long)len,
338 (unsigned long long)dev_size);
339 return 1;
340 }
341
342 if (!dev_size)
343 return 0;
344
345 if ((start >= dev_size) || (start + len > dev_size)) {
346 DMWARN("%s: %s too small for target: "
347 "start=%llu, len=%llu, dev_size=%llu",
348 dm_device_name(ti->table->md), bdevname(bdev, b),
349 (unsigned long long)start,
350 (unsigned long long)len,
351 (unsigned long long)dev_size);
352 return 1;
353 }
354
355 if (logical_block_size_sectors <= 1)
356 return 0;
357
358 if (start & (logical_block_size_sectors - 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
360 "logical block size %u of %s",
361 dm_device_name(ti->table->md),
362 (unsigned long long)start,
363 limits->logical_block_size, bdevname(bdev, b));
364 return 1;
365 }
366
367 if (len & (logical_block_size_sectors - 1)) {
368 DMWARN("%s: len=%llu not aligned to h/w "
369 "logical block size %u of %s",
370 dm_device_name(ti->table->md),
371 (unsigned long long)len,
372 limits->logical_block_size, bdevname(bdev, b));
373 return 1;
374 }
375
376 return 0;
377}
378
379/*
380 * This upgrades the mode on an already open dm_dev, being
381 * careful to leave things as they were if we fail to reopen the
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
384 */
385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 struct mapped_device *md)
387{
388 int r;
389 struct dm_dev_internal dd_new, dd_old;
390
391 dd_new = dd_old = *dd;
392
393 dd_new.dm_dev.mode |= new_mode;
394 dd_new.dm_dev.bdev = NULL;
395
396 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
397 if (r)
398 return r;
399
400 dd->dm_dev.mode |= new_mode;
401 close_dev(&dd_old, md);
402
403 return 0;
404}
405
406/*
407 * Add a device to the list, or just increment the usage count if
408 * it's already present.
409 */
410int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
411 struct dm_dev **result)
412{
413 int r;
414 dev_t uninitialized_var(dev);
415 struct dm_dev_internal *dd;
416 unsigned int major, minor;
417 struct dm_table *t = ti->table;
418 char dummy;
419
420 BUG_ON(!t);
421
422 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
423 /* Extract the major/minor numbers */
424 dev = MKDEV(major, minor);
425 if (MAJOR(dev) != major || MINOR(dev) != minor)
426 return -EOVERFLOW;
427 } else {
428 /* convert the path to a device */
429 struct block_device *bdev = lookup_bdev(path);
430
431 if (IS_ERR(bdev))
432 return PTR_ERR(bdev);
433 dev = bdev->bd_dev;
434 bdput(bdev);
435 }
436
437 dd = find_device(&t->devices, dev);
438 if (!dd) {
439 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
440 if (!dd)
441 return -ENOMEM;
442
443 dd->dm_dev.mode = mode;
444 dd->dm_dev.bdev = NULL;
445
446 if ((r = open_dev(dd, dev, t->md))) {
447 kfree(dd);
448 return r;
449 }
450
451 format_dev_t(dd->dm_dev.name, dev);
452
453 atomic_set(&dd->count, 0);
454 list_add(&dd->list, &t->devices);
455
456 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
457 r = upgrade_mode(dd, mode, t->md);
458 if (r)
459 return r;
460 }
461 atomic_inc(&dd->count);
462
463 *result = &dd->dm_dev;
464 return 0;
465}
466EXPORT_SYMBOL(dm_get_device);
467
468int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
469 sector_t start, sector_t len, void *data)
470{
471 struct queue_limits *limits = data;
472 struct block_device *bdev = dev->bdev;
473 struct request_queue *q = bdev_get_queue(bdev);
474 char b[BDEVNAME_SIZE];
475
476 if (unlikely(!q)) {
477 DMWARN("%s: Cannot set limits for nonexistent device %s",
478 dm_device_name(ti->table->md), bdevname(bdev, b));
479 return 0;
480 }
481
482 if (bdev_stack_limits(limits, bdev, start) < 0)
483 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
484 "physical_block_size=%u, logical_block_size=%u, "
485 "alignment_offset=%u, start=%llu",
486 dm_device_name(ti->table->md), bdevname(bdev, b),
487 q->limits.physical_block_size,
488 q->limits.logical_block_size,
489 q->limits.alignment_offset,
490 (unsigned long long) start << SECTOR_SHIFT);
491
492 /*
493 * Check if merge fn is supported.
494 * If not we'll force DM to use PAGE_SIZE or
495 * smaller I/O, just to be safe.
