Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Common interrupt code for 32 and 64 bit
4 */
5#include <linux/cpu.h>
6#include <linux/interrupt.h>
7#include <linux/kernel_stat.h>
8#include <linux/of.h>
9#include <linux/seq_file.h>
10#include <linux/smp.h>
11#include <linux/ftrace.h>
12#include <linux/delay.h>
13#include <linux/export.h>
14#include <linux/irq.h>
15
16#include <asm/irq_stack.h>
17#include <asm/apic.h>
18#include <asm/io_apic.h>
19#include <asm/irq.h>
20#include <asm/mce.h>
21#include <asm/hw_irq.h>
22#include <asm/desc.h>
23#include <asm/traps.h>
24#include <asm/thermal.h>
25#include <asm/posted_intr.h>
26#include <asm/irq_remapping.h>
27
28#define CREATE_TRACE_POINTS
29#include <asm/trace/irq_vectors.h>
30
31DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
32EXPORT_PER_CPU_SYMBOL(irq_stat);
33
34atomic_t irq_err_count;
35
36/*
37 * 'what should we do if we get a hw irq event on an illegal vector'.
38 * each architecture has to answer this themselves.
39 */
40void ack_bad_irq(unsigned int irq)
41{
42 if (printk_ratelimit())
43 pr_err("unexpected IRQ trap at vector %02x\n", irq);
44
45 /*
46 * Currently unexpected vectors happen only on SMP and APIC.
47 * We _must_ ack these because every local APIC has only N
48 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 * holds up an irq slot - in excessive cases (when multiple
50 * unexpected vectors occur) that might lock up the APIC
51 * completely.
52 * But only ack when the APIC is enabled -AK
53 */
54 apic_eoi();
55}
56
57#define irq_stats(x) (&per_cpu(irq_stat, x))
58/*
59 * /proc/interrupts printing for arch specific interrupts
60 */
61int arch_show_interrupts(struct seq_file *p, int prec)
62{
63 int j;
64
65 seq_printf(p, "%*s: ", prec, "NMI");
66 for_each_online_cpu(j)
67 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68 seq_puts(p, " Non-maskable interrupts\n");
69#ifdef CONFIG_X86_LOCAL_APIC
70 seq_printf(p, "%*s: ", prec, "LOC");
71 for_each_online_cpu(j)
72 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73 seq_puts(p, " Local timer interrupts\n");
74
75 seq_printf(p, "%*s: ", prec, "SPU");
76 for_each_online_cpu(j)
77 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78 seq_puts(p, " Spurious interrupts\n");
79 seq_printf(p, "%*s: ", prec, "PMI");
80 for_each_online_cpu(j)
81 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82 seq_puts(p, " Performance monitoring interrupts\n");
83 seq_printf(p, "%*s: ", prec, "IWI");
84 for_each_online_cpu(j)
85 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86 seq_puts(p, " IRQ work interrupts\n");
87 seq_printf(p, "%*s: ", prec, "RTR");
88 for_each_online_cpu(j)
89 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90 seq_puts(p, " APIC ICR read retries\n");
91 if (x86_platform_ipi_callback) {
92 seq_printf(p, "%*s: ", prec, "PLT");
93 for_each_online_cpu(j)
94 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
95 seq_puts(p, " Platform interrupts\n");
96 }
97#endif
98#ifdef CONFIG_SMP
99 seq_printf(p, "%*s: ", prec, "RES");
100 for_each_online_cpu(j)
101 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102 seq_puts(p, " Rescheduling interrupts\n");
103 seq_printf(p, "%*s: ", prec, "CAL");
104 for_each_online_cpu(j)
105 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
106 seq_puts(p, " Function call interrupts\n");
107 seq_printf(p, "%*s: ", prec, "TLB");
108 for_each_online_cpu(j)
109 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
110 seq_puts(p, " TLB shootdowns\n");
111#endif
112#ifdef CONFIG_X86_THERMAL_VECTOR
113 seq_printf(p, "%*s: ", prec, "TRM");
114 for_each_online_cpu(j)
115 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
116 seq_puts(p, " Thermal event interrupts\n");
117#endif
118#ifdef CONFIG_X86_MCE_THRESHOLD
119 seq_printf(p, "%*s: ", prec, "THR");
120 for_each_online_cpu(j)
121 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
122 seq_puts(p, " Threshold APIC interrupts\n");
123#endif
124#ifdef CONFIG_X86_MCE_AMD
125 seq_printf(p, "%*s: ", prec, "DFR");
126 for_each_online_cpu(j)
127 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
128 seq_puts(p, " Deferred Error APIC interrupts\n");
129#endif
130#ifdef CONFIG_X86_MCE
131 seq_printf(p, "%*s: ", prec, "MCE");
132 for_each_online_cpu(j)
133 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
