Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <linux/ethtool.h>
   6
   7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   9					  u16 *data, bool read, bool page_set);
  10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  12					  u16 *data, bool read);
  13
  14/* Cable length tables */
  15static const u16 e1000_m88_cable_length_table[] = {
  16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  17};
  18
  19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  20		ARRAY_SIZE(e1000_m88_cable_length_table)
  21
  22static const u16 e1000_igp_2_cable_length_table[] = {
  23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  30	124
  31};
  32
  33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  35
  36/**
  37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  38 *  @hw: pointer to the HW structure
  39 *
  40 *  Read the PHY management control register and check whether a PHY reset
  41 *  is blocked.  If a reset is not blocked return 0, otherwise
  42 *  return E1000_BLK_PHY_RESET (12).
  43 **/
  44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  45{
  46	u32 manc;
  47
  48	manc = er32(MANC);
  49
  50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  51}
  52
  53/**
  54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  58 *  revision in the hardware structure.
  59 **/
  60s32 e1000e_get_phy_id(struct e1000_hw *hw)
  61{
  62	struct e1000_phy_info *phy = &hw->phy;
  63	s32 ret_val = 0;
  64	u16 phy_id;
  65	u16 retry_count = 0;
  66
  67	if (!phy->ops.read_reg)
  68		return 0;
  69
  70	while (retry_count < 2) {
  71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  72		if (ret_val)
  73			return ret_val;
  74
  75		phy->id = (u32)(phy_id << 16);
  76		usleep_range(20, 40);
  77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  78		if (ret_val)
  79			return ret_val;
  80
  81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  83
  84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  85			return 0;
  86
  87		retry_count++;
  88	}
  89
  90	return 0;
  91}
  92
  93/**
  94 *  e1000e_phy_reset_dsp - Reset PHY DSP
  95 *  @hw: pointer to the HW structure
  96 *
  97 *  Reset the digital signal processor.
  98 **/
  99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 100{
 101	s32 ret_val;
 102
 103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 104	if (ret_val)
 105		return ret_val;
 106
 107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 108}
 109
 110void e1000e_disable_phy_retry(struct e1000_hw *hw)
 111{
 112	hw->phy.retry_enabled = false;
 113}
 114
 115void e1000e_enable_phy_retry(struct e1000_hw *hw)
 116{
 117	hw->phy.retry_enabled = true;
 118}
 119
 120/**
 121 *  e1000e_read_phy_reg_mdic - Read MDI control register
 122 *  @hw: pointer to the HW structure
 123 *  @offset: register offset to be read
 124 *  @data: pointer to the read data
 125 *
 126 *  Reads the MDI control register in the PHY at offset and stores the
 127 *  information read to data.
 128 **/
 129s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 130{
 131	u32 i, mdic = 0, retry_counter, retry_max;
 132	struct e1000_phy_info *phy = &hw->phy;
 133	bool success;
 134
 135	if (offset > MAX_PHY_REG_ADDRESS) {
 136		e_dbg("PHY Address %d is out of range\n", offset);
 137		return -E1000_ERR_PARAM;
 138	}
 139
 140	retry_max = phy->retry_enabled ? phy->retry_count : 0;
 141
 142	/* Set up Op-code, Phy Address, and register offset in the MDI
 143	 * Control register.  The MAC will take care of interfacing with the
 144	 * PHY to retrieve the desired data.
 145	 */
 146	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
 147		success = true;
 148
 149		mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 150			(phy->addr << E1000_MDIC_PHY_SHIFT) |
 151			(E1000_MDIC_OP_READ));
 152
 153		ew32(MDIC, mdic);
 154
 155		/* Poll the ready bit to see if the MDI read completed
 156		 * Increasing the time out as testing showed failures with
 157		 * the lower time out
 158		 */
 159		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 160			udelay(50);
 161			mdic = er32(MDIC);
 162			if (mdic & E1000_MDIC_READY)
 163				break;
 164		}
 165		if (!(mdic & E1000_MDIC_READY)) {
 166			e_dbg("MDI Read PHY Reg Address %d did not complete\n",
 167			      offset);
 168			success = false;
 169		}
 170		if (mdic & E1000_MDIC_ERROR) {
 171			e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 172			success = false;
 173		}
 174		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 175			e_dbg("MDI Read offset error - requested %d, returned %d\n",
 176			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 177			success = false;
 178		}
 179
 180		/* Allow some time after each MDIC transaction to avoid
 181		 * reading duplicate data in the next MDIC transaction.
 182		 */
 183		if (hw->mac.type == e1000_pch2lan)
 184			udelay(100);
 185
 186		if (success) {
 187			*data = (u16)mdic;
 188			return 0;
 189		}
 190
 191		if (retry_counter != retry_max) {
 192			e_dbg("Perform retry on PHY transaction...\n");
 193			mdelay(10);
 194		}
 195	}
 
 
 
 
 
 
 
 
 
 
 
 196
 197	return -E1000_ERR_PHY;
 
 
 
 
 
 
 198}
 199
 200/**
 201 *  e1000e_write_phy_reg_mdic - Write MDI control register
 202 *  @hw: pointer to the HW structure
 203 *  @offset: register offset to write to
 204 *  @data: data to write to register at offset
 205 *
 206 *  Writes data to MDI control register in the PHY at offset.
 207 **/
 208s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 209{
 210	u32 i, mdic = 0, retry_counter, retry_max;
 211	struct e1000_phy_info *phy = &hw->phy;
 212	bool success;
 213
 214	if (offset > MAX_PHY_REG_ADDRESS) {
 215		e_dbg("PHY Address %d is out of range\n", offset);
 216		return -E1000_ERR_PARAM;
 217	}
 218
 219	retry_max = phy->retry_enabled ? phy->retry_count : 0;
 220
 221	/* Set up Op-code, Phy Address, and register offset in the MDI
 222	 * Control register.  The MAC will take care of interfacing with the
 223	 * PHY to retrieve the desired data.
 224	 */
 225	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
 226		success = true;
 227
 228		mdic = (((u32)data) |
 229			(offset << E1000_MDIC_REG_SHIFT) |
 230			(phy->addr << E1000_MDIC_PHY_SHIFT) |
 231			(E1000_MDIC_OP_WRITE));
 232
 233		ew32(MDIC, mdic);
 234
 235		/* Poll the ready bit to see if the MDI read completed
 236		 * Increasing the time out as testing showed failures with
 237		 * the lower time out
 238		 */
 239		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 240			udelay(50);
 241			mdic = er32(MDIC);
 242			if (mdic & E1000_MDIC_READY)
 243				break;
 244		}
 245		if (!(mdic & E1000_MDIC_READY)) {
 246			e_dbg("MDI Write PHY Reg Address %d did not complete\n",
 247			      offset);
 248			success = false;
 249		}
 250		if (mdic & E1000_MDIC_ERROR) {
 251			e_dbg("MDI Write PHY Reg Address %d Error\n", offset);
 252			success = false;
 253		}
 254		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 255			e_dbg("MDI Write offset error - requested %d, returned %d\n",
 256			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 257			success = false;
 258		}
 259
 260		/* Allow some time after each MDIC transaction to avoid
 261		 * reading duplicate data in the next MDIC transaction.
 262		 */
 263		if (hw->mac.type == e1000_pch2lan)
 264			udelay(100);
 265
 266		if (success)
 267			return 0;
 268
 269		if (retry_counter != retry_max) {
 270			e_dbg("Perform retry on PHY transaction...\n");
 271			mdelay(10);
 272		}
 273	}
 274
 275	return -E1000_ERR_PHY;
 
 
 
 
 