496 */
497 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
498 blk_limits_max_hw_sectors(limits,
499 (unsigned int) (PAGE_SIZE >> 9));
500 return 0;
501}
502EXPORT_SYMBOL_GPL(dm_set_device_limits);
503
504/*
505 * Decrement a device's use count and remove it if necessary.
506 */
507void dm_put_device(struct dm_target *ti, struct dm_dev *d)
508{
509 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
510 dm_dev);
511
512 if (atomic_dec_and_test(&dd->count)) {
513 close_dev(dd, ti->table->md);
514 list_del(&dd->list);
515 kfree(dd);
516 }
517}
518EXPORT_SYMBOL(dm_put_device);
519
520/*
521 * Checks to see if the target joins onto the end of the table.
522 */
523static int adjoin(struct dm_table *table, struct dm_target *ti)
524{
525 struct dm_target *prev;
526
527 if (!table->num_targets)
528 return !ti->begin;
529
530 prev = &table->targets[table->num_targets - 1];
531 return (ti->begin == (prev->begin + prev->len));
532}
533
534/*
535 * Used to dynamically allocate the arg array.
536 *
537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
538 * process messages even if some device is suspended. These messages have a
539 * small fixed number of arguments.
540 *
541 * On the other hand, dm-switch needs to process bulk data using messages and
542 * excessive use of GFP_NOIO could cause trouble.
543 */
544static char **realloc_argv(unsigned *array_size, char **old_argv)
545{
546 char **argv;
547 unsigned new_size;
548 gfp_t gfp;
549
550 if (*array_size) {
551 new_size = *array_size * 2;
552 gfp = GFP_KERNEL;
553 } else {
554 new_size = 8;
555 gfp = GFP_NOIO;
556 }
557 argv = kmalloc(new_size * sizeof(*argv), gfp);
558 if (argv) {
559 memcpy(argv, old_argv, *array_size * sizeof(*argv));
560 *array_size = new_size;
561 }
562
563 kfree(old_argv);
564 return argv;
565}
566
567/*
568 * Destructively splits up the argument list to pass to ctr.
569 */
570int dm_split_args(int *argc, char ***argvp, char *input)
571{
572 char *start, *end = input, *out, **argv = NULL;
573 unsigned array_size = 0;
574
575 *argc = 0;
576
577 if (!input) {
578 *argvp = NULL;
579 return 0;
580 }
581
582 argv = realloc_argv(&array_size, argv);
583 if (!argv)
584 return -ENOMEM;
585
586 while (1) {
587 /* Skip whitespace */
588 start = skip_spaces(end);
589
590 if (!*start)
591 break; /* success, we hit the end */
592
593 /* 'out' is used to remove any back-quotes */
594 end = out = start;
595 while (*end) {
596 /* Everything apart from '\0' can be quoted */
597 if (*end == '\\' && *(end + 1)) {
598 *out++ = *(end + 1);
599 end += 2;
600 continue;
601 }
602
603 if (isspace(*end))
604 break; /* end of token */
605
606 *out++ = *end++;
607 }
608
609 /* have we already filled the array ? */
610 if ((*argc + 1) > array_size) {
611 argv = realloc_argv(&array_size, argv);
612 if (!argv)
613 return -ENOMEM;
614 }
615
616 /* we know this is whitespace */
617 if (*end)
618 end++;
619
620 /* terminate the string and put it in the array */
621 *out = '\0';
622 argv[*argc] = start;
623 (*argc)++;
624 }
625
626 *argvp = argv;
627 return 0;
628}
629
630/*
631 * Impose necessary and sufficient conditions on a devices's table such
632 * that any incoming bio which respects its logical_block_size can be
633 * processed successfully. If it falls across the boundary between
634 * two or more targets, the size of each piece it gets split into must
635 * be compatible with the logical_block_size of the target processing it.
636 */
637static int validate_hardware_logical_block_alignment(struct dm_table *table,
638 struct queue_limits *limits)
639{
640 /*
641 * This function uses arithmetic modulo the logical_block_size
642 * (in units of 512-byte sectors).
643 */
644 unsigned short device_logical_block_size_sects =
645 limits->logical_block_size >> SECTOR_SHIFT;
646
647 /*
648 * Offset of the start of the next table entry, mod logical_block_size.
649 */
650 unsigned short next_target_start = 0;
651
652 /*
653 * Given an aligned bio that extends beyond the end of a
654 * target, how many sectors must the next target handle?
