Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <linux/ethtool.h>
   6
 
 
 
   7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
 
   8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   9					  u16 *data, bool read, bool page_set);
  10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  12					  u16 *data, bool read);
  13
  14/* Cable length tables */
  15static const u16 e1000_m88_cable_length_table[] = {
  16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  17};
  18
  19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  20		ARRAY_SIZE(e1000_m88_cable_length_table)
  21
  22static const u16 e1000_igp_2_cable_length_table[] = {
  23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  30	124
  31};
  32
  33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36/**
  37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  38 *  @hw: pointer to the HW structure
  39 *
  40 *  Read the PHY management control register and check whether a PHY reset
  41 *  is blocked.  If a reset is not blocked return 0, otherwise
  42 *  return E1000_BLK_PHY_RESET (12).
  43 **/
  44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  45{
  46	u32 manc;
  47
  48	manc = er32(MANC);
  49
  50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
 
  51}
  52
  53/**
  54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  58 *  revision in the hardware structure.
  59 **/
  60s32 e1000e_get_phy_id(struct e1000_hw *hw)
  61{
  62	struct e1000_phy_info *phy = &hw->phy;
  63	s32 ret_val = 0;
  64	u16 phy_id;
  65	u16 retry_count = 0;
  66
  67	if (!phy->ops.read_reg)
  68		return 0;
  69
  70	while (retry_count < 2) {
  71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  72		if (ret_val)
  73			return ret_val;
  74
  75		phy->id = (u32)(phy_id << 16);
  76		usleep_range(20, 40);
  77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  78		if (ret_val)
  79			return ret_val;
  80
  81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  83
  84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  85			return 0;
  86
  87		retry_count++;
  88	}
  89
  90	return 0;
  91}
  92
  93/**
  94 *  e1000e_phy_reset_dsp - Reset PHY DSP
  95 *  @hw: pointer to the HW structure
  96 *
  97 *  Reset the digital signal processor.
  98 **/
  99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 100{
 101	s32 ret_val;
 102
 103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 104	if (ret_val)
 105		return ret_val;
 106
 107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 108}
 109
 110void e1000e_disable_phy_retry(struct e1000_hw *hw)
 111{
 112	hw->phy.retry_enabled = false;
 113}
 114
 115void e1000e_enable_phy_retry(struct e1000_hw *hw)
 116{
 117	hw->phy.retry_enabled = true;
 118}
 119
 120/**
 121 *  e1000e_read_phy_reg_mdic - Read MDI control register
 122 *  @hw: pointer to the HW structure
 123 *  @offset: register offset to be read
 124 *  @data: pointer to the read data
 125 *
 126 *  Reads the MDI control register in the PHY at offset and stores the
 127 *  information read to data.
 128 **/
 129s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 130{
 131	u32 i, mdic = 0, retry_counter, retry_max;
 132	struct e1000_phy_info *phy = &hw->phy;
 133	bool success;
 134
 135	if (offset > MAX_PHY_REG_ADDRESS) {
 136		e_dbg("PHY Address %d is out of range\n", offset);
 137		return -E1000_ERR_PARAM;
 138	}
 139
 140	retry_max = phy->retry_enabled ? phy->retry_count : 0;
 141
 142	/* Set up Op-code, Phy Address, and register offset in the MDI
 143	 * Control register.  The MAC will take care of interfacing with the
 144	 * PHY to retrieve the desired data.
 145	 */
 146	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
 147		success = true;
 148
 149		mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 150			(phy->addr << E1000_MDIC_PHY_SHIFT) |
 151			(E1000_MDIC_OP_READ));
 152
 153		ew32(MDIC, mdic);
 154
 155		/* Poll the ready bit to see if the MDI read completed
 156		 * Increasing the time out as testing showed failures with
 157		 * the lower time out
 158		 */
 159		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 160			udelay(50);
 161			mdic = er32(MDIC);
 162			if (mdic & E1000_MDIC_READY)
 163				break;
 164		}
 165		if (!(mdic & E1000_MDIC_READY)) {
 166			e_dbg("MDI Read PHY Reg Address %d did not complete\n",
 167			      offset);
 168			success = false;
 169		}
 170		if (mdic & E1000_MDIC_ERROR) {
 171			e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 172			success = false;
 173		}
 174		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 175			e_dbg("MDI Read offset error - requested %d, returned %d\n",
 176			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 177			success = false;
 178		}
 179
 180		/* Allow some time after each MDIC transaction to avoid
 181		 * reading duplicate data in the next MDIC transaction.
 182		 */
 183		if (hw->mac.type == e1000_pch2lan)
 184			udelay(100);
 185
 186		if (success) {
 187			*data = (u16)mdic;
 188			return 0;
 189		}
 190
 191		if (retry_counter != retry_max) {
 192			e_dbg("Perform retry on PHY transaction...\n");
 193			mdelay(10);
 194		}
 195	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196
 197	return -E1000_ERR_PHY;
 198}
 199
 200/**
 201 *  e1000e_write_phy_reg_mdic - Write MDI control register
 202 *  @hw: pointer to the HW structure
 203 *  @offset: register offset to write to
 204 *  @data: data to write to register at offset
 205 *
 206 *  Writes data to MDI control register in the PHY at offset.
 207 **/
 208s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 209{
 210	u32 i, mdic = 0, retry_counter, retry_max;
 211	struct e1000_phy_info *phy = &hw->phy;
 212	bool success;
 213
 214	if (offset > MAX_PHY_REG_ADDRESS) {
 215		e_dbg("PHY Address %d is out of range\n", offset);
 216		return -E1000_ERR_PARAM;
 217	}
 218
 219	retry_max = phy->retry_enabled ? phy->retry_count : 0;
 220
 221	/* Set up Op-code, Phy Address, and register offset in the MDI
 222	 * Control register.  The MAC will take care of interfacing with the
 223	 * PHY to retrieve the desired data.
 224	 */
 225	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
 226		success = true;
 227
 228		mdic = (((u32)data) |
 229			(offset << E1000_MDIC_REG_SHIFT) |
 230			(phy->addr << E1000_MDIC_PHY_SHIFT) |
 231			(E1000_MDIC_OP_WRITE));
 232
 233		ew32(MDIC, mdic);
 234
 235		/* Poll the ready bit to see if the MDI read completed
 236		 * Increasing the time out as testing showed failures with
 237		 * the lower time out
 238		 */
 239		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 240			udelay(50);
 241			mdic = er32(MDIC);
 242			if (mdic & E1000_MDIC_READY)
 243				break;
 244		}
 245		if (!(mdic & E1000_MDIC_READY)) {
 246			e_dbg("MDI Write PHY Reg Address %d did not complete\n",
 247			      offset);
 248			success = false;
 249		}
 250		if (mdic & E1000_MDIC_ERROR) {
 251			e_dbg("MDI Write PHY Reg Address %d Error\n", offset);
 252			success = false;
 253		}
 254		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 255			e_dbg("MDI Write offset error - requested %d, returned %d\n",
 256			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 257			success = false;
 258		}
 259
 260		/* Allow some time after each MDIC transaction to avoid
 261		 * reading duplicate data in the next MDIC transaction.
 262		 */
 263		if (hw->mac.type == e1000_pch2lan)
 264			udelay(100);
 265
 266		if (success)
 267			return 0;
 268
 269		if (retry_counter != retry_max) {
 270			e_dbg("Perform retry on PHY transaction...\n");
 271			mdelay(10);
 272		}
 273	}
 274
 275	return -E1000_ERR_PHY;
 
 
 
 
 
 
 
 276}
 277
 278/**
 279 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 280 *  @hw: pointer to the HW structure
 281 *  @offset: register offset to be read
 282 *  @data: pointer to the read data
 283 *
 284 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 285 *  and storing the retrieved information in data.  Release any acquired
 286 *  semaphores before exiting.
 287 **/
 288s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 289{
 290	s32 ret_val;
 291
 292	ret_val = hw->phy.ops.acquire(hw);
 293	if (ret_val)
 294		return ret_val;
 295
 296	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 297					   data);
 298
 299	hw->phy.ops.release(hw);
 300
 301	return ret_val;
 302}
 303
 304/**
 305 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 306 *  @hw: pointer to the HW structure
 307 *  @offset: register offset to write to
 308 *  @data: data to write at register offset
 309 *
 310 *  Acquires semaphore, if necessary, then writes the data to PHY register
 311 *  at the offset.  Release any acquired semaphores before exiting.
 312 **/
 313s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 314{
 315	s32 ret_val;
 316
 317	ret_val = hw->phy.ops.acquire(hw);
 318	if (ret_val)
 319		return ret_val;
 320
 321	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 322					    data);
 323
 324	hw->phy.ops.release(hw);
 325
 326	return ret_val;
 327}
 328
 329/**
 330 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 331 *  @hw: pointer to the HW structure
 332 *  @page: page to set (shifted left when necessary)
 333 *
 334 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 335 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 336 *  must set it appropriately (if necessary) after this function returns.
 337 **/
 338s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 339{
 340	e_dbg("Setting page 0x%x\n", page);
 341
 342	hw->phy.addr = 1;
 343
 344	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 345}
 346
 347/**
 348 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 349 *  @hw: pointer to the HW structure
 350 *  @offset: register offset to be read
 351 *  @data: pointer to the read data
 352 *  @locked: semaphore has already been acquired or not
 353 *
 354 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 355 *  and stores the retrieved information in data.  Release any acquired
 356 *  semaphores before exiting.
 357 **/
 358static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 359				     bool locked)
 360{
 361	s32 ret_val = 0;
 362
 363	if (!locked) {
 364		if (!hw->phy.ops.acquire)
 365			return 0;
 366
 367		ret_val = hw->phy.ops.acquire(hw);
 368		if (ret_val)
 369			return ret_val;
 370	}
 371
 372	if (offset > MAX_PHY_MULTI_PAGE_REG)
 373		ret_val = e1000e_write_phy_reg_mdic(hw,
 374						    IGP01E1000_PHY_PAGE_SELECT,
 375						    (u16)offset);
 376	if (!ret_val)
 377		ret_val = e1000e_read_phy_reg_mdic(hw,
 378						   MAX_PHY_REG_ADDRESS & offset,
 379						   data);
 380	if (!locked)
 381		hw->phy.ops.release(hw);
 382
 383	return ret_val;
 384}
 385
 386/**
 387 *  e1000e_read_phy_reg_igp - Read igp PHY register
 388 *  @hw: pointer to the HW structure
 389 *  @offset: register offset to be read
 390 *  @data: pointer to the read data
 391 *
 392 *  Acquires semaphore then reads the PHY register at offset and stores the
 393 *  retrieved information in data.
 394 *  Release the acquired semaphore before exiting.
 395 **/
 396s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 397{
 398	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 399}
 400
 401/**
 402 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 403 *  @hw: pointer to the HW structure
 404 *  @offset: register offset to be read
 405 *  @data: pointer to the read data
 406 *
 407 *  Reads the PHY register at offset and stores the retrieved information
 408 *  in data.  Assumes semaphore already acquired.
 409 **/
 410s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 411{
 412	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 413}
 414
 415/**
 416 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 417 *  @hw: pointer to the HW structure
 418 *  @offset: register offset to write to
 419 *  @data: data to write at register offset
 420 *  @locked: semaphore has already been acquired or not
 421 *
 422 *  Acquires semaphore, if necessary, then writes the data to PHY register
 423 *  at the offset.  Release any acquired semaphores before exiting.
 424 **/
 425static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 426				      bool locked)
 427{
 428	s32 ret_val = 0;
 429
 430	if (!locked) {
 431		if (!hw->phy.ops.acquire)
 432			return 0;
 433
 434		ret_val = hw->phy.ops.acquire(hw);
 435		if (ret_val)
 436			return ret_val;
 437	}
 438
 439	if (offset > MAX_PHY_MULTI_PAGE_REG)
 440		ret_val = e1000e_write_phy_reg_mdic(hw,
 441						    IGP01E1000_PHY_PAGE_SELECT,
 442						    (u16)offset);
 443	if (!ret_val)
 444		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 445						    offset, data);
 
 446	if (!locked)
 447		hw->phy.ops.release(hw);
 448
 449	return ret_val;
 450}
 451
 452/**
 453 *  e1000e_write_phy_reg_igp - Write igp PHY register
 454 *  @hw: pointer to the HW structure
 455 *  @offset: register offset to write to
 456 *  @data: data to write at register offset
 457 *
 458 *  Acquires semaphore then writes the data to PHY register
 459 *  at the offset.  Release any acquired semaphores before exiting.
 460 **/
 461s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 462{
 463	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 464}
 465
 466/**
 467 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 468 *  @hw: pointer to the HW structure
 469 *  @offset: register offset to write to
 470 *  @data: data to write at register offset
 471 *
 472 *  Writes the data to PHY register at the offset.
 473 *  Assumes semaphore already acquired.
 474 **/
 475s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 476{
 477	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 478}
 479
 480/**
 481 *  __e1000_read_kmrn_reg - Read kumeran register
 482 *  @hw: pointer to the HW structure
 483 *  @offset: register offset to be read
 484 *  @data: pointer to the read data
 485 *  @locked: semaphore has already been acquired or not
 486 *
 487 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 488 *  using the kumeran interface.  The information retrieved is stored in data.
 489 *  Release any acquired semaphores before exiting.
 490 **/
 491static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 492				 bool locked)
 493{
 494	u32 kmrnctrlsta;
 495
 496	if (!locked) {
 497		s32 ret_val = 0;
 498
 499		if (!hw->phy.ops.acquire)
 500			return 0;
 501
 502		ret_val = hw->phy.ops.acquire(hw);
 503		if (ret_val)
 504			return ret_val;
 505	}
 506
 507	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
 508		      E1000_KMRNCTRLSTA_REN;
 509	ew32(KMRNCTRLSTA, kmrnctrlsta);
 510	e1e_flush();
 511
 512	udelay(2);
 513
 514	kmrnctrlsta = er32(KMRNCTRLSTA);
 515	*data = (u16)kmrnctrlsta;
 516
 517	if (!locked)
 518		hw->phy.ops.release(hw);
 519
 520	return 0;
 521}
 522
 523/**
 524 *  e1000e_read_kmrn_reg -  Read kumeran register
 525 *  @hw: pointer to the HW structure
 526 *  @offset: register offset to be read
 527 *  @data: pointer to the read data
 528 *
 529 *  Acquires semaphore then reads the PHY register at offset using the
 530 *  kumeran interface.  The information retrieved is stored in data.
 531 *  Release the acquired semaphore before exiting.
 532 **/
 533s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 534{
 535	return __e1000_read_kmrn_reg(hw, offset, data, false);
 536}
 537
 538/**
 539 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 540 *  @hw: pointer to the HW structure
 541 *  @offset: register offset to be read
 542 *  @data: pointer to the read data
 543 *
 544 *  Reads the PHY register at offset using the kumeran interface.  The
 545 *  information retrieved is stored in data.
 546 *  Assumes semaphore already acquired.
 547 **/
 548s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 549{
 550	return __e1000_read_kmrn_reg(hw, offset, data, true);
 551}
 552
 553/**
 554 *  __e1000_write_kmrn_reg - Write kumeran register
 555 *  @hw: pointer to the HW structure
 556 *  @offset: register offset to write to
 557 *  @data: data to write at register offset
 558 *  @locked: semaphore has already been acquired or not
 559 *
 560 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 561 *  at the offset using the kumeran interface.  Release any acquired semaphores
 562 *  before exiting.
 563 **/
 564static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 565				  bool locked)
 566{
 567	u32 kmrnctrlsta;
 568
 569	if (!locked) {
 570		s32 ret_val = 0;
 571
 572		if (!hw->phy.ops.acquire)
 573			return 0;
 574
 575		ret_val = hw->phy.ops.acquire(hw);
 576		if (ret_val)
 577			return ret_val;
 578	}
 579
 580	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
 581	ew32(KMRNCTRLSTA, kmrnctrlsta);
 582	e1e_flush();
 583
 584	udelay(2);
 585
 586	if (!locked)
 587		hw->phy.ops.release(hw);
 588
 589	return 0;
 590}
 591
 592/**
 593 *  e1000e_write_kmrn_reg -  Write kumeran register
 594 *  @hw: pointer to the HW structure
 595 *  @offset: register offset to write to
 596 *  @data: data to write at register offset
 597 *
 598 *  Acquires semaphore then writes the data to the PHY register at the offset
 599 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 600 **/
 601s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 602{
 603	return __e1000_write_kmrn_reg(hw, offset, data, false);
 604}
 605
 606/**
 607 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 608 *  @hw: pointer to the HW structure
 609 *  @offset: register offset to write to
 610 *  @data: data to write at register offset
 611 *
 612 *  Write the data to PHY register at the offset using the kumeran interface.
 613 *  Assumes semaphore already acquired.
 614 **/
 615s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 616{
 617	return __e1000_write_kmrn_reg(hw, offset, data, true);
 618}
 619
 620/**
 621 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 622 *  @hw: pointer to the HW structure
 623 *
 624 *  Sets up Master/slave mode
 625 **/
 626static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 627{
 628	s32 ret_val;
 629	u16 phy_data;
 630
 631	/* Resolve Master/Slave mode */
 632	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 633	if (ret_val)
 634		return ret_val;
 635
 636	/* load defaults for future use */
 637	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 638	    ((phy_data & CTL1000_AS_MASTER) ?
 639	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 640
 641	switch (hw->phy.ms_type) {
 642	case e1000_ms_force_master:
 643		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 644		break;
 645	case e1000_ms_force_slave:
 646		phy_data |= CTL1000_ENABLE_MASTER;
 647		phy_data &= ~(CTL1000_AS_MASTER);
 648		break;
 649	case e1000_ms_auto:
 650		phy_data &= ~CTL1000_ENABLE_MASTER;
 651		fallthrough;
 652	default:
 653		break;
 654	}
 655
 656	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 657}
 658
 659/**
 660 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 661 *  @hw: pointer to the HW structure
 662 *
 663 *  Sets up Carrier-sense on Transmit and downshift values.
 664 **/
 665s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 666{
 667	s32 ret_val;
 668	u16 phy_data;
 669
 670	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 671	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 672	if (ret_val)
 673		return ret_val;
 674
 675	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 676
 677	/* Enable downshift */
 678	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 679
 680	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 681	if (ret_val)
 682		return ret_val;
 683
 684	/* Set MDI/MDIX mode */
 685	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 689	/* Options:
 690	 *   0 - Auto (default)
 691	 *   1 - MDI mode
 692	 *   2 - MDI-X mode
 693	 */
 694	switch (hw->phy.mdix) {
 695	case 1:
 696		break;
 697	case 2:
 698		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 699		break;
 700	case 0:
 701	default:
 702		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 703		break;
 704	}
 705	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 706	if (ret_val)
 707		return ret_val;
 708
 709	return e1000_set_master_slave_mode(hw);
 710}
 711
 712/**
 713 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 714 *  @hw: pointer to the HW structure
 715 *
 716 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 717 *  and downshift values are set also.
 718 **/
 719s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 720{
 721	struct e1000_phy_info *phy = &hw->phy;
 722	s32 ret_val;
 723	u16 phy_data;
 724
 725	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 726	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 727	if (ret_val)
 728		return ret_val;
 729
 730	/* For BM PHY this bit is downshift enable */
 731	if (phy->type != e1000_phy_bm)
 732		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 733
 734	/* Options:
 
 735	 *   MDI/MDI-X = 0 (default)
 736	 *   0 - Auto for all speeds
 737	 *   1 - MDI mode
 738	 *   2 - MDI-X mode
 739	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 740	 */
 741	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 742
 743	switch (phy->mdix) {
 744	case 1:
 745		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 746		break;
 747	case 2:
 748		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 749		break;
 750	case 3:
 751		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 752		break;
 753	case 0:
 754	default:
 755		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 756		break;
 757	}
 758
 759	/* Options:
 
 760	 *   disable_polarity_correction = 0 (default)
 761	 *       Automatic Correction for Reversed Cable Polarity
 762	 *   0 - Disabled
 763	 *   1 - Enabled
 764	 */
 765	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 766	if (phy->disable_polarity_correction)
 767		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 768
 769	/* Enable downshift on BM (disabled by default) */
 770	if (phy->type == e1000_phy_bm) {
 771		/* For 82574/82583, first disable then enable downshift */
 772		if (phy->id == BME1000_E_PHY_ID_R2) {
 773			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 774			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 775					   phy_data);
 776			if (ret_val)
 777				return ret_val;
 778			/* Commit the changes. */
 779			ret_val = phy->ops.commit(hw);
 780			if (ret_val) {
 781				e_dbg("Error committing the PHY changes\n");
 782				return ret_val;
 783			}
 784		}
 785
 786		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 787	}
 788
 789	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 790	if (ret_val)
 791		return ret_val;
 792
 793	if ((phy->type == e1000_phy_m88) &&
 794	    (phy->revision < E1000_REVISION_4) &&
 795	    (phy->id != BME1000_E_PHY_ID_R2)) {
 796		/* Force TX_CLK in the Extended PHY Specific Control Register
 