 
 276}
 277
 278/**
 279 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 280 *  @hw: pointer to the HW structure
 281 *  @offset: register offset to be read
 282 *  @data: pointer to the read data
 283 *
 284 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 285 *  and storing the retrieved information in data.  Release any acquired
 286 *  semaphores before exiting.
 287 **/
 288s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 289{
 290	s32 ret_val;
 291
 292	ret_val = hw->phy.ops.acquire(hw);
 293	if (ret_val)
 294		return ret_val;
 295
 296	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 297					   data);
 298
 299	hw->phy.ops.release(hw);
 300
 301	return ret_val;
 302}
 303
 304/**
 305 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 306 *  @hw: pointer to the HW structure
 307 *  @offset: register offset to write to
 308 *  @data: data to write at register offset
 309 *
 310 *  Acquires semaphore, if necessary, then writes the data to PHY register
 311 *  at the offset.  Release any acquired semaphores before exiting.
 312 **/
 313s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 314{
 315	s32 ret_val;
 316
 317	ret_val = hw->phy.ops.acquire(hw);
 318	if (ret_val)
 319		return ret_val;
 320
 321	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 322					    data);
 323
 324	hw->phy.ops.release(hw);
 325
 326	return ret_val;
 327}
 328
 329/**
 330 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 331 *  @hw: pointer to the HW structure
 332 *  @page: page to set (shifted left when necessary)
 333 *
 334 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 335 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 336 *  must set it appropriately (if necessary) after this function returns.
 337 **/
 338s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 339{
 340	e_dbg("Setting page 0x%x\n", page);
 341
 342	hw->phy.addr = 1;
 343
 344	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 345}
 346
 347/**
 348 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 349 *  @hw: pointer to the HW structure
 350 *  @offset: register offset to be read
 351 *  @data: pointer to the read data
 352 *  @locked: semaphore has already been acquired or not
 353 *
 354 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 355 *  and stores the retrieved information in data.  Release any acquired
 356 *  semaphores before exiting.
 357 **/
 358static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 359				     bool locked)
 360{
 361	s32 ret_val = 0;
 362
 363	if (!locked) {
 364		if (!hw->phy.ops.acquire)
 365			return 0;
 366
 367		ret_val = hw->phy.ops.acquire(hw);
 368		if (ret_val)
 369			return ret_val;
 370	}
 371
 372	if (offset > MAX_PHY_MULTI_PAGE_REG)
 373		ret_val = e1000e_write_phy_reg_mdic(hw,
 374						    IGP01E1000_PHY_PAGE_SELECT,
 375						    (u16)offset);
 376	if (!ret_val)
 377		ret_val = e1000e_read_phy_reg_mdic(hw,
 378						   MAX_PHY_REG_ADDRESS & offset,
 379						   data);
 380	if (!locked)
 381		hw->phy.ops.release(hw);
 382
 383	return ret_val;
 384}
 385
 386/**
 387 *  e1000e_read_phy_reg_igp - Read igp PHY register
 388 *  @hw: pointer to the HW structure
 389 *  @offset: register offset to be read
 390 *  @data: pointer to the read data
 391 *
 392 *  Acquires semaphore then reads the PHY register at offset and stores the
 393 *  retrieved information in data.
 394 *  Release the acquired semaphore before exiting.
 395 **/
 396s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 397{
 398	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 399}
 400
 401/**
 402 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 403 *  @hw: pointer to the HW structure
 404 *  @offset: register offset to be read
 405 *  @data: pointer to the read data
 406 *
 407 *  Reads the PHY register at offset and stores the retrieved information
 408 *  in data.  Assumes semaphore already acquired.
 409 **/
 410s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 411{
 412	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 413}
 414
 415/**
 416 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 417 *  @hw: pointer to the HW structure
 418 *  @offset: register offset to write to
 419 *  @data: data to write at register offset
 420 *  @locked: semaphore has already been acquired or not
 421 *
 422 *  Acquires semaphore, if necessary, then writes the data to PHY register
 423 *  at the offset.  Release any acquired semaphores before exiting.
 424 **/
 425static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 426				      bool locked)
 427{
 428	s32 ret_val = 0;
 429
 430	if (!locked) {
 431		if (!hw->phy.ops.acquire)
 432			return 0;
 433
 434		ret_val = hw->phy.ops.acquire(hw);
 435		if (ret_val)
 436			return ret_val;
 437	}
 438
 439	if (offset > MAX_PHY_MULTI_PAGE_REG)
 440		ret_val = e1000e_write_phy_reg_mdic(hw,
 441						    IGP01E1000_PHY_PAGE_SELECT,
 442						    (u16)offset);
 443	if (!ret_val)
 444		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 445						    offset, data);
 446	if (!locked)
 447		hw->phy.ops.release(hw);
 448
 449	return ret_val;
 450}
 451
 452/**
 453 *  e1000e_write_phy_reg_igp - Write igp PHY register
 454 *  @hw: pointer to the HW structure
 455 *  @offset: register offset to write to
 456 *  @data: data to write at register offset
 457 *
 458 *  Acquires semaphore then writes the data to PHY register
 459 *  at the offset.  Release any acquired semaphores before exiting.
 460 **/
 461s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 462{
 463	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 464}
 465
 466/**
 467 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 468 *  @hw: pointer to the HW structure
 469 *  @offset: register offset to write to
 470 *  @data: data to write at register offset
 471 *
 472 *  Writes the data to PHY register at the offset.
 473 *  Assumes semaphore already acquired.
 474 **/
 475s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 476{
 477	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 478}
 479
 480/**
 481 *  __e1000_read_kmrn_reg - Read kumeran register
 482 *  @hw: pointer to the HW structure
 483 *  @offset: register offset to be read
 484 *  @data: pointer to the read data
 485 *  @locked: semaphore has already been acquired or not
 486 *
 487 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 488 *  using the kumeran interface.  The information retrieved is stored in data.
 489 *  Release any acquired semaphores before exiting.
 490 **/
 491static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 492				 bool locked)
 493{
 494	u32 kmrnctrlsta;
 495
 496	if (!locked) {
 497		s32 ret_val = 0;
 498
 499		if (!hw->phy.ops.acquire)
 500			return 0;
 501
 502		ret_val = hw->phy.ops.acquire(hw);
 503		if (ret_val)
 504			return ret_val;
 505	}
 506
 507	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
 508		      E1000_KMRNCTRLSTA_REN;
 509	ew32(KMRNCTRLSTA, kmrnctrlsta);
 510	e1e_flush();
 511
 512	udelay(2);
 513
 514	kmrnctrlsta = er32(KMRNCTRLSTA);
 515	*data = (u16)kmrnctrlsta;
 516
 517	if (!locked)
 518		hw->phy.ops.release(hw);
 519
 520	return 0;
 521}
 522
 523/**
 524 *  e1000e_read_kmrn_reg -  Read kumeran register
 525 *  @hw: pointer to the HW structure
 526 *  @offset: register offset to be read
 527 *  @data: pointer to the read data
 528 *
 529 *  Acquires semaphore then reads the PHY register at offset using the
 530 *  kumeran interface.  The information retrieved is stored in data.
 531 *  Release the acquired semaphore before exiting.
 532 **/
 533s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 534{
 535	return __e1000_read_kmrn_reg(hw, offset, data, false);
 536}
 537
 538/**
 539 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 540 *  @hw: pointer to the HW structure
 541 *  @offset: register offset to be read
 542 *  @data: pointer to the read data
 543 *
 544 *  Reads the PHY register at offset using the kumeran interface.  The
 545 *  information retrieved is stored in data.
 546 *  Assumes semaphore already acquired.
 547 **/
 548s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 549{
 550	return __e1000_read_kmrn_reg(hw, offset, data, true);
 551}
 552
 553/**
 554 *  __e1000_write_kmrn_reg - Write kumeran register
 555 *  @hw: pointer to the HW structure
 556 *  @offset: register offset to write to
 557 *  @data: data to write at register offset
 558 *  @locked: semaphore has already been acquired or not
 559 *
 560 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 561 *  at the offset using the kumeran interface.  Release any acquired semaphores
 562 *  before exiting.
 563 **/
 564static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 565				  bool locked)
 566{
 567	u32 kmrnctrlsta;
 568
 569	if (!locked) {
 570		s32 ret_val = 0;
 571
 572		if (!hw->phy.ops.acquire)
 573			return 0;
 574
 575		ret_val = hw->phy.ops.acquire(hw);
 576		if (ret_val)
 577			return ret_val;
 578	}
 579
 580	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
 581	ew32(KMRNCTRLSTA, kmrnctrlsta);
 582	e1e_flush();
 583
 584	udelay(2);
 585
 586	if (!locked)
 587		hw->phy.ops.release(hw);
 588
 589	return 0;
 590}
 591
 592/**
 593 *  e1000e_write_kmrn_reg -  Write kumeran register
 594 *  @hw: pointer to the HW structure
 595 *  @offset: register offset to write to
 596 *  @data: data to write at register offset
 597 *
 598 *  Acquires semaphore then writes the data to the PHY register at the offset
 599 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 600 **/
 601s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 602{
 603	return __e1000_write_kmrn_reg(hw, offset, data, false);
 604}
 605
 606/**
 607 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 608 *  @hw: pointer to the HW structure
 609 *  @offset: register offset to write to
 610 *  @data: data to write at register offset
 611 *
 612 *  Write the data to PHY register at the offset using the kumeran interface.
 613 *  Assumes semaphore already acquired.
 614 **/
 615s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 616{
 617	return __e1000_write_kmrn_reg(hw, offset, data, true);
 618}
 619
 620/**
 621 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 622 *  @hw: pointer to the HW structure
 623 *
 624 *  Sets up Master/slave mode
 625 **/
 626static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 627{
 628	s32 ret_val;
 629	u16 phy_data;
 630
 631	/* Resolve Master/Slave mode */
 632	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 633	if (ret_val)
 634		return ret_val;
 635
 636	/* load defaults for future use */
 637	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 638	    ((phy_data & CTL1000_AS_MASTER) ?
 639	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 640
 641	switch (hw->phy.ms_type) {
 642	case e1000_ms_force_master:
 643		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 644		break;
 645	case e1000_ms_force_slave:
 646		phy_data |= CTL1000_ENABLE_MASTER;
 647		phy_data &= ~(CTL1000_AS_MASTER);
 648		break;
 649	case e1000_ms_auto:
 650		phy_data &= ~CTL1000_ENABLE_MASTER;
 651		fallthrough;
 652	default:
 653		break;
 654	}
 655
 656	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 657}
 658
 659/**
 660 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 661 *  @hw: pointer to the HW structure
 662 *
 663 *  Sets up Carrier-sense on Transmit and downshift values.
 664 **/
 665s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 666{
 667	s32 ret_val;
 668	u16 phy_data;
 669
 670	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 671	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 672	if (ret_val)
 673		return ret_val;
 674
 675	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 676
 677	/* Enable downshift */
 678	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 679
 680	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 681	if (ret_val)
 682		return ret_val;
 683
 684	/* Set MDI/MDIX mode */
 685	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 689	/* Options:
 690	 *   0 - Auto (default)
 691	 *   1 - MDI mode
 692	 *   2 - MDI-X mode
 693	 */
 694	switch (hw->phy.mdix) {
 695	case 1:
 696		break;
 697	case 2:
 698		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 699		break;
 700	case 0:
 701	default:
 702		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 703		break;
 704	}
 705	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 706	if (ret_val)
 707		return ret_val;
 708
 709	return e1000_set_master_slave_mode(hw);
 710}
 711
 712/**
 713 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 714 *  @hw: pointer to the HW structure
 715 *
 716 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 717 *  and downshift values are set also.
 718 **/
 719s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 720{
 721	struct e1000_phy_info *phy = &hw->phy;
 722	s32 ret_val;
 723	u16 phy_data;
 724
 725	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 726	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 727	if (ret_val)
 728		return ret_val;
 729
 730	/* For BM PHY this bit is downshift enable */
 731	if (phy->type != e1000_phy_bm)
 732		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 733
 734	/* Options:
 735	 *   MDI/MDI-X = 0 (default)
 736	 *   0 - Auto for all speeds
 737	 *   1 - MDI mode
 738	 *   2 - MDI-X mode
 739	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 740	 */
 741	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 742
 743	switch (phy->mdix) {
 744	case 1:
 745		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 746		break;
 747	case 2:
 748		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 749		break;
 750	case 3:
 751		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 752		break;
 753	case 0:
 754	default:
 755		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 756		break;
 757	}
 758
 759	/* Options:
 760	 *   disable_polarity_correction = 0 (default)
 761	 *       Automatic Correction for Reversed Cable Polarity
 762	 *   0 - Disabled
 763	 *   1 - Enabled
 764	 */
 765	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 766	if (phy->disable_polarity_correction)
 767		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 768
 769	/* Enable downshift on BM (disabled by default) */
 770	if (phy->type == e1000_phy_bm) {
 771		/* For 82574/82583, first disable then enable downshift */
 772		if (phy->id == BME1000_E_PHY_ID_R2) {
 773			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 774			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 775					   phy_data);
 776			if (ret_val)
 777				return ret_val;
 778			/* Commit the changes. */
 779			ret_val = phy->ops.commit(hw);
 780			if (ret_val) {
 781				e_dbg("Error committing the PHY changes\n");
 782				return ret_val;
 783			}
 784		}
 785
 786		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 787	}
 788
 789	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 790	if (ret_val)
 791		return ret_val;
 792
 793	if ((phy->type == e1000_phy_m88) &&
 794	    (phy->revision < E1000_REVISION_4) &&
 795	    (phy->id != BME1000_E_PHY_ID_R2)) {
 796		/* Force TX_CLK in the Extended PHY Specific Control Register
 797		 * to 25MHz clock.
 798		 */
 799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 800		if (ret_val)
 801			return ret_val;
 802
 803		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 804
 805		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	if (phy->ops.commit) {
 835		ret_val = phy->ops.commit(hw);
 836		if (ret_val) {
 837			e_dbg("Error committing the PHY changes\n");
 838			return ret_val;
 839		}
 840	}
 841
 842	if (phy->type == e1000_phy_82578) {
 843		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 844		if (ret_val)
 845			return ret_val;
 846
 847		/* 82578 PHY - set the downshift count to 1x. */
 848		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 849		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 850		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 851		if (ret_val)
 852			return ret_val;
 853	}
 854
 855	return 0;
 856}
 857
 858/**
 859 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 863 *  igp PHY's.
 864 **/
 865s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 866{
 867	struct e1000_phy_info *phy = &hw->phy;
 868	s32 ret_val;
 869	u16 data;
 870
 871	ret_val = e1000_phy_hw_reset(hw);
 872	if (ret_val) {
 873		e_dbg("Error resetting the PHY.\n");
 874		return ret_val;
 875	}
 876
 877	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 878	 * timeout issues when LFS is enabled.
 879	 */
 880	msleep(100);
 881
 882	/* disable lplu d0 during driver init */
 883	if (hw->phy.ops.set_d0_lplu_state) {
 884		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 885		if (ret_val) {
 886			e_dbg("Error Disabling LPLU D0\n");
 887			return ret_val;
 888		}
 889	}
 890	/* Configure mdi-mdix settings */
 891	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 892	if (ret_val)
 893		return ret_val;
 894
 895	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 896
 897	switch (phy->mdix) {
 898	case 1:
 899		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 2:
 902		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 903		break;
 904	case 0:
 905	default:
 906		data |= IGP01E1000_PSCR_AUTO_MDIX;
 907		break;
 908	}
 909	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 910	if (ret_val)
 911		return ret_val;
 912
 913	/* set auto-master slave resolution settings */
 914	if (hw->mac.autoneg) {
 915		/* when autonegotiation advertisement is only 1000Mbps then we
 916		 * should disable SmartSpeed and enable Auto MasterSlave
 917		 * resolution as hardware default.
 918		 */
 919		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 920			/* Disable SmartSpeed */
 921			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 922					   &data);
 923			if (ret_val)
 924				return ret_val;
 925
 926			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 927			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 928					   data);
 929			if (ret_val)
 930				return ret_val;
 931
 932			/* Set auto Master/Slave resolution process */
 933			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 934			if (ret_val)
 935				return ret_val;
 936
 937			data &= ~CTL1000_ENABLE_MASTER;
 938			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 939			if (ret_val)
 940				return ret_val;
 941		}
 942
 943		ret_val = e1000_set_master_slave_mode(hw);
 944	}
 945
 946	return ret_val;
 947}
 948
 949/**
 950 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 951 *  @hw: pointer to the HW structure
 952 *
 953 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 954 *  register and if the PHY is already setup for auto-negotiation, then
 955 *  return successful.  Otherwise, setup advertisement and flow control to
 956 *  the appropriate values for the wanted auto-negotiation.
 957 **/
 958static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 959{
 960	struct e1000_phy_info *phy = &hw->phy;
 961	s32 ret_val;
 962	u16 mii_autoneg_adv_reg;
 963	u16 mii_1000t_ctrl_reg = 0;
 964
 965	phy->autoneg_advertised &= phy->autoneg_mask;
 966
 967	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 968	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 969	if (ret_val)
 970		return ret_val;
 971
 972	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 973		/* Read the MII 1000Base-T Control Register (Address 9). */
 974		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 975		if (ret_val)
 976			return ret_val;
 977	}
 978
 979	/* Need to parse both autoneg_advertised and fc and set up
 980	 * the appropriate PHY registers.  First we will parse for
 981	 * autoneg_advertised software override.  Since we can advertise
 982	 * a plethora of combinations, we need to check each bit
 983	 * individually.
 984	 */
 985
 986	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 991				 ADVERTISE_100HALF |
 992				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 993	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 994
 995	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 996
 997	/* Do we want to advertise 10 Mb Half Duplex? */
 998	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 999		e_dbg("Advertise 10mb Half duplex\n");
1000		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
1001	}
1002
1003	/* Do we want to advertise 10 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1005		e_dbg("Advertise 10mb Full duplex\n");
1006		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
1007	}
1008
1009	/* Do we want to advertise 100 Mb Half Duplex? */
1010	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1011		e_dbg("Advertise 100mb Half duplex\n");
1012		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
1013	}
1014
1015	/* Do we want to advertise 100 Mb Full Duplex? */
1016	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1017		e_dbg("Advertise 100mb Full duplex\n");
1018		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1019	}
1020
1021	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1022	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1023		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1024
1025	/* Do we want to advertise 1000 Mb Full Duplex? */
1026	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1027		e_dbg("Advertise 1000mb Full duplex\n");
1028		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1029	}
1030
1031	/* Check for a software override of the flow control settings, and
1032	 * setup the PHY advertisement registers accordingly.  If
1033	 * auto-negotiation is enabled, then software will have to set the
1034	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1035	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1036	 * negotiation.
1037	 *
1038	 * The possible values of the "fc" parameter are:
1039	 *      0:  Flow control is completely disabled
1040	 *      1:  Rx flow control is enabled (we can receive pause frames
1041	 *          but not send pause frames).
1042	 *      2:  Tx flow control is enabled (we can send pause frames
1043	 *          but we do not support receiving pause frames).
1044	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1045	 *  other:  No software override.  The flow control configuration
1046	 *          in the EEPROM is used.
1047	 */
1048	switch (hw->fc.current_mode) {
1049	case e1000_fc_none:
1050		/* Flow control (Rx & Tx) is completely disabled by a
1051		 * software over-ride.
1052		 */
1053		mii_autoneg_adv_reg &=
1054		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1055		phy->autoneg_advertised &=
1056		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1057		break;
1058	case e1000_fc_rx_pause:
1059		/* Rx Flow control is enabled, and Tx Flow control is
1060		 * disabled, by a software over-ride.
1061		 *
1062		 * Since there really isn't a way to advertise that we are
1063		 * capable of Rx Pause ONLY, we will advertise that we
1064		 * support both symmetric and asymmetric Rx PAUSE.  Later
1065		 * (in e1000e_config_fc_after_link_up) we will disable the
1066		 * hw's ability to send PAUSE frames.
1067		 */
1068		mii_autoneg_adv_reg |=
1069		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1070		phy->autoneg_advertised |=
1071		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1072		break;
1073	case e1000_fc_tx_pause:
1074		/* Tx Flow control is enabled, and Rx Flow control is
1075		 * disabled, by a software over-ride.
1076		 */
1077		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1078		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1079		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1080		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1081		break;
1082	case e1000_fc_full:
1083		/* Flow control (both Rx and Tx) is enabled by a software
1084		 * over-ride.
1085		 */
1086		mii_autoneg_adv_reg |=
1087		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1088		phy->autoneg_advertised |=
1089		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1090		break;
1091	default:
1092		e_dbg("Flow control param set incorrectly\n");
1093		return -E1000_ERR_CONFIG;
1094	}
1095
1096	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1097	if (ret_val)
1098		return ret_val;
1099
1100	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1101
1102	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1103		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1104
1105	return ret_val;
1106}
1107
1108/**
1109 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Performs initial bounds checking on autoneg advertisement parameter, then
1113 *  configure to advertise the full capability.  Setup the PHY to autoneg
1114 *  and restart the negotiation process between the link partner.  If
1115 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1116 **/
1117static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1118{
1119	struct e1000_phy_info *phy = &hw->phy;
1120	s32 ret_val;
1121	u16 phy_ctrl;
1122
1123	/* Perform some bounds checking on the autoneg advertisement
1124	 * parameter.
1125	 */
1126	phy->autoneg_advertised &= phy->autoneg_mask;
1127
1128	/* If autoneg_advertised is zero, we assume it was not defaulted
1129	 * by the calling code so we set to advertise full capability.
1130	 */
1131	if (!phy->autoneg_advertised)
1132		phy->autoneg_advertised = phy->autoneg_mask;
1133
1134	e_dbg("Reconfiguring auto-neg advertisement params\n");
1135	ret_val = e1000_phy_setup_autoneg(hw);
1136	if (ret_val) {
1137		e_dbg("Error Setting up Auto-Negotiation\n");
1138		return ret_val;
1139	}
1140	e_dbg("Restarting Auto-Neg\n");
1141
1142	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1143	 * the Auto Neg Restart bit in the PHY control register.
1144	 */
1145	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1146	if (ret_val)
1147		return ret_val;
1148
1149	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1150	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1151	if (ret_val)
1152		return ret_val;
1153
1154	/* Does the user want to wait for Auto-Neg to complete here, or
1155	 * check at a later time (for example, callback routine).
1156	 */
1157	if (phy->autoneg_wait_to_complete) {
1158		ret_val = e1000_wait_autoneg(hw);
1159		if (ret_val) {
1160			e_dbg("Error while waiting for autoneg to complete\n");
1161			return ret_val;
1162		}
1163	}
1164
1165	hw->mac.get_link_status = true;
1166
1167	return ret_val;
1168}
1169
1170/**
1171 *  e1000e_setup_copper_link - Configure copper link settings
1172 *  @hw: pointer to the HW structure
1173 *
1174 *  Calls the appropriate function to configure the link for auto-neg or forced
1175 *  speed and duplex.  Then we check for link, once link is established calls
1176 *  to configure collision distance and flow control are called.  If link is
1177 *  not established, we return -E1000_ERR_PHY (-2).
1178 **/
1179s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1180{
1181	s32 ret_val;
1182	bool link;
1183
1184	if (hw->mac.autoneg) {
1185		/* Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/* PHY will be set to 10H, 10F, 100H or 100F
1193		 * depending on user settings.
1194		 */
1195		e_dbg("Forcing Speed and Duplex\n");
1196		ret_val = hw->phy.ops.force_speed_duplex(hw);
1197		if (ret_val) {
1198			e_dbg("Error Forcing Speed and Duplex\n");
1199			return ret_val;
1200		}
1201	}
1202
1203	/* Check link status. Wait up to 100 microseconds for link to become
1204	 * valid.
1205	 */
1206	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1207					      &link);
1208	if (ret_val)
1209		return ret_val;
1210
1211	if (link) {
1212		e_dbg("Valid link established!!!\n");
1213		hw->mac.ops.config_collision_dist(hw);
1214		ret_val = e1000e_config_fc_after_link_up(hw);
1215	} else {
1216		e_dbg("Unable to establish link!!!\n");
1217	}
1218
1219	return ret_val;
1220}
1221
1222/**
1223 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224 *  @hw: pointer to the HW structure
1225 *
1226 *  Calls the PHY setup function to force speed and duplex.  Clears the
1227 *  auto-crossover to force MDI manually.  Waits for link and returns
1228 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1229 **/
1230s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1231{
1232	struct e1000_phy_info *phy = &hw->phy;
1233	s32 ret_val;
1234	u16 phy_data;
1235	bool link;
1236
1237	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1238	if (ret_val)
1239		return ret_val;
1240
1241	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1244	if (ret_val)
1245		return ret_val;
1246
1247	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1248	 * forced whenever speed and duplex are forced.
1249	 */
1250	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1251	if (ret_val)
1252		return ret_val;
1253
1254	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1255	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1256
1257	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1258	if (ret_val)
1259		return ret_val;
1260
1261	e_dbg("IGP PSCR: %X\n", phy_data);
1262
1263	udelay(1);
1264
1265	if (phy->autoneg_wait_to_complete) {
1266		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1267
1268		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1269						      100000, &link);
1270		if (ret_val)
1271			return ret_val;
1272
1273		if (!link)
1274			e_dbg("Link taking longer than expected.\n");
1275
1276		/* Try once more */
1277		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1278						      100000, &link);
1279	}
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  Calls the PHY setup function to force speed and duplex.  Clears the