655 */
656 unsigned short remaining = 0;
657
658 struct dm_target *uninitialized_var(ti);
659 struct queue_limits ti_limits;
660 unsigned i = 0;
661
662 /*
663 * Check each entry in the table in turn.
664 */
665 while (i < dm_table_get_num_targets(table)) {
666 ti = dm_table_get_target(table, i++);
667
668 blk_set_stacking_limits(&ti_limits);
669
670 /* combine all target devices' limits */
671 if (ti->type->iterate_devices)
672 ti->type->iterate_devices(ti, dm_set_device_limits,
673 &ti_limits);
674
675 /*
676 * If the remaining sectors fall entirely within this
677 * table entry are they compatible with its logical_block_size?
678 */
679 if (remaining < ti->len &&
680 remaining & ((ti_limits.logical_block_size >>
681 SECTOR_SHIFT) - 1))
682 break; /* Error */
683
684 next_target_start =
685 (unsigned short) ((next_target_start + ti->len) &
686 (device_logical_block_size_sects - 1));
687 remaining = next_target_start ?
688 device_logical_block_size_sects - next_target_start : 0;
689 }
690
691 if (remaining) {
692 DMWARN("%s: table line %u (start sect %llu len %llu) "
693 "not aligned to h/w logical block size %u",
694 dm_device_name(table->md), i,
695 (unsigned long long) ti->begin,
696 (unsigned long long) ti->len,
697 limits->logical_block_size);
698 return -EINVAL;
699 }
700
701 return 0;
702}
703
704int dm_table_add_target(struct dm_table *t, const char *type,
705 sector_t start, sector_t len, char *params)
706{
707 int r = -EINVAL, argc;
708 char **argv;
709 struct dm_target *tgt;
710
711 if (t->singleton) {
712 DMERR("%s: target type %s must appear alone in table",
713 dm_device_name(t->md), t->targets->type->name);
714 return -EINVAL;
715 }
716
717 BUG_ON(t->num_targets >= t->num_allocated);
718
719 tgt = t->targets + t->num_targets;
720 memset(tgt, 0, sizeof(*tgt));
721
722 if (!len) {
723 DMERR("%s: zero-length target", dm_device_name(t->md));
724 return -EINVAL;
725 }
726
727 tgt->type = dm_get_target_type(type);
728 if (!tgt->type) {
729 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
730 type);
731 return -EINVAL;
732 }
733
734 if (dm_target_needs_singleton(tgt->type)) {
735 if (t->num_targets) {
736 DMERR("%s: target type %s must appear alone in table",
737 dm_device_name(t->md), type);
738 return -EINVAL;
739 }
740 t->singleton = 1;
741 }
742
743 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
744 DMERR("%s: target type %s may not be included in read-only tables",
745 dm_device_name(t->md), type);
746 return -EINVAL;
747 }
748
749 if (t->immutable_target_type) {
750 if (t->immutable_target_type != tgt->type) {
751 DMERR("%s: immutable target type %s cannot be mixed with other target types",
752 dm_device_name(t->md), t->immutable_target_type->name);
753 return -EINVAL;
754 }
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 DMERR("%s: immutable target type %s cannot be mixed with other target types",
758 dm_device_name(t->md), tgt->type->name);
759 return -EINVAL;
760 }
761 t->immutable_target_type = tgt->type;
762 }
763
764 tgt->table = t;
765 tgt->begin = start;
766 tgt->len = len;
767 tgt->error = "Unknown error";
768
769 /*
770 * Does this target adjoin the previous one ?
771 */
772 if (!adjoin(t, tgt)) {
773 tgt->error = "Gap in table";
774 r = -EINVAL;
775 goto bad;
776 }
777
778 r = dm_split_args(&argc, &argv, params);
779 if (r) {
780 tgt->error = "couldn't split parameters (insufficient memory)";
781 goto bad;
782 }
783
784 r = tgt->type->ctr(tgt, argc, argv);
785 kfree(argv);
786 if (r)
787 goto bad;
788
789 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
790
791 if (!tgt->num_discard_bios && tgt->discards_supported)
792 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
793 dm_device_name(t->md), type);
794
795 return 0;
796
797 bad:
798 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
799 dm_put_target_type(tgt->type);
800 return r;
801}
802
803/*
804 * Target argument parsing helpers.
