Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
 
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 
 
 352		 */
 353		msleep(50);
 
 
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 
 
 
 
 
 
 
 
 
 358			break;
 
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 
 
 
 
 
 
 
 
 
 
 
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 *  @hw: pointer to the HW structure
1114 *
1115 *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116 *  acquired.
1117 *
1118 * Return: 0 on success, negative errno on failure.
1119 **/
1120static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121{
1122	u16 smb_ctrl = 0;
1123	u32 ctrl_ext;
1124	s32 ret_val;
1125
1126	/* Switching PHY interface always returns MDI error
1127	 * so disable retry mechanism to avoid wasting time
1128	 */
1129	e1000e_disable_phy_retry(hw);
1130
1131	/* Force SMBus mode in the PHY */
1132	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133	if (ret_val) {
1134		e1000e_enable_phy_retry(hw);
1135		return ret_val;
1136	}
1137
1138	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140
1141	e1000e_enable_phy_retry(hw);
1142
1143	/* Force SMBus mode in the MAC */
1144	ctrl_ext = er32(CTRL_EXT);
1145	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146	ew32(CTRL_EXT, ctrl_ext);
1147
1148	return 0;
1149}
1150
1151/**
1152 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 *  @hw: pointer to the HW structure
1154 *  @to_sx: boolean indicating a system power state transition to Sx
1155 *
1156 *  When link is down, configure ULP mode to significantly reduce the power
1157 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159 *  system, configure the ULP mode by software.
1160 */
1161s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162{
1163	u32 mac_reg;
1164	s32 ret_val = 0;
1165	u16 phy_reg;
1166	u16 oem_reg = 0;
1167
1168	if ((hw->mac.type < e1000_pch_lpt) ||
1169	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174		return 0;
1175
1176	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177		/* Request ME configure ULP mode in the PHY */
1178		mac_reg = er32(H2ME);
1179		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180		ew32(H2ME, mac_reg);
1181
1182		goto out;
1183	}
1184
1185	if (!to_sx) {
1186		int i = 0;
1187
1188		/* Poll up to 5 seconds for Cable Disconnected indication */
1189		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190			/* Bail if link is re-acquired */
1191			if (er32(STATUS) & E1000_STATUS_LU)
1192				return -E1000_ERR_PHY;
1193
1194			if (i++ == 100)
1195				break;
1196
1197			msleep(50);
1198		}
1199		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200		      (er32(FEXT) &
1201		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202	}
1203
1204	ret_val = hw->phy.ops.acquire(hw);
1205	if (ret_val)
1206		goto out;
1207
1208	ret_val = e1000e_force_smbus(hw);
1209	if (ret_val) {
1210		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211		goto release;
1212	}
1213
1214	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1215	 * LPLU and disable Gig speed when entering ULP
1216	 */
1217	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219						       &oem_reg);
1220		if (ret_val)
1221			goto release;
1222
1223		phy_reg = oem_reg;
1224		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225
1226		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227							phy_reg);
1228
1229		if (ret_val)
1230			goto release;
1231	}
1232
1233	/* Set Inband ULP Exit, Reset to SMBus mode and
1234	 * Disable SMBus Release on PERST# in PHY
1235	 */
1236	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237	if (ret_val)
1238		goto release;
1239	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241	if (to_sx) {
1242		if (er32(WUFC) & E1000_WUFC_LNKC)
1243			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244		else
1245			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246
1247		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249	} else {
1250		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253	}
1254	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256	/* Set Disable SMBus Release on PERST# in MAC */
1257	mac_reg = er32(FEXTNVM7);
1258	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259	ew32(FEXTNVM7, mac_reg);
1260
1261	/* Commit ULP changes in PHY by starting auto ULP configuration */
1262	phy_reg |= I218_ULP_CONFIG1_START;
1263	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264
1265	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268							oem_reg);
1269		if (ret_val)
1270			goto release;
1271	}
1272
1273release:
1274	hw->phy.ops.release(hw);
1275out:
1276	if (ret_val)
1277		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278	else
1279		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 *  @hw: pointer to the HW structure
1287 *  @force: boolean indicating whether or not to force disabling ULP
1288 *
1289 *  Un-configure ULP mode when link is up, the system is transitioned from
1290 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1291 *  system, poll for an indication from ME that ULP has been un-configured.
1292 *  If not on an ME enabled system, un-configure the ULP mode by software.
1293 *
1294 *  During nominal operation, this function is called when link is acquired
1295 *  to disable ULP mode (force=false); otherwise, for example when unloading
1296 *  the driver or during Sx->S0 transitions, this is called with force=true
1297 *  to forcibly disable ULP.
1298 */
1299static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300{
1301	s32 ret_val = 0;
1302	u32 mac_reg;
1303	u16 phy_reg;
1304	int i = 0;
1305
1306	if ((hw->mac.type < e1000_pch_lpt) ||
1307	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312		return 0;
1313
1314	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315		struct e1000_adapter *adapter = hw->adapter;
1316		bool firmware_bug = false;
1317
1318		if (force) {
1319			/* Request ME un-configure ULP mode in the PHY */
1320			mac_reg = er32(H2ME);
1321			mac_reg &= ~E1000_H2ME_ULP;
1322			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323			ew32(H2ME, mac_reg);
1324		}
1325
1326		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327		 * If this takes more than 1 second, show a warning indicating a
1328		 * firmware bug
1329		 */
1330		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331			if (i++ == 250) {
1332				ret_val = -E1000_ERR_PHY;
1333				goto out;
1334			}
1335			if (i > 100 && !firmware_bug)
1336				firmware_bug = true;
1337
1338			usleep_range(10000, 11000);
1339		}
1340		if (firmware_bug)
1341			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342			       i * 10);
1343		else
1344			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345			      i * 10);
1346
1347		if (force) {
1348			mac_reg = er32(H2ME);
1349			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350			ew32(H2ME, mac_reg);
1351		} else {
1352			/* Clear H2ME.ULP after ME ULP configuration */
1353			mac_reg = er32(H2ME);
1354			mac_reg &= ~E1000_H2ME_ULP;
1355			ew32(H2ME, mac_reg);
1356		}
1357
1358		goto out;
1359	}
1360
1361	ret_val = hw->phy.ops.acquire(hw);
1362	if (ret_val)
1363		goto out;
1364
1365	if (force)
1366		/* Toggle LANPHYPC Value bit */
1367		e1000_toggle_lanphypc_pch_lpt(hw);
1368
1369	/* Switching PHY interface always returns MDI error
1370	 * so disable retry mechanism to avoid wasting time
1371	 */
1372	e1000e_disable_phy_retry(hw);
1373
1374	/* Unforce SMBus mode in PHY */
1375	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376	if (ret_val) {
1377		/* The MAC might be in PCIe mode, so temporarily force to
1378		 * SMBus mode in order to access the PHY.
1379		 */
1380		mac_reg = er32(CTRL_EXT);
1381		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382		ew32(CTRL_EXT, mac_reg);
1383
1384		msleep(50);
1385
1386		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387						       &phy_reg);
1388		if (ret_val)
1389			goto release;
1390	}
1391	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393
1394	e1000e_enable_phy_retry(hw);
1395
1396	/* Unforce SMBus mode in MAC */
1397	mac_reg = er32(CTRL_EXT);
1398	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399	ew32(CTRL_EXT, mac_reg);
1400
1401	/* When ULP mode was previously entered, K1 was disabled by the
1402	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1403	 */
1404	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405	if (ret_val)
1406		goto release;
1407	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409
1410	/* Clear ULP enabled configuration */
1411	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412	if (ret_val)
1413		goto release;
1414	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415		     I218_ULP_CONFIG1_STICKY_ULP |
1416		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417		     I218_ULP_CONFIG1_WOL_HOST |
1418		     I218_ULP_CONFIG1_INBAND_EXIT |
1419		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423
1424	/* Commit ULP changes by starting auto ULP configuration */
1425	phy_reg |= I218_ULP_CONFIG1_START;
1426	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428	/* Clear Disable SMBus Release on PERST# in MAC */
1429	mac_reg = er32(FEXTNVM7);
1430	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431	ew32(FEXTNVM7, mac_reg);
1432
1433release:
1434	hw->phy.ops.release(hw);
1435	if (force) {
1436		e1000_phy_hw_reset(hw);
1437		msleep(50);
1438	}
1439out:
1440	if (ret_val)
1441		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442	else
1443		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444
1445	return ret_val;
1446}
1447
1448/**
1449 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  Checks to see of the link status of the hardware has changed.  If a
1453 *  change in link status has been detected, then we read the PHY registers
1454 *  to get the current speed/duplex if link exists.
1455 **/
1456static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457{
1458	struct e1000_mac_info *mac = &hw->mac;
1459	s32 ret_val, tipg_reg = 0;
1460	u16 emi_addr, emi_val = 0;
1461	bool link;
1462	u16 phy_reg;
1463
1464	/* We only want to go out to the PHY registers to see if Auto-Neg
 
1465	 * has completed and/or if our link status has changed.  The
1466	 * get_link_status flag is set upon receiving a Link Status
1467	 * Change or Rx Sequence Error interrupt.
1468	 */
1469	if (!mac->get_link_status)
1470		return 0;
1471	mac->get_link_status = false;
1472
1473	/* First we want to see if the MII Status Register reports
 
1474	 * link.  If so, then we want to get the current speed/duplex
1475	 * of the PHY.
1476	 */
1477	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478	if (ret_val)
1479		goto out;
1480
1481	if (hw->mac.type == e1000_pchlan) {
1482		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483		if (ret_val)
1484			goto out;
1485	}
1486
1487	/* When connected at 10Mbps half-duplex, some parts are excessively
1488	 * aggressive resulting in many collisions. To avoid this, increase
1489	 * the IPG and reduce Rx latency in the PHY.
1490	 */
1491	if ((hw->mac.type >= e1000_pch2lan) && link) {
1492		u16 speed, duplex;
1493
1494		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495		tipg_reg = er32(TIPG);
1496		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497
1498		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499			tipg_reg |= 0xFF;
1500			/* Reduce Rx latency in analog PHY */
1501			emi_val = 0;
1502		} else if (hw->mac.type >= e1000_pch_spt &&
1503			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504			tipg_reg |= 0xC;
1505			emi_val = 1;
1506		} else {
1507
1508			/* Roll back the default values */
1509			tipg_reg |= 0x08;
1510			emi_val = 1;
1511		}
1512
1513		ew32(TIPG, tipg_reg);
1514
1515		ret_val = hw->phy.ops.acquire(hw);
1516		if (ret_val)
1517			goto out;
1518
1519		if (hw->mac.type == e1000_pch2lan)
1520			emi_addr = I82579_RX_CONFIG;
1521		else
1522			emi_addr = I217_RX_CONFIG;
1523		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524
1525		if (hw->mac.type >= e1000_pch_lpt) {
1526			u16 phy_reg;
1527
1528			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530			if (speed == SPEED_100 || speed == SPEED_10)
1531				phy_reg |= 0x3E8;
1532			else
1533				phy_reg |= 0xFA;
1534			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535
1536			if (speed == SPEED_1000) {
1537				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538							    &phy_reg);
1539
1540				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541
1542				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543							     phy_reg);
1544			}
1545		}
1546		hw->phy.ops.release(hw);
1547
1548		if (ret_val)
1549			goto out;
1550
1551		if (hw->mac.type >= e1000_pch_spt) {
1552			u16 data;
1553			u16 ptr_gap;
1554
1555			if (speed == SPEED_1000) {
1556				ret_val = hw->phy.ops.acquire(hw);
1557				if (ret_val)
1558					goto out;
1559
1560				ret_val = e1e_rphy_locked(hw,
1561							  PHY_REG(776, 20),
1562							  &data);
1563				if (ret_val) {
1564					hw->phy.ops.release(hw);
1565					goto out;
1566				}
1567
1568				ptr_gap = (data & (0x3FF << 2)) >> 2;
1569				if (ptr_gap < 0x18) {
1570					data &= ~(0x3FF << 2);
1571					data |= (0x18 << 2);
1572					ret_val =
1573					    e1e_wphy_locked(hw,
1574							    PHY_REG(776, 20),
1575							    data);
1576				}
1577				hw->phy.ops.release(hw);
1578				if (ret_val)
1579					goto out;
1580			} else {
1581				ret_val = hw->phy.ops.acquire(hw);
1582				if (ret_val)
1583					goto out;
1584
1585				ret_val = e1e_wphy_locked(hw,
1586							  PHY_REG(776, 20),
1587							  0xC023);
1588				hw->phy.ops.release(hw);
1589				if (ret_val)
1590					goto out;
1591
1592			}
1593		}
1594	}
1595
1596	/* I217 Packet Loss issue:
1597	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598	 * on power up.
1599	 * Set the Beacon Duration for I217 to 8 usec
1600	 */
1601	if (hw->mac.type >= e1000_pch_lpt) {
1602		u32 mac_reg;
1603
1604		mac_reg = er32(FEXTNVM4);
1605		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607		ew32(FEXTNVM4, mac_reg);
1608	}
1609
1610	/* Work-around I218 hang issue */
1611	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616		if (ret_val)
1617			goto out;
1618	}
1619	if (hw->mac.type >= e1000_pch_lpt) {
1620		/* Set platform power management values for
1621		 * Latency Tolerance Reporting (LTR)
1622		 */
1623		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624		if (ret_val)
1625			goto out;
1626	}
1627
1628	/* Clear link partner's EEE ability */
1629	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630
1631	if (hw->mac.type >= e1000_pch_lpt) {
1632		u32 fextnvm6 = er32(FEXTNVM6);
1633
1634		if (hw->mac.type == e1000_pch_spt) {
1635			/* FEXTNVM6 K1-off workaround - for SPT only */
1636			u32 pcieanacfg = er32(PCIEANACFG);
1637
1638			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640			else
1641				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642		}
1643
1644		ew32(FEXTNVM6, fextnvm6);
1645	}
1646
1647	if (!link)
1648		goto out;
 
 
1649
1650	switch (hw->mac.type) {
1651	case e1000_pch2lan:
1652		ret_val = e1000_k1_workaround_lv(hw);
1653		if (ret_val)
1654			return ret_val;
1655		fallthrough;
1656	case e1000_pchlan:
1657		if (hw->phy.type == e1000_phy_82578) {
1658			ret_val = e1000_link_stall_workaround_hv(hw);
1659			if (ret_val)
1660				return ret_val;
1661		}
1662
1663		/* Workaround for PCHx parts in half-duplex:
 
1664		 * Set the number of preambles removed from the packet
1665		 * when it is passed from the PHY to the MAC to prevent
1666		 * the MAC from misinterpreting the packet type.
1667		 */
1668		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670
1671		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673
1674		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* Check if there was DownShift, must be checked
 
1681	 * immediately after link-up
1682	 */
1683	e1000e_check_downshift(hw);
1684
1685	/* Enable/Disable EEE after link up */
1686	if (hw->phy.type > e1000_phy_82579) {
1687		ret_val = e1000_set_eee_pchlan(hw);
1688		if (ret_val)
1689			return ret_val;
1690	}
1691
1692	/* If we are forcing speed/duplex, then we simply return since
 
1693	 * we have already determined whether we have link or not.
1694	 */
1695	if (!mac->autoneg)
1696		return -E1000_ERR_CONFIG;
1697
1698	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
1699	 * of MAC speed/duplex configuration.  So we only need to
1700	 * configure Collision Distance in the MAC.
1701	 */
1702	mac->ops.config_collision_dist(hw);
1703
1704	/* Configure Flow Control now that Auto-Neg has completed.
 
1705	 * First, we need to restore the desired flow control
1706	 * settings because we may have had to re-autoneg with a
1707	 * different link partner.
1708	 */
1709	ret_val = e1000e_config_fc_after_link_up(hw);
1710	if (ret_val)
1711		e_dbg("Error configuring flow control\n");
1712
1713	return ret_val;
1714
1715out:
1716	mac->get_link_status = true;
1717	return ret_val;
1718}
1719
1720static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721{
1722	struct e1000_hw *hw = &adapter->hw;
1723	s32 rc;
1724
1725	rc = e1000_init_mac_params_ich8lan(hw);
1726	if (rc)
1727		return rc;
1728
1729	rc = e1000_init_nvm_params_ich8lan(hw);
1730	if (rc)
1731		return rc;
1732
1733	switch (hw->mac.type) {
1734	case e1000_ich8lan:
1735	case e1000_ich9lan:
1736	case e1000_ich10lan:
1737		rc = e1000_init_phy_params_ich8lan(hw);
1738		break;
1739	case e1000_pchlan:
1740	case e1000_pch2lan:
1741	case e1000_pch_lpt:
1742	case e1000_pch_spt:
1743	case e1000_pch_cnp:
1744	case e1000_pch_tgp:
1745	case e1000_pch_adp:
1746	case e1000_pch_mtp:
1747	case e1000_pch_lnp:
1748	case e1000_pch_ptp:
1749	case e1000_pch_nvp:
1750		rc = e1000_init_phy_params_pchlan(hw);
1751		break;
1752	default:
1753		break;
1754	}
1755	if (rc)
1756		return rc;
1757
1758	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
 
1759	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760	 */
1761	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766
1767		hw->mac.ops.blink_led = NULL;
1768	}
1769
1770	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771	    (adapter->hw.phy.type != e1000_phy_ife))
1772		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773
1774	/* Enable workaround for 82579 w/ ME enabled */
1775	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778
 
 
 
 
1779	return 0;
1780}
1781
1782static DEFINE_MUTEX(nvm_mutex);
1783
1784/**
1785 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Acquires the mutex for performing NVM operations.
1789 **/
1790static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791{
1792	mutex_lock(&nvm_mutex);
1793
1794	return 0;
1795}
1796
1797/**
1798 *  e1000_release_nvm_ich8lan - Release NVM mutex
1799 *  @hw: pointer to the HW structure
1800 *
1801 *  Releases the mutex used while performing NVM operations.
1802 **/
1803static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804{
1805	mutex_unlock(&nvm_mutex);
1806}
1807
1808/**
1809 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 *  @hw: pointer to the HW structure
1811 *
1812 *  Acquires the software control flag for performing PHY and select
1813 *  MAC CSR accesses.
1814 **/
1815static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816{
1817	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818	s32 ret_val = 0;
1819
1820	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821			     &hw->adapter->state)) {
1822		e_dbg("contention for Phy access\n");
1823		return -E1000_ERR_PHY;
1824	}
1825
1826	while (timeout) {
1827		extcnf_ctrl = er32(EXTCNF_CTRL);
1828		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829			break;
1830
1831		mdelay(1);
1832		timeout--;
1833	}
1834
1835	if (!timeout) {
1836		e_dbg("SW has already locked the resource.\n");
1837		ret_val = -E1000_ERR_CONFIG;
1838		goto out;
1839	}
1840
1841	timeout = SW_FLAG_TIMEOUT;
1842
1843	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844	ew32(EXTCNF_CTRL, extcnf_ctrl);
1845
1846	while (timeout) {
1847		extcnf_ctrl = er32(EXTCNF_CTRL);
1848		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849			break;
1850
1851		mdelay(1);
1852		timeout--;
1853	}
1854
1855	if (!timeout) {
1856		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857		      er32(FWSM), extcnf_ctrl);
1858		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859		ew32(EXTCNF_CTRL, extcnf_ctrl);
1860		ret_val = -E1000_ERR_CONFIG;
1861		goto out;
1862	}
1863
1864out:
1865	if (ret_val)
1866		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867
1868	return ret_val;
1869}
1870
1871/**
1872 *  e1000_release_swflag_ich8lan - Release software control flag
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Releases the software control flag for performing PHY and select
1876 *  MAC CSR accesses.
1877 **/
1878static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879{
1880	u32 extcnf_ctrl;
1881
1882	extcnf_ctrl = er32(EXTCNF_CTRL);
1883
1884	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886		ew32(EXTCNF_CTRL, extcnf_ctrl);
1887	} else {
1888		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889	}
1890
1891	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892}
1893
1894/**
1895 *  e1000_check_mng_mode_ich8lan - Checks management mode
1896 *  @hw: pointer to the HW structure
1897 *
1898 *  This checks if the adapter has any manageability enabled.
1899 *  This is a function pointer entry point only called by read/write
1900 *  routines for the PHY and NVM parts.
1901 **/
1902static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903{
1904	u32 fwsm;
1905
1906	fwsm = er32(FWSM);
1907	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908		((fwsm & E1000_FWSM_MODE_MASK) ==
1909		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910}
1911
1912/**
1913 *  e1000_check_mng_mode_pchlan - Checks management mode
1914 *  @hw: pointer to the HW structure
1915 *
1916 *  This checks if the adapter has iAMT enabled.
1917 *  This is a function pointer entry point only called by read/write
1918 *  routines for the PHY and NVM parts.
1919 **/
1920static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921{
1922	u32 fwsm;
1923
1924	fwsm = er32(FWSM);
1925	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927}
1928
1929/**
1930 *  e1000_rar_set_pch2lan - Set receive address register
1931 *  @hw: pointer to the HW structure
1932 *  @addr: pointer to the receive address
1933 *  @index: receive address array register
1934 *
1935 *  Sets the receive address array register at index to the address passed
1936 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1937 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 *  Use SHRA[0-3] in place of those reserved for ME.
1939 **/
1940static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941{
1942	u32 rar_low, rar_high;
1943
1944	/* HW expects these in little endian so we reverse the byte order
 
1945	 * from network order (big endian) to little endian
1946	 */
1947	rar_low = ((u32)addr[0] |
1948		   ((u32)addr[1] << 8) |
1949		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950
1951	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952
1953	/* If MAC address zero, no need to set the AV bit */
1954	if (rar_low || rar_high)
1955		rar_high |= E1000_RAH_AV;
1956
1957	if (index == 0) {
1958		ew32(RAL(index), rar_low);
1959		e1e_flush();
1960		ew32(RAH(index), rar_high);
1961		e1e_flush();
1962		return 0;
1963	}
1964
1965	/* RAR[1-6] are owned by manageability.  Skip those and program the
1966	 * next address into the SHRA register array.
1967	 */
1968	if (index < (u32)(hw->mac.rar_entry_count)) {
1969		s32 ret_val;
1970
1971		ret_val = e1000_acquire_swflag_ich8lan(hw);
1972		if (ret_val)
1973			goto out;
1974
1975		ew32(SHRAL(index - 1), rar_low);
1976		e1e_flush();
1977		ew32(SHRAH(index - 1), rar_high);
1978		e1e_flush();
1979
1980		e1000_release_swflag_ich8lan(hw);
1981
1982		/* verify the register updates */
1983		if ((er32(SHRAL(index - 1)) == rar_low) &&
1984		    (er32(SHRAH(index - 1)) == rar_high))
1985			return 0;
1986
1987		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988		      (index - 1), er32(FWSM));
1989	}
1990
1991out:
1992	e_dbg("Failed to write receive address at index %d\n", index);
1993	return -E1000_ERR_CONFIG;
1994}
1995
1996/**
1997 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 *  @hw: pointer to the HW structure
1999 *
2000 *  Get the number of available receive registers that the Host can
2001 *  program. SHRA[0-10] are the shared receive address registers
2002 *  that are shared between the Host and manageability engine (ME).
2003 *  ME can reserve any number of addresses and the host needs to be
2004 *  able to tell how many available registers it has access to.
2005 **/
2006static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007{
2008	u32 wlock_mac;
2009	u32 num_entries;
2010
2011	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013
2014	switch (wlock_mac) {
2015	case 0:
2016		/* All SHRA[0..10] and RAR[0] available */
2017		num_entries = hw->mac.rar_entry_count;
2018		break;
2019	case 1:
2020		/* Only RAR[0] available */
2021		num_entries = 1;
2022		break;
2023	default:
2024		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025		num_entries = wlock_mac + 1;
2026		break;
2027	}
2028
2029	return num_entries;
2030}
2031
2032/**
2033 *  e1000_rar_set_pch_lpt - Set receive address registers
2034 *  @hw: pointer to the HW structure
2035 *  @addr: pointer to the receive address
2036 *  @index: receive address array register
2037 *
2038 *  Sets the receive address register array at index to the address passed
2039 *  in by addr. For LPT, RAR[0] is the base address register that is to
2040 *  contain the MAC address. SHRA[0-10] are the shared receive address
2041 *  registers that are shared between the Host and manageability engine (ME).
2042 **/
2043static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044{
2045	u32 rar_low, rar_high;
2046	u32 wlock_mac;
2047
2048	/* HW expects these in little endian so we reverse the byte order
 
