Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Common interrupt code for 32 and 64 bit
  4 */
  5#include <linux/cpu.h>
  6#include <linux/interrupt.h>
  7#include <linux/kernel_stat.h>
  8#include <linux/of.h>
  9#include <linux/seq_file.h>
 10#include <linux/smp.h>
 11#include <linux/ftrace.h>
 12#include <linux/delay.h>
 13#include <linux/export.h>
 14#include <linux/irq.h>
 15
 16#include <asm/irq_stack.h>
 17#include <asm/apic.h>
 18#include <asm/io_apic.h>
 19#include <asm/irq.h>
 
 20#include <asm/mce.h>
 21#include <asm/hw_irq.h>
 22#include <asm/desc.h>
 23#include <asm/traps.h>
 24#include <asm/thermal.h>
 25#include <asm/posted_intr.h>
 26#include <asm/irq_remapping.h>
 27
 28#define CREATE_TRACE_POINTS
 29#include <asm/trace/irq_vectors.h>
 30
 31DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 32EXPORT_PER_CPU_SYMBOL(irq_stat);
 33
 34atomic_t irq_err_count;
 35
 
 
 
 36/*
 37 * 'what should we do if we get a hw irq event on an illegal vector'.
 38 * each architecture has to answer this themselves.
 39 */
 40void ack_bad_irq(unsigned int irq)
 41{
 42	if (printk_ratelimit())
 43		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 44
 45	/*
 46	 * Currently unexpected vectors happen only on SMP and APIC.
 47	 * We _must_ ack these because every local APIC has only N
 48	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 49	 * holds up an irq slot - in excessive cases (when multiple
 50	 * unexpected vectors occur) that might lock up the APIC
 51	 * completely.
 52	 * But only ack when the APIC is enabled -AK
 53	 */
 54	apic_eoi();
 55}
 56
 57#define irq_stats(x)		(&per_cpu(irq_stat, x))
 58/*
 59 * /proc/interrupts printing for arch specific interrupts
 60 */
 61int arch_show_interrupts(struct seq_file *p, int prec)
 62{
 63	int j;
 64
 65	seq_printf(p, "%*s: ", prec, "NMI");
 66	for_each_online_cpu(j)
 67		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 68	seq_puts(p, "  Non-maskable interrupts\n");
 69#ifdef CONFIG_X86_LOCAL_APIC
 70	seq_printf(p, "%*s: ", prec, "LOC");
 71	for_each_online_cpu(j)
 72		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 73	seq_puts(p, "  Local timer interrupts\n");
 74
 75	seq_printf(p, "%*s: ", prec, "SPU");
 76	for_each_online_cpu(j)
 77		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 78	seq_puts(p, "  Spurious interrupts\n");
 79	seq_printf(p, "%*s: ", prec, "PMI");
 80	for_each_online_cpu(j)
 81		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 82	seq_puts(p, "  Performance monitoring interrupts\n");
 83	seq_printf(p, "%*s: ", prec, "IWI");
 84	for_each_online_cpu(j)
 85		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 86	seq_puts(p, "  IRQ work interrupts\n");
 87	seq_printf(p, "%*s: ", prec, "RTR");
 88	for_each_online_cpu(j)
 89		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 90	seq_puts(p, "  APIC ICR read retries\n");
 
 91	if (x86_platform_ipi_callback) {
 92		seq_printf(p, "%*s: ", prec, "PLT");
 93		for_each_online_cpu(j)
 94			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 95		seq_puts(p, "  Platform interrupts\n");
 96	}
 97#endif
 98#ifdef CONFIG_SMP
 99	seq_printf(p, "%*s: ", prec, "RES");
100	for_each_online_cpu(j)
101		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102	seq_puts(p, "  Rescheduling interrupts\n");
103	seq_printf(p, "%*s: ", prec, "CAL");
104	for_each_online_cpu(j)
105		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
106	seq_puts(p, "  Function call interrupts\n");
 