 797		 * to 25MHz clock.
 798		 */
 799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 800		if (ret_val)
 801			return ret_val;
 802
 803		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 804
 805		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	if (phy->ops.commit) {
 835		ret_val = phy->ops.commit(hw);
 836		if (ret_val) {
 837			e_dbg("Error committing the PHY changes\n");
 838			return ret_val;
 839		}
 840	}
 841
 842	if (phy->type == e1000_phy_82578) {
 843		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 844		if (ret_val)
 845			return ret_val;
 846
 847		/* 82578 PHY - set the downshift count to 1x. */
 848		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 849		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 850		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 851		if (ret_val)
 852			return ret_val;
 853	}
 854
 855	return 0;
 856}
 857
 858/**
 859 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 863 *  igp PHY's.
 864 **/
 865s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 866{
 867	struct e1000_phy_info *phy = &hw->phy;
 868	s32 ret_val;
 869	u16 data;
 870
 871	ret_val = e1000_phy_hw_reset(hw);
 872	if (ret_val) {
 873		e_dbg("Error resetting the PHY.\n");
 874		return ret_val;
 875	}
 876
 877	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 
 878	 * timeout issues when LFS is enabled.
 879	 */
 880	msleep(100);
 881
 882	/* disable lplu d0 during driver init */
 883	if (hw->phy.ops.set_d0_lplu_state) {
 884		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 885		if (ret_val) {
 886			e_dbg("Error Disabling LPLU D0\n");
 887			return ret_val;
 888		}
 889	}
 890	/* Configure mdi-mdix settings */
 891	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 892	if (ret_val)
 893		return ret_val;
 894
 895	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 896
 897	switch (phy->mdix) {
 898	case 1:
 899		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 2:
 902		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 903		break;
 904	case 0:
 905	default:
 906		data |= IGP01E1000_PSCR_AUTO_MDIX;
 907		break;
 908	}
 909	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 910	if (ret_val)
 911		return ret_val;
 912
 913	/* set auto-master slave resolution settings */
 914	if (hw->mac.autoneg) {
 915		/* when autonegotiation advertisement is only 1000Mbps then we
 
 916		 * should disable SmartSpeed and enable Auto MasterSlave
 917		 * resolution as hardware default.
 918		 */
 919		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 920			/* Disable SmartSpeed */
 921			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 922					   &data);
 923			if (ret_val)
 924				return ret_val;
 925
 926			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 927			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 928					   data);
 929			if (ret_val)
 930				return ret_val;
 931
 932			/* Set auto Master/Slave resolution process */
 933			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 934			if (ret_val)
 935				return ret_val;
 936
 937			data &= ~CTL1000_ENABLE_MASTER;
 938			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 939			if (ret_val)
 940				return ret_val;
 941		}
 942
 943		ret_val = e1000_set_master_slave_mode(hw);
 944	}
 945
 946	return ret_val;
 947}
 948
 949/**
 950 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 951 *  @hw: pointer to the HW structure
 952 *
 953 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 954 *  register and if the PHY is already setup for auto-negotiation, then
 955 *  return successful.  Otherwise, setup advertisement and flow control to
 956 *  the appropriate values for the wanted auto-negotiation.
 957 **/
 958static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 959{
 960	struct e1000_phy_info *phy = &hw->phy;
 961	s32 ret_val;
 962	u16 mii_autoneg_adv_reg;
 963	u16 mii_1000t_ctrl_reg = 0;
 964
 965	phy->autoneg_advertised &= phy->autoneg_mask;
 966
 967	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 968	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 969	if (ret_val)
 970		return ret_val;
 971
 972	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 973		/* Read the MII 1000Base-T Control Register (Address 9). */
 974		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 975		if (ret_val)
 976			return ret_val;
 977	}
 978
 979	/* Need to parse both autoneg_advertised and fc and set up
 
 980	 * the appropriate PHY registers.  First we will parse for
 981	 * autoneg_advertised software override.  Since we can advertise
 982	 * a plethora of combinations, we need to check each bit
 983	 * individually.
 984	 */
 985
 986	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 991				 ADVERTISE_100HALF |
 992				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 993	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 
 994
 995	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 996
 997	/* Do we want to advertise 10 Mb Half Duplex? */
 998	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 999		e_dbg("Advertise 10mb Half duplex\n");
1000		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
1001	}
1002
1003	/* Do we want to advertise 10 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1005		e_dbg("Advertise 10mb Full duplex\n");
1006		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
1007	}
1008
1009	/* Do we want to advertise 100 Mb Half Duplex? */
1010	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1011		e_dbg("Advertise 100mb Half duplex\n");
1012		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
1013	}
1014
1015	/* Do we want to advertise 100 Mb Full Duplex? */
1016	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1017		e_dbg("Advertise 100mb Full duplex\n");
1018		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1019	}
1020
1021	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1022	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1023		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1024
1025	/* Do we want to advertise 1000 Mb Full Duplex? */
1026	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1027		e_dbg("Advertise 1000mb Full duplex\n");
1028		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1029	}
1030
1031	/* Check for a software override of the flow control settings, and
 
1032	 * setup the PHY advertisement registers accordingly.  If
1033	 * auto-negotiation is enabled, then software will have to set the
1034	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1035	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1036	 * negotiation.
1037	 *
1038	 * The possible values of the "fc" parameter are:
1039	 *      0:  Flow control is completely disabled
1040	 *      1:  Rx flow control is enabled (we can receive pause frames
1041	 *          but not send pause frames).
1042	 *      2:  Tx flow control is enabled (we can send pause frames
1043	 *          but we do not support receiving pause frames).
1044	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1045	 *  other:  No software override.  The flow control configuration
1046	 *          in the EEPROM is used.
1047	 */
1048	switch (hw->fc.current_mode) {
1049	case e1000_fc_none:
1050		/* Flow control (Rx & Tx) is completely disabled by a
 
1051		 * software over-ride.
1052		 */
1053		mii_autoneg_adv_reg &=
1054		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1055		phy->autoneg_advertised &=
1056		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1057		break;
1058	case e1000_fc_rx_pause:
1059		/* Rx Flow control is enabled, and Tx Flow control is
 
1060		 * disabled, by a software over-ride.
1061		 *
1062		 * Since there really isn't a way to advertise that we are
1063		 * capable of Rx Pause ONLY, we will advertise that we
1064		 * support both symmetric and asymmetric Rx PAUSE.  Later
1065		 * (in e1000e_config_fc_after_link_up) we will disable the
1066		 * hw's ability to send PAUSE frames.
1067		 */
1068		mii_autoneg_adv_reg |=
1069		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1070		phy->autoneg_advertised |=
1071		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1072		break;
1073	case e1000_fc_tx_pause:
1074		/* Tx Flow control is enabled, and Rx Flow control is
 
1075		 * disabled, by a software over-ride.
1076		 */
1077		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1078		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1079		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1080		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1081		break;
1082	case e1000_fc_full:
1083		/* Flow control (both Rx and Tx) is enabled by a software
 
1084		 * over-ride.
1085		 */
1086		mii_autoneg_adv_reg |=
1087		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1088		phy->autoneg_advertised |=
1089		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1090		break;
1091	default:
1092		e_dbg("Flow control param set incorrectly\n");
1093		return -E1000_ERR_CONFIG;
1094	}
1095
1096	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1097	if (ret_val)
1098		return ret_val;
1099
1100	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1101
1102	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1103		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1104
1105	return ret_val;
1106}
1107
1108/**
1109 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Performs initial bounds checking on autoneg advertisement parameter, then
1113 *  configure to advertise the full capability.  Setup the PHY to autoneg
1114 *  and restart the negotiation process between the link partner.  If
1115 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1116 **/
1117static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1118{
1119	struct e1000_phy_info *phy = &hw->phy;
1120	s32 ret_val;
1121	u16 phy_ctrl;
1122
1123	/* Perform some bounds checking on the autoneg advertisement
 
1124	 * parameter.
1125	 */
1126	phy->autoneg_advertised &= phy->autoneg_mask;
1127
1128	/* If autoneg_advertised is zero, we assume it was not defaulted
 
1129	 * by the calling code so we set to advertise full capability.
1130	 */
1131	if (!phy->autoneg_advertised)
1132		phy->autoneg_advertised = phy->autoneg_mask;
1133
1134	e_dbg("Reconfiguring auto-neg advertisement params\n");
1135	ret_val = e1000_phy_setup_autoneg(hw);
1136	if (ret_val) {
1137		e_dbg("Error Setting up Auto-Negotiation\n");
1138		return ret_val;
1139	}
1140	e_dbg("Restarting Auto-Neg\n");
1141
1142	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 
1143	 * the Auto Neg Restart bit in the PHY control register.
1144	 */
1145	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1146	if (ret_val)
1147		return ret_val;
1148
1149	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1150	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1151	if (ret_val)
1152		return ret_val;
1153
1154	/* Does the user want to wait for Auto-Neg to complete here, or
 
1155	 * check at a later time (for example, callback routine).
1156	 */
1157	if (phy->autoneg_wait_to_complete) {
1158		ret_val = e1000_wait_autoneg(hw);
1159		if (ret_val) {
1160			e_dbg("Error while waiting for autoneg to complete\n");
1161			return ret_val;
1162		}
1163	}
1164
1165	hw->mac.get_link_status = true;
1166
1167	return ret_val;
1168}
1169
1170/**
1171 *  e1000e_setup_copper_link - Configure copper link settings
1172 *  @hw: pointer to the HW structure
1173 *
1174 *  Calls the appropriate function to configure the link for auto-neg or forced
1175 *  speed and duplex.  Then we check for link, once link is established calls
1176 *  to configure collision distance and flow control are called.  If link is
1177 *  not established, we return -E1000_ERR_PHY (-2).
1178 **/
1179s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1180{
1181	s32 ret_val;
1182	bool link;
1183
1184	if (hw->mac.autoneg) {
1185		/* Setup autoneg and flow control advertisement and perform
 
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/* PHY will be set to 10H, 10F, 100H or 100F
 
1193		 * depending on user settings.
1194		 */
1195		e_dbg("Forcing Speed and Duplex\n");
1196		ret_val = hw->phy.ops.force_speed_duplex(hw);
1197		if (ret_val) {
1198			e_dbg("Error Forcing Speed and Duplex\n");
1199			return ret_val;
1200		}
1201	}
1202
1203	/* Check link status. Wait up to 100 microseconds for link to become
 
1204	 * valid.
1205	 */
1206	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1207					      &link);
1208	if (ret_val)
1209		return ret_val;
1210
1211	if (link) {
1212		e_dbg("Valid link established!!!\n");
1213		hw->mac.ops.config_collision_dist(hw);
1214		ret_val = e1000e_config_fc_after_link_up(hw);
1215	} else {
1216		e_dbg("Unable to establish link!!!\n");
1217	}
1218
1219	return ret_val;
1220}
1221
1222/**
1223 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224 *  @hw: pointer to the HW structure
1225 *
1226 *  Calls the PHY setup function to force speed and duplex.  Clears the
1227 *  auto-crossover to force MDI manually.  Waits for link and returns
1228 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1229 **/
1230s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1231{
1232	struct e1000_phy_info *phy = &hw->phy;
1233	s32 ret_val;
1234	u16 phy_data;
1235	bool link;
1236
1237	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1238	if (ret_val)
1239		return ret_val;
1240
1241	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1244	if (ret_val)
1245		return ret_val;
1246
1247	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 
1248	 * forced whenever speed and duplex are forced.
1249	 */
1250	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1251	if (ret_val)
1252		return ret_val;
1253
1254	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1255	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1256
1257	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1258	if (ret_val)
1259		return ret_val;
1260
1261	e_dbg("IGP PSCR: %X\n", phy_data);
1262
1263	udelay(1);
1264
1265	if (phy->autoneg_wait_to_complete) {
1266		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1267
1268		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1269						      100000, &link);
1270		if (ret_val)
1271			return ret_val;
1272
1273		if (!link)
1274			e_dbg("Link taking longer than expected.\n");
1275
1276		/* Try once more */
1277		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1278						      100000, &link);
1279	}
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  Calls the PHY setup function to force speed and duplex.  Clears the
1289 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1290 *  changes.  If time expires while waiting for link up, we reset the DSP.
1291 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1292 *  successful completion, else return corresponding error code.
1293 **/
1294s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1295{
1296	struct e1000_phy_info *phy = &hw->phy;
1297	s32 ret_val;
1298	u16 phy_data;
1299	bool link;
1300
1301	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 
1302	 * forced whenever speed and duplex are forced.
1303	 */
1304	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1305	if (ret_val)
1306		return ret_val;
1307
1308	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1309	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1310	if (ret_val)
1311		return ret_val;
1312
1313	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1314
1315	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1316	if (ret_val)
1317		return ret_val;
1318
1319	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1320
1321	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1322	if (ret_val)
1323		return ret_val;
1324
1325	/* Reset the phy to commit changes. */
1326	if (hw->phy.ops.commit) {
1327		ret_val = hw->phy.ops.commit(hw);
1328		if (ret_val)
1329			return ret_val;
1330	}
1331
1332	if (phy->autoneg_wait_to_complete) {
1333		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1334
1335		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1336						      100000, &link);
1337		if (ret_val)
1338			return ret_val;
1339
1340		if (!link) {
1341			if (hw->phy.type != e1000_phy_m88) {
1342				e_dbg("Link taking longer than expected.\n");
1343			} else {
1344				/* We didn't get link.
 
1345				 * Reset the DSP and cross our fingers.
1346				 */
1347				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1348						   0x001d);
1349				if (ret_val)
1350					return ret_val;
1351				ret_val = e1000e_phy_reset_dsp(hw);
1352				if (ret_val)
1353					return ret_val;
1354			}
1355		}
1356
1357		/* Try once more */
1358		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1359						      100000, &link);
1360		if (ret_val)
1361			return ret_val;
1362	}
1363
1364	if (hw->phy.type != e1000_phy_m88)
1365		return 0;
1366
1367	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1368	if (ret_val)
1369		return ret_val;
1370
1371	/* Resetting the phy means we need to re-force TX_CLK in the
 
1372	 * Extended PHY Specific Control Register to 25MHz clock from
1373	 * the reset value of 2.5MHz.
1374	 */
1375	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1376	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1377	if (ret_val)
1378		return ret_val;
1379
1380	/* In addition, we must re-enable CRS on Tx for both half and full
 
1381	 * duplex.
1382	 */
1383	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1384	if (ret_val)
1385		return ret_val;
1386
1387	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1388	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1389
1390	return ret_val;
1391}
1392
1393/**
1394 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1395 *  @hw: pointer to the HW structure
1396 *
1397 *  Forces the speed and duplex settings of the PHY.
1398 *  This is a function pointer entry point only called by
1399 *  PHY setup routines.
1400 **/
1401s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1402{
1403	struct e1000_phy_info *phy = &hw->phy;
1404	s32 ret_val;
1405	u16 data;
1406	bool link;
1407
1408	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1409	if (ret_val)
1410		return ret_val;
1411
1412	e1000e_phy_force_speed_duplex_setup(hw, &data);
1413
1414	ret_val = e1e_wphy(hw, MII_BMCR, data);
1415	if (ret_val)
1416		return ret_val;
1417
1418	/* Disable MDI-X support for 10/100 */
1419	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	data &= ~IFE_PMC_AUTO_MDIX;
1424	data &= ~IFE_PMC_FORCE_MDIX;
1425
1426	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1427	if (ret_val)
1428		return ret_val;
1429
1430	e_dbg("IFE PMC: %X\n", data);
1431
1432	udelay(1);
1433
1434	if (phy->autoneg_wait_to_complete) {
1435		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1436
1437		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1438						      100000, &link);
1439		if (ret_val)
1440			return ret_val;
1441
1442		if (!link)
1443			e_dbg("Link taking longer than expected.\n");
1444
1445		/* Try once more */
1446		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1447						      100000, &link);
1448		if (ret_val)
1449			return ret_val;
1450	}
1451
1452	return 0;
1453}
1454
1455/**
1456 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1457 *  @hw: pointer to the HW structure
1458 *  @phy_ctrl: pointer to current value of MII_BMCR
1459 *
1460 *  Forces speed and duplex on the PHY by doing the following: disable flow
1461 *  control, force speed/duplex on the MAC, disable auto speed detection,
1462 *  disable auto-negotiation, configure duplex, configure speed, configure
1463 *  the collision distance, write configuration to CTRL register.  The
1464 *  caller must write to the MII_BMCR register for these settings to
1465 *  take affect.
1466 **/
1467void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1468{
1469	struct e1000_mac_info *mac = &hw->mac;
1470	u32 ctrl;
1471
1472	/* Turn off flow control when forcing speed/duplex */
1473	hw->fc.current_mode = e1000_fc_none;
1474
1475	/* Force speed/duplex on the mac */
1476	ctrl = er32(CTRL);
1477	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1478	ctrl &= ~E1000_CTRL_SPD_SEL;
1479
1480	/* Disable Auto Speed Detection */
1481	ctrl &= ~E1000_CTRL_ASDE;
1482
1483	/* Disable autoneg on the phy */
1484	*phy_ctrl &= ~BMCR_ANENABLE;
1485
1486	/* Forcing Full or Half Duplex? */
1487	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1488		ctrl &= ~E1000_CTRL_FD;
1489		*phy_ctrl &= ~BMCR_FULLDPLX;
1490		e_dbg("Half Duplex\n");
1491	} else {
1492		ctrl |= E1000_CTRL_FD;
1493		*phy_ctrl |= BMCR_FULLDPLX;
1494		e_dbg("Full Duplex\n");
1495	}
1496
1497	/* Forcing 10mb or 100mb? */
1498	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1499		ctrl |= E1000_CTRL_SPD_100;
1500		*phy_ctrl |= BMCR_SPEED100;
1501		*phy_ctrl &= ~BMCR_SPEED1000;
1502		e_dbg("Forcing 100mb\n");
1503	} else {
1504		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
 
1506		e_dbg("Forcing 10mb\n");
1507	}
1508
1509	hw->mac.ops.config_collision_dist(hw);
1510
1511	ew32(CTRL, ctrl);
1512}
1513
1514/**
1515 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 *  @hw: pointer to the HW structure
1517 *  @active: boolean used to enable/disable lplu
1518 *
1519 *  Success returns 0, Failure returns 1
1520 *
1521 *  The low power link up (lplu) state is set to the power management level D3
1522 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524 *  is used during Dx states where the power conservation is most important.
1525 *  During driver activity, SmartSpeed should be enabled so performance is
1526 *  maintained.
1527 **/
1528s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529{
1530	struct e1000_phy_info *phy = &hw->phy;
1531	s32 ret_val;
1532	u16 data;
1533
1534	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535	if (ret_val)
1536		return ret_val;
1537
1538	if (!active) {
1539		data &= ~IGP02E1000_PM_D3_LPLU;
1540		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541		if (ret_val)
1542			return ret_val;
1543		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1544		 * during Dx states where the power conservation is most
1545		 * important.  During driver activity we should enable
1546		 * SmartSpeed, so performance is maintained.
1547		 */
1548		if (phy->smart_speed == e1000_smart_speed_on) {
1549			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550					   &data);
1551			if (ret_val)
1552				return ret_val;
1553
1554			data |= IGP01E1000_PSCFR_SMART_SPEED;
1555			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1556					   data);
1557			if (ret_val)
1558				return ret_val;
1559		} else if (phy->smart_speed == e1000_smart_speed_off) {
1560			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1561					   &data);
1562			if (ret_val)
1563				return ret_val;
1564
1565			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1566			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1567					   data);
1568			if (ret_val)
1569				return ret_val;
1570		}
1571	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1572		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1573		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1574		data |= IGP02E1000_PM_D3_LPLU;
1575		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1576		if (ret_val)
1577			return ret_val;
1578
1579		/* When LPLU is enabled, we should disable SmartSpeed */
1580		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1581		if (ret_val)
1582			return ret_val;
1583
1584		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1585		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1586	}
1587
1588	return ret_val;
1589}
1590
1591/**
1592 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 *  @hw: pointer to the HW structure
1594 *
1595 *  Success returns 0, Failure returns 1
1596 *
1597 *  A downshift is detected by querying the PHY link health.
1598 **/
1599s32 e1000e_check_downshift(struct e1000_hw *hw)
1600{
1601	struct e1000_phy_info *phy = &hw->phy;
1602	s32 ret_val;
1603	u16 phy_data, offset, mask;
1604
1605	switch (phy->type) {
1606	case e1000_phy_m88:
1607	case e1000_phy_gg82563:
1608	case e1000_phy_bm:
1609	case e1000_phy_82578:
1610		offset = M88E1000_PHY_SPEC_STATUS;
1611		mask = M88E1000_PSSR_DOWNSHIFT;
1612		break;
1613	case e1000_phy_igp_2:
1614	case e1000_phy_igp_3:
1615		offset = IGP01E1000_PHY_LINK_HEALTH;
1616		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1617		break;
1618	default:
1619		/* speed downshift not supported */
1620		phy->speed_downgraded = false;
1621		return 0;
1622	}
1623
1624	ret_val = e1e_rphy(hw, offset, &phy_data);
1625
1626	if (!ret_val)
1627		phy->speed_downgraded = !!(phy_data & mask);
1628
1629	return ret_val;
1630}
1631
1632/**
1633 *  e1000_check_polarity_m88 - Checks the polarity.
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637 *
1638 *  Polarity is determined based on the PHY specific status register.
1639 **/
1640s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1641{
1642	struct e1000_phy_info *phy = &hw->phy;
1643	s32 ret_val;
1644	u16 data;
1645
1646	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_igp - Checks the polarity.
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1661 *
1662 *  Polarity is determined based on the PHY port status register, and the
1663 *  current speed (since there is no polarity at 100Mbps).
1664 **/
1665s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1666{
1667	struct e1000_phy_info *phy = &hw->phy;
1668	s32 ret_val;
1669	u16 data, offset, mask;
1670
1671	/* Polarity is determined based on the speed of
 
1672	 * our connection.
1673	 */
1674	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1675	if (ret_val)
1676		return ret_val;
1677
1678	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1679	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1680		offset = IGP01E1000_PHY_PCS_INIT_REG;
1681		mask = IGP01E1000_PHY_POLARITY_MASK;
1682	} else {
1683		/* This really only applies to 10Mbps since
 
1684		 * there is no polarity for 100Mbps (always 0).
1685		 */
1686		offset = IGP01E1000_PHY_PORT_STATUS;
1687		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1688	}
1689
1690	ret_val = e1e_rphy(hw, offset, &data);
1691
1692	if (!ret_val)
1693		phy->cable_polarity = ((data & mask)
1694				       ? e1000_rev_polarity_reversed
1695				       : e1000_rev_polarity_normal);
1696
1697	return ret_val;
1698}
1699
1700/**
1701 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1702 *  @hw: pointer to the HW structure
1703 *
1704 *  Polarity is determined on the polarity reversal feature being enabled.
1705 **/
1706s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1707{
1708	struct e1000_phy_info *phy = &hw->phy;
1709	s32 ret_val;
1710	u16 phy_data, offset, mask;
1711
1712	/* Polarity is determined based on the reversal feature being enabled.
 