2049	 * from network order (big endian) to little endian
2050	 */
2051	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053
2054	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055
2056	/* If MAC address zero, no need to set the AV bit */
2057	if (rar_low || rar_high)
2058		rar_high |= E1000_RAH_AV;
2059
2060	if (index == 0) {
2061		ew32(RAL(index), rar_low);
2062		e1e_flush();
2063		ew32(RAH(index), rar_high);
2064		e1e_flush();
2065		return 0;
2066	}
2067
2068	/* The manageability engine (ME) can lock certain SHRAR registers that
 
2069	 * it is using - those registers are unavailable for use.
2070	 */
2071	if (index < hw->mac.rar_entry_count) {
2072		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074
2075		/* Check if all SHRAR registers are locked */
2076		if (wlock_mac == 1)
2077			goto out;
2078
2079		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080			s32 ret_val;
2081
2082			ret_val = e1000_acquire_swflag_ich8lan(hw);
2083
2084			if (ret_val)
2085				goto out;
2086
2087			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088			e1e_flush();
2089			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090			e1e_flush();
2091
2092			e1000_release_swflag_ich8lan(hw);
2093
2094			/* verify the register updates */
2095			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097				return 0;
2098		}
2099	}
2100
2101out:
2102	e_dbg("Failed to write receive address at index %d\n", index);
2103	return -E1000_ERR_CONFIG;
2104}
2105
2106/**
2107 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 *  @hw: pointer to the HW structure
2109 *
2110 *  Checks if firmware is blocking the reset of the PHY.
2111 *  This is a function pointer entry point only called by
2112 *  reset routines.
2113 **/
2114static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115{
2116	bool blocked = false;
2117	int i = 0;
 
2118
2119	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120	       (i++ < 30))
2121		usleep_range(10000, 11000);
2122	return blocked ? E1000_BLK_PHY_RESET : 0;
2123}
2124
2125/**
2126 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 *  @hw: pointer to the HW structure
2128 *
2129 *  Assumes semaphore already acquired.
2130 *
2131 **/
2132static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133{
2134	u16 phy_data;
2135	u32 strap = er32(STRAP);
2136	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2137	s32 ret_val;
 
2138
2139	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140
2141	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142	if (ret_val)
2143		return ret_val;
2144
2145	phy_data &= ~HV_SMB_ADDR_MASK;
2146	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148
2149	if (hw->phy.type == e1000_phy_i217) {
2150		/* Restore SMBus frequency */
2151		if (freq--) {
2152			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153			phy_data |= (freq & BIT(0)) <<
2154			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155			phy_data |= (freq & BIT(1)) <<
2156			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157		} else {
2158			e_dbg("Unsupported SMB frequency in PHY\n");
2159		}
2160	}
2161
2162	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163}
2164
2165/**
2166 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 *  @hw:   pointer to the HW structure
2168 *
2169 *  SW should configure the LCD from the NVM extended configuration region
2170 *  as a workaround for certain parts.
2171 **/
2172static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173{
2174	struct e1000_phy_info *phy = &hw->phy;
2175	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176	s32 ret_val = 0;
2177	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178
2179	/* Initialize the PHY from the NVM on ICH platforms.  This
 
2180	 * is needed due to an issue where the NVM configuration is
2181	 * not properly autoloaded after power transitions.
2182	 * Therefore, after each PHY reset, we will load the
2183	 * configuration data out of the NVM manually.
2184	 */
2185	switch (hw->mac.type) {
2186	case e1000_ich8lan:
2187		if (phy->type != e1000_phy_igp_3)
2188			return ret_val;
2189
2190		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193			break;
2194		}
2195		fallthrough;
2196	case e1000_pchlan:
2197	case e1000_pch2lan:
2198	case e1000_pch_lpt:
2199	case e1000_pch_spt:
2200	case e1000_pch_cnp:
2201	case e1000_pch_tgp:
2202	case e1000_pch_adp:
2203	case e1000_pch_mtp:
2204	case e1000_pch_lnp:
2205	case e1000_pch_ptp:
2206	case e1000_pch_nvp:
2207		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208		break;
2209	default:
2210		return ret_val;
2211	}
2212
2213	ret_val = hw->phy.ops.acquire(hw);
2214	if (ret_val)
2215		return ret_val;
2216
2217	data = er32(FEXTNVM);
2218	if (!(data & sw_cfg_mask))
2219		goto release;
2220
2221	/* Make sure HW does not configure LCD from PHY
 
2222	 * extended configuration before SW configuration
2223	 */
2224	data = er32(EXTCNF_CTRL);
2225	if ((hw->mac.type < e1000_pch2lan) &&
2226	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227		goto release;
2228
2229	cnf_size = er32(EXTCNF_SIZE);
2230	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232	if (!cnf_size)
2233		goto release;
2234
2235	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237
2238	if (((hw->mac.type == e1000_pchlan) &&
2239	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240	    (hw->mac.type > e1000_pchlan)) {
2241		/* HW configures the SMBus address and LEDs when the
 
2242		 * OEM and LCD Write Enable bits are set in the NVM.
2243		 * When both NVM bits are cleared, SW will configure
2244		 * them instead.
2245		 */
2246		ret_val = e1000_write_smbus_addr(hw);
2247		if (ret_val)
2248			goto release;
2249
2250		data = er32(LEDCTL);
2251		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252							(u16)data);
2253		if (ret_val)
2254			goto release;
2255	}
2256
2257	/* Configure LCD from extended configuration region. */
2258
2259	/* cnf_base_addr is in DWORD */
2260	word_addr = (u16)(cnf_base_addr << 1);
2261
2262	for (i = 0; i < cnf_size; i++) {
2263		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
 
2264		if (ret_val)
2265			goto release;
2266
2267		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268					 1, &reg_addr);
2269		if (ret_val)
2270			goto release;
2271
2272		/* Save off the PHY page for future writes. */
2273		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274			phy_page = reg_data;
2275			continue;
2276		}
2277
2278		reg_addr &= PHY_REG_MASK;
2279		reg_addr |= phy_page;
2280
2281		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286release:
2287	hw->phy.ops.release(hw);
2288	return ret_val;
2289}
2290
2291/**
2292 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2293 *  @hw:   pointer to the HW structure
2294 *  @link: link up bool flag
2295 *
2296 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2298 *  If link is down, the function will restore the default K1 setting located
2299 *  in the NVM.
2300 **/
2301static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302{
2303	s32 ret_val = 0;
2304	u16 status_reg = 0;
2305	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306
2307	if (hw->mac.type != e1000_pchlan)
2308		return 0;
2309
2310	/* Wrap the whole flow with the sw flag */
2311	ret_val = hw->phy.ops.acquire(hw);
2312	if (ret_val)
2313		return ret_val;
2314
2315	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316	if (link) {
2317		if (hw->phy.type == e1000_phy_82578) {
2318			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319						  &status_reg);
2320			if (ret_val)
2321				goto release;
2322
2323			status_reg &= (BM_CS_STATUS_LINK_UP |
2324				       BM_CS_STATUS_RESOLVED |
2325				       BM_CS_STATUS_SPEED_MASK);
2326
2327			if (status_reg == (BM_CS_STATUS_LINK_UP |
2328					   BM_CS_STATUS_RESOLVED |
2329					   BM_CS_STATUS_SPEED_1000))
2330				k1_enable = false;
2331		}
2332
2333		if (hw->phy.type == e1000_phy_82577) {
2334			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335			if (ret_val)
2336				goto release;
2337
2338			status_reg &= (HV_M_STATUS_LINK_UP |
2339				       HV_M_STATUS_AUTONEG_COMPLETE |
2340				       HV_M_STATUS_SPEED_MASK);
2341
2342			if (status_reg == (HV_M_STATUS_LINK_UP |
2343					   HV_M_STATUS_AUTONEG_COMPLETE |
2344					   HV_M_STATUS_SPEED_1000))
2345				k1_enable = false;
2346		}
2347
2348		/* Link stall fix for link up */
2349		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350		if (ret_val)
2351			goto release;
2352
2353	} else {
2354		/* Link stall fix for link down */
2355		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356		if (ret_val)
2357			goto release;
2358	}
2359
2360	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361
2362release:
2363	hw->phy.ops.release(hw);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  e1000_configure_k1_ich8lan - Configure K1 power state
2370 *  @hw: pointer to the HW structure
2371 *  @k1_enable: K1 state to configure
2372 *
2373 *  Configure the K1 power state based on the provided parameter.
2374 *  Assumes semaphore already acquired.
2375 *
2376 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377 **/
2378s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379{
2380	s32 ret_val;
2381	u32 ctrl_reg = 0;
2382	u32 ctrl_ext = 0;
2383	u32 reg = 0;
2384	u16 kmrn_reg = 0;
2385
2386	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387					      &kmrn_reg);
2388	if (ret_val)
2389		return ret_val;
2390
2391	if (k1_enable)
2392		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393	else
2394		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395
2396	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397					       kmrn_reg);
2398	if (ret_val)
2399		return ret_val;
2400
2401	usleep_range(20, 40);
2402	ctrl_ext = er32(CTRL_EXT);
2403	ctrl_reg = er32(CTRL);
2404
2405	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406	reg |= E1000_CTRL_FRCSPD;
2407	ew32(CTRL, reg);
2408
2409	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410	e1e_flush();
2411	usleep_range(20, 40);
2412	ew32(CTRL, ctrl_reg);
2413	ew32(CTRL_EXT, ctrl_ext);
2414	e1e_flush();
2415	usleep_range(20, 40);
2416
2417	return 0;
2418}
2419
2420/**
2421 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 *  @hw:       pointer to the HW structure
2423 *  @d0_state: boolean if entering d0 or d3 device state
2424 *
2425 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2427 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2428 **/
2429static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430{
2431	s32 ret_val = 0;
2432	u32 mac_reg;
2433	u16 oem_reg;
2434
2435	if (hw->mac.type < e1000_pchlan)
2436		return ret_val;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	if (hw->mac.type == e1000_pchlan) {
2443		mac_reg = er32(EXTCNF_CTRL);
2444		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445			goto release;
2446	}
2447
2448	mac_reg = er32(FEXTNVM);
2449	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450		goto release;
2451
2452	mac_reg = er32(PHY_CTRL);
2453
2454	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455	if (ret_val)
2456		goto release;
2457
2458	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459
2460	if (d0_state) {
2461		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462			oem_reg |= HV_OEM_BITS_GBE_DIS;
2463
2464		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465			oem_reg |= HV_OEM_BITS_LPLU;
2466	} else {
2467		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469			oem_reg |= HV_OEM_BITS_GBE_DIS;
2470
2471		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472			       E1000_PHY_CTRL_NOND0A_LPLU))
2473			oem_reg |= HV_OEM_BITS_LPLU;
2474	}
2475
2476	/* Set Restart auto-neg to activate the bits */
2477	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478	    !hw->phy.ops.check_reset_block(hw))
2479		oem_reg |= HV_OEM_BITS_RESTART_AN;
2480
2481	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482
2483release:
2484	hw->phy.ops.release(hw);
2485
2486	return ret_val;
2487}
2488
 
2489/**
2490 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 *  @hw:   pointer to the HW structure
2492 **/
2493static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494{
2495	s32 ret_val;
2496	u16 data;
2497
2498	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499	if (ret_val)
2500		return ret_val;
2501
2502	data |= HV_KMRN_MDIO_SLOW;
2503
2504	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505
2506	return ret_val;
2507}
2508
2509/**
2510 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 *  @hw: pointer to the HW structure
2512 *
2513 *  A series of PHY workarounds to be done after every PHY reset.
2514 **/
2515static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516{
2517	s32 ret_val = 0;
2518	u16 phy_data;
2519
2520	if (hw->mac.type != e1000_pchlan)
2521		return 0;
2522
2523	/* Set MDIO slow mode before any other MDIO access */
2524	if (hw->phy.type == e1000_phy_82577) {
2525		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526		if (ret_val)
2527			return ret_val;
2528	}
2529
2530	if (((hw->phy.type == e1000_phy_82577) &&
2531	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533		/* Disable generation of early preamble */
2534		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535		if (ret_val)
2536			return ret_val;
2537
2538		/* Preamble tuning for SSC */
2539		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540		if (ret_val)
2541			return ret_val;
2542	}
2543
2544	if (hw->phy.type == e1000_phy_82578) {
2545		/* Return registers to default by doing a soft reset then
 
2546		 * writing 0x3140 to the control register.
2547		 */
2548		if (hw->phy.revision < 2) {
2549			e1000e_phy_sw_reset(hw);
2550			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551			if (ret_val)
2552				return ret_val;
2553		}
2554	}
2555
2556	/* Select page 0 */
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return ret_val;
2560
2561	hw->phy.addr = 1;
2562	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563	hw->phy.ops.release(hw);
2564	if (ret_val)
2565		return ret_val;
2566
2567	/* Configure the K1 Si workaround during phy reset assuming there is
 
2568	 * link so that it disables K1 if link is in 1Gbps.
2569	 */
2570	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571	if (ret_val)
2572		return ret_val;
2573
2574	/* Workaround for link disconnects on a busy hub in half duplex */
2575	ret_val = hw->phy.ops.acquire(hw);
2576	if (ret_val)
2577		return ret_val;
2578	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579	if (ret_val)
2580		goto release;
2581	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582	if (ret_val)
2583		goto release;
2584
2585	/* set MSE higher to enable link to stay up when noise is high */
2586	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587release:
2588	hw->phy.ops.release(hw);
2589
2590	return ret_val;
2591}
2592
2593/**
2594 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 *  @hw:   pointer to the HW structure
2596 **/
2597void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598{
2599	u32 mac_reg;
2600	u16 i, phy_reg = 0;
2601	s32 ret_val;
2602
2603	ret_val = hw->phy.ops.acquire(hw);
2604	if (ret_val)
2605		return;
2606	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607	if (ret_val)
2608		goto release;
2609
2610	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612		mac_reg = er32(RAL(i));
2613		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614					   (u16)(mac_reg & 0xFFFF));
2615		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616					   (u16)((mac_reg >> 16) & 0xFFFF));
2617
2618		mac_reg = er32(RAH(i));
2619		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620					   (u16)(mac_reg & 0xFFFF));
2621		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2623	}
2624
2625	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626
2627release:
2628	hw->phy.ops.release(hw);
2629}
2630
2631/**
2632 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633 *  with 82579 PHY
2634 *  @hw: pointer to the HW structure
2635 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636 **/
2637s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638{
2639	s32 ret_val = 0;
2640	u16 phy_reg, data;
2641	u32 mac_reg;
2642	u16 i;
2643
2644	if (hw->mac.type < e1000_pch2lan)
2645		return 0;
2646
2647	/* disable Rx path while enabling/disabling workaround */
2648	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650	if (ret_val)
2651		return ret_val;
2652
2653	if (enable) {
2654		/* Write Rx addresses (rar_entry_count for RAL/H, and
 
2655		 * SHRAL/H) and initial CRC values to the MAC
2656		 */
2657		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658			u8 mac_addr[ETH_ALEN] = { 0 };
2659			u32 addr_high, addr_low;
2660
2661			addr_high = er32(RAH(i));
2662			if (!(addr_high & E1000_RAH_AV))
2663				continue;
2664			addr_low = er32(RAL(i));
2665			mac_addr[0] = (addr_low & 0xFF);
2666			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669			mac_addr[4] = (addr_high & 0xFF);
2670			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671
2672			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673		}
2674
2675		/* Write Rx addresses to the PHY */
2676		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677
2678		/* Enable jumbo frame workaround in the MAC */
2679		mac_reg = er32(FFLT_DBG);
2680		mac_reg &= ~BIT(14);
2681		mac_reg |= (7 << 15);
2682		ew32(FFLT_DBG, mac_reg);
2683
2684		mac_reg = er32(RCTL);
2685		mac_reg |= E1000_RCTL_SECRC;
2686		ew32(RCTL, mac_reg);
2687
2688		ret_val = e1000e_read_kmrn_reg(hw,
2689					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690					       &data);
2691		if (ret_val)
2692			return ret_val;
2693		ret_val = e1000e_write_kmrn_reg(hw,
2694						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695						data | BIT(0));
2696		if (ret_val)
2697			return ret_val;
2698		ret_val = e1000e_read_kmrn_reg(hw,
2699					       E1000_KMRNCTRLSTA_HD_CTRL,
2700					       &data);
2701		if (ret_val)
2702			return ret_val;
2703		data &= ~(0xF << 8);
2704		data |= (0xB << 8);
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_HD_CTRL,
2707						data);
2708		if (ret_val)
2709			return ret_val;
2710
2711		/* Enable jumbo frame workaround in the PHY */
2712		e1e_rphy(hw, PHY_REG(769, 23), &data);
2713		data &= ~(0x7F << 5);
2714		data |= (0x37 << 5);
2715		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716		if (ret_val)
2717			return ret_val;
2718		e1e_rphy(hw, PHY_REG(769, 16), &data);
2719		data &= ~BIT(13);
2720		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721		if (ret_val)
2722			return ret_val;
2723		e1e_rphy(hw, PHY_REG(776, 20), &data);
2724		data &= ~(0x3FF << 2);
2725		data |= (E1000_TX_PTR_GAP << 2);
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727		if (ret_val)
2728			return ret_val;
2729		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730		if (ret_val)
2731			return ret_val;
2732		e1e_rphy(hw, HV_PM_CTRL, &data);
2733		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734		if (ret_val)
2735			return ret_val;
2736	} else {
2737		/* Write MAC register values back to h/w defaults */
2738		mac_reg = er32(FFLT_DBG);
2739		mac_reg &= ~(0xF << 14);
2740		ew32(FFLT_DBG, mac_reg);
2741
2742		mac_reg = er32(RCTL);
2743		mac_reg &= ~E1000_RCTL_SECRC;
2744		ew32(RCTL, mac_reg);
2745
2746		ret_val = e1000e_read_kmrn_reg(hw,
2747					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748					       &data);
2749		if (ret_val)
2750			return ret_val;
2751		ret_val = e1000e_write_kmrn_reg(hw,
2752						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753						data & ~BIT(0));
2754		if (ret_val)
2755			return ret_val;
2756		ret_val = e1000e_read_kmrn_reg(hw,
2757					       E1000_KMRNCTRLSTA_HD_CTRL,
2758					       &data);
2759		if (ret_val)
2760			return ret_val;
2761		data &= ~(0xF << 8);
2762		data |= (0xB << 8);
2763		ret_val = e1000e_write_kmrn_reg(hw,
2764						E1000_KMRNCTRLSTA_HD_CTRL,
2765						data);
2766		if (ret_val)
2767			return ret_val;
2768
2769		/* Write PHY register values back to h/w defaults */
2770		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771		data &= ~(0x7F << 5);
2772		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773		if (ret_val)
2774			return ret_val;
2775		e1e_rphy(hw, PHY_REG(769, 16), &data);
2776		data |= BIT(13);
2777		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778		if (ret_val)
2779			return ret_val;
2780		e1e_rphy(hw, PHY_REG(776, 20), &data);
2781		data &= ~(0x3FF << 2);
2782		data |= (0x8 << 2);
2783		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784		if (ret_val)
2785			return ret_val;
2786		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787		if (ret_val)
2788			return ret_val;
2789		e1e_rphy(hw, HV_PM_CTRL, &data);
2790		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791		if (ret_val)
2792			return ret_val;
2793	}
2794
2795	/* re-enable Rx path after enabling/disabling workaround */
2796	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797}
2798
2799/**
2800 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 *  @hw: pointer to the HW structure
2802 *
2803 *  A series of PHY workarounds to be done after every PHY reset.
2804 **/
2805static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806{
2807	s32 ret_val = 0;
2808
2809	if (hw->mac.type != e1000_pch2lan)
2810		return 0;
2811
2812	/* Set MDIO slow mode before any other MDIO access */
2813	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814	if (ret_val)
2815		return ret_val;
2816
2817	ret_val = hw->phy.ops.acquire(hw);
2818	if (ret_val)
2819		return ret_val;
 
 
 
2820	/* set MSE higher to enable link to stay up when noise is high */
2821	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
 
 
 
2822	if (ret_val)
2823		goto release;
2824	/* drop link after 5 times MSE threshold was reached */
2825	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826release:
2827	hw->phy.ops.release(hw);
2828
2829	return ret_val;
2830}
2831
2832/**
2833 *  e1000_k1_workaround_lv - K1 Si workaround
2834 *  @hw:   pointer to the HW structure
2835 *
2836 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 *  Disable K1 in 1000Mbps and 100Mbps
2838 **/
2839static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840{
2841	s32 ret_val = 0;
2842	u16 status_reg = 0;
 
 
2843
2844	if (hw->mac.type != e1000_pch2lan)
2845		return 0;
2846
2847	/* Set K1 beacon duration based on 10Mbs speed */
2848	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849	if (ret_val)
2850		return ret_val;
2851
2852	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854		if (status_reg &
2855		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
 
 
 
 
 
 
2856			u16 pm_phy_reg;
2857
2858			/* LV 1G/100 Packet drop issue wa  */
 
 
2859			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860			if (ret_val)
2861				return ret_val;
2862			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864			if (ret_val)
2865				return ret_val;
2866		} else {
2867			u32 mac_reg;
2868
2869			mac_reg = er32(FEXTNVM4);
2870			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872			ew32(FEXTNVM4, mac_reg);
2873		}
 
 
2874	}
2875
2876	return ret_val;
2877}
2878
2879/**
2880 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 *  @hw:   pointer to the HW structure
2882 *  @gate: boolean set to true to gate, false to ungate
2883 *
2884 *  Gate/ungate the automatic PHY configuration via hardware; perform
2885 *  the configuration via software instead.
2886 **/
2887static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888{
2889	u32 extcnf_ctrl;
2890
2891	if (hw->mac.type < e1000_pch2lan)
2892		return;
2893
2894	extcnf_ctrl = er32(EXTCNF_CTRL);
2895
2896	if (gate)
2897		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898	else
2899		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900
2901	ew32(EXTCNF_CTRL, extcnf_ctrl);
2902}
2903
2904/**
2905 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 *  @hw: pointer to the HW structure
2907 *
2908 *  Check the appropriate indication the MAC has finished configuring the
2909 *  PHY after a software reset.
2910 **/
2911static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912{
2913	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914
2915	/* Wait for basic configuration completes before proceeding */
2916	do {
2917		data = er32(STATUS);
2918		data &= E1000_STATUS_LAN_INIT_DONE;
2919		usleep_range(100, 200);
2920	} while ((!data) && --loop);
2921
2922	/* If basic configuration is incomplete before the above loop
 