107	seq_printf(p, "%*s: ", prec, "TLB");
108	for_each_online_cpu(j)
109		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
110	seq_puts(p, "  TLB shootdowns\n");
111#endif
112#ifdef CONFIG_X86_THERMAL_VECTOR
113	seq_printf(p, "%*s: ", prec, "TRM");
114	for_each_online_cpu(j)
115		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
116	seq_puts(p, "  Thermal event interrupts\n");
117#endif
118#ifdef CONFIG_X86_MCE_THRESHOLD
119	seq_printf(p, "%*s: ", prec, "THR");
120	for_each_online_cpu(j)
121		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
122	seq_puts(p, "  Threshold APIC interrupts\n");
123#endif
124#ifdef CONFIG_X86_MCE_AMD
125	seq_printf(p, "%*s: ", prec, "DFR");
126	for_each_online_cpu(j)
127		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
128	seq_puts(p, "  Deferred Error APIC interrupts\n");
129#endif
130#ifdef CONFIG_X86_MCE
131	seq_printf(p, "%*s: ", prec, "MCE");
132	for_each_online_cpu(j)
133		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
134	seq_puts(p, "  Machine check exceptions\n");
135	seq_printf(p, "%*s: ", prec, "MCP");
136	for_each_online_cpu(j)
137		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
138	seq_puts(p, "  Machine check polls\n");
139#endif
140#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
141	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
142		seq_printf(p, "%*s: ", prec, "HYP");
143		for_each_online_cpu(j)
144			seq_printf(p, "%10u ",
145				   irq_stats(j)->irq_hv_callback_count);
146		seq_puts(p, "  Hypervisor callback interrupts\n");
147	}
148#endif
149#if IS_ENABLED(CONFIG_HYPERV)
150	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
151		seq_printf(p, "%*s: ", prec, "HRE");
152		for_each_online_cpu(j)
153			seq_printf(p, "%10u ",
154				   irq_stats(j)->irq_hv_reenlightenment_count);
155		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
156	}
157	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
158		seq_printf(p, "%*s: ", prec, "HVS");
159		for_each_online_cpu(j)
160			seq_printf(p, "%10u ",
161				   irq_stats(j)->hyperv_stimer0_count);
162		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
163	}
164#endif
165	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
166#if defined(CONFIG_X86_IO_APIC)
167	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
168#endif
169#if IS_ENABLED(CONFIG_KVM)
170	seq_printf(p, "%*s: ", prec, "PIN");
171	for_each_online_cpu(j)
172		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
173	seq_puts(p, "  Posted-interrupt notification event\n");
174
175	seq_printf(p, "%*s: ", prec, "NPI");
176	for_each_online_cpu(j)
177		seq_printf(p, "%10u ",
178			   irq_stats(j)->kvm_posted_intr_nested_ipis);
179	seq_puts(p, "  Nested posted-interrupt event\n");
180
181	seq_printf(p, "%*s: ", prec, "PIW");
182	for_each_online_cpu(j)
183		seq_printf(p, "%10u ",
184			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
185	seq_puts(p, "  Posted-interrupt wakeup event\n");
186#endif
187#ifdef CONFIG_X86_POSTED_MSI
188	seq_printf(p, "%*s: ", prec, "PMN");
189	for_each_online_cpu(j)
190		seq_printf(p, "%10u ",
191			   irq_stats(j)->posted_msi_notification_count);
192	seq_puts(p, "  Posted MSI notification event\n");
193#endif
194	return 0;
195}
196
197/*
198 * /proc/stat helpers
199 */
200u64 arch_irq_stat_cpu(unsigned int cpu)
201{
202	u64 sum = irq_stats(cpu)->__nmi_count;
203
204#ifdef CONFIG_X86_LOCAL_APIC
205	sum += irq_stats(cpu)->apic_timer_irqs;
206	sum += irq_stats(cpu)->irq_spurious_count;
207	sum += irq_stats(cpu)->apic_perf_irqs;
208	sum += irq_stats(cpu)->apic_irq_work_irqs;
209	sum += irq_stats(cpu)->icr_read_retry_count;
 