134 seq_puts(p, " Machine check exceptions\n");
135 seq_printf(p, "%*s: ", prec, "MCP");
136 for_each_online_cpu(j)
137 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
138 seq_puts(p, " Machine check polls\n");
139#endif
140#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
141 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
142 seq_printf(p, "%*s: ", prec, "HYP");
143 for_each_online_cpu(j)
144 seq_printf(p, "%10u ",
145 irq_stats(j)->irq_hv_callback_count);
146 seq_puts(p, " Hypervisor callback interrupts\n");
147 }
148#endif
149#if IS_ENABLED(CONFIG_HYPERV)
150 if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
151 seq_printf(p, "%*s: ", prec, "HRE");
152 for_each_online_cpu(j)
153 seq_printf(p, "%10u ",
154 irq_stats(j)->irq_hv_reenlightenment_count);
155 seq_puts(p, " Hyper-V reenlightenment interrupts\n");
156 }
157 if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
158 seq_printf(p, "%*s: ", prec, "HVS");
159 for_each_online_cpu(j)
160 seq_printf(p, "%10u ",
161 irq_stats(j)->hyperv_stimer0_count);
162 seq_puts(p, " Hyper-V stimer0 interrupts\n");
163 }
164#endif
165 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
166#if defined(CONFIG_X86_IO_APIC)
167 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
168#endif
169#if IS_ENABLED(CONFIG_KVM)
170 seq_printf(p, "%*s: ", prec, "PIN");
171 for_each_online_cpu(j)
172 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
173 seq_puts(p, " Posted-interrupt notification event\n");
174
175 seq_printf(p, "%*s: ", prec, "NPI");
176 for_each_online_cpu(j)
177 seq_printf(p, "%10u ",
178 irq_stats(j)->kvm_posted_intr_nested_ipis);
179 seq_puts(p, " Nested posted-interrupt event\n");
180
181 seq_printf(p, "%*s: ", prec, "PIW");
182 for_each_online_cpu(j)
183 seq_printf(p, "%10u ",
184 irq_stats(j)->kvm_posted_intr_wakeup_ipis);
185 seq_puts(p, " Posted-interrupt wakeup event\n");
186#endif
187#ifdef CONFIG_X86_POSTED_MSI
188 seq_printf(p, "%*s: ", prec, "PMN");
189 for_each_online_cpu(j)
190 seq_printf(p, "%10u ",
191 irq_stats(j)->posted_msi_notification_count);
192 seq_puts(p, " Posted MSI notification event\n");
193#endif
194 return 0;
195}
196
197/*
198 * /proc/stat helpers
199 */
200u64 arch_irq_stat_cpu(unsigned int cpu)
201{
202 u64 sum = irq_stats(cpu)->__nmi_count;
203
204#ifdef CONFIG_X86_LOCAL_APIC
205 sum += irq_stats(cpu)->apic_timer_irqs;
206 sum += irq_stats(cpu)->irq_spurious_count;
207 sum += irq_stats(cpu)->apic_perf_irqs;
208 sum += irq_stats(cpu)->apic_irq_work_irqs;
209 sum += irq_stats(cpu)->icr_read_retry_count;
210 if (x86_platform_ipi_callback)
211 sum += irq_stats(cpu)->x86_platform_ipis;
212#endif
213#ifdef CONFIG_SMP
214 sum += irq_stats(cpu)->irq_resched_count;
215 sum += irq_stats(cpu)->irq_call_count;
216#endif
217#ifdef CONFIG_X86_THERMAL_VECTOR
218 sum += irq_stats(cpu)->irq_thermal_count;
219#endif
220#ifdef CONFIG_X86_MCE_THRESHOLD
221 sum += irq_stats(cpu)->irq_threshold_count;
222#endif
223#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
224 sum += irq_stats(cpu)->irq_hv_callback_count;
225#endif
226#if IS_ENABLED(CONFIG_HYPERV)
227 sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
228 sum += irq_stats(cpu)->hyperv_stimer0_count;
229#endif
230#ifdef CONFIG_X86_MCE
231 sum += per_cpu(mce_exception_count, cpu);
232 sum += per_cpu(mce_poll_count, cpu);
233#endif
234 return sum;
235}
236
237u64 arch_irq_stat(void)
238{
239 u64 sum = atomic_read(&irq_err_count);
240 return sum;
241}
242
243static __always_inline void handle_irq(struct irq_desc *desc,
244 struct pt_regs *regs)
245{
246 if (IS_ENABLED(CONFIG_X86_64))
247 generic_handle_irq_desc(desc);
248 else
249 __handle_irq(desc, regs);
250}
251
252static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
253{
254 struct irq_desc *desc;
255 int ret = 0;
256
257 desc = __this_cpu_read(vector_irq[vector]);
258 if (likely(!IS_ERR_OR_NULL(desc))) {
259 handle_irq(desc, regs);
260 } else {
261 ret = -EINVAL;
262 if (desc == VECTOR_UNUSED) {
263 pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
264 __func__, smp_processor_id(),
265 vector);
266 } else {
267 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
268 }
269 }
270
271 return ret;
272}
273
274/*
275 * common_interrupt() handles all normal device IRQ's (the special SMP
276 * cross-CPU interrupts have their own entry points).