2923	 * count reaches 0, loading the configuration from NVM will
2924	 * leave the PHY in a bad state possibly resulting in no link.
2925	 */
2926	if (loop == 0)
2927		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928
2929	/* Clear the Init Done bit for the next init event */
2930	data = er32(STATUS);
2931	data &= ~E1000_STATUS_LAN_INIT_DONE;
2932	ew32(STATUS, data);
2933}
2934
2935/**
2936 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 *  @hw: pointer to the HW structure
2938 **/
2939static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940{
2941	s32 ret_val = 0;
2942	u16 reg;
2943
2944	if (hw->phy.ops.check_reset_block(hw))
2945		return 0;
2946
2947	/* Allow time for h/w to get to quiescent state after reset */
2948	usleep_range(10000, 11000);
2949
2950	/* Perform any necessary post-reset workarounds */
2951	switch (hw->mac.type) {
2952	case e1000_pchlan:
2953		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954		if (ret_val)
2955			return ret_val;
2956		break;
2957	case e1000_pch2lan:
2958		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959		if (ret_val)
2960			return ret_val;
2961		break;
2962	default:
2963		break;
2964	}
2965
2966	/* Clear the host wakeup bit after lcd reset */
2967	if (hw->mac.type >= e1000_pchlan) {
2968		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2969		reg &= ~BM_WUC_HOST_WU_BIT;
2970		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971	}
2972
2973	/* Configure the LCD with the extended configuration region in NVM */
2974	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975	if (ret_val)
2976		return ret_val;
2977
2978	/* Configure the LCD with the OEM bits in NVM */
2979	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980
2981	if (hw->mac.type == e1000_pch2lan) {
2982		/* Ungate automatic PHY configuration on non-managed 82579 */
2983		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984			usleep_range(10000, 11000);
2985			e1000_gate_hw_phy_config_ich8lan(hw, false);
2986		}
2987
2988		/* Set EEE LPI Update Timer to 200usec */
2989		ret_val = hw->phy.ops.acquire(hw);
2990		if (ret_val)
2991			return ret_val;
2992		ret_val = e1000_write_emi_reg_locked(hw,
2993						     I82579_LPI_UPDATE_TIMER,
2994						     0x1387);
 
2995		hw->phy.ops.release(hw);
2996	}
2997
2998	return ret_val;
2999}
3000
3001/**
3002 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 *  @hw: pointer to the HW structure
3004 *
3005 *  Resets the PHY
3006 *  This is a function pointer entry point called by drivers
3007 *  or other shared routines.
3008 **/
3009static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010{
3011	s32 ret_val = 0;
3012
3013	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014	if ((hw->mac.type == e1000_pch2lan) &&
3015	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016		e1000_gate_hw_phy_config_ich8lan(hw, true);
3017
3018	ret_val = e1000e_phy_hw_reset_generic(hw);
3019	if (ret_val)
3020		return ret_val;
3021
3022	return e1000_post_phy_reset_ich8lan(hw);
3023}
3024
3025/**
3026 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3031 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 *  the phy speed. This function will manually set the LPLU bit and restart
3033 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 *  since it configures the same bit.
3035 **/
3036static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037{
3038	s32 ret_val;
3039	u16 oem_reg;
3040
3041	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042	if (ret_val)
3043		return ret_val;
3044
3045	if (active)
3046		oem_reg |= HV_OEM_BITS_LPLU;
3047	else
3048		oem_reg &= ~HV_OEM_BITS_LPLU;
3049
3050	if (!hw->phy.ops.check_reset_block(hw))
3051		oem_reg |= HV_OEM_BITS_RESTART_AN;
3052
3053	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054}
3055
3056/**
3057 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 *  @hw: pointer to the HW structure
3059 *  @active: true to enable LPLU, false to disable
3060 *
3061 *  Sets the LPLU D0 state according to the active flag.  When
3062 *  activating LPLU this function also disables smart speed
3063 *  and vice versa.  LPLU will not be activated unless the
3064 *  device autonegotiation advertisement meets standards of
3065 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 *  This is a function pointer entry point only called by
3067 *  PHY setup routines.
3068 **/
3069static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070{
3071	struct e1000_phy_info *phy = &hw->phy;
3072	u32 phy_ctrl;
3073	s32 ret_val = 0;
3074	u16 data;
3075
3076	if (phy->type == e1000_phy_ife)
3077		return 0;
3078
3079	phy_ctrl = er32(PHY_CTRL);
3080
3081	if (active) {
3082		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083		ew32(PHY_CTRL, phy_ctrl);
3084
3085		if (phy->type != e1000_phy_igp_3)
3086			return 0;
3087
3088		/* Call gig speed drop workaround on LPLU before accessing
 
3089		 * any PHY registers
3090		 */
3091		if (hw->mac.type == e1000_ich8lan)
3092			e1000e_gig_downshift_workaround_ich8lan(hw);
3093
3094		/* When LPLU is enabled, we should disable SmartSpeed */
3095		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096		if (ret_val)
3097			return ret_val;
3098		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100		if (ret_val)
3101			return ret_val;
3102	} else {
3103		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104		ew32(PHY_CTRL, phy_ctrl);
3105
3106		if (phy->type != e1000_phy_igp_3)
3107			return 0;
3108
3109		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3110		 * during Dx states where the power conservation is most
3111		 * important.  During driver activity we should enable
3112		 * SmartSpeed, so performance is maintained.
3113		 */
3114		if (phy->smart_speed == e1000_smart_speed_on) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127					   &data);
3128			if (ret_val)
3129				return ret_val;
3130
3131			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133					   data);
3134			if (ret_val)
3135				return ret_val;
3136		}
3137	}
3138
3139	return 0;
3140}
3141
3142/**
3143 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 *  @hw: pointer to the HW structure
3145 *  @active: true to enable LPLU, false to disable
3146 *
3147 *  Sets the LPLU D3 state according to the active flag.  When
3148 *  activating LPLU this function also disables smart speed
3149 *  and vice versa.  LPLU will not be activated unless the
3150 *  device autonegotiation advertisement meets standards of
3151 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 *  This is a function pointer entry point only called by
3153 *  PHY setup routines.
3154 **/
3155static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156{
3157	struct e1000_phy_info *phy = &hw->phy;
3158	u32 phy_ctrl;
3159	s32 ret_val = 0;
3160	u16 data;
3161
3162	phy_ctrl = er32(PHY_CTRL);
3163
3164	if (!active) {
3165		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166		ew32(PHY_CTRL, phy_ctrl);
3167
3168		if (phy->type != e1000_phy_igp_3)
3169			return 0;
3170
3171		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3172		 * during Dx states where the power conservation is most
3173		 * important.  During driver activity we should enable
3174		 * SmartSpeed, so performance is maintained.
3175		 */
3176		if (phy->smart_speed == e1000_smart_speed_on) {
3177			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178					   &data);
3179			if (ret_val)
3180				return ret_val;
3181
3182			data |= IGP01E1000_PSCFR_SMART_SPEED;
3183			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184					   data);
3185			if (ret_val)
3186				return ret_val;
3187		} else if (phy->smart_speed == e1000_smart_speed_off) {
3188			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189					   &data);
3190			if (ret_val)
3191				return ret_val;
3192
3193			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195					   data);
3196			if (ret_val)
3197				return ret_val;
3198		}
3199	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203		ew32(PHY_CTRL, phy_ctrl);
3204
3205		if (phy->type != e1000_phy_igp_3)
3206			return 0;
3207
3208		/* Call gig speed drop workaround on LPLU before accessing
 
3209		 * any PHY registers
3210		 */
3211		if (hw->mac.type == e1000_ich8lan)
3212			e1000e_gig_downshift_workaround_ich8lan(hw);
3213
3214		/* When LPLU is enabled, we should disable SmartSpeed */
3215		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216		if (ret_val)
3217			return ret_val;
3218
3219		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221	}
3222
3223	return ret_val;
3224}
3225
3226/**
3227 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 *  @hw: pointer to the HW structure
3229 *  @bank:  pointer to the variable that returns the active bank
3230 *
3231 *  Reads signature byte from the NVM using the flash access registers.
3232 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233 **/
3234static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235{
3236	u32 eecd;
3237	struct e1000_nvm_info *nvm = &hw->nvm;
3238	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240	u32 nvm_dword = 0;
3241	u8 sig_byte = 0;
3242	s32 ret_val;
3243
3244	switch (hw->mac.type) {
3245	case e1000_pch_spt:
3246	case e1000_pch_cnp:
3247	case e1000_pch_tgp:
3248	case e1000_pch_adp:
3249	case e1000_pch_mtp:
3250	case e1000_pch_lnp:
3251	case e1000_pch_ptp:
3252	case e1000_pch_nvp:
3253		bank1_offset = nvm->flash_bank_size;
3254		act_offset = E1000_ICH_NVM_SIG_WORD;
3255
3256		/* set bank to 0 in case flash read fails */
3257		*bank = 0;
3258
3259		/* Check bank 0 */
3260		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261							 &nvm_dword);
3262		if (ret_val)
3263			return ret_val;
3264		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266		    E1000_ICH_NVM_SIG_VALUE) {
3267			*bank = 0;
3268			return 0;
3269		}
3270
3271		/* Check bank 1 */
3272		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273							 bank1_offset,
3274							 &nvm_dword);
3275		if (ret_val)
3276			return ret_val;
3277		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279		    E1000_ICH_NVM_SIG_VALUE) {
3280			*bank = 1;
3281			return 0;
3282		}
3283
3284		e_dbg("ERROR: No valid NVM bank present\n");
3285		return -E1000_ERR_NVM;
3286	case e1000_ich8lan:
3287	case e1000_ich9lan:
3288		eecd = er32(EECD);
3289		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290		    E1000_EECD_SEC1VAL_VALID_MASK) {
3291			if (eecd & E1000_EECD_SEC1VAL)
3292				*bank = 1;
3293			else
3294				*bank = 0;
3295
3296			return 0;
3297		}
3298		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299		fallthrough;
3300	default:
3301		/* set bank to 0 in case flash read fails */
3302		*bank = 0;
3303
3304		/* Check bank 0 */
3305		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306							&sig_byte);
3307		if (ret_val)
3308			return ret_val;
3309		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310		    E1000_ICH_NVM_SIG_VALUE) {
3311			*bank = 0;
3312			return 0;
3313		}
3314
3315		/* Check bank 1 */
3316		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317							bank1_offset,
3318							&sig_byte);
3319		if (ret_val)
3320			return ret_val;
3321		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322		    E1000_ICH_NVM_SIG_VALUE) {
3323			*bank = 1;
3324			return 0;
3325		}
3326
3327		e_dbg("ERROR: No valid NVM bank present\n");
3328		return -E1000_ERR_NVM;
3329	}
3330}
3331
3332/**
3333 *  e1000_read_nvm_spt - NVM access for SPT
3334 *  @hw: pointer to the HW structure
3335 *  @offset: The offset (in bytes) of the word(s) to read.
3336 *  @words: Size of data to read in words.
3337 *  @data: pointer to the word(s) to read at offset.
3338 *
3339 *  Reads a word(s) from the NVM
3340 **/
3341static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342			      u16 *data)
3343{
3344	struct e1000_nvm_info *nvm = &hw->nvm;
3345	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346	u32 act_offset;
3347	s32 ret_val = 0;
3348	u32 bank = 0;
3349	u32 dword = 0;
3350	u16 offset_to_read;
3351	u16 i;
3352
3353	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354	    (words == 0)) {
3355		e_dbg("nvm parameter(s) out of bounds\n");
3356		ret_val = -E1000_ERR_NVM;
3357		goto out;
3358	}
3359
3360	nvm->ops.acquire(hw);
3361
3362	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363	if (ret_val) {
3364		e_dbg("Could not detect valid bank, assuming bank 0\n");
3365		bank = 0;
3366	}
3367
3368	act_offset = (bank) ? nvm->flash_bank_size : 0;
3369	act_offset += offset;
3370
3371	ret_val = 0;
3372
3373	for (i = 0; i < words; i += 2) {
3374		if (words - i == 1) {
3375			if (dev_spec->shadow_ram[offset + i].modified) {
3376				data[i] =
3377				    dev_spec->shadow_ram[offset + i].value;
3378			} else {
3379				offset_to_read = act_offset + i -
3380				    ((act_offset + i) % 2);
3381				ret_val =
3382				  e1000_read_flash_dword_ich8lan(hw,
3383								 offset_to_read,
3384								 &dword);
3385				if (ret_val)
3386					break;
3387				if ((act_offset + i) % 2 == 0)
3388					data[i] = (u16)(dword & 0xFFFF);
3389				else
3390					data[i] = (u16)((dword >> 16) & 0xFFFF);
3391			}
3392		} else {
3393			offset_to_read = act_offset + i;
3394			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396				ret_val =
3397				  e1000_read_flash_dword_ich8lan(hw,
3398								 offset_to_read,
3399								 &dword);
3400				if (ret_val)
3401					break;
3402			}
3403			if (dev_spec->shadow_ram[offset + i].modified)
3404				data[i] =
3405				    dev_spec->shadow_ram[offset + i].value;
3406			else
3407				data[i] = (u16)(dword & 0xFFFF);
3408			if (dev_spec->shadow_ram[offset + i].modified)
3409				data[i + 1] =
3410				    dev_spec->shadow_ram[offset + i + 1].value;
3411			else
3412				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 *  @hw: pointer to the HW structure
3428 *  @offset: The offset (in bytes) of the word(s) to read.
3429 *  @words: Size of data to read in words
3430 *  @data: Pointer to the word(s) to read at offset.
3431 *
3432 *  Reads a word(s) from the NVM using the flash access registers.
3433 **/
3434static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435				  u16 *data)
3436{
3437	struct e1000_nvm_info *nvm = &hw->nvm;
3438	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439	u32 act_offset;
3440	s32 ret_val = 0;
3441	u32 bank = 0;
3442	u16 i, word;
3443
3444	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445	    (words == 0)) {
3446		e_dbg("nvm parameter(s) out of bounds\n");
3447		ret_val = -E1000_ERR_NVM;
3448		goto out;
3449	}
3450
3451	nvm->ops.acquire(hw);
3452
3453	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454	if (ret_val) {
3455		e_dbg("Could not detect valid bank, assuming bank 0\n");
3456		bank = 0;
3457	}
3458
3459	act_offset = (bank) ? nvm->flash_bank_size : 0;
3460	act_offset += offset;
3461
3462	ret_val = 0;
3463	for (i = 0; i < words; i++) {
3464		if (dev_spec->shadow_ram[offset + i].modified) {
3465			data[i] = dev_spec->shadow_ram[offset + i].value;
3466		} else {
3467			ret_val = e1000_read_flash_word_ich8lan(hw,
3468								act_offset + i,
3469								&word);
3470			if (ret_val)
3471				break;
3472			data[i] = word;
3473		}
3474	}
3475
3476	nvm->ops.release(hw);
3477
3478out:
3479	if (ret_val)
3480		e_dbg("NVM read error: %d\n", ret_val);
3481
3482	return ret_val;
3483}
3484
3485/**
3486 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3487 *  @hw: pointer to the HW structure
3488 *
3489 *  This function does initial flash setup so that a new read/write/erase cycle
3490 *  can be started.
3491 **/
3492static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493{
3494	union ich8_hws_flash_status hsfsts;
3495	s32 ret_val = -E1000_ERR_NVM;
3496
3497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498
3499	/* Check if the flash descriptor is valid */
3500	if (!hsfsts.hsf_status.fldesvalid) {
3501		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3502		return -E1000_ERR_NVM;
3503	}
3504
3505	/* Clear FCERR and DAEL in hw status by writing 1 */
3506	hsfsts.hsf_status.flcerr = 1;
3507	hsfsts.hsf_status.dael = 1;
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510	else
3511		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512
3513	/* Either we should have a hardware SPI cycle in progress
 
 
 
3514	 * bit to check against, in order to start a new cycle or
3515	 * FDONE bit should be changed in the hardware so that it
3516	 * is 1 after hardware reset, which can then be used as an
3517	 * indication whether a cycle is in progress or has been
3518	 * completed.
3519	 */
3520
3521	if (!hsfsts.hsf_status.flcinprog) {
3522		/* There is no cycle running at present,
 
3523		 * so we can start a cycle.
3524		 * Begin by setting Flash Cycle Done.
3525		 */
3526		hsfsts.hsf_status.flcdone = 1;
3527		if (hw->mac.type >= e1000_pch_spt)
3528			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529		else
3530			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531		ret_val = 0;
3532	} else {
3533		s32 i;
3534
3535		/* Otherwise poll for sometime so the current
 
3536		 * cycle has a chance to end before giving up.
3537		 */
3538		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540			if (!hsfsts.hsf_status.flcinprog) {
3541				ret_val = 0;
3542				break;
3543			}
3544			udelay(1);
3545		}
3546		if (!ret_val) {
3547			/* Successful in waiting for previous cycle to timeout,
 
3548			 * now set the Flash Cycle Done.
3549			 */
3550			hsfsts.hsf_status.flcdone = 1;
3551			if (hw->mac.type >= e1000_pch_spt)
3552				ew32flash(ICH_FLASH_HSFSTS,
3553					  hsfsts.regval & 0xFFFF);
3554			else
3555				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556		} else {
3557			e_dbg("Flash controller busy, cannot get access\n");
3558		}
3559	}
3560
3561	return ret_val;
3562}
3563
3564/**
3565 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 *  @hw: pointer to the HW structure
3567 *  @timeout: maximum time to wait for completion
3568 *
3569 *  This function starts a flash cycle and waits for its completion.
3570 **/
3571static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572{
3573	union ich8_hws_flash_ctrl hsflctl;
3574	union ich8_hws_flash_status hsfsts;
3575	u32 i = 0;
3576
3577	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578	if (hw->mac.type >= e1000_pch_spt)
3579		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580	else
3581		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582	hsflctl.hsf_ctrl.flcgo = 1;
3583
3584	if (hw->mac.type >= e1000_pch_spt)
3585		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586	else
3587		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588
3589	/* wait till FDONE bit is set to 1 */
3590	do {
3591		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592		if (hsfsts.hsf_status.flcdone)
3593			break;
3594		udelay(1);
3595	} while (i++ < timeout);
3596
3597	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598		return 0;
3599
3600	return -E1000_ERR_NVM;
3601}
3602
3603/**
3604 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3605 *  @hw: pointer to the HW structure
3606 *  @offset: offset to data location
3607 *  @data: pointer to the location for storing the data
3608 *
3609 *  Reads the flash dword at offset into data.  Offset is converted
3610 *  to bytes before read.
3611 **/
3612static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613					  u32 *data)
3614{
3615	/* Must convert word offset into bytes. */
3616	offset <<= 1;
3617	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618}
3619
3620/**
3621 *  e1000_read_flash_word_ich8lan - Read word from flash
3622 *  @hw: pointer to the HW structure
3623 *  @offset: offset to data location
3624 *  @data: pointer to the location for storing the data
3625 *
3626 *  Reads the flash word at offset into data.  Offset is converted
3627 *  to bytes before read.
3628 **/
3629static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630					 u16 *data)
3631{
3632	/* Must convert offset into bytes. */
3633	offset <<= 1;
3634
3635	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636}
3637
3638/**
3639 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3640 *  @hw: pointer to the HW structure
3641 *  @offset: The offset of the byte to read.
3642 *  @data: Pointer to a byte to store the value read.
3643 *
3644 *  Reads a single byte from the NVM using the flash access registers.
3645 **/
3646static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647					 u8 *data)
3648{
3649	s32 ret_val;
3650	u16 word = 0;
3651
3652	/* In SPT, only 32 bits access is supported,
3653	 * so this function should not be called.
3654	 */
3655	if (hw->mac.type >= e1000_pch_spt)
3656		return -E1000_ERR_NVM;
3657	else
3658		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659
3660	if (ret_val)
3661		return ret_val;
3662
3663	*data = (u8)word;
3664
3665	return 0;
3666}
3667
3668/**
3669 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the byte or word to read.
3672 *  @size: Size of data to read, 1=byte 2=word
3673 *  @data: Pointer to the word to store the value read.
3674 *
3675 *  Reads a byte or word from the NVM using the flash access registers.
3676 **/
3677static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678					 u8 size, u16 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	u32 flash_data = 0;
3684	s32 ret_val = -E1000_ERR_NVM;
3685	u8 count = 0;
3686
3687	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688		return -E1000_ERR_NVM;
3689
3690	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691			     hw->nvm.flash_base_addr);
3692
3693	do {
3694		udelay(1);
3695		/* Steps */
3696		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697		if (ret_val)
3698			break;
3699
3700		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702		hsflctl.hsf_ctrl.fldbcount = size - 1;
3703		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707
3708		ret_val =
3709		    e1000_flash_cycle_ich8lan(hw,
3710					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3711
3712		/* Check if FCERR is set to 1, if set to 1, clear it
 