1713	 */
1714	if (phy->polarity_correction) {
1715		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1716		mask = IFE_PESC_POLARITY_REVERSED;
1717	} else {
1718		offset = IFE_PHY_SPECIAL_CONTROL;
1719		mask = IFE_PSC_FORCE_POLARITY;
1720	}
1721
1722	ret_val = e1e_rphy(hw, offset, &phy_data);
1723
1724	if (!ret_val)
1725		phy->cable_polarity = ((phy_data & mask)
1726				       ? e1000_rev_polarity_reversed
1727				       : e1000_rev_polarity_normal);
1728
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000_wait_autoneg - Wait for auto-neg completion
1734 *  @hw: pointer to the HW structure
1735 *
1736 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1737 *  limit to expire, which ever happens first.
1738 **/
1739static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1740{
1741	s32 ret_val = 0;
1742	u16 i, phy_status;
1743
1744	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1745	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1750		if (ret_val)
1751			break;
1752		if (phy_status & BMSR_ANEGCOMPLETE)
1753			break;
1754		msleep(100);
1755	}
1756
1757	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
 
1758	 * has completed.
1759	 */
1760	return ret_val;
1761}
1762
1763/**
1764 *  e1000e_phy_has_link_generic - Polls PHY for link
1765 *  @hw: pointer to the HW structure
1766 *  @iterations: number of times to poll for link
1767 *  @usec_interval: delay between polling attempts
1768 *  @success: pointer to whether polling was successful or not
1769 *
1770 *  Polls the PHY status register for link, 'iterations' number of times.
1771 **/
1772s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1773				u32 usec_interval, bool *success)
1774{
1775	s32 ret_val = 0;
1776	u16 i, phy_status;
1777
1778	*success = false;
1779	for (i = 0; i < iterations; i++) {
1780		/* Some PHYs require the MII_BMSR register to be read
 
1781		 * twice due to the link bit being sticky.  No harm doing
1782		 * it across the board.
1783		 */
1784		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1785		if (ret_val) {
1786			/* If the first read fails, another entity may have
 
1787			 * ownership of the resources, wait and try again to
1788			 * see if they have relinquished the resources yet.
1789			 */
1790			if (usec_interval >= 1000)
1791				msleep(usec_interval / 1000);
1792			else
1793				udelay(usec_interval);
1794		}
1795		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1796		if (ret_val)
1797			break;
1798		if (phy_status & BMSR_LSTATUS) {
1799			*success = true;
1800			break;
1801		}
1802		if (usec_interval >= 1000)
1803			msleep(usec_interval / 1000);
1804		else
1805			udelay(usec_interval);
1806	}
1807
 
 
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Reads the PHY specific status register to retrieve the cable length
1816 *  information.  The cable length is determined by averaging the minimum and
1817 *  maximum values to get the "average" cable length.  The m88 PHY has four
1818 *  possible cable length values, which are:
1819 *	Register Value		Cable Length
1820 *	0			< 50 meters
1821 *	1			50 - 80 meters
1822 *	2			80 - 110 meters
1823 *	3			110 - 140 meters
1824 *	4			> 140 meters
1825 **/
1826s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1827{
1828	struct e1000_phy_info *phy = &hw->phy;
1829	s32 ret_val;
1830	u16 phy_data, index;
1831
1832	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1833	if (ret_val)
1834		return ret_val;
1835
1836	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
1837
1838	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1839		return -E1000_ERR_PHY;
1840
1841	phy->min_cable_length = e1000_m88_cable_length_table[index];
1842	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1843
1844	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1845
1846	return 0;
1847}
1848
1849/**
1850 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1851 *  @hw: pointer to the HW structure
1852 *
1853 *  The automatic gain control (agc) normalizes the amplitude of the
1854 *  received signal, adjusting for the attenuation produced by the
1855 *  cable.  By reading the AGC registers, which represent the
1856 *  combination of coarse and fine gain value, the value can be put
1857 *  into a lookup table to obtain the approximate cable length
1858 *  for each channel.
1859 **/
1860s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1861{
1862	struct e1000_phy_info *phy = &hw->phy;
1863	s32 ret_val;
1864	u16 phy_data, i, agc_value = 0;
1865	u16 cur_agc_index, max_agc_index = 0;
1866	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1867	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1868		IGP02E1000_PHY_AGC_A,
1869		IGP02E1000_PHY_AGC_B,
1870		IGP02E1000_PHY_AGC_C,
1871		IGP02E1000_PHY_AGC_D
1872	};
1873
1874	/* Read the AGC registers for all channels */
1875	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1876		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1877		if (ret_val)
1878			return ret_val;
1879
1880		/* Getting bits 15:9, which represent the combination of
 
1881		 * coarse and fine gain values.  The result is a number
1882		 * that can be put into the lookup table to obtain the
1883		 * approximate cable length.
1884		 */
1885		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1886				 IGP02E1000_AGC_LENGTH_MASK);
1887
1888		/* Array index bound check. */
1889		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1890		    (cur_agc_index == 0))
1891			return -E1000_ERR_PHY;
1892
1893		/* Remove min & max AGC values from calculation. */
1894		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895		    e1000_igp_2_cable_length_table[cur_agc_index])
1896			min_agc_index = cur_agc_index;
1897		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898		    e1000_igp_2_cable_length_table[cur_agc_index])
1899			max_agc_index = cur_agc_index;
1900
1901		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902	}
1903
1904	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905		      e1000_igp_2_cable_length_table[max_agc_index]);
1906	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907
1908	/* Calculate cable length with the error range of +/- 10 meters. */
1909	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1911	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912
1913	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914
1915	return 0;
1916}
1917
1918/**
1919 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1920 *  @hw: pointer to the HW structure
1921 *
1922 *  Valid for only copper links.  Read the PHY status register (sticky read)
1923 *  to verify that link is up.  Read the PHY special control register to
1924 *  determine the polarity and 10base-T extended distance.  Read the PHY
1925 *  special status register to determine MDI/MDIx and current speed.  If
1926 *  speed is 1000, then determine cable length, local and remote receiver.
1927 **/
1928s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1929{
1930	struct e1000_phy_info *phy = &hw->phy;
1931	s32 ret_val;
1932	u16 phy_data;
1933	bool link;
1934
1935	if (phy->media_type != e1000_media_type_copper) {
1936		e_dbg("Phy info is only valid for copper media\n");
1937		return -E1000_ERR_CONFIG;
1938	}
1939
1940	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1941	if (ret_val)
1942		return ret_val;
1943
1944	if (!link) {
1945		e_dbg("Phy info is only valid if link is up\n");
1946		return -E1000_ERR_CONFIG;
1947	}
1948
1949	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1950	if (ret_val)
1951		return ret_val;
1952
1953	phy->polarity_correction = !!(phy_data &
1954				      M88E1000_PSCR_POLARITY_REVERSAL);
1955
1956	ret_val = e1000_check_polarity_m88(hw);
1957	if (ret_val)
1958		return ret_val;
1959
1960	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1961	if (ret_val)
1962		return ret_val;
1963
1964	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1965
1966	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1967		ret_val = hw->phy.ops.get_cable_length(hw);
1968		if (ret_val)
1969			return ret_val;
1970
1971		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1972		if (ret_val)
1973			return ret_val;
1974
1975		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1976		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1977
1978		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1979		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1980	} else {
1981		/* Set values to "undefined" */
1982		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983		phy->local_rx = e1000_1000t_rx_status_undefined;
1984		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985	}
1986
1987	return ret_val;
1988}
1989
1990/**
1991 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1992 *  @hw: pointer to the HW structure
1993 *
1994 *  Read PHY status to determine if link is up.  If link is up, then
1995 *  set/determine 10base-T extended distance and polarity correction.  Read
1996 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1997 *  determine on the cable length, local and remote receiver.
1998 **/
1999s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000{
2001	struct e1000_phy_info *phy = &hw->phy;
2002	s32 ret_val;
2003	u16 data;
2004	bool link;
2005
2006	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007	if (ret_val)
2008		return ret_val;
2009
2010	if (!link) {
2011		e_dbg("Phy info is only valid if link is up\n");
2012		return -E1000_ERR_CONFIG;
2013	}
2014
2015	phy->polarity_correction = true;
2016
2017	ret_val = e1000_check_polarity_igp(hw);
2018	if (ret_val)
2019		return ret_val;
2020
2021	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022	if (ret_val)
2023		return ret_val;
2024
2025	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2026
2027	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2029		ret_val = phy->ops.get_cable_length(hw);
2030		if (ret_val)
2031			return ret_val;
2032
2033		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2034		if (ret_val)
2035			return ret_val;
2036
2037		phy->local_rx = (data & LPA_1000LOCALRXOK)
2038		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
2039
2040		phy->remote_rx = (data & LPA_1000REMRXOK)
2041		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
2042	} else {
2043		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2044		phy->local_rx = e1000_1000t_rx_status_undefined;
2045		phy->remote_rx = e1000_1000t_rx_status_undefined;
2046	}
2047
2048	return ret_val;
2049}
2050
2051/**
2052 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2053 *  @hw: pointer to the HW structure
2054 *
2055 *  Populates "phy" structure with various feature states.
2056 **/
2057s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2058{
2059	struct e1000_phy_info *phy = &hw->phy;
2060	s32 ret_val;
2061	u16 data;
2062	bool link;
2063
2064	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2065	if (ret_val)
2066		return ret_val;
2067
2068	if (!link) {
2069		e_dbg("Phy info is only valid if link is up\n");
2070		return -E1000_ERR_CONFIG;
2071	}
2072
2073	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2074	if (ret_val)
2075		return ret_val;
2076	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2077
2078	if (phy->polarity_correction) {
2079		ret_val = e1000_check_polarity_ife(hw);
2080		if (ret_val)
2081			return ret_val;
2082	} else {
2083		/* Polarity is forced */
2084		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2085				       ? e1000_rev_polarity_reversed
2086				       : e1000_rev_polarity_normal);
2087	}
2088
2089	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2090	if (ret_val)
2091		return ret_val;
2092
2093	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2094
2095	/* The following parameters are undefined for 10/100 operation. */
2096	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2097	phy->local_rx = e1000_1000t_rx_status_undefined;
2098	phy->remote_rx = e1000_1000t_rx_status_undefined;
2099
2100	return 0;
2101}
2102
2103/**
2104 *  e1000e_phy_sw_reset - PHY software reset
2105 *  @hw: pointer to the HW structure
2106 *
2107 *  Does a software reset of the PHY by reading the PHY control register and
2108 *  setting/write the control register reset bit to the PHY.
2109 **/
2110s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2111{
2112	s32 ret_val;
2113	u16 phy_ctrl;
2114
2115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2116	if (ret_val)
2117		return ret_val;
2118
2119	phy_ctrl |= BMCR_RESET;
2120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2121	if (ret_val)
2122		return ret_val;
2123
2124	udelay(1);
2125
2126	return ret_val;
2127}
2128
2129/**
2130 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2131 *  @hw: pointer to the HW structure
2132 *
2133 *  Verify the reset block is not blocking us from resetting.  Acquire
2134 *  semaphore (if necessary) and read/set/write the device control reset
2135 *  bit in the PHY.  Wait the appropriate delay time for the device to
2136 *  reset and release the semaphore (if necessary).
2137 **/
2138s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2139{
2140	struct e1000_phy_info *phy = &hw->phy;
2141	s32 ret_val;
2142	u32 ctrl;
2143
2144	if (phy->ops.check_reset_block) {
2145		ret_val = phy->ops.check_reset_block(hw);
2146		if (ret_val)
2147			return 0;
2148	}
2149
2150	ret_val = phy->ops.acquire(hw);
2151	if (ret_val)
2152		return ret_val;
2153
2154	ctrl = er32(CTRL);
2155	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2156	e1e_flush();
2157
2158	udelay(phy->reset_delay_us);
2159
2160	ew32(CTRL, ctrl);
2161	e1e_flush();
2162
2163	usleep_range(150, 300);
2164
2165	phy->ops.release(hw);
2166
2167	return phy->ops.get_cfg_done(hw);
2168}
2169
2170/**
2171 *  e1000e_get_cfg_done_generic - Generic configuration done
2172 *  @hw: pointer to the HW structure
2173 *
2174 *  Generic function to wait 10 milli-seconds for configuration to complete
2175 *  and return success.
2176 **/
2177s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2178{
2179	mdelay(10);
2180
2181	return 0;
2182}
2183
2184/**
2185 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2189 **/
2190s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2191{
2192	e_dbg("Running IGP 3 PHY init script\n");
2193
2194	/* PHY init IGP 3 */
2195	/* Enable rise/fall, 10-mode work in class-A */
2196	e1e_wphy(hw, 0x2F5B, 0x9018);
2197	/* Remove all caps from Replica path filter */
2198	e1e_wphy(hw, 0x2F52, 0x0000);
2199	/* Bias trimming for ADC, AFE and Driver (Default) */
2200	e1e_wphy(hw, 0x2FB1, 0x8B24);
2201	/* Increase Hybrid poly bias */
2202	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2203	/* Add 4% to Tx amplitude in Gig mode */
2204	e1e_wphy(hw, 0x2010, 0x10B0);
2205	/* Disable trimming (TTT) */
2206	e1e_wphy(hw, 0x2011, 0x0000);
2207	/* Poly DC correction to 94.6% + 2% for all channels */
2208	e1e_wphy(hw, 0x20DD, 0x249A);
2209	/* ABS DC correction to 95.9% */
2210	e1e_wphy(hw, 0x20DE, 0x00D3);
2211	/* BG temp curve trim */
2212	e1e_wphy(hw, 0x28B4, 0x04CE);
2213	/* Increasing ADC OPAMP stage 1 currents to max */
2214	e1e_wphy(hw, 0x2F70, 0x29E4);
2215	/* Force 1000 ( required for enabling PHY regs configuration) */
2216	e1e_wphy(hw, 0x0000, 0x0140);
2217	/* Set upd_freq to 6 */
2218	e1e_wphy(hw, 0x1F30, 0x1606);
2219	/* Disable NPDFE */
2220	e1e_wphy(hw, 0x1F31, 0xB814);
2221	/* Disable adaptive fixed FFE (Default) */
2222	e1e_wphy(hw, 0x1F35, 0x002A);
2223	/* Enable FFE hysteresis */
2224	e1e_wphy(hw, 0x1F3E, 0x0067);
2225	/* Fixed FFE for short cable lengths */
2226	e1e_wphy(hw, 0x1F54, 0x0065);
2227	/* Fixed FFE for medium cable lengths */
2228	e1e_wphy(hw, 0x1F55, 0x002A);
2229	/* Fixed FFE for long cable lengths */
2230	e1e_wphy(hw, 0x1F56, 0x002A);
2231	/* Enable Adaptive Clip Threshold */
2232	e1e_wphy(hw, 0x1F72, 0x3FB0);
2233	/* AHT reset limit to 1 */
2234	e1e_wphy(hw, 0x1F76, 0xC0FF);
2235	/* Set AHT master delay to 127 msec */
2236	e1e_wphy(hw, 0x1F77, 0x1DEC);
2237	/* Set scan bits for AHT */
2238	e1e_wphy(hw, 0x1F78, 0xF9EF);
2239	/* Set AHT Preset bits */
2240	e1e_wphy(hw, 0x1F79, 0x0210);
2241	/* Change integ_factor of channel A to 3 */
2242	e1e_wphy(hw, 0x1895, 0x0003);
2243	/* Change prop_factor of channels BCD to 8 */
2244	e1e_wphy(hw, 0x1796, 0x0008);
2245	/* Change cg_icount + enable integbp for channels BCD */
2246	e1e_wphy(hw, 0x1798, 0xD008);
2247	/* Change cg_icount + enable integbp + change prop_factor_master
 
2248	 * to 8 for channel A
2249	 */
2250	e1e_wphy(hw, 0x1898, 0xD918);
2251	/* Disable AHT in Slave mode on channel A */
2252	e1e_wphy(hw, 0x187A, 0x0800);
2253	/* Enable LPLU and disable AN to 1000 in non-D0a states,
 
2254	 * Enable SPD+B2B
2255	 */
2256	e1e_wphy(hw, 0x0019, 0x008D);
2257	/* Enable restart AN on an1000_dis change */
2258	e1e_wphy(hw, 0x001B, 0x2080);
2259	/* Enable wh_fifo read clock in 10/100 modes */
2260	e1e_wphy(hw, 0x0014, 0x0045);
2261	/* Restart AN, Speed selection is 1000 */
2262	e1e_wphy(hw, 0x0000, 0x1340);
2263
2264	return 0;
2265}
2266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267/**
2268 *  e1000e_get_phy_type_from_id - Get PHY type from id
2269 *  @phy_id: phy_id read from the phy
2270 *
2271 *  Returns the phy type from the id.
2272 **/
2273enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2274{
2275	enum e1000_phy_type phy_type = e1000_phy_unknown;
2276
2277	switch (phy_id) {
2278	case M88E1000_I_PHY_ID:
2279	case M88E1000_E_PHY_ID:
2280	case M88E1111_I_PHY_ID:
2281	case M88E1011_I_PHY_ID:
2282		phy_type = e1000_phy_m88;
2283		break;
2284	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2285		phy_type = e1000_phy_igp_2;
2286		break;
2287	case GG82563_E_PHY_ID:
2288		phy_type = e1000_phy_gg82563;
2289		break;
2290	case IGP03E1000_E_PHY_ID:
2291		phy_type = e1000_phy_igp_3;
2292		break;
2293	case IFE_E_PHY_ID:
2294	case IFE_PLUS_E_PHY_ID:
2295	case IFE_C_E_PHY_ID:
2296		phy_type = e1000_phy_ife;
2297		break;
2298	case BME1000_E_PHY_ID:
2299	case BME1000_E_PHY_ID_R2:
2300		phy_type = e1000_phy_bm;
2301		break;
2302	case I82578_E_PHY_ID:
2303		phy_type = e1000_phy_82578;
2304		break;
2305	case I82577_E_PHY_ID:
2306		phy_type = e1000_phy_82577;
2307		break;
2308	case I82579_E_PHY_ID:
2309		phy_type = e1000_phy_82579;
2310		break;
2311	case I217_E_PHY_ID:
2312		phy_type = e1000_phy_i217;
2313		break;
2314	default:
2315		phy_type = e1000_phy_unknown;
2316		break;
2317	}
2318	return phy_type;
2319}
2320
2321/**
2322 *  e1000e_determine_phy_address - Determines PHY address.
2323 *  @hw: pointer to the HW structure
2324 *
2325 *  This uses a trial and error method to loop through possible PHY
2326 *  addresses. It tests each by reading the PHY ID registers and
2327 *  checking for a match.
2328 **/
2329s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2330{
2331	u32 phy_addr = 0;
2332	u32 i;
2333	enum e1000_phy_type phy_type = e1000_phy_unknown;
2334
2335	hw->phy.id = phy_type;
2336
2337	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2338		hw->phy.addr = phy_addr;
2339		i = 0;
2340
2341		do {
2342			e1000e_get_phy_id(hw);
2343			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2344
2345			/* If phy_type is valid, break - we found our
 
2346			 * PHY address
2347			 */
2348			if (phy_type != e1000_phy_unknown)
2349				return 0;
2350
2351			usleep_range(1000, 2000);
2352			i++;
2353		} while (i < 10);
2354	}
2355
2356	return -E1000_ERR_PHY_TYPE;
2357}
2358
2359/**
2360 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2361 *  @page: page to access
2362 *  @reg: register to check
2363 *
2364 *  Returns the phy address for the page requested.
2365 **/
2366static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2367{
2368	u32 phy_addr = 2;
2369
2370	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2371		phy_addr = 1;
2372
2373	return phy_addr;
2374}
2375
2376/**
2377 *  e1000e_write_phy_reg_bm - Write BM PHY register
2378 *  @hw: pointer to the HW structure
2379 *  @offset: register offset to write to
2380 *  @data: data to write at register offset
2381 *
2382 *  Acquires semaphore, if necessary, then writes the data to PHY register
2383 *  at the offset.  Release any acquired semaphores before exiting.
2384 **/
2385s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2386{
2387	s32 ret_val;
2388	u32 page = offset >> IGP_PAGE_SHIFT;
2389
2390	ret_val = hw->phy.ops.acquire(hw);
2391	if (ret_val)
2392		return ret_val;
2393
2394	/* Page 800 works differently than the rest so it has its own func */
2395	if (page == BM_WUC_PAGE) {
2396		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2397							 false, false);
2398		goto release;
2399	}
2400
2401	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2402
2403	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2404		u32 page_shift, page_select;
2405
2406		/* Page select is register 31 for phy address 1 and 22 for
 
2407		 * phy address 2 and 3. Page select is shifted only for
2408		 * phy address 1.
2409		 */
2410		if (hw->phy.addr == 1) {
2411			page_shift = IGP_PAGE_SHIFT;
2412			page_select = IGP01E1000_PHY_PAGE_SELECT;
2413		} else {
2414			page_shift = 0;
2415			page_select = BM_PHY_PAGE_SELECT;
2416		}
2417
2418		/* Page is shifted left, PHY expects (page x 32) */
2419		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2420						    (page << page_shift));
2421		if (ret_val)
2422			goto release;
2423	}
2424
2425	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2426					    data);
2427
2428release:
2429	hw->phy.ops.release(hw);
2430	return ret_val;
2431}
2432
2433/**
2434 *  e1000e_read_phy_reg_bm - Read BM PHY register
2435 *  @hw: pointer to the HW structure
2436 *  @offset: register offset to be read
2437 *  @data: pointer to the read data
2438 *
2439 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2440 *  and storing the retrieved information in data.  Release any acquired
2441 *  semaphores before exiting.
2442 **/
2443s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2444{
2445	s32 ret_val;
2446	u32 page = offset >> IGP_PAGE_SHIFT;
2447
2448	ret_val = hw->phy.ops.acquire(hw);
2449	if (ret_val)
2450		return ret_val;
2451
2452	/* Page 800 works differently than the rest so it has its own func */
2453	if (page == BM_WUC_PAGE) {
2454		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2455							 true, false);
2456		goto release;
2457	}
2458
2459	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2460
2461	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2462		u32 page_shift, page_select;
2463
2464		/* Page select is register 31 for phy address 1 and 22 for
 