805 */
806static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned *value, char **error, unsigned grouped)
808{
809 const char *arg_str = dm_shift_arg(arg_set);
810 char dummy;
811
812 if (!arg_str ||
813 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
814 (*value < arg->min) ||
815 (*value > arg->max) ||
816 (grouped && arg_set->argc < *value)) {
817 *error = arg->error;
818 return -EINVAL;
819 }
820
821 return 0;
822}
823
824int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
825 unsigned *value, char **error)
826{
827 return validate_next_arg(arg, arg_set, value, error, 0);
828}
829EXPORT_SYMBOL(dm_read_arg);
830
831int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
832 unsigned *value, char **error)
833{
834 return validate_next_arg(arg, arg_set, value, error, 1);
835}
836EXPORT_SYMBOL(dm_read_arg_group);
837
838const char *dm_shift_arg(struct dm_arg_set *as)
839{
840 char *r;
841
842 if (as->argc) {
843 as->argc--;
844 r = *as->argv;
845 as->argv++;
846 return r;
847 }
848
849 return NULL;
850}
851EXPORT_SYMBOL(dm_shift_arg);
852
853void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
854{
855 BUG_ON(as->argc < num_args);
856 as->argc -= num_args;
857 as->argv += num_args;
858}
859EXPORT_SYMBOL(dm_consume_args);
860
861static int dm_table_set_type(struct dm_table *t)
862{
863 unsigned i;
864 unsigned bio_based = 0, request_based = 0, hybrid = 0;
865 struct dm_target *tgt;
866 struct dm_dev_internal *dd;
867 struct list_head *devices;
868 unsigned live_md_type;
869
870 for (i = 0; i < t->num_targets; i++) {
871 tgt = t->targets + i;
872 if (dm_target_hybrid(tgt))
873 hybrid = 1;
874 else if (dm_target_request_based(tgt))
875 request_based = 1;
876 else
877 bio_based = 1;
878
879 if (bio_based && request_based) {
880 DMWARN("Inconsistent table: different target types"
881 " can't be mixed up");
882 return -EINVAL;
883 }
884 }
885
886 if (hybrid && !bio_based && !request_based) {
887 /*
888 * The targets can work either way.
889 * Determine the type from the live device.
890 * Default to bio-based if device is new.
891 */
892 live_md_type = dm_get_md_type(t->md);
893 if (live_md_type == DM_TYPE_REQUEST_BASED)
894 request_based = 1;
895 else
896 bio_based = 1;
897 }
898
899 if (bio_based) {
900 /* We must use this table as bio-based */
901 t->type = DM_TYPE_BIO_BASED;
902 return 0;
903 }
904
905 BUG_ON(!request_based); /* No targets in this table */
906
907 /* Non-request-stackable devices can't be used for request-based dm */
908 devices = dm_table_get_devices(t);
909 list_for_each_entry(dd, devices, list) {
910 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
911 DMWARN("table load rejected: including"
912 " non-request-stackable devices");
913 return -EINVAL;
914 }
915 }
916
917 /*
918 * Request-based dm supports only tables that have a single target now.
919 * To support multiple targets, request splitting support is needed,
920 * and that needs lots of changes in the block-layer.
921 * (e.g. request completion process for partial completion.)
922 */
923 if (t->num_targets > 1) {
924 DMWARN("Request-based dm doesn't support multiple targets yet");
925 return -EINVAL;
926 }
927
928 t->type = DM_TYPE_REQUEST_BASED;
929
930 return 0;
931}
932
933unsigned dm_table_get_type(struct dm_table *t)
934{
935 return t->type;
936}
937
938struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
939{
940 return t->immutable_target_type;
941}
942
943bool dm_table_request_based(struct dm_table *t)
944{
945 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
946}
947
948static int dm_table_alloc_md_mempools(struct dm_table *t)
949{
950 unsigned type = dm_table_get_type(t);
951 unsigned per_bio_data_size = 0;
952 struct dm_target *tgt;
953 unsigned i;
954
955 if (unlikely(type == DM_TYPE_NONE)) {
956 DMWARN("no table type is set, can't allocate mempools");
957 return -EINVAL;
958 }
959
960 if (type == DM_TYPE_BIO_BASED)
961 for (i = 0; i < t->num_targets; i++) {
962 tgt = t->targets + i;
963 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
964 }
965
966 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
967 if (!t->mempools)
968 return -ENOMEM;
969
970 return 0;
971}
972
973void dm_table_free_md_mempools(struct dm_table *t)
974{
975 dm_free_md_mempools(t->mempools);
976 t->mempools = NULL;
977}
978
979struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
980{
981 return t->mempools;
982}
983
984static int setup_indexes(struct dm_table *t)
985{
986 int i;
987 unsigned int total = 0;
988 sector_t *indexes;
989
990 /* allocate the space for *all* the indexes */
991 for (i = t->depth - 2; i >= 0; i--) {
992 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
993 total += t->counts[i];
994 }
995
996 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
997 if (!indexes)
998 return -ENOMEM;
999
1000 /* set up internal nodes, bottom-up */
1001 for (i = t->depth - 2; i >= 0; i--) {
1002 t->index[i] = indexes;
1003 indexes += (KEYS_PER_NODE * t->counts[i]);
1004 setup_btree_index(i, t);
1005 }
1006
1007 return 0;
1008}
1009
1010/*
1011 * Builds the btree to index the map.