277 */
278DEFINE_IDTENTRY_IRQ(common_interrupt)
279{
280 struct pt_regs *old_regs = set_irq_regs(regs);
281
282 /* entry code tells RCU that we're not quiescent. Check it. */
283 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
284
285 if (unlikely(call_irq_handler(vector, regs)))
286 apic_eoi();
287
288 set_irq_regs(old_regs);
289}
290
291#ifdef CONFIG_X86_LOCAL_APIC
292/* Function pointer for generic interrupt vector handling */
293void (*x86_platform_ipi_callback)(void) = NULL;
294/*
295 * Handler for X86_PLATFORM_IPI_VECTOR.
296 */
297DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
298{
299 struct pt_regs *old_regs = set_irq_regs(regs);
300
301 apic_eoi();
302 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
303 inc_irq_stat(x86_platform_ipis);
304 if (x86_platform_ipi_callback)
305 x86_platform_ipi_callback();
306 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
307 set_irq_regs(old_regs);
308}
309#endif
310
311#if IS_ENABLED(CONFIG_KVM)
312static void dummy_handler(void) {}
313static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
314
315void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
316{
317 if (handler)
318 kvm_posted_intr_wakeup_handler = handler;
319 else {
320 kvm_posted_intr_wakeup_handler = dummy_handler;
321 synchronize_rcu();
322 }
323}
324EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
325
326/*
327 * Handler for POSTED_INTERRUPT_VECTOR.
328 */
329DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
330{
331 apic_eoi();
332 inc_irq_stat(kvm_posted_intr_ipis);
333}
334
335/*
336 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
337 */
338DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
339{
340 apic_eoi();
341 inc_irq_stat(kvm_posted_intr_wakeup_ipis);
342 kvm_posted_intr_wakeup_handler();
343}
344
345/*
346 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
347 */
348DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
349{
350 apic_eoi();
351 inc_irq_stat(kvm_posted_intr_nested_ipis);
352}
353#endif
354
355#ifdef CONFIG_X86_POSTED_MSI
356
357/* Posted Interrupt Descriptors for coalesced MSIs to be posted */
358DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
359
360void intel_posted_msi_init(void)
361{
362 u32 destination;
363 u32 apic_id;
364
365 this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
366
367 /*
368 * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
369 * VT-d spec. CH 9.11
370 */
371 apic_id = this_cpu_read(x86_cpu_to_apicid);
372 destination = x2apic_enabled() ? apic_id : apic_id << 8;
373 this_cpu_write(posted_msi_pi_desc.ndst, destination);
374}
375
376/*
377 * De-multiplexing posted interrupts is on the performance path, the code
378 * below is written to optimize the cache performance based on the following
379 * considerations:
380 * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
381 * accessed by both CPU and IOMMU.
382 * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
383 * for checking and clearing posted interrupt request (PIR), a 256 bit field
384 * within the PID.
385 * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
386 * line when posting interrupts and setting control bits.
387 * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
388 * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
389 * cache line. The cache line states after each operation are as follows:
390 * CPU IOMMU PID Cache line state
391 * ---------------------------------------------------------------
392 *...read64 exclusive
393 *...lock xchg64 modified
394 *... post/atomic swap invalid
395 *...-------------------------------------------------------------
396 *
397 * To reduce L1 data cache miss, it is important to avoid contention with
398 * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
399 * to dispatch interrupt handlers.