210	if (x86_platform_ipi_callback)
211		sum += irq_stats(cpu)->x86_platform_ipis;
212#endif
213#ifdef CONFIG_SMP
214	sum += irq_stats(cpu)->irq_resched_count;
215	sum += irq_stats(cpu)->irq_call_count;
216#endif
217#ifdef CONFIG_X86_THERMAL_VECTOR
218	sum += irq_stats(cpu)->irq_thermal_count;
219#endif
220#ifdef CONFIG_X86_MCE_THRESHOLD
221	sum += irq_stats(cpu)->irq_threshold_count;
222#endif
223#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
224	sum += irq_stats(cpu)->irq_hv_callback_count;
225#endif
226#if IS_ENABLED(CONFIG_HYPERV)
227	sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
228	sum += irq_stats(cpu)->hyperv_stimer0_count;
229#endif
230#ifdef CONFIG_X86_MCE
231	sum += per_cpu(mce_exception_count, cpu);
232	sum += per_cpu(mce_poll_count, cpu);
233#endif
234	return sum;
235}
236
237u64 arch_irq_stat(void)
238{
239	u64 sum = atomic_read(&irq_err_count);
240	return sum;
241}
242
243static __always_inline void handle_irq(struct irq_desc *desc,
244				       struct pt_regs *regs)
245{
246	if (IS_ENABLED(CONFIG_X86_64))
247		generic_handle_irq_desc(desc);
248	else
249		__handle_irq(desc, regs);
250}
251
252static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
 
 
 
 
 
253{
254	struct irq_desc *desc;
255	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
256
257	desc = __this_cpu_read(vector_irq[vector]);
258	if (likely(!IS_ERR_OR_NULL(desc))) {
259		handle_irq(desc, regs);
260	} else {
261		ret = -EINVAL;
262		if (desc == VECTOR_UNUSED) {
263			pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
264					     __func__, smp_processor_id(),
265					     vector);
266		} else {
267			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
268		}
269	}
270
271	return ret;
272}
273
274/*
275 * common_interrupt() handles all normal device IRQ's (the special SMP
276 * cross-CPU interrupts have their own entry points).
277 */
278DEFINE_IDTENTRY_IRQ(common_interrupt)
279{
280	struct pt_regs *old_regs = set_irq_regs(regs);
281
282	/* entry code tells RCU that we're not quiescent.  Check it. */
283	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
284
285	if (unlikely(call_irq_handler(vector, regs)))
286		apic_eoi();
287
288	set_irq_regs(old_regs);
 
289}
290
291#ifdef CONFIG_X86_LOCAL_APIC
292/* Function pointer for generic interrupt vector handling */
293void (*x86_platform_ipi_callback)(void) = NULL;
294/*
295 * Handler for X86_PLATFORM_IPI_VECTOR.
296 */
297DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
298{
299	struct pt_regs *old_regs = set_irq_regs(regs);
300
301	apic_eoi();
302	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
303	inc_irq_stat(x86_platform_ipis);
 
304	if (x86_platform_ipi_callback)
305		x86_platform_ipi_callback();
306	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
307	set_irq_regs(old_regs);
308}
309#endif
310
311#if IS_ENABLED(CONFIG_KVM)
312static void dummy_handler(void) {}
313static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
314
315void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
316{
317	if (handler)
318		kvm_posted_intr_wakeup_handler = handler;
319	else {
320		kvm_posted_intr_wakeup_handler = dummy_handler;
321		synchronize_rcu();
322	}
323}
324EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
325
326/*
327 * Handler for POSTED_INTERRUPT_VECTOR.
328 */
329DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
330{
331	apic_eoi();
332	inc_irq_stat(kvm_posted_intr_ipis);
333}
334
335/*
336 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
337 */
338DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
339{
340	apic_eoi();
341	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
342	kvm_posted_intr_wakeup_handler();
343}
344
 
345/*
346 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
347 */
348DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
349{
350	apic_eoi();
351	inc_irq_stat(kvm_posted_intr_nested_ipis);
352}
353#endif
354
355#ifdef CONFIG_X86_POSTED_MSI
356
357/* Posted Interrupt Descriptors for coalesced MSIs to be posted */
358DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
359
360void intel_posted_msi_init(void)
361{
362	u32 destination;
363	u32 apic_id;
364
365	this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
366
367	/*
368	 * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
369	 * VT-d spec. CH 9.11
370	 */
371	apic_id = this_cpu_read(x86_cpu_to_apicid);
372	destination = x2apic_enabled() ? apic_id : apic_id << 8;
373	this_cpu_write(posted_msi_pi_desc.ndst, destination);
374}
 