1012 */
1013static int dm_table_build_index(struct dm_table *t)
1014{
1015 int r = 0;
1016 unsigned int leaf_nodes;
1017
1018 /* how many indexes will the btree have ? */
1019 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022 /* leaf layer has already been set up */
1023 t->counts[t->depth - 1] = leaf_nodes;
1024 t->index[t->depth - 1] = t->highs;
1025
1026 if (t->depth >= 2)
1027 r = setup_indexes(t);
1028
1029 return r;
1030}
1031
1032/*
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1038 */
1039static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040 bool match_all)
1041{
1042 struct list_head *devices = dm_table_get_devices(t);
1043 struct dm_dev_internal *dd = NULL;
1044 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1045
1046 list_for_each_entry(dd, devices, list) {
1047 template_disk = dd->dm_dev.bdev->bd_disk;
1048 if (!blk_get_integrity(template_disk))
1049 goto no_integrity;
1050 if (!match_all && !blk_integrity_is_initialized(template_disk))
1051 continue; /* skip uninitialized profiles */
1052 else if (prev_disk &&
1053 blk_integrity_compare(prev_disk, template_disk) < 0)
1054 goto no_integrity;
1055 prev_disk = template_disk;
1056 }
1057
1058 return template_disk;
1059
1060no_integrity:
1061 if (prev_disk)
1062 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063 dm_device_name(t->md),
1064 prev_disk->disk_name,
1065 template_disk->disk_name);
1066 return NULL;
1067}
1068
1069/*
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile. But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1078 */
1079static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080{
1081 struct gendisk *template_disk = NULL;
1082
1083 template_disk = dm_table_get_integrity_disk(t, false);
1084 if (!template_disk)
1085 return 0;
1086
1087 if (!blk_integrity_is_initialized(dm_disk(md))) {
1088 t->integrity_supported = 1;
1089 return blk_integrity_register(dm_disk(md), NULL);
1090 }
1091
1092 /*
1093 * If DM device already has an initalized integrity
1094 * profile the new profile should not conflict.
1095 */
1096 if (blk_integrity_is_initialized(template_disk) &&
1097 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098 DMWARN("%s: conflict with existing integrity profile: "
1099 "%s profile mismatch",
1100 dm_device_name(t->md),
1101 template_disk->disk_name);
1102 return 1;
1103 }
1104
1105 /* Preserve existing initialized integrity profile */
1106 t->integrity_supported = 1;
1107 return 0;
1108}
1109
1110/*
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1113 */
1114int dm_table_complete(struct dm_table *t)
1115{
1116 int r;
1117
1118 r = dm_table_set_type(t);
1119 if (r) {
1120 DMERR("unable to set table type");
1121 return r;
1122 }
1123
1124 r = dm_table_build_index(t);
1125 if (r) {
1126 DMERR("unable to build btrees");
1127 return r;
1128 }
1129
1130 r = dm_table_prealloc_integrity(t, t->md);
1131 if (r) {
1132 DMERR("could not register integrity profile.");
1133 return r;
1134 }
1135
1136 r = dm_table_alloc_md_mempools(t);
1137 if (r)
1138 DMERR("unable to allocate mempools");
1139
1140 return r;
1141}
1142
1143static DEFINE_MUTEX(_event_lock);
1144void dm_table_event_callback(struct dm_table *t,
1145 void (*fn)(void *), void *context)
1146{
1147 mutex_lock(&_event_lock);
1148 t->event_fn = fn;
1149 t->event_context = context;
1150 mutex_unlock(&_event_lock);
1151}
1152
1153void dm_table_event(struct dm_table *t)
1154{
1155 /*
1156 * You can no longer call dm_table_event() from interrupt
1157 * context, use a bottom half instead.