3713		 * and try the whole sequence a few more times, else
3714		 * read in (shift in) the Flash Data0, the order is
3715		 * least significant byte first msb to lsb
3716		 */
3717		if (!ret_val) {
3718			flash_data = er32flash(ICH_FLASH_FDATA0);
3719			if (size == 1)
3720				*data = (u8)(flash_data & 0x000000FF);
3721			else if (size == 2)
3722				*data = (u16)(flash_data & 0x0000FFFF);
3723			break;
3724		} else {
3725			/* If we've gotten here, then things are probably
3726			 * completely hosed, but if the error condition is
3727			 * detected, it won't hurt to give it another try...
3728			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729			 */
3730			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731			if (hsfsts.hsf_status.flcerr) {
3732				/* Repeat for some time before giving up. */
3733				continue;
3734			} else if (!hsfsts.hsf_status.flcdone) {
3735				e_dbg("Timeout error - flash cycle did not complete.\n");
3736				break;
3737			}
3738		}
3739	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740
3741	return ret_val;
3742}
3743
3744/**
3745 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 *  @hw: pointer to the HW structure
3747 *  @offset: The offset (in bytes) of the dword to read.
3748 *  @data: Pointer to the dword to store the value read.
3749 *
3750 *  Reads a byte or word from the NVM using the flash access registers.
3751 **/
3752
3753static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754					   u32 *data)
3755{
3756	union ich8_hws_flash_status hsfsts;
3757	union ich8_hws_flash_ctrl hsflctl;
3758	u32 flash_linear_addr;
3759	s32 ret_val = -E1000_ERR_NVM;
3760	u8 count = 0;
3761
3762	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763		return -E1000_ERR_NVM;
3764	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765			     hw->nvm.flash_base_addr);
3766
3767	do {
3768		udelay(1);
3769		/* Steps */
3770		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771		if (ret_val)
3772			break;
3773		/* In SPT, This register is in Lan memory space, not flash.
3774		 * Therefore, only 32 bit access is supported
3775		 */
3776		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777
3778		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781		/* In SPT, This register is in Lan memory space, not flash.
3782		 * Therefore, only 32 bit access is supported
3783		 */
3784		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786
3787		ret_val =
3788		   e1000_flash_cycle_ich8lan(hw,
3789					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3790
3791		/* Check if FCERR is set to 1, if set to 1, clear it
3792		 * and try the whole sequence a few more times, else
3793		 * read in (shift in) the Flash Data0, the order is
3794		 * least significant byte first msb to lsb
3795		 */
3796		if (!ret_val) {
3797			*data = er32flash(ICH_FLASH_FDATA0);
3798			break;
3799		} else {
3800			/* If we've gotten here, then things are probably
3801			 * completely hosed, but if the error condition is
3802			 * detected, it won't hurt to give it another try...
3803			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804			 */
3805			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806			if (hsfsts.hsf_status.flcerr) {
3807				/* Repeat for some time before giving up. */
3808				continue;
3809			} else if (!hsfsts.hsf_status.flcdone) {
3810				e_dbg("Timeout error - flash cycle did not complete.\n");
3811				break;
3812			}
3813		}
3814	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815
3816	return ret_val;
3817}
3818
3819/**
3820 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 *  @hw: pointer to the HW structure
3822 *  @offset: The offset (in bytes) of the word(s) to write.
3823 *  @words: Size of data to write in words
3824 *  @data: Pointer to the word(s) to write at offset.
3825 *
3826 *  Writes a byte or word to the NVM using the flash access registers.
3827 **/
3828static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829				   u16 *data)
3830{
3831	struct e1000_nvm_info *nvm = &hw->nvm;
3832	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833	u16 i;
3834
3835	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836	    (words == 0)) {
3837		e_dbg("nvm parameter(s) out of bounds\n");
3838		return -E1000_ERR_NVM;
3839	}
3840
3841	nvm->ops.acquire(hw);
3842
3843	for (i = 0; i < words; i++) {
3844		dev_spec->shadow_ram[offset + i].modified = true;
3845		dev_spec->shadow_ram[offset + i].value = data[i];
3846	}
3847
3848	nvm->ops.release(hw);
3849
3850	return 0;
3851}
3852
3853/**
3854 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 *  @hw: pointer to the HW structure
3856 *
3857 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 *  which writes the checksum to the shadow ram.  The changes in the shadow
3859 *  ram are then committed to the EEPROM by processing each bank at a time
3860 *  checking for the modified bit and writing only the pending changes.
3861 *  After a successful commit, the shadow ram is cleared and is ready for
3862 *  future writes.
3863 **/
3864static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865{
3866	struct e1000_nvm_info *nvm = &hw->nvm;
3867	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869	s32 ret_val;
3870	u32 dword = 0;
3871
3872	ret_val = e1000e_update_nvm_checksum_generic(hw);
3873	if (ret_val)
3874		goto out;
3875
3876	if (nvm->type != e1000_nvm_flash_sw)
3877		goto out;
3878
3879	nvm->ops.acquire(hw);
3880
3881	/* We're writing to the opposite bank so if we're on bank 1,
3882	 * write to bank 0 etc.  We also need to erase the segment that
3883	 * is going to be written
3884	 */
3885	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886	if (ret_val) {
3887		e_dbg("Could not detect valid bank, assuming bank 0\n");
3888		bank = 0;
3889	}
3890
3891	if (bank == 0) {
3892		new_bank_offset = nvm->flash_bank_size;
3893		old_bank_offset = 0;
3894		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895		if (ret_val)
3896			goto release;
3897	} else {
3898		old_bank_offset = nvm->flash_bank_size;
3899		new_bank_offset = 0;
3900		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901		if (ret_val)
3902			goto release;
3903	}
3904	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905		/* Determine whether to write the value stored
3906		 * in the other NVM bank or a modified value stored
3907		 * in the shadow RAM
3908		 */
3909		ret_val = e1000_read_flash_dword_ich8lan(hw,
3910							 i + old_bank_offset,
3911							 &dword);
3912
3913		if (dev_spec->shadow_ram[i].modified) {
3914			dword &= 0xffff0000;
3915			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916		}
3917		if (dev_spec->shadow_ram[i + 1].modified) {
3918			dword &= 0x0000ffff;
3919			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920				  << 16);
3921		}
3922		if (ret_val)
3923			break;
3924
3925		/* If the word is 0x13, then make sure the signature bits
3926		 * (15:14) are 11b until the commit has completed.
3927		 * This will allow us to write 10b which indicates the
3928		 * signature is valid.  We want to do this after the write
3929		 * has completed so that we don't mark the segment valid
3930		 * while the write is still in progress
3931		 */
3932		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934
3935		/* Convert offset to bytes. */
3936		act_offset = (i + new_bank_offset) << 1;
3937
3938		usleep_range(100, 200);
3939
3940		/* Write the data to the new bank. Offset in words */
3941		act_offset = i + new_bank_offset;
3942		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943								dword);
3944		if (ret_val)
3945			break;
3946	}
3947
3948	/* Don't bother writing the segment valid bits if sector
3949	 * programming failed.
3950	 */
3951	if (ret_val) {
3952		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953		e_dbg("Flash commit failed.\n");
3954		goto release;
3955	}
3956
3957	/* Finally validate the new segment by setting bit 15:14
3958	 * to 10b in word 0x13 , this can be done without an
3959	 * erase as well since these bits are 11 to start with
3960	 * and we need to change bit 14 to 0b
3961	 */
3962	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963
3964	/*offset in words but we read dword */
3965	--act_offset;
3966	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967
3968	if (ret_val)
3969		goto release;
3970
3971	dword &= 0xBFFFFFFF;
3972	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973
3974	if (ret_val)
3975		goto release;
3976
3977	/* offset in words but we read dword */
3978	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980
3981	if (ret_val)
3982		goto release;
3983
3984	dword &= 0x00FFFFFF;
3985	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986
3987	if (ret_val)
3988		goto release;
3989
3990	/* Great!  Everything worked, we can now clear the cached entries. */
3991	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992		dev_spec->shadow_ram[i].modified = false;
3993		dev_spec->shadow_ram[i].value = 0xFFFF;
3994	}
3995
3996release:
3997	nvm->ops.release(hw);
3998
3999	/* Reload the EEPROM, or else modifications will not appear
4000	 * until after the next adapter reset.
4001	 */
4002	if (!ret_val) {
4003		nvm->ops.reload(hw);
4004		usleep_range(10000, 11000);
4005	}
4006
4007out:
4008	if (ret_val)
4009		e_dbg("NVM update error: %d\n", ret_val);
4010
4011	return ret_val;
4012}
4013
4014/**
4015 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 *  @hw: pointer to the HW structure
4017 *
4018 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 *  which writes the checksum to the shadow ram.  The changes in the shadow
4020 *  ram are then committed to the EEPROM by processing each bank at a time
4021 *  checking for the modified bit and writing only the pending changes.
4022 *  After a successful commit, the shadow ram is cleared and is ready for
4023 *  future writes.
4024 **/
4025static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026{
4027	struct e1000_nvm_info *nvm = &hw->nvm;
4028	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030	s32 ret_val;
4031	u16 data = 0;
4032
4033	ret_val = e1000e_update_nvm_checksum_generic(hw);
4034	if (ret_val)
4035		goto out;
4036
4037	if (nvm->type != e1000_nvm_flash_sw)
4038		goto out;
4039
4040	nvm->ops.acquire(hw);
4041
4042	/* We're writing to the opposite bank so if we're on bank 1,
 
4043	 * write to bank 0 etc.  We also need to erase the segment that
4044	 * is going to be written
4045	 */
4046	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047	if (ret_val) {
4048		e_dbg("Could not detect valid bank, assuming bank 0\n");
4049		bank = 0;
4050	}
4051
4052	if (bank == 0) {
4053		new_bank_offset = nvm->flash_bank_size;
4054		old_bank_offset = 0;
4055		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056		if (ret_val)
4057			goto release;
4058	} else {
4059		old_bank_offset = nvm->flash_bank_size;
4060		new_bank_offset = 0;
4061		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062		if (ret_val)
4063			goto release;
4064	}
 
4065	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
 
 
 
 
 
4066		if (dev_spec->shadow_ram[i].modified) {
4067			data = dev_spec->shadow_ram[i].value;
4068		} else {
4069			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070								old_bank_offset,
4071								&data);
4072			if (ret_val)
4073				break;
4074		}
4075
4076		/* If the word is 0x13, then make sure the signature bits
 
4077		 * (15:14) are 11b until the commit has completed.
4078		 * This will allow us to write 10b which indicates the
4079		 * signature is valid.  We want to do this after the write
4080		 * has completed so that we don't mark the segment valid
4081		 * while the write is still in progress
4082		 */
4083		if (i == E1000_ICH_NVM_SIG_WORD)
4084			data |= E1000_ICH_NVM_SIG_MASK;
4085
4086		/* Convert offset to bytes. */
4087		act_offset = (i + new_bank_offset) << 1;
4088
4089		usleep_range(100, 200);
4090		/* Write the bytes to the new bank. */
4091		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092							       act_offset,
4093							       (u8)data);
4094		if (ret_val)
4095			break;
4096
4097		usleep_range(100, 200);
4098		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099							       act_offset + 1,
4100							       (u8)(data >> 8));
4101		if (ret_val)
4102			break;
4103	}
4104
4105	/* Don't bother writing the segment valid bits if sector
 
4106	 * programming failed.
4107	 */
4108	if (ret_val) {
4109		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110		e_dbg("Flash commit failed.\n");
4111		goto release;
4112	}
4113
4114	/* Finally validate the new segment by setting bit 15:14
 
4115	 * to 10b in word 0x13 , this can be done without an
4116	 * erase as well since these bits are 11 to start with
4117	 * and we need to change bit 14 to 0b
4118	 */
4119	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121	if (ret_val)
4122		goto release;
4123
4124	data &= 0xBFFF;
4125	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126						       act_offset * 2 + 1,
4127						       (u8)(data >> 8));
4128	if (ret_val)
4129		goto release;
4130
4131	/* And invalidate the previously valid segment by setting
 
4132	 * its signature word (0x13) high_byte to 0b. This can be
4133	 * done without an erase because flash erase sets all bits
4134	 * to 1's. We can write 1's to 0's without an erase
4135	 */
4136	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138	if (ret_val)
4139		goto release;
4140
4141	/* Great!  Everything worked, we can now clear the cached entries. */
4142	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143		dev_spec->shadow_ram[i].modified = false;
4144		dev_spec->shadow_ram[i].value = 0xFFFF;
4145	}
4146
4147release:
4148	nvm->ops.release(hw);
4149
4150	/* Reload the EEPROM, or else modifications will not appear
 
4151	 * until after the next adapter reset.
4152	 */
4153	if (!ret_val) {
4154		nvm->ops.reload(hw);
4155		usleep_range(10000, 11000);
4156	}
4157
4158out:
4159	if (ret_val)
4160		e_dbg("NVM update error: %d\n", ret_val);
4161
4162	return ret_val;
4163}
4164
4165/**
4166 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 *  calculated, in which case we need to calculate the checksum and set bit 6.
4172 **/
4173static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174{
4175	s32 ret_val;
4176	u16 data;
4177	u16 word;
4178	u16 valid_csum_mask;
4179
4180	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4181	 * the checksum needs to be fixed.  This bit is an indication that
4182	 * the NVM was prepared by OEM software and did not calculate
4183	 * the checksum...a likely scenario.
 
4184	 */
4185	switch (hw->mac.type) {
4186	case e1000_pch_lpt:
4187	case e1000_pch_spt:
4188	case e1000_pch_cnp:
4189	case e1000_pch_tgp:
4190	case e1000_pch_adp:
4191	case e1000_pch_mtp:
4192	case e1000_pch_lnp:
4193	case e1000_pch_ptp:
4194	case e1000_pch_nvp:
4195		word = NVM_COMPAT;
4196		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197		break;
4198	default:
4199		word = NVM_FUTURE_INIT_WORD1;
4200		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201		break;
4202	}
4203
4204	ret_val = e1000_read_nvm(hw, word, 1, &data);
4205	if (ret_val)
4206		return ret_val;
4207
4208	if (!(data & valid_csum_mask)) {
4209		e_dbg("NVM Checksum valid bit not set\n");
4210
4211		if (hw->mac.type < e1000_pch_tgp) {
4212			data |= valid_csum_mask;
4213			ret_val = e1000_write_nvm(hw, word, 1, &data);
4214			if (ret_val)
4215				return ret_val;
4216			ret_val = e1000e_update_nvm_checksum(hw);
4217			if (ret_val)
4218				return ret_val;
4219		}
4220	}
4221
4222	return e1000e_validate_nvm_checksum_generic(hw);
4223}
4224
4225/**
4226 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 *  @hw: pointer to the HW structure
4228 *
4229 *  To prevent malicious write/erase of the NVM, set it to be read-only
4230 *  so that the hardware ignores all write/erase cycles of the NVM via
4231 *  the flash control registers.  The shadow-ram copy of the NVM will
4232 *  still be updated, however any updates to this copy will not stick
4233 *  across driver reloads.
4234 **/
4235void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236{
4237	struct e1000_nvm_info *nvm = &hw->nvm;
4238	union ich8_flash_protected_range pr0;
4239	union ich8_hws_flash_status hsfsts;
4240	u32 gfpreg;
4241
4242	nvm->ops.acquire(hw);
4243
4244	gfpreg = er32flash(ICH_FLASH_GFPREG);
4245
4246	/* Write-protect GbE Sector of NVM */
4247	pr0.regval = er32flash(ICH_FLASH_PR0);
4248	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250	pr0.range.wpe = true;
4251	ew32flash(ICH_FLASH_PR0, pr0.regval);
4252
4253	/* Lock down a subset of GbE Flash Control Registers, e.g.
 
4254	 * PR0 to prevent the write-protection from being lifted.
4255	 * Once FLOCKDN is set, the registers protected by it cannot
4256	 * be written until FLOCKDN is cleared by a hardware reset.
4257	 */
4258	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259	hsfsts.hsf_status.flockdn = true;
4260	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261
4262	nvm->ops.release(hw);
4263}
4264
4265/**
4266 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 *  @hw: pointer to the HW structure
4268 *  @offset: The offset (in bytes) of the byte/word to read.
4269 *  @size: Size of data to read, 1=byte 2=word
4270 *  @data: The byte(s) to write to the NVM.
4271 *
4272 *  Writes one/two bytes to the NVM using the flash access registers.
4273 **/
4274static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275					  u8 size, u16 data)
4276{
4277	union ich8_hws_flash_status hsfsts;
4278	union ich8_hws_flash_ctrl hsflctl;
4279	u32 flash_linear_addr;
4280	u32 flash_data = 0;
4281	s32 ret_val;
4282	u8 count = 0;
4283
4284	if (hw->mac.type >= e1000_pch_spt) {
4285		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286			return -E1000_ERR_NVM;
4287	} else {
4288		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289			return -E1000_ERR_NVM;
4290	}
4291
4292	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293			     hw->nvm.flash_base_addr);
4294
4295	do {
4296		udelay(1);
4297		/* Steps */
4298		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299		if (ret_val)
4300			break;
4301		/* In SPT, This register is in Lan memory space, not
4302		 * flash.  Therefore, only 32 bit access is supported
4303		 */
4304		if (hw->mac.type >= e1000_pch_spt)
4305			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306		else
4307			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308
 
4309		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310		hsflctl.hsf_ctrl.fldbcount = size - 1;
4311		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312		/* In SPT, This register is in Lan memory space,
4313		 * not flash.  Therefore, only 32 bit access is
4314		 * supported
4315		 */
4316		if (hw->mac.type >= e1000_pch_spt)
4317			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318		else
4319			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320
4321		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322
4323		if (size == 1)
4324			flash_data = (u32)data & 0x00FF;
4325		else
4326			flash_data = (u32)data;
4327
4328		ew32flash(ICH_FLASH_FDATA0, flash_data);
4329
4330		/* check if FCERR is set to 1 , if set to 1, clear it
4331		 * and try the whole sequence a few more times else done
4332		 */
4333		ret_val =
4334		    e1000_flash_cycle_ich8lan(hw,
4335					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336		if (!ret_val)
4337			break;
4338
4339		/* If we're here, then things are most likely
4340		 * completely hosed, but if the error condition
4341		 * is detected, it won't hurt to give it another
4342		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343		 */
4344		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345		if (hsfsts.hsf_status.flcerr)
4346			/* Repeat for some time before giving up. */
4347			continue;
4348		if (!hsfsts.hsf_status.flcdone) {
4349			e_dbg("Timeout error - flash cycle did not complete.\n");
4350			break;
4351		}
4352	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353
4354	return ret_val;
4355}
4356
4357/**
4358*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359*  @hw: pointer to the HW structure
4360*  @offset: The offset (in bytes) of the dwords to read.
4361*  @data: The 4 bytes to write to the NVM.
4362*
4363*  Writes one/two/four bytes to the NVM using the flash access registers.
4364**/
4365static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366					    u32 data)
4367{
4368	union ich8_hws_flash_status hsfsts;
4369	union ich8_hws_flash_ctrl hsflctl;
4370	u32 flash_linear_addr;
4371	s32 ret_val;
4372	u8 count = 0;
4373
4374	if (hw->mac.type >= e1000_pch_spt) {
4375		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376			return -E1000_ERR_NVM;
4377	}
4378	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379			     hw->nvm.flash_base_addr);
4380	do {
4381		udelay(1);
4382		/* Steps */
4383		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384		if (ret_val)
4385			break;
4386
4387		/* In SPT, This register is in Lan memory space, not
4388		 * flash.  Therefore, only 32 bit access is supported
4389		 */
4390		if (hw->mac.type >= e1000_pch_spt)
4391			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392			    >> 16;
4393		else
4394			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395
4396		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398
4399		/* In SPT, This register is in Lan memory space,
4400		 * not flash.  Therefore, only 32 bit access is
4401		 * supported
4402		 */
4403		if (hw->mac.type >= e1000_pch_spt)
4404			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405		else
4406			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407
4408		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409
4410		ew32flash(ICH_FLASH_FDATA0, data);
4411
4412		/* check if FCERR is set to 1 , if set to 1, clear it
4413		 * and try the whole sequence a few more times else done
4414		 */
4415		ret_val =
4416		   e1000_flash_cycle_ich8lan(hw,
4417					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418
4419		if (!ret_val)
4420			break;
4421
4422		/* If we're here, then things are most likely
 
4423		 * completely hosed, but if the error condition
4424		 * is detected, it won't hurt to give it another
4425		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426		 */
4427		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429		if (hsfsts.hsf_status.flcerr)
4430			/* Repeat for some time before giving up. */
4431			continue;
4432		if (!hsfsts.hsf_status.flcdone) {
4433			e_dbg("Timeout error - flash cycle did not complete.\n");
4434			break;
4435		}
4436	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437
4438	return ret_val;
4439}
4440
4441/**
4442 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 *  @hw: pointer to the HW structure
4444 *  @offset: The index of the byte to read.
4445 *  @data: The byte to write to the NVM.
4446 *
4447 *  Writes a single byte to the NVM using the flash access registers.
4448 **/
4449static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450					  u8 data)
4451{
4452	u16 word = (u16)data;
4453
4454	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455}
4456
4457/**
4458*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459*  @hw: pointer to the HW structure
4460*  @offset: The offset of the word to write.
4461*  @dword: The dword to write to the NVM.
4462*
4463*  Writes a single dword to the NVM using the flash access registers.
4464*  Goes through a retry algorithm before giving up.
4465**/
4466static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467						 u32 offset, u32 dword)
4468{
4469	s32 ret_val;
4470	u16 program_retries;
4471
4472	/* Must convert word offset into bytes. */
4473	offset <<= 1;
4474	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475
4476	if (!ret_val)
4477		return ret_val;
4478	for (program_retries = 0; program_retries < 100; program_retries++) {
4479		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480		usleep_range(100, 200);
4481		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482		if (!ret_val)
4483			break;
4484	}
4485	if (program_retries == 100)
4486		return -E1000_ERR_NVM;
4487
4488	return 0;
4489}
4490
4491/**
4492 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 *  @hw: pointer to the HW structure
4494 *  @offset: The offset of the byte to write.
4495 *  @byte: The byte to write to the NVM.
4496 *
4497 *  Writes a single byte to the NVM using the flash access registers.
4498 *  Goes through a retry algorithm before giving up.
4499 **/
4500static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501						u32 offset, u8 byte)
4502{
4503	s32 ret_val;
4504	u16 program_retries;
4505
4506	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507	if (!ret_val)
4508		return ret_val;
4509
4510	for (program_retries = 0; program_retries < 100; program_retries++) {
4511		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512		usleep_range(100, 200);
4513		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514		if (!ret_val)
4515			break;
4516	}
4517	if (program_retries == 100)
4518		return -E1000_ERR_NVM;
4519
4520	return 0;
4521}
4522
4523/**
4524 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 *  @hw: pointer to the HW structure
4526 *  @bank: 0 for first bank, 1 for second bank, etc.
4527 *
4528 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 *  bank N is 4096 * N + flash_reg_addr.
4530 **/
4531static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532{
4533	struct e1000_nvm_info *nvm = &hw->nvm;
4534	union ich8_hws_flash_status hsfsts;
4535	union ich8_hws_flash_ctrl hsflctl;
4536	u32 flash_linear_addr;
4537	/* bank size is in 16bit words - adjust to bytes */
4538	u32 flash_bank_size = nvm->flash_bank_size * 2;
4539	s32 ret_val;
4540	s32 count = 0;
4541	s32 j, iteration, sector_size;
4542
4543	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544
4545	/* Determine HW Sector size: Read BERASE bits of hw flash status
 
4546	 * register
4547	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548	 *     consecutive sectors.  The start index for the nth Hw sector
4549	 *     can be calculated as = bank * 4096 + n * 256
4550	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551	 *     The start index for the nth Hw sector can be calculated
4552	 *     as = bank * 4096
4553	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554	 *     (ich9 only, otherwise error condition)
4555	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556	 */
4557	switch (hsfsts.hsf_status.berasesz) {
4558	case 0:
4559		/* Hw sector size 256 */
4560		sector_size = ICH_FLASH_SEG_SIZE_256;
4561		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562		break;
4563	case 1:
4564		sector_size = ICH_FLASH_SEG_SIZE_4K;
4565		iteration = 1;
4566		break;
4567	case 2:
4568		sector_size = ICH_FLASH_SEG_SIZE_8K;
4569		iteration = 1;
4570		break;
4571	case 3:
4572		sector_size = ICH_FLASH_SEG_SIZE_64K;
4573		iteration = 1;
4574		break;
4575	default:
4576		return -E1000_ERR_NVM;
4577	}
4578
4579	/* Start with the base address, then add the sector offset. */
4580	flash_linear_addr = hw->nvm.flash_base_addr;
4581	flash_linear_addr += (bank) ? flash_bank_size : 0;
4582
4583	for (j = 0; j < iteration; j++) {
4584		do {
4585			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586
4587			/* Steps */
4588			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589			if (ret_val)
4590				return ret_val;
4591
4592			/* Write a value 11 (block Erase) in Flash
 
4593			 * Cycle field in hw flash control
4594			 */
4595			if (hw->mac.type >= e1000_pch_spt)
4596				hsflctl.regval =
4597				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4598			else
4599				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600
4601			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602			if (hw->mac.type >= e1000_pch_spt)
4603				ew32flash(ICH_FLASH_HSFSTS,
4604					  hsflctl.regval << 16);
4605			else
4606				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607
4608			/* Write the last 24 bits of an index within the
 