375
376/*
377 * De-multiplexing posted interrupts is on the performance path, the code
378 * below is written to optimize the cache performance based on the following
379 * considerations:
380 * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
381 *   accessed by both CPU and IOMMU.
382 * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
383 *   for checking and clearing posted interrupt request (PIR), a 256 bit field
384 *   within the PID.
385 * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
386 *   line when posting interrupts and setting control bits.
387 * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
388 * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
389 *   cache line. The cache line states after each operation are as follows:
390 *   CPU		IOMMU			PID Cache line state
391 *   ---------------------------------------------------------------
392 *...read64					exclusive
393 *...lock xchg64				modified
394 *...			post/atomic swap	invalid
395 *...-------------------------------------------------------------
396 *
397 * To reduce L1 data cache miss, it is important to avoid contention with
398 * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
399 * to dispatch interrupt handlers.
400 *
401 * In addition, the code is trying to keep the cache line state consistent
402 * as much as possible. e.g. when making a copy and clearing the PIR
403 * (assuming non-zero PIR bits are present in the entire PIR), it does:
404 *		read, read, read, read, xchg, xchg, xchg, xchg
405 * instead of:
406 *		read, xchg, read, xchg, read, xchg, read, xchg
407 */
408static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
409{
410	int i, vec = FIRST_EXTERNAL_VECTOR;
411	unsigned long pir_copy[4];
412	bool handled = false;
413
414	for (i = 0; i < 4; i++)
415		pir_copy[i] = pir[i];
416
417	for (i = 0; i < 4; i++) {
418		if (!pir_copy[i])
419			continue;
420
421		pir_copy[i] = arch_xchg(&pir[i], 0);
422		handled = true;
423	}
 
 
 
 
424
425	if (handled) {
426		for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
427			call_irq_handler(vec, regs);
428	}
429
430	return handled;
431}
432
433/*
434 * Performance data shows that 3 is good enough to harvest 90+% of the benefit
435 * on high IRQ rate workload.
 
436 */
437#define MAX_POSTED_MSI_COALESCING_LOOP 3
438
439/*
440 * For MSIs that are delivered as posted interrupts, the CPU notifications
441 * can be coalesced if the MSIs arrive in high frequency bursts.
 
442 */
443DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
444{
445	struct pt_regs *old_regs = set_irq_regs(regs);
446	struct pi_desc *pid;
447	int i = 0;
 
448
449	pid = this_cpu_ptr(&posted_msi_pi_desc);
 
 
450
451	inc_irq_stat(posted_msi_notification_count);
452	irq_enter();
 
 
 
 
 
 
453
454	/*
455	 * Max coalescing count includes the extra round of handle_pending_pir
456	 * after clearing the outstanding notification bit. Hence, at most
457	 * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
458	 */
459	while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
460		if (!handle_pending_pir(pid->pir64, regs))
461			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462	}
463
464	/*
465	 * Clear outstanding notification bit to allow new IRQ notifications,
466	 * do this last to maximize the window of interrupt coalescing.
467	 */
468	pi_clear_on(pid);
469
470	/*
471	 * There could be a race of PI notification and the clearing of ON bit,
472	 * process PIR bits one last time such that handling the new interrupts
473	 * are not delayed until the next IRQ.
474	 */
475	handle_pending_pir(pid->pir64, regs);
 
 
 
 
 
476
477	apic_eoi();
478	irq_exit();
479	set_irq_regs(old_regs);
 
 
 
480}
481#endif /* X86_POSTED_MSI */
482
483#ifdef CONFIG_HOTPLUG_CPU
484/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
485void fixup_irqs(void)
486{
487	unsigned int vector;
 
488	struct irq_desc *desc;
489	struct irq_data *data;
490	struct irq_chip *chip;
491
492	irq_migrate_all_off_this_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
494	/*
495	 * We can remove mdelay() and then send spurious interrupts to
496	 * new cpu targets for all the irqs that were handled previously by
497	 * this cpu. While it works, I have seen spurious interrupt messages
498	 * (nothing wrong but still...).
499	 *
500	 * So for now, retain mdelay(1) and check the IRR and then send those
501	 * interrupts to new targets as this cpu is already offlined...
502	 */
503	mdelay(1);
504
505	/*
506	 * We can walk the vector array of this cpu without holding
507	 * vector_lock because the cpu is already marked !online, so
508	 * nothing else will touch it.
509	 */
510	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
511		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
 