1289 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1290 *  changes.  If time expires while waiting for link up, we reset the DSP.
1291 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1292 *  successful completion, else return corresponding error code.
1293 **/
1294s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1295{
1296	struct e1000_phy_info *phy = &hw->phy;
1297	s32 ret_val;
1298	u16 phy_data;
1299	bool link;
1300
1301	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1302	 * forced whenever speed and duplex are forced.
1303	 */
1304	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1305	if (ret_val)
1306		return ret_val;
1307
1308	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1309	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1310	if (ret_val)
1311		return ret_val;
1312
1313	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1314
1315	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1316	if (ret_val)
1317		return ret_val;
1318
1319	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1320
1321	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1322	if (ret_val)
1323		return ret_val;
1324
1325	/* Reset the phy to commit changes. */
1326	if (hw->phy.ops.commit) {
1327		ret_val = hw->phy.ops.commit(hw);
1328		if (ret_val)
1329			return ret_val;
1330	}
1331
1332	if (phy->autoneg_wait_to_complete) {
1333		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1334
1335		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1336						      100000, &link);
1337		if (ret_val)
1338			return ret_val;
1339
1340		if (!link) {
1341			if (hw->phy.type != e1000_phy_m88) {
1342				e_dbg("Link taking longer than expected.\n");
1343			} else {
1344				/* We didn't get link.
1345				 * Reset the DSP and cross our fingers.
1346				 */
1347				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1348						   0x001d);
1349				if (ret_val)
1350					return ret_val;
1351				ret_val = e1000e_phy_reset_dsp(hw);
1352				if (ret_val)
1353					return ret_val;
1354			}
1355		}
1356
1357		/* Try once more */
1358		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1359						      100000, &link);
1360		if (ret_val)
1361			return ret_val;
1362	}
1363
1364	if (hw->phy.type != e1000_phy_m88)
1365		return 0;
1366
1367	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1368	if (ret_val)
1369		return ret_val;
1370
1371	/* Resetting the phy means we need to re-force TX_CLK in the
1372	 * Extended PHY Specific Control Register to 25MHz clock from
1373	 * the reset value of 2.5MHz.
1374	 */
1375	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1376	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1377	if (ret_val)
1378		return ret_val;
1379
1380	/* In addition, we must re-enable CRS on Tx for both half and full
1381	 * duplex.
1382	 */
1383	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1384	if (ret_val)
1385		return ret_val;
1386
1387	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1388	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1389
1390	return ret_val;
1391}
1392
1393/**
1394 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1395 *  @hw: pointer to the HW structure
1396 *
1397 *  Forces the speed and duplex settings of the PHY.
1398 *  This is a function pointer entry point only called by
1399 *  PHY setup routines.
1400 **/
1401s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1402{
1403	struct e1000_phy_info *phy = &hw->phy;
1404	s32 ret_val;
1405	u16 data;
1406	bool link;
1407
1408	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1409	if (ret_val)
1410		return ret_val;
1411
1412	e1000e_phy_force_speed_duplex_setup(hw, &data);
1413
1414	ret_val = e1e_wphy(hw, MII_BMCR, data);
1415	if (ret_val)
1416		return ret_val;
1417
1418	/* Disable MDI-X support for 10/100 */
1419	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	data &= ~IFE_PMC_AUTO_MDIX;
1424	data &= ~IFE_PMC_FORCE_MDIX;
1425
1426	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1427	if (ret_val)
1428		return ret_val;
1429
1430	e_dbg("IFE PMC: %X\n", data);
1431
1432	udelay(1);
1433
1434	if (phy->autoneg_wait_to_complete) {
1435		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1436
1437		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1438						      100000, &link);
1439		if (ret_val)
1440			return ret_val;
1441
1442		if (!link)
1443			e_dbg("Link taking longer than expected.\n");
1444
1445		/* Try once more */
1446		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1447						      100000, &link);
1448		if (ret_val)
1449			return ret_val;
1450	}
1451
1452	return 0;
1453}
1454
1455/**
1456 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1457 *  @hw: pointer to the HW structure
1458 *  @phy_ctrl: pointer to current value of MII_BMCR
1459 *
1460 *  Forces speed and duplex on the PHY by doing the following: disable flow
1461 *  control, force speed/duplex on the MAC, disable auto speed detection,
1462 *  disable auto-negotiation, configure duplex, configure speed, configure
1463 *  the collision distance, write configuration to CTRL register.  The
1464 *  caller must write to the MII_BMCR register for these settings to
1465 *  take affect.
1466 **/
1467void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1468{
1469	struct e1000_mac_info *mac = &hw->mac;
1470	u32 ctrl;
1471
1472	/* Turn off flow control when forcing speed/duplex */
1473	hw->fc.current_mode = e1000_fc_none;
1474
1475	/* Force speed/duplex on the mac */
1476	ctrl = er32(CTRL);
1477	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1478	ctrl &= ~E1000_CTRL_SPD_SEL;
1479
1480	/* Disable Auto Speed Detection */
1481	ctrl &= ~E1000_CTRL_ASDE;
1482
1483	/* Disable autoneg on the phy */
1484	*phy_ctrl &= ~BMCR_ANENABLE;
1485
1486	/* Forcing Full or Half Duplex? */
1487	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1488		ctrl &= ~E1000_CTRL_FD;
1489		*phy_ctrl &= ~BMCR_FULLDPLX;
1490		e_dbg("Half Duplex\n");
1491	} else {
1492		ctrl |= E1000_CTRL_FD;
1493		*phy_ctrl |= BMCR_FULLDPLX;
1494		e_dbg("Full Duplex\n");
1495	}
1496
1497	/* Forcing 10mb or 100mb? */
1498	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1499		ctrl |= E1000_CTRL_SPD_100;
1500		*phy_ctrl |= BMCR_SPEED100;
1501		*phy_ctrl &= ~BMCR_SPEED1000;
1502		e_dbg("Forcing 100mb\n");
1503	} else {
1504		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1506		e_dbg("Forcing 10mb\n");
1507	}
1508
1509	hw->mac.ops.config_collision_dist(hw);
1510
1511	ew32(CTRL, ctrl);
1512}
1513
1514/**
1515 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 *  @hw: pointer to the HW structure
1517 *  @active: boolean used to enable/disable lplu
1518 *
1519 *  Success returns 0, Failure returns 1
1520 *
1521 *  The low power link up (lplu) state is set to the power management level D3
1522 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524 *  is used during Dx states where the power conservation is most important.
1525 *  During driver activity, SmartSpeed should be enabled so performance is
1526 *  maintained.
1527 **/
1528s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529{
1530	struct e1000_phy_info *phy = &hw->phy;
1531	s32 ret_val;
1532	u16 data;
1533
1534	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535	if (ret_val)
1536		return ret_val;
1537
1538	if (!active) {
1539		data &= ~IGP02E1000_PM_D3_LPLU;
1540		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541		if (ret_val)
1542			return ret_val;
1543		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1544		 * during Dx states where the power conservation is most
1545		 * important.  During driver activity we should enable
1546		 * SmartSpeed, so performance is maintained.
1547		 */
1548		if (phy->smart_speed == e1000_smart_speed_on) {
1549			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550					   &data);
1551			if (ret_val)
1552				return ret_val;
1553
1554			data |= IGP01E1000_PSCFR_SMART_SPEED;
1555			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1556					   data);
1557			if (ret_val)
1558				return ret_val;
1559		} else if (phy->smart_speed == e1000_smart_speed_off) {
1560			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1561					   &data);
1562			if (ret_val)
1563				return ret_val;
1564
1565			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1566			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1567					   data);
1568			if (ret_val)
1569				return ret_val;
1570		}
1571	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1572		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1573		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1574		data |= IGP02E1000_PM_D3_LPLU;
1575		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1576		if (ret_val)
1577			return ret_val;
1578
1579		/* When LPLU is enabled, we should disable SmartSpeed */
1580		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1581		if (ret_val)
1582			return ret_val;
1583
1584		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1585		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1586	}
1587
1588	return ret_val;
1589}
1590
1591/**
1592 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 *  @hw: pointer to the HW structure
1594 *
1595 *  Success returns 0, Failure returns 1
1596 *
1597 *  A downshift is detected by querying the PHY link health.
1598 **/
1599s32 e1000e_check_downshift(struct e1000_hw *hw)
1600{
1601	struct e1000_phy_info *phy = &hw->phy;
1602	s32 ret_val;
1603	u16 phy_data, offset, mask;
1604
1605	switch (phy->type) {
1606	case e1000_phy_m88:
1607	case e1000_phy_gg82563:
1608	case e1000_phy_bm:
1609	case e1000_phy_82578:
1610		offset = M88E1000_PHY_SPEC_STATUS;
1611		mask = M88E1000_PSSR_DOWNSHIFT;
1612		break;
1613	case e1000_phy_igp_2:
1614	case e1000_phy_igp_3:
1615		offset = IGP01E1000_PHY_LINK_HEALTH;
1616		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1617		break;
1618	default:
1619		/* speed downshift not supported */
1620		phy->speed_downgraded = false;
1621		return 0;
1622	}
1623
1624	ret_val = e1e_rphy(hw, offset, &phy_data);
1625
1626	if (!ret_val)
1627		phy->speed_downgraded = !!(phy_data & mask);
1628
1629	return ret_val;
1630}
1631
1632/**
1633 *  e1000_check_polarity_m88 - Checks the polarity.
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637 *
1638 *  Polarity is determined based on the PHY specific status register.
1639 **/
1640s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1641{
1642	struct e1000_phy_info *phy = &hw->phy;
1643	s32 ret_val;
1644	u16 data;
1645
1646	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_igp - Checks the polarity.
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1661 *
1662 *  Polarity is determined based on the PHY port status register, and the
1663 *  current speed (since there is no polarity at 100Mbps).
1664 **/
1665s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1666{
1667	struct e1000_phy_info *phy = &hw->phy;
1668	s32 ret_val;
1669	u16 data, offset, mask;
1670
1671	/* Polarity is determined based on the speed of
1672	 * our connection.
1673	 */
1674	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1675	if (ret_val)
1676		return ret_val;
1677
1678	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1679	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1680		offset = IGP01E1000_PHY_PCS_INIT_REG;
1681		mask = IGP01E1000_PHY_POLARITY_MASK;
1682	} else {
1683		/* This really only applies to 10Mbps since
1684		 * there is no polarity for 100Mbps (always 0).
1685		 */
1686		offset = IGP01E1000_PHY_PORT_STATUS;
1687		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1688	}
1689
1690	ret_val = e1e_rphy(hw, offset, &data);
1691
1692	if (!ret_val)
1693		phy->cable_polarity = ((data & mask)
1694				       ? e1000_rev_polarity_reversed
1695				       : e1000_rev_polarity_normal);
1696
1697	return ret_val;
1698}
1699
1700/**
1701 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1702 *  @hw: pointer to the HW structure
1703 *
1704 *  Polarity is determined on the polarity reversal feature being enabled.
1705 **/
1706s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1707{
1708	struct e1000_phy_info *phy = &hw->phy;
1709	s32 ret_val;
1710	u16 phy_data, offset, mask;
1711
1712	/* Polarity is determined based on the reversal feature being enabled.
1713	 */
1714	if (phy->polarity_correction) {
1715		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1716		mask = IFE_PESC_POLARITY_REVERSED;
1717	} else {
1718		offset = IFE_PHY_SPECIAL_CONTROL;
1719		mask = IFE_PSC_FORCE_POLARITY;
1720	}
1721
1722	ret_val = e1e_rphy(hw, offset, &phy_data);
1723
1724	if (!ret_val)
1725		phy->cable_polarity = ((phy_data & mask)
1726				       ? e1000_rev_polarity_reversed
1727				       : e1000_rev_polarity_normal);
1728
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000_wait_autoneg - Wait for auto-neg completion
1734 *  @hw: pointer to the HW structure
1735 *
1736 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1737 *  limit to expire, which ever happens first.
1738 **/
1739static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1740{
1741	s32 ret_val = 0;
1742	u16 i, phy_status;
1743
1744	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1745	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1750		if (ret_val)
1751			break;
1752		if (phy_status & BMSR_ANEGCOMPLETE)
1753			break;
1754		msleep(100);
1755	}
1756
1757	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1758	 * has completed.
1759	 */
1760	return ret_val;
1761}
1762
1763/**
1764 *  e1000e_phy_has_link_generic - Polls PHY for link
1765 *  @hw: pointer to the HW structure
1766 *  @iterations: number of times to poll for link
1767 *  @usec_interval: delay between polling attempts
1768 *  @success: pointer to whether polling was successful or not
1769 *
1770 *  Polls the PHY status register for link, 'iterations' number of times.
1771 **/
1772s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1773				u32 usec_interval, bool *success)
1774{
1775	s32 ret_val = 0;
1776	u16 i, phy_status;
1777
1778	*success = false;
1779	for (i = 0; i < iterations; i++) {
1780		/* Some PHYs require the MII_BMSR register to be read
1781		 * twice due to the link bit being sticky.  No harm doing
1782		 * it across the board.
1783		 */
1784		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1785		if (ret_val) {
1786			/* If the first read fails, another entity may have
1787			 * ownership of the resources, wait and try again to
1788			 * see if they have relinquished the resources yet.
1789			 */
1790			if (usec_interval >= 1000)
1791				msleep(usec_interval / 1000);
1792			else
1793				udelay(usec_interval);
1794		}
1795		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1796		if (ret_val)
1797			break;
1798		if (phy_status & BMSR_LSTATUS) {
1799			*success = true;
1800			break;
1801		}
1802		if (usec_interval >= 1000)
1803			msleep(usec_interval / 1000);
1804		else
1805			udelay(usec_interval);
1806	}
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Reads the PHY specific status register to retrieve the cable length
1816 *  information.  The cable length is determined by averaging the minimum and
1817 *  maximum values to get the "average" cable length.  The m88 PHY has four
1818 *  possible cable length values, which are:
1819 *	Register Value		Cable Length
1820 *	0			< 50 meters
1821 *	1			50 - 80 meters
1822 *	2			80 - 110 meters
1823 *	3			110 - 140 meters
1824 *	4			> 140 meters
1825 **/
1826s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1827{
1828	struct e1000_phy_info *phy = &hw->phy;
1829	s32 ret_val;
1830	u16 phy_data, index;
1831
1832	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1833	if (ret_val)
1834		return ret_val;
1835
1836	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
1837
1838	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1839		return -E1000_ERR_PHY;
1840
1841	phy->min_cable_length = e1000_m88_cable_length_table[index];
1842	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1843
1844	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1845
1846	return 0;
1847}
1848
1849/**
1850 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1851 *  @hw: pointer to the HW structure
1852 *
1853 *  The automatic gain control (agc) normalizes the amplitude of the
1854 *  received signal, adjusting for the attenuation produced by the
1855 *  cable.  By reading the AGC registers, which represent the
1856 *  combination of coarse and fine gain value, the value can be put
1857 *  into a lookup table to obtain the approximate cable length
1858 *  for each channel.
1859 **/
1860s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1861{
1862	struct e1000_phy_info *phy = &hw->phy;
1863	s32 ret_val;
1864	u16 phy_data, i, agc_value = 0;
1865	u16 cur_agc_index, max_agc_index = 0;
1866	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1867	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1868		IGP02E1000_PHY_AGC_A,
1869		IGP02E1000_PHY_AGC_B,
1870		IGP02E1000_PHY_AGC_C,
1871		IGP02E1000_PHY_AGC_D
1872	};
1873
1874	/* Read the AGC registers for all channels */
1875	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1876		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1877		if (ret_val)
1878			return ret_val;
1879
1880		/* Getting bits 15:9, which represent the combination of
1881		 * coarse and fine gain values.  The result is a number
1882		 * that can be put into the lookup table to obtain the
1883		 * approximate cable length.
1884		 */
1885		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1886				 IGP02E1000_AGC_LENGTH_MASK);
1887
1888		/* Array index bound check. */
1889		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1890		    (cur_agc_index == 0))
1891			return -E1000_ERR_PHY;
1892
1893		/* Remove min & max AGC values from calculation. */
1894		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895		    e1000_igp_2_cable_length_table[cur_agc_index])
1896			min_agc_index = cur_agc_index;
1897		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898		    e1000_igp_2_cable_length_table[cur_agc_index])
1899			max_agc_index = cur_agc_index;
1900
1901		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902	}
1903
1904	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905		      e1000_igp_2_cable_length_table[max_agc_index]);
1906	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907
1908	/* Calculate cable length with the error range of +/- 10 meters. */
1909	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1911	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912
1913	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914
1915	return 0;
1916}
1917
1918/**
1919 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1920 *  @hw: pointer to the HW structure
1921 *
1922 *  Valid for only copper links.  Read the PHY status register (sticky read)
1923 *  to verify that link is up.  Read the PHY special control register to
1924 *  determine the polarity and 10base-T extended distance.  Read the PHY
1925 *  special status register to determine MDI/MDIx and current speed.  If
1926 *  speed is 1000, then determine cable length, local and remote receiver.
1927 **/
1928s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1929{
1930	struct e1000_phy_info *phy = &hw->phy;
1931	s32 ret_val;
1932	u16 phy_data;
1933	bool link;
1934
1935	if (phy->media_type != e1000_media_type_copper) {
1936		e_dbg("Phy info is only valid for copper media\n");
1937		return -E1000_ERR_CONFIG;
1938	}
1939
1940	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1941	if (ret_val)
1942		return ret_val;
1943
1944	if (!link) {
1945		e_dbg("Phy info is only valid if link is up\n");
1946		return -E1000_ERR_CONFIG;
1947	}
1948
1949	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1950	if (ret_val)
1951		return ret_val;
1952
1953	phy->polarity_correction = !!(phy_data &
1954				      M88E1000_PSCR_POLARITY_REVERSAL);
1955
1956	ret_val = e1000_check_polarity_m88(hw);
1957	if (ret_val)
1958		return ret_val;
1959
1960	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1961	if (ret_val)
1962		return ret_val;
1963
1964	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1965
1966	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1967		ret_val = hw->phy.ops.get_cable_length(hw);
1968		if (ret_val)
1969			return ret_val;
1970
1971		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1972		if (ret_val)
1973			return ret_val;
1974
1975		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1976		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1977
1978		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1979		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1980	} else {
1981		/* Set values to "undefined" */
1982		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983		phy->local_rx = e1000_1000t_rx_status_undefined;
1984		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985	}
1986
1987	return ret_val;
1988}
1989
1990/**
1991 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1992 *  @hw: pointer to the HW structure
1993 *
1994 *  Read PHY status to determine if link is up.  If link is up, then
1995 *  set/determine 10base-T extended distance and polarity correction.  Read
1996 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1997 *  determine on the cable length, local and remote receiver.
1998 **/
1999s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000{
2001	struct e1000_phy_info *phy = &hw->phy;
2002	s32 ret_val;
2003	u16 data;
2004	bool link;
2005
2006	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007	if (ret_val)
2008		return ret_val;
2009
2010	if (!link) {
2011		e_dbg("Phy info is only valid if link is up\n");
2012		return -E1000_ERR_CONFIG;
2013	}
2014
2015	phy->polarity_correction = true;
2016
2017	ret_val = e1000_check_polarity_igp(hw);
2018	if (ret_val)
2019		return ret_val;
2020
2021	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022	if (ret_val)
2023		return ret_val;
2024
2025	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2026
2027	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2029		ret_val = phy->ops.get_cable_length(hw);
2030		if (ret_val)
2031			return ret_val;
2032
2033		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2034		if (ret_val)
2035			return ret_val;
2036
2037		phy->local_rx = (data & LPA_1000LOCALRXOK)
2038		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2039
2040		phy->remote_rx = (data & LPA_1000REMRXOK)
2041		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2042	} else {
2043		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2044		phy->local_rx = e1000_1000t_rx_status_undefined;
2045		phy->remote_rx = e1000_1000t_rx_status_undefined;
2046	}
2047
2048	return ret_val;
2049}
2050
2051/**
2052 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2053 *  @hw: pointer to the HW structure
2054 *
2055 *  Populates "phy" structure with various feature states.
2056 **/
2057s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2058{
2059	struct e1000_phy_info *phy = &hw->phy;
2060	s32 ret_val;
2061	u16 data;
2062	bool link;
2063
2064	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2065	if (ret_val)
2066		return ret_val;
2067
2068	if (!link) {
2069		e_dbg("Phy info is only valid if link is up\n");
2070		return -E1000_ERR_CONFIG;
2071	}
2072
2073	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2074	if (ret_val)
2075		return ret_val;
2076	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2077
2078	if (phy->polarity_correction) {
2079		ret_val = e1000_check_polarity_ife(hw);
2080		if (ret_val)
2081			return ret_val;
2082	} else {
2083		/* Polarity is forced */
2084		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2085				       ? e1000_rev_polarity_reversed
2086				       : e1000_rev_polarity_normal);
2087	}
2088
2089	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2090	if (ret_val)
2091		return ret_val;
2092
2093	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2094
2095	/* The following parameters are undefined for 10/100 operation. */
2096	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2097	phy->local_rx = e1000_1000t_rx_status_undefined;
2098	phy->remote_rx = e1000_1000t_rx_status_undefined;
2099
2100	return 0;
2101}
2102
2103/**
2104 *  e1000e_phy_sw_reset - PHY software reset
2105 *  @hw: pointer to the HW structure
2106 *
2107 *  Does a software reset of the PHY by reading the PHY control register and
2108 *  setting/write the control register reset bit to the PHY.
2109 **/
2110s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2111{
2112	s32 ret_val;
2113	u16 phy_ctrl;
2114
2115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2116	if (ret_val)
2117		return ret_val;
2118
2119	phy_ctrl |= BMCR_RESET;
2120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2121	if (ret_val)
2122		return ret_val;
2123
2124	udelay(1);
2125
2126	return ret_val;
2127}
2128
2129/**
2130 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2131 *  @hw: pointer to the HW structure
2132 *
2133 *  Verify the reset block is not blocking us from resetting.  Acquire
2134 *  semaphore (if necessary) and read/set/write the device control reset
2135 *  bit in the PHY.  Wait the appropriate delay time for the device to
2136 *  reset and release the semaphore (if necessary).
2137 **/
2138s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2139{
2140	struct e1000_phy_info *phy = &hw->phy;
2141	s32 ret_val;
2142	u32 ctrl;
2143
2144	if (phy->ops.check_reset_block) {
2145		ret_val = phy->ops.check_reset_block(hw);
2146		if (ret_val)
2147			return 0;
2148	}
2149
2150	ret_val = phy->ops.acquire(hw);
2151	if (ret_val)
2152		return ret_val;
2153
2154	ctrl = er32(CTRL);
2155	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2156	e1e_flush();
2157
2158	udelay(phy->reset_delay_us);
2159
2160	ew32(CTRL, ctrl);
2161	e1e_flush();
2162
2163	usleep_range(150, 300);
2164
2165	phy->ops.release(hw);
2166
2167	return phy->ops.get_cfg_done(hw);
2168}
2169
2170/**
2171 *  e1000e_get_cfg_done_generic - Generic configuration done
2172 *  @hw: pointer to the HW structure
2173 *
2174 *  Generic function to wait 10 milli-seconds for configuration to complete
2175 *  and return success.
2176 **/
2177s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2178{
2179	mdelay(10);
2180
2181	return 0;
2182}
2183
2184/**
2185 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2189 **/
2190s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2191{
2192	e_dbg("Running IGP 3 PHY init script\n");
2193
2194	/* PHY init IGP 3 */
2195	/* Enable rise/fall, 10-mode work in class-A */
2196	e1e_wphy(hw, 0x2F5B, 0x9018);
2197	/* Remove all caps from Replica path filter */
2198	e1e_wphy(hw, 0x2F52, 0x0000);
2199	/* Bias trimming for ADC, AFE and Driver (Default) */
2200	e1e_wphy(hw, 0x2FB1, 0x8B24);
2201	/* Increase Hybrid poly bias */
2202	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2203	/* Add 4% to Tx amplitude in Gig mode */
2204	e1e_wphy(hw, 0x2010, 0x10B0);
2205	/* Disable trimming (TTT) */
2206	e1e_wphy(hw, 0x2011, 0x0000);
2207	/* Poly DC correction to 94.6% + 2% for all channels */
2208	e1e_wphy(hw, 0x20DD, 0x249A);
2209	/* ABS DC correction to 95.9% */
2210	e1e_wphy(hw, 0x20DE, 0x00D3);
2211	/* BG temp curve trim */
2212	e1e_wphy(hw, 0x28B4, 0x04CE);
2213	/* Increasing ADC OPAMP stage 1 currents to max */
2214	e1e_wphy(hw, 0x2F70, 0x29E4);
2215	/* Force 1000 ( required for enabling PHY regs configuration) */
2216	e1e_wphy(hw, 0x0000, 0x0140);
2217	/* Set upd_freq to 6 */
2218	e1e_wphy(hw, 0x1F30, 0x1606);
2219	/* Disable NPDFE */
2220	e1e_wphy(hw, 0x1F31, 0xB814);
2221	/* Disable adaptive fixed FFE (Default) */
2222	e1e_wphy(hw, 0x1F35, 0x002A);
2223	/* Enable FFE hysteresis */
2224	e1e_wphy(hw, 0x1F3E, 0x0067);
2225	/* Fixed FFE for short cable lengths */
2226	e1e_wphy(hw, 0x1F54, 0x0065);
2227	/* Fixed FFE for medium cable lengths */
2228	e1e_wphy(hw, 0x1F55, 0x002A);
2229	/* Fixed FFE for long cable lengths */
2230	e1e_wphy(hw, 0x1F56, 0x002A);
2231	/* Enable Adaptive Clip Threshold */
2232	e1e_wphy(hw, 0x1F72, 0x3FB0);
2233	/* AHT reset limit to 1 */
2234	e1e_wphy(hw, 0x1F76, 0xC0FF);
2235	/* Set AHT master delay to 127 msec */
2236	e1e_wphy(hw, 0x1F77, 0x1DEC);
2237	/* Set scan bits for AHT */
2238	e1e_wphy(hw, 0x1F78, 0xF9EF);
2239	/* Set AHT Preset bits */
2240	e1e_wphy(hw, 0x1F79, 0x0210);
2241	/* Change integ_factor of channel A to 3 */
2242	e1e_wphy(hw, 0x1895, 0x0003);
2243	/* Change prop_factor of channels BCD to 8 */
2244	e1e_wphy(hw, 0x1796, 0x0008);
2245	/* Change cg_icount + enable integbp for channels BCD */
2246	e1e_wphy(hw, 0x1798, 0xD008);
2247	/* Change cg_icount + enable integbp + change prop_factor_master
2248	 * to 8 for channel A
2249	 */
2250	e1e_wphy(hw, 0x1898, 0xD918);
2251	/* Disable AHT in Slave mode on channel A */
2252	e1e_wphy(hw, 0x187A, 0x0800);
2253	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2254	 * Enable SPD+B2B
2255	 */
2256	e1e_wphy(hw, 0x0019, 0x008D);
2257	/* Enable restart AN on an1000_dis change */
2258	e1e_wphy(hw, 0x001B, 0x2080);
2259	/* Enable wh_fifo read clock in 10/100 modes */
2260	e1e_wphy(hw, 0x0014, 0x0045);
2261	/* Restart AN, Speed selection is 1000 */
2262	e1e_wphy(hw, 0x0000, 0x1340);
2263
2264	return 0;
2265}
2266
2267/**
2268 *  e1000e_get_phy_type_from_id - Get PHY type from id
2269 *  @phy_id: phy_id read from the phy
2270 *
2271 *  Returns the phy type from the id.
2272 **/
2273enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2274{
2275	enum e1000_phy_type phy_type = e1000_phy_unknown;
2276
2277	switch (phy_id) {
2278	case M88E1000_I_PHY_ID:
2279	case M88E1000_E_PHY_ID:
2280	case M88E1111_I_PHY_ID:
2281	case M88E1011_I_PHY_ID:
2282		phy_type = e1000_phy_m88;
2283		break;
2284	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2285		phy_type = e1000_phy_igp_2;
2286		break;
2287	case GG82563_E_PHY_ID:
2288		phy_type = e1000_phy_gg82563;
2289		break;
2290	case IGP03E1000_E_PHY_ID:
2291		phy_type = e1000_phy_igp_3;
2292		break;
2293	case IFE_E_PHY_ID:
2294	case IFE_PLUS_E_PHY_ID:
2295	case IFE_C_E_PHY_ID:
2296		phy_type = e1000_phy_ife;
2297		break;
2298	case BME1000_E_PHY_ID:
2299	case BME1000_E_PHY_ID_R2:
2300		phy_type = e1000_phy_bm;
2301		break;
2302	case I82578_E_PHY_ID:
2303		phy_type = e1000_phy_82578;
2304		break;
2305	case I82577_E_PHY_ID:
2306		phy_type = e1000_phy_82577;
2307		break;
2308	case I82579_E_PHY_ID:
2309		phy_type = e1000_phy_82579;
2310		break;
2311	case I217_E_PHY_ID:
2312		phy_type = e1000_phy_i217;
2313		break;
2314	default:
2315		phy_type = e1000_phy_unknown;
2316		break;
2317	}
2318	return phy_type;
2319}
2320
2321/**
2322 *  e1000e_determine_phy_address - Determines PHY address.
2323 *  @hw: pointer to the HW structure
2324 *
2325 *  This uses a trial and error method to loop through possible PHY
2326 *  addresses. It tests each by reading the PHY ID registers and
2327 *  checking for a match.
2328 **/
2329s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2330{
2331	u32 phy_addr = 0;
2332	u32 i;
2333	enum e1000_phy_type phy_type = e1000_phy_unknown;
2334
2335	hw->phy.id = phy_type;
2336
2337	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2338		hw->phy.addr = phy_addr;
2339		i = 0;
2340
2341		do {
2342			e1000e_get_phy_id(hw);
2343			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2344
2345			/* If phy_type is valid, break - we found our
2346			 * PHY address
2347			 */
2348			if (phy_type != e1000_phy_unknown)
2349				return 0;
2350
2351			usleep_range(1000, 2000);
2352			i++;
2353		} while (i < 10);
2354	}
2355
2356	return -E1000_ERR_PHY_TYPE;
2357}
2358
2359/**
2360 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2361 *  @page: page to access
2362 *  @reg: register to check
2363 *
2364 *  Returns the phy address for the page requested.
2365 **/
2366static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2367{
2368	u32 phy_addr = 2;
2369
2370	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2371		phy_addr = 1;
2372
2373	return phy_addr;
2374}
2375
2376/**
2377 *  e1000e_write_phy_reg_bm - Write BM PHY register
2378 *  @hw: pointer to the HW structure
2379 *  @offset: register offset to write to
2380 *  @data: data to write at register offset
2381 *
2382 *  Acquires semaphore, if necessary, then writes the data to PHY register
2383 *  at the offset.  Release any acquired semaphores before exiting.
2384 **/
2385s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2386{
2387	s32 ret_val;
2388	u32 page = offset >> IGP_PAGE_SHIFT;
2389
2390	ret_val = hw->phy.ops.acquire(hw);
2391	if (ret_val)
2392		return ret_val;
2393
2394	/* Page 800 works differently than the rest so it has its own func */
2395	if (page == BM_WUC_PAGE) {
2396		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2397							 false, false);
2398		goto release;
2399	}
2400
2401	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2402
2403	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2404		u32 page_shift, page_select;
2405
2406		/* Page select is register 31 for phy address 1 and 22 for
2407		 * phy address 2 and 3. Page select is shifted only for
2408		 * phy address 1.
2409		 */
2410		if (hw->phy.addr == 1) {
2411			page_shift = IGP_PAGE_SHIFT;
2412			page_select = IGP01E1000_PHY_PAGE_SELECT;
2413		} else {
2414			page_shift = 0;
2415			page_select = BM_PHY_PAGE_SELECT;
2416		}
2417
2418		/* Page is shifted left, PHY expects (page x 32) */
2419		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2420						    (page << page_shift));
2421		if (ret_val)
2422			goto release;
2423	}
2424
2425	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2426					    data);
2427
2428release:
2429	hw->phy.ops.release(hw);
2430	return ret_val;
2431}
2432
2433/**
2434 *  e1000e_read_phy_reg_bm - Read BM PHY register
2435 *  @hw: pointer to the HW structure
2436 *  @offset: register offset to be read
2437 *  @data: pointer to the read data
2438 *
2439 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2440 *  and storing the retrieved information in data.  Release any acquired
2441 *  semaphores before exiting.
2442 **/
2443s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2444{
2445	s32 ret_val;
2446	u32 page = offset >> IGP_PAGE_SHIFT;
2447
2448	ret_val = hw->phy.ops.acquire(hw);
2449	if (ret_val)
2450		return ret_val;
2451
2452	/* Page 800 works differently than the rest so it has its own func */
2453	if (page == BM_WUC_PAGE) {
2454		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2455							 true, false);
2456		goto release;
2457	}
2458
2459	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2460
2461	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2462		u32 page_shift, page_select;
2463
2464		/* Page select is register 31 for phy address 1 and 22 for
2465		 * phy address 2 and 3. Page select is shifted only for
2466		 * phy address 1.
2467		 */
2468		if (hw->phy.addr == 1) {
2469			page_shift = IGP_PAGE_SHIFT;
2470			page_select = IGP01E1000_PHY_PAGE_SELECT;
2471		} else {
2472			page_shift = 0;
2473			page_select = BM_PHY_PAGE_SELECT;
2474		}
2475
2476		/* Page is shifted left, PHY expects (page x 32) */
2477		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2478						    (page << page_shift));
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to be read
2494 *  @data: pointer to the read data
2495 *
2496 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2497 *  and storing the retrieved information in data.  Release any acquired
2498 *  semaphores before exiting.
2499 **/
2500s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2501{
2502	s32 ret_val;
2503	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2504
2505	ret_val = hw->phy.ops.acquire(hw);
2506	if (ret_val)
2507		return ret_val;
2508
2509	/* Page 800 works differently than the rest so it has its own func */
2510	if (page == BM_WUC_PAGE) {
2511		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2512							 true, false);
2513		goto release;
2514	}
2515
2516	hw->phy.addr = 1;
2517
2518	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2519		/* Page is shifted left, PHY expects (page x 32) */
2520		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2521						    page);
2522
2523		if (ret_val)
2524			goto release;
2525	}
2526
2527	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2528					   data);
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2536 *  @hw: pointer to the HW structure
2537 *  @offset: register offset to write to
2538 *  @data: data to write at register offset
2539 *
2540 *  Acquires semaphore, if necessary, then writes the data to PHY register
2541 *  at the offset.  Release any acquired semaphores before exiting.
2542 **/
2543s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2544{
2545	s32 ret_val;
2546	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2547
2548	ret_val = hw->phy.ops.acquire(hw);
2549	if (ret_val)
2550		return ret_val;
2551
2552	/* Page 800 works differently than the rest so it has its own func */
2553	if (page == BM_WUC_PAGE) {
2554		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2555							 false, false);
2556		goto release;
2557	}
2558
2559	hw->phy.addr = 1;
2560
2561	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2562		/* Page is shifted left, PHY expects (page x 32) */
2563		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2564						    page);
2565
2566		if (ret_val)
2567			goto release;
2568	}
2569
2570	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2571					    data);
2572
2573release:
2574	hw->phy.ops.release(hw);
2575	return ret_val;
2576}
2577
2578/**
2579 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2580 *  @hw: pointer to the HW structure
2581 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2582 *
2583 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2584 *  address to store contents of the BM_WUC_ENABLE_REG register.
2585 **/
2586s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2587{
2588	s32 ret_val;
2589	u16 temp;
2590
2591	/* All page select, port ctrl and wakeup registers use phy address 1 */
2592	hw->phy.addr = 1;
2593
2594	/* Select Port Control Registers page */
2595	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596	if (ret_val) {
2597		e_dbg("Could not set Port Control page\n");
2598		return ret_val;
2599	}
2600
2601	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2602	if (ret_val) {
2603		e_dbg("Could not read PHY register %d.%d\n",
2604		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2605		return ret_val;
2606	}
2607
2608	/* Enable both PHY wakeup mode and Wakeup register page writes.
2609	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2610	 */
2611	temp = *phy_reg;
2612	temp |= BM_WUC_ENABLE_BIT;
2613	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2614
2615	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2616	if (ret_val) {
2617		e_dbg("Could not write PHY register %d.%d\n",
2618		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2619		return ret_val;
2620	}
2621
2622	/* Select Host Wakeup Registers page - caller now able to write
2623	 * registers on the Wakeup registers page
2624	 */
2625	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2626}
2627
2628/**
2629 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2630 *  @hw: pointer to the HW structure
2631 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2632 *
2633 *  Restore BM_WUC_ENABLE_REG to its original value.
2634 *
2635 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2636 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2637 *  caller.
2638 **/
2639s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2640{
2641	s32 ret_val;
2642
2643	/* Select Port Control Registers page */
2644	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2645	if (ret_val) {
2646		e_dbg("Could not set Port Control page\n");
2647		return ret_val;
2648	}
2649
2650	/* Restore 769.17 to its original value */
2651	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2652	if (ret_val)
2653		e_dbg("Could not restore PHY register %d.%d\n",
2654		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2655
2656	return ret_val;
2657}
2658
2659/**
2660 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2661 *  @hw: pointer to the HW structure
2662 *  @offset: register offset to be read or written
2663 *  @data: pointer to the data to read or write
2664 *  @read: determines if operation is read or write
2665 *  @page_set: BM_WUC_PAGE already set and access enabled
2666 *
2667 *  Read the PHY register at offset and store the retrieved information in
2668 *  data, or write data to PHY register at offset.  Note the procedure to
2669 *  access the PHY wakeup registers is different than reading the other PHY
2670 *  registers. It works as such:
2671 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2672 *  2) Set page to 800 for host (801 if we were manageability)
2673 *  3) Write the address using the address opcode (0x11)
2674 *  4) Read or write the data using the data opcode (0x12)
2675 *  5) Restore 769.17.2 to its original value
2676 *
2677 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2678 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2679 *
2680 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2681 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2682 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2683 **/
2684static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2685					  u16 *data, bool read, bool page_set)
2686{
2687	s32 ret_val;
2688	u16 reg = BM_PHY_REG_NUM(offset);
2689	u16 page = BM_PHY_REG_PAGE(offset);
2690	u16 phy_reg = 0;
2691
2692	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2693	if ((hw->mac.type == e1000_pchlan) &&
2694	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2695		e_dbg("Attempting to access page %d while gig enabled.\n",
2696		      page);
2697
2698	if (!page_set) {
2699		/* Enable access to PHY wakeup registers */
2700		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701		if (ret_val) {
2702			e_dbg("Could not enable PHY wakeup reg access\n");
2703			return ret_val;
2704		}
2705	}
2706
2707	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2708
2709	/* Write the Wakeup register page offset value using opcode 0x11 */
2710	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2711	if (ret_val) {
2712		e_dbg("Could not write address opcode to page %d\n", page);
2713		return ret_val;
2714	}
2715
2716	if (read) {
2717		/* Read the Wakeup register page value using opcode 0x12 */
2718		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2719						   data);
2720	} else {
2721		/* Write the Wakeup register page value using opcode 0x12 */
2722		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2723						    *data);
2724	}
2725
2726	if (ret_val) {
2727		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2728		return ret_val;
2729	}
2730
2731	if (!page_set)
2732		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733
2734	return ret_val;
2735}
2736
2737/**
2738 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2739 * @hw: pointer to the HW structure
2740 *
2741 * In the case of a PHY power down to save power, or to turn off link during a
2742 * driver unload, or wake on lan is not enabled, restore the link to previous
2743 * settings.
2744 **/
2745void e1000_power_up_phy_copper(struct e1000_hw *hw)
2746{
2747	u16 mii_reg = 0;
2748	int ret;
2749
2750	/* The PHY will retain its settings across a power down/up cycle */
2751	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2752	if (ret) {
2753		e_dbg("Error reading PHY register\n");
2754		return;
2755	}
2756	mii_reg &= ~BMCR_PDOWN;
2757	e1e_wphy(hw, MII_BMCR, mii_reg);
2758}
2759
2760/**
2761 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2762 * @hw: pointer to the HW structure
2763 *
2764 * In the case of a PHY power down to save power, or to turn off link during a
2765 * driver unload, or wake on lan is not enabled, restore the link to previous
2766 * settings.
2767 **/
2768void e1000_power_down_phy_copper(struct e1000_hw *hw)
2769{
2770	u16 mii_reg = 0;
2771	int ret;
2772
2773	/* The PHY will retain its settings across a power down/up cycle */
2774	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2775	if (ret) {
2776		e_dbg("Error reading PHY register\n");
2777		return;
2778	}
2779	mii_reg |= BMCR_PDOWN;
2780	e1e_wphy(hw, MII_BMCR, mii_reg);
2781	usleep_range(1000, 2000);
2782}
2783
2784/**
2785 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2786 *  @hw: pointer to the HW structure
2787 *  @offset: register offset to be read
2788 *  @data: pointer to the read data
2789 *  @locked: semaphore has already been acquired or not
2790 *  @page_set: BM_WUC_PAGE already set and access enabled
2791 *
2792 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2793 *  and stores the retrieved information in data.  Release any acquired
2794 *  semaphore before exiting.
2795 **/
2796static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2797				   bool locked, bool page_set)
2798{
2799	s32 ret_val;
2800	u16 page = BM_PHY_REG_PAGE(offset);
2801	u16 reg = BM_PHY_REG_NUM(offset);
2802	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2803
2804	if (!locked) {
2805		ret_val = hw->phy.ops.acquire(hw);
2806		if (ret_val)
2807			return ret_val;
2808	}
2809
2810	/* Page 800 works differently than the rest so it has its own func */
2811	if (page == BM_WUC_PAGE) {
2812		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2813							 true, page_set);
2814		goto out;
2815	}
2816
2817	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2818		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2819							 data, true);
2820		goto out;
2821	}
2822
2823	if (!page_set) {
2824		if (page == HV_INTC_FC_PAGE_START)
2825			page = 0;
2826
2827		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2828			/* Page is shifted left, PHY expects (page x 32) */
2829			ret_val = e1000_set_page_igp(hw,
2830						     (page << IGP_PAGE_SHIFT));
2831
2832			hw->phy.addr = phy_addr;
2833
2834			if (ret_val)
2835				goto out;
2836		}
2837	}
2838
2839	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2840	      page << IGP_PAGE_SHIFT, reg);
2841
2842	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2843out:
2844	if (!locked)
2845		hw->phy.ops.release(hw);
2846
2847	return ret_val;
2848}
2849
2850/**
2851 *  e1000_read_phy_reg_hv -  Read HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to be read
2854 *  @data: pointer to the read data
2855 *
2856 *  Acquires semaphore then reads the PHY register at offset and stores
2857 *  the retrieved information in data.  Release the acquired semaphore
2858 *  before exiting.
2859 **/
2860s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2861{
2862	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2863}
2864
2865/**
2866 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2867 *  @hw: pointer to the HW structure
2868 *  @offset: register offset to be read
2869 *  @data: pointer to the read data
2870 *
2871 *  Reads the PHY register at offset and stores the retrieved information
2872 *  in data.  Assumes semaphore already acquired.
2873 **/
2874s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2875{
2876	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2877}
2878
2879/**
2880 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2881 *  @hw: pointer to the HW structure
2882 *  @offset: register offset to write to
2883 *  @data: data to write at register offset
2884 *
2885 *  Reads the PHY register at offset and stores the retrieved information
2886 *  in data.  Assumes semaphore already acquired and page already set.
2887 **/
2888s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2889{
2890	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2891}
2892
2893/**
2894 *  __e1000_write_phy_reg_hv - Write HV PHY register
2895 *  @hw: pointer to the HW structure
2896 *  @offset: register offset to write to
2897 *  @data: data to write at register offset
2898 *  @locked: semaphore has already been acquired or not
2899 *  @page_set: BM_WUC_PAGE already set and access enabled
2900 *
2901 *  Acquires semaphore, if necessary, then writes the data to PHY register
2902 *  at the offset.  Release any acquired semaphores before exiting.
2903 **/
2904static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2905				    bool locked, bool page_set)
2906{
2907	s32 ret_val;
2908	u16 page = BM_PHY_REG_PAGE(offset);
2909	u16 reg = BM_PHY_REG_NUM(offset);
2910	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2911
2912	if (!locked) {
2913		ret_val = hw->phy.ops.acquire(hw);
2914		if (ret_val)
2915			return ret_val;
2916	}
2917
2918	/* Page 800 works differently than the rest so it has its own func */
2919	if (page == BM_WUC_PAGE) {
2920		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2921							 false, page_set);
2922		goto out;
2923	}
2924
2925	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2926		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2927							 &data, false);
2928		goto out;
2929	}
2930
2931	if (!page_set) {
2932		if (page == HV_INTC_FC_PAGE_START)
2933			page = 0;
2934
2935		/* Workaround MDIO accesses being disabled after entering IEEE
2936		 * Power Down (when bit 11 of the PHY Control register is set)
2937		 */
2938		if ((hw->phy.type == e1000_phy_82578) &&
2939		    (hw->phy.revision >= 1) &&
2940		    (hw->phy.addr == 2) &&
2941		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2942			u16 data2 = 0x7EFF;
2943
2944			ret_val = e1000_access_phy_debug_regs_hv(hw,
2945								 BIT(6) | 0x3,
2946								 &data2, false);
2947			if (ret_val)
2948				goto out;
2949		}
2950
2951		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2952			/* Page is shifted left, PHY expects (page x 32) */
2953			ret_val = e1000_set_page_igp(hw,
2954						     (page << IGP_PAGE_SHIFT));
2955
2956			hw->phy.addr = phy_addr;
2957
2958			if (ret_val)
2959				goto out;
2960		}
2961	}
2962
2963	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2964	      page << IGP_PAGE_SHIFT, reg);
2965
2966	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2967					    data);
2968
2969out:
2970	if (!locked)
2971		hw->phy.ops.release(hw);
2972
2973	return ret_val;
2974}
2975
2976/**
2977 *  e1000_write_phy_reg_hv - Write HV PHY register
2978 *  @hw: pointer to the HW structure
2979 *  @offset: register offset to write to
2980 *  @data: data to write at register offset
2981 *
2982 *  Acquires semaphore then writes the data to PHY register at the offset.
2983 *  Release the acquired semaphores before exiting.
2984 **/
2985s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2986{
2987	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2988}
2989
2990/**
2991 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to write to
2994 *  @data: data to write at register offset
2995 *
2996 *  Writes the data to PHY register at the offset.  Assumes semaphore
2997 *  already acquired.
2998 **/
2999s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3000{
3001	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3002}
3003
3004/**
3005 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3006 *  @hw: pointer to the HW structure
3007 *  @offset: register offset to write to
3008 *  @data: data to write at register offset
3009 *
3010 *  Writes the data to PHY register at the offset.  Assumes semaphore
3011 *  already acquired and page already set.
3012 **/
3013s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3014{
3015	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3016}
3017
3018/**
3019 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3020 *  @page: page to be accessed
3021 **/
3022static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3023{
3024	u32 phy_addr = 2;
3025
3026	if (page >= HV_INTC_FC_PAGE_START)
3027		phy_addr = 1;
3028
3029	return phy_addr;
3030}
3031
3032/**
3033 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3034 *  @hw: pointer to the HW structure
3035 *  @offset: register offset to be read or written
3036 *  @data: pointer to the data to be read or written
3037 *  @read: determines if operation is read or write
3038 *
3039 *  Reads the PHY register at offset and stores the retrieved information
3040 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3041 *  to access these regs uses the address port and data port to read/write.
3042 *  These accesses done with PHY address 2 and without using pages.
3043 **/
3044static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3045					  u16 *data, bool read)
3046{
3047	s32 ret_val;
3048	u32 addr_reg;
3049	u32 data_reg;
3050
3051	/* This takes care of the difference with desktop vs mobile phy */
3052	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3053		    I82578_ADDR_REG : I82577_ADDR_REG);
3054	data_reg = addr_reg + 1;
3055
3056	/* All operations in this function are phy address 2 */
3057	hw->phy.addr = 2;
3058
3059	/* masking with 0x3F to remove the page from offset */
3060	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3061	if (ret_val) {
3062		e_dbg("Could not write the Address Offset port register\n");
3063		return ret_val;
3064	}
3065
3066	/* Read or write the data value next */
3067	if (read)
3068		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3069	else
3070		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3071
3072	if (ret_val)
3073		e_dbg("Could not access the Data port register\n");
3074
3075	return ret_val;
3076}
3077
3078/**
3079 *  e1000_link_stall_workaround_hv - Si workaround
3080 *  @hw: pointer to the HW structure
3081 *
3082 *  This function works around a Si bug where the link partner can get
3083 *  a link up indication before the PHY does.  If small packets are sent
3084 *  by the link partner they can be placed in the packet buffer without
3085 *  being properly accounted for by the PHY and will stall preventing
3086 *  further packets from being received.  The workaround is to clear the
3087 *  packet buffer after the PHY detects link up.
3088 **/
3089s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3090{
3091	s32 ret_val = 0;
3092	u16 data;
3093
3094	if (hw->phy.type != e1000_phy_82578)
3095		return 0;
3096
3097	/* Do not apply workaround if in PHY loopback bit 14 set */
3098	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3099	if (ret_val) {
3100		e_dbg("Error reading PHY register\n");
3101		return ret_val;
3102	}
3103	if (data & BMCR_LOOPBACK)
3104		return 0;
3105
3106	/* check if link is up and at 1Gbps */
3107	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3108	if (ret_val)
3109		return ret_val;
3110
3111	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3112		 BM_CS_STATUS_SPEED_MASK);
3113
3114	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3115		     BM_CS_STATUS_SPEED_1000))
3116		return 0;
3117
3118	msleep(200);
3119
3120	/* flush the packets in the fifo buffer */
3121	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3122			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3123			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3124	if (ret_val)
3125		return ret_val;
3126
3127	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3128}
3129
3130/**
3131 *  e1000_check_polarity_82577 - Checks the polarity.
3132 *  @hw: pointer to the HW structure
3133 *
3134 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3135 *
3136 *  Polarity is determined based on the PHY specific status register.
3137 **/
3138s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3139{
3140	struct e1000_phy_info *phy = &hw->phy;
3141	s32 ret_val;
3142	u16 data;
3143
3144	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3145
3146	if (!ret_val)
3147		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3148				       ? e1000_rev_polarity_reversed
3149				       : e1000_rev_polarity_normal);
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Calls the PHY setup function to force speed and duplex.
3159 **/
3160s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3161{
3162	struct e1000_phy_info *phy = &hw->phy;
3163	s32 ret_val;
3164	u16 phy_data;
3165	bool link;
3166
3167	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3168	if (ret_val)
3169		return ret_val;
3170
3171	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3172
3173	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3174	if (ret_val)
3175		return ret_val;
3176
3177	udelay(1);
3178
3179	if (phy->autoneg_wait_to_complete) {
3180		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3181
3182		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3183						      100000, &link);
3184		if (ret_val)
3185			return ret_val;
3186
3187		if (!link)
3188			e_dbg("Link taking longer than expected.\n");
3189
3190		/* Try once more */
3191		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3192						      100000, &link);
3193	}
3194
3195	return ret_val;
3196}
3197
3198/**
3199 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3200 *  @hw: pointer to the HW structure
3201 *
3202 *  Read PHY status to determine if link is up.  If link is up, then
3203 *  set/determine 10base-T extended distance and polarity correction.  Read
3204 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3205 *  determine on the cable length, local and remote receiver.
3206 **/
3207s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3208{
3209	struct e1000_phy_info *phy = &hw->phy;
3210	s32 ret_val;
3211	u16 data;
3212	bool link;
3213
3214	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3215	if (ret_val)
3216		return ret_val;
3217
3218	if (!link) {
3219		e_dbg("Phy info is only valid if link is up\n");
3220		return -E1000_ERR_CONFIG;
3221	}
3222
3223	phy->polarity_correction = true;
3224
3225	ret_val = e1000_check_polarity_82577(hw);
3226	if (ret_val)
3227		return ret_val;
3228
3229	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3230	if (ret_val)
3231		return ret_val;
3232
3233	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3234
3235	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3236	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3237		ret_val = hw->phy.ops.get_cable_length(hw);
3238		if (ret_val)
3239			return ret_val;
3240
3241		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3242		if (ret_val)
3243			return ret_val;
3244
3245		phy->local_rx = (data & LPA_1000LOCALRXOK)
3246		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3247
3248		phy->remote_rx = (data & LPA_1000REMRXOK)
3249		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3250	} else {
3251		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3252		phy->local_rx = e1000_1000t_rx_status_undefined;
3253		phy->remote_rx = e1000_1000t_rx_status_undefined;
3254	}
3255
3256	return 0;
3257}
3258
3259/**
3260 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3261 *  @hw: pointer to the HW structure
3262 *
3263 * Reads the diagnostic status register and verifies result is valid before
3264 * placing it in the phy_cable_length field.
3265 **/
3266s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3267{
3268	struct e1000_phy_info *phy = &hw->phy;
3269	s32 ret_val;
3270	u16 phy_data, length;
3271
3272	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3273	if (ret_val)
3274		return ret_val;
3275
3276	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
 