2465		 * phy address 2 and 3. Page select is shifted only for
2466		 * phy address 1.
2467		 */
2468		if (hw->phy.addr == 1) {
2469			page_shift = IGP_PAGE_SHIFT;
2470			page_select = IGP01E1000_PHY_PAGE_SELECT;
2471		} else {
2472			page_shift = 0;
2473			page_select = BM_PHY_PAGE_SELECT;
2474		}
2475
2476		/* Page is shifted left, PHY expects (page x 32) */
2477		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2478						    (page << page_shift));
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to be read
2494 *  @data: pointer to the read data
2495 *
2496 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2497 *  and storing the retrieved information in data.  Release any acquired
2498 *  semaphores before exiting.
2499 **/
2500s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2501{
2502	s32 ret_val;
2503	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2504
2505	ret_val = hw->phy.ops.acquire(hw);
2506	if (ret_val)
2507		return ret_val;
2508
2509	/* Page 800 works differently than the rest so it has its own func */
2510	if (page == BM_WUC_PAGE) {
2511		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2512							 true, false);
2513		goto release;
2514	}
2515
2516	hw->phy.addr = 1;
2517
2518	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 
2519		/* Page is shifted left, PHY expects (page x 32) */
2520		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2521						    page);
2522
2523		if (ret_val)
2524			goto release;
2525	}
2526
2527	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2528					   data);
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2536 *  @hw: pointer to the HW structure
2537 *  @offset: register offset to write to
2538 *  @data: data to write at register offset
2539 *
2540 *  Acquires semaphore, if necessary, then writes the data to PHY register
2541 *  at the offset.  Release any acquired semaphores before exiting.
2542 **/
2543s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2544{
2545	s32 ret_val;
2546	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2547
2548	ret_val = hw->phy.ops.acquire(hw);
2549	if (ret_val)
2550		return ret_val;
2551
2552	/* Page 800 works differently than the rest so it has its own func */
2553	if (page == BM_WUC_PAGE) {
2554		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2555							 false, false);
2556		goto release;
2557	}
2558
2559	hw->phy.addr = 1;
2560
2561	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2562		/* Page is shifted left, PHY expects (page x 32) */
2563		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2564						    page);
2565
2566		if (ret_val)
2567			goto release;
2568	}
2569
2570	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2571					    data);
2572
2573release:
2574	hw->phy.ops.release(hw);
2575	return ret_val;
2576}
2577
2578/**
2579 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2580 *  @hw: pointer to the HW structure
2581 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2582 *
2583 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2584 *  address to store contents of the BM_WUC_ENABLE_REG register.
2585 **/
2586s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2587{
2588	s32 ret_val;
2589	u16 temp;
2590
2591	/* All page select, port ctrl and wakeup registers use phy address 1 */
2592	hw->phy.addr = 1;
2593
2594	/* Select Port Control Registers page */
2595	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596	if (ret_val) {
2597		e_dbg("Could not set Port Control page\n");
2598		return ret_val;
2599	}
2600
2601	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2602	if (ret_val) {
2603		e_dbg("Could not read PHY register %d.%d\n",
2604		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2605		return ret_val;
2606	}
2607
2608	/* Enable both PHY wakeup mode and Wakeup register page writes.
 
2609	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2610	 */
2611	temp = *phy_reg;
2612	temp |= BM_WUC_ENABLE_BIT;
2613	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2614
2615	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2616	if (ret_val) {
2617		e_dbg("Could not write PHY register %d.%d\n",
2618		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2619		return ret_val;
2620	}
2621
2622	/* Select Host Wakeup Registers page - caller now able to write
 
2623	 * registers on the Wakeup registers page
2624	 */
2625	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2626}
2627
2628/**
2629 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2630 *  @hw: pointer to the HW structure
2631 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2632 *
2633 *  Restore BM_WUC_ENABLE_REG to its original value.
2634 *
2635 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2636 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2637 *  caller.
2638 **/
2639s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2640{
2641	s32 ret_val;
2642
2643	/* Select Port Control Registers page */
2644	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2645	if (ret_val) {
2646		e_dbg("Could not set Port Control page\n");
2647		return ret_val;
2648	}
2649
2650	/* Restore 769.17 to its original value */
2651	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2652	if (ret_val)
2653		e_dbg("Could not restore PHY register %d.%d\n",
2654		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2655
2656	return ret_val;
2657}
2658
2659/**
2660 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2661 *  @hw: pointer to the HW structure
2662 *  @offset: register offset to be read or written
2663 *  @data: pointer to the data to read or write
2664 *  @read: determines if operation is read or write
2665 *  @page_set: BM_WUC_PAGE already set and access enabled
2666 *
2667 *  Read the PHY register at offset and store the retrieved information in
2668 *  data, or write data to PHY register at offset.  Note the procedure to
2669 *  access the PHY wakeup registers is different than reading the other PHY
2670 *  registers. It works as such:
2671 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2672 *  2) Set page to 800 for host (801 if we were manageability)
2673 *  3) Write the address using the address opcode (0x11)
2674 *  4) Read or write the data using the data opcode (0x12)
2675 *  5) Restore 769.17.2 to its original value
2676 *
2677 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2678 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2679 *
2680 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2681 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2682 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2683 **/
2684static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2685					  u16 *data, bool read, bool page_set)
2686{
2687	s32 ret_val;
2688	u16 reg = BM_PHY_REG_NUM(offset);
2689	u16 page = BM_PHY_REG_PAGE(offset);
2690	u16 phy_reg = 0;
2691
2692	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2693	if ((hw->mac.type == e1000_pchlan) &&
2694	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2695		e_dbg("Attempting to access page %d while gig enabled.\n",
2696		      page);
2697
2698	if (!page_set) {
2699		/* Enable access to PHY wakeup registers */
2700		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701		if (ret_val) {
2702			e_dbg("Could not enable PHY wakeup reg access\n");
2703			return ret_val;
2704		}
2705	}
2706
2707	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2708
2709	/* Write the Wakeup register page offset value using opcode 0x11 */
2710	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2711	if (ret_val) {
2712		e_dbg("Could not write address opcode to page %d\n", page);
2713		return ret_val;
2714	}
2715
2716	if (read) {
2717		/* Read the Wakeup register page value using opcode 0x12 */
2718		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2719						   data);
2720	} else {
2721		/* Write the Wakeup register page value using opcode 0x12 */
2722		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2723						    *data);
2724	}
2725
2726	if (ret_val) {
2727		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2728		return ret_val;
2729	}
2730
2731	if (!page_set)
2732		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733
2734	return ret_val;
2735}
2736
2737/**
2738 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2739 * @hw: pointer to the HW structure
2740 *
2741 * In the case of a PHY power down to save power, or to turn off link during a
2742 * driver unload, or wake on lan is not enabled, restore the link to previous
2743 * settings.
2744 **/
2745void e1000_power_up_phy_copper(struct e1000_hw *hw)
2746{
2747	u16 mii_reg = 0;
2748	int ret;
2749
2750	/* The PHY will retain its settings across a power down/up cycle */
2751	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2752	if (ret) {
2753		e_dbg("Error reading PHY register\n");
2754		return;
2755	}
2756	mii_reg &= ~BMCR_PDOWN;
2757	e1e_wphy(hw, MII_BMCR, mii_reg);
2758}
2759
2760/**
2761 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2762 * @hw: pointer to the HW structure
2763 *
2764 * In the case of a PHY power down to save power, or to turn off link during a
2765 * driver unload, or wake on lan is not enabled, restore the link to previous
2766 * settings.
2767 **/
2768void e1000_power_down_phy_copper(struct e1000_hw *hw)
2769{
2770	u16 mii_reg = 0;
2771	int ret;
2772
2773	/* The PHY will retain its settings across a power down/up cycle */
2774	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2775	if (ret) {
2776		e_dbg("Error reading PHY register\n");
2777		return;
2778	}
2779	mii_reg |= BMCR_PDOWN;
2780	e1e_wphy(hw, MII_BMCR, mii_reg);
2781	usleep_range(1000, 2000);
2782}
2783
2784/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2786 *  @hw: pointer to the HW structure
2787 *  @offset: register offset to be read
2788 *  @data: pointer to the read data
2789 *  @locked: semaphore has already been acquired or not
2790 *  @page_set: BM_WUC_PAGE already set and access enabled
2791 *
2792 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2793 *  and stores the retrieved information in data.  Release any acquired
2794 *  semaphore before exiting.
2795 **/
2796static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2797				   bool locked, bool page_set)
2798{
2799	s32 ret_val;
2800	u16 page = BM_PHY_REG_PAGE(offset);
2801	u16 reg = BM_PHY_REG_NUM(offset);
2802	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2803
2804	if (!locked) {
2805		ret_val = hw->phy.ops.acquire(hw);
2806		if (ret_val)
2807			return ret_val;
2808	}
2809
2810	/* Page 800 works differently than the rest so it has its own func */
2811	if (page == BM_WUC_PAGE) {
2812		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2813							 true, page_set);
2814		goto out;
2815	}
2816
2817	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2818		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2819							 data, true);
2820		goto out;
2821	}
2822
2823	if (!page_set) {
2824		if (page == HV_INTC_FC_PAGE_START)
2825			page = 0;
2826
2827		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2828			/* Page is shifted left, PHY expects (page x 32) */
2829			ret_val = e1000_set_page_igp(hw,
2830						     (page << IGP_PAGE_SHIFT));
2831
2832			hw->phy.addr = phy_addr;
2833
2834			if (ret_val)
2835				goto out;
2836		}
2837	}
2838
2839	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2840	      page << IGP_PAGE_SHIFT, reg);
2841
2842	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
 
2843out:
2844	if (!locked)
2845		hw->phy.ops.release(hw);
2846
2847	return ret_val;
2848}
2849
2850/**
2851 *  e1000_read_phy_reg_hv -  Read HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to be read
2854 *  @data: pointer to the read data
2855 *
2856 *  Acquires semaphore then reads the PHY register at offset and stores
2857 *  the retrieved information in data.  Release the acquired semaphore
2858 *  before exiting.
2859 **/
2860s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2861{
2862	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2863}
2864
2865/**
2866 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2867 *  @hw: pointer to the HW structure
2868 *  @offset: register offset to be read
2869 *  @data: pointer to the read data
2870 *
2871 *  Reads the PHY register at offset and stores the retrieved information
2872 *  in data.  Assumes semaphore already acquired.
2873 **/
2874s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2875{
2876	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2877}
2878
2879/**
2880 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2881 *  @hw: pointer to the HW structure
2882 *  @offset: register offset to write to
2883 *  @data: data to write at register offset
2884 *
2885 *  Reads the PHY register at offset and stores the retrieved information
2886 *  in data.  Assumes semaphore already acquired and page already set.
2887 **/
2888s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2889{
2890	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2891}
2892
2893/**
2894 *  __e1000_write_phy_reg_hv - Write HV PHY register
2895 *  @hw: pointer to the HW structure
2896 *  @offset: register offset to write to
2897 *  @data: data to write at register offset
2898 *  @locked: semaphore has already been acquired or not
2899 *  @page_set: BM_WUC_PAGE already set and access enabled
2900 *
2901 *  Acquires semaphore, if necessary, then writes the data to PHY register
2902 *  at the offset.  Release any acquired semaphores before exiting.
2903 **/
2904static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2905				    bool locked, bool page_set)
2906{
2907	s32 ret_val;
2908	u16 page = BM_PHY_REG_PAGE(offset);
2909	u16 reg = BM_PHY_REG_NUM(offset);
2910	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2911
2912	if (!locked) {
2913		ret_val = hw->phy.ops.acquire(hw);
2914		if (ret_val)
2915			return ret_val;
2916	}
2917
2918	/* Page 800 works differently than the rest so it has its own func */
2919	if (page == BM_WUC_PAGE) {
2920		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2921							 false, page_set);
2922		goto out;
2923	}
2924
2925	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2926		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2927							 &data, false);
2928		goto out;
2929	}
2930
2931	if (!page_set) {
2932		if (page == HV_INTC_FC_PAGE_START)
2933			page = 0;
2934
2935		/* Workaround MDIO accesses being disabled after entering IEEE
 
2936		 * Power Down (when bit 11 of the PHY Control register is set)
2937		 */
2938		if ((hw->phy.type == e1000_phy_82578) &&
2939		    (hw->phy.revision >= 1) &&
2940		    (hw->phy.addr == 2) &&
2941		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2942			u16 data2 = 0x7EFF;
2943
2944			ret_val = e1000_access_phy_debug_regs_hv(hw,
2945								 BIT(6) | 0x3,
2946								 &data2, false);
2947			if (ret_val)
2948				goto out;
2949		}
2950
2951		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2952			/* Page is shifted left, PHY expects (page x 32) */
2953			ret_val = e1000_set_page_igp(hw,
2954						     (page << IGP_PAGE_SHIFT));
2955
2956			hw->phy.addr = phy_addr;
2957
2958			if (ret_val)
2959				goto out;
2960		}
2961	}
2962
2963	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2964	      page << IGP_PAGE_SHIFT, reg);
2965
2966	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2967					    data);
2968
2969out:
2970	if (!locked)
2971		hw->phy.ops.release(hw);
2972
2973	return ret_val;
2974}
2975
2976/**
2977 *  e1000_write_phy_reg_hv - Write HV PHY register
2978 *  @hw: pointer to the HW structure
2979 *  @offset: register offset to write to
2980 *  @data: data to write at register offset
2981 *
2982 *  Acquires semaphore then writes the data to PHY register at the offset.
2983 *  Release the acquired semaphores before exiting.
2984 **/
2985s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2986{
2987	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2988}
2989
2990/**
2991 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to write to
2994 *  @data: data to write at register offset
2995 *
2996 *  Writes the data to PHY register at the offset.  Assumes semaphore
2997 *  already acquired.
2998 **/
2999s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3000{
3001	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3002}
3003
3004/**
3005 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3006 *  @hw: pointer to the HW structure
3007 *  @offset: register offset to write to
3008 *  @data: data to write at register offset
3009 *
3010 *  Writes the data to PHY register at the offset.  Assumes semaphore
3011 *  already acquired and page already set.
3012 **/
3013s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3014{
3015	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3016}
3017
3018/**
3019 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3020 *  @page: page to be accessed
3021 **/
3022static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3023{
3024	u32 phy_addr = 2;
3025
3026	if (page >= HV_INTC_FC_PAGE_START)
3027		phy_addr = 1;
3028
3029	return phy_addr;
3030}
3031
3032/**
3033 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3034 *  @hw: pointer to the HW structure
3035 *  @offset: register offset to be read or written
3036 *  @data: pointer to the data to be read or written
3037 *  @read: determines if operation is read or write
3038 *
3039 *  Reads the PHY register at offset and stores the retrieved information
3040 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3041 *  to access these regs uses the address port and data port to read/write.
3042 *  These accesses done with PHY address 2 and without using pages.
3043 **/
3044static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3045					  u16 *data, bool read)
3046{
3047	s32 ret_val;
3048	u32 addr_reg;
3049	u32 data_reg;
3050
3051	/* This takes care of the difference with desktop vs mobile phy */
3052	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3053		    I82578_ADDR_REG : I82577_ADDR_REG);
3054	data_reg = addr_reg + 1;
3055
3056	/* All operations in this function are phy address 2 */
3057	hw->phy.addr = 2;
3058
3059	/* masking with 0x3F to remove the page from offset */
3060	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3061	if (ret_val) {
3062		e_dbg("Could not write the Address Offset port register\n");
3063		return ret_val;
3064	}
3065
3066	/* Read or write the data value next */
3067	if (read)
3068		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3069	else
3070		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3071
3072	if (ret_val)
3073		e_dbg("Could not access the Data port register\n");
3074
3075	return ret_val;
3076}
3077
3078/**
3079 *  e1000_link_stall_workaround_hv - Si workaround
3080 *  @hw: pointer to the HW structure
3081 *
3082 *  This function works around a Si bug where the link partner can get
3083 *  a link up indication before the PHY does.  If small packets are sent
3084 *  by the link partner they can be placed in the packet buffer without
3085 *  being properly accounted for by the PHY and will stall preventing
3086 *  further packets from being received.  The workaround is to clear the
3087 *  packet buffer after the PHY detects link up.
3088 **/
3089s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3090{
3091	s32 ret_val = 0;
3092	u16 data;
3093
3094	if (hw->phy.type != e1000_phy_82578)
3095		return 0;
3096
3097	/* Do not apply workaround if in PHY loopback bit 14 set */
3098	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3099	if (ret_val) {
3100		e_dbg("Error reading PHY register\n");
3101		return ret_val;
3102	}
3103	if (data & BMCR_LOOPBACK)
3104		return 0;
3105
3106	/* check if link is up and at 1Gbps */
3107	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3108	if (ret_val)
3109		return ret_val;
3110
3111	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3112		 BM_CS_STATUS_SPEED_MASK);
3113
3114	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3115		     BM_CS_STATUS_SPEED_1000))
3116		return 0;
3117
3118	msleep(200);
3119
3120	/* flush the packets in the fifo buffer */
3121	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3122			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3123			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3124	if (ret_val)
3125		return ret_val;
3126
3127	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3128}
3129
3130/**
3131 *  e1000_check_polarity_82577 - Checks the polarity.
3132 *  @hw: pointer to the HW structure
3133 *
3134 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3135 *
3136 *  Polarity is determined based on the PHY specific status register.
3137 **/
3138s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3139{
3140	struct e1000_phy_info *phy = &hw->phy;
3141	s32 ret_val;
3142	u16 data;
3143
3144	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3145
3146	if (!ret_val)
3147		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3148				       ? e1000_rev_polarity_reversed
3149				       : e1000_rev_polarity_normal);
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Calls the PHY setup function to force speed and duplex.
3159 **/
3160s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3161{
3162	struct e1000_phy_info *phy = &hw->phy;
3163	s32 ret_val;
3164	u16 phy_data;
3165	bool link;
3166
3167	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3168	if (ret_val)
3169		return ret_val;
3170
3171	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3172
3173	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3174	if (ret_val)
3175		return ret_val;
3176
3177	udelay(1);
3178
3179	if (phy->autoneg_wait_to_complete) {
3180		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3181
3182		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3183						      100000, &link);
3184		if (ret_val)
3185			return ret_val;
3186
3187		if (!link)
3188			e_dbg("Link taking longer than expected.\n");
3189
3190		/* Try once more */
3191		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3192						      100000, &link);
3193	}
3194
3195	return ret_val;
3196}
3197
3198/**
3199 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3200 *  @hw: pointer to the HW structure
3201 *
3202 *  Read PHY status to determine if link is up.  If link is up, then
3203 *  set/determine 10base-T extended distance and polarity correction.  Read
3204 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3205 *  determine on the cable length, local and remote receiver.
3206 **/
3207s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3208{
3209	struct e1000_phy_info *phy = &hw->phy;
3210	s32 ret_val;
3211	u16 data;
3212	bool link;
3213
3214	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3215	if (ret_val)
3216		return ret_val;
3217
3218	if (!link) {
3219		e_dbg("Phy info is only valid if link is up\n");
3220		return -E1000_ERR_CONFIG;
3221	}
3222
3223	phy->polarity_correction = true;
3224
3225	ret_val = e1000_check_polarity_82577(hw);
3226	if (ret_val)
3227		return ret_val;
3228
3229	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3230	if (ret_val)
3231		return ret_val;
3232
3233	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3234
3235	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3236	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3237		ret_val = hw->phy.ops.get_cable_length(hw);
3238		if (ret_val)
3239			return ret_val;
3240
3241		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3242		if (ret_val)
3243			return ret_val;
3244
3245		phy->local_rx = (data & LPA_1000LOCALRXOK)
3246		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3247
3248		phy->remote_rx = (data & LPA_1000REMRXOK)
3249		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3250	} else {
3251		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3252		phy->local_rx = e1000_1000t_rx_status_undefined;
3253		phy->remote_rx = e1000_1000t_rx_status_undefined;
3254	}
3255
3256	return 0;
3257}
3258
3259/**
3260 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3261 *  @hw: pointer to the HW structure
3262 *
3263 * Reads the diagnostic status register and verifies result is valid before
3264 * placing it in the phy_cable_length field.
3265 **/
3266s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3267{
3268	struct e1000_phy_info *phy = &hw->phy;
3269	s32 ret_val;
3270	u16 phy_data, length;
3271
3272	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3273	if (ret_val)
3274		return ret_val;
3275
3276	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
 
3277
3278	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3279		return -E1000_ERR_PHY;
3280
3281	phy->cable_length = length;
3282
3283	return 0;
3284}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
 
  30
  31static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  32static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  33static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
  34static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  35static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
  36static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  37					  u16 *data, bool read, bool page_set);
  38static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  39static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  40                                          u16 *data, bool read);
  41
  42/* Cable length tables */
  43static const u16 e1000_m88_cable_length_table[] = {
  44	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
 
 
  45#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  46		ARRAY_SIZE(e1000_m88_cable_length_table)
  47
  48static const u16 e1000_igp_2_cable_length_table[] = {
  49	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  50	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  51	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  52	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  53	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  54	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  55	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  56	124};
 