4609			 * block into Flash Linear address field in Flash
4610			 * Address.
4611			 */
4612			flash_linear_addr += (j * sector_size);
4613			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614
4615			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
 
4616			if (!ret_val)
4617				break;
4618
4619			/* Check if FCERR is set to 1.  If 1,
 
4620			 * clear it and try the whole sequence
4621			 * a few more times else Done
4622			 */
4623			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624			if (hsfsts.hsf_status.flcerr)
4625				/* repeat for some time before giving up */
4626				continue;
4627			else if (!hsfsts.hsf_status.flcdone)
4628				return ret_val;
4629		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630	}
4631
4632	return 0;
4633}
4634
4635/**
4636 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4637 *  @hw: pointer to the HW structure
4638 *  @data: Pointer to the LED settings
4639 *
4640 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4641 *  settings is all 0's or F's, set the LED default to a valid LED default
4642 *  setting.
4643 **/
4644static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645{
4646	s32 ret_val;
4647
4648	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649	if (ret_val) {
4650		e_dbg("NVM Read Error\n");
4651		return ret_val;
4652	}
4653
4654	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
 
4655		*data = ID_LED_DEFAULT_ICH8LAN;
4656
4657	return 0;
4658}
4659
4660/**
4661 *  e1000_id_led_init_pchlan - store LED configurations
4662 *  @hw: pointer to the HW structure
4663 *
4664 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4665 *  the PHY LED configuration register.
4666 *
4667 *  PCH also does not have an "always on" or "always off" mode which
4668 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4669 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4671 *  link based on logic in e1000_led_[on|off]_pchlan().
4672 **/
4673static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674{
4675	struct e1000_mac_info *mac = &hw->mac;
4676	s32 ret_val;
4677	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679	u16 data, i, temp, shift;
4680
4681	/* Get default ID LED modes */
4682	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683	if (ret_val)
4684		return ret_val;
4685
4686	mac->ledctl_default = er32(LEDCTL);
4687	mac->ledctl_mode1 = mac->ledctl_default;
4688	mac->ledctl_mode2 = mac->ledctl_default;
4689
4690	for (i = 0; i < 4; i++) {
4691		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692		shift = (i * 5);
4693		switch (temp) {
4694		case ID_LED_ON1_DEF2:
4695		case ID_LED_ON1_ON2:
4696		case ID_LED_ON1_OFF2:
4697			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698			mac->ledctl_mode1 |= (ledctl_on << shift);
4699			break;
4700		case ID_LED_OFF1_DEF2:
4701		case ID_LED_OFF1_ON2:
4702		case ID_LED_OFF1_OFF2:
4703			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704			mac->ledctl_mode1 |= (ledctl_off << shift);
4705			break;
4706		default:
4707			/* Do nothing */
4708			break;
4709		}
4710		switch (temp) {
4711		case ID_LED_DEF1_ON2:
4712		case ID_LED_ON1_ON2:
4713		case ID_LED_OFF1_ON2:
4714			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715			mac->ledctl_mode2 |= (ledctl_on << shift);
4716			break;
4717		case ID_LED_DEF1_OFF2:
4718		case ID_LED_ON1_OFF2:
4719		case ID_LED_OFF1_OFF2:
4720			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721			mac->ledctl_mode2 |= (ledctl_off << shift);
4722			break;
4723		default:
4724			/* Do nothing */
4725			break;
4726		}
4727	}
4728
4729	return 0;
4730}
4731
4732/**
4733 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 *  @hw: pointer to the HW structure
4735 *
4736 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 *  register, so the bus width is hard coded.
4738 **/
4739static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740{
4741	struct e1000_bus_info *bus = &hw->bus;
4742	s32 ret_val;
4743
4744	ret_val = e1000e_get_bus_info_pcie(hw);
4745
4746	/* ICH devices are "PCI Express"-ish.  They have
 
4747	 * a configuration space, but do not contain
4748	 * PCI Express Capability registers, so bus width
4749	 * must be hardcoded.
4750	 */
4751	if (bus->width == e1000_bus_width_unknown)
4752		bus->width = e1000_bus_width_pcie_x1;
4753
4754	return ret_val;
4755}
4756
4757/**
4758 *  e1000_reset_hw_ich8lan - Reset the hardware
4759 *  @hw: pointer to the HW structure
4760 *
4761 *  Does a full reset of the hardware which includes a reset of the PHY and
4762 *  MAC.
4763 **/
4764static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765{
4766	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767	u16 kum_cfg;
4768	u32 ctrl, reg;
4769	s32 ret_val;
4770
4771	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
4772	 * on the last TLP read/write transaction when MAC is reset.
4773	 */
4774	ret_val = e1000e_disable_pcie_master(hw);
4775	if (ret_val)
4776		e_dbg("PCI-E Master disable polling has failed.\n");
4777
4778	e_dbg("Masking off all interrupts\n");
4779	ew32(IMC, 0xffffffff);
4780
4781	/* Disable the Transmit and Receive units.  Then delay to allow
 
4782	 * any pending transactions to complete before we hit the MAC
4783	 * with the global reset.
4784	 */
4785	ew32(RCTL, 0);
4786	ew32(TCTL, E1000_TCTL_PSP);
4787	e1e_flush();
4788
4789	usleep_range(10000, 11000);
4790
4791	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4792	if (hw->mac.type == e1000_ich8lan) {
4793		/* Set Tx and Rx buffer allocation to 8k apiece. */
4794		ew32(PBA, E1000_PBA_8K);
4795		/* Set Packet Buffer Size to 16k. */
4796		ew32(PBS, E1000_PBS_16K);
4797	}
4798
4799	if (hw->mac.type == e1000_pchlan) {
4800		/* Save the NVM K1 bit setting */
4801		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802		if (ret_val)
4803			return ret_val;
4804
4805		if (kum_cfg & E1000_NVM_K1_ENABLE)
4806			dev_spec->nvm_k1_enabled = true;
4807		else
4808			dev_spec->nvm_k1_enabled = false;
4809	}
4810
4811	ctrl = er32(CTRL);
4812
4813	if (!hw->phy.ops.check_reset_block(hw)) {
4814		/* Full-chip reset requires MAC and PHY reset at the same
 
4815		 * time to make sure the interface between MAC and the
4816		 * external PHY is reset.
4817		 */
4818		ctrl |= E1000_CTRL_PHY_RST;
4819
4820		/* Gate automatic PHY configuration by hardware on
 
4821		 * non-managed 82579
4822		 */
4823		if ((hw->mac.type == e1000_pch2lan) &&
4824		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825			e1000_gate_hw_phy_config_ich8lan(hw, true);
4826	}
4827	ret_val = e1000_acquire_swflag_ich8lan(hw);
4828	e_dbg("Issuing a global reset to ich8lan\n");
4829	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830	/* cannot issue a flush here because it hangs the hardware */
4831	msleep(20);
4832
4833	/* Set Phy Config Counter to 50msec */
4834	if (hw->mac.type == e1000_pch2lan) {
4835		reg = er32(FEXTNVM3);
4836		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838		ew32(FEXTNVM3, reg);
4839	}
4840
4841	if (!ret_val)
4842		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843
4844	if (ctrl & E1000_CTRL_PHY_RST) {
4845		ret_val = hw->phy.ops.get_cfg_done(hw);
4846		if (ret_val)
4847			return ret_val;
4848
4849		ret_val = e1000_post_phy_reset_ich8lan(hw);
4850		if (ret_val)
4851			return ret_val;
4852	}
4853
4854	/* For PCH, this write will make sure that any noise
 
4855	 * will be detected as a CRC error and be dropped rather than show up
4856	 * as a bad packet to the DMA engine.
4857	 */
4858	if (hw->mac.type == e1000_pchlan)
4859		ew32(CRC_OFFSET, 0x65656565);
4860
4861	ew32(IMC, 0xffffffff);
4862	er32(ICR);
4863
4864	reg = er32(KABGTXD);
4865	reg |= E1000_KABGTXD_BGSQLBIAS;
4866	ew32(KABGTXD, reg);
4867
4868	return 0;
4869}
4870
4871/**
4872 *  e1000_init_hw_ich8lan - Initialize the hardware
4873 *  @hw: pointer to the HW structure
4874 *
4875 *  Prepares the hardware for transmit and receive by doing the following:
4876 *   - initialize hardware bits
4877 *   - initialize LED identification
4878 *   - setup receive address registers
4879 *   - setup flow control
4880 *   - setup transmit descriptors
4881 *   - clear statistics
4882 **/
4883static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884{
4885	struct e1000_mac_info *mac = &hw->mac;
4886	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887	s32 ret_val;
4888	u16 i;
4889
4890	e1000_initialize_hw_bits_ich8lan(hw);
4891
4892	/* Initialize identification LED */
4893	ret_val = mac->ops.id_led_init(hw);
4894	/* An error is not fatal and we should not stop init due to this */
4895	if (ret_val)
4896		e_dbg("Error initializing identification LED\n");
 
4897
4898	/* Setup the receive address. */
4899	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900
4901	/* Zero out the Multicast HASH table */
4902	e_dbg("Zeroing the MTA\n");
4903	for (i = 0; i < mac->mta_reg_count; i++)
4904		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905
4906	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
 
4907	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4908	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909	 */
4910	if (hw->phy.type == e1000_phy_82578) {
4911		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912		i &= ~BM_WUC_HOST_WU_BIT;
4913		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915		if (ret_val)
4916			return ret_val;
4917	}
4918
4919	/* Setup link and flow control */
4920	ret_val = mac->ops.setup_link(hw);
4921
4922	/* Set the transmit descriptor write-back policy for both queues */
4923	txdctl = er32(TXDCTL(0));
4924	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925		  E1000_TXDCTL_FULL_TX_DESC_WB);
4926	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928	ew32(TXDCTL(0), txdctl);
4929	txdctl = er32(TXDCTL(1));
4930	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931		  E1000_TXDCTL_FULL_TX_DESC_WB);
4932	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934	ew32(TXDCTL(1), txdctl);
4935
4936	/* ICH8 has opposite polarity of no_snoop bits.
 
4937	 * By default, we should use snoop behavior.
4938	 */
4939	if (mac->type == e1000_ich8lan)
4940		snoop = PCIE_ICH8_SNOOP_ALL;
4941	else
4942		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943	e1000e_set_pcie_no_snoop(hw, snoop);
4944
4945	/* Enable workaround for packet loss issue on TGP PCH
4946	 * Do not gate DMA clock from the modPHY block
4947	 */
4948	if (mac->type >= e1000_pch_tgp) {
4949		fflt_dbg = er32(FFLT_DBG);
4950		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951		ew32(FFLT_DBG, fflt_dbg);
4952	}
4953
4954	ctrl_ext = er32(CTRL_EXT);
4955	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956	ew32(CTRL_EXT, ctrl_ext);
4957
4958	/* Clear all of the statistics registers (clear on read).  It is
 
4959	 * important that we do this after we have tried to establish link
4960	 * because the symbol error count will increment wildly if there
4961	 * is no link.
4962	 */
4963	e1000_clear_hw_cntrs_ich8lan(hw);
4964
4965	return ret_val;
4966}
4967
4968/**
4969 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 *  @hw: pointer to the HW structure
4971 *
4972 *  Sets/Clears required hardware bits necessary for correctly setting up the
4973 *  hardware for transmit and receive.
4974 **/
4975static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 reg;
4978
4979	/* Extended Device Control */
4980	reg = er32(CTRL_EXT);
4981	reg |= BIT(22);
4982	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983	if (hw->mac.type >= e1000_pchlan)
4984		reg |= E1000_CTRL_EXT_PHYPDEN;
4985	ew32(CTRL_EXT, reg);
4986
4987	/* Transmit Descriptor Control 0 */
4988	reg = er32(TXDCTL(0));
4989	reg |= BIT(22);
4990	ew32(TXDCTL(0), reg);
4991
4992	/* Transmit Descriptor Control 1 */
4993	reg = er32(TXDCTL(1));
4994	reg |= BIT(22);
4995	ew32(TXDCTL(1), reg);
4996
4997	/* Transmit Arbitration Control 0 */
4998	reg = er32(TARC(0));
4999	if (hw->mac.type == e1000_ich8lan)
5000		reg |= BIT(28) | BIT(29);
5001	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002	ew32(TARC(0), reg);
5003
5004	/* Transmit Arbitration Control 1 */
5005	reg = er32(TARC(1));
5006	if (er32(TCTL) & E1000_TCTL_MULR)
5007		reg &= ~BIT(28);
5008	else
5009		reg |= BIT(28);
5010	reg |= BIT(24) | BIT(26) | BIT(30);
5011	ew32(TARC(1), reg);
5012
5013	/* Device Status */
5014	if (hw->mac.type == e1000_ich8lan) {
5015		reg = er32(STATUS);
5016		reg &= ~BIT(31);
5017		ew32(STATUS, reg);
5018	}
5019
5020	/* work-around descriptor data corruption issue during nfs v2 udp
 
5021	 * traffic, just disable the nfs filtering capability
5022	 */
5023	reg = er32(RFCTL);
5024	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025
5026	/* Disable IPv6 extension header parsing because some malformed
 
5027	 * IPv6 headers can hang the Rx.
5028	 */
5029	if (hw->mac.type == e1000_ich8lan)
5030		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031	ew32(RFCTL, reg);
5032
5033	/* Enable ECC on Lynxpoint */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		reg = er32(PBECCSTS);
5036		reg |= E1000_PBECCSTS_ECC_ENABLE;
5037		ew32(PBECCSTS, reg);
5038
5039		reg = er32(CTRL);
5040		reg |= E1000_CTRL_MEHE;
5041		ew32(CTRL, reg);
5042	}
5043}
5044
5045/**
5046 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5047 *  @hw: pointer to the HW structure
5048 *
5049 *  Determines which flow control settings to use, then configures flow
5050 *  control.  Calls the appropriate media-specific link configuration
5051 *  function.  Assuming the adapter has a valid link partner, a valid link
5052 *  should be established.  Assumes the hardware has previously been reset
5053 *  and the transmitter and receiver are not enabled.
5054 **/
5055static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056{
5057	s32 ret_val;
5058
5059	if (hw->phy.ops.check_reset_block(hw))
5060		return 0;
5061
5062	/* ICH parts do not have a word in the NVM to determine
 
5063	 * the default flow control setting, so we explicitly
5064	 * set it to full.
5065	 */
5066	if (hw->fc.requested_mode == e1000_fc_default) {
5067		/* Workaround h/w hang when Tx flow control enabled */
5068		if (hw->mac.type == e1000_pchlan)
5069			hw->fc.requested_mode = e1000_fc_rx_pause;
5070		else
5071			hw->fc.requested_mode = e1000_fc_full;
5072	}
5073
5074	/* Save off the requested flow control mode for use later.  Depending
 
5075	 * on the link partner's capabilities, we may or may not use this mode.
5076	 */
5077	hw->fc.current_mode = hw->fc.requested_mode;
5078
5079	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 
5080
5081	/* Continue to configure the copper link. */
5082	ret_val = hw->mac.ops.setup_physical_interface(hw);
5083	if (ret_val)
5084		return ret_val;
5085
5086	ew32(FCTTV, hw->fc.pause_time);
5087	if ((hw->phy.type == e1000_phy_82578) ||
5088	    (hw->phy.type == e1000_phy_82579) ||
5089	    (hw->phy.type == e1000_phy_i217) ||
5090	    (hw->phy.type == e1000_phy_82577)) {
5091		ew32(FCRTV_PCH, hw->fc.refresh_time);
5092
5093		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094				   hw->fc.pause_time);
5095		if (ret_val)
5096			return ret_val;
5097	}
5098
5099	return e1000e_set_fc_watermarks(hw);
5100}
5101
5102/**
5103 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Configures the kumeran interface to the PHY to wait the appropriate time
5107 *  when polling the PHY, then call the generic setup_copper_link to finish
5108 *  configuring the copper link.
5109 **/
5110static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111{
5112	u32 ctrl;
5113	s32 ret_val;
5114	u16 reg_data;
5115
5116	ctrl = er32(CTRL);
5117	ctrl |= E1000_CTRL_SLU;
5118	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119	ew32(CTRL, ctrl);
5120
5121	/* Set the mac to wait the maximum time between each iteration
 
5122	 * and increase the max iterations when polling the phy;
5123	 * this fixes erroneous timeouts at 10Mbps.
5124	 */
5125	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126	if (ret_val)
5127		return ret_val;
5128	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129				       &reg_data);
5130	if (ret_val)
5131		return ret_val;
5132	reg_data |= 0x3F;
5133	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134					reg_data);
5135	if (ret_val)
5136		return ret_val;
5137
5138	switch (hw->phy.type) {
5139	case e1000_phy_igp_3:
5140		ret_val = e1000e_copper_link_setup_igp(hw);
5141		if (ret_val)
5142			return ret_val;
5143		break;
5144	case e1000_phy_bm:
5145	case e1000_phy_82578:
5146		ret_val = e1000e_copper_link_setup_m88(hw);
5147		if (ret_val)
5148			return ret_val;
5149		break;
5150	case e1000_phy_82577:
5151	case e1000_phy_82579:
 
5152		ret_val = e1000_copper_link_setup_82577(hw);
5153		if (ret_val)
5154			return ret_val;
5155		break;
5156	case e1000_phy_ife:
5157		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5158		if (ret_val)
5159			return ret_val;
5160
5161		reg_data &= ~IFE_PMC_AUTO_MDIX;
5162
5163		switch (hw->phy.mdix) {
5164		case 1:
5165			reg_data &= ~IFE_PMC_FORCE_MDIX;
5166			break;
5167		case 2:
5168			reg_data |= IFE_PMC_FORCE_MDIX;
5169			break;
5170		case 0:
5171		default:
5172			reg_data |= IFE_PMC_AUTO_MDIX;
5173			break;
5174		}
5175		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176		if (ret_val)
5177			return ret_val;
5178		break;
5179	default:
5180		break;
5181	}
5182
5183	return e1000e_setup_copper_link(hw);
5184}
5185
5186/**
5187 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 *  @hw: pointer to the HW structure
5189 *
5190 *  Calls the PHY specific link setup function and then calls the
5191 *  generic setup_copper_link to finish configuring the link for
5192 *  Lynxpoint PCH devices
5193 **/
5194static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195{
5196	u32 ctrl;
5197	s32 ret_val;
5198
5199	ctrl = er32(CTRL);
5200	ctrl |= E1000_CTRL_SLU;
5201	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202	ew32(CTRL, ctrl);
5203
5204	ret_val = e1000_copper_link_setup_82577(hw);
5205	if (ret_val)
5206		return ret_val;
5207
5208	return e1000e_setup_copper_link(hw);
5209}
5210
5211/**
5212 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 *  @hw: pointer to the HW structure
5214 *  @speed: pointer to store current link speed
5215 *  @duplex: pointer to store the current link duplex
5216 *
5217 *  Calls the generic get_speed_and_duplex to retrieve the current link
5218 *  information and then calls the Kumeran lock loss workaround for links at
5219 *  gigabit speeds.
5220 **/
5221static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222					  u16 *duplex)
5223{
5224	s32 ret_val;
5225
5226	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227	if (ret_val)
5228		return ret_val;
5229
5230	if ((hw->mac.type == e1000_ich8lan) &&
5231	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
 
5232		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233	}
5234
5235	return ret_val;
5236}
5237
5238/**
5239 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 *  @hw: pointer to the HW structure
5241 *
5242 *  Work-around for 82566 Kumeran PCS lock loss:
5243 *  On link status change (i.e. PCI reset, speed change) and link is up and
5244 *  speed is gigabit-
5245 *    0) if workaround is optionally disabled do nothing
5246 *    1) wait 1ms for Kumeran link to come up
5247 *    2) check Kumeran Diagnostic register PCS lock loss bit
5248 *    3) if not set the link is locked (all is good), otherwise...
5249 *    4) reset the PHY
5250 *    5) repeat up to 10 times
5251 *  Note: this is only called for IGP3 copper when speed is 1gb.
5252 **/
5253static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254{
5255	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256	u32 phy_ctrl;
5257	s32 ret_val;
5258	u16 i, data;
5259	bool link;
5260
5261	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262		return 0;
5263
5264	/* Make sure link is up before proceeding.  If not just return.
 