3277
3278	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3279		return -E1000_ERR_PHY;
3280
3281	phy->cable_length = length;
3282
3283	return 0;
3284}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#include "e1000.h"
 
  24
  25static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  26static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  27					  u16 *data, bool read, bool page_set);
  28static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  29static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  30					  u16 *data, bool read);
  31
  32/* Cable length tables */
  33static const u16 e1000_m88_cable_length_table[] = {
  34	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  35};
  36
  37#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  38		ARRAY_SIZE(e1000_m88_cable_length_table)
  39
  40static const u16 e1000_igp_2_cable_length_table[] = {
  41	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  42	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  43	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  44	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  45	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  46	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  47	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  48	124
  49};
  50
  51#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  52		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  53
  54/**
  55 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  56 *  @hw: pointer to the HW structure
  57 *
  58 *  Read the PHY management control register and check whether a PHY reset
  59 *  is blocked.  If a reset is not blocked return 0, otherwise
  60 *  return E1000_BLK_PHY_RESET (12).
  61 **/
  62s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  63{
  64	u32 manc;
  65
  66	manc = er32(MANC);
  67
  68	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  69}
  70
  71/**
  72 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  73 *  @hw: pointer to the HW structure
  74 *
  75 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  76 *  revision in the hardware structure.
  77 **/
  78s32 e1000e_get_phy_id(struct e1000_hw *hw)
  79{
  80	struct e1000_phy_info *phy = &hw->phy;
  81	s32 ret_val = 0;
  82	u16 phy_id;
  83	u16 retry_count = 0;
  84
  85	if (!phy->ops.read_reg)
  86		return 0;
  87
  88	while (retry_count < 2) {
  89		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  90		if (ret_val)
  91			return ret_val;
  92
  93		phy->id = (u32)(phy_id << 16);
  94		usleep_range(20, 40);
  95		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  96		if (ret_val)
  97			return ret_val;
  98
  99		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 100		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 101
 102		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 103			return 0;
 104
 105		retry_count++;
 106	}
 107
 108	return 0;
 109}
 110
 111/**
 112 *  e1000e_phy_reset_dsp - Reset PHY DSP
 113 *  @hw: pointer to the HW structure
 114 *
 115 *  Reset the digital signal processor.
 116 **/
 117s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 118{
 119	s32 ret_val;
 120
 121	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 122	if (ret_val)
 123		return ret_val;
 124
 125	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 126}
 127
 