 
  57#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  58		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  59
  60#define BM_PHY_REG_PAGE(offset) \
  61	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
  62#define BM_PHY_REG_NUM(offset) \
  63	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
  64	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
  65		~MAX_PHY_REG_ADDRESS)))
  66
  67#define HV_INTC_FC_PAGE_START             768
  68#define I82578_ADDR_REG                   29
  69#define I82577_ADDR_REG                   16
  70#define I82577_CFG_REG                    22
  71#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
  72#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
  73#define I82577_CTRL_REG                   23
  74
  75/* 82577 specific PHY registers */
  76#define I82577_PHY_CTRL_2            18
  77#define I82577_PHY_STATUS_2          26
  78#define I82577_PHY_DIAG_STATUS       31
  79
  80/* I82577 PHY Status 2 */
  81#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
  82#define I82577_PHY_STATUS2_MDIX           0x0800
  83#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
  84#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
  85
  86/* I82577 PHY Control 2 */
  87#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
  88#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
  89
  90/* I82577 PHY Diagnostics Status */
  91#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
  92#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
  93
  94/* BM PHY Copper Specific Control 1 */
  95#define BM_CS_CTRL1                       16
  96
  97#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
  98#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
  99#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
 100
 101/**
 102 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Read the PHY management control register and check whether a PHY reset
 106 *  is blocked.  If a reset is not blocked return 0, otherwise
 107 *  return E1000_BLK_PHY_RESET (12).
 108 **/
 109s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
 110{
 111	u32 manc;
 112
 113	manc = er32(MANC);
 114
 115	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
 116	       E1000_BLK_PHY_RESET : 0;
 117}
 118
 119/**
 120 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 121 *  @hw: pointer to the HW structure
 122 *
 123 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 124 *  revision in the hardware structure.
 125 **/
 126s32 e1000e_get_phy_id(struct e1000_hw *hw)
 127{
 128	struct e1000_phy_info *phy = &hw->phy;
 129	s32 ret_val = 0;
 130	u16 phy_id;
 131	u16 retry_count = 0;
 132
 133	if (!phy->ops.read_reg)
 134		return 0;
 135
 136	while (retry_count < 2) {
 137		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
 138		if (ret_val)
 139			return ret_val;
 140
 141		phy->id = (u32)(phy_id << 16);
 142		udelay(20);
 143		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
 144		if (ret_val)
 145			return ret_val;
 146
 147		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 148		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 149
 150		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 151			return 0;
 152
 153		retry_count++;
 154	}
 155
 156	return 0;
 157}
 158
 159/**
 160 *  e1000e_phy_reset_dsp - Reset PHY DSP
 161 *  @hw: pointer to the HW structure
 162 *
 163 *  Reset the digital signal processor.
 164 **/
 165s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 166{
 167	s32 ret_val;
 168
 169	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 170	if (ret_val)
 171		return ret_val;
 172
 173	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 174}
 175
 
 
 
 
 
 
 
 
 
 
 176/**
 177 *  e1000e_read_phy_reg_mdic - Read MDI control register
 178 *  @hw: pointer to the HW structure
 179 *  @offset: register offset to be read
 180 *  @data: pointer to the read data
 181 *
 182 *  Reads the MDI control register in the PHY at offset and stores the
 183 *  information read to data.
 184 **/
 185s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 186{
 
 187	struct e1000_phy_info *phy = &hw->phy;
 188	u32 i, mdic = 0;
 189
 190	if (offset > MAX_PHY_REG_ADDRESS) {
 191		e_dbg("PHY Address %d is out of range\n", offset);
 192		return -E1000_ERR_PARAM;
 193	}
 194
 195	/*
 196	 * Set up Op-code, Phy Address, and register offset in the MDI
 
 197	 * Control register.  The MAC will take care of interfacing with the
 198	 * PHY to retrieve the desired data.
 199	 */
 200	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 201		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 202		(E1000_MDIC_OP_READ));
 203
 204	ew32(MDIC, mdic);
 205
 206	/*
 207	 * Poll the ready bit to see if the MDI read completed
 208	 * Increasing the time out as testing showed failures with
 209	 * the lower time out
 210	 */
 211	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 212		udelay(50);
 213		mdic = er32(MDIC);
 214		if (mdic & E1000_MDIC_READY)
 215			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216	}
 217	if (!(mdic & E1000_MDIC_READY)) {
 218		e_dbg("MDI Read did not complete\n");
 219		return -E1000_ERR_PHY;
 220	}
 221	if (mdic & E1000_MDIC_ERROR) {
 222		e_dbg("MDI Error\n");
 223		return -E1000_ERR_PHY;
 224	}
 225	*data = (u16) mdic;
 226
 227	/*
 228	 * Allow some time after each MDIC transaction to avoid
 229	 * reading duplicate data in the next MDIC transaction.
 230	 */
 231	if (hw->mac.type == e1000_pch2lan)
 232		udelay(100);
 233
 234	return 0;
 235}
 236
 237/**
 238 *  e1000e_write_phy_reg_mdic - Write MDI control register
 239 *  @hw: pointer to the HW structure
 240 *  @offset: register offset to write to
 241 *  @data: data to write to register at offset
 242 *
 243 *  Writes data to MDI control register in the PHY at offset.
 244 **/
 245s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 246{
 
 247	struct e1000_phy_info *phy = &hw->phy;
 248	u32 i, mdic = 0;
 249
 250	if (offset > MAX_PHY_REG_ADDRESS) {
 251		e_dbg("PHY Address %d is out of range\n", offset);
 252		return -E1000_ERR_PARAM;
 253	}
 254
 255	/*
 256	 * Set up Op-code, Phy Address, and register offset in the MDI
 
 257	 * Control register.  The MAC will take care of interfacing with the
 258	 * PHY to retrieve the desired data.
 259	 */
 260	mdic = (((u32)data) |
 261		(offset << E1000_MDIC_REG_SHIFT) |
 262		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 263		(E1000_MDIC_OP_WRITE));
 264
 265	ew32(MDIC, mdic);
 266
 267	/*
 268	 * Poll the ready bit to see if the MDI read completed
 269	 * Increasing the time out as testing showed failures with
 270	 * the lower time out
 271	 */
 272	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 273		udelay(50);
 274		mdic = er32(MDIC);
 275		if (mdic & E1000_MDIC_READY)
 276			break;
 277	}
 278	if (!(mdic & E1000_MDIC_READY)) {
 279		e_dbg("MDI Write did not complete\n");
 280		return -E1000_ERR_PHY;
 281	}
 282	if (mdic & E1000_MDIC_ERROR) {
 283		e_dbg("MDI Error\n");
 284		return -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285	}
 286
 287	/*
 288	 * Allow some time after each MDIC transaction to avoid
 289	 * reading duplicate data in the next MDIC transaction.
 290	 */
 291	if (hw->mac.type == e1000_pch2lan)
 292		udelay(100);
 293
 294	return 0;
 295}
 296
 297/**
 298 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 299 *  @hw: pointer to the HW structure
 300 *  @offset: register offset to be read
 301 *  @data: pointer to the read data
 302 *
 303 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 304 *  and storing the retrieved information in data.  Release any acquired
 305 *  semaphores before exiting.
 306 **/
 307s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 308{
 309	s32 ret_val;
 310
 311	ret_val = hw->phy.ops.acquire(hw);
 312	if (ret_val)
 313		return ret_val;
 314
 315	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 316					   data);
 317
 318	hw->phy.ops.release(hw);
 319
 320	return ret_val;
 321}
 322
 323/**
 324 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to write to
 327 *  @data: data to write at register offset
 328 *
 329 *  Acquires semaphore, if necessary, then writes the data to PHY register
 330 *  at the offset.  Release any acquired semaphores before exiting.
 331 **/
 332s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 333{
 334	s32 ret_val;
 335
 336	ret_val = hw->phy.ops.acquire(hw);
 337	if (ret_val)
 338		return ret_val;
 339
 340	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 341					    data);
 342
 343	hw->phy.ops.release(hw);
 344
 345	return ret_val;
 346}
 347
 348/**
 349 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 350 *  @hw: pointer to the HW structure
 351 *  @page: page to set (shifted left when necessary)
 352 *
 353 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 354 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 355 *  must set it appropriately (if necessary) after this function returns.
 356 **/
 357s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 358{
 359	e_dbg("Setting page 0x%x\n", page);
 360
 361	hw->phy.addr = 1;
 362
 363	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 364}
 365
 366/**
 367 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 368 *  @hw: pointer to the HW structure
 369 *  @offset: register offset to be read
 370 *  @data: pointer to the read data
 371 *  @locked: semaphore has already been acquired or not
 372 *
 373 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 374 *  and stores the retrieved information in data.  Release any acquired
 375 *  semaphores before exiting.
 376 **/
 377static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 378                                    bool locked)
 379{
 380	s32 ret_val = 0;
 381
 382	if (!locked) {
 383		if (!hw->phy.ops.acquire)
 384			return 0;
 385
 386		ret_val = hw->phy.ops.acquire(hw);
 387		if (ret_val)
 388			return ret_val;
 389	}
 390
 391	if (offset > MAX_PHY_MULTI_PAGE_REG)
 392		ret_val = e1000e_write_phy_reg_mdic(hw,
 393						    IGP01E1000_PHY_PAGE_SELECT,
 394						    (u16)offset);
 395	if (!ret_val)
 396		ret_val = e1000e_read_phy_reg_mdic(hw,
 397						   MAX_PHY_REG_ADDRESS & offset,
 398						   data);
 399	if (!locked)
 400		hw->phy.ops.release(hw);
 401
 402	return ret_val;
 403}
 404
 405/**
 406 *  e1000e_read_phy_reg_igp - Read igp PHY register
 407 *  @hw: pointer to the HW structure
 408 *  @offset: register offset to be read
 409 *  @data: pointer to the read data
 410 *
 411 *  Acquires semaphore then reads the PHY register at offset and stores the
 412 *  retrieved information in data.
 413 *  Release the acquired semaphore before exiting.
 414 **/
 415s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 416{
 417	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 418}
 419
 420/**
 421 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 422 *  @hw: pointer to the HW structure
 423 *  @offset: register offset to be read
 424 *  @data: pointer to the read data
 425 *
 426 *  Reads the PHY register at offset and stores the retrieved information
 427 *  in data.  Assumes semaphore already acquired.
 428 **/
 429s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 430{
 431	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 432}
 433
 434/**
 435 *  e1000e_write_phy_reg_igp - Write igp PHY register
 436 *  @hw: pointer to the HW structure
 437 *  @offset: register offset to write to
 438 *  @data: data to write at register offset
 439 *  @locked: semaphore has already been acquired or not
 440 *
 441 *  Acquires semaphore, if necessary, then writes the data to PHY register
 442 *  at the offset.  Release any acquired semaphores before exiting.
 443 **/
 444static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 445                                     bool locked)
 446{
 447	s32 ret_val = 0;
 448
 449	if (!locked) {
 450		if (!hw->phy.ops.acquire)
 451			return 0;
 452
 453		ret_val = hw->phy.ops.acquire(hw);
 454		if (ret_val)
 455			return ret_val;
 456	}
 457
 458	if (offset > MAX_PHY_MULTI_PAGE_REG)
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    IGP01E1000_PHY_PAGE_SELECT,
 461						    (u16)offset);
 462	if (!ret_val)
 463		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 464							offset,
 465						    data);
 466	if (!locked)
 467		hw->phy.ops.release(hw);
 468
 469	return ret_val;
 470}
 471
 472/**
 473 *  e1000e_write_phy_reg_igp - Write igp PHY register
 474 *  @hw: pointer to the HW structure
 475 *  @offset: register offset to write to
 476 *  @data: data to write at register offset
 477 *
 478 *  Acquires semaphore then writes the data to PHY register
 479 *  at the offset.  Release any acquired semaphores before exiting.
 480 **/
 481s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 482{
 483	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 484}
 485
 486/**
 487 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 488 *  @hw: pointer to the HW structure
 489 *  @offset: register offset to write to
 490 *  @data: data to write at register offset
 491 *
 492 *  Writes the data to PHY register at the offset.
 493 *  Assumes semaphore already acquired.
 494 **/
 495s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 496{
 497	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 498}
 499
 500/**
 501 *  __e1000_read_kmrn_reg - Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *  @locked: semaphore has already been acquired or not
 506 *
 507 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 508 *  using the kumeran interface.  The information retrieved is stored in data.
 509 *  Release any acquired semaphores before exiting.
 510 **/
 511static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 512                                 bool locked)
 513{
 514	u32 kmrnctrlsta;
 515
 516	if (!locked) {
 517		s32 ret_val = 0;
 518
 519		if (!hw->phy.ops.acquire)
 520			return 0;
 521
 522		ret_val = hw->phy.ops.acquire(hw);
 523		if (ret_val)
 524			return ret_val;
 525	}
 526
 527	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 528		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 529	ew32(KMRNCTRLSTA, kmrnctrlsta);
 530	e1e_flush();
 531
 532	udelay(2);
 533
 534	kmrnctrlsta = er32(KMRNCTRLSTA);
 535	*data = (u16)kmrnctrlsta;
 536
 537	if (!locked)
 538		hw->phy.ops.release(hw);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  e1000e_read_kmrn_reg -  Read kumeran register
 545 *  @hw: pointer to the HW structure
 546 *  @offset: register offset to be read
 547 *  @data: pointer to the read data
 548 *
 549 *  Acquires semaphore then reads the PHY register at offset using the
 550 *  kumeran interface.  The information retrieved is stored in data.
 551 *  Release the acquired semaphore before exiting.
 552 **/
 553s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 554{
 555	return __e1000_read_kmrn_reg(hw, offset, data, false);
 556}
 557
 558/**
 559 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 560 *  @hw: pointer to the HW structure
 561 *  @offset: register offset to be read
 562 *  @data: pointer to the read data
 563 *
 564 *  Reads the PHY register at offset using the kumeran interface.  The
 565 *  information retrieved is stored in data.
 566 *  Assumes semaphore already acquired.
 567 **/
 568s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 569{
 570	return __e1000_read_kmrn_reg(hw, offset, data, true);
 571}
 572
 573/**
 574 *  __e1000_write_kmrn_reg - Write kumeran register
 575 *  @hw: pointer to the HW structure
 576 *  @offset: register offset to write to
 577 *  @data: data to write at register offset
 578 *  @locked: semaphore has already been acquired or not
 579 *
 580 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 581 *  at the offset using the kumeran interface.  Release any acquired semaphores
 582 *  before exiting.
 583 **/
 584static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 585                                  bool locked)
 586{
 587	u32 kmrnctrlsta;
 588
 589	if (!locked) {
 590		s32 ret_val = 0;
 591
 592		if (!hw->phy.ops.acquire)
 593			return 0;
 594
 595		ret_val = hw->phy.ops.acquire(hw);
 596		if (ret_val)
 597			return ret_val;
 598	}
 599
 600	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 601		       E1000_KMRNCTRLSTA_OFFSET) | data;
 602	ew32(KMRNCTRLSTA, kmrnctrlsta);
 603	e1e_flush();
 604
 605	udelay(2);
 606
 607	if (!locked)
 608		hw->phy.ops.release(hw);
 609
 610	return 0;
 611}
 612
 613/**
 614 *  e1000e_write_kmrn_reg -  Write kumeran register
 615 *  @hw: pointer to the HW structure
 616 *  @offset: register offset to write to
 617 *  @data: data to write at register offset
 618 *
 619 *  Acquires semaphore then writes the data to the PHY register at the offset
 620 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 621 **/
 622s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 623{
 624	return __e1000_write_kmrn_reg(hw, offset, data, false);
 625}
 626
 627/**
 628 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 629 *  @hw: pointer to the HW structure
 630 *  @offset: register offset to write to
 631 *  @data: data to write at register offset
 632 *
 633 *  Write the data to PHY register at the offset using the kumeran interface.
 634 *  Assumes semaphore already acquired.
 635 **/
 636s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 637{
 638	return __e1000_write_kmrn_reg(hw, offset, data, true);
 639}
 640
 641/**
 642 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 643 *  @hw: pointer to the HW structure
 644 *
 645 *  Sets up Master/slave mode
 646 **/
 647static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 648{
 649	s32 ret_val;
 650	u16 phy_data;
 651
 652	/* Resolve Master/Slave mode */
 653	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
 654	if (ret_val)
 655		return ret_val;
 656
 657	/* load defaults for future use */
 658	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
 659	    ((phy_data & CR_1000T_MS_VALUE) ?
 660	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 661
 662	switch (hw->phy.ms_type) {
 663	case e1000_ms_force_master:
 664		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 665		break;
 666	case e1000_ms_force_slave:
 667		phy_data |= CR_1000T_MS_ENABLE;
 668		phy_data &= ~(CR_1000T_MS_VALUE);
 669		break;
 670	case e1000_ms_auto:
 671		phy_data &= ~CR_1000T_MS_ENABLE;
 672		/* fall-through */
 673	default:
 674		break;
 675	}
 676
 677	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
 678}
 679
 680/**
 681 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 682 *  @hw: pointer to the HW structure
 683 *
 684 *  Sets up Carrier-sense on Transmit and downshift values.
 685 **/
 686s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 687{
 688	s32 ret_val;
 689	u16 phy_data;
 690
 691	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 692	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 693	if (ret_val)
 694		return ret_val;
 695
 696	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 697
 698	/* Enable downshift */
 699	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 700
 701	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 702	if (ret_val)
 703		return ret_val;
 704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705	return e1000_set_master_slave_mode(hw);
 706}
 707
 708/**
 709 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 710 *  @hw: pointer to the HW structure
 711 *
 712 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 713 *  and downshift values are set also.
 714 **/
 715s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 716{
 717	struct e1000_phy_info *phy = &hw->phy;
 718	s32 ret_val;
 719	u16 phy_data;
 720
 721	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 722	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 723	if (ret_val)
 724		return ret_val;
 725
 726	/* For BM PHY this bit is downshift enable */
 727	if (phy->type != e1000_phy_bm)
 728		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 729
 730	/*
 731	 * Options:
 732	 *   MDI/MDI-X = 0 (default)
 733	 *   0 - Auto for all speeds
 734	 *   1 - MDI mode
 735	 *   2 - MDI-X mode
 736	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 737	 */
 738	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 739
 740	switch (phy->mdix) {
 741	case 1:
 742		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 743		break;
 744	case 2:
 745		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 746		break;
 747	case 3:
 748		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 749		break;
 750	case 0:
 751	default:
 752		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 753		break;
 754	}
 755
 756	/*
 757	 * Options:
 758	 *   disable_polarity_correction = 0 (default)
 759	 *       Automatic Correction for Reversed Cable Polarity
 760	 *   0 - Disabled
 761	 *   1 - Enabled
 762	 */
 763	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 764	if (phy->disable_polarity_correction)
 765		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 766
 767	/* Enable downshift on BM (disabled by default) */
 768	if (phy->type == e1000_phy_bm) {
 769		/* For 82574/82583, first disable then enable downshift */
 770		if (phy->id == BME1000_E_PHY_ID_R2) {
 771			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 772			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 773					   phy_data);
 774			if (ret_val)
 775				return ret_val;
 776			/* Commit the changes. */
 777			ret_val = e1000e_commit_phy(hw);
 778			if (ret_val) {
 779				e_dbg("Error committing the PHY changes\n");
 780				return ret_val;
 781			}
 782		}
 783
 784		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 785	}
 786
 787	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 788	if (ret_val)
 789		return ret_val;
 790
 791	if ((phy->type == e1000_phy_m88) &&
 792	    (phy->revision < E1000_REVISION_4) &&
 793	    (phy->id != BME1000_E_PHY_ID_R2)) {
 794		/*
 795		 * Force TX_CLK in the Extended PHY Specific Control Register
 796		 * to 25MHz clock.
 797		 */
 798		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 799		if (ret_val)
 800			return ret_val;
 801
 802		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 803
 804		if ((phy->revision == 2) &&
 805		    (phy->id == M88E1111_I_PHY_ID)) {
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	ret_val = e1000e_commit_phy(hw);
 835	if (ret_val) {
 836		e_dbg("Error committing the PHY changes\n");
 837		return ret_val;
 
 
 838	}
 839
 840	if (phy->type == e1000_phy_82578) {
 841		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 842		if (ret_val)
 843			return ret_val;
 844
 845		/* 82578 PHY - set the downshift count to 1x. */
 846		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 847		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 848		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 849		if (ret_val)
 850			return ret_val;
 851	}
 852
 853	return 0;
 854}
 855
 856/**
 857 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 858 *  @hw: pointer to the HW structure
 859 *
 860 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 861 *  igp PHY's.
 862 **/
 863s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 864{
 865	struct e1000_phy_info *phy = &hw->phy;
 866	s32 ret_val;
 867	u16 data;
 868
 869	ret_val = e1000_phy_hw_reset(hw);
 870	if (ret_val) {
 871		e_dbg("Error resetting the PHY.\n");
 872		return ret_val;
 873	}
 874
 875	/*
 876	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 877	 * timeout issues when LFS is enabled.
 878	 */
 879	msleep(100);
 880
 881	/* disable lplu d0 during driver init */
 882	ret_val = e1000_set_d0_lplu_state(hw, false);
 883	if (ret_val) {
 884		e_dbg("Error Disabling LPLU D0\n");
 885		return ret_val;
 