 
512			continue;
513
514		if (is_vector_pending(vector)) {
515			desc = __this_cpu_read(vector_irq[vector]);
 
516
517			raw_spin_lock(&desc->lock);
518			data = irq_desc_get_irq_data(desc);
519			chip = irq_data_get_irq_chip(data);
 
520			if (chip->irq_retrigger) {
521				chip->irq_retrigger(data);
522				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
523			}
524			raw_spin_unlock(&desc->lock);
525		}
526		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
527			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
528	}
529}
530#endif
531
532#ifdef CONFIG_X86_THERMAL_VECTOR
533static void smp_thermal_vector(void)
534{
535	if (x86_thermal_enabled())
536		intel_thermal_interrupt();
537	else
538		pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
539		       smp_processor_id());
540}
541
542DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
543{
544	trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
545	inc_irq_stat(irq_thermal_count);
546	smp_thermal_vector();
547	trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
548	apic_eoi();
549}
550#endif
v3.15
 
  1/*
  2 * Common interrupt code for 32 and 64 bit
  3 */
  4#include <linux/cpu.h>
  5#include <linux/interrupt.h>
  6#include <linux/kernel_stat.h>
  7#include <linux/of.h>
  8#include <linux/seq_file.h>
  9#include <linux/smp.h>
 10#include <linux/ftrace.h>
 11#include <linux/delay.h>
 12#include <linux/export.h>
 
 13
 
 14#include <asm/apic.h>
 15#include <asm/io_apic.h>
 16#include <asm/irq.h>
 17#include <asm/idle.h>
 18#include <asm/mce.h>
 19#include <asm/hw_irq.h>
 20#include <asm/desc.h>
 
 
 
 
 21
 22#define CREATE_TRACE_POINTS
 23#include <asm/trace/irq_vectors.h>
 24
 
 
 
 25atomic_t irq_err_count;
 26
 27/* Function pointer for generic interrupt vector handling */
 28void (*x86_platform_ipi_callback)(void) = NULL;
 29
 30/*
 31 * 'what should we do if we get a hw irq event on an illegal vector'.
 32 * each architecture has to answer this themselves.
 33 */
 34void ack_bad_irq(unsigned int irq)
 35{
 36	if (printk_ratelimit())
 37		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 38
 39	/*
 40	 * Currently unexpected vectors happen only on SMP and APIC.
 41	 * We _must_ ack these because every local APIC has only N
 42	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 43	 * holds up an irq slot - in excessive cases (when multiple
 44	 * unexpected vectors occur) that might lock up the APIC
 45	 * completely.
 46	 * But only ack when the APIC is enabled -AK
 47	 */
 48	ack_APIC_irq();
 49}
 50
 51#define irq_stats(x)		(&per_cpu(irq_stat, x))
 52/*
 53 * /proc/interrupts printing for arch specific interrupts
 54 */
 55int arch_show_interrupts(struct seq_file *p, int prec)
 56{
 57	int j;
 58
 59	seq_printf(p, "%*s: ", prec, "NMI");
 60	for_each_online_cpu(j)
 61		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 62	seq_printf(p, "  Non-maskable interrupts\n");
 63#ifdef CONFIG_X86_LOCAL_APIC
 64	seq_printf(p, "%*s: ", prec, "LOC");
 65	for_each_online_cpu(j)
 66		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 67	seq_printf(p, "  Local timer interrupts\n");
 68
 69	seq_printf(p, "%*s: ", prec, "SPU");
 70	for_each_online_cpu(j)
 71		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 72	seq_printf(p, "  Spurious interrupts\n");
 73	seq_printf(p, "%*s: ", prec, "PMI");
 74	for_each_online_cpu(j)
 75		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 76	seq_printf(p, "  Performance monitoring interrupts\n");
 77	seq_printf(p, "%*s: ", prec, "IWI");
 78	for_each_online_cpu(j)
 79		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 80	seq_printf(p, "  IRQ work interrupts\n");
 81	seq_printf(p, "%*s: ", prec, "RTR");
 82	for_each_online_cpu(j)
 83		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 84	seq_printf(p, "  APIC ICR read retries\n");
 85#endif
 86	if (x86_platform_ipi_callback) {
 87		seq_printf(p, "%*s: ", prec, "PLT");
 88		for_each_online_cpu(j)
 89			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 90		seq_printf(p, "  Platform interrupts\n");
 91	}
 