1158 */
1159 BUG_ON(in_interrupt());
1160
1161 mutex_lock(&_event_lock);
1162 if (t->event_fn)
1163 t->event_fn(t->event_context);
1164 mutex_unlock(&_event_lock);
1165}
1166EXPORT_SYMBOL(dm_table_event);
1167
1168sector_t dm_table_get_size(struct dm_table *t)
1169{
1170 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171}
1172EXPORT_SYMBOL(dm_table_get_size);
1173
1174struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175{
1176 if (index >= t->num_targets)
1177 return NULL;
1178
1179 return t->targets + index;
1180}
1181
1182/*
1183 * Search the btree for the correct target.
1184 *
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1187 */
1188struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189{
1190 unsigned int l, n = 0, k = 0;
1191 sector_t *node;
1192
1193 for (l = 0; l < t->depth; l++) {
1194 n = get_child(n, k);
1195 node = get_node(t, l, n);
1196
1197 for (k = 0; k < KEYS_PER_NODE; k++)
1198 if (node[k] >= sector)
1199 break;
1200 }
1201
1202 return &t->targets[(KEYS_PER_NODE * n) + k];
1203}
1204
1205static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206 sector_t start, sector_t len, void *data)
1207{
1208 unsigned *num_devices = data;
1209
1210 (*num_devices)++;
1211
1212 return 0;
1213}
1214
1215/*
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1220 */
1221bool dm_table_has_no_data_devices(struct dm_table *table)
1222{
1223 struct dm_target *uninitialized_var(ti);
1224 unsigned i = 0, num_devices = 0;
1225
1226 while (i < dm_table_get_num_targets(table)) {
1227 ti = dm_table_get_target(table, i++);
1228
1229 if (!ti->type->iterate_devices)
1230 return false;
1231
1232 ti->type->iterate_devices(ti, count_device, &num_devices);
1233 if (num_devices)
1234 return false;
1235 }
1236
1237 return true;
1238}
1239
1240/*
1241 * Establish the new table's queue_limits and validate them.
1242 */
1243int dm_calculate_queue_limits(struct dm_table *table,
1244 struct queue_limits *limits)
1245{
1246 struct dm_target *uninitialized_var(ti);
1247 struct queue_limits ti_limits;
1248 unsigned i = 0;
1249
1250 blk_set_stacking_limits(limits);
1251
1252 while (i < dm_table_get_num_targets(table)) {
1253 blk_set_stacking_limits(&ti_limits);
1254
1255 ti = dm_table_get_target(table, i++);
1256
1257 if (!ti->type->iterate_devices)
1258 goto combine_limits;
1259
1260 /*
1261 * Combine queue limits of all the devices this target uses.
1262 */
1263 ti->type->iterate_devices(ti, dm_set_device_limits,
1264 &ti_limits);
1265
1266 /* Set I/O hints portion of queue limits */
1267 if (ti->type->io_hints)
1268 ti->type->io_hints(ti, &ti_limits);
1269
1270 /*
1271 * Check each device area is consistent with the target's
1272 * overall queue limits.
1273 */
1274 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275 &ti_limits))
1276 return -EINVAL;
1277
1278combine_limits:
1279 /*
1280 * Merge this target's queue limits into the overall limits
1281 * for the table.
1282 */
1283 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284 DMWARN("%s: adding target device "
1285 "(start sect %llu len %llu) "
1286 "caused an alignment inconsistency",
1287 dm_device_name(table->md),
1288 (unsigned long long) ti->begin,
1289 (unsigned long long) ti->len);
1290 }
1291
1292 return validate_hardware_logical_block_alignment(table, limits);
1293}
1294
1295/*
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles. We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles. Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1301 */
1302static void dm_table_set_integrity(struct dm_table *t)
1303{
1304 struct gendisk *template_disk = NULL;
1305
1306 if (!blk_get_integrity(dm_disk(t->md)))
1307 return;
1308
1309 template_disk = dm_table_get_integrity_disk(t, true);
1310 if (template_disk)
1311 blk_integrity_register(dm_disk(t->md),
1312 blk_get_integrity(template_disk));
1313 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314 DMWARN("%s: device no longer has a valid integrity profile",
1315 dm_device_name(t->md));
1316 else
1317 DMWARN("%s: unable to establish an integrity profile",
1318 dm_device_name(t->md));
1319}
1320
1321static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322 sector_t start, sector_t len, void *data)
1323{
1324 unsigned flush = (*(unsigned *)data);
1325 struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327 return q && (q->flush_flags & flush);
1328}
1329
1330static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331{
1332 struct dm_target *ti;
1333 unsigned i = 0;
1334
1335 /*
1336 * Require at least one underlying device to support flushes.