 
 886	}
 887	/* Configure mdi-mdix settings */
 888	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 889	if (ret_val)
 890		return ret_val;
 891
 892	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 893
 894	switch (phy->mdix) {
 895	case 1:
 896		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 897		break;
 898	case 2:
 899		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 0:
 902	default:
 903		data |= IGP01E1000_PSCR_AUTO_MDIX;
 904		break;
 905	}
 906	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 907	if (ret_val)
 908		return ret_val;
 909
 910	/* set auto-master slave resolution settings */
 911	if (hw->mac.autoneg) {
 912		/*
 913		 * when autonegotiation advertisement is only 1000Mbps then we
 914		 * should disable SmartSpeed and enable Auto MasterSlave
 915		 * resolution as hardware default.
 916		 */
 917		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 918			/* Disable SmartSpeed */
 919			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 920					   &data);
 921			if (ret_val)
 922				return ret_val;
 923
 924			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 925			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 926					   data);
 927			if (ret_val)
 928				return ret_val;
 929
 930			/* Set auto Master/Slave resolution process */
 931			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 932			if (ret_val)
 933				return ret_val;
 934
 935			data &= ~CR_1000T_MS_ENABLE;
 936			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 937			if (ret_val)
 938				return ret_val;
 939		}
 940
 941		ret_val = e1000_set_master_slave_mode(hw);
 942	}
 943
 944	return ret_val;
 945}
 946
 947/**
 948 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 949 *  @hw: pointer to the HW structure
 950 *
 951 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 952 *  register and if the PHY is already setup for auto-negotiation, then
 953 *  return successful.  Otherwise, setup advertisement and flow control to
 954 *  the appropriate values for the wanted auto-negotiation.
 955 **/
 956static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 957{
 958	struct e1000_phy_info *phy = &hw->phy;
 959	s32 ret_val;
 960	u16 mii_autoneg_adv_reg;
 961	u16 mii_1000t_ctrl_reg = 0;
 962
 963	phy->autoneg_advertised &= phy->autoneg_mask;
 964
 965	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 966	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 967	if (ret_val)
 968		return ret_val;
 969
 970	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 971		/* Read the MII 1000Base-T Control Register (Address 9). */
 972		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
 973		if (ret_val)
 974			return ret_val;
 975	}
 976
 977	/*
 978	 * Need to parse both autoneg_advertised and fc and set up
 979	 * the appropriate PHY registers.  First we will parse for
 980	 * autoneg_advertised software override.  Since we can advertise
 981	 * a plethora of combinations, we need to check each bit
 982	 * individually.
 983	 */
 984
 985	/*
 986	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 991				 NWAY_AR_100TX_HD_CAPS |
 992				 NWAY_AR_10T_FD_CAPS   |
 993				 NWAY_AR_10T_HD_CAPS);
 994	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 995
 996	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 997
 998	/* Do we want to advertise 10 Mb Half Duplex? */
 999	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1000		e_dbg("Advertise 10mb Half duplex\n");
1001		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1002	}
1003
1004	/* Do we want to advertise 10 Mb Full Duplex? */
1005	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1006		e_dbg("Advertise 10mb Full duplex\n");
1007		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1008	}
1009
1010	/* Do we want to advertise 100 Mb Half Duplex? */
1011	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1012		e_dbg("Advertise 100mb Half duplex\n");
1013		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1014	}
1015
1016	/* Do we want to advertise 100 Mb Full Duplex? */
1017	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1018		e_dbg("Advertise 100mb Full duplex\n");
1019		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1020	}
1021
1022	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1023	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1024		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025
1026	/* Do we want to advertise 1000 Mb Full Duplex? */
1027	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1028		e_dbg("Advertise 1000mb Full duplex\n");
1029		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1030	}
1031
1032	/*
1033	 * Check for a software override of the flow control settings, and
1034	 * setup the PHY advertisement registers accordingly.  If
1035	 * auto-negotiation is enabled, then software will have to set the
1036	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1037	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1038	 * negotiation.
1039	 *
1040	 * The possible values of the "fc" parameter are:
1041	 *      0:  Flow control is completely disabled
1042	 *      1:  Rx flow control is enabled (we can receive pause frames
1043	 *          but not send pause frames).
1044	 *      2:  Tx flow control is enabled (we can send pause frames
1045	 *          but we do not support receiving pause frames).
1046	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1047	 *  other:  No software override.  The flow control configuration
1048	 *          in the EEPROM is used.
1049	 */
1050	switch (hw->fc.current_mode) {
1051	case e1000_fc_none:
1052		/*
1053		 * Flow control (Rx & Tx) is completely disabled by a
1054		 * software over-ride.
1055		 */
1056		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
 
 
1057		break;
1058	case e1000_fc_rx_pause:
1059		/*
1060		 * Rx Flow control is enabled, and Tx Flow control is
1061		 * disabled, by a software over-ride.
1062		 *
1063		 * Since there really isn't a way to advertise that we are
1064		 * capable of Rx Pause ONLY, we will advertise that we
1065		 * support both symmetric and asymmetric Rx PAUSE.  Later
1066		 * (in e1000e_config_fc_after_link_up) we will disable the
1067		 * hw's ability to send PAUSE frames.
1068		 */
1069		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
 
 
1070		break;
1071	case e1000_fc_tx_pause:
1072		/*
1073		 * Tx Flow control is enabled, and Rx Flow control is
1074		 * disabled, by a software over-ride.
1075		 */
1076		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1077		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 
 
1078		break;
1079	case e1000_fc_full:
1080		/*
1081		 * Flow control (both Rx and Tx) is enabled by a software
1082		 * over-ride.
1083		 */
1084		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
 
 
1085		break;
1086	default:
1087		e_dbg("Flow control param set incorrectly\n");
1088		return -E1000_ERR_CONFIG;
1089	}
1090
1091	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1092	if (ret_val)
1093		return ret_val;
1094
1095	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1096
1097	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1098		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1099
1100	return ret_val;
1101}
1102
1103/**
1104 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1105 *  @hw: pointer to the HW structure
1106 *
1107 *  Performs initial bounds checking on autoneg advertisement parameter, then
1108 *  configure to advertise the full capability.  Setup the PHY to autoneg
1109 *  and restart the negotiation process between the link partner.  If
1110 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1111 **/
1112static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1113{
1114	struct e1000_phy_info *phy = &hw->phy;
1115	s32 ret_val;
1116	u16 phy_ctrl;
1117
1118	/*
1119	 * Perform some bounds checking on the autoneg advertisement
1120	 * parameter.
1121	 */
1122	phy->autoneg_advertised &= phy->autoneg_mask;
1123
1124	/*
1125	 * If autoneg_advertised is zero, we assume it was not defaulted
1126	 * by the calling code so we set to advertise full capability.
1127	 */
1128	if (!phy->autoneg_advertised)
1129		phy->autoneg_advertised = phy->autoneg_mask;
1130
1131	e_dbg("Reconfiguring auto-neg advertisement params\n");
1132	ret_val = e1000_phy_setup_autoneg(hw);
1133	if (ret_val) {
1134		e_dbg("Error Setting up Auto-Negotiation\n");
1135		return ret_val;
1136	}
1137	e_dbg("Restarting Auto-Neg\n");
1138
1139	/*
1140	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1141	 * the Auto Neg Restart bit in the PHY control register.
1142	 */
1143	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1144	if (ret_val)
1145		return ret_val;
1146
1147	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1148	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1149	if (ret_val)
1150		return ret_val;
1151
1152	/*
1153	 * Does the user want to wait for Auto-Neg to complete here, or
1154	 * check at a later time (for example, callback routine).
1155	 */
1156	if (phy->autoneg_wait_to_complete) {
1157		ret_val = e1000_wait_autoneg(hw);
1158		if (ret_val) {
1159			e_dbg("Error while waiting for autoneg to complete\n");
1160			return ret_val;
1161		}
1162	}
1163
1164	hw->mac.get_link_status = true;
1165
1166	return ret_val;
1167}
1168
1169/**
1170 *  e1000e_setup_copper_link - Configure copper link settings
1171 *  @hw: pointer to the HW structure
1172 *
1173 *  Calls the appropriate function to configure the link for auto-neg or forced
1174 *  speed and duplex.  Then we check for link, once link is established calls
1175 *  to configure collision distance and flow control are called.  If link is
1176 *  not established, we return -E1000_ERR_PHY (-2).
1177 **/
1178s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1179{
1180	s32 ret_val;
1181	bool link;
1182
1183	if (hw->mac.autoneg) {
1184		/*
1185		 * Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/*
1193		 * PHY will be set to 10H, 10F, 100H or 100F
1194		 * depending on user settings.
1195		 */
1196		e_dbg("Forcing Speed and Duplex\n");
1197		ret_val = e1000_phy_force_speed_duplex(hw);
1198		if (ret_val) {
1199			e_dbg("Error Forcing Speed and Duplex\n");
1200			return ret_val;
1201		}
1202	}
1203
1204	/*
1205	 * Check link status. Wait up to 100 microseconds for link to become
1206	 * valid.
1207	 */
1208	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1209					      &link);
1210	if (ret_val)
1211		return ret_val;
1212
1213	if (link) {
1214		e_dbg("Valid link established!!!\n");
1215		hw->mac.ops.config_collision_dist(hw);
1216		ret_val = e1000e_config_fc_after_link_up(hw);
1217	} else {
1218		e_dbg("Unable to establish link!!!\n");
1219	}
1220
1221	return ret_val;
1222}
1223
1224/**
1225 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1226 *  @hw: pointer to the HW structure
1227 *
1228 *  Calls the PHY setup function to force speed and duplex.  Clears the
1229 *  auto-crossover to force MDI manually.  Waits for link and returns
1230 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1231 **/
1232s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1233{
1234	struct e1000_phy_info *phy = &hw->phy;
1235	s32 ret_val;
1236	u16 phy_data;
1237	bool link;
1238
1239	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1240	if (ret_val)
1241		return ret_val;
1242
1243	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1244
1245	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1246	if (ret_val)
1247		return ret_val;
1248
1249	/*
1250	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1251	 * forced whenever speed and duplex are forced.
1252	 */
1253	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254	if (ret_val)
1255		return ret_val;
1256
1257	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259
1260	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("IGP PSCR: %X\n", phy_data);
1265
1266	udelay(1);
1267
1268	if (phy->autoneg_wait_to_complete) {
1269		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1270
1271		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272						      100000, &link);
1273		if (ret_val)
1274			return ret_val;
1275
1276		if (!link)
1277			e_dbg("Link taking longer than expected.\n");
1278
1279		/* Try once more */
1280		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281						      100000, &link);
1282	}
1283
1284	return ret_val;
1285}
1286
1287/**
1288 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289 *  @hw: pointer to the HW structure
1290 *
1291 *  Calls the PHY setup function to force speed and duplex.  Clears the
1292 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1293 *  changes.  If time expires while waiting for link up, we reset the DSP.
1294 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1295 *  successful completion, else return corresponding error code.
1296 **/
1297s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298{
1299	struct e1000_phy_info *phy = &hw->phy;
1300	s32 ret_val;
1301	u16 phy_data;
1302	bool link;
1303
1304	/*
1305	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1306	 * forced whenever speed and duplex are forced.
1307	 */
1308	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309	if (ret_val)
1310		return ret_val;
1311
1312	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1313	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314	if (ret_val)
1315		return ret_val;
1316
1317	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1318
1319	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1320	if (ret_val)
1321		return ret_val;
1322
1323	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1324
1325	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1326	if (ret_val)
1327		return ret_val;
1328
1329	/* Reset the phy to commit changes. */
1330	ret_val = e1000e_commit_phy(hw);
1331	if (ret_val)
1332		return ret_val;
 
 
1333
1334	if (phy->autoneg_wait_to_complete) {
1335		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336
1337		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1338						     100000, &link);
1339		if (ret_val)
1340			return ret_val;
1341
1342		if (!link) {
1343			if (hw->phy.type != e1000_phy_m88) {
1344				e_dbg("Link taking longer than expected.\n");
1345			} else {
1346				/*
1347				 * We didn't get link.
1348				 * Reset the DSP and cross our fingers.
1349				 */
1350				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1351						   0x001d);
1352				if (ret_val)
1353					return ret_val;
1354				ret_val = e1000e_phy_reset_dsp(hw);
1355				if (ret_val)
1356					return ret_val;
1357			}
1358		}
1359
1360		/* Try once more */
1361		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1362						     100000, &link);
1363		if (ret_val)
1364			return ret_val;
1365	}
1366
1367	if (hw->phy.type != e1000_phy_m88)
1368		return 0;
1369
1370	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/*
1375	 * Resetting the phy means we need to re-force TX_CLK in the
1376	 * Extended PHY Specific Control Register to 25MHz clock from
1377	 * the reset value of 2.5MHz.
1378	 */
1379	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1380	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1381	if (ret_val)
1382		return ret_val;
1383
1384	/*
1385	 * In addition, we must re-enable CRS on Tx for both half and full
1386	 * duplex.
1387	 */
1388	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1389	if (ret_val)
1390		return ret_val;
1391
1392	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1393	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1394
1395	return ret_val;
1396}
1397
1398/**
1399 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1400 *  @hw: pointer to the HW structure
1401 *
1402 *  Forces the speed and duplex settings of the PHY.
1403 *  This is a function pointer entry point only called by
1404 *  PHY setup routines.
1405 **/
1406s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1407{
1408	struct e1000_phy_info *phy = &hw->phy;
1409	s32 ret_val;
1410	u16 data;
1411	bool link;
1412
1413	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1414	if (ret_val)
1415		return ret_val;
1416
1417	e1000e_phy_force_speed_duplex_setup(hw, &data);
1418
1419	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	/* Disable MDI-X support for 10/100 */
1424	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1425	if (ret_val)
1426		return ret_val;
1427
1428	data &= ~IFE_PMC_AUTO_MDIX;
1429	data &= ~IFE_PMC_FORCE_MDIX;
1430
1431	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1432	if (ret_val)
1433		return ret_val;
1434
1435	e_dbg("IFE PMC: %X\n", data);
1436
1437	udelay(1);
1438
1439	if (phy->autoneg_wait_to_complete) {
1440		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1441
1442		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1443						      100000, &link);
1444		if (ret_val)
1445			return ret_val;
1446
1447		if (!link)
1448			e_dbg("Link taking longer than expected.\n");
1449
1450		/* Try once more */
1451		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1452						      100000, &link);
1453		if (ret_val)
1454			return ret_val;
1455	}
1456
1457	return 0;
1458}
1459
1460/**
1461 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1462 *  @hw: pointer to the HW structure
1463 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1464 *
1465 *  Forces speed and duplex on the PHY by doing the following: disable flow
1466 *  control, force speed/duplex on the MAC, disable auto speed detection,
1467 *  disable auto-negotiation, configure duplex, configure speed, configure
1468 *  the collision distance, write configuration to CTRL register.  The
1469 *  caller must write to the PHY_CONTROL register for these settings to
1470 *  take affect.
1471 **/
1472void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1473{
1474	struct e1000_mac_info *mac = &hw->mac;
1475	u32 ctrl;
1476
1477	/* Turn off flow control when forcing speed/duplex */
1478	hw->fc.current_mode = e1000_fc_none;
1479
1480	/* Force speed/duplex on the mac */
1481	ctrl = er32(CTRL);
1482	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1483	ctrl &= ~E1000_CTRL_SPD_SEL;
1484
1485	/* Disable Auto Speed Detection */
1486	ctrl &= ~E1000_CTRL_ASDE;
1487
1488	/* Disable autoneg on the phy */
1489	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1490
1491	/* Forcing Full or Half Duplex? */
1492	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1493		ctrl &= ~E1000_CTRL_FD;
1494		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1495		e_dbg("Half Duplex\n");
1496	} else {
1497		ctrl |= E1000_CTRL_FD;
1498		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1499		e_dbg("Full Duplex\n");
1500	}
1501
1502	/* Forcing 10mb or 100mb? */
1503	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1504		ctrl |= E1000_CTRL_SPD_100;
1505		*phy_ctrl |= MII_CR_SPEED_100;
1506		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1507		e_dbg("Forcing 100mb\n");
1508	} else {
1509		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1510		*phy_ctrl |= MII_CR_SPEED_10;
1511		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1512		e_dbg("Forcing 10mb\n");
1513	}
1514
1515	hw->mac.ops.config_collision_dist(hw);
1516
1517	ew32(CTRL, ctrl);
1518}
1519
1520/**
1521 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1522 *  @hw: pointer to the HW structure
1523 *  @active: boolean used to enable/disable lplu
1524 *
1525 *  Success returns 0, Failure returns 1
1526 *
1527 *  The low power link up (lplu) state is set to the power management level D3
1528 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1529 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1530 *  is used during Dx states where the power conservation is most important.
1531 *  During driver activity, SmartSpeed should be enabled so performance is
1532 *  maintained.
1533 **/
1534s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1535{
1536	struct e1000_phy_info *phy = &hw->phy;
1537	s32 ret_val;
1538	u16 data;
1539
1540	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1541	if (ret_val)
1542		return ret_val;
1543
1544	if (!active) {
1545		data &= ~IGP02E1000_PM_D3_LPLU;
1546		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1547		if (ret_val)
1548			return ret_val;
1549		/*
1550		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1551		 * during Dx states where the power conservation is most
1552		 * important.  During driver activity we should enable
1553		 * SmartSpeed, so performance is maintained.
1554		 */
1555		if (phy->smart_speed == e1000_smart_speed_on) {
1556			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557					   &data);
1558			if (ret_val)
1559				return ret_val;
1560
1561			data |= IGP01E1000_PSCFR_SMART_SPEED;
1562			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1563					   data);
1564			if (ret_val)
1565				return ret_val;
1566		} else if (phy->smart_speed == e1000_smart_speed_off) {
1567			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568					   &data);
1569			if (ret_val)
1570				return ret_val;
1571
1572			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1573			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1574					   data);
1575			if (ret_val)
1576				return ret_val;
1577		}
1578	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1579		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1580		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1581		data |= IGP02E1000_PM_D3_LPLU;
1582		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1583		if (ret_val)
1584			return ret_val;
1585
1586		/* When LPLU is enabled, we should disable SmartSpeed */
1587		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1588		if (ret_val)
1589			return ret_val;
1590
1591		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1592		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1593	}
1594
1595	return ret_val;
1596}
1597
1598/**
1599 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1600 *  @hw: pointer to the HW structure
1601 *
1602 *  Success returns 0, Failure returns 1
1603 *
1604 *  A downshift is detected by querying the PHY link health.
1605 **/
1606s32 e1000e_check_downshift(struct e1000_hw *hw)
1607{
1608	struct e1000_phy_info *phy = &hw->phy;
1609	s32 ret_val;
1610	u16 phy_data, offset, mask;
1611
1612	switch (phy->type) {
1613	case e1000_phy_m88:
1614	case e1000_phy_gg82563:
1615	case e1000_phy_bm:
1616	case e1000_phy_82578:
1617		offset	= M88E1000_PHY_SPEC_STATUS;
1618		mask	= M88E1000_PSSR_DOWNSHIFT;
1619		break;
1620	case e1000_phy_igp_2:
1621	case e1000_phy_igp_3:
1622		offset	= IGP01E1000_PHY_LINK_HEALTH;
1623		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1624		break;
1625	default:
1626		/* speed downshift not supported */
1627		phy->speed_downgraded = false;
1628		return 0;
1629	}
1630
1631	ret_val = e1e_rphy(hw, offset, &phy_data);
1632
1633	if (!ret_val)
1634		phy->speed_downgraded = !!(phy_data & mask);
1635
1636	return ret_val;
1637}
1638
1639/**
1640 *  e1000_check_polarity_m88 - Checks the polarity.
1641 *  @hw: pointer to the HW structure
1642 *
1643 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1644 *
1645 *  Polarity is determined based on the PHY specific status register.
1646 **/
1647s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1648{
1649	struct e1000_phy_info *phy = &hw->phy;
1650	s32 ret_val;
1651	u16 data;
1652
1653	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1654
1655	if (!ret_val)
1656		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1657				      ? e1000_rev_polarity_reversed
1658				      : e1000_rev_polarity_normal;
1659
1660	return ret_val;
1661}
1662
1663/**
1664 *  e1000_check_polarity_igp - Checks the polarity.
1665 *  @hw: pointer to the HW structure
1666 *
1667 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1668 *
1669 *  Polarity is determined based on the PHY port status register, and the
1670 *  current speed (since there is no polarity at 100Mbps).
1671 **/
1672s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1673{
1674	struct e1000_phy_info *phy = &hw->phy;
1675	s32 ret_val;
1676	u16 data, offset, mask;
1677
1678	/*
1679	 * Polarity is determined based on the speed of
1680	 * our connection.
1681	 */
1682	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1683	if (ret_val)
1684		return ret_val;
1685
1686	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1687	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1688		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1689		mask	= IGP01E1000_PHY_POLARITY_MASK;
1690	} else {
1691		/*
1692		 * This really only applies to 10Mbps since
1693		 * there is no polarity for 100Mbps (always 0).
1694		 */
1695		offset	= IGP01E1000_PHY_PORT_STATUS;
1696		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1697	}
1698
1699	ret_val = e1e_rphy(hw, offset, &data);
1700
1701	if (!ret_val)
1702		phy->cable_polarity = (data & mask)
1703				      ? e1000_rev_polarity_reversed
1704				      : e1000_rev_polarity_normal;
1705
1706	return ret_val;
1707}
1708
1709/**
1710 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Polarity is determined on the polarity reversal feature being enabled.
1714 **/
1715s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1716{
1717	struct e1000_phy_info *phy = &hw->phy;
1718	s32 ret_val;
1719	u16 phy_data, offset, mask;
1720
1721	/*
1722	 * Polarity is determined based on the reversal feature being enabled.
1723	 */
1724	if (phy->polarity_correction) {
1725		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1726		mask = IFE_PESC_POLARITY_REVERSED;
1727	} else {
1728		offset = IFE_PHY_SPECIAL_CONTROL;
1729		mask = IFE_PSC_FORCE_POLARITY;
1730	}
1731
1732	ret_val = e1e_rphy(hw, offset, &phy_data);
1733
1734	if (!ret_val)
1735		phy->cable_polarity = (phy_data & mask)
1736		                       ? e1000_rev_polarity_reversed
1737		                       : e1000_rev_polarity_normal;
1738
1739	return ret_val;
1740}
1741
1742/**
1743 *  e1000_wait_autoneg - Wait for auto-neg completion
1744 *  @hw: pointer to the HW structure
1745 *
1746 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1747 *  limit to expire, which ever happens first.
1748 **/
1749static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1750{
1751	s32 ret_val = 0;
1752	u16 i, phy_status;
1753
1754	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1755	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1756		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1757		if (ret_val)
1758			break;
1759		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1760		if (ret_val)
1761			break;
1762		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1763			break;
1764		msleep(100);
1765	}
1766
1767	/*
1768	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1769	 * has completed.
1770	 */
1771	return ret_val;
1772}
1773
1774/**
1775 *  e1000e_phy_has_link_generic - Polls PHY for link
1776 *  @hw: pointer to the HW structure
1777 *  @iterations: number of times to poll for link
1778 *  @usec_interval: delay between polling attempts
1779 *  @success: pointer to whether polling was successful or not
1780 *
1781 *  Polls the PHY status register for link, 'iterations' number of times.
1782 **/
1783s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1784			       u32 usec_interval, bool *success)
1785{
1786	s32 ret_val = 0;
1787	u16 i, phy_status;
1788
 