 92#ifdef CONFIG_SMP
 93	seq_printf(p, "%*s: ", prec, "RES");
 94	for_each_online_cpu(j)
 95		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 96	seq_printf(p, "  Rescheduling interrupts\n");
 97	seq_printf(p, "%*s: ", prec, "CAL");
 98	for_each_online_cpu(j)
 99		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
100					irq_stats(j)->irq_tlb_count);
101	seq_printf(p, "  Function call interrupts\n");
102	seq_printf(p, "%*s: ", prec, "TLB");
103	for_each_online_cpu(j)
104		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
105	seq_printf(p, "  TLB shootdowns\n");
106#endif
107#ifdef CONFIG_X86_THERMAL_VECTOR
108	seq_printf(p, "%*s: ", prec, "TRM");
109	for_each_online_cpu(j)
110		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
111	seq_printf(p, "  Thermal event interrupts\n");
112#endif
113#ifdef CONFIG_X86_MCE_THRESHOLD
114	seq_printf(p, "%*s: ", prec, "THR");
115	for_each_online_cpu(j)
116		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
117	seq_printf(p, "  Threshold APIC interrupts\n");
 
 
 
 
 
 
118#endif
119#ifdef CONFIG_X86_MCE
120	seq_printf(p, "%*s: ", prec, "MCE");
121	for_each_online_cpu(j)
122		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
123	seq_printf(p, "  Machine check exceptions\n");
124	seq_printf(p, "%*s: ", prec, "MCP");
125	for_each_online_cpu(j)
126		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
127	seq_printf(p, "  Machine check polls\n");
128#endif
129#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
130	seq_printf(p, "%*s: ", prec, "THR");
131	for_each_online_cpu(j)
132		seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count);
133	seq_printf(p, "  Hypervisor callback interrupts\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134#endif
135	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
136#if defined(CONFIG_X86_IO_APIC)
137	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
138#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139	return 0;
140}
141
142/*
143 * /proc/stat helpers
144 */
145u64 arch_irq_stat_cpu(unsigned int cpu)
146{
147	u64 sum = irq_stats(cpu)->__nmi_count;
148
149#ifdef CONFIG_X86_LOCAL_APIC
150	sum += irq_stats(cpu)->apic_timer_irqs;
151	sum += irq_stats(cpu)->irq_spurious_count;
152	sum += irq_stats(cpu)->apic_perf_irqs;
153	sum += irq_stats(cpu)->apic_irq_work_irqs;
154	sum += irq_stats(cpu)->icr_read_retry_count;
155#endif
156	if (x86_platform_ipi_callback)
157		sum += irq_stats(cpu)->x86_platform_ipis;
 
158#ifdef CONFIG_SMP
159	sum += irq_stats(cpu)->irq_resched_count;
160	sum += irq_stats(cpu)->irq_call_count;
161#endif
162#ifdef CONFIG_X86_THERMAL_VECTOR
163	sum += irq_stats(cpu)->irq_thermal_count;
164#endif
165#ifdef CONFIG_X86_MCE_THRESHOLD
166	sum += irq_stats(cpu)->irq_threshold_count;
167#endif
 
 
 
 
 
 
 
168#ifdef CONFIG_X86_MCE
169	sum += per_cpu(mce_exception_count, cpu);
170	sum += per_cpu(mce_poll_count, cpu);
171#endif
172	return sum;
173}
174
175u64 arch_irq_stat(void)
176{
177	u64 sum = atomic_read(&irq_err_count);
178	return sum;
179}
180
 
 
 
 
 
 
 