400 *
401 * In addition, the code is trying to keep the cache line state consistent
402 * as much as possible. e.g. when making a copy and clearing the PIR
403 * (assuming non-zero PIR bits are present in the entire PIR), it does:
404 * read, read, read, read, xchg, xchg, xchg, xchg
405 * instead of:
406 * read, xchg, read, xchg, read, xchg, read, xchg
407 */
408static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
409{
410 int i, vec = FIRST_EXTERNAL_VECTOR;
411 unsigned long pir_copy[4];
412 bool handled = false;
413
414 for (i = 0; i < 4; i++)
415 pir_copy[i] = pir[i];
416
417 for (i = 0; i < 4; i++) {
418 if (!pir_copy[i])
419 continue;
420
421 pir_copy[i] = arch_xchg(&pir[i], 0);
422 handled = true;
423 }
424
425 if (handled) {
426 for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
427 call_irq_handler(vec, regs);
428 }
429
430 return handled;
431}
432
433/*
434 * Performance data shows that 3 is good enough to harvest 90+% of the benefit
435 * on high IRQ rate workload.
436 */
437#define MAX_POSTED_MSI_COALESCING_LOOP 3
438
439/*
440 * For MSIs that are delivered as posted interrupts, the CPU notifications
441 * can be coalesced if the MSIs arrive in high frequency bursts.
442 */
443DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
444{
445 struct pt_regs *old_regs = set_irq_regs(regs);
446 struct pi_desc *pid;
447 int i = 0;
448
449 pid = this_cpu_ptr(&posted_msi_pi_desc);
450
451 inc_irq_stat(posted_msi_notification_count);
452 irq_enter();
453
454 /*
455 * Max coalescing count includes the extra round of handle_pending_pir
456 * after clearing the outstanding notification bit. Hence, at most
457 * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
458 */
459 while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
460 if (!handle_pending_pir(pid->pir64, regs))
461 break;
462 }
463
464 /*
465 * Clear outstanding notification bit to allow new IRQ notifications,
466 * do this last to maximize the window of interrupt coalescing.
467 */
468 pi_clear_on(pid);
469
470 /*
471 * There could be a race of PI notification and the clearing of ON bit,
472 * process PIR bits one last time such that handling the new interrupts
473 * are not delayed until the next IRQ.
474 */
475 handle_pending_pir(pid->pir64, regs);
476
477 apic_eoi();
478 irq_exit();
479 set_irq_regs(old_regs);
480}
481#endif /* X86_POSTED_MSI */
482
483#ifdef CONFIG_HOTPLUG_CPU
484/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
485void fixup_irqs(void)
486{
487 unsigned int vector;
488 struct irq_desc *desc;
489 struct irq_data *data;
490 struct irq_chip *chip;
491
492 irq_migrate_all_off_this_cpu();
493
494 /*
495 * We can remove mdelay() and then send spurious interrupts to
496 * new cpu targets for all the irqs that were handled previously by
497 * this cpu. While it works, I have seen spurious interrupt messages
498 * (nothing wrong but still...).
499 *
500 * So for now, retain mdelay(1) and check the IRR and then send those
501 * interrupts to new targets as this cpu is already offlined...
502 */
503 mdelay(1);
504
505 /*
506 * We can walk the vector array of this cpu without holding
507 * vector_lock because the cpu is already marked !online, so
508 * nothing else will touch it.