5265	 * Attempting this while link is negotiating fouled up link
5266	 * stability
5267	 */
5268	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269	if (!link)
5270		return 0;
5271
5272	for (i = 0; i < 10; i++) {
5273		/* read once to clear */
5274		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275		if (ret_val)
5276			return ret_val;
5277		/* and again to get new status */
5278		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279		if (ret_val)
5280			return ret_val;
5281
5282		/* check for PCS lock */
5283		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284			return 0;
5285
5286		/* Issue PHY reset */
5287		e1000_phy_hw_reset(hw);
5288		mdelay(5);
5289	}
5290	/* Disable GigE link negotiation */
5291	phy_ctrl = er32(PHY_CTRL);
5292	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294	ew32(PHY_CTRL, phy_ctrl);
5295
5296	/* Call gig speed drop workaround on Gig disable before accessing
 
5297	 * any PHY registers
5298	 */
5299	e1000e_gig_downshift_workaround_ich8lan(hw);
5300
5301	/* unable to acquire PCS lock */
5302	return -E1000_ERR_PHY;
5303}
5304
5305/**
5306 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 *  @hw: pointer to the HW structure
5308 *  @state: boolean value used to set the current Kumeran workaround state
5309 *
5310 *  If ICH8, set the current Kumeran workaround state (enabled - true
5311 *  /disabled - false).
5312 **/
5313void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314						  bool state)
5315{
5316	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317
5318	if (hw->mac.type != e1000_ich8lan) {
5319		e_dbg("Workaround applies to ICH8 only.\n");
5320		return;
5321	}
5322
5323	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324}
5325
5326/**
5327 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 *  @hw: pointer to the HW structure
5329 *
5330 *  Workaround for 82566 power-down on D3 entry:
5331 *    1) disable gigabit link
5332 *    2) write VR power-down enable
5333 *    3) read it back
5334 *  Continue if successful, else issue LCD reset and repeat
5335 **/
5336void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337{
5338	u32 reg;
5339	u16 data;
5340	u8 retry = 0;
5341
5342	if (hw->phy.type != e1000_phy_igp_3)
5343		return;
5344
5345	/* Try the workaround twice (if needed) */
5346	do {
5347		/* Disable link */
5348		reg = er32(PHY_CTRL);
5349		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351		ew32(PHY_CTRL, reg);
5352
5353		/* Call gig speed drop workaround on Gig disable before
 
5354		 * accessing any PHY registers
5355		 */
5356		if (hw->mac.type == e1000_ich8lan)
5357			e1000e_gig_downshift_workaround_ich8lan(hw);
5358
5359		/* Write VR power-down enable */
5360		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363
5364		/* Read it back and test */
5365		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368			break;
5369
5370		/* Issue PHY reset and repeat at most one more time */
5371		reg = er32(CTRL);
5372		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373		retry++;
5374	} while (retry);
5375}
5376
5377/**
5378 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 *  @hw: pointer to the HW structure
5380 *
5381 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 *  LPLU, Gig disable, MDIC PHY reset):
5383 *    1) Set Kumeran Near-end loopback
5384 *    2) Clear Kumeran Near-end loopback
5385 *  Should only be called for ICH8[m] devices with any 1G Phy.
5386 **/
5387void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388{
5389	s32 ret_val;
5390	u16 reg_data;
5391
5392	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393		return;
5394
5395	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396				       &reg_data);
5397	if (ret_val)
5398		return;
5399	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401					reg_data);
5402	if (ret_val)
5403		return;
5404	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
 
5406}
5407
5408/**
5409 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 *  @hw: pointer to the HW structure
5411 *
5412 *  During S0 to Sx transition, it is possible the link remains at gig
5413 *  instead of negotiating to a lower speed.  Before going to Sx, set
5414 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5415 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5416 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 *  needs to be written.
5418 *  Parts that support (and are linked to a partner which support) EEE in
5419 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 *  than 10Mbps w/o EEE.
5421 **/
5422void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423{
5424	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425	u32 phy_ctrl;
5426	s32 ret_val;
5427
5428	phy_ctrl = er32(PHY_CTRL);
5429	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430
5431	if (hw->phy.type == e1000_phy_i217) {
5432		u16 phy_reg, device_id = hw->adapter->pdev->device;
5433
5434		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438		    (hw->mac.type >= e1000_pch_spt)) {
5439			u32 fextnvm6 = er32(FEXTNVM6);
5440
5441			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442		}
5443
5444		ret_val = hw->phy.ops.acquire(hw);
5445		if (ret_val)
5446			goto out;
5447
5448		if (!dev_spec->eee_disable) {
5449			u16 eee_advert;
5450
5451			ret_val =
5452			    e1000_read_emi_reg_locked(hw,
5453						      I217_EEE_ADVERTISEMENT,
5454						      &eee_advert);
5455			if (ret_val)
5456				goto release;
 
5457
5458			/* Disable LPLU if both link partners support 100BaseT
 
5459			 * EEE and 100Full is advertised on both ends of the
5460			 * link, and enable Auto Enable LPI since there will
5461			 * be no driver to enable LPI while in Sx.
5462			 */
5463			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464			    (dev_spec->eee_lp_ability &
5465			     I82579_EEE_100_SUPPORTED) &&
5466			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468					      E1000_PHY_CTRL_NOND0A_LPLU);
5469
5470				/* Set Auto Enable LPI after link up */
5471				e1e_rphy_locked(hw,
5472						I217_LPI_GPIO_CTRL, &phy_reg);
5473				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474				e1e_wphy_locked(hw,
5475						I217_LPI_GPIO_CTRL, phy_reg);
5476			}
5477		}
5478
5479		/* For i217 Intel Rapid Start Technology support,
 
5480		 * when the system is going into Sx and no manageability engine
5481		 * is present, the driver must configure proxy to reset only on
5482		 * power good.  LPI (Low Power Idle) state must also reset only
5483		 * on power good, as well as the MTA (Multicast table array).
5484		 * The SMBus release must also be disabled on LCD reset.
5485		 */
5486		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
5487			/* Enable proxy to reset only on power good. */
5488			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491
5492			/* Set bit enable LPI (EEE) to reset only on
 
5493			 * power good.
5494			 */
5495			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498
5499			/* Disable the SMB release on LCD reset. */
5500			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503		}
5504
5505		/* Enable MTA to reset for Intel Rapid Start Technology
 
5506		 * Support
5507		 */
5508		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511
5512release:
5513		hw->phy.ops.release(hw);
5514	}
5515out:
5516	ew32(PHY_CTRL, phy_ctrl);
5517
5518	if (hw->mac.type == e1000_ich8lan)
5519		e1000e_gig_downshift_workaround_ich8lan(hw);
5520
5521	if (hw->mac.type >= e1000_pchlan) {
5522		e1000_oem_bits_config_ich8lan(hw, false);
5523
5524		/* Reset PHY to activate OEM bits on 82577/8 */
5525		if (hw->mac.type == e1000_pchlan)
5526			e1000e_phy_hw_reset_generic(hw);
5527
5528		ret_val = hw->phy.ops.acquire(hw);
5529		if (ret_val)
5530			return;
5531		e1000_write_smbus_addr(hw);
5532		hw->phy.ops.release(hw);
5533	}
5534}
5535
5536/**
5537 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 *  @hw: pointer to the HW structure
5539 *
5540 *  During Sx to S0 transitions on non-managed devices or managed devices
5541 *  on which PHY resets are not blocked, if the PHY registers cannot be
5542 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543 *  the PHY.
5544 *  On i217, setup Intel Rapid Start Technology.
5545 **/
5546void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547{
5548	s32 ret_val;
5549
5550	if (hw->mac.type < e1000_pch2lan)
5551		return;
5552
5553	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554	if (ret_val) {
5555		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556		return;
5557	}
5558
5559	/* For i217 Intel Rapid Start Technology support when the system
 
5560	 * is transitioning from Sx and no manageability engine is present
5561	 * configure SMBus to restore on reset, disable proxy, and enable
5562	 * the reset on MTA (Multicast table array).
5563	 */
5564	if (hw->phy.type == e1000_phy_i217) {
5565		u16 phy_reg;
5566
5567		ret_val = hw->phy.ops.acquire(hw);
5568		if (ret_val) {
5569			e_dbg("Failed to setup iRST\n");
5570			return;
5571		}
5572
5573		/* Clear Auto Enable LPI after link up */
5574		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577
5578		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579			/* Restore clear on SMB if no manageability engine
 
5580			 * is present
5581			 */
5582			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583			if (ret_val)
5584				goto release;
5585			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587
5588			/* Disable Proxy */
5589			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590		}
5591		/* Enable reset on MTA */
5592		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593		if (ret_val)
5594			goto release;
5595		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597release:
5598		if (ret_val)
5599			e_dbg("Error %d in resume workarounds\n", ret_val);
5600		hw->phy.ops.release(hw);
5601	}
5602}
5603
5604/**
5605 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 *  @hw: pointer to the HW structure
5607 *
5608 *  Return the LED back to the default configuration.
5609 **/
5610static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611{
5612	if (hw->phy.type == e1000_phy_ife)
5613		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614
5615	ew32(LEDCTL, hw->mac.ledctl_default);
5616	return 0;
5617}
5618
5619/**
5620 *  e1000_led_on_ich8lan - Turn LEDs on
5621 *  @hw: pointer to the HW structure
5622 *
5623 *  Turn on the LEDs.
5624 **/
5625static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626{
5627	if (hw->phy.type == e1000_phy_ife)
5628		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630
5631	ew32(LEDCTL, hw->mac.ledctl_mode2);
5632	return 0;
5633}
5634
5635/**
5636 *  e1000_led_off_ich8lan - Turn LEDs off
5637 *  @hw: pointer to the HW structure
5638 *
5639 *  Turn off the LEDs.
5640 **/
5641static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642{
5643	if (hw->phy.type == e1000_phy_ife)
5644		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645				(IFE_PSCL_PROBE_MODE |
5646				 IFE_PSCL_PROBE_LEDS_OFF));
5647
5648	ew32(LEDCTL, hw->mac.ledctl_mode1);
5649	return 0;
5650}
5651
5652/**
5653 *  e1000_setup_led_pchlan - Configures SW controllable LED
5654 *  @hw: pointer to the HW structure
5655 *
5656 *  This prepares the SW controllable LED for use.
5657 **/
5658static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659{
5660	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661}
5662
5663/**
5664 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5665 *  @hw: pointer to the HW structure
5666 *
5667 *  Return the LED back to the default configuration.
5668 **/
5669static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670{
5671	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672}
5673
5674/**
5675 *  e1000_led_on_pchlan - Turn LEDs on
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Turn on the LEDs.
5679 **/
5680static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681{
5682	u16 data = (u16)hw->mac.ledctl_mode2;
5683	u32 i, led;
5684
5685	/* If no link, then turn LED on by setting the invert bit
 
5686	 * for each LED that's mode is "link_up" in ledctl_mode2.
5687	 */
5688	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689		for (i = 0; i < 3; i++) {
5690			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692			    E1000_LEDCTL_MODE_LINK_UP)
5693				continue;
5694			if (led & E1000_PHY_LED0_IVRT)
5695				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696			else
5697				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698		}
5699	}
5700
5701	return e1e_wphy(hw, HV_LED_CONFIG, data);
5702}
5703
5704/**
5705 *  e1000_led_off_pchlan - Turn LEDs off
5706 *  @hw: pointer to the HW structure
5707 *
5708 *  Turn off the LEDs.
5709 **/
5710static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711{
5712	u16 data = (u16)hw->mac.ledctl_mode1;
5713	u32 i, led;
5714
5715	/* If no link, then turn LED off by clearing the invert bit
 
5716	 * for each LED that's mode is "link_up" in ledctl_mode1.
5717	 */
5718	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719		for (i = 0; i < 3; i++) {
5720			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722			    E1000_LEDCTL_MODE_LINK_UP)
5723				continue;
5724			if (led & E1000_PHY_LED0_IVRT)
5725				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726			else
5727				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728		}
5729	}
5730
5731	return e1e_wphy(hw, HV_LED_CONFIG, data);
5732}
5733
5734/**
5735 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 *  @hw: pointer to the HW structure
5737 *
5738 *  Read appropriate register for the config done bit for completion status
5739 *  and configure the PHY through s/w for EEPROM-less parts.
5740 *
5741 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 *  config done bit, so only an error is logged and continues.  If we were
5743 *  to return with error, EEPROM-less silicon would not be able to be reset
5744 *  or change link.
5745 **/
5746static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747{
5748	s32 ret_val = 0;
5749	u32 bank = 0;
5750	u32 status;
5751
5752	e1000e_get_cfg_done_generic(hw);
5753
5754	/* Wait for indication from h/w that it has completed basic config */
5755	if (hw->mac.type >= e1000_ich10lan) {
5756		e1000_lan_init_done_ich8lan(hw);
5757	} else {
5758		ret_val = e1000e_get_auto_rd_done(hw);
5759		if (ret_val) {
5760			/* When auto config read does not complete, do not
 
5761			 * return with an error. This can happen in situations
5762			 * where there is no eeprom and prevents getting link.
5763			 */
5764			e_dbg("Auto Read Done did not complete\n");
5765			ret_val = 0;
5766		}
5767	}
5768
5769	/* Clear PHY Reset Asserted bit */
5770	status = er32(STATUS);
5771	if (status & E1000_STATUS_PHYRA)
5772		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773	else
5774		e_dbg("PHY Reset Asserted not set - needs delay\n");
5775
5776	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777	if (hw->mac.type <= e1000_ich9lan) {
5778		if (!(er32(EECD) & E1000_EECD_PRES) &&
5779		    (hw->phy.type == e1000_phy_igp_3)) {
5780			e1000e_phy_init_script_igp3(hw);
5781		}
5782	} else {
5783		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784			/* Maybe we should do a basic PHY config */
5785			e_dbg("EEPROM not present\n");
5786			ret_val = -E1000_ERR_CONFIG;
5787		}
5788	}
5789
5790	return ret_val;
5791}
5792
5793/**
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5796 *
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5799 **/
5800static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801{
5802	/* If the management interface is not enabled, then power down */
5803	if (!(hw->mac.ops.check_mng_mode(hw) ||
5804	      hw->phy.ops.check_reset_block(hw)))
5805		e1000_power_down_phy_copper(hw);
5806}
5807
5808/**
5809 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 *  @hw: pointer to the HW structure
5811 *
5812 *  Clears hardware counters specific to the silicon family and calls
5813 *  clear_hw_cntrs_generic to clear all general purpose counters.
5814 **/
5815static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816{
5817	u16 phy_data;
5818	s32 ret_val;
5819
5820	e1000e_clear_hw_cntrs_base(hw);
5821
5822	er32(ALGNERRC);
5823	er32(RXERRC);
5824	er32(TNCRS);
5825	er32(CEXTERR);
5826	er32(TSCTC);
5827	er32(TSCTFC);
5828
5829	er32(MGTPRC);
5830	er32(MGTPDC);
5831	er32(MGTPTC);
5832
5833	er32(IAC);
5834	er32(ICRXOC);
5835
5836	/* Clear PHY statistics registers */
5837	if ((hw->phy.type == e1000_phy_82578) ||
5838	    (hw->phy.type == e1000_phy_82579) ||
5839	    (hw->phy.type == e1000_phy_i217) ||
5840	    (hw->phy.type == e1000_phy_82577)) {
5841		ret_val = hw->phy.ops.acquire(hw);
5842		if (ret_val)
5843			return;
5844		ret_val = hw->phy.ops.set_page(hw,
5845					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846		if (ret_val)
5847			goto release;
5848		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862release:
5863		hw->phy.ops.release(hw);
5864	}
5865}
5866
5867static const struct e1000_mac_operations ich8_mac_ops = {
5868	/* check_mng_mode dependent on mac type */
5869	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5870	/* cleanup_led dependent on mac type */
5871	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5872	.get_bus_info		= e1000_get_bus_info_ich8lan,
5873	.set_lan_id		= e1000_set_lan_id_single_port,
5874	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5875	/* led_on dependent on mac type */
5876	/* led_off dependent on mac type */
5877	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5878	.reset_hw		= e1000_reset_hw_ich8lan,
5879	.init_hw		= e1000_init_hw_ich8lan,
5880	.setup_link		= e1000_setup_link_ich8lan,
5881	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882	/* id_led_init dependent on mac type */
5883	.config_collision_dist	= e1000e_config_collision_dist_generic,
5884	.rar_set		= e1000e_rar_set_generic,
5885	.rar_get_count		= e1000e_rar_get_count_generic,
5886};
5887
5888static const struct e1000_phy_operations ich8_phy_ops = {
5889	.acquire		= e1000_acquire_swflag_ich8lan,
5890	.check_reset_block	= e1000_check_reset_block_ich8lan,
5891	.commit			= NULL,
5892	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5893	.get_cable_length	= e1000e_get_cable_length_igp_2,
5894	.read_reg		= e1000e_read_phy_reg_igp,
5895	.release		= e1000_release_swflag_ich8lan,
5896	.reset			= e1000_phy_hw_reset_ich8lan,
5897	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5898	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5899	.write_reg		= e1000e_write_phy_reg_igp,
5900};
5901
5902static const struct e1000_nvm_operations ich8_nvm_ops = {
5903	.acquire		= e1000_acquire_nvm_ich8lan,
5904	.read			= e1000_read_nvm_ich8lan,
5905	.release		= e1000_release_nvm_ich8lan,
5906	.reload			= e1000e_reload_nvm_generic,
5907	.update			= e1000_update_nvm_checksum_ich8lan,
5908	.valid_led_default	= e1000_valid_led_default_ich8lan,
5909	.validate		= e1000_validate_nvm_checksum_ich8lan,
5910	.write			= e1000_write_nvm_ich8lan,
5911};
5912
5913static const struct e1000_nvm_operations spt_nvm_ops = {
5914	.acquire		= e1000_acquire_nvm_ich8lan,
5915	.release		= e1000_release_nvm_ich8lan,
5916	.read			= e1000_read_nvm_spt,
5917	.update			= e1000_update_nvm_checksum_spt,
5918	.reload			= e1000e_reload_nvm_generic,
5919	.valid_led_default	= e1000_valid_led_default_ich8lan,
5920	.validate		= e1000_validate_nvm_checksum_ich8lan,
5921	.write			= e1000_write_nvm_ich8lan,
5922};
5923
5924const struct e1000_info e1000_ich8_info = {
5925	.mac			= e1000_ich8lan,
5926	.flags			= FLAG_HAS_WOL
5927				  | FLAG_IS_ICH
5928				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929				  | FLAG_HAS_AMT
5930				  | FLAG_HAS_FLASH
5931				  | FLAG_APME_IN_WUC,
5932	.pba			= 8,
5933	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &ich8_nvm_ops,
5938};
5939
5940const struct e1000_info e1000_ich9_info = {
5941	.mac			= e1000_ich9lan,
5942	.flags			= FLAG_HAS_JUMBO_FRAMES
5943				  | FLAG_IS_ICH
5944				  | FLAG_HAS_WOL
5945				  | FLAG_HAS_CTRLEXT_ON_LOAD
5946				  | FLAG_HAS_AMT
5947				  | FLAG_HAS_FLASH
5948				  | FLAG_APME_IN_WUC,
5949	.pba			= 18,
5950	.max_hw_frame_size	= DEFAULT_JUMBO,
5951	.get_variants		= e1000_get_variants_ich8lan,
5952	.mac_ops		= &ich8_mac_ops,
5953	.phy_ops		= &ich8_phy_ops,
5954	.nvm_ops		= &ich8_nvm_ops,
5955};
5956
5957const struct e1000_info e1000_ich10_info = {
5958	.mac			= e1000_ich10lan,
5959	.flags			= FLAG_HAS_JUMBO_FRAMES
5960				  | FLAG_IS_ICH
5961				  | FLAG_HAS_WOL
5962				  | FLAG_HAS_CTRLEXT_ON_LOAD
5963				  | FLAG_HAS_AMT
5964				  | FLAG_HAS_FLASH
5965				  | FLAG_APME_IN_WUC,
5966	.pba			= 18,
5967	.max_hw_frame_size	= DEFAULT_JUMBO,
5968	.get_variants		= e1000_get_variants_ich8lan,
5969	.mac_ops		= &ich8_mac_ops,
5970	.phy_ops		= &ich8_phy_ops,
5971	.nvm_ops		= &ich8_nvm_ops,
5972};
5973
5974const struct e1000_info e1000_pch_info = {
5975	.mac			= e1000_pchlan,
5976	.flags			= FLAG_IS_ICH
5977				  | FLAG_HAS_WOL
5978				  | FLAG_HAS_CTRLEXT_ON_LOAD
5979				  | FLAG_HAS_AMT
5980				  | FLAG_HAS_FLASH
5981				  | FLAG_HAS_JUMBO_FRAMES
5982				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983				  | FLAG_APME_IN_WUC,
5984	.flags2			= FLAG2_HAS_PHY_STATS,
5985	.pba			= 26,
5986	.max_hw_frame_size	= 4096,
5987	.get_variants		= e1000_get_variants_ich8lan,
5988	.mac_ops		= &ich8_mac_ops,
5989	.phy_ops		= &ich8_phy_ops,
5990	.nvm_ops		= &ich8_nvm_ops,
5991};
5992
5993const struct e1000_info e1000_pch2_info = {
5994	.mac			= e1000_pch2lan,
5995	.flags			= FLAG_IS_ICH
5996				  | FLAG_HAS_WOL
5997				  | FLAG_HAS_HW_TIMESTAMP
5998				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999				  | FLAG_HAS_AMT
6000				  | FLAG_HAS_FLASH
6001				  | FLAG_HAS_JUMBO_FRAMES
6002				  | FLAG_APME_IN_WUC,
6003	.flags2			= FLAG2_HAS_PHY_STATS
6004				  | FLAG2_HAS_EEE
6005				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006	.pba			= 26,
6007	.max_hw_frame_size	= 9022,
6008	.get_variants		= e1000_get_variants_ich8lan,
6009	.mac_ops		= &ich8_mac_ops,
6010	.phy_ops		= &ich8_phy_ops,
6011	.nvm_ops		= &ich8_nvm_ops,
6012};
6013
6014const struct e1000_info e1000_pch_lpt_info = {
6015	.mac			= e1000_pch_lpt,
6016	.flags			= FLAG_IS_ICH
6017				  | FLAG_HAS_WOL
6018				  | FLAG_HAS_HW_TIMESTAMP
6019				  | FLAG_HAS_CTRLEXT_ON_LOAD
6020				  | FLAG_HAS_AMT
6021				  | FLAG_HAS_FLASH
6022				  | FLAG_HAS_JUMBO_FRAMES
6023				  | FLAG_APME_IN_WUC,
6024	.flags2			= FLAG2_HAS_PHY_STATS
6025				  | FLAG2_HAS_EEE
6026				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &ich8_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_spt_info = {
6036	.mac			= e1000_pch_spt,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_cnp_info = {
6056	.mac			= e1000_pch_cnp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
6074
6075const struct e1000_info e1000_pch_tgp_info = {
6076	.mac			= e1000_pch_tgp,
6077	.flags			= FLAG_IS_ICH
6078				  | FLAG_HAS_WOL
6079				  | FLAG_HAS_HW_TIMESTAMP
6080				  | FLAG_HAS_CTRLEXT_ON_LOAD
6081				  | FLAG_HAS_AMT
6082				  | FLAG_HAS_FLASH
6083				  | FLAG_HAS_JUMBO_FRAMES
6084				  | FLAG_APME_IN_WUC,
6085	.flags2			= FLAG2_HAS_PHY_STATS
6086				  | FLAG2_HAS_EEE,
6087	.pba			= 26,
6088	.max_hw_frame_size	= 9022,
6089	.get_variants		= e1000_get_variants_ich8lan,
6090	.mac_ops		= &ich8_mac_ops,
6091	.phy_ops		= &ich8_phy_ops,
6092	.nvm_ops		= &spt_nvm_ops,
6093};
6094
6095const struct e1000_info e1000_pch_adp_info = {
6096	.mac			= e1000_pch_adp,
6097	.flags			= FLAG_IS_ICH
6098				  | FLAG_HAS_WOL
6099				  | FLAG_HAS_HW_TIMESTAMP
6100				  | FLAG_HAS_CTRLEXT_ON_LOAD
6101				  | FLAG_HAS_AMT
6102				  | FLAG_HAS_FLASH
6103				  | FLAG_HAS_JUMBO_FRAMES
6104				  | FLAG_APME_IN_WUC,
6105	.flags2			= FLAG2_HAS_PHY_STATS
6106				  | FLAG2_HAS_EEE,
6107	.pba			= 26,
6108	.max_hw_frame_size	= 9022,
6109	.get_variants		= e1000_get_variants_ich8lan,
6110	.mac_ops		= &ich8_mac_ops,
6111	.phy_ops		= &ich8_phy_ops,
6112	.nvm_ops		= &spt_nvm_ops,
6113};
6114
6115const struct e1000_info e1000_pch_mtp_info = {
6116	.mac			= e1000_pch_mtp,
6117	.flags			= FLAG_IS_ICH
6118				  | FLAG_HAS_WOL
6119				  | FLAG_HAS_HW_TIMESTAMP
6120				  | FLAG_HAS_CTRLEXT_ON_LOAD
6121				  | FLAG_HAS_AMT
6122				  | FLAG_HAS_FLASH
6123				  | FLAG_HAS_JUMBO_FRAMES
6124				  | FLAG_APME_IN_WUC,
6125	.flags2			= FLAG2_HAS_PHY_STATS
6126				  | FLAG2_HAS_EEE,
6127	.pba			= 26,
6128	.max_hw_frame_size	= 9022,
6129	.get_variants		= e1000_get_variants_ich8lan,
6130	.mac_ops		= &ich8_mac_ops,
6131	.phy_ops		= &ich8_phy_ops,
6132	.nvm_ops		= &spt_nvm_ops,
6133};
v3.5.6
   1/*******************************************************************************
 
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
 
 
 
 
 
 
 