1789	for (i = 0; i < iterations; i++) {
1790		/*
1791		 * Some PHYs require the PHY_STATUS register to be read
1792		 * twice due to the link bit being sticky.  No harm doing
1793		 * it across the board.
1794		 */
1795		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1796		if (ret_val)
1797			/*
1798			 * If the first read fails, another entity may have
1799			 * ownership of the resources, wait and try again to
1800			 * see if they have relinquished the resources yet.
1801			 */
1802			udelay(usec_interval);
1803		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
 
 
 
 
1804		if (ret_val)
1805			break;
1806		if (phy_status & MII_SR_LINK_STATUS)
 
1807			break;
 
1808		if (usec_interval >= 1000)
1809			mdelay(usec_interval/1000);
1810		else
1811			udelay(usec_interval);
1812	}
1813
1814	*success = (i < iterations);
1815
1816	return ret_val;
1817}
1818
1819/**
1820 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1821 *  @hw: pointer to the HW structure
1822 *
1823 *  Reads the PHY specific status register to retrieve the cable length
1824 *  information.  The cable length is determined by averaging the minimum and
1825 *  maximum values to get the "average" cable length.  The m88 PHY has four
1826 *  possible cable length values, which are:
1827 *	Register Value		Cable Length
1828 *	0			< 50 meters
1829 *	1			50 - 80 meters
1830 *	2			80 - 110 meters
1831 *	3			110 - 140 meters
1832 *	4			> 140 meters
1833 **/
1834s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1835{
1836	struct e1000_phy_info *phy = &hw->phy;
1837	s32 ret_val;
1838	u16 phy_data, index;
1839
1840	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1841	if (ret_val)
1842		return ret_val;
1843
1844	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1845	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1846
1847	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1848		return -E1000_ERR_PHY;
1849
1850	phy->min_cable_length = e1000_m88_cable_length_table[index];
1851	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1852
1853	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1854
1855	return 0;
1856}
1857
1858/**
1859 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1860 *  @hw: pointer to the HW structure
1861 *
1862 *  The automatic gain control (agc) normalizes the amplitude of the
1863 *  received signal, adjusting for the attenuation produced by the
1864 *  cable.  By reading the AGC registers, which represent the
1865 *  combination of coarse and fine gain value, the value can be put
1866 *  into a lookup table to obtain the approximate cable length
1867 *  for each channel.
1868 **/
1869s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1870{
1871	struct e1000_phy_info *phy = &hw->phy;
1872	s32 ret_val;
1873	u16 phy_data, i, agc_value = 0;
1874	u16 cur_agc_index, max_agc_index = 0;
1875	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1876	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1877	       IGP02E1000_PHY_AGC_A,
1878	       IGP02E1000_PHY_AGC_B,
1879	       IGP02E1000_PHY_AGC_C,
1880	       IGP02E1000_PHY_AGC_D
1881	};
1882
1883	/* Read the AGC registers for all channels */
1884	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1885		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1886		if (ret_val)
1887			return ret_val;
1888
1889		/*
1890		 * Getting bits 15:9, which represent the combination of
1891		 * coarse and fine gain values.  The result is a number
1892		 * that can be put into the lookup table to obtain the
1893		 * approximate cable length.
1894		 */
1895		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1896				IGP02E1000_AGC_LENGTH_MASK;
1897
1898		/* Array index bound check. */
1899		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1900		    (cur_agc_index == 0))
1901			return -E1000_ERR_PHY;
1902
1903		/* Remove min & max AGC values from calculation. */
1904		if (e1000_igp_2_cable_length_table[min_agc_index] >
1905		    e1000_igp_2_cable_length_table[cur_agc_index])
1906			min_agc_index = cur_agc_index;
1907		if (e1000_igp_2_cable_length_table[max_agc_index] <
1908		    e1000_igp_2_cable_length_table[cur_agc_index])
1909			max_agc_index = cur_agc_index;
1910
1911		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1912	}
1913
1914	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1915		      e1000_igp_2_cable_length_table[max_agc_index]);
1916	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1917
1918	/* Calculate cable length with the error range of +/- 10 meters. */
1919	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1920				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1921	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1922
1923	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1924
1925	return 0;
1926}
1927
1928/**
1929 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1930 *  @hw: pointer to the HW structure
1931 *
1932 *  Valid for only copper links.  Read the PHY status register (sticky read)
1933 *  to verify that link is up.  Read the PHY special control register to
1934 *  determine the polarity and 10base-T extended distance.  Read the PHY
1935 *  special status register to determine MDI/MDIx and current speed.  If
1936 *  speed is 1000, then determine cable length, local and remote receiver.
1937 **/
1938s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1939{
1940	struct e1000_phy_info *phy = &hw->phy;
1941	s32  ret_val;
1942	u16 phy_data;
1943	bool link;
1944
1945	if (phy->media_type != e1000_media_type_copper) {
1946		e_dbg("Phy info is only valid for copper media\n");
1947		return -E1000_ERR_CONFIG;
1948	}
1949
1950	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1951	if (ret_val)
1952		return ret_val;
1953
1954	if (!link) {
1955		e_dbg("Phy info is only valid if link is up\n");
1956		return -E1000_ERR_CONFIG;
1957	}
1958
1959	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1960	if (ret_val)
1961		return ret_val;
1962
1963	phy->polarity_correction = !!(phy_data &
1964				      M88E1000_PSCR_POLARITY_REVERSAL);
1965
1966	ret_val = e1000_check_polarity_m88(hw);
1967	if (ret_val)
1968		return ret_val;
1969
1970	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1971	if (ret_val)
1972		return ret_val;
1973
1974	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1975
1976	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1977		ret_val = e1000_get_cable_length(hw);
1978		if (ret_val)
1979			return ret_val;
1980
1981		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1982		if (ret_val)
1983			return ret_val;
1984
1985		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1986				? e1000_1000t_rx_status_ok
1987				: e1000_1000t_rx_status_not_ok;
1988
1989		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1990				 ? e1000_1000t_rx_status_ok
1991				 : e1000_1000t_rx_status_not_ok;
1992	} else {
1993		/* Set values to "undefined" */
1994		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1995		phy->local_rx = e1000_1000t_rx_status_undefined;
1996		phy->remote_rx = e1000_1000t_rx_status_undefined;
1997	}
1998
1999	return ret_val;
2000}
2001
2002/**
2003 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2004 *  @hw: pointer to the HW structure
2005 *
2006 *  Read PHY status to determine if link is up.  If link is up, then
2007 *  set/determine 10base-T extended distance and polarity correction.  Read
2008 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2009 *  determine on the cable length, local and remote receiver.
2010 **/
2011s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2012{
2013	struct e1000_phy_info *phy = &hw->phy;
2014	s32 ret_val;
2015	u16 data;
2016	bool link;
2017
2018	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2019	if (ret_val)
2020		return ret_val;
2021
2022	if (!link) {
2023		e_dbg("Phy info is only valid if link is up\n");
2024		return -E1000_ERR_CONFIG;
2025	}
2026
2027	phy->polarity_correction = true;
2028
2029	ret_val = e1000_check_polarity_igp(hw);
2030	if (ret_val)
2031		return ret_val;
2032
2033	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2038
2039	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2040	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2041		ret_val = e1000_get_cable_length(hw);
2042		if (ret_val)
2043			return ret_val;
2044
2045		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2046		if (ret_val)
2047			return ret_val;
2048
2049		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2050				? e1000_1000t_rx_status_ok
2051				: e1000_1000t_rx_status_not_ok;
2052
2053		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2054				 ? e1000_1000t_rx_status_ok
2055				 : e1000_1000t_rx_status_not_ok;
2056	} else {
2057		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2058		phy->local_rx = e1000_1000t_rx_status_undefined;
2059		phy->remote_rx = e1000_1000t_rx_status_undefined;
2060	}
2061
2062	return ret_val;
2063}
2064
2065/**
2066 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Populates "phy" structure with various feature states.
2070 **/
2071s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2072{
2073	struct e1000_phy_info *phy = &hw->phy;
2074	s32 ret_val;
2075	u16 data;
2076	bool link;
2077
2078	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2079	if (ret_val)
2080		return ret_val;
2081
2082	if (!link) {
2083		e_dbg("Phy info is only valid if link is up\n");
2084		return -E1000_ERR_CONFIG;
2085	}
2086
2087	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2088	if (ret_val)
2089		return ret_val;
2090	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2091
2092	if (phy->polarity_correction) {
2093		ret_val = e1000_check_polarity_ife(hw);
2094		if (ret_val)
2095			return ret_val;
2096	} else {
2097		/* Polarity is forced */
2098		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2099		                      ? e1000_rev_polarity_reversed
2100		                      : e1000_rev_polarity_normal;
2101	}
2102
2103	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2104	if (ret_val)
2105		return ret_val;
2106
2107	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2108
2109	/* The following parameters are undefined for 10/100 operation. */
2110	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2111	phy->local_rx = e1000_1000t_rx_status_undefined;
2112	phy->remote_rx = e1000_1000t_rx_status_undefined;
2113
2114	return 0;
2115}
2116
2117/**
2118 *  e1000e_phy_sw_reset - PHY software reset
2119 *  @hw: pointer to the HW structure
2120 *
2121 *  Does a software reset of the PHY by reading the PHY control register and
2122 *  setting/write the control register reset bit to the PHY.
2123 **/
2124s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2125{
2126	s32 ret_val;
2127	u16 phy_ctrl;
2128
2129	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2130	if (ret_val)
2131		return ret_val;
2132
2133	phy_ctrl |= MII_CR_RESET;
2134	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2135	if (ret_val)
2136		return ret_val;
2137
2138	udelay(1);
2139
2140	return ret_val;
2141}
2142
2143/**
2144 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2145 *  @hw: pointer to the HW structure
2146 *
2147 *  Verify the reset block is not blocking us from resetting.  Acquire
2148 *  semaphore (if necessary) and read/set/write the device control reset
2149 *  bit in the PHY.  Wait the appropriate delay time for the device to
2150 *  reset and release the semaphore (if necessary).
2151 **/
2152s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2153{
2154	struct e1000_phy_info *phy = &hw->phy;
2155	s32 ret_val;
2156	u32 ctrl;
2157
2158	if (phy->ops.check_reset_block) {
2159		ret_val = phy->ops.check_reset_block(hw);
2160		if (ret_val)
2161			return 0;
2162	}
2163
2164	ret_val = phy->ops.acquire(hw);
2165	if (ret_val)
2166		return ret_val;
2167
2168	ctrl = er32(CTRL);
2169	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2170	e1e_flush();
2171
2172	udelay(phy->reset_delay_us);
2173
2174	ew32(CTRL, ctrl);
2175	e1e_flush();
2176
2177	udelay(150);
2178
2179	phy->ops.release(hw);
2180
2181	return e1000_get_phy_cfg_done(hw);
2182}
2183
2184/**
2185 *  e1000e_get_cfg_done - Generic configuration done
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Generic function to wait 10 milli-seconds for configuration to complete
2189 *  and return success.
2190 **/
2191s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2192{
2193	mdelay(10);
2194
2195	return 0;
2196}
2197
2198/**
2199 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2200 *  @hw: pointer to the HW structure
2201 *
2202 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2203 **/
2204s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2205{
2206	e_dbg("Running IGP 3 PHY init script\n");
2207
2208	/* PHY init IGP 3 */
2209	/* Enable rise/fall, 10-mode work in class-A */
2210	e1e_wphy(hw, 0x2F5B, 0x9018);
2211	/* Remove all caps from Replica path filter */
2212	e1e_wphy(hw, 0x2F52, 0x0000);
2213	/* Bias trimming for ADC, AFE and Driver (Default) */
2214	e1e_wphy(hw, 0x2FB1, 0x8B24);
2215	/* Increase Hybrid poly bias */
2216	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2217	/* Add 4% to Tx amplitude in Gig mode */
2218	e1e_wphy(hw, 0x2010, 0x10B0);
2219	/* Disable trimming (TTT) */
2220	e1e_wphy(hw, 0x2011, 0x0000);
2221	/* Poly DC correction to 94.6% + 2% for all channels */
2222	e1e_wphy(hw, 0x20DD, 0x249A);
2223	/* ABS DC correction to 95.9% */
2224	e1e_wphy(hw, 0x20DE, 0x00D3);
2225	/* BG temp curve trim */
2226	e1e_wphy(hw, 0x28B4, 0x04CE);
2227	/* Increasing ADC OPAMP stage 1 currents to max */
2228	e1e_wphy(hw, 0x2F70, 0x29E4);
2229	/* Force 1000 ( required for enabling PHY regs configuration) */
2230	e1e_wphy(hw, 0x0000, 0x0140);
2231	/* Set upd_freq to 6 */
2232	e1e_wphy(hw, 0x1F30, 0x1606);
2233	/* Disable NPDFE */
2234	e1e_wphy(hw, 0x1F31, 0xB814);
2235	/* Disable adaptive fixed FFE (Default) */
2236	e1e_wphy(hw, 0x1F35, 0x002A);
2237	/* Enable FFE hysteresis */
2238	e1e_wphy(hw, 0x1F3E, 0x0067);
2239	/* Fixed FFE for short cable lengths */
2240	e1e_wphy(hw, 0x1F54, 0x0065);
2241	/* Fixed FFE for medium cable lengths */
2242	e1e_wphy(hw, 0x1F55, 0x002A);
2243	/* Fixed FFE for long cable lengths */
2244	e1e_wphy(hw, 0x1F56, 0x002A);
2245	/* Enable Adaptive Clip Threshold */
2246	e1e_wphy(hw, 0x1F72, 0x3FB0);
2247	/* AHT reset limit to 1 */
2248	e1e_wphy(hw, 0x1F76, 0xC0FF);
2249	/* Set AHT master delay to 127 msec */
2250	e1e_wphy(hw, 0x1F77, 0x1DEC);
2251	/* Set scan bits for AHT */
2252	e1e_wphy(hw, 0x1F78, 0xF9EF);
2253	/* Set AHT Preset bits */
2254	e1e_wphy(hw, 0x1F79, 0x0210);
2255	/* Change integ_factor of channel A to 3 */
2256	e1e_wphy(hw, 0x1895, 0x0003);
2257	/* Change prop_factor of channels BCD to 8 */
2258	e1e_wphy(hw, 0x1796, 0x0008);
2259	/* Change cg_icount + enable integbp for channels BCD */
2260	e1e_wphy(hw, 0x1798, 0xD008);
2261	/*
2262	 * Change cg_icount + enable integbp + change prop_factor_master
2263	 * to 8 for channel A
2264	 */
2265	e1e_wphy(hw, 0x1898, 0xD918);
2266	/* Disable AHT in Slave mode on channel A */
2267	e1e_wphy(hw, 0x187A, 0x0800);
2268	/*
2269	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2270	 * Enable SPD+B2B
2271	 */
2272	e1e_wphy(hw, 0x0019, 0x008D);
2273	/* Enable restart AN on an1000_dis change */
2274	e1e_wphy(hw, 0x001B, 0x2080);
2275	/* Enable wh_fifo read clock in 10/100 modes */
2276	e1e_wphy(hw, 0x0014, 0x0045);
2277	/* Restart AN, Speed selection is 1000 */
2278	e1e_wphy(hw, 0x0000, 0x1340);
2279
2280	return 0;
2281}
2282
2283/* Internal function pointers */
2284
2285/**
2286 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2287 *  @hw: pointer to the HW structure
2288 *
2289 *  Return success if silicon family did not implement a family specific
2290 *  get_cfg_done function.
2291 **/
2292static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2293{
2294	if (hw->phy.ops.get_cfg_done)
2295		return hw->phy.ops.get_cfg_done(hw);
2296
2297	return 0;
2298}
2299
2300/**
2301 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2302 *  @hw: pointer to the HW structure
2303 *
2304 *  When the silicon family has not implemented a forced speed/duplex
2305 *  function for the PHY, simply return 0.
2306 **/
2307static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2308{
2309	if (hw->phy.ops.force_speed_duplex)
2310		return hw->phy.ops.force_speed_duplex(hw);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000e_get_phy_type_from_id - Get PHY type from id
2317 *  @phy_id: phy_id read from the phy
2318 *
2319 *  Returns the phy type from the id.
2320 **/
2321enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2322{
2323	enum e1000_phy_type phy_type = e1000_phy_unknown;
2324
2325	switch (phy_id) {
2326	case M88E1000_I_PHY_ID:
2327	case M88E1000_E_PHY_ID:
2328	case M88E1111_I_PHY_ID:
2329	case M88E1011_I_PHY_ID:
2330		phy_type = e1000_phy_m88;
2331		break;
2332	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2333		phy_type = e1000_phy_igp_2;
2334		break;
2335	case GG82563_E_PHY_ID:
2336		phy_type = e1000_phy_gg82563;
2337		break;
2338	case IGP03E1000_E_PHY_ID:
2339		phy_type = e1000_phy_igp_3;
2340		break;
2341	case IFE_E_PHY_ID:
2342	case IFE_PLUS_E_PHY_ID:
2343	case IFE_C_E_PHY_ID:
2344		phy_type = e1000_phy_ife;
2345		break;
2346	case BME1000_E_PHY_ID:
2347	case BME1000_E_PHY_ID_R2:
2348		phy_type = e1000_phy_bm;
2349		break;
2350	case I82578_E_PHY_ID:
2351		phy_type = e1000_phy_82578;
2352		break;
2353	case I82577_E_PHY_ID:
2354		phy_type = e1000_phy_82577;
2355		break;
2356	case I82579_E_PHY_ID:
2357		phy_type = e1000_phy_82579;
2358		break;
2359	case I217_E_PHY_ID:
2360		phy_type = e1000_phy_i217;
2361		break;
2362	default:
2363		phy_type = e1000_phy_unknown;
2364		break;
2365	}
2366	return phy_type;
2367}
2368
2369/**
2370 *  e1000e_determine_phy_address - Determines PHY address.
2371 *  @hw: pointer to the HW structure
2372 *
2373 *  This uses a trial and error method to loop through possible PHY
2374 *  addresses. It tests each by reading the PHY ID registers and
2375 *  checking for a match.
2376 **/
2377s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2378{
2379	u32 phy_addr = 0;
2380	u32 i;
2381	enum e1000_phy_type phy_type = e1000_phy_unknown;
2382
2383	hw->phy.id = phy_type;
2384
2385	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2386		hw->phy.addr = phy_addr;
2387		i = 0;
2388
2389		do {
2390			e1000e_get_phy_id(hw);
2391			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2392
2393			/*
2394			 * If phy_type is valid, break - we found our
2395			 * PHY address
2396			 */
2397			if (phy_type  != e1000_phy_unknown)
2398				return 0;
2399
2400			usleep_range(1000, 2000);
2401			i++;
2402		} while (i < 10);
2403	}
2404
2405	return -E1000_ERR_PHY_TYPE;
2406}
2407
2408/**
2409 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2410 *  @page: page to access
 