509 */
510 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
511 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
512 continue;
513
514 if (is_vector_pending(vector)) {
515 desc = __this_cpu_read(vector_irq[vector]);
516
517 raw_spin_lock(&desc->lock);
518 data = irq_desc_get_irq_data(desc);
519 chip = irq_data_get_irq_chip(data);
520 if (chip->irq_retrigger) {
521 chip->irq_retrigger(data);
522 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
523 }
524 raw_spin_unlock(&desc->lock);
525 }
526 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
527 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
528 }
529}
530#endif
531
532#ifdef CONFIG_X86_THERMAL_VECTOR
533static void smp_thermal_vector(void)
534{
535 if (x86_thermal_enabled())
536 intel_thermal_interrupt();
537 else
538 pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
539 smp_processor_id());
540}
541
542DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
543{
544 trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
545 inc_irq_stat(irq_thermal_count);
546 smp_thermal_vector();
547 trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
548 apic_eoi();
549}
550#endif
1/*
2 * Common interrupt code for 32 and 64 bit
3 */
4#include <linux/cpu.h>
5#include <linux/interrupt.h>
6#include <linux/kernel_stat.h>
7#include <linux/of.h>
8#include <linux/seq_file.h>
9#include <linux/smp.h>
10#include <linux/ftrace.h>
11#include <linux/delay.h>
12#include <linux/export.h>
13
14#include <asm/apic.h>
15#include <asm/io_apic.h>
16#include <asm/irq.h>
17#include <asm/mce.h>
18#include <asm/hw_irq.h>
19#include <asm/desc.h>
20
21#define CREATE_TRACE_POINTS
22#include <asm/trace/irq_vectors.h>
23
24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
25EXPORT_PER_CPU_SYMBOL(irq_stat);
26
27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
28EXPORT_PER_CPU_SYMBOL(irq_regs);
29
30atomic_t irq_err_count;
31
32/* Function pointer for generic interrupt vector handling */
33void (*x86_platform_ipi_callback)(void) = NULL;
34
35/*
36 * 'what should we do if we get a hw irq event on an illegal vector'.
37 * each architecture has to answer this themselves.
38 */
39void ack_bad_irq(unsigned int irq)
40{
41 if (printk_ratelimit())
42 pr_err("unexpected IRQ trap at vector %02x\n", irq);
43
44 /*
45 * Currently unexpected vectors happen only on SMP and APIC.
46 * We _must_ ack these because every local APIC has only N
47 * irq slots per priority level, and a 'hanging, unacked' IRQ
48 * holds up an irq slot - in excessive cases (when multiple
49 * unexpected vectors occur) that might lock up the APIC
50 * completely.
51 * But only ack when the APIC is enabled -AK
52 */
53 ack_APIC_irq();
54}
55
56#define irq_stats(x) (&per_cpu(irq_stat, x))
57/*
58 * /proc/interrupts printing for arch specific interrupts
59 */
60int arch_show_interrupts(struct seq_file *p, int prec)
61{
62 int j;
63
64 seq_printf(p, "%*s: ", prec, "NMI");
65 for_each_online_cpu(j)
66 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
67 seq_puts(p, " Non-maskable interrupts\n");
68#ifdef CONFIG_X86_LOCAL_APIC
69 seq_printf(p, "%*s: ", prec, "LOC");
70 for_each_online_cpu(j)
71 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
72 seq_puts(p, " Local timer interrupts\n");
73
74 seq_printf(p, "%*s: ", prec, "SPU");
75 for_each_online_cpu(j)
76 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
77 seq_puts(p, " Spurious interrupts\n");
78 seq_printf(p, "%*s: ", prec, "PMI");
79 for_each_online_cpu(j)
80 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
81 seq_puts(p, " Performance monitoring interrupts\n");
82 seq_printf(p, "%*s: ", prec, "IWI");
83 for_each_online_cpu(j)
84 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
85 seq_puts(p, " IRQ work interrupts\n");
86 seq_printf(p, "%*s: ", prec, "RTR");
87 for_each_online_cpu(j)
88 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
89 seq_puts(p, " APIC ICR read retries\n");
90#endif
91 if (x86_platform_ipi_callback) {
92 seq_printf(p, "%*s: ", prec, "PLT");
93 for_each_online_cpu(j)
94 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
95 seq_puts(p, " Platform interrupts\n");
96 }
97#ifdef CONFIG_SMP
98 seq_printf(p, "%*s: ", prec, "RES");
99 for_each_online_cpu(j)
100 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