 
181
182/*
183 * do_IRQ handles all normal device IRQ's (the special
184 * SMP cross-CPU interrupts have their own specific
185 * handlers).
186 */
187__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
188{
189	struct pt_regs *old_regs = set_irq_regs(regs);
190
191	/* high bit used in ret_from_ code  */
192	unsigned vector = ~regs->orig_ax;
193	unsigned irq;
194
195	irq_enter();
196	exit_idle();
197
198	irq = __this_cpu_read(vector_irq[vector]);
199
200	if (!handle_irq(irq, regs)) {
201		ack_APIC_irq();
202
203		if (irq != VECTOR_RETRIGGERED) {
204			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n",
 
 
 
 
 
205					     __func__, smp_processor_id(),
206					     vector, irq);
207		} else {
208			__this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
209		}
210	}
211
212	irq_exit();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
214	set_irq_regs(old_regs);
215	return 1;
216}
217
 
 
 
218/*
219 * Handler for X86_PLATFORM_IPI_VECTOR.
220 */
221void __smp_x86_platform_ipi(void)
222{
 
 
 
 
223	inc_irq_stat(x86_platform_ipis);
224
225	if (x86_platform_ipi_callback)
226		x86_platform_ipi_callback();
 
 
227}
 
228
229__visible void smp_x86_platform_ipi(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230{
231	struct pt_regs *old_regs = set_irq_regs(regs);
 
 
232
233	entering_ack_irq();
234	__smp_x86_platform_ipi();
235	exiting_irq();
236	set_irq_regs(old_regs);
 
 
 
 
237}
238
239#ifdef CONFIG_HAVE_KVM
240/*
241 * Handler for POSTED_INTERRUPT_VECTOR.
242 */
243__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
244{
245	struct pt_regs *old_regs = set_irq_regs(regs);
 
 
 
246
247	ack_APIC_irq();
248
249	irq_enter();
 
250
251	exit_idle();
252
253	inc_irq_stat(kvm_posted_intr_ipis);
 
254
255	irq_exit();
256
257	set_irq_regs(old_regs);
 
 
 
 
 
 
258}
259#endif
260
261__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262{
263	struct pt_regs *old_regs = set_irq_regs(regs);
 
 
 
 
 
 
 
 
 
264
265	entering_ack_irq();
266	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
267	__smp_x86_platform_ipi();
268	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
269	exiting_irq();
270	set_irq_regs(old_regs);
271}
272
273EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
 
 
 
274
275#ifdef CONFIG_HOTPLUG_CPU
 
276
277/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
278 * below, which is protected by stop_machine().  Putting them on the stack
279 * results in a stack frame overflow.  Dynamically allocating could result in a
280 * failure so declare these two cpumasks as global.
281 */
282static struct cpumask affinity_new, online_new;
283
284/*
285 * This cpu is going to be removed and its vectors migrated to the remaining
286 * online cpus.  Check to see if there are enough vectors in the remaining cpus.
287 * This function is protected by stop_machine().
288 */
289int check_irq_vectors_for_cpu_disable(void)
290{
291	int irq, cpu;
292	unsigned int this_cpu, vector, this_count, count;
293	struct irq_desc *desc;
294	struct irq_data *data;
295
296	this_cpu = smp_processor_id();
297	cpumask_copy(&online_new, cpu_online_mask);
298	cpu_clear(this_cpu, online_new);
299
300	this_count = 0;
301	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
302		irq = __this_cpu_read(vector_irq[vector]);
303		if (irq >= 0) {
304			desc = irq_to_desc(irq);
305			data = irq_desc_get_irq_data(desc);
306			cpumask_copy(&affinity_new, data->affinity);
307			cpu_clear(this_cpu, affinity_new);
308
309			/* Do not count inactive or per-cpu irqs. */
310			if (!irq_has_action(irq) || irqd_is_per_cpu(data))
311				continue;
312
313			/*
314			 * A single irq may be mapped to multiple
315			 * cpu's vector_irq[] (for example IOAPIC cluster
316			 * mode).  In this case we have two
317			 * possibilities:
318			 *
319			 * 1) the resulting affinity mask is empty; that is
320			 * this the down'd cpu is the last cpu in the irq's
321			 * affinity mask, or
322			 *
323			 * 2) the resulting affinity mask is no longer
324			 * a subset of the online cpus but the affinity
325			 * mask is not zero; that is the down'd cpu is the
326			 * last online cpu in a user set affinity mask.
327			 */
328			if (cpumask_empty(&affinity_new) ||
329			    !cpumask_subset(&affinity_new, &online_new))
330				this_count++;
331		}
332	}
333
334	count = 0;
335	for_each_online_cpu(cpu) {
336		if (cpu == this_cpu)
337			continue;
338		/*
339		 * We scan from FIRST_EXTERNAL_VECTOR to first system
340		 * vector. If the vector is marked in the used vectors
341		 * bitmap or an irq is assigned to it, we don't count
342		 * it as available.
343		 */
344		for (vector = FIRST_EXTERNAL_VECTOR;
345		     vector < first_system_vector; vector++) {
346			if (!test_bit(vector, used_vectors) &&
347			    per_cpu(vector_irq, cpu)[vector] < 0)
348					count++;
349		}
350	}
351
352	if (count < this_count) {
353		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
354			this_cpu, this_count, count);
355		return -ERANGE;
356	}
357	return 0;
358}
 