1337 * t->devices includes internal dm devices such as mirror logs
1338 * so we need to use iterate_devices here, which targets
1339 * supporting flushes must provide.
1340 */
1341 while (i < dm_table_get_num_targets(t)) {
1342 ti = dm_table_get_target(t, i++);
1343
1344 if (!ti->num_flush_bios)
1345 continue;
1346
1347 if (ti->flush_supported)
1348 return 1;
1349
1350 if (ti->type->iterate_devices &&
1351 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352 return 1;
1353 }
1354
1355 return 0;
1356}
1357
1358static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359{
1360 struct dm_target *ti;
1361 unsigned i = 0;
1362
1363 /* Ensure that all targets supports discard_zeroes_data. */
1364 while (i < dm_table_get_num_targets(t)) {
1365 ti = dm_table_get_target(t, i++);
1366
1367 if (ti->discard_zeroes_data_unsupported)
1368 return 0;
1369 }
1370
1371 return 1;
1372}
1373
1374static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375 sector_t start, sector_t len, void *data)
1376{
1377 struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379 return q && blk_queue_nonrot(q);
1380}
1381
1382static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383 sector_t start, sector_t len, void *data)
1384{
1385 struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387 return q && !blk_queue_add_random(q);
1388}
1389
1390static bool dm_table_all_devices_attribute(struct dm_table *t,
1391 iterate_devices_callout_fn func)
1392{
1393 struct dm_target *ti;
1394 unsigned i = 0;
1395
1396 while (i < dm_table_get_num_targets(t)) {
1397 ti = dm_table_get_target(t, i++);
1398
1399 if (!ti->type->iterate_devices ||
1400 !ti->type->iterate_devices(ti, func, NULL))
1401 return 0;
1402 }
1403
1404 return 1;
1405}
1406
1407static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1408 sector_t start, sector_t len, void *data)
1409{
1410 struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412 return q && !q->limits.max_write_same_sectors;
1413}
1414
1415static bool dm_table_supports_write_same(struct dm_table *t)
1416{
1417 struct dm_target *ti;
1418 unsigned i = 0;
1419
1420 while (i < dm_table_get_num_targets(t)) {
1421 ti = dm_table_get_target(t, i++);
1422
1423 if (!ti->num_write_same_bios)
1424 return false;
1425
1426 if (!ti->type->iterate_devices ||
1427 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1428 return false;
1429 }
1430
1431 return true;
1432}
1433
1434void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1435 struct queue_limits *limits)
1436{
1437 unsigned flush = 0;
1438
1439 /*
1440 * Copy table's limits to the DM device's request_queue
1441 */
1442 q->limits = *limits;
1443
1444 if (!dm_table_supports_discards(t))
1445 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1446 else
1447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1448
1449 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1450 flush |= REQ_FLUSH;
1451 if (dm_table_supports_flush(t, REQ_FUA))
1452 flush |= REQ_FUA;
1453 }
1454 blk_queue_flush(q, flush);
1455
1456 if (!dm_table_discard_zeroes_data(t))
1457 q->limits.discard_zeroes_data = 0;
1458
1459 /* Ensure that all underlying devices are non-rotational. */
1460 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1461 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1462 else
1463 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1464
1465 if (!dm_table_supports_write_same(t))
1466 q->limits.max_write_same_sectors = 0;
1467
1468 dm_table_set_integrity(t);
1469
1470 /*
1471 * Determine whether or not this queue's I/O timings contribute
1472 * to the entropy pool, Only request-based targets use this.
1473 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1474 * have it set.
1475 */
1476 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1477 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1478
1479 /*
1480 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481 * visible to other CPUs because, once the flag is set, incoming bios
1482 * are processed by request-based dm, which refers to the queue
1483 * settings.
1484 * Until the flag set, bios are passed to bio-based dm and queued to
1485 * md->deferred where queue settings are not needed yet.
1486 * Those bios are passed to request-based dm at the resume time.