101 seq_puts(p, " Rescheduling interrupts\n");
102 seq_printf(p, "%*s: ", prec, "CAL");
103 for_each_online_cpu(j)
104 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
105 seq_puts(p, " Function call interrupts\n");
106 seq_printf(p, "%*s: ", prec, "TLB");
107 for_each_online_cpu(j)
108 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
109 seq_puts(p, " TLB shootdowns\n");
110#endif
111#ifdef CONFIG_X86_THERMAL_VECTOR
112 seq_printf(p, "%*s: ", prec, "TRM");
113 for_each_online_cpu(j)
114 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
115 seq_puts(p, " Thermal event interrupts\n");
116#endif
117#ifdef CONFIG_X86_MCE_THRESHOLD
118 seq_printf(p, "%*s: ", prec, "THR");
119 for_each_online_cpu(j)
120 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
121 seq_puts(p, " Threshold APIC interrupts\n");
122#endif
123#ifdef CONFIG_X86_MCE_AMD
124 seq_printf(p, "%*s: ", prec, "DFR");
125 for_each_online_cpu(j)
126 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
127 seq_puts(p, " Deferred Error APIC interrupts\n");
128#endif
129#ifdef CONFIG_X86_MCE
130 seq_printf(p, "%*s: ", prec, "MCE");
131 for_each_online_cpu(j)
132 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
133 seq_puts(p, " Machine check exceptions\n");
134 seq_printf(p, "%*s: ", prec, "MCP");
135 for_each_online_cpu(j)
136 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
137 seq_puts(p, " Machine check polls\n");
138#endif
139#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
140 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
141 seq_printf(p, "%*s: ", prec, "HYP");
142 for_each_online_cpu(j)
143 seq_printf(p, "%10u ",
144 irq_stats(j)->irq_hv_callback_count);
145 seq_puts(p, " Hypervisor callback interrupts\n");
146 }
147#endif
148 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
149#if defined(CONFIG_X86_IO_APIC)
150 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
151#endif
152#ifdef CONFIG_HAVE_KVM
153 seq_printf(p, "%*s: ", prec, "PIN");
154 for_each_online_cpu(j)
155 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
156 seq_puts(p, " Posted-interrupt notification event\n");
157
158 seq_printf(p, "%*s: ", prec, "PIW");
159 for_each_online_cpu(j)
160 seq_printf(p, "%10u ",
161 irq_stats(j)->kvm_posted_intr_wakeup_ipis);
162 seq_puts(p, " Posted-interrupt wakeup event\n");
163#endif
164 return 0;
165}
166
167/*
168 * /proc/stat helpers
169 */
170u64 arch_irq_stat_cpu(unsigned int cpu)
171{
172 u64 sum = irq_stats(cpu)->__nmi_count;
173
174#ifdef CONFIG_X86_LOCAL_APIC
175 sum += irq_stats(cpu)->apic_timer_irqs;
176 sum += irq_stats(cpu)->irq_spurious_count;
177 sum += irq_stats(cpu)->apic_perf_irqs;
178 sum += irq_stats(cpu)->apic_irq_work_irqs;
179 sum += irq_stats(cpu)->icr_read_retry_count;
180#endif
181 if (x86_platform_ipi_callback)
182 sum += irq_stats(cpu)->x86_platform_ipis;
183#ifdef CONFIG_SMP
184 sum += irq_stats(cpu)->irq_resched_count;
185 sum += irq_stats(cpu)->irq_call_count;
186#endif
187#ifdef CONFIG_X86_THERMAL_VECTOR
188 sum += irq_stats(cpu)->irq_thermal_count;
189#endif
190#ifdef CONFIG_X86_MCE_THRESHOLD
191 sum += irq_stats(cpu)->irq_threshold_count;
192#endif
193#ifdef CONFIG_X86_MCE
194 sum += per_cpu(mce_exception_count, cpu);
195 sum += per_cpu(mce_poll_count, cpu);
196#endif
197 return sum;
198}
199
200u64 arch_irq_stat(void)
201{
202 u64 sum = atomic_read(&irq_err_count);
203 return sum;
204}
205
206
207/*
208 * do_IRQ handles all normal device IRQ's (the special
209 * SMP cross-CPU interrupts have their own specific
210 * handlers).
211 */
212__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
213{
214 struct pt_regs *old_regs = set_irq_regs(regs);
215 struct irq_desc * desc;
216 /* high bit used in ret_from_ code */
217 unsigned vector = ~regs->orig_ax;
218
219 /*
220 * NB: Unlike exception entries, IRQ entries do not reliably
221 * handle context tracking in the low-level entry code. This is
222 * because syscall entries execute briefly with IRQs on before
223 * updating context tracking state, so we can take an IRQ from
224 * kernel mode with CONTEXT_USER. The low-level entry code only
225 * updates the context if we came from user mode, so we won't
226 * switch to CONTEXT_KERNEL. We'll fix that once the syscall
227 * code is cleaned up enough that we can cleanly defer enabling
228 * IRQs.