 
 
 
 
 
 
 
 
 
 128/**
 129 *  e1000e_read_phy_reg_mdic - Read MDI control register
 130 *  @hw: pointer to the HW structure
 131 *  @offset: register offset to be read
 132 *  @data: pointer to the read data
 133 *
 134 *  Reads the MDI control register in the PHY at offset and stores the
 135 *  information read to data.
 136 **/
 137s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 138{
 
 139	struct e1000_phy_info *phy = &hw->phy;
 140	u32 i, mdic = 0;
 141
 142	if (offset > MAX_PHY_REG_ADDRESS) {
 143		e_dbg("PHY Address %d is out of range\n", offset);
 144		return -E1000_ERR_PARAM;
 145	}
 146
 
 
 147	/* Set up Op-code, Phy Address, and register offset in the MDI
 148	 * Control register.  The MAC will take care of interfacing with the
 149	 * PHY to retrieve the desired data.
 150	 */
 151	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 152		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 153		(E1000_MDIC_OP_READ));
 154
 155	ew32(MDIC, mdic);
 156
 157	/* Poll the ready bit to see if the MDI read completed
 158	 * Increasing the time out as testing showed failures with
 159	 * the lower time out
 160	 */
 161	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 162		udelay(50);
 163		mdic = er32(MDIC);
 164		if (mdic & E1000_MDIC_READY)
 165			break;
 166	}
 167	if (!(mdic & E1000_MDIC_READY)) {
 168		e_dbg("MDI Read did not complete\n");
 169		return -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170	}
 171	if (mdic & E1000_MDIC_ERROR) {
 172		e_dbg("MDI Error\n");
 173		return -E1000_ERR_PHY;
 174	}
 175	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 176		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 177		      offset,
 178		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 179		return -E1000_ERR_PHY;
 180	}
 181	*data = (u16)mdic;
 182
 183	/* Allow some time after each MDIC transaction to avoid
 184	 * reading duplicate data in the next MDIC transaction.
 185	 */
 186	if (hw->mac.type == e1000_pch2lan)
 187		udelay(100);
 188
 189	return 0;
 190}
 191
 192/**
 193 *  e1000e_write_phy_reg_mdic - Write MDI control register
 194 *  @hw: pointer to the HW structure
 195 *  @offset: register offset to write to
 196 *  @data: data to write to register at offset
 197 *
 198 *  Writes data to MDI control register in the PHY at offset.
 199 **/
 200s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 201{
 
 202	struct e1000_phy_info *phy = &hw->phy;
 203	u32 i, mdic = 0;
 204
 205	if (offset > MAX_PHY_REG_ADDRESS) {
 206		e_dbg("PHY Address %d is out of range\n", offset);
 207		return -E1000_ERR_PARAM;
 208	}
 209
 
 
 210	/* Set up Op-code, Phy Address, and register offset in the MDI
 211	 * Control register.  The MAC will take care of interfacing with the
 212	 * PHY to retrieve the desired data.
 213	 */
 214	mdic = (((u32)data) |
 215		(offset << E1000_MDIC_REG_SHIFT) |
 216		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 217		(E1000_MDIC_OP_WRITE));
 218
 219	ew32(MDIC, mdic);
 220
 221	/* Poll the ready bit to see if the MDI read completed
 222	 * Increasing the time out as testing showed failures with
 223	 * the lower time out
 224	 */
 225	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 226		udelay(50);
 227		mdic = er32(MDIC);
 228		if (mdic & E1000_MDIC_READY)
 229			break;
 230	}
 231	if (!(mdic & E1000_MDIC_READY)) {
 232		e_dbg("MDI Write did not complete\n");
 233		return -E1000_ERR_PHY;
 234	}
 235	if (mdic & E1000_MDIC_ERROR) {
 236		e_dbg("MDI Error\n");
 237		return -E1000_ERR_PHY;
 238	}
 239	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 240		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 241		      offset,
 242		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 243		return -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244	}
 245
 246	/* Allow some time after each MDIC transaction to avoid
 247	 * reading duplicate data in the next MDIC transaction.
 248	 */
 249	if (hw->mac.type == e1000_pch2lan)
 250		udelay(100);
 251
 252	return 0;
 253}
 254
 255/**
 256 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 257 *  @hw: pointer to the HW structure
 258 *  @offset: register offset to be read
 259 *  @data: pointer to the read data
 260 *
 261 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 262 *  and storing the retrieved information in data.  Release any acquired
 263 *  semaphores before exiting.
 264 **/
 265s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 266{
 267	s32 ret_val;
 268
 269	ret_val = hw->phy.ops.acquire(hw);
 270	if (ret_val)
 271		return ret_val;
 272
 273	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 274					   data);
 275
 276	hw->phy.ops.release(hw);
 277
 278	return ret_val;
 279}
 280
 281/**
 282 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 283 *  @hw: pointer to the HW structure
 284 *  @offset: register offset to write to
 285 *  @data: data to write at register offset
 286 *
 287 *  Acquires semaphore, if necessary, then writes the data to PHY register
 288 *  at the offset.  Release any acquired semaphores before exiting.
 289 **/
 290s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 291{
 292	s32 ret_val;
 293
 294	ret_val = hw->phy.ops.acquire(hw);
 295	if (ret_val)
 296		return ret_val;
 297
 298	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 299					    data);
 300
 301	hw->phy.ops.release(hw);
 302
 303	return ret_val;
 304}
 305
 306/**
 307 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 308 *  @hw: pointer to the HW structure
 309 *  @page: page to set (shifted left when necessary)
 310 *
 311 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 312 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 313 *  must set it appropriately (if necessary) after this function returns.
 314 **/
 315s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 316{
 317	e_dbg("Setting page 0x%x\n", page);
 318
 319	hw->phy.addr = 1;
 320
 321	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 322}
 323
 324/**
 325 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 326 *  @hw: pointer to the HW structure
 327 *  @offset: register offset to be read
 328 *  @data: pointer to the read data
 329 *  @locked: semaphore has already been acquired or not
 330 *
 331 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 332 *  and stores the retrieved information in data.  Release any acquired
 333 *  semaphores before exiting.
 334 **/
 335static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 336				     bool locked)
 337{
 338	s32 ret_val = 0;
 339
 340	if (!locked) {
 341		if (!hw->phy.ops.acquire)
 342			return 0;
 343
 344		ret_val = hw->phy.ops.acquire(hw);
 345		if (ret_val)
 346			return ret_val;
 347	}
 348
 349	if (offset > MAX_PHY_MULTI_PAGE_REG)
 350		ret_val = e1000e_write_phy_reg_mdic(hw,
 351						    IGP01E1000_PHY_PAGE_SELECT,
 352						    (u16)offset);
 353	if (!ret_val)
 354		ret_val = e1000e_read_phy_reg_mdic(hw,
 355						   MAX_PHY_REG_ADDRESS & offset,
 356						   data);
 357	if (!locked)
 358		hw->phy.ops.release(hw);
 359
 360	return ret_val;
 361}
 362
 363/**
 364 *  e1000e_read_phy_reg_igp - Read igp PHY register
 365 *  @hw: pointer to the HW structure
 366 *  @offset: register offset to be read
 367 *  @data: pointer to the read data
 368 *
 369 *  Acquires semaphore then reads the PHY register at offset and stores the
 370 *  retrieved information in data.
 371 *  Release the acquired semaphore before exiting.
 372 **/
 373s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 374{
 375	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 376}
 377
 378/**
 379 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 380 *  @hw: pointer to the HW structure
 381 *  @offset: register offset to be read
 382 *  @data: pointer to the read data
 383 *
 384 *  Reads the PHY register at offset and stores the retrieved information
 385 *  in data.  Assumes semaphore already acquired.
 386 **/
 387s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 388{
 389	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 390}
 391
 392/**
 393 *  e1000e_write_phy_reg_igp - Write igp PHY register
 394 *  @hw: pointer to the HW structure
 395 *  @offset: register offset to write to
 396 *  @data: data to write at register offset
 397 *  @locked: semaphore has already been acquired or not
 398 *
 399 *  Acquires semaphore, if necessary, then writes the data to PHY register
 400 *  at the offset.  Release any acquired semaphores before exiting.
 401 **/
 402static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 403				      bool locked)
 404{
 405	s32 ret_val = 0;
 406
 407	if (!locked) {
 408		if (!hw->phy.ops.acquire)
 409			return 0;
 410
 411		ret_val = hw->phy.ops.acquire(hw);
 412		if (ret_val)
 413			return ret_val;
 414	}
 415
 416	if (offset > MAX_PHY_MULTI_PAGE_REG)
 417		ret_val = e1000e_write_phy_reg_mdic(hw,
 418						    IGP01E1000_PHY_PAGE_SELECT,
 419						    (u16)offset);
 420	if (!ret_val)
 421		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 422						    offset, data);
 423	if (!locked)
 424		hw->phy.ops.release(hw);
 425
 426	return ret_val;
 427}
 428
 429/**
 430 *  e1000e_write_phy_reg_igp - Write igp PHY register
 431 *  @hw: pointer to the HW structure
 432 *  @offset: register offset to write to
 433 *  @data: data to write at register offset
 434 *
 435 *  Acquires semaphore then writes the data to PHY register
 436 *  at the offset.  Release any acquired semaphores before exiting.
 437 **/
 438s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 439{
 440	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 441}
 442
 443/**
 444 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 445 *  @hw: pointer to the HW structure
 446 *  @offset: register offset to write to
 447 *  @data: data to write at register offset
 448 *
 449 *  Writes the data to PHY register at the offset.
 450 *  Assumes semaphore already acquired.
 451 **/
 452s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 453{
 454	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 455}
 456
 457/**
 458 *  __e1000_read_kmrn_reg - Read kumeran register
 459 *  @hw: pointer to the HW structure
 460 *  @offset: register offset to be read
 461 *  @data: pointer to the read data
 462 *  @locked: semaphore has already been acquired or not
 463 *
 464 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 465 *  using the kumeran interface.  The information retrieved is stored in data.
 466 *  Release any acquired semaphores before exiting.
 467 **/
 468static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 469				 bool locked)
 470{
 471	u32 kmrnctrlsta;
 472
 473	if (!locked) {
 474		s32 ret_val = 0;
 475
 476		if (!hw->phy.ops.acquire)
 477			return 0;
 478
 479		ret_val = hw->phy.ops.acquire(hw);
 480		if (ret_val)
 481			return ret_val;
 482	}
 483
 484	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 485		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 486	ew32(KMRNCTRLSTA, kmrnctrlsta);
 487	e1e_flush();
 488
 489	udelay(2);
 490
 491	kmrnctrlsta = er32(KMRNCTRLSTA);
 492	*data = (u16)kmrnctrlsta;
 493
 494	if (!locked)
 495		hw->phy.ops.release(hw);
 496
 497	return 0;
 498}
 499
 500/**
 501 *  e1000e_read_kmrn_reg -  Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *
 506 *  Acquires semaphore then reads the PHY register at offset using the
 507 *  kumeran interface.  The information retrieved is stored in data.
 508 *  Release the acquired semaphore before exiting.
 509 **/
 510s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 511{
 512	return __e1000_read_kmrn_reg(hw, offset, data, false);
 513}
 514
 515/**
 516 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 517 *  @hw: pointer to the HW structure
 518 *  @offset: register offset to be read
 519 *  @data: pointer to the read data
 520 *
 521 *  Reads the PHY register at offset using the kumeran interface.  The
 522 *  information retrieved is stored in data.
 523 *  Assumes semaphore already acquired.
 524 **/
 525s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 526{
 527	return __e1000_read_kmrn_reg(hw, offset, data, true);
 528}
 529
 530/**
 531 *  __e1000_write_kmrn_reg - Write kumeran register
 532 *  @hw: pointer to the HW structure
 533 *  @offset: register offset to write to
 534 *  @data: data to write at register offset
 535 *  @locked: semaphore has already been acquired or not
 536 *
 537 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 538 *  at the offset using the kumeran interface.  Release any acquired semaphores
 539 *  before exiting.
 540 **/
 541static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 542				  bool locked)
 543{
 544	u32 kmrnctrlsta;
 545
 546	if (!locked) {
 547		s32 ret_val = 0;
 548
 549		if (!hw->phy.ops.acquire)
 550			return 0;
 551
 552		ret_val = hw->phy.ops.acquire(hw);
 553		if (ret_val)
 554			return ret_val;
 555	}
 556
 557	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 558		       E1000_KMRNCTRLSTA_OFFSET) | data;
 559	ew32(KMRNCTRLSTA, kmrnctrlsta);
 560	e1e_flush();
 561
 562	udelay(2);
 563
 564	if (!locked)
 565		hw->phy.ops.release(hw);
 566
 567	return 0;
 568}
 569
 570/**
 571 *  e1000e_write_kmrn_reg -  Write kumeran register
 572 *  @hw: pointer to the HW structure
 573 *  @offset: register offset to write to
 574 *  @data: data to write at register offset
 575 *
 576 *  Acquires semaphore then writes the data to the PHY register at the offset
 577 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 578 **/
 579s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 580{
 581	return __e1000_write_kmrn_reg(hw, offset, data, false);
 582}
 583
 584/**
 585 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 586 *  @hw: pointer to the HW structure
 587 *  @offset: register offset to write to
 588 *  @data: data to write at register offset
 589 *
 590 *  Write the data to PHY register at the offset using the kumeran interface.
 591 *  Assumes semaphore already acquired.
 592 **/
 593s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 594{
 595	return __e1000_write_kmrn_reg(hw, offset, data, true);
 596}
 597
 598/**
 599 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 600 *  @hw: pointer to the HW structure
 601 *
 602 *  Sets up Master/slave mode
 603 **/
 604static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 605{
 606	s32 ret_val;
 607	u16 phy_data;
 608
 609	/* Resolve Master/Slave mode */
 610	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 611	if (ret_val)
 612		return ret_val;
 613
 614	/* load defaults for future use */
 615	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 616	    ((phy_data & CTL1000_AS_MASTER) ?
 617	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 618
 619	switch (hw->phy.ms_type) {
 620	case e1000_ms_force_master:
 621		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 622		break;
 623	case e1000_ms_force_slave:
 624		phy_data |= CTL1000_ENABLE_MASTER;
 625		phy_data &= ~(CTL1000_AS_MASTER);
 626		break;
 627	case e1000_ms_auto:
 628		phy_data &= ~CTL1000_ENABLE_MASTER;
 629		/* fall-through */
 630	default:
 631		break;
 632	}
 633
 634	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 635}
 636
 637/**
 638 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 639 *  @hw: pointer to the HW structure
 640 *
 641 *  Sets up Carrier-sense on Transmit and downshift values.
 642 **/
 643s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 644{
 645	s32 ret_val;
 646	u16 phy_data;
 647
 648	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 649	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 650	if (ret_val)
 651		return ret_val;
 652
 653	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 654
 655	/* Enable downshift */
 656	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 657
 658	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 659	if (ret_val)
 660		return ret_val;
 661
 662	/* Set MDI/MDIX mode */
 663	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 664	if (ret_val)
 665		return ret_val;
 666	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 667	/* Options:
 668	 *   0 - Auto (default)
 669	 *   1 - MDI mode
 670	 *   2 - MDI-X mode
 671	 */
 672	switch (hw->phy.mdix) {
 673	case 1:
 674		break;
 675	case 2:
 676		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 677		break;
 678	case 0:
 679	default:
 680		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 681		break;
 682	}
 683	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 684	if (ret_val)
 685		return ret_val;
 686
 687	return e1000_set_master_slave_mode(hw);
 688}
 689
 690/**
 691 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 692 *  @hw: pointer to the HW structure
 693 *
 694 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 695 *  and downshift values are set also.
 696 **/
 697s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 698{
 699	struct e1000_phy_info *phy = &hw->phy;
 700	s32 ret_val;
 701	u16 phy_data;
 702
 703	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 704	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 705	if (ret_val)
 706		return ret_val;
 707
 708	/* For BM PHY this bit is downshift enable */
 709	if (phy->type != e1000_phy_bm)
 710		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 711
 712	/* Options:
 713	 *   MDI/MDI-X = 0 (default)
 714	 *   0 - Auto for all speeds
 715	 *   1 - MDI mode
 716	 *   2 - MDI-X mode
 717	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 718	 */
 719	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 720
 721	switch (phy->mdix) {
 722	case 1:
 723		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 724		break;
 725	case 2:
 726		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 727		break;
 728	case 3:
 729		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 730		break;
 731	case 0:
 732	default:
 733		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 734		break;
 735	}
 736
 737	/* Options:
 738	 *   disable_polarity_correction = 0 (default)
 739	 *       Automatic Correction for Reversed Cable Polarity
 740	 *   0 - Disabled
 741	 *   1 - Enabled
 742	 */
 743	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 744	if (phy->disable_polarity_correction)
 745		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 746
 747	/* Enable downshift on BM (disabled by default) */
 748	if (phy->type == e1000_phy_bm) {
 749		/* For 82574/82583, first disable then enable downshift */
 750		if (phy->id == BME1000_E_PHY_ID_R2) {
 751			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 752			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 753					   phy_data);
 754			if (ret_val)
 755				return ret_val;
 756			/* Commit the changes. */
 757			ret_val = phy->ops.commit(hw);
 758			if (ret_val) {
 759				e_dbg("Error committing the PHY changes\n");
 760				return ret_val;
 761			}
 762		}
 763
 764		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 765	}
 766
 767	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 768	if (ret_val)
 769		return ret_val;
 770
 771	if ((phy->type == e1000_phy_m88) &&
 772	    (phy->revision < E1000_REVISION_4) &&
 773	    (phy->id != BME1000_E_PHY_ID_R2)) {
 774		/* Force TX_CLK in the Extended PHY Specific Control Register
 775		 * to 25MHz clock.
 776		 */
 777		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 778		if (ret_val)
 779			return ret_val;
 780
 781		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 782
 783		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 784			/* 82573L PHY - set the downshift counter to 5x. */
 785			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 786			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 787		} else {
 788			/* Configure Master and Slave downshift values */
 789			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 790				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 791			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 792				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 793		}
 794		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 795		if (ret_val)
 796			return ret_val;
 797	}
 798
 799	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 800		/* Set PHY page 0, register 29 to 0x0003 */
 801		ret_val = e1e_wphy(hw, 29, 0x0003);
 802		if (ret_val)
 803			return ret_val;
 804
 805		/* Set PHY page 0, register 30 to 0x0000 */
 806		ret_val = e1e_wphy(hw, 30, 0x0000);
 807		if (ret_val)
 808			return ret_val;
 809	}
 810
 811	/* Commit the changes. */
 812	if (phy->ops.commit) {
 813		ret_val = phy->ops.commit(hw);
 814		if (ret_val) {
 815			e_dbg("Error committing the PHY changes\n");
 816			return ret_val;
 817		}
 818	}
 819
 820	if (phy->type == e1000_phy_82578) {
 821		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 822		if (ret_val)
 823			return ret_val;
 824
 825		/* 82578 PHY - set the downshift count to 1x. */
 826		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 827		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 828		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	return 0;
 834}
 835
 836/**
 837 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 838 *  @hw: pointer to the HW structure
 839 *
 840 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 841 *  igp PHY's.
 842 **/
 843s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 844{
 845	struct e1000_phy_info *phy = &hw->phy;
 846	s32 ret_val;
 847	u16 data;
 848
 849	ret_val = e1000_phy_hw_reset(hw);
 850	if (ret_val) {
 851		e_dbg("Error resetting the PHY.\n");
 852		return ret_val;
 853	}
 854
 855	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 856	 * timeout issues when LFS is enabled.
 857	 */
 858	msleep(100);
 859
 860	/* disable lplu d0 during driver init */
 861	if (hw->phy.ops.set_d0_lplu_state) {
 862		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 863		if (ret_val) {
 864			e_dbg("Error Disabling LPLU D0\n");
 865			return ret_val;
 866		}
 867	}
 868	/* Configure mdi-mdix settings */
 869	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 870	if (ret_val)
 871		return ret_val;
 872
 873	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 874
 875	switch (phy->mdix) {
 876	case 1:
 877		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 878		break;
 879	case 2:
 880		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 881		break;
 882	case 0:
 883	default:
 884		data |= IGP01E1000_PSCR_AUTO_MDIX;
 885		break;
 886	}
 887	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 888	if (ret_val)
 889		return ret_val;
 890
 891	/* set auto-master slave resolution settings */
 892	if (hw->mac.autoneg) {
 893		/* when autonegotiation advertisement is only 1000Mbps then we
 894		 * should disable SmartSpeed and enable Auto MasterSlave
 895		 * resolution as hardware default.
 896		 */
 897		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 898			/* Disable SmartSpeed */
 899			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 900					   &data);
 901			if (ret_val)
 902				return ret_val;
 903
 904			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 905			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 906					   data);
 907			if (ret_val)
 908				return ret_val;
 909
 910			/* Set auto Master/Slave resolution process */
 911			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 912			if (ret_val)
 913				return ret_val;
 914
 915			data &= ~CTL1000_ENABLE_MASTER;
 916			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 917			if (ret_val)
 918				return ret_val;
 919		}
 920
 921		ret_val = e1000_set_master_slave_mode(hw);
 922	}
 923
 924	return ret_val;
 925}
 926
 927/**
 928 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 929 *  @hw: pointer to the HW structure
 930 *
 931 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 932 *  register and if the PHY is already setup for auto-negotiation, then
 933 *  return successful.  Otherwise, setup advertisement and flow control to
 934 *  the appropriate values for the wanted auto-negotiation.
 935 **/
 936static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 937{
 938	struct e1000_phy_info *phy = &hw->phy;
 939	s32 ret_val;
 940	u16 mii_autoneg_adv_reg;
 941	u16 mii_1000t_ctrl_reg = 0;
 942
 943	phy->autoneg_advertised &= phy->autoneg_mask;
 944
 945	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 946	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 947	if (ret_val)
 948		return ret_val;
 949
 950	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 951		/* Read the MII 1000Base-T Control Register (Address 9). */
 952		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 953		if (ret_val)
 954			return ret_val;
 955	}
 956
 957	/* Need to parse both autoneg_advertised and fc and set up
 958	 * the appropriate PHY registers.  First we will parse for
 959	 * autoneg_advertised software override.  Since we can advertise
 960	 * a plethora of combinations, we need to check each bit
 961	 * individually.
 962	 */
 963
 964	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 965	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 966	 * the  1000Base-T Control Register (Address 9).
 967	 */
 968	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 969				 ADVERTISE_100HALF |
 970				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 971	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 972
 973	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 974
 975	/* Do we want to advertise 10 Mb Half Duplex? */
 976	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 977		e_dbg("Advertise 10mb Half duplex\n");
 978		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 979	}
 980
 981	/* Do we want to advertise 10 Mb Full Duplex? */
 982	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 983		e_dbg("Advertise 10mb Full duplex\n");
 984		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 985	}
 986
 987	/* Do we want to advertise 100 Mb Half Duplex? */
 988	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 989		e_dbg("Advertise 100mb Half duplex\n");
 990		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 991	}
 992
 993	/* Do we want to advertise 100 Mb Full Duplex? */
 994	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 995		e_dbg("Advertise 100mb Full duplex\n");
 996		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 997	}
 998
 999	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1000	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1001		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1002
1003	/* Do we want to advertise 1000 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1005		e_dbg("Advertise 1000mb Full duplex\n");
1006		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1007	}
1008
1009	/* Check for a software override of the flow control settings, and
1010	 * setup the PHY advertisement registers accordingly.  If
1011	 * auto-negotiation is enabled, then software will have to set the
1012	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1013	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1014	 * negotiation.
1015	 *
1016	 * The possible values of the "fc" parameter are:
1017	 *      0:  Flow control is completely disabled
1018	 *      1:  Rx flow control is enabled (we can receive pause frames
1019	 *          but not send pause frames).
1020	 *      2:  Tx flow control is enabled (we can send pause frames
1021	 *          but we do not support receiving pause frames).
1022	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1023	 *  other:  No software override.  The flow control configuration
1024	 *          in the EEPROM is used.
1025	 */
1026	switch (hw->fc.current_mode) {
1027	case e1000_fc_none:
1028		/* Flow control (Rx & Tx) is completely disabled by a
1029		 * software over-ride.
1030		 */
1031		mii_autoneg_adv_reg &=
1032		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 
 