 
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG		0x0000
  62#define ICH_FLASH_HSFSTS		0x0004
  63#define ICH_FLASH_HSFCTL		0x0006
  64#define ICH_FLASH_FADDR			0x0008
  65#define ICH_FLASH_FDATA0		0x0010
  66#define ICH_FLASH_PR0			0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
  73
  74#define ICH_CYCLE_READ			0
  75#define ICH_CYCLE_WRITE			2
  76#define ICH_CYCLE_ERASE			3
  77
  78#define FLASH_GFPREG_BASE_MASK		0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT		12
  80
  81#define ICH_FLASH_SEG_SIZE_256		256
  82#define ICH_FLASH_SEG_SIZE_4K		4096
  83#define ICH_FLASH_SEG_SIZE_8K		8192
  84#define ICH_FLASH_SEG_SIZE_64K		65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID		0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE		0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94				 (ID_LED_DEF1_OFF2 <<  8) | \
  95				 (ID_LED_DEF1_ON2  <<  4) | \
  96				 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD		0x13
  99#define E1000_ICH_NVM_SIG_MASK		0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG		1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
 109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
 110
 111#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 114
 115#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
 116
 117#define E1000_ICH_RAR_ENTRIES		7
 118#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
 119#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
 120
 121#define PHY_PAGE_SHIFT 5
 122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 123			   ((reg) & MAX_PHY_REG_ADDRESS))
 124#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 125#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 126
 127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
 128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 129#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
 130
 131#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
 132
 133#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 134
 135/* SMBus Control Phy Register */
 136#define CV_SMB_CTRL		PHY_REG(769, 23)
 137#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
 138
 139/* SMBus Address Phy Register */
 140#define HV_SMB_ADDR            PHY_REG(768, 26)
 141#define HV_SMB_ADDR_MASK       0x007F
 142#define HV_SMB_ADDR_PEC_EN     0x0200
 143#define HV_SMB_ADDR_VALID      0x0080
 144#define HV_SMB_ADDR_FREQ_MASK           0x1100
 145#define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
 146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
 147
 148/* PHY Power Management Control */
 149#define HV_PM_CTRL		PHY_REG(770, 17)
 150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
 151
 152/* PHY Low Power Idle Control */
 153#define I82579_LPI_CTRL				PHY_REG(772, 20)
 154#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
 155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
 156
 157/* EMI Registers */
 158#define I82579_EMI_ADDR         0x10
 159#define I82579_EMI_DATA         0x11
 160#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
 161#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
 162#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
 163#define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
 164#define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
 165#define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
 166
 167/* Intel Rapid Start Technology Support */
 168#define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
 169#define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
 170#define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
 171#define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
 172#define I217_CGFREG                     PHY_REG(772, 29)
 173#define I217_CGFREG_ENABLE_MTA_RESET    0x0002
 174#define I217_MEMPWR                     PHY_REG(772, 26)
 175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
 176
 177/* Strapping Option Register - RO */
 178#define E1000_STRAP                     0x0000C
 179#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 181#define E1000_STRAP_SMT_FREQ_MASK       0x00003000
 182#define E1000_STRAP_SMT_FREQ_SHIFT      12
 183
 184/* OEM Bits Phy Register */
 185#define HV_OEM_BITS            PHY_REG(768, 25)
 186#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 187#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 189
 190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 191#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 192
 193/* KMRN Mode Control */
 194#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 195#define HV_KMRN_MDIO_SLOW      0x0400
 196
 197/* KMRN FIFO Control and Status */
 198#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
 199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
 200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
 201
 202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 203/* Offset 04h HSFSTS */
 204union ich8_hws_flash_status {
 205	struct ich8_hsfsts {
 206		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 207		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 208		u16 dael       :1; /* bit 2 Direct Access error Log */
 209		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 210		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 211		u16 reserved1  :2; /* bit 13:6 Reserved */
 212		u16 reserved2  :6; /* bit 13:6 Reserved */
 213		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 214		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 215	} hsf_status;
 216	u16 regval;
 217};
 218
 219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 220/* Offset 06h FLCTL */
 221union ich8_hws_flash_ctrl {
 222	struct ich8_hsflctl {
 223		u16 flcgo      :1;   /* 0 Flash Cycle Go */
 224		u16 flcycle    :2;   /* 2:1 Flash Cycle */
 225		u16 reserved   :5;   /* 7:3 Reserved  */
 226		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 227		u16 flockdn    :6;   /* 15:10 Reserved */
 228	} hsf_ctrl;
 229	u16 regval;
 230};
 231
 232/* ICH Flash Region Access Permissions */
 233union ich8_hws_flash_regacc {
 234	struct ich8_flracc {
 235		u32 grra      :8; /* 0:7 GbE region Read Access */
 236		u32 grwa      :8; /* 8:15 GbE region Write Access */
 237		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 238		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 239	} hsf_flregacc;
 240	u16 regval;
 241};
 242
 243/* ICH Flash Protected Region */
 244union ich8_flash_protected_range {
 245	struct ich8_pr {
 246		u32 base:13;     /* 0:12 Protected Range Base */
 247		u32 reserved1:2; /* 13:14 Reserved */
 248		u32 rpe:1;       /* 15 Read Protection Enable */
 249		u32 limit:13;    /* 16:28 Protected Range Limit */
 250		u32 reserved2:2; /* 29:30 Reserved */
 251		u32 wpe:1;       /* 31 Write Protection Enable */
 252	} range;
 253	u32 regval;
 254};
 255
 256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 261						u32 offset, u8 byte);
 262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 263					 u8 *data);
 264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 265					 u16 *data);
 266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 267					 u8 size, u16 *data);
 268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 
 
 
 
 
 
 
 269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 282static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 
 288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 
 
 
 290
 291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 292{
 293	return readw(hw->flash_address + reg);
 294}
 295
 296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 297{
 298	return readl(hw->flash_address + reg);
 299}
 300
 301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 302{
 303	writew(val, hw->flash_address + reg);
 304}
 305
 306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 307{
 308	writel(val, hw->flash_address + reg);
 309}
 310
 311#define er16flash(reg)		__er16flash(hw, (reg))
 312#define er32flash(reg)		__er32flash(hw, (reg))
 313#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 314#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 315
 316/**
 317 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 318 *  @hw: pointer to the HW structure
 319 *
 320 *  Test access to the PHY registers by reading the PHY ID registers.  If
 321 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 322 *  otherwise assume the read PHY ID is correct if it is valid.
 323 *
 324 *  Assumes the sw/fw/hw semaphore is already acquired.
 325 **/
 326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 327{
 328	u16 phy_reg = 0;
 329	u32 phy_id = 0;
 330	s32 ret_val;
 331	u16 retry_count;
 
 332
 333	for (retry_count = 0; retry_count < 2; retry_count++) {
 334		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
 335		if (ret_val || (phy_reg == 0xFFFF))
 336			continue;
 337		phy_id = (u32)(phy_reg << 16);
 338
 339		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
 340		if (ret_val || (phy_reg == 0xFFFF)) {
 341			phy_id = 0;
 342			continue;
 343		}
 344		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 345		break;
 346	}
 347
 348	if (hw->phy.id) {
 349		if (hw->phy.id == phy_id)
 350			return true;
 351	} else if (phy_id) {
 352		hw->phy.id = phy_id;
 353		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 354		return true;
 355	}
 356
 357	/*
 358	 * In case the PHY needs to be in mdio slow mode,
 359	 * set slow mode and try to get the PHY id again.
 360	 */
 361	hw->phy.ops.release(hw);
 362	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 363	if (!ret_val)
 364		ret_val = e1000e_get_phy_id(hw);
 365	hw->phy.ops.acquire(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	return !ret_val;
 
 368}
 369
 370/**
 371 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 372 *  @hw: pointer to the HW structure
 373 *
 374 *  Workarounds/flow necessary for PHY initialization during driver load
 375 *  and resume paths.
 376 **/
 377static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 378{
 
 379	u32 mac_reg, fwsm = er32(FWSM);
 380	s32 ret_val;
 381	u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	ret_val = hw->phy.ops.acquire(hw);
 384	if (ret_val) {
 385		e_dbg("Failed to initialize PHY flow\n");
 386		return ret_val;
 387	}
 388
 389	/*
 390	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 
 
 
 
 391	 * inaccessible and resetting the PHY is not blocked, toggle the
 392	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 393	 */
 394	switch (hw->mac.type) {
 395	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
 396		if (e1000_phy_is_accessible_pchlan(hw))
 397			break;
 398
 399		/*
 400		 * Before toggling LANPHYPC, see if PHY is accessible by
 401		 * forcing MAC to SMBus mode first.
 402		 */
 403		mac_reg = er32(CTRL_EXT);
 404		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 405		ew32(CTRL_EXT, mac_reg);
 406
 407		/* fall-through */
 408	case e1000_pch2lan:
 409		/*
 410		 * Gate automatic PHY configuration by hardware on
 411		 * non-managed 82579
 412		 */
 413		if ((hw->mac.type == e1000_pch2lan) &&
 414		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
 415			e1000_gate_hw_phy_config_ich8lan(hw, true);
 416
 417		if (e1000_phy_is_accessible_pchlan(hw)) {
 418			if (hw->mac.type == e1000_pch_lpt) {
 419				/* Unforce SMBus mode in PHY */
 420				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 421				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 422				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 423
 424				/* Unforce SMBus mode in MAC */
 425				mac_reg = er32(CTRL_EXT);
 426				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 427				ew32(CTRL_EXT, mac_reg);
 428			}
 429			break;
 430		}
 431
 432		/* fall-through */
 433	case e1000_pchlan:
 434		if ((hw->mac.type == e1000_pchlan) &&
 435		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 436			break;
 437
 438		if (hw->phy.ops.check_reset_block(hw)) {
 439			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 
 440			break;
 441		}
 442
 443		e_dbg("Toggling LANPHYPC\n");
 
 
 
 
 444
 445		/* Set Phy Config Counter to 50msec */
 446		mac_reg = er32(FEXTNVM3);
 447		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 448		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 449		ew32(FEXTNVM3, mac_reg);
 
 
 
 
 450
 451		/* Toggle LANPHYPC Value bit */
 452		mac_reg = er32(CTRL);
 453		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 454		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 455		ew32(CTRL, mac_reg);
 456		e1e_flush();
 457		udelay(10);
 458		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 459		ew32(CTRL, mac_reg);
 460		e1e_flush();
 461		if (hw->mac.type < e1000_pch_lpt) {
 462			msleep(50);
 463		} else {
 464			u16 count = 20;
 465			do {
 466				usleep_range(5000, 10000);
 467			} while (!(er32(CTRL_EXT) &
 468				   E1000_CTRL_EXT_LPCD) && count--);
 469		}
 470		break;
 471	default:
 472		break;
 473	}
 474
 
 
 475	hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 476
 477	/*
 478	 * Reset the PHY before any access to it.  Doing so, ensures
 479	 * that the PHY is in a known good state before we read/write
 480	 * PHY registers.  The generic reset is sufficient here,
 481	 * because we haven't determined the PHY type yet.
 482	 */
 483	ret_val = e1000e_phy_hw_reset_generic(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 484
 
 485	/* Ungate automatic PHY configuration on non-managed 82579 */
 486	if ((hw->mac.type == e1000_pch2lan) &&
 487	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 488		usleep_range(10000, 20000);
 489		e1000_gate_hw_phy_config_ich8lan(hw, false);
 490	}
 491
 492	return ret_val;
 493}
 494
 495/**
 496 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 497 *  @hw: pointer to the HW structure
 498 *
 499 *  Initialize family-specific PHY parameters and function pointers.
 500 **/
 501static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 502{
 503	struct e1000_phy_info *phy = &hw->phy;
 504	s32 ret_val = 0;
 505
 506	phy->addr                     = 1;
 507	phy->reset_delay_us           = 100;
 508
 509	phy->ops.set_page             = e1000_set_page_igp;
 510	phy->ops.read_reg             = e1000_read_phy_reg_hv;
 511	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 512	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
 513	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 514	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 515	phy->ops.write_reg            = e1000_write_phy_reg_hv;
 516	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 517	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
 518	phy->ops.power_up             = e1000_power_up_phy_copper;
 519	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 520	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 521
 522	phy->id = e1000_phy_unknown;
 523
 
 
 
 
 
 524	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 525	if (ret_val)
 526		return ret_val;
 527
 528	if (phy->id == e1000_phy_unknown)
 529		switch (hw->mac.type) {
 530		default:
 531			ret_val = e1000e_get_phy_id(hw);
 532			if (ret_val)
 533				return ret_val;
 534			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 535				break;
 536			/* fall-through */
 537		case e1000_pch2lan:
 538		case e1000_pch_lpt:
 539			/*
 540			 * In case the PHY needs to be in mdio slow mode,
 
 
 
 
 
 
 
 541			 * set slow mode and try to get the PHY id again.
 542			 */
 543			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 544			if (ret_val)
 545				return ret_val;
 546			ret_val = e1000e_get_phy_id(hw);
 547			if (ret_val)
 548				return ret_val;
 549			break;
 550		}
 551	phy->type = e1000e_get_phy_type_from_id(phy->id);
 552
 553	switch (phy->type) {
 554	case e1000_phy_82577:
 555	case e1000_phy_82579:
 556	case e1000_phy_i217:
 557		phy->ops.check_polarity = e1000_check_polarity_82577;
 558		phy->ops.force_speed_duplex =
 559		    e1000_phy_force_speed_duplex_82577;
 560		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 561		phy->ops.get_info = e1000_get_phy_info_82577;
 562		phy->ops.commit = e1000e_phy_sw_reset;
 563		break;
 564	case e1000_phy_82578:
 565		phy->ops.check_polarity = e1000_check_polarity_m88;
 566		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 567		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 568		phy->ops.get_info = e1000e_get_phy_info_m88;
 569		break;
 570	default:
 571		ret_val = -E1000_ERR_PHY;
 572		break;
 573	}
 574
 575	return ret_val;
 576}
 577
 578/**
 579 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 580 *  @hw: pointer to the HW structure
 581 *
 582 *  Initialize family-specific PHY parameters and function pointers.
 583 **/
 584static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_phy_info *phy = &hw->phy;
 587	s32 ret_val;
 588	u16 i = 0;
 589
 590	phy->addr			= 1;
 591	phy->reset_delay_us		= 100;
 592
 593	phy->ops.power_up               = e1000_power_up_phy_copper;
 594	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 595
 596	/*
 597	 * We may need to do this twice - once for IGP and if that fails,
 598	 * we'll set BM func pointers and try again
 599	 */
 600	ret_val = e1000e_determine_phy_address(hw);
 601	if (ret_val) {
 602		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 603		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 604		ret_val = e1000e_determine_phy_address(hw);
 605		if (ret_val) {
 606			e_dbg("Cannot determine PHY addr. Erroring out\n");
 607			return ret_val;
 608		}
 609	}
 610
 611	phy->id = 0;
 612	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 613	       (i++ < 100)) {
 614		usleep_range(1000, 2000);
 615		ret_val = e1000e_get_phy_id(hw);
 616		if (ret_val)
 617			return ret_val;
 618	}
 619
 620	/* Verify phy id */
 621	switch (phy->id) {
 622	case IGP03E1000_E_PHY_ID:
 623		phy->type = e1000_phy_igp_3;
 624		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 625		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 626		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 627		phy->ops.get_info = e1000e_get_phy_info_igp;
 628		phy->ops.check_polarity = e1000_check_polarity_igp;
 629		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 630		break;
 631	case IFE_E_PHY_ID:
 632	case IFE_PLUS_E_PHY_ID:
 633	case IFE_C_E_PHY_ID:
 634		phy->type = e1000_phy_ife;
 635		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 636		phy->ops.get_info = e1000_get_phy_info_ife;
 637		phy->ops.check_polarity = e1000_check_polarity_ife;
 638		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 639		break;
 640	case BME1000_E_PHY_ID:
 641		phy->type = e1000_phy_bm;
 642		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 643		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 644		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 645		phy->ops.commit = e1000e_phy_sw_reset;
 646		phy->ops.get_info = e1000e_get_phy_info_m88;
 647		phy->ops.check_polarity = e1000_check_polarity_m88;
 648		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 649		break;
 650	default:
 651		return -E1000_ERR_PHY;
 652		break;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Initialize family-specific NVM parameters and function
 663 *  pointers.
 664 **/
 665static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 666{
 667	struct e1000_nvm_info *nvm = &hw->nvm;
 668	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 669	u32 gfpreg, sector_base_addr, sector_end_addr;
 670	u16 i;
 
 671
 672	/* Can't read flash registers if the register set isn't mapped. */
 673	if (!hw->flash_address) {
 674		e_dbg("ERROR: Flash registers not mapped\n");
 675		return -E1000_ERR_CONFIG;
 676	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678	nvm->type = e1000_nvm_flash_sw;
 
 
 
 
 
 679
 680	gfpreg = er32flash(ICH_FLASH_GFPREG);
 
 
 681
 682	/*
 683	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
 684	 * Add 1 to sector_end_addr since this sector is included in
 685	 * the overall size.
 686	 */
 687	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 688	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 689
 690	/* flash_base_addr is byte-aligned */
 691	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 692
 693	/*
 694	 * find total size of the NVM, then cut in half since the total
 695	 * size represents two separate NVM banks.
 696	 */
 697	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 698				<< FLASH_SECTOR_ADDR_SHIFT;
 699	nvm->flash_bank_size /= 2;
 700	/* Adjust to word count */
 701	nvm->flash_bank_size /= sizeof(u16);
 702
 703	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 704
 705	/* Clear shadow ram */
 706	for (i = 0; i < nvm->word_size; i++) {
 707		dev_spec->shadow_ram[i].modified = false;
 708		dev_spec->shadow_ram[i].value    = 0xFFFF;
 709	}
 710
 711	return 0;
 712}
 713
 714/**
 715 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Initialize family-specific MAC parameters and function
 719 *  pointers.
 720 **/
 721static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 722{
 723	struct e1000_mac_info *mac = &hw->mac;
 724
 725	/* Set media type function pointer */
 726	hw->phy.media_type = e1000_media_type_copper;
 727
 728	/* Set mta register count */
 729	mac->mta_reg_count = 32;
 730	/* Set rar entry count */
 731	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 732	if (mac->type == e1000_ich8lan)
 733		mac->rar_entry_count--;
 734	/* FWSM register */
 735	mac->has_fwsm = true;
 736	/* ARC subsystem not supported */
 737	mac->arc_subsystem_valid = false;
 738	/* Adaptive IFS supported */
 739	mac->adaptive_ifs = true;
 740
 741	/* LED and other operations */
 742	switch (mac->type) {
 743	case e1000_ich8lan:
 744	case e1000_ich9lan:
 745	case e1000_ich10lan:
 746		/* check management mode */
 747		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 748		/* ID LED init */
 749		mac->ops.id_led_init = e1000e_id_led_init_generic;
 750		/* blink LED */
 751		mac->ops.blink_led = e1000e_blink_led_generic;
 752		/* setup LED */
 753		mac->ops.setup_led = e1000e_setup_led_generic;
 754		/* cleanup LED */
 755		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 756		/* turn on/off LED */
 757		mac->ops.led_on = e1000_led_on_ich8lan;
 758		mac->ops.led_off = e1000_led_off_ich8lan;
 759		break;
 760	case e1000_pch2lan:
 761		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 762		mac->ops.rar_set = e1000_rar_set_pch2lan;
 763		/* fall-through */
 764	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
 765	case e1000_pchlan:
 766		/* check management mode */
 767		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 768		/* ID LED init */
 769		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 770		/* setup LED */
 771		mac->ops.setup_led = e1000_setup_led_pchlan;
 772		/* cleanup LED */
 773		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 774		/* turn on/off LED */
 775		mac->ops.led_on = e1000_led_on_pchlan;
 776		mac->ops.led_off = e1000_led_off_pchlan;
 777		break;
 778	default:
 779		break;
 780	}
 781
 782	if (mac->type == e1000_pch_lpt) {
 783		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 784		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 
 
 
 785	}
 786
 787	/* Enable PCS Lock-loss workaround for ICH8 */
 788	if (mac->type == e1000_ich8lan)
 789		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 790
 791	/*
 792	 * Gate automatic PHY configuration by hardware on managed
 793	 * 82579 and i217
 794	 */
 795	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
 796	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 797		e1000_gate_hw_phy_config_ich8lan(hw, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	return 0;
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 807 *  the LPI Control register will remain set only if/when link is up.
 