1487 */
1488 smp_mb();
1489 if (dm_table_request_based(t))
1490 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1491}
1492
1493unsigned int dm_table_get_num_targets(struct dm_table *t)
1494{
1495 return t->num_targets;
1496}
1497
1498struct list_head *dm_table_get_devices(struct dm_table *t)
1499{
1500 return &t->devices;
1501}
1502
1503fmode_t dm_table_get_mode(struct dm_table *t)
1504{
1505 return t->mode;
1506}
1507EXPORT_SYMBOL(dm_table_get_mode);
1508
1509static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1510{
1511 int i = t->num_targets;
1512 struct dm_target *ti = t->targets;
1513
1514 while (i--) {
1515 if (postsuspend) {
1516 if (ti->type->postsuspend)
1517 ti->type->postsuspend(ti);
1518 } else if (ti->type->presuspend)
1519 ti->type->presuspend(ti);
1520
1521 ti++;
1522 }
1523}
1524
1525void dm_table_presuspend_targets(struct dm_table *t)
1526{
1527 if (!t)
1528 return;
1529
1530 suspend_targets(t, 0);
1531}
1532
1533void dm_table_postsuspend_targets(struct dm_table *t)
1534{
1535 if (!t)
1536 return;
1537
1538 suspend_targets(t, 1);
1539}
1540
1541int dm_table_resume_targets(struct dm_table *t)
1542{
1543 int i, r = 0;
1544
1545 for (i = 0; i < t->num_targets; i++) {
1546 struct dm_target *ti = t->targets + i;
1547
1548 if (!ti->type->preresume)
1549 continue;
1550
1551 r = ti->type->preresume(ti);
1552 if (r) {
1553 DMERR("%s: %s: preresume failed, error = %d",
1554 dm_device_name(t->md), ti->type->name, r);
1555 return r;
1556 }
1557 }
1558
1559 for (i = 0; i < t->num_targets; i++) {
1560 struct dm_target *ti = t->targets + i;
1561
1562 if (ti->type->resume)
1563 ti->type->resume(ti);
1564 }
1565
1566 return 0;
1567}
1568
1569void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1570{
1571 list_add(&cb->list, &t->target_callbacks);
1572}
1573EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1574
1575int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1576{
1577 struct dm_dev_internal *dd;
1578 struct list_head *devices = dm_table_get_devices(t);
1579 struct dm_target_callbacks *cb;
1580 int r = 0;
1581
1582 list_for_each_entry(dd, devices, list) {
1583 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1584 char b[BDEVNAME_SIZE];
1585
1586 if (likely(q))
1587 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1588 else
1589 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590 dm_device_name(t->md),
1591 bdevname(dd->dm_dev.bdev, b));
1592 }
1593
1594 list_for_each_entry(cb, &t->target_callbacks, list)
1595 if (cb->congested_fn)
1596 r |= cb->congested_fn(cb, bdi_bits);
1597
1598 return r;
1599}
1600
1601int dm_table_any_busy_target(struct dm_table *t)
1602{
1603 unsigned i;
1604 struct dm_target *ti;
1605
1606 for (i = 0; i < t->num_targets; i++) {
1607 ti = t->targets + i;
1608 if (ti->type->busy && ti->type->busy(ti))
1609 return 1;
1610 }
1611
1612 return 0;
1613}
1614
1615struct mapped_device *dm_table_get_md(struct dm_table *t)
1616{
1617 return t->md;
1618}
1619EXPORT_SYMBOL(dm_table_get_md);
1620
1621void dm_table_run_md_queue_async(struct dm_table *t)
1622{
1623 struct mapped_device *md;
1624 struct request_queue *queue;
1625 unsigned long flags;
1626
1627 if (!dm_table_request_based(t))
1628 return;
1629
1630 md = dm_table_get_md(t);
1631 queue = dm_get_md_queue(md);
1632 if (queue) {
1633 spin_lock_irqsave(queue->queue_lock, flags);
1634 blk_run_queue_async(queue);
1635 spin_unlock_irqrestore(queue->queue_lock, flags);
1636 }
1637}
1638EXPORT_SYMBOL(dm_table_run_md_queue_async);
1639
1640static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1641 sector_t start, sector_t len, void *data)
1642{
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645 return q && blk_queue_discard(q);
1646}
1647
1648bool dm_table_supports_discards(struct dm_table *t)
1649{
1650 struct dm_target *ti;
1651 unsigned i = 0;
1652
1653 /*
1654 * Unless any target used by the table set discards_supported,
1655 * require at least one underlying device to support discards.
1656 * t->devices includes internal dm devices such as mirror logs
1657 * so we need to use iterate_devices here, which targets
1658 * supporting discard selectively must provide.
1659 */
1660 while (i < dm_table_get_num_targets(t)) {
1661 ti = dm_table_get_target(t, i++);
1662
1663 if (!ti->num_discard_bios)
1664 continue;
1665
1666 if (ti->discards_supported)
1667 return 1;
1668
1669 if (ti->type->iterate_devices &&
1670 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1671 return 1;
1672 }
1673
1674 return 0;
1675}