229 */
230
231 entering_irq();
232
233 /* entering_irq() tells RCU that we're not quiescent. Check it. */
234 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
235
236 desc = __this_cpu_read(vector_irq[vector]);
237
238 if (!handle_irq(desc, regs)) {
239 ack_APIC_irq();
240
241 if (desc != VECTOR_RETRIGGERED) {
242 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
243 __func__, smp_processor_id(),
244 vector);
245 } else {
246 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
247 }
248 }
249
250 exiting_irq();
251
252 set_irq_regs(old_regs);
253 return 1;
254}
255
256/*
257 * Handler for X86_PLATFORM_IPI_VECTOR.
258 */
259void __smp_x86_platform_ipi(void)
260{
261 inc_irq_stat(x86_platform_ipis);
262
263 if (x86_platform_ipi_callback)
264 x86_platform_ipi_callback();
265}
266
267__visible void smp_x86_platform_ipi(struct pt_regs *regs)
268{
269 struct pt_regs *old_regs = set_irq_regs(regs);
270
271 entering_ack_irq();
272 __smp_x86_platform_ipi();
273 exiting_irq();
274 set_irq_regs(old_regs);
275}
276
277#ifdef CONFIG_HAVE_KVM
278static void dummy_handler(void) {}
279static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
280
281void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
282{
283 if (handler)
284 kvm_posted_intr_wakeup_handler = handler;
285 else
286 kvm_posted_intr_wakeup_handler = dummy_handler;
287}
288EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
289
290/*
291 * Handler for POSTED_INTERRUPT_VECTOR.
292 */
293__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
294{
295 struct pt_regs *old_regs = set_irq_regs(regs);
296
297 entering_ack_irq();
298 inc_irq_stat(kvm_posted_intr_ipis);
299 exiting_irq();
300 set_irq_regs(old_regs);
301}
302
303/*
304 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
305 */
306__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
307{
308 struct pt_regs *old_regs = set_irq_regs(regs);
309
310 entering_ack_irq();
311 inc_irq_stat(kvm_posted_intr_wakeup_ipis);
312 kvm_posted_intr_wakeup_handler();
313 exiting_irq();
314 set_irq_regs(old_regs);
315}
316#endif
317
318__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
319{
320 struct pt_regs *old_regs = set_irq_regs(regs);
321
322 entering_ack_irq();
323 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
324 __smp_x86_platform_ipi();
325 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
326 exiting_irq();
327 set_irq_regs(old_regs);
328}
329
330EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
331
332#ifdef CONFIG_HOTPLUG_CPU
333
334/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
335 * below, which is protected by stop_machine(). Putting them on the stack
336 * results in a stack frame overflow. Dynamically allocating could result in a
337 * failure so declare these two cpumasks as global.
338 */
339static struct cpumask affinity_new, online_new;
340
341/*
342 * This cpu is going to be removed and its vectors migrated to the remaining
343 * online cpus. Check to see if there are enough vectors in the remaining cpus.
344 * This function is protected by stop_machine().
345 */
346int check_irq_vectors_for_cpu_disable(void)
347{
348 unsigned int this_cpu, vector, this_count, count;
349 struct irq_desc *desc;
350 struct irq_data *data;
351 int cpu;
352
353 this_cpu = smp_processor_id();
354 cpumask_copy(&online_new, cpu_online_mask);
355 cpumask_clear_cpu(this_cpu, &online_new);
356
357 this_count = 0;
358 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
359 desc = __this_cpu_read(vector_irq[vector]);
360 if (IS_ERR_OR_NULL(desc))
361 continue;
362 /*
363 * Protect against concurrent action removal, affinity
364 * changes etc.
365 */
366 raw_spin_lock(&desc->lock);
367 data = irq_desc_get_irq_data(desc);
368 cpumask_copy(&affinity_new,
369 irq_data_get_affinity_mask(data));
370 cpumask_clear_cpu(this_cpu, &affinity_new);
371
372 /* Do not count inactive or per-cpu irqs. */
373 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
374 raw_spin_unlock(&desc->lock);
375 continue;
376 }
377
378 raw_spin_unlock(&desc->lock);
379 /*
380 * A single irq may be mapped to multiple cpu's
381 * vector_irq[] (for example IOAPIC cluster mode). In
382 * this case we have two possibilities:
383 *
384 * 1) the resulting affinity mask is empty; that is
385 * this the down'd cpu is the last cpu in the irq's
386 * affinity mask, or
387 *
388 * 2) the resulting affinity mask is no longer a
389 * subset of the online cpus but the affinity mask is
390 * not zero; that is the down'd cpu is the last online
391 * cpu in a user set affinity mask.