1033		break;
1034	case e1000_fc_rx_pause:
1035		/* Rx Flow control is enabled, and Tx Flow control is
1036		 * disabled, by a software over-ride.
1037		 *
1038		 * Since there really isn't a way to advertise that we are
1039		 * capable of Rx Pause ONLY, we will advertise that we
1040		 * support both symmetric and asymmetric Rx PAUSE.  Later
1041		 * (in e1000e_config_fc_after_link_up) we will disable the
1042		 * hw's ability to send PAUSE frames.
1043		 */
1044		mii_autoneg_adv_reg |=
1045		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 
 
1046		break;
1047	case e1000_fc_tx_pause:
1048		/* Tx Flow control is enabled, and Rx Flow control is
1049		 * disabled, by a software over-ride.
1050		 */
1051		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1052		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
 
 
1053		break;
1054	case e1000_fc_full:
1055		/* Flow control (both Rx and Tx) is enabled by a software
1056		 * over-ride.
1057		 */
1058		mii_autoneg_adv_reg |=
1059		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 
 
1060		break;
1061	default:
1062		e_dbg("Flow control param set incorrectly\n");
1063		return -E1000_ERR_CONFIG;
1064	}
1065
1066	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1067	if (ret_val)
1068		return ret_val;
1069
1070	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1071
1072	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1073		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1074
1075	return ret_val;
1076}
1077
1078/**
1079 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1080 *  @hw: pointer to the HW structure
1081 *
1082 *  Performs initial bounds checking on autoneg advertisement parameter, then
1083 *  configure to advertise the full capability.  Setup the PHY to autoneg
1084 *  and restart the negotiation process between the link partner.  If
1085 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1086 **/
1087static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1088{
1089	struct e1000_phy_info *phy = &hw->phy;
1090	s32 ret_val;
1091	u16 phy_ctrl;
1092
1093	/* Perform some bounds checking on the autoneg advertisement
1094	 * parameter.
1095	 */
1096	phy->autoneg_advertised &= phy->autoneg_mask;
1097
1098	/* If autoneg_advertised is zero, we assume it was not defaulted
1099	 * by the calling code so we set to advertise full capability.
1100	 */
1101	if (!phy->autoneg_advertised)
1102		phy->autoneg_advertised = phy->autoneg_mask;
1103
1104	e_dbg("Reconfiguring auto-neg advertisement params\n");
1105	ret_val = e1000_phy_setup_autoneg(hw);
1106	if (ret_val) {
1107		e_dbg("Error Setting up Auto-Negotiation\n");
1108		return ret_val;
1109	}
1110	e_dbg("Restarting Auto-Neg\n");
1111
1112	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1113	 * the Auto Neg Restart bit in the PHY control register.
1114	 */
1115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1116	if (ret_val)
1117		return ret_val;
1118
1119	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1121	if (ret_val)
1122		return ret_val;
1123
1124	/* Does the user want to wait for Auto-Neg to complete here, or
1125	 * check at a later time (for example, callback routine).
1126	 */
1127	if (phy->autoneg_wait_to_complete) {
1128		ret_val = e1000_wait_autoneg(hw);
1129		if (ret_val) {
1130			e_dbg("Error while waiting for autoneg to complete\n");
1131			return ret_val;
1132		}
1133	}
1134
1135	hw->mac.get_link_status = true;
1136
1137	return ret_val;
1138}
1139
1140/**
1141 *  e1000e_setup_copper_link - Configure copper link settings
1142 *  @hw: pointer to the HW structure
1143 *
1144 *  Calls the appropriate function to configure the link for auto-neg or forced
1145 *  speed and duplex.  Then we check for link, once link is established calls
1146 *  to configure collision distance and flow control are called.  If link is
1147 *  not established, we return -E1000_ERR_PHY (-2).
1148 **/
1149s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1150{
1151	s32 ret_val;
1152	bool link;
1153
1154	if (hw->mac.autoneg) {
1155		/* Setup autoneg and flow control advertisement and perform
1156		 * autonegotiation.
1157		 */
1158		ret_val = e1000_copper_link_autoneg(hw);
1159		if (ret_val)
1160			return ret_val;
1161	} else {
1162		/* PHY will be set to 10H, 10F, 100H or 100F
1163		 * depending on user settings.
1164		 */
1165		e_dbg("Forcing Speed and Duplex\n");
1166		ret_val = hw->phy.ops.force_speed_duplex(hw);
1167		if (ret_val) {
1168			e_dbg("Error Forcing Speed and Duplex\n");
1169			return ret_val;
1170		}
1171	}
1172
1173	/* Check link status. Wait up to 100 microseconds for link to become
1174	 * valid.
1175	 */
1176	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1177					      &link);
1178	if (ret_val)
1179		return ret_val;
1180
1181	if (link) {
1182		e_dbg("Valid link established!!!\n");
1183		hw->mac.ops.config_collision_dist(hw);
1184		ret_val = e1000e_config_fc_after_link_up(hw);
1185	} else {
1186		e_dbg("Unable to establish link!!!\n");
1187	}
1188
1189	return ret_val;
1190}
1191
1192/**
1193 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1194 *  @hw: pointer to the HW structure
1195 *
1196 *  Calls the PHY setup function to force speed and duplex.  Clears the
1197 *  auto-crossover to force MDI manually.  Waits for link and returns
1198 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 **/
1200s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1201{
1202	struct e1000_phy_info *phy = &hw->phy;
1203	s32 ret_val;
1204	u16 phy_data;
1205	bool link;
1206
1207	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1208	if (ret_val)
1209		return ret_val;
1210
1211	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1212
1213	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1218	 * forced whenever speed and duplex are forced.
1219	 */
1220	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1221	if (ret_val)
1222		return ret_val;
1223
1224	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1225	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1226
1227	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1228	if (ret_val)
1229		return ret_val;
1230
1231	e_dbg("IGP PSCR: %X\n", phy_data);
1232
1233	udelay(1);
1234
1235	if (phy->autoneg_wait_to_complete) {
1236		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1237
1238		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1239						      100000, &link);
1240		if (ret_val)
1241			return ret_val;
1242
1243		if (!link)
1244			e_dbg("Link taking longer than expected.\n");
1245
1246		/* Try once more */
1247		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1248						      100000, &link);
1249	}
1250
1251	return ret_val;
1252}
1253
1254/**
1255 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1256 *  @hw: pointer to the HW structure
1257 *
1258 *  Calls the PHY setup function to force speed and duplex.  Clears the
1259 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1260 *  changes.  If time expires while waiting for link up, we reset the DSP.
1261 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1262 *  successful completion, else return corresponding error code.
1263 **/
1264s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1265{
1266	struct e1000_phy_info *phy = &hw->phy;
1267	s32 ret_val;
1268	u16 phy_data;
1269	bool link;
1270
1271	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1272	 * forced whenever speed and duplex are forced.
1273	 */
1274	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275	if (ret_val)
1276		return ret_val;
1277
1278	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1279	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1280	if (ret_val)
1281		return ret_val;
1282
1283	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1284
1285	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1286	if (ret_val)
1287		return ret_val;
1288
1289	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1290
1291	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1292	if (ret_val)
1293		return ret_val;
1294
1295	/* Reset the phy to commit changes. */
1296	if (hw->phy.ops.commit) {
1297		ret_val = hw->phy.ops.commit(hw);
1298		if (ret_val)
1299			return ret_val;
1300	}
1301
1302	if (phy->autoneg_wait_to_complete) {
1303		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1304
1305		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1306						      100000, &link);
1307		if (ret_val)
1308			return ret_val;
1309
1310		if (!link) {
1311			if (hw->phy.type != e1000_phy_m88) {
1312				e_dbg("Link taking longer than expected.\n");
1313			} else {
1314				/* We didn't get link.
1315				 * Reset the DSP and cross our fingers.
1316				 */
1317				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1318						   0x001d);
1319				if (ret_val)
1320					return ret_val;
1321				ret_val = e1000e_phy_reset_dsp(hw);
1322				if (ret_val)
1323					return ret_val;
1324			}
1325		}
1326
1327		/* Try once more */
1328		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1329						      100000, &link);
1330		if (ret_val)
1331			return ret_val;
1332	}
1333
1334	if (hw->phy.type != e1000_phy_m88)
1335		return 0;
1336
1337	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1338	if (ret_val)
1339		return ret_val;
1340
1341	/* Resetting the phy means we need to re-force TX_CLK in the
1342	 * Extended PHY Specific Control Register to 25MHz clock from
1343	 * the reset value of 2.5MHz.
1344	 */
1345	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1346	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1347	if (ret_val)
1348		return ret_val;
1349
1350	/* In addition, we must re-enable CRS on Tx for both half and full
1351	 * duplex.
1352	 */
1353	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354	if (ret_val)
1355		return ret_val;
1356
1357	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359
1360	return ret_val;
1361}
1362
1363/**
1364 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365 *  @hw: pointer to the HW structure
1366 *
1367 *  Forces the speed and duplex settings of the PHY.
1368 *  This is a function pointer entry point only called by
1369 *  PHY setup routines.
1370 **/
1371s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372{
1373	struct e1000_phy_info *phy = &hw->phy;
1374	s32 ret_val;
1375	u16 data;
1376	bool link;
1377
1378	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1379	if (ret_val)
1380		return ret_val;
1381
1382	e1000e_phy_force_speed_duplex_setup(hw, &data);
1383
1384	ret_val = e1e_wphy(hw, MII_BMCR, data);
1385	if (ret_val)
1386		return ret_val;
1387
1388	/* Disable MDI-X support for 10/100 */
1389	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390	if (ret_val)
1391		return ret_val;
1392
1393	data &= ~IFE_PMC_AUTO_MDIX;
1394	data &= ~IFE_PMC_FORCE_MDIX;
1395
1396	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397	if (ret_val)
1398		return ret_val;
1399
1400	e_dbg("IFE PMC: %X\n", data);
1401
1402	udelay(1);
1403
1404	if (phy->autoneg_wait_to_complete) {
1405		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406
1407		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408						      100000, &link);
1409		if (ret_val)
1410			return ret_val;
1411
1412		if (!link)
1413			e_dbg("Link taking longer than expected.\n");
1414
1415		/* Try once more */
1416		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417						      100000, &link);
1418		if (ret_val)
1419			return ret_val;
1420	}
1421
1422	return 0;
1423}
1424
1425/**
1426 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 *  @hw: pointer to the HW structure
1428 *  @phy_ctrl: pointer to current value of MII_BMCR
1429 *
1430 *  Forces speed and duplex on the PHY by doing the following: disable flow
1431 *  control, force speed/duplex on the MAC, disable auto speed detection,
1432 *  disable auto-negotiation, configure duplex, configure speed, configure
1433 *  the collision distance, write configuration to CTRL register.  The
1434 *  caller must write to the MII_BMCR register for these settings to
1435 *  take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439	struct e1000_mac_info *mac = &hw->mac;
1440	u32 ctrl;
1441
1442	/* Turn off flow control when forcing speed/duplex */
1443	hw->fc.current_mode = e1000_fc_none;
1444
1445	/* Force speed/duplex on the mac */
1446	ctrl = er32(CTRL);
1447	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448	ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450	/* Disable Auto Speed Detection */
1451	ctrl &= ~E1000_CTRL_ASDE;
1452
1453	/* Disable autoneg on the phy */
1454	*phy_ctrl &= ~BMCR_ANENABLE;
1455
1456	/* Forcing Full or Half Duplex? */
1457	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458		ctrl &= ~E1000_CTRL_FD;
1459		*phy_ctrl &= ~BMCR_FULLDPLX;
1460		e_dbg("Half Duplex\n");
1461	} else {
1462		ctrl |= E1000_CTRL_FD;
1463		*phy_ctrl |= BMCR_FULLDPLX;
1464		e_dbg("Full Duplex\n");
1465	}
1466
1467	/* Forcing 10mb or 100mb? */
1468	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469		ctrl |= E1000_CTRL_SPD_100;
1470		*phy_ctrl |= BMCR_SPEED100;
1471		*phy_ctrl &= ~BMCR_SPEED1000;
1472		e_dbg("Forcing 100mb\n");
1473	} else {
1474		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1476		e_dbg("Forcing 10mb\n");
1477	}
1478
1479	hw->mac.ops.config_collision_dist(hw);
1480
1481	ew32(CTRL, ctrl);
1482}
1483
1484/**
1485 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1486 *  @hw: pointer to the HW structure
1487 *  @active: boolean used to enable/disable lplu
1488 *
1489 *  Success returns 0, Failure returns 1
1490 *
1491 *  The low power link up (lplu) state is set to the power management level D3
1492 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1493 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1494 *  is used during Dx states where the power conservation is most important.
1495 *  During driver activity, SmartSpeed should be enabled so performance is
1496 *  maintained.
1497 **/
1498s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1499{
1500	struct e1000_phy_info *phy = &hw->phy;
1501	s32 ret_val;
1502	u16 data;
1503
1504	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1505	if (ret_val)
1506		return ret_val;
1507
1508	if (!active) {
1509		data &= ~IGP02E1000_PM_D3_LPLU;
1510		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1511		if (ret_val)
1512			return ret_val;
1513		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1514		 * during Dx states where the power conservation is most
1515		 * important.  During driver activity we should enable
1516		 * SmartSpeed, so performance is maintained.
1517		 */
1518		if (phy->smart_speed == e1000_smart_speed_on) {
1519			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1520					   &data);
1521			if (ret_val)
1522				return ret_val;
1523
1524			data |= IGP01E1000_PSCFR_SMART_SPEED;
1525			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526					   data);
1527			if (ret_val)
1528				return ret_val;
1529		} else if (phy->smart_speed == e1000_smart_speed_off) {
1530			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1531					   &data);
1532			if (ret_val)
1533				return ret_val;
1534
1535			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537					   data);
1538			if (ret_val)
1539				return ret_val;
1540		}
1541	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1542		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1543		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1544		data |= IGP02E1000_PM_D3_LPLU;
1545		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1546		if (ret_val)
1547			return ret_val;
1548
1549		/* When LPLU is enabled, we should disable SmartSpeed */
1550		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1551		if (ret_val)
1552			return ret_val;
1553
1554		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1555		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1556	}
1557
1558	return ret_val;
1559}
1560
1561/**
1562 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1563 *  @hw: pointer to the HW structure
1564 *
1565 *  Success returns 0, Failure returns 1
1566 *
1567 *  A downshift is detected by querying the PHY link health.
1568 **/
1569s32 e1000e_check_downshift(struct e1000_hw *hw)
1570{
1571	struct e1000_phy_info *phy = &hw->phy;
1572	s32 ret_val;
1573	u16 phy_data, offset, mask;
1574
1575	switch (phy->type) {
1576	case e1000_phy_m88:
1577	case e1000_phy_gg82563:
1578	case e1000_phy_bm:
1579	case e1000_phy_82578:
1580		offset = M88E1000_PHY_SPEC_STATUS;
1581		mask = M88E1000_PSSR_DOWNSHIFT;
1582		break;
1583	case e1000_phy_igp_2:
1584	case e1000_phy_igp_3:
1585		offset = IGP01E1000_PHY_LINK_HEALTH;
1586		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1587		break;
1588	default:
1589		/* speed downshift not supported */
1590		phy->speed_downgraded = false;
1591		return 0;
1592	}
1593
1594	ret_val = e1e_rphy(hw, offset, &phy_data);
1595
1596	if (!ret_val)
1597		phy->speed_downgraded = !!(phy_data & mask);
1598
1599	return ret_val;
1600}
1601
1602/**
1603 *  e1000_check_polarity_m88 - Checks the polarity.
1604 *  @hw: pointer to the HW structure
1605 *
1606 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1607 *
1608 *  Polarity is determined based on the PHY specific status register.
1609 **/
1610s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1611{
1612	struct e1000_phy_info *phy = &hw->phy;
1613	s32 ret_val;
1614	u16 data;
1615
1616	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1617
1618	if (!ret_val)
1619		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1620				       ? e1000_rev_polarity_reversed
1621				       : e1000_rev_polarity_normal);
1622
1623	return ret_val;
1624}
1625
1626/**
1627 *  e1000_check_polarity_igp - Checks the polarity.
1628 *  @hw: pointer to the HW structure
1629 *
1630 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1631 *
1632 *  Polarity is determined based on the PHY port status register, and the
1633 *  current speed (since there is no polarity at 100Mbps).
1634 **/
1635s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1636{
1637	struct e1000_phy_info *phy = &hw->phy;
1638	s32 ret_val;
1639	u16 data, offset, mask;
1640
1641	/* Polarity is determined based on the speed of
1642	 * our connection.
1643	 */
1644	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1645	if (ret_val)
1646		return ret_val;
1647
1648	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1649	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1650		offset = IGP01E1000_PHY_PCS_INIT_REG;
1651		mask = IGP01E1000_PHY_POLARITY_MASK;
1652	} else {
1653		/* This really only applies to 10Mbps since
1654		 * there is no polarity for 100Mbps (always 0).
1655		 */
1656		offset = IGP01E1000_PHY_PORT_STATUS;
1657		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1658	}
1659
1660	ret_val = e1e_rphy(hw, offset, &data);
1661
1662	if (!ret_val)
1663		phy->cable_polarity = ((data & mask)
1664				       ? e1000_rev_polarity_reversed
1665				       : e1000_rev_polarity_normal);
1666
1667	return ret_val;
1668}
1669
1670/**
1671 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1672 *  @hw: pointer to the HW structure
1673 *
1674 *  Polarity is determined on the polarity reversal feature being enabled.
1675 **/
1676s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1677{
1678	struct e1000_phy_info *phy = &hw->phy;
1679	s32 ret_val;
1680	u16 phy_data, offset, mask;
1681
1682	/* Polarity is determined based on the reversal feature being enabled.
1683	 */
1684	if (phy->polarity_correction) {
1685		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1686		mask = IFE_PESC_POLARITY_REVERSED;
1687	} else {
1688		offset = IFE_PHY_SPECIAL_CONTROL;
1689		mask = IFE_PSC_FORCE_POLARITY;
1690	}
1691
1692	ret_val = e1e_rphy(hw, offset, &phy_data);
1693
1694	if (!ret_val)
1695		phy->cable_polarity = ((phy_data & mask)
1696				       ? e1000_rev_polarity_reversed
1697				       : e1000_rev_polarity_normal);
1698
1699	return ret_val;
1700}
1701
1702/**
1703 *  e1000_wait_autoneg - Wait for auto-neg completion
1704 *  @hw: pointer to the HW structure
1705 *
1706 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1707 *  limit to expire, which ever happens first.
1708 **/
1709static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1710{
1711	s32 ret_val = 0;
1712	u16 i, phy_status;
1713
1714	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1715	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1716		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1717		if (ret_val)
1718			break;
1719		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1720		if (ret_val)
1721			break;
1722		if (phy_status & BMSR_ANEGCOMPLETE)
1723			break;
1724		msleep(100);
1725	}
1726
1727	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1728	 * has completed.
1729	 */
1730	return ret_val;
1731}
1732
1733/**
1734 *  e1000e_phy_has_link_generic - Polls PHY for link
1735 *  @hw: pointer to the HW structure
1736 *  @iterations: number of times to poll for link
1737 *  @usec_interval: delay between polling attempts
1738 *  @success: pointer to whether polling was successful or not
1739 *
1740 *  Polls the PHY status register for link, 'iterations' number of times.
1741 **/
1742s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1743				u32 usec_interval, bool *success)
1744{
1745	s32 ret_val = 0;
1746	u16 i, phy_status;
1747
1748	*success = false;
1749	for (i = 0; i < iterations; i++) {
1750		/* Some PHYs require the MII_BMSR register to be read
1751		 * twice due to the link bit being sticky.  No harm doing
1752		 * it across the board.
1753		 */
1754		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1755		if (ret_val) {
1756			/* If the first read fails, another entity may have
1757			 * ownership of the resources, wait and try again to
1758			 * see if they have relinquished the resources yet.
1759			 */
1760			if (usec_interval >= 1000)
1761				msleep(usec_interval / 1000);
1762			else
1763				udelay(usec_interval);
1764		}
1765		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1766		if (ret_val)
1767			break;
1768		if (phy_status & BMSR_LSTATUS) {
1769			*success = true;
1770			break;
1771		}
1772		if (usec_interval >= 1000)
1773			msleep(usec_interval / 1000);
1774		else
1775			udelay(usec_interval);
1776	}
1777
1778	return ret_val;
1779}
1780
1781/**
1782 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1783 *  @hw: pointer to the HW structure
1784 *
1785 *  Reads the PHY specific status register to retrieve the cable length
1786 *  information.  The cable length is determined by averaging the minimum and
1787 *  maximum values to get the "average" cable length.  The m88 PHY has four
1788 *  possible cable length values, which are:
1789 *	Register Value		Cable Length
1790 *	0			< 50 meters
1791 *	1			50 - 80 meters
1792 *	2			80 - 110 meters
1793 *	3			110 - 140 meters
1794 *	4			> 140 meters
1795 **/
1796s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1797{
1798	struct e1000_phy_info *phy = &hw->phy;
1799	s32 ret_val;
1800	u16 phy_data, index;
1801
1802	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1803	if (ret_val)
1804		return ret_val;
1805
1806	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1807		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1808
1809	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1810		return -E1000_ERR_PHY;
1811
1812	phy->min_cable_length = e1000_m88_cable_length_table[index];
1813	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1814
1815	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1816
1817	return 0;
1818}
1819
1820/**
1821 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1822 *  @hw: pointer to the HW structure
1823 *
1824 *  The automatic gain control (agc) normalizes the amplitude of the
1825 *  received signal, adjusting for the attenuation produced by the
1826 *  cable.  By reading the AGC registers, which represent the
1827 *  combination of coarse and fine gain value, the value can be put
1828 *  into a lookup table to obtain the approximate cable length
1829 *  for each channel.
1830 **/
1831s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1832{
1833	struct e1000_phy_info *phy = &hw->phy;
1834	s32 ret_val;
1835	u16 phy_data, i, agc_value = 0;
1836	u16 cur_agc_index, max_agc_index = 0;
1837	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1838	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1839		IGP02E1000_PHY_AGC_A,
1840		IGP02E1000_PHY_AGC_B,
1841		IGP02E1000_PHY_AGC_C,
1842		IGP02E1000_PHY_AGC_D
1843	};
1844
1845	/* Read the AGC registers for all channels */
1846	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1847		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1848		if (ret_val)
1849			return ret_val;
1850
1851		/* Getting bits 15:9, which represent the combination of
1852		 * coarse and fine gain values.  The result is a number
1853		 * that can be put into the lookup table to obtain the
1854		 * approximate cable length.
1855		 */
1856		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1857				 IGP02E1000_AGC_LENGTH_MASK);
1858
1859		/* Array index bound check. */
1860		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1861		    (cur_agc_index == 0))
1862			return -E1000_ERR_PHY;
1863
1864		/* Remove min & max AGC values from calculation. */
1865		if (e1000_igp_2_cable_length_table[min_agc_index] >
1866		    e1000_igp_2_cable_length_table[cur_agc_index])
1867			min_agc_index = cur_agc_index;
1868		if (e1000_igp_2_cable_length_table[max_agc_index] <
1869		    e1000_igp_2_cable_length_table[cur_agc_index])
1870			max_agc_index = cur_agc_index;
1871
1872		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1873	}
1874
1875	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1876		      e1000_igp_2_cable_length_table[max_agc_index]);
1877	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1878
1879	/* Calculate cable length with the error range of +/- 10 meters. */
1880	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1881				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1882	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1883
1884	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1885
1886	return 0;
1887}
1888
1889/**
1890 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Valid for only copper links.  Read the PHY status register (sticky read)
1894 *  to verify that link is up.  Read the PHY special control register to
1895 *  determine the polarity and 10base-T extended distance.  Read the PHY
1896 *  special status register to determine MDI/MDIx and current speed.  If
1897 *  speed is 1000, then determine cable length, local and remote receiver.
1898 **/
1899s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1900{
1901	struct e1000_phy_info *phy = &hw->phy;
1902	s32 ret_val;
1903	u16 phy_data;
1904	bool link;
1905
1906	if (phy->media_type != e1000_media_type_copper) {
1907		e_dbg("Phy info is only valid for copper media\n");
1908		return -E1000_ERR_CONFIG;
1909	}
1910
1911	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1912	if (ret_val)
1913		return ret_val;
1914
1915	if (!link) {
1916		e_dbg("Phy info is only valid if link is up\n");
1917		return -E1000_ERR_CONFIG;
1918	}
1919
1920	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1921	if (ret_val)
1922		return ret_val;
1923
1924	phy->polarity_correction = !!(phy_data &
1925				      M88E1000_PSCR_POLARITY_REVERSAL);
1926
1927	ret_val = e1000_check_polarity_m88(hw);
1928	if (ret_val)
1929		return ret_val;
1930
1931	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1932	if (ret_val)
1933		return ret_val;
1934
1935	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1936
1937	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1938		ret_val = hw->phy.ops.get_cable_length(hw);
1939		if (ret_val)
1940			return ret_val;
1941
1942		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1943		if (ret_val)
1944			return ret_val;
1945
1946		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1947		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1948
1949		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1950		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1951	} else {
1952		/* Set values to "undefined" */
1953		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1954		phy->local_rx = e1000_1000t_rx_status_undefined;
1955		phy->remote_rx = e1000_1000t_rx_status_undefined;
1956	}
1957
1958	return ret_val;
1959}
1960
1961/**
1962 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1963 *  @hw: pointer to the HW structure
1964 *
1965 *  Read PHY status to determine if link is up.  If link is up, then
1966 *  set/determine 10base-T extended distance and polarity correction.  Read
1967 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1968 *  determine on the cable length, local and remote receiver.
1969 **/
1970s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1971{
1972	struct e1000_phy_info *phy = &hw->phy;
1973	s32 ret_val;
1974	u16 data;
1975	bool link;
1976
1977	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978	if (ret_val)
1979		return ret_val;
1980
1981	if (!link) {
1982		e_dbg("Phy info is only valid if link is up\n");
1983		return -E1000_ERR_CONFIG;
1984	}
1985
1986	phy->polarity_correction = true;
1987
1988	ret_val = e1000_check_polarity_igp(hw);
1989	if (ret_val)
1990		return ret_val;
1991
1992	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1993	if (ret_val)
1994		return ret_val;
1995
1996	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1997
1998	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1999	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2000		ret_val = phy->ops.get_cable_length(hw);
2001		if (ret_val)
2002			return ret_val;
2003
2004		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2005		if (ret_val)
2006			return ret_val;
2007
2008		phy->local_rx = (data & LPA_1000LOCALRXOK)
2009		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2010
2011		phy->remote_rx = (data & LPA_1000REMRXOK)
2012		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2013	} else {
2014		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2015		phy->local_rx = e1000_1000t_rx_status_undefined;
2016		phy->remote_rx = e1000_1000t_rx_status_undefined;
2017	}
2018
2019	return ret_val;
2020}
2021
2022/**
2023 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2024 *  @hw: pointer to the HW structure
2025 *
2026 *  Populates "phy" structure with various feature states.
2027 **/
2028s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2029{
2030	struct e1000_phy_info *phy = &hw->phy;
2031	s32 ret_val;
2032	u16 data;
2033	bool link;
2034
2035	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2036	if (ret_val)
2037		return ret_val;
2038
2039	if (!link) {
2040		e_dbg("Phy info is only valid if link is up\n");
2041		return -E1000_ERR_CONFIG;
2042	}
2043
2044	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2045	if (ret_val)
2046		return ret_val;
2047	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2048
2049	if (phy->polarity_correction) {
2050		ret_val = e1000_check_polarity_ife(hw);
2051		if (ret_val)
2052			return ret_val;
2053	} else {
2054		/* Polarity is forced */
2055		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2056				       ? e1000_rev_polarity_reversed
2057				       : e1000_rev_polarity_normal);
2058	}
2059
2060	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2061	if (ret_val)
2062		return ret_val;
2063
2064	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2065
2066	/* The following parameters are undefined for 10/100 operation. */
2067	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2068	phy->local_rx = e1000_1000t_rx_status_undefined;
2069	phy->remote_rx = e1000_1000t_rx_status_undefined;
2070
2071	return 0;
2072}
2073
2074/**
2075 *  e1000e_phy_sw_reset - PHY software reset
2076 *  @hw: pointer to the HW structure
2077 *
2078 *  Does a software reset of the PHY by reading the PHY control register and
2079 *  setting/write the control register reset bit to the PHY.
2080 **/
2081s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2082{
2083	s32 ret_val;
2084	u16 phy_ctrl;
2085
2086	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2087	if (ret_val)
2088		return ret_val;
2089
2090	phy_ctrl |= BMCR_RESET;
2091	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2092	if (ret_val)
2093		return ret_val;
2094
2095	udelay(1);
2096
2097	return ret_val;
2098}
2099
2100/**
2101 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2102 *  @hw: pointer to the HW structure
2103 *
2104 *  Verify the reset block is not blocking us from resetting.  Acquire
2105 *  semaphore (if necessary) and read/set/write the device control reset
2106 *  bit in the PHY.  Wait the appropriate delay time for the device to
2107 *  reset and release the semaphore (if necessary).
2108 **/
2109s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2110{
2111	struct e1000_phy_info *phy = &hw->phy;
2112	s32 ret_val;
2113	u32 ctrl;
2114
2115	if (phy->ops.check_reset_block) {
2116		ret_val = phy->ops.check_reset_block(hw);
2117		if (ret_val)
2118			return 0;
2119	}
2120
2121	ret_val = phy->ops.acquire(hw);
2122	if (ret_val)
2123		return ret_val;
2124
2125	ctrl = er32(CTRL);
2126	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2127	e1e_flush();
2128
2129	udelay(phy->reset_delay_us);
2130
2131	ew32(CTRL, ctrl);
2132	e1e_flush();
2133
2134	usleep_range(150, 300);
2135
2136	phy->ops.release(hw);
2137
2138	return phy->ops.get_cfg_done(hw);
2139}
2140
2141/**
2142 *  e1000e_get_cfg_done_generic - Generic configuration done
2143 *  @hw: pointer to the HW structure
2144 *
2145 *  Generic function to wait 10 milli-seconds for configuration to complete
2146 *  and return success.
2147 **/
2148s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2149{
2150	mdelay(10);
2151
2152	return 0;
2153}
2154
2155/**
2156 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2157 *  @hw: pointer to the HW structure
2158 *
2159 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2160 **/
2161s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2162{
2163	e_dbg("Running IGP 3 PHY init script\n");
2164
2165	/* PHY init IGP 3 */
2166	/* Enable rise/fall, 10-mode work in class-A */
2167	e1e_wphy(hw, 0x2F5B, 0x9018);
2168	/* Remove all caps from Replica path filter */
2169	e1e_wphy(hw, 0x2F52, 0x0000);
2170	/* Bias trimming for ADC, AFE and Driver (Default) */
2171	e1e_wphy(hw, 0x2FB1, 0x8B24);
2172	/* Increase Hybrid poly bias */
2173	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2174	/* Add 4% to Tx amplitude in Gig mode */
2175	e1e_wphy(hw, 0x2010, 0x10B0);
2176	/* Disable trimming (TTT) */
2177	e1e_wphy(hw, 0x2011, 0x0000);
2178	/* Poly DC correction to 94.6% + 2% for all channels */
2179	e1e_wphy(hw, 0x20DD, 0x249A);
2180	/* ABS DC correction to 95.9% */
2181	e1e_wphy(hw, 0x20DE, 0x00D3);
2182	/* BG temp curve trim */
2183	e1e_wphy(hw, 0x28B4, 0x04CE);
2184	/* Increasing ADC OPAMP stage 1 currents to max */
2185	e1e_wphy(hw, 0x2F70, 0x29E4);
2186	/* Force 1000 ( required for enabling PHY regs configuration) */
2187	e1e_wphy(hw, 0x0000, 0x0140);
2188	/* Set upd_freq to 6 */
2189	e1e_wphy(hw, 0x1F30, 0x1606);
2190	/* Disable NPDFE */
2191	e1e_wphy(hw, 0x1F31, 0xB814);
2192	/* Disable adaptive fixed FFE (Default) */
2193	e1e_wphy(hw, 0x1F35, 0x002A);
2194	/* Enable FFE hysteresis */
2195	e1e_wphy(hw, 0x1F3E, 0x0067);
2196	/* Fixed FFE for short cable lengths */
2197	e1e_wphy(hw, 0x1F54, 0x0065);
2198	/* Fixed FFE for medium cable lengths */
2199	e1e_wphy(hw, 0x1F55, 0x002A);
2200	/* Fixed FFE for long cable lengths */
2201	e1e_wphy(hw, 0x1F56, 0x002A);
2202	/* Enable Adaptive Clip Threshold */
2203	e1e_wphy(hw, 0x1F72, 0x3FB0);
2204	/* AHT reset limit to 1 */
2205	e1e_wphy(hw, 0x1F76, 0xC0FF);
2206	/* Set AHT master delay to 127 msec */
2207	e1e_wphy(hw, 0x1F77, 0x1DEC);
2208	/* Set scan bits for AHT */
2209	e1e_wphy(hw, 0x1F78, 0xF9EF);
2210	/* Set AHT Preset bits */
2211	e1e_wphy(hw, 0x1F79, 0x0210);
2212	/* Change integ_factor of channel A to 3 */
2213	e1e_wphy(hw, 0x1895, 0x0003);
2214	/* Change prop_factor of channels BCD to 8 */
2215	e1e_wphy(hw, 0x1796, 0x0008);
2216	/* Change cg_icount + enable integbp for channels BCD */
2217	e1e_wphy(hw, 0x1798, 0xD008);
2218	/* Change cg_icount + enable integbp + change prop_factor_master
2219	 * to 8 for channel A
2220	 */
2221	e1e_wphy(hw, 0x1898, 0xD918);
2222	/* Disable AHT in Slave mode on channel A */
2223	e1e_wphy(hw, 0x187A, 0x0800);
2224	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2225	 * Enable SPD+B2B
2226	 */
2227	e1e_wphy(hw, 0x0019, 0x008D);
2228	/* Enable restart AN on an1000_dis change */
2229	e1e_wphy(hw, 0x001B, 0x2080);
2230	/* Enable wh_fifo read clock in 10/100 modes */
2231	e1e_wphy(hw, 0x0014, 0x0045);
2232	/* Restart AN, Speed selection is 1000 */
2233	e1e_wphy(hw, 0x0000, 0x1340);
2234
2235	return 0;
2236}
2237
2238/**
2239 *  e1000e_get_phy_type_from_id - Get PHY type from id
2240 *  @phy_id: phy_id read from the phy
2241 *
2242 *  Returns the phy type from the id.
2243 **/
2244enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2245{
2246	enum e1000_phy_type phy_type = e1000_phy_unknown;
2247
2248	switch (phy_id) {
2249	case M88E1000_I_PHY_ID:
2250	case M88E1000_E_PHY_ID:
2251	case M88E1111_I_PHY_ID:
2252	case M88E1011_I_PHY_ID:
2253		phy_type = e1000_phy_m88;
2254		break;
2255	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2256		phy_type = e1000_phy_igp_2;
2257		break;
2258	case GG82563_E_PHY_ID:
2259		phy_type = e1000_phy_gg82563;
2260		break;
2261	case IGP03E1000_E_PHY_ID:
2262		phy_type = e1000_phy_igp_3;
2263		break;
2264	case IFE_E_PHY_ID:
2265	case IFE_PLUS_E_PHY_ID:
2266	case IFE_C_E_PHY_ID:
2267		phy_type = e1000_phy_ife;
2268		break;
2269	case BME1000_E_PHY_ID:
2270	case BME1000_E_PHY_ID_R2:
2271		phy_type = e1000_phy_bm;
2272		break;
2273	case I82578_E_PHY_ID:
2274		phy_type = e1000_phy_82578;
2275		break;
2276	case I82577_E_PHY_ID:
2277		phy_type = e1000_phy_82577;
2278		break;
2279	case I82579_E_PHY_ID:
2280		phy_type = e1000_phy_82579;
2281		break;
2282	case I217_E_PHY_ID:
2283		phy_type = e1000_phy_i217;
2284		break;
2285	default:
2286		phy_type = e1000_phy_unknown;
2287		break;
2288	}
2289	return phy_type;
2290}
2291
2292/**
2293 *  e1000e_determine_phy_address - Determines PHY address.
2294 *  @hw: pointer to the HW structure
2295 *
2296 *  This uses a trial and error method to loop through possible PHY
2297 *  addresses. It tests each by reading the PHY ID registers and
2298 *  checking for a match.
2299 **/
2300s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2301{
2302	u32 phy_addr = 0;
2303	u32 i;
2304	enum e1000_phy_type phy_type = e1000_phy_unknown;
2305
2306	hw->phy.id = phy_type;
2307
2308	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2309		hw->phy.addr = phy_addr;
2310		i = 0;
2311
2312		do {
2313			e1000e_get_phy_id(hw);
2314			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2315
2316			/* If phy_type is valid, break - we found our
2317			 * PHY address
2318			 */
2319			if (phy_type != e1000_phy_unknown)
2320				return 0;
2321
2322			usleep_range(1000, 2000);
2323			i++;
2324		} while (i < 10);
2325	}
2326
2327	return -E1000_ERR_PHY_TYPE;
2328}
2329
2330/**
2331 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2332 *  @page: page to access
 