2411 *
2412 *  Returns the phy address for the page requested.
2413 **/
2414static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2415{
2416	u32 phy_addr = 2;
2417
2418	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2419		phy_addr = 1;
2420
2421	return phy_addr;
2422}
2423
2424/**
2425 *  e1000e_write_phy_reg_bm - Write BM PHY register
2426 *  @hw: pointer to the HW structure
2427 *  @offset: register offset to write to
2428 *  @data: data to write at register offset
2429 *
2430 *  Acquires semaphore, if necessary, then writes the data to PHY register
2431 *  at the offset.  Release any acquired semaphores before exiting.
2432 **/
2433s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2434{
2435	s32 ret_val;
2436	u32 page = offset >> IGP_PAGE_SHIFT;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	/* Page 800 works differently than the rest so it has its own func */
2443	if (page == BM_WUC_PAGE) {
2444		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2445							 false, false);
2446		goto release;
2447	}
2448
2449	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2450
2451	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2452		u32 page_shift, page_select;
2453
2454		/*
2455		 * Page select is register 31 for phy address 1 and 22 for
2456		 * phy address 2 and 3. Page select is shifted only for
2457		 * phy address 1.
2458		 */
2459		if (hw->phy.addr == 1) {
2460			page_shift = IGP_PAGE_SHIFT;
2461			page_select = IGP01E1000_PHY_PAGE_SELECT;
2462		} else {
2463			page_shift = 0;
2464			page_select = BM_PHY_PAGE_SELECT;
2465		}
2466
2467		/* Page is shifted left, PHY expects (page x 32) */
2468		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2469		                                    (page << page_shift));
2470		if (ret_val)
2471			goto release;
2472	}
2473
2474	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2475	                                    data);
2476
2477release:
2478	hw->phy.ops.release(hw);
2479	return ret_val;
2480}
2481
2482/**
2483 *  e1000e_read_phy_reg_bm - Read BM PHY register
2484 *  @hw: pointer to the HW structure
2485 *  @offset: register offset to be read
2486 *  @data: pointer to the read data
2487 *
2488 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2489 *  and storing the retrieved information in data.  Release any acquired
2490 *  semaphores before exiting.
2491 **/
2492s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2493{
2494	s32 ret_val;
2495	u32 page = offset >> IGP_PAGE_SHIFT;
2496
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	/* Page 800 works differently than the rest so it has its own func */
2502	if (page == BM_WUC_PAGE) {
2503		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2504							 true, false);
2505		goto release;
2506	}
2507
2508	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2509
2510	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2511		u32 page_shift, page_select;
2512
2513		/*
2514		 * Page select is register 31 for phy address 1 and 22 for
2515		 * phy address 2 and 3. Page select is shifted only for
2516		 * phy address 1.
2517		 */
2518		if (hw->phy.addr == 1) {
2519			page_shift = IGP_PAGE_SHIFT;
2520			page_select = IGP01E1000_PHY_PAGE_SELECT;
2521		} else {
2522			page_shift = 0;
2523			page_select = BM_PHY_PAGE_SELECT;
2524		}
2525
2526		/* Page is shifted left, PHY expects (page x 32) */
2527		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2528		                                    (page << page_shift));
2529		if (ret_val)
2530			goto release;
2531	}
2532
2533	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2534	                                   data);
2535release:
2536	hw->phy.ops.release(hw);
2537	return ret_val;
2538}
2539
2540/**
2541 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2542 *  @hw: pointer to the HW structure
2543 *  @offset: register offset to be read
2544 *  @data: pointer to the read data
2545 *
2546 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2547 *  and storing the retrieved information in data.  Release any acquired
2548 *  semaphores before exiting.
2549 **/
2550s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2551{
2552	s32 ret_val;
2553	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2554
2555	ret_val = hw->phy.ops.acquire(hw);
2556	if (ret_val)
2557		return ret_val;
2558
2559	/* Page 800 works differently than the rest so it has its own func */
2560	if (page == BM_WUC_PAGE) {
2561		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2562							 true, false);
2563		goto release;
2564	}
2565
2566	hw->phy.addr = 1;
2567
2568	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2569
2570		/* Page is shifted left, PHY expects (page x 32) */
2571		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2572						    page);
2573
2574		if (ret_val)
2575			goto release;
2576	}
2577
2578	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2579					   data);
2580release:
2581	hw->phy.ops.release(hw);
2582	return ret_val;
2583}
2584
2585/**
2586 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2587 *  @hw: pointer to the HW structure
2588 *  @offset: register offset to write to
2589 *  @data: data to write at register offset
2590 *
2591 *  Acquires semaphore, if necessary, then writes the data to PHY register
2592 *  at the offset.  Release any acquired semaphores before exiting.
2593 **/
2594s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2595{
2596	s32 ret_val;
2597	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2598
2599	ret_val = hw->phy.ops.acquire(hw);
2600	if (ret_val)
2601		return ret_val;
2602
2603	/* Page 800 works differently than the rest so it has its own func */
2604	if (page == BM_WUC_PAGE) {
2605		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2606							 false, false);
2607		goto release;
2608	}
2609
2610	hw->phy.addr = 1;
2611
2612	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2613		/* Page is shifted left, PHY expects (page x 32) */
2614		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2615						    page);
2616
2617		if (ret_val)
2618			goto release;
2619	}
2620
2621	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2622					    data);
2623
2624release:
2625	hw->phy.ops.release(hw);
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2631 *  @hw: pointer to the HW structure
2632 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2633 *
2634 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2635 *  address to store contents of the BM_WUC_ENABLE_REG register.
2636 **/
2637s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2638{
2639	s32 ret_val;
2640	u16 temp;
2641
2642	/* All page select, port ctrl and wakeup registers use phy address 1 */
2643	hw->phy.addr = 1;
2644
2645	/* Select Port Control Registers page */
2646	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2647	if (ret_val) {
2648		e_dbg("Could not set Port Control page\n");
2649		return ret_val;
2650	}
2651
2652	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2653	if (ret_val) {
2654		e_dbg("Could not read PHY register %d.%d\n",
2655		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2656		return ret_val;
2657	}
2658
2659	/*
2660	 * Enable both PHY wakeup mode and Wakeup register page writes.
2661	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2662	 */
2663	temp = *phy_reg;
2664	temp |= BM_WUC_ENABLE_BIT;
2665	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2666
2667	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2668	if (ret_val) {
2669		e_dbg("Could not write PHY register %d.%d\n",
2670		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2671		return ret_val;
2672	}
2673
2674	/*
2675	 * Select Host Wakeup Registers page - caller now able to write
2676	 * registers on the Wakeup registers page
2677	 */
2678	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2679}
2680
2681/**
2682 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2683 *  @hw: pointer to the HW structure
2684 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2685 *
2686 *  Restore BM_WUC_ENABLE_REG to its original value.
2687 *
2688 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2689 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2690 *  caller.
2691 **/
2692s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2693{
2694	s32 ret_val = 0;
2695
2696	/* Select Port Control Registers page */
2697	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2698	if (ret_val) {
2699		e_dbg("Could not set Port Control page\n");
2700		return ret_val;
2701	}
2702
2703	/* Restore 769.17 to its original value */
2704	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2705	if (ret_val)
2706		e_dbg("Could not restore PHY register %d.%d\n",
2707		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2708
2709	return ret_val;
2710}
2711
2712/**
2713 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2714 *  @hw: pointer to the HW structure
2715 *  @offset: register offset to be read or written
2716 *  @data: pointer to the data to read or write
2717 *  @read: determines if operation is read or write
2718 *  @page_set: BM_WUC_PAGE already set and access enabled
2719 *
2720 *  Read the PHY register at offset and store the retrieved information in
2721 *  data, or write data to PHY register at offset.  Note the procedure to
2722 *  access the PHY wakeup registers is different than reading the other PHY
2723 *  registers. It works as such:
2724 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2725 *  2) Set page to 800 for host (801 if we were manageability)
2726 *  3) Write the address using the address opcode (0x11)
2727 *  4) Read or write the data using the data opcode (0x12)
2728 *  5) Restore 769.17.2 to its original value
2729 *
2730 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2731 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2732 *
2733 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2734 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2735 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2736 **/
2737static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2738					  u16 *data, bool read, bool page_set)
2739{
2740	s32 ret_val;
2741	u16 reg = BM_PHY_REG_NUM(offset);
2742	u16 page = BM_PHY_REG_PAGE(offset);
2743	u16 phy_reg = 0;
2744
2745	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2746	if ((hw->mac.type == e1000_pchlan) &&
2747	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2748		e_dbg("Attempting to access page %d while gig enabled.\n",
2749		      page);
2750
2751	if (!page_set) {
2752		/* Enable access to PHY wakeup registers */
2753		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2754		if (ret_val) {
2755			e_dbg("Could not enable PHY wakeup reg access\n");
2756			return ret_val;
2757		}
2758	}
2759
2760	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2761
2762	/* Write the Wakeup register page offset value using opcode 0x11 */
2763	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2764	if (ret_val) {
2765		e_dbg("Could not write address opcode to page %d\n", page);
2766		return ret_val;
2767	}
2768
2769	if (read) {
2770		/* Read the Wakeup register page value using opcode 0x12 */
2771		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2772		                                   data);
2773	} else {
2774		/* Write the Wakeup register page value using opcode 0x12 */
2775		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2776						    *data);
2777	}
2778
2779	if (ret_val) {
2780		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2781		return ret_val;
2782	}
2783
2784	if (!page_set)
2785		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2792 * @hw: pointer to the HW structure
2793 *
2794 * In the case of a PHY power down to save power, or to turn off link during a
2795 * driver unload, or wake on lan is not enabled, restore the link to previous
2796 * settings.
2797 **/
2798void e1000_power_up_phy_copper(struct e1000_hw *hw)
2799{
2800	u16 mii_reg = 0;
 
2801
2802	/* The PHY will retain its settings across a power down/up cycle */
2803	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2804	mii_reg &= ~MII_CR_POWER_DOWN;
2805	e1e_wphy(hw, PHY_CONTROL, mii_reg);
 
 
 
 
2806}
2807
2808/**
2809 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2810 * @hw: pointer to the HW structure
2811 *
2812 * In the case of a PHY power down to save power, or to turn off link during a
2813 * driver unload, or wake on lan is not enabled, restore the link to previous
2814 * settings.
2815 **/
2816void e1000_power_down_phy_copper(struct e1000_hw *hw)
2817{
2818	u16 mii_reg = 0;
 
2819
2820	/* The PHY will retain its settings across a power down/up cycle */
2821	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2822	mii_reg |= MII_CR_POWER_DOWN;
2823	e1e_wphy(hw, PHY_CONTROL, mii_reg);
 
 
 
 
2824	usleep_range(1000, 2000);
2825}
2826
2827/**
2828 *  e1000e_commit_phy - Soft PHY reset
2829 *  @hw: pointer to the HW structure
2830 *
2831 *  Performs a soft PHY reset on those that apply. This is a function pointer
2832 *  entry point called by drivers.
2833 **/
2834s32 e1000e_commit_phy(struct e1000_hw *hw)
2835{
2836	if (hw->phy.ops.commit)
2837		return hw->phy.ops.commit(hw);
2838
2839	return 0;
2840}
2841
2842/**
2843 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2844 *  @hw: pointer to the HW structure
2845 *  @active: boolean used to enable/disable lplu
2846 *
2847 *  Success returns 0, Failure returns 1
2848 *
2849 *  The low power link up (lplu) state is set to the power management level D0
2850 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2851 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2852 *  is used during Dx states where the power conservation is most important.
2853 *  During driver activity, SmartSpeed should be enabled so performance is
2854 *  maintained.  This is a function pointer entry point called by drivers.
2855 **/
2856static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2857{
2858	if (hw->phy.ops.set_d0_lplu_state)
2859		return hw->phy.ops.set_d0_lplu_state(hw, active);
2860
2861	return 0;
2862}
2863
2864/**
2865 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2866 *  @hw: pointer to the HW structure
2867 *  @offset: register offset to be read
2868 *  @data: pointer to the read data
2869 *  @locked: semaphore has already been acquired or not
 
2870 *
2871 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2872 *  and stores the retrieved information in data.  Release any acquired
2873 *  semaphore before exiting.
2874 **/
2875static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2876				   bool locked, bool page_set)
2877{
2878	s32 ret_val;
2879	u16 page = BM_PHY_REG_PAGE(offset);
2880	u16 reg = BM_PHY_REG_NUM(offset);
2881	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2882
2883	if (!locked) {
2884		ret_val = hw->phy.ops.acquire(hw);
2885		if (ret_val)
2886			return ret_val;
2887	}
2888
2889	/* Page 800 works differently than the rest so it has its own func */
2890	if (page == BM_WUC_PAGE) {
2891		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2892							 true, page_set);
2893		goto out;
2894	}
2895
2896	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2897		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2898		                                         data, true);
2899		goto out;
2900	}
2901
2902	if (!page_set) {
2903		if (page == HV_INTC_FC_PAGE_START)
2904			page = 0;
2905
2906		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907			/* Page is shifted left, PHY expects (page x 32) */
2908			ret_val = e1000_set_page_igp(hw,
2909						     (page << IGP_PAGE_SHIFT));
2910
2911			hw->phy.addr = phy_addr;
2912
2913			if (ret_val)
2914				goto out;
2915		}
2916	}
2917
2918	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919	      page << IGP_PAGE_SHIFT, reg);
2920
2921	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922	                                  data);
2923out:
2924	if (!locked)
2925		hw->phy.ops.release(hw);
2926
2927	return ret_val;
2928}
2929
2930/**
2931 *  e1000_read_phy_reg_hv -  Read HV PHY register
2932 *  @hw: pointer to the HW structure
2933 *  @offset: register offset to be read
2934 *  @data: pointer to the read data
2935 *
2936 *  Acquires semaphore then reads the PHY register at offset and stores
2937 *  the retrieved information in data.  Release the acquired semaphore
2938 *  before exiting.
2939 **/
2940s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2941{
2942	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2943}
2944
2945/**
2946 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2947 *  @hw: pointer to the HW structure
2948 *  @offset: register offset to be read
2949 *  @data: pointer to the read data
2950 *
2951 *  Reads the PHY register at offset and stores the retrieved information
2952 *  in data.  Assumes semaphore already acquired.
2953 **/
2954s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2955{
2956	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2957}
2958
2959/**
2960 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2961 *  @hw: pointer to the HW structure
2962 *  @offset: register offset to write to
2963 *  @data: data to write at register offset
2964 *
2965 *  Reads the PHY register at offset and stores the retrieved information
2966 *  in data.  Assumes semaphore already acquired and page already set.
2967 **/
2968s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2969{
2970	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2971}
2972
2973/**
2974 *  __e1000_write_phy_reg_hv - Write HV PHY register
2975 *  @hw: pointer to the HW structure
2976 *  @offset: register offset to write to
2977 *  @data: data to write at register offset
2978 *  @locked: semaphore has already been acquired or not
 
2979 *
2980 *  Acquires semaphore, if necessary, then writes the data to PHY register
2981 *  at the offset.  Release any acquired semaphores before exiting.
2982 **/
2983static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2984				    bool locked, bool page_set)
2985{
2986	s32 ret_val;
2987	u16 page = BM_PHY_REG_PAGE(offset);
2988	u16 reg = BM_PHY_REG_NUM(offset);
2989	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2990
2991	if (!locked) {
2992		ret_val = hw->phy.ops.acquire(hw);
2993		if (ret_val)
2994			return ret_val;
2995	}
2996
2997	/* Page 800 works differently than the rest so it has its own func */
2998	if (page == BM_WUC_PAGE) {
2999		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3000							 false, page_set);
3001		goto out;
3002	}
3003
3004	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3005		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3006		                                         &data, false);
3007		goto out;
3008	}
3009
3010	if (!page_set) {
3011		if (page == HV_INTC_FC_PAGE_START)
3012			page = 0;
3013
3014		/*
3015		 * Workaround MDIO accesses being disabled after entering IEEE
3016		 * Power Down (when bit 11 of the PHY Control register is set)
3017		 */
3018		if ((hw->phy.type == e1000_phy_82578) &&
3019		    (hw->phy.revision >= 1) &&
3020		    (hw->phy.addr == 2) &&
3021		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3022			u16 data2 = 0x7EFF;
 
3023			ret_val = e1000_access_phy_debug_regs_hv(hw,
3024								 (1 << 6) | 0x3,
3025								 &data2, false);
3026			if (ret_val)
3027				goto out;
3028		}
3029
3030		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3031			/* Page is shifted left, PHY expects (page x 32) */
3032			ret_val = e1000_set_page_igp(hw,
3033						     (page << IGP_PAGE_SHIFT));
3034
3035			hw->phy.addr = phy_addr;
3036
3037			if (ret_val)
3038				goto out;
3039		}
3040	}
3041
3042	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3043	      page << IGP_PAGE_SHIFT, reg);
3044
3045	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3046	                                  data);
3047
3048out:
3049	if (!locked)
3050		hw->phy.ops.release(hw);
3051
3052	return ret_val;
3053}
3054
3055/**
3056 *  e1000_write_phy_reg_hv - Write HV PHY register
3057 *  @hw: pointer to the HW structure
3058 *  @offset: register offset to write to
3059 *  @data: data to write at register offset
3060 *
3061 *  Acquires semaphore then writes the data to PHY register at the offset.
3062 *  Release the acquired semaphores before exiting.
3063 **/
3064s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3065{
3066	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3067}
3068
3069/**
3070 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3071 *  @hw: pointer to the HW structure
3072 *  @offset: register offset to write to
3073 *  @data: data to write at register offset
3074 *
3075 *  Writes the data to PHY register at the offset.  Assumes semaphore
3076 *  already acquired.
3077 **/
3078s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3079{
3080	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3081}
3082
3083/**
3084 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3085 *  @hw: pointer to the HW structure
3086 *  @offset: register offset to write to
3087 *  @data: data to write at register offset
3088 *
3089 *  Writes the data to PHY register at the offset.  Assumes semaphore
3090 *  already acquired and page already set.
3091 **/
3092s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3093{
3094	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3095}
3096
3097/**
3098 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3099 *  @page: page to be accessed
3100 **/
3101static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3102{
3103	u32 phy_addr = 2;
3104
3105	if (page >= HV_INTC_FC_PAGE_START)
3106		phy_addr = 1;
3107
3108	return phy_addr;
3109}
3110
3111/**
3112 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3113 *  @hw: pointer to the HW structure
3114 *  @offset: register offset to be read or written
3115 *  @data: pointer to the data to be read or written
3116 *  @read: determines if operation is read or write
3117 *
3118 *  Reads the PHY register at offset and stores the retreived information
3119 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3120 *  to access these regs uses the address port and data port to read/write.
3121 *  These accesses done with PHY address 2 and without using pages.
3122 **/
3123static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3124                                          u16 *data, bool read)
3125{
3126	s32 ret_val;
3127	u32 addr_reg = 0;
3128	u32 data_reg = 0;
3129
3130	/* This takes care of the difference with desktop vs mobile phy */
3131	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3132	           I82578_ADDR_REG : I82577_ADDR_REG;
3133	data_reg = addr_reg + 1;
3134
3135	/* All operations in this function are phy address 2 */
3136	hw->phy.addr = 2;
3137
3138	/* masking with 0x3F to remove the page from offset */
3139	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3140	if (ret_val) {
3141		e_dbg("Could not write the Address Offset port register\n");
3142		return ret_val;
3143	}
3144
3145	/* Read or write the data value next */
3146	if (read)
3147		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3148	else
3149		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3150
3151	if (ret_val)
3152		e_dbg("Could not access the Data port register\n");
3153
3154	return ret_val;
3155}
3156
3157/**
3158 *  e1000_link_stall_workaround_hv - Si workaround
3159 *  @hw: pointer to the HW structure
3160 *
3161 *  This function works around a Si bug where the link partner can get
3162 *  a link up indication before the PHY does.  If small packets are sent
3163 *  by the link partner they can be placed in the packet buffer without
3164 *  being properly accounted for by the PHY and will stall preventing
3165 *  further packets from being received.  The workaround is to clear the
3166 *  packet buffer after the PHY detects link up.
3167 **/
3168s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3169{
3170	s32 ret_val = 0;
3171	u16 data;
3172
3173	if (hw->phy.type != e1000_phy_82578)
3174		return 0;
3175
3176	/* Do not apply workaround if in PHY loopback bit 14 set */
3177	e1e_rphy(hw, PHY_CONTROL, &data);
3178	if (data & PHY_CONTROL_LB)
 
 
 
 
3179		return 0;
3180
3181	/* check if link is up and at 1Gbps */
3182	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3183	if (ret_val)
3184		return ret_val;
3185
3186	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3187		BM_CS_STATUS_SPEED_MASK;
3188
3189	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3190		     BM_CS_STATUS_SPEED_1000))
3191		return 0;
3192
3193	msleep(200);
3194
3195	/* flush the packets in the fifo buffer */
3196	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3197			   HV_MUX_DATA_CTRL_FORCE_SPEED);
 
3198	if (ret_val)
3199		return ret_val;
3200
3201	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3202}
3203
3204/**
3205 *  e1000_check_polarity_82577 - Checks the polarity.
3206 *  @hw: pointer to the HW structure
3207 *
3208 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3209 *
3210 *  Polarity is determined based on the PHY specific status register.
3211 **/
3212s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3213{
3214	struct e1000_phy_info *phy = &hw->phy;
3215	s32 ret_val;
3216	u16 data;
3217
3218	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3219
3220	if (!ret_val)
3221		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3222		                      ? e1000_rev_polarity_reversed
3223		                      : e1000_rev_polarity_normal;
3224
3225	return ret_val;
3226}
3227
3228/**
3229 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3230 *  @hw: pointer to the HW structure
3231 *
3232 *  Calls the PHY setup function to force speed and duplex.
3233 **/
3234s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3235{
3236	struct e1000_phy_info *phy = &hw->phy;
3237	s32 ret_val;
3238	u16 phy_data;
3239	bool link;
3240
3241	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3242	if (ret_val)
3243		return ret_val;
3244
3245	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3246
3247	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3248	if (ret_val)
3249		return ret_val;
3250
3251	udelay(1);
3252
3253	if (phy->autoneg_wait_to_complete) {
3254		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3255
3256		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3257						      100000, &link);
3258		if (ret_val)
3259			return ret_val;
3260
3261		if (!link)
3262			e_dbg("Link taking longer than expected.\n");
3263
3264		/* Try once more */
3265		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3266						      100000, &link);
3267	}
3268
3269	return ret_val;
3270}
3271
3272/**
3273 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3274 *  @hw: pointer to the HW structure
3275 *
3276 *  Read PHY status to determine if link is up.  If link is up, then
3277 *  set/determine 10base-T extended distance and polarity correction.  Read
3278 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3279 *  determine on the cable length, local and remote receiver.
3280 **/
3281s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3282{
3283	struct e1000_phy_info *phy = &hw->phy;
3284	s32 ret_val;
3285	u16 data;
3286	bool link;
3287
3288	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3289	if (ret_val)
3290		return ret_val;
3291
3292	if (!link) {
3293		e_dbg("Phy info is only valid if link is up\n");
3294		return -E1000_ERR_CONFIG;
3295	}
3296
3297	phy->polarity_correction = true;
3298
3299	ret_val = e1000_check_polarity_82577(hw);
3300	if (ret_val)
3301		return ret_val;
3302
3303	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3304	if (ret_val)
3305		return ret_val;
3306
3307	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3308
3309	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3310	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3311		ret_val = hw->phy.ops.get_cable_length(hw);
3312		if (ret_val)
3313			return ret_val;
3314
3315		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3316		if (ret_val)
3317			return ret_val;
3318
3319		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3320		                ? e1000_1000t_rx_status_ok
3321		                : e1000_1000t_rx_status_not_ok;
3322
3323		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3324		                 ? e1000_1000t_rx_status_ok
3325		                 : e1000_1000t_rx_status_not_ok;
3326	} else {
3327		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3328		phy->local_rx = e1000_1000t_rx_status_undefined;
3329		phy->remote_rx = e1000_1000t_rx_status_undefined;
3330	}
3331
3332	return 0;
3333}
3334
3335/**
3336 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3337 *  @hw: pointer to the HW structure
3338 *
3339 * Reads the diagnostic status register and verifies result is valid before
3340 * placing it in the phy_cable_length field.
3341 **/
3342s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3343{
3344	struct e1000_phy_info *phy = &hw->phy;
3345	s32 ret_val;
3346	u16 phy_data, length;
3347
3348	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3349	if (ret_val)
3350		return ret_val;
3351
3352	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3353	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3354
3355	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3356		ret_val = -E1000_ERR_PHY;
3357
3358	phy->cable_length = length;
3359
3360	return 0;
3361}