359
 
360/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
361void fixup_irqs(void)
362{
363	unsigned int irq, vector;
364	static int warned;
365	struct irq_desc *desc;
366	struct irq_data *data;
367	struct irq_chip *chip;
368
369	for_each_irq_desc(irq, desc) {
370		int break_affinity = 0;
371		int set_affinity = 1;
372		const struct cpumask *affinity;
373
374		if (!desc)
375			continue;
376		if (irq == 2)
377			continue;
378
379		/* interrupt's are disabled at this point */
380		raw_spin_lock(&desc->lock);
381
382		data = irq_desc_get_irq_data(desc);
383		affinity = data->affinity;
384		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
385		    cpumask_subset(affinity, cpu_online_mask)) {
386			raw_spin_unlock(&desc->lock);
387			continue;
388		}
389
390		/*
391		 * Complete the irq move. This cpu is going down and for
392		 * non intr-remapping case, we can't wait till this interrupt
393		 * arrives at this cpu before completing the irq move.
394		 */
395		irq_force_complete_move(irq);
396
397		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
398			break_affinity = 1;
399			affinity = cpu_online_mask;
400		}
401
402		chip = irq_data_get_irq_chip(data);
403		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
404			chip->irq_mask(data);
405
406		if (chip->irq_set_affinity)
407			chip->irq_set_affinity(data, affinity, true);
408		else if (!(warned++))
409			set_affinity = 0;
410
411		/*
412		 * We unmask if the irq was not marked masked by the
413		 * core code. That respects the lazy irq disable
414		 * behaviour.
415		 */
416		if (!irqd_can_move_in_process_context(data) &&
417		    !irqd_irq_masked(data) && chip->irq_unmask)
418			chip->irq_unmask(data);
419
420		raw_spin_unlock(&desc->lock);
421
422		if (break_affinity && set_affinity)
423			pr_notice("Broke affinity for irq %i\n", irq);
424		else if (!set_affinity)
425			pr_notice("Cannot set affinity for irq %i\n", irq);
426	}
427
428	/*
429	 * We can remove mdelay() and then send spuriuous interrupts to
430	 * new cpu targets for all the irqs that were handled previously by
431	 * this cpu. While it works, I have seen spurious interrupt messages
432	 * (nothing wrong but still...).
433	 *
434	 * So for now, retain mdelay(1) and check the IRR and then send those
435	 * interrupts to new targets as this cpu is already offlined...
436	 */
437	mdelay(1);
438
 
 
 
 
 
439	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
440		unsigned int irr;
441
442		if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED)
443			continue;
444
445		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
446		if (irr  & (1 << (vector % 32))) {
447			irq = __this_cpu_read(vector_irq[vector]);
448
449			desc = irq_to_desc(irq);
450			data = irq_desc_get_irq_data(desc);
451			chip = irq_data_get_irq_chip(data);
452			raw_spin_lock(&desc->lock);
453			if (chip->irq_retrigger) {
454				chip->irq_retrigger(data);
455				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
456			}
457			raw_spin_unlock(&desc->lock);
458		}
459		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
460			__this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
461	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462}
463#endif