2333 *
2334 *  Returns the phy address for the page requested.
2335 **/
2336static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2337{
2338	u32 phy_addr = 2;
2339
2340	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2341		phy_addr = 1;
2342
2343	return phy_addr;
2344}
2345
2346/**
2347 *  e1000e_write_phy_reg_bm - Write BM PHY register
2348 *  @hw: pointer to the HW structure
2349 *  @offset: register offset to write to
2350 *  @data: data to write at register offset
2351 *
2352 *  Acquires semaphore, if necessary, then writes the data to PHY register
2353 *  at the offset.  Release any acquired semaphores before exiting.
2354 **/
2355s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2356{
2357	s32 ret_val;
2358	u32 page = offset >> IGP_PAGE_SHIFT;
2359
2360	ret_val = hw->phy.ops.acquire(hw);
2361	if (ret_val)
2362		return ret_val;
2363
2364	/* Page 800 works differently than the rest so it has its own func */
2365	if (page == BM_WUC_PAGE) {
2366		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2367							 false, false);
2368		goto release;
2369	}
2370
2371	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2372
2373	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2374		u32 page_shift, page_select;
2375
2376		/* Page select is register 31 for phy address 1 and 22 for
2377		 * phy address 2 and 3. Page select is shifted only for
2378		 * phy address 1.
2379		 */
2380		if (hw->phy.addr == 1) {
2381			page_shift = IGP_PAGE_SHIFT;
2382			page_select = IGP01E1000_PHY_PAGE_SELECT;
2383		} else {
2384			page_shift = 0;
2385			page_select = BM_PHY_PAGE_SELECT;
2386		}
2387
2388		/* Page is shifted left, PHY expects (page x 32) */
2389		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2390						    (page << page_shift));
2391		if (ret_val)
2392			goto release;
2393	}
2394
2395	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2396					    data);
2397
2398release:
2399	hw->phy.ops.release(hw);
2400	return ret_val;
2401}
2402
2403/**
2404 *  e1000e_read_phy_reg_bm - Read BM PHY register
2405 *  @hw: pointer to the HW structure
2406 *  @offset: register offset to be read
2407 *  @data: pointer to the read data
2408 *
2409 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2410 *  and storing the retrieved information in data.  Release any acquired
2411 *  semaphores before exiting.
2412 **/
2413s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2414{
2415	s32 ret_val;
2416	u32 page = offset >> IGP_PAGE_SHIFT;
2417
2418	ret_val = hw->phy.ops.acquire(hw);
2419	if (ret_val)
2420		return ret_val;
2421
2422	/* Page 800 works differently than the rest so it has its own func */
2423	if (page == BM_WUC_PAGE) {
2424		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2425							 true, false);
2426		goto release;
2427	}
2428
2429	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2430
2431	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2432		u32 page_shift, page_select;
2433
2434		/* Page select is register 31 for phy address 1 and 22 for
2435		 * phy address 2 and 3. Page select is shifted only for
2436		 * phy address 1.
2437		 */
2438		if (hw->phy.addr == 1) {
2439			page_shift = IGP_PAGE_SHIFT;
2440			page_select = IGP01E1000_PHY_PAGE_SELECT;
2441		} else {
2442			page_shift = 0;
2443			page_select = BM_PHY_PAGE_SELECT;
2444		}
2445
2446		/* Page is shifted left, PHY expects (page x 32) */
2447		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2448						    (page << page_shift));
2449		if (ret_val)
2450			goto release;
2451	}
2452
2453	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2454					   data);
2455release:
2456	hw->phy.ops.release(hw);
2457	return ret_val;
2458}
2459
2460/**
2461 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2462 *  @hw: pointer to the HW structure
2463 *  @offset: register offset to be read
2464 *  @data: pointer to the read data
2465 *
2466 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2467 *  and storing the retrieved information in data.  Release any acquired
2468 *  semaphores before exiting.
2469 **/
2470s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2471{
2472	s32 ret_val;
2473	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2474
2475	ret_val = hw->phy.ops.acquire(hw);
2476	if (ret_val)
2477		return ret_val;
2478
2479	/* Page 800 works differently than the rest so it has its own func */
2480	if (page == BM_WUC_PAGE) {
2481		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2482							 true, false);
2483		goto release;
2484	}
2485
2486	hw->phy.addr = 1;
2487
2488	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2489		/* Page is shifted left, PHY expects (page x 32) */
2490		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2491						    page);
2492
2493		if (ret_val)
2494			goto release;
2495	}
2496
2497	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2498					   data);
2499release:
2500	hw->phy.ops.release(hw);
2501	return ret_val;
2502}
2503
2504/**
2505 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2506 *  @hw: pointer to the HW structure
2507 *  @offset: register offset to write to
2508 *  @data: data to write at register offset
2509 *
2510 *  Acquires semaphore, if necessary, then writes the data to PHY register
2511 *  at the offset.  Release any acquired semaphores before exiting.
2512 **/
2513s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2514{
2515	s32 ret_val;
2516	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518	ret_val = hw->phy.ops.acquire(hw);
2519	if (ret_val)
2520		return ret_val;
2521
2522	/* Page 800 works differently than the rest so it has its own func */
2523	if (page == BM_WUC_PAGE) {
2524		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2525							 false, false);
2526		goto release;
2527	}
2528
2529	hw->phy.addr = 1;
2530
2531	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532		/* Page is shifted left, PHY expects (page x 32) */
2533		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2534						    page);
2535
2536		if (ret_val)
2537			goto release;
2538	}
2539
2540	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2541					    data);
2542
2543release:
2544	hw->phy.ops.release(hw);
2545	return ret_val;
2546}
2547
2548/**
2549 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2550 *  @hw: pointer to the HW structure
2551 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2552 *
2553 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2554 *  address to store contents of the BM_WUC_ENABLE_REG register.
2555 **/
2556s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2557{
2558	s32 ret_val;
2559	u16 temp;
2560
2561	/* All page select, port ctrl and wakeup registers use phy address 1 */
2562	hw->phy.addr = 1;
2563
2564	/* Select Port Control Registers page */
2565	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2566	if (ret_val) {
2567		e_dbg("Could not set Port Control page\n");
2568		return ret_val;
2569	}
2570
2571	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2572	if (ret_val) {
2573		e_dbg("Could not read PHY register %d.%d\n",
2574		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575		return ret_val;
2576	}
2577
2578	/* Enable both PHY wakeup mode and Wakeup register page writes.
2579	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2580	 */
2581	temp = *phy_reg;
2582	temp |= BM_WUC_ENABLE_BIT;
2583	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2584
2585	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2586	if (ret_val) {
2587		e_dbg("Could not write PHY register %d.%d\n",
2588		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2589		return ret_val;
2590	}
2591
2592	/* Select Host Wakeup Registers page - caller now able to write
2593	 * registers on the Wakeup registers page
2594	 */
2595	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2596}
2597
2598/**
2599 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2600 *  @hw: pointer to the HW structure
2601 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2602 *
2603 *  Restore BM_WUC_ENABLE_REG to its original value.
2604 *
2605 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2606 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2607 *  caller.
2608 **/
2609s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2610{
2611	s32 ret_val;
2612
2613	/* Select Port Control Registers page */
2614	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2615	if (ret_val) {
2616		e_dbg("Could not set Port Control page\n");
2617		return ret_val;
2618	}
2619
2620	/* Restore 769.17 to its original value */
2621	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2622	if (ret_val)
2623		e_dbg("Could not restore PHY register %d.%d\n",
2624		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2625
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2631 *  @hw: pointer to the HW structure
2632 *  @offset: register offset to be read or written
2633 *  @data: pointer to the data to read or write
2634 *  @read: determines if operation is read or write
2635 *  @page_set: BM_WUC_PAGE already set and access enabled
2636 *
2637 *  Read the PHY register at offset and store the retrieved information in
2638 *  data, or write data to PHY register at offset.  Note the procedure to
2639 *  access the PHY wakeup registers is different than reading the other PHY
2640 *  registers. It works as such:
2641 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2642 *  2) Set page to 800 for host (801 if we were manageability)
2643 *  3) Write the address using the address opcode (0x11)
2644 *  4) Read or write the data using the data opcode (0x12)
2645 *  5) Restore 769.17.2 to its original value
2646 *
2647 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2648 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2649 *
2650 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2651 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2652 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2653 **/
2654static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2655					  u16 *data, bool read, bool page_set)
2656{
2657	s32 ret_val;
2658	u16 reg = BM_PHY_REG_NUM(offset);
2659	u16 page = BM_PHY_REG_PAGE(offset);
2660	u16 phy_reg = 0;
2661
2662	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2663	if ((hw->mac.type == e1000_pchlan) &&
2664	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2665		e_dbg("Attempting to access page %d while gig enabled.\n",
2666		      page);
2667
2668	if (!page_set) {
2669		/* Enable access to PHY wakeup registers */
2670		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2671		if (ret_val) {
2672			e_dbg("Could not enable PHY wakeup reg access\n");
2673			return ret_val;
2674		}
2675	}
2676
2677	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2678
2679	/* Write the Wakeup register page offset value using opcode 0x11 */
2680	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2681	if (ret_val) {
2682		e_dbg("Could not write address opcode to page %d\n", page);
2683		return ret_val;
2684	}
2685
2686	if (read) {
2687		/* Read the Wakeup register page value using opcode 0x12 */
2688		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2689						   data);
2690	} else {
2691		/* Write the Wakeup register page value using opcode 0x12 */
2692		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2693						    *data);
2694	}
2695
2696	if (ret_val) {
2697		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2698		return ret_val;
2699	}
2700
2701	if (!page_set)
2702		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2703
2704	return ret_val;
2705}
2706
2707/**
2708 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2709 * @hw: pointer to the HW structure
2710 *
2711 * In the case of a PHY power down to save power, or to turn off link during a
2712 * driver unload, or wake on lan is not enabled, restore the link to previous
2713 * settings.
2714 **/
2715void e1000_power_up_phy_copper(struct e1000_hw *hw)
2716{
2717	u16 mii_reg = 0;
 
2718
2719	/* The PHY will retain its settings across a power down/up cycle */
2720	e1e_rphy(hw, MII_BMCR, &mii_reg);
 
 
 
 
2721	mii_reg &= ~BMCR_PDOWN;
2722	e1e_wphy(hw, MII_BMCR, mii_reg);
2723}
2724
2725/**
2726 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2727 * @hw: pointer to the HW structure
2728 *
2729 * In the case of a PHY power down to save power, or to turn off link during a
2730 * driver unload, or wake on lan is not enabled, restore the link to previous
2731 * settings.
2732 **/
2733void e1000_power_down_phy_copper(struct e1000_hw *hw)
2734{
2735	u16 mii_reg = 0;
 
2736
2737	/* The PHY will retain its settings across a power down/up cycle */
2738	e1e_rphy(hw, MII_BMCR, &mii_reg);
 
 
 
 
2739	mii_reg |= BMCR_PDOWN;
2740	e1e_wphy(hw, MII_BMCR, mii_reg);
2741	usleep_range(1000, 2000);
2742}
2743
2744/**
2745 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2746 *  @hw: pointer to the HW structure
2747 *  @offset: register offset to be read
2748 *  @data: pointer to the read data
2749 *  @locked: semaphore has already been acquired or not
 
2750 *
2751 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2752 *  and stores the retrieved information in data.  Release any acquired
2753 *  semaphore before exiting.
2754 **/
2755static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2756				   bool locked, bool page_set)
2757{
2758	s32 ret_val;
2759	u16 page = BM_PHY_REG_PAGE(offset);
2760	u16 reg = BM_PHY_REG_NUM(offset);
2761	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2762
2763	if (!locked) {
2764		ret_val = hw->phy.ops.acquire(hw);
2765		if (ret_val)
2766			return ret_val;
2767	}
2768
2769	/* Page 800 works differently than the rest so it has its own func */
2770	if (page == BM_WUC_PAGE) {
2771		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2772							 true, page_set);
2773		goto out;
2774	}
2775
2776	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2777		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2778							 data, true);
2779		goto out;
2780	}
2781
2782	if (!page_set) {
2783		if (page == HV_INTC_FC_PAGE_START)
2784			page = 0;
2785
2786		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2787			/* Page is shifted left, PHY expects (page x 32) */
2788			ret_val = e1000_set_page_igp(hw,
2789						     (page << IGP_PAGE_SHIFT));
2790
2791			hw->phy.addr = phy_addr;
2792
2793			if (ret_val)
2794				goto out;
2795		}
2796	}
2797
2798	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2799	      page << IGP_PAGE_SHIFT, reg);
2800
2801	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2802out:
2803	if (!locked)
2804		hw->phy.ops.release(hw);
2805
2806	return ret_val;
2807}
2808
2809/**
2810 *  e1000_read_phy_reg_hv -  Read HV PHY register
2811 *  @hw: pointer to the HW structure
2812 *  @offset: register offset to be read
2813 *  @data: pointer to the read data
2814 *
2815 *  Acquires semaphore then reads the PHY register at offset and stores
2816 *  the retrieved information in data.  Release the acquired semaphore
2817 *  before exiting.
2818 **/
2819s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2820{
2821	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2822}
2823
2824/**
2825 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2826 *  @hw: pointer to the HW structure
2827 *  @offset: register offset to be read
2828 *  @data: pointer to the read data
2829 *
2830 *  Reads the PHY register at offset and stores the retrieved information
2831 *  in data.  Assumes semaphore already acquired.
2832 **/
2833s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2834{
2835	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2836}
2837
2838/**
2839 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2840 *  @hw: pointer to the HW structure
2841 *  @offset: register offset to write to
2842 *  @data: data to write at register offset
2843 *
2844 *  Reads the PHY register at offset and stores the retrieved information
2845 *  in data.  Assumes semaphore already acquired and page already set.
2846 **/
2847s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2848{
2849	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2850}
2851
2852/**
2853 *  __e1000_write_phy_reg_hv - Write HV PHY register
2854 *  @hw: pointer to the HW structure
2855 *  @offset: register offset to write to
2856 *  @data: data to write at register offset
2857 *  @locked: semaphore has already been acquired or not
 
2858 *
2859 *  Acquires semaphore, if necessary, then writes the data to PHY register
2860 *  at the offset.  Release any acquired semaphores before exiting.
2861 **/
2862static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2863				    bool locked, bool page_set)
2864{
2865	s32 ret_val;
2866	u16 page = BM_PHY_REG_PAGE(offset);
2867	u16 reg = BM_PHY_REG_NUM(offset);
2868	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2869
2870	if (!locked) {
2871		ret_val = hw->phy.ops.acquire(hw);
2872		if (ret_val)
2873			return ret_val;
2874	}
2875
2876	/* Page 800 works differently than the rest so it has its own func */
2877	if (page == BM_WUC_PAGE) {
2878		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2879							 false, page_set);
2880		goto out;
2881	}
2882
2883	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2884		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2885							 &data, false);
2886		goto out;
2887	}
2888
2889	if (!page_set) {
2890		if (page == HV_INTC_FC_PAGE_START)
2891			page = 0;
2892
2893		/* Workaround MDIO accesses being disabled after entering IEEE
2894		 * Power Down (when bit 11 of the PHY Control register is set)
2895		 */
2896		if ((hw->phy.type == e1000_phy_82578) &&
2897		    (hw->phy.revision >= 1) &&
2898		    (hw->phy.addr == 2) &&
2899		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2900			u16 data2 = 0x7EFF;
2901
2902			ret_val = e1000_access_phy_debug_regs_hv(hw,
2903								 BIT(6) | 0x3,
2904								 &data2, false);
2905			if (ret_val)
2906				goto out;
2907		}
2908
2909		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910			/* Page is shifted left, PHY expects (page x 32) */
2911			ret_val = e1000_set_page_igp(hw,
2912						     (page << IGP_PAGE_SHIFT));
2913
2914			hw->phy.addr = phy_addr;
2915
2916			if (ret_val)
2917				goto out;
2918		}
2919	}
2920
2921	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922	      page << IGP_PAGE_SHIFT, reg);
2923
2924	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925					    data);
2926
2927out:
2928	if (!locked)
2929		hw->phy.ops.release(hw);
2930
2931	return ret_val;
2932}
2933
2934/**
2935 *  e1000_write_phy_reg_hv - Write HV PHY register
2936 *  @hw: pointer to the HW structure
2937 *  @offset: register offset to write to
2938 *  @data: data to write at register offset
2939 *
2940 *  Acquires semaphore then writes the data to PHY register at the offset.
2941 *  Release the acquired semaphores before exiting.
2942 **/
2943s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944{
2945	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946}
2947
2948/**
2949 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 *  @hw: pointer to the HW structure
2951 *  @offset: register offset to write to
2952 *  @data: data to write at register offset
2953 *
2954 *  Writes the data to PHY register at the offset.  Assumes semaphore
2955 *  already acquired.
2956 **/
2957s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958{
2959	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960}
2961
2962/**
2963 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2964 *  @hw: pointer to the HW structure
2965 *  @offset: register offset to write to
2966 *  @data: data to write at register offset
2967 *
2968 *  Writes the data to PHY register at the offset.  Assumes semaphore
2969 *  already acquired and page already set.
2970 **/
2971s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972{
2973	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974}
2975
2976/**
2977 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 *  @page: page to be accessed
2979 **/
2980static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981{
2982	u32 phy_addr = 2;
2983
2984	if (page >= HV_INTC_FC_PAGE_START)
2985		phy_addr = 1;
2986
2987	return phy_addr;
2988}
2989
2990/**
2991 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to be read or written
2994 *  @data: pointer to the data to be read or written
2995 *  @read: determines if operation is read or write
2996 *
2997 *  Reads the PHY register at offset and stores the retreived information
2998 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2999 *  to access these regs uses the address port and data port to read/write.
3000 *  These accesses done with PHY address 2 and without using pages.
3001 **/
3002static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003					  u16 *data, bool read)
3004{
3005	s32 ret_val;
3006	u32 addr_reg;
3007	u32 data_reg;
3008
3009	/* This takes care of the difference with desktop vs mobile phy */
3010	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011		    I82578_ADDR_REG : I82577_ADDR_REG);
3012	data_reg = addr_reg + 1;
3013
3014	/* All operations in this function are phy address 2 */
3015	hw->phy.addr = 2;
3016
3017	/* masking with 0x3F to remove the page from offset */
3018	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019	if (ret_val) {
3020		e_dbg("Could not write the Address Offset port register\n");
3021		return ret_val;
3022	}
3023
3024	/* Read or write the data value next */
3025	if (read)
3026		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027	else
3028		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029
3030	if (ret_val)
3031		e_dbg("Could not access the Data port register\n");
3032
3033	return ret_val;
3034}
3035
3036/**
3037 *  e1000_link_stall_workaround_hv - Si workaround
3038 *  @hw: pointer to the HW structure
3039 *
3040 *  This function works around a Si bug where the link partner can get
3041 *  a link up indication before the PHY does.  If small packets are sent
3042 *  by the link partner they can be placed in the packet buffer without
3043 *  being properly accounted for by the PHY and will stall preventing
3044 *  further packets from being received.  The workaround is to clear the
3045 *  packet buffer after the PHY detects link up.
3046 **/
3047s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048{
3049	s32 ret_val = 0;
3050	u16 data;
3051
3052	if (hw->phy.type != e1000_phy_82578)
3053		return 0;
3054
3055	/* Do not apply workaround if in PHY loopback bit 14 set */
3056	e1e_rphy(hw, MII_BMCR, &data);
 
 
 
 
3057	if (data & BMCR_LOOPBACK)
3058		return 0;
3059
3060	/* check if link is up and at 1Gbps */
3061	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062	if (ret_val)
3063		return ret_val;
3064
3065	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066		 BM_CS_STATUS_SPEED_MASK);
3067
3068	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069		     BM_CS_STATUS_SPEED_1000))
3070		return 0;
3071
3072	msleep(200);
3073
3074	/* flush the packets in the fifo buffer */
3075	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3078	if (ret_val)
3079		return ret_val;
3080
3081	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082}
3083
3084/**
3085 *  e1000_check_polarity_82577 - Checks the polarity.
3086 *  @hw: pointer to the HW structure
3087 *
3088 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 *
3090 *  Polarity is determined based on the PHY specific status register.
3091 **/
3092s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093{
3094	struct e1000_phy_info *phy = &hw->phy;
3095	s32 ret_val;
3096	u16 data;
3097
3098	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099
3100	if (!ret_val)
3101		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102				       ? e1000_rev_polarity_reversed
3103				       : e1000_rev_polarity_normal);
3104
3105	return ret_val;
3106}
3107
3108/**
3109 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 *  @hw: pointer to the HW structure
3111 *
3112 *  Calls the PHY setup function to force speed and duplex.
3113 **/
3114s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115{
3116	struct e1000_phy_info *phy = &hw->phy;
3117	s32 ret_val;
3118	u16 phy_data;
3119	bool link;
3120
3121	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122	if (ret_val)
3123		return ret_val;
3124
3125	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126
3127	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128	if (ret_val)
3129		return ret_val;
3130
3131	udelay(1);
3132
3133	if (phy->autoneg_wait_to_complete) {
3134		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135
3136		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137						      100000, &link);
3138		if (ret_val)
3139			return ret_val;
3140
3141		if (!link)
3142			e_dbg("Link taking longer than expected.\n");
3143
3144		/* Try once more */
3145		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146						      100000, &link);
3147	}
3148
3149	return ret_val;
3150}
3151
3152/**
3153 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 *  @hw: pointer to the HW structure
3155 *
3156 *  Read PHY status to determine if link is up.  If link is up, then
3157 *  set/determine 10base-T extended distance and polarity correction.  Read
3158 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3159 *  determine on the cable length, local and remote receiver.
3160 **/
3161s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162{
3163	struct e1000_phy_info *phy = &hw->phy;
3164	s32 ret_val;
3165	u16 data;
3166	bool link;
3167
3168	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169	if (ret_val)
3170		return ret_val;
3171
3172	if (!link) {
3173		e_dbg("Phy info is only valid if link is up\n");
3174		return -E1000_ERR_CONFIG;
3175	}
3176
3177	phy->polarity_correction = true;
3178
3179	ret_val = e1000_check_polarity_82577(hw);
3180	if (ret_val)
3181		return ret_val;
3182
3183	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184	if (ret_val)
3185		return ret_val;
3186
3187	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188
3189	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191		ret_val = hw->phy.ops.get_cable_length(hw);
3192		if (ret_val)
3193			return ret_val;
3194
3195		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196		if (ret_val)
3197			return ret_val;
3198
3199		phy->local_rx = (data & LPA_1000LOCALRXOK)
3200		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201
3202		phy->remote_rx = (data & LPA_1000REMRXOK)
3203		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3204	} else {
3205		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206		phy->local_rx = e1000_1000t_rx_status_undefined;
3207		phy->remote_rx = e1000_1000t_rx_status_undefined;
3208	}
3209
3210	return 0;
3211}
3212
3213/**
3214 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 *  @hw: pointer to the HW structure
3216 *
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3219 **/
3220s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221{
3222	struct e1000_phy_info *phy = &hw->phy;
3223	s32 ret_val;
3224	u16 phy_data, length;
3225
3226	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227	if (ret_val)
3228		return ret_val;
3229
3230	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232
3233	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234		return -E1000_ERR_PHY;
3235
3236	phy->cable_length = length;
3237
3238	return 0;
3239}