392 */
393 if (cpumask_empty(&affinity_new) ||
394 !cpumask_subset(&affinity_new, &online_new))
395 this_count++;
396 }
397
398 count = 0;
399 for_each_online_cpu(cpu) {
400 if (cpu == this_cpu)
401 continue;
402 /*
403 * We scan from FIRST_EXTERNAL_VECTOR to first system
404 * vector. If the vector is marked in the used vectors
405 * bitmap or an irq is assigned to it, we don't count
406 * it as available.
407 *
408 * As this is an inaccurate snapshot anyway, we can do
409 * this w/o holding vector_lock.
410 */
411 for (vector = FIRST_EXTERNAL_VECTOR;
412 vector < first_system_vector; vector++) {
413 if (!test_bit(vector, used_vectors) &&
414 IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
415 count++;
416 }
417 }
418
419 if (count < this_count) {
420 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
421 this_cpu, this_count, count);
422 return -ERANGE;
423 }
424 return 0;
425}
426
427/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
428void fixup_irqs(void)
429{
430 unsigned int irq, vector;
431 static int warned;
432 struct irq_desc *desc;
433 struct irq_data *data;
434 struct irq_chip *chip;
435 int ret;
436
437 for_each_irq_desc(irq, desc) {
438 int break_affinity = 0;
439 int set_affinity = 1;
440 const struct cpumask *affinity;
441
442 if (!desc)
443 continue;
444 if (irq == 2)
445 continue;
446
447 /* interrupt's are disabled at this point */
448 raw_spin_lock(&desc->lock);
449
450 data = irq_desc_get_irq_data(desc);
451 affinity = irq_data_get_affinity_mask(data);
452 if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
453 cpumask_subset(affinity, cpu_online_mask)) {
454 raw_spin_unlock(&desc->lock);
455 continue;
456 }
457
458 /*
459 * Complete the irq move. This cpu is going down and for
460 * non intr-remapping case, we can't wait till this interrupt
461 * arrives at this cpu before completing the irq move.
462 */
463 irq_force_complete_move(desc);
464
465 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
466 break_affinity = 1;
467 affinity = cpu_online_mask;
468 }
469
470 chip = irq_data_get_irq_chip(data);
471 /*
472 * The interrupt descriptor might have been cleaned up
473 * already, but it is not yet removed from the radix tree
474 */
475 if (!chip) {
476 raw_spin_unlock(&desc->lock);
477 continue;
478 }
479
480 if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
481 chip->irq_mask(data);
482
483 if (chip->irq_set_affinity) {
484 ret = chip->irq_set_affinity(data, affinity, true);
485 if (ret == -ENOSPC)
486 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq);
487 } else {
488 if (!(warned++))
489 set_affinity = 0;
490 }
491
492 /*
493 * We unmask if the irq was not marked masked by the
494 * core code. That respects the lazy irq disable
495 * behaviour.
496 */
497 if (!irqd_can_move_in_process_context(data) &&
498 !irqd_irq_masked(data) && chip->irq_unmask)
499 chip->irq_unmask(data);
500
501 raw_spin_unlock(&desc->lock);
502
503 if (break_affinity && set_affinity)
504 pr_notice("Broke affinity for irq %i\n", irq);
505 else if (!set_affinity)
506 pr_notice("Cannot set affinity for irq %i\n", irq);
507 }
508
509 /*
510 * We can remove mdelay() and then send spuriuous interrupts to
511 * new cpu targets for all the irqs that were handled previously by
512 * this cpu. While it works, I have seen spurious interrupt messages
513 * (nothing wrong but still...).
514 *
515 * So for now, retain mdelay(1) and check the IRR and then send those
516 * interrupts to new targets as this cpu is already offlined...
517 */
518 mdelay(1);
519
520 /*
521 * We can walk the vector array of this cpu without holding
522 * vector_lock because the cpu is already marked !online, so
523 * nothing else will touch it.
524 */
525 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
526 unsigned int irr;
527
528 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
529 continue;
530
531 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
532 if (irr & (1 << (vector % 32))) {
533 desc = __this_cpu_read(vector_irq[vector]);
534
535 raw_spin_lock(&desc->lock);
536 data = irq_desc_get_irq_data(desc);
537 chip = irq_data_get_irq_chip(data);
538 if (chip->irq_retrigger) {
539 chip->irq_retrigger(data);
540 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
541 }
542 raw_spin_unlock(&desc->lock);
543 }
544 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
545 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
546 }
547}
548#endif