 
 
 
 
 
 
 808 **/
 809static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 810{
 811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 812	s32 ret_val = 0;
 813	u16 phy_reg;
 814
 815	if ((hw->phy.type != e1000_phy_82579) &&
 816	    (hw->phy.type != e1000_phy_i217))
 
 
 
 
 
 
 
 
 
 
 817		return 0;
 
 818
 819	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 820	if (ret_val)
 821		return ret_val;
 822
 823	if (dev_spec->eee_disable)
 824		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 825	else
 826		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 
 829	if (ret_val)
 830		return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
 833		/* Save off link partner's EEE ability */
 834		ret_val = hw->phy.ops.acquire(hw);
 835		if (ret_val)
 836			return ret_val;
 837		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
 838					  I217_EEE_LP_ABILITY);
 
 
 
 
 
 
 
 
 
 
 839		if (ret_val)
 840			goto release;
 841		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
 842
 843		/*
 844		 * EEE is not supported in 100Half, so ignore partner's EEE
 845		 * in 100 ability if full-duplex is not advertised.
 846		 */
 847		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
 848		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
 849			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
 
 850release:
 851		hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	}
 853
 
 
 
 
 
 
 
 
 
 
 854	return 0;
 855}
 856
 857/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Checks to see of the link status of the hardware has changed.  If a
 862 *  change in link status has been detected, then we read the PHY registers
 863 *  to get the current speed/duplex if link exists.
 864 **/
 865static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 866{
 867	struct e1000_mac_info *mac = &hw->mac;
 868	s32 ret_val;
 
 869	bool link;
 870	u16 phy_reg;
 871
 872	/*
 873	 * We only want to go out to the PHY registers to see if Auto-Neg
 874	 * has completed and/or if our link status has changed.  The
 875	 * get_link_status flag is set upon receiving a Link Status
 876	 * Change or Rx Sequence Error interrupt.
 877	 */
 878	if (!mac->get_link_status)
 879		return 0;
 
 880
 881	/*
 882	 * First we want to see if the MII Status Register reports
 883	 * link.  If so, then we want to get the current speed/duplex
 884	 * of the PHY.
 885	 */
 886	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 887	if (ret_val)
 888		return ret_val;
 889
 890	if (hw->mac.type == e1000_pchlan) {
 891		ret_val = e1000_k1_gig_workaround_hv(hw, link);
 892		if (ret_val)
 893			return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	}
 895
 896	/* Clear link partner's EEE ability */
 897	hw->dev_spec.ich8lan.eee_lp_ability = 0;
 898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899	if (!link)
 900		return 0; /* No link detected */
 901
 902	mac->get_link_status = false;
 903
 904	switch (hw->mac.type) {
 905	case e1000_pch2lan:
 906		ret_val = e1000_k1_workaround_lv(hw);
 907		if (ret_val)
 908			return ret_val;
 909		/* fall-thru */
 910	case e1000_pchlan:
 911		if (hw->phy.type == e1000_phy_82578) {
 912			ret_val = e1000_link_stall_workaround_hv(hw);
 913			if (ret_val)
 914				return ret_val;
 915		}
 916
 917		/*
 918		 * Workaround for PCHx parts in half-duplex:
 919		 * Set the number of preambles removed from the packet
 920		 * when it is passed from the PHY to the MAC to prevent
 921		 * the MAC from misinterpreting the packet type.
 922		 */
 923		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
 924		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
 925
 926		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
 927			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
 928
 929		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
 930		break;
 931	default:
 932		break;
 933	}
 934
 935	/*
 936	 * Check if there was DownShift, must be checked
 937	 * immediately after link-up
 938	 */
 939	e1000e_check_downshift(hw);
 940
 941	/* Enable/Disable EEE after link up */
 942	ret_val = e1000_set_eee_pchlan(hw);
 943	if (ret_val)
 944		return ret_val;
 
 
 945
 946	/*
 947	 * If we are forcing speed/duplex, then we simply return since
 948	 * we have already determined whether we have link or not.
 949	 */
 950	if (!mac->autoneg)
 951		return -E1000_ERR_CONFIG;
 952
 953	/*
 954	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 955	 * of MAC speed/duplex configuration.  So we only need to
 956	 * configure Collision Distance in the MAC.
 957	 */
 958	mac->ops.config_collision_dist(hw);
 959
 960	/*
 961	 * Configure Flow Control now that Auto-Neg has completed.
 962	 * First, we need to restore the desired flow control
 963	 * settings because we may have had to re-autoneg with a
 964	 * different link partner.
 965	 */
 966	ret_val = e1000e_config_fc_after_link_up(hw);
 967	if (ret_val)
 968		e_dbg("Error configuring flow control\n");
 969
 970	return ret_val;
 
 
 
 
 971}
 972
 973static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 974{
 975	struct e1000_hw *hw = &adapter->hw;
 976	s32 rc;
 977
 978	rc = e1000_init_mac_params_ich8lan(hw);
 979	if (rc)
 980		return rc;
 981
 982	rc = e1000_init_nvm_params_ich8lan(hw);
 983	if (rc)
 984		return rc;
 985
 986	switch (hw->mac.type) {
 987	case e1000_ich8lan:
 988	case e1000_ich9lan:
 989	case e1000_ich10lan:
 990		rc = e1000_init_phy_params_ich8lan(hw);
 991		break;
 992	case e1000_pchlan:
 993	case e1000_pch2lan:
 994	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
 995		rc = e1000_init_phy_params_pchlan(hw);
 996		break;
 997	default:
 998		break;
 999	}
1000	if (rc)
1001		return rc;
1002
1003	/*
1004	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006	 */
1007	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013		hw->mac.ops.blink_led = NULL;
1014	}
1015
1016	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017	    (adapter->hw.phy.type != e1000_phy_ife))
1018		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020	/* Enable workaround for 82579 w/ ME enabled */
1021	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025	/* Disable EEE by default until IEEE802.3az spec is finalized */
1026	if (adapter->flags2 & FLAG2_HAS_EEE)
1027		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029	return 0;
1030}
1031
1032static DEFINE_MUTEX(nvm_mutex);
1033
1034/**
1035 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036 *  @hw: pointer to the HW structure
1037 *
1038 *  Acquires the mutex for performing NVM operations.
1039 **/
1040static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041{
1042	mutex_lock(&nvm_mutex);
1043
1044	return 0;
1045}
1046
1047/**
1048 *  e1000_release_nvm_ich8lan - Release NVM mutex
1049 *  @hw: pointer to the HW structure
1050 *
1051 *  Releases the mutex used while performing NVM operations.
1052 **/
1053static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054{
1055	mutex_unlock(&nvm_mutex);
1056}
1057
1058/**
1059 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060 *  @hw: pointer to the HW structure
1061 *
1062 *  Acquires the software control flag for performing PHY and select
1063 *  MAC CSR accesses.
1064 **/
1065static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066{
1067	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068	s32 ret_val = 0;
1069
1070	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071			     &hw->adapter->state)) {
1072		e_dbg("contention for Phy access\n");
1073		return -E1000_ERR_PHY;
1074	}
1075
1076	while (timeout) {
1077		extcnf_ctrl = er32(EXTCNF_CTRL);
1078		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079			break;
1080
1081		mdelay(1);
1082		timeout--;
1083	}
1084
1085	if (!timeout) {
1086		e_dbg("SW has already locked the resource.\n");
1087		ret_val = -E1000_ERR_CONFIG;
1088		goto out;
1089	}
1090
1091	timeout = SW_FLAG_TIMEOUT;
1092
1093	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094	ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096	while (timeout) {
1097		extcnf_ctrl = er32(EXTCNF_CTRL);
1098		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099			break;
1100
1101		mdelay(1);
1102		timeout--;
1103	}
1104
1105	if (!timeout) {
1106		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107		      er32(FWSM), extcnf_ctrl);
1108		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109		ew32(EXTCNF_CTRL, extcnf_ctrl);
1110		ret_val = -E1000_ERR_CONFIG;
1111		goto out;
1112	}
1113
1114out:
1115	if (ret_val)
1116		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000_release_swflag_ich8lan - Release software control flag
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Releases the software control flag for performing PHY and select
1126 *  MAC CSR accesses.
1127 **/
1128static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129{
1130	u32 extcnf_ctrl;
1131
1132	extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136		ew32(EXTCNF_CTRL, extcnf_ctrl);
1137	} else {
1138		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139	}
1140
1141	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142}
1143
1144/**
1145 *  e1000_check_mng_mode_ich8lan - Checks management mode
1146 *  @hw: pointer to the HW structure
1147 *
1148 *  This checks if the adapter has any manageability enabled.
1149 *  This is a function pointer entry point only called by read/write
1150 *  routines for the PHY and NVM parts.
1151 **/
1152static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153{
1154	u32 fwsm;
1155
1156	fwsm = er32(FWSM);
1157	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1159		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160}
1161
1162/**
1163 *  e1000_check_mng_mode_pchlan - Checks management mode
1164 *  @hw: pointer to the HW structure
1165 *
1166 *  This checks if the adapter has iAMT enabled.
1167 *  This is a function pointer entry point only called by read/write
1168 *  routines for the PHY and NVM parts.
1169 **/
1170static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171{
1172	u32 fwsm;
1173
1174	fwsm = er32(FWSM);
1175	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177}
1178
1179/**
1180 *  e1000_rar_set_pch2lan - Set receive address register
1181 *  @hw: pointer to the HW structure
1182 *  @addr: pointer to the receive address
1183 *  @index: receive address array register
1184 *
1185 *  Sets the receive address array register at index to the address passed
1186 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188 *  Use SHRA[0-3] in place of those reserved for ME.
1189 **/
1190static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191{
1192	u32 rar_low, rar_high;
1193
1194	/*
1195	 * HW expects these in little endian so we reverse the byte order
1196	 * from network order (big endian) to little endian
1197	 */
1198	rar_low = ((u32)addr[0] |
1199		   ((u32)addr[1] << 8) |
1200		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204	/* If MAC address zero, no need to set the AV bit */
1205	if (rar_low || rar_high)
1206		rar_high |= E1000_RAH_AV;
1207
1208	if (index == 0) {
1209		ew32(RAL(index), rar_low);
1210		e1e_flush();
1211		ew32(RAH(index), rar_high);
1212		e1e_flush();
1213		return;
1214	}
1215
1216	if (index < hw->mac.rar_entry_count) {
 
 
 
1217		s32 ret_val;
1218
1219		ret_val = e1000_acquire_swflag_ich8lan(hw);
1220		if (ret_val)
1221			goto out;
1222
1223		ew32(SHRAL(index - 1), rar_low);
1224		e1e_flush();
1225		ew32(SHRAH(index - 1), rar_high);
1226		e1e_flush();
1227
1228		e1000_release_swflag_ich8lan(hw);
1229
1230		/* verify the register updates */
1231		if ((er32(SHRAL(index - 1)) == rar_low) &&
1232		    (er32(SHRAH(index - 1)) == rar_high))
1233			return;
1234
1235		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236		      (index - 1), er32(FWSM));
1237	}
1238
1239out:
1240	e_dbg("Failed to write receive address at index %d\n", index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243/**
1244 *  e1000_rar_set_pch_lpt - Set receive address registers
1245 *  @hw: pointer to the HW structure
1246 *  @addr: pointer to the receive address
1247 *  @index: receive address array register
1248 *
1249 *  Sets the receive address register array at index to the address passed
1250 *  in by addr. For LPT, RAR[0] is the base address register that is to
1251 *  contain the MAC address. SHRA[0-10] are the shared receive address
1252 *  registers that are shared between the Host and manageability engine (ME).
1253 **/
1254static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255{
1256	u32 rar_low, rar_high;
1257	u32 wlock_mac;
1258
1259	/*
1260	 * HW expects these in little endian so we reverse the byte order
1261	 * from network order (big endian) to little endian
1262	 */
1263	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268	/* If MAC address zero, no need to set the AV bit */
1269	if (rar_low || rar_high)
1270		rar_high |= E1000_RAH_AV;
1271
1272	if (index == 0) {
1273		ew32(RAL(index), rar_low);
1274		e1e_flush();
1275		ew32(RAH(index), rar_high);
1276		e1e_flush();
1277		return;
1278	}
1279
1280	/*
1281	 * The manageability engine (ME) can lock certain SHRAR registers that
1282	 * it is using - those registers are unavailable for use.
1283	 */
1284	if (index < hw->mac.rar_entry_count) {
1285		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288		/* Check if all SHRAR registers are locked */
1289		if (wlock_mac == 1)
1290			goto out;
1291
1292		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293			s32 ret_val;
1294
1295			ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297			if (ret_val)
1298				goto out;
1299
1300			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301			e1e_flush();
1302			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303			e1e_flush();
1304
1305			e1000_release_swflag_ich8lan(hw);
1306
1307			/* verify the register updates */
1308			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310				return;
1311		}
1312	}
1313
1314out:
1315	e_dbg("Failed to write receive address at index %d\n", index);
 
1316}
1317
1318/**
1319 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320 *  @hw: pointer to the HW structure
1321 *
1322 *  Checks if firmware is blocking the reset of the PHY.
1323 *  This is a function pointer entry point only called by
1324 *  reset routines.
1325 **/
1326static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327{
1328	u32 fwsm;
1329
1330	fwsm = er32(FWSM);
1331
1332	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 
 
 
1333}
1334
1335/**
1336 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337 *  @hw: pointer to the HW structure
1338 *
1339 *  Assumes semaphore already acquired.
1340 *
1341 **/
1342static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343{
1344	u16 phy_data;
1345	u32 strap = er32(STRAP);
1346	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347	    E1000_STRAP_SMT_FREQ_SHIFT;
1348	s32 ret_val = 0;
1349
1350	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data &= ~HV_SMB_ADDR_MASK;
1357	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360	if (hw->phy.type == e1000_phy_i217) {
1361		/* Restore SMBus frequency */
1362		if (freq--) {
1363			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364			phy_data |= (freq & (1 << 0)) <<
1365			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366			phy_data |= (freq & (1 << 1)) <<
1367			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368		} else {
1369			e_dbg("Unsupported SMB frequency in PHY\n");
1370		}
1371	}
1372
1373	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374}
1375
1376/**
1377 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378 *  @hw:   pointer to the HW structure
1379 *
1380 *  SW should configure the LCD from the NVM extended configuration region
1381 *  as a workaround for certain parts.
1382 **/
1383static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384{
1385	struct e1000_phy_info *phy = &hw->phy;
1386	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387	s32 ret_val = 0;
1388	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390	/*
1391	 * Initialize the PHY from the NVM on ICH platforms.  This
1392	 * is needed due to an issue where the NVM configuration is
1393	 * not properly autoloaded after power transitions.
1394	 * Therefore, after each PHY reset, we will load the
1395	 * configuration data out of the NVM manually.
1396	 */
1397	switch (hw->mac.type) {
1398	case e1000_ich8lan:
1399		if (phy->type != e1000_phy_igp_3)
1400			return ret_val;
1401
1402		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405			break;
1406		}
1407		/* Fall-thru */
1408	case e1000_pchlan:
1409	case e1000_pch2lan:
1410	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
1411		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412		break;
1413	default:
1414		return ret_val;
1415	}
1416
1417	ret_val = hw->phy.ops.acquire(hw);
1418	if (ret_val)
1419		return ret_val;
1420
1421	data = er32(FEXTNVM);
1422	if (!(data & sw_cfg_mask))
1423		goto release;
1424
1425	/*
1426	 * Make sure HW does not configure LCD from PHY
1427	 * extended configuration before SW configuration
1428	 */
1429	data = er32(EXTCNF_CTRL);
1430	if ((hw->mac.type < e1000_pch2lan) &&
1431	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432		goto release;
1433
1434	cnf_size = er32(EXTCNF_SIZE);
1435	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437	if (!cnf_size)
1438		goto release;
1439
1440	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443	if (((hw->mac.type == e1000_pchlan) &&
1444	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445	    (hw->mac.type > e1000_pchlan)) {
1446		/*
1447		 * HW configures the SMBus address and LEDs when the
1448		 * OEM and LCD Write Enable bits are set in the NVM.
1449		 * When both NVM bits are cleared, SW will configure
1450		 * them instead.
1451		 */
1452		ret_val = e1000_write_smbus_addr(hw);
1453		if (ret_val)
1454			goto release;
1455
1456		data = er32(LEDCTL);
1457		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458							(u16)data);
1459		if (ret_val)
1460			goto release;
1461	}
1462
1463	/* Configure LCD from extended configuration region. */
1464
1465	/* cnf_base_addr is in DWORD */
1466	word_addr = (u16)(cnf_base_addr << 1);
1467
1468	for (i = 0; i < cnf_size; i++) {
1469		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470					 &reg_data);
1471		if (ret_val)
1472			goto release;
1473
1474		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475					 1, &reg_addr);
1476		if (ret_val)
1477			goto release;
1478
1479		/* Save off the PHY page for future writes. */
1480		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481			phy_page = reg_data;
1482			continue;
1483		}
1484
1485		reg_addr &= PHY_REG_MASK;
1486		reg_addr |= phy_page;
1487
1488		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489		if (ret_val)
1490			goto release;
1491	}
1492
1493release:
1494	hw->phy.ops.release(hw);
1495	return ret_val;
1496}
1497
1498/**
1499 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500 *  @hw:   pointer to the HW structure
1501 *  @link: link up bool flag
1502 *
1503 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505 *  If link is down, the function will restore the default K1 setting located
1506 *  in the NVM.
1507 **/
1508static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509{
1510	s32 ret_val = 0;
1511	u16 status_reg = 0;
1512	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514	if (hw->mac.type != e1000_pchlan)
1515		return 0;
1516
1517	/* Wrap the whole flow with the sw flag */
1518	ret_val = hw->phy.ops.acquire(hw);
1519	if (ret_val)
1520		return ret_val;
1521
1522	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523	if (link) {
1524		if (hw->phy.type == e1000_phy_82578) {
1525			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526						  &status_reg);
1527			if (ret_val)
1528				goto release;
1529
1530			status_reg &= BM_CS_STATUS_LINK_UP |
1531			              BM_CS_STATUS_RESOLVED |
1532			              BM_CS_STATUS_SPEED_MASK;
1533
1534			if (status_reg == (BM_CS_STATUS_LINK_UP |
1535			                   BM_CS_STATUS_RESOLVED |
1536			                   BM_CS_STATUS_SPEED_1000))
1537				k1_enable = false;
1538		}
1539
1540		if (hw->phy.type == e1000_phy_82577) {
1541			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542			if (ret_val)
1543				goto release;
1544
1545			status_reg &= HV_M_STATUS_LINK_UP |
1546			              HV_M_STATUS_AUTONEG_COMPLETE |
1547			              HV_M_STATUS_SPEED_MASK;
1548
1549			if (status_reg == (HV_M_STATUS_LINK_UP |
1550			                   HV_M_STATUS_AUTONEG_COMPLETE |
1551			                   HV_M_STATUS_SPEED_1000))
1552				k1_enable = false;
1553		}
1554
1555		/* Link stall fix for link up */
1556		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557		if (ret_val)
1558			goto release;
1559
1560	} else {
1561		/* Link stall fix for link down */
1562		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563		if (ret_val)
1564			goto release;
1565	}
1566
1567	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569release:
1570	hw->phy.ops.release(hw);
1571
1572	return ret_val;
1573}
1574
1575/**
1576 *  e1000_configure_k1_ich8lan - Configure K1 power state
1577 *  @hw: pointer to the HW structure
1578 *  @enable: K1 state to configure
1579 *
1580 *  Configure the K1 power state based on the provided parameter.
1581 *  Assumes semaphore already acquired.
1582 *
1583 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584 **/
1585s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586{
1587	s32 ret_val = 0;
1588	u32 ctrl_reg = 0;
1589	u32 ctrl_ext = 0;
1590	u32 reg = 0;
1591	u16 kmrn_reg = 0;
1592
1593	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594					      &kmrn_reg);
1595	if (ret_val)
1596		return ret_val;
1597
1598	if (k1_enable)
1599		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600	else
1601		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604					       kmrn_reg);
1605	if (ret_val)
1606		return ret_val;
1607
1608	udelay(20);
1609	ctrl_ext = er32(CTRL_EXT);
1610	ctrl_reg = er32(CTRL);
1611
1612	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613	reg |= E1000_CTRL_FRCSPD;
1614	ew32(CTRL, reg);
1615
1616	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617	e1e_flush();
1618	udelay(20);
1619	ew32(CTRL, ctrl_reg);
1620	ew32(CTRL_EXT, ctrl_ext);
1621	e1e_flush();
1622	udelay(20);
1623
1624	return 0;
1625}
1626
1627/**
1628 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629 *  @hw:       pointer to the HW structure
1630 *  @d0_state: boolean if entering d0 or d3 device state
1631 *
1632 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635 **/
1636static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637{
1638	s32 ret_val = 0;
1639	u32 mac_reg;
1640	u16 oem_reg;
1641
1642	if (hw->mac.type < e1000_pchlan)
1643		return ret_val;
1644
1645	ret_val = hw->phy.ops.acquire(hw);
1646	if (ret_val)
1647		return ret_val;
1648
1649	if (hw->mac.type == e1000_pchlan) {
1650		mac_reg = er32(EXTCNF_CTRL);
1651		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652			goto release;
1653	}
1654
1655	mac_reg = er32(FEXTNVM);
1656	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657		goto release;
1658
1659	mac_reg = er32(PHY_CTRL);
1660
1661	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662	if (ret_val)
1663		goto release;
1664
1665	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667	if (d0_state) {
1668		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669			oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672			oem_reg |= HV_OEM_BITS_LPLU;
1673	} else {
1674		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676			oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679			       E1000_PHY_CTRL_NOND0A_LPLU))
1680			oem_reg |= HV_OEM_BITS_LPLU;
1681	}
1682
1683	/* Set Restart auto-neg to activate the bits */
1684	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685	    !hw->phy.ops.check_reset_block(hw))
1686		oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690release:
1691	hw->phy.ops.release(hw);
1692
1693	return ret_val;
1694}
1695
1696
1697/**
1698 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699 *  @hw:   pointer to the HW structure
1700 **/
1701static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702{
1703	s32 ret_val;
1704	u16 data;
1705
1706	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707	if (ret_val)
1708		return ret_val;
1709
1710	data |= HV_KMRN_MDIO_SLOW;
1711
1712	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714	return ret_val;
1715}
1716
1717/**
1718 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719 *  done after every PHY reset.
 
 
1720 **/
1721static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722{
1723	s32 ret_val = 0;
1724	u16 phy_data;
1725
1726	if (hw->mac.type != e1000_pchlan)
1727		return 0;
1728
1729	/* Set MDIO slow mode before any other MDIO access */
1730	if (hw->phy.type == e1000_phy_82577) {
1731		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732		if (ret_val)
1733			return ret_val;
1734	}
1735
1736	if (((hw->phy.type == e1000_phy_82577) &&
1737	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739		/* Disable generation of early preamble */
1740		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741		if (ret_val)
1742			return ret_val;
1743
1744		/* Preamble tuning for SSC */
1745		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746		if (ret_val)
1747			return ret_val;
1748	}
1749
1750	if (hw->phy.type == e1000_phy_82578) {
1751		/*
1752		 * Return registers to default by doing a soft reset then
1753		 * writing 0x3140 to the control register.
1754		 */
1755		if (hw->phy.revision < 2) {
1756			e1000e_phy_sw_reset(hw);
1757			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
 
 
1758		}
1759	}
1760
1761	/* Select page 0 */
1762	ret_val = hw->phy.ops.acquire(hw);
1763	if (ret_val)
1764		return ret_val;
1765
1766	hw->phy.addr = 1;
1767	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768	hw->phy.ops.release(hw);
1769	if (ret_val)
1770		return ret_val;
1771
1772	/*
1773	 * Configure the K1 Si workaround during phy reset assuming there is
1774	 * link so that it disables K1 if link is in 1Gbps.
1775	 */
1776	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777	if (ret_val)
1778		return ret_val;
1779
1780	/* Workaround for link disconnects on a busy hub in half duplex */
1781	ret_val = hw->phy.ops.acquire(hw);
1782	if (ret_val)
1783		return ret_val;
1784	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785	if (ret_val)
1786		goto release;
1787	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
 
 
 
 
 
1788release:
1789	hw->phy.ops.release(hw);
1790
1791	return ret_val;
1792}
1793
1794/**
1795 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796 *  @hw:   pointer to the HW structure
1797 **/
1798void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799{
1800	u32 mac_reg;
1801	u16 i, phy_reg = 0;
1802	s32 ret_val;
1803
1804	ret_val = hw->phy.ops.acquire(hw);
1805	if (ret_val)
1806		return;
1807	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808	if (ret_val)
1809		goto release;
1810
1811	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813		mac_reg = er32(RAL(i));
1814		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815					   (u16)(mac_reg & 0xFFFF));
1816		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817					   (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819		mac_reg = er32(RAH(i));
1820		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821					   (u16)(mac_reg & 0xFFFF));
1822		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823					   (u16)((mac_reg & E1000_RAH_AV)
1824						 >> 16));
1825	}
1826
1827	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829release:
1830	hw->phy.ops.release(hw);
1831}
1832
1833/**
1834 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835 *  with 82579 PHY
1836 *  @hw: pointer to the HW structure
1837 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838 **/
1839s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840{
1841	s32 ret_val = 0;
1842	u16 phy_reg, data;
1843	u32 mac_reg;
1844	u16 i;
1845
1846	if (hw->mac.type < e1000_pch2lan)
1847		return 0;
1848
1849	/* disable Rx path while enabling/disabling workaround */
1850	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852	if (ret_val)
1853		return ret_val;
1854
1855	if (enable) {
1856		/*
1857		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858		 * SHRAL/H) and initial CRC values to the MAC
1859		 */
1860		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861			u8 mac_addr[ETH_ALEN] = {0};
1862			u32 addr_high, addr_low;
1863
1864			addr_high = er32(RAH(i));
1865			if (!(addr_high & E1000_RAH_AV))
1866				continue;
1867			addr_low = er32(RAL(i));
1868			mac_addr[0] = (addr_low & 0xFF);
1869			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872			mac_addr[4] = (addr_high & 0xFF);
1873			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876		}
1877
1878		/* Write Rx addresses to the PHY */
1879		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881		/* Enable jumbo frame workaround in the MAC */
1882		mac_reg = er32(FFLT_DBG);
1883		mac_reg &= ~(1 << 14);
1884		mac_reg |= (7 << 15);
1885		ew32(FFLT_DBG, mac_reg);
1886
1887		mac_reg = er32(RCTL);
1888		mac_reg |= E1000_RCTL_SECRC;
1889		ew32(RCTL, mac_reg);
1890
1891		ret_val = e1000e_read_kmrn_reg(hw,
1892						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893						&data);
1894		if (ret_val)
1895			return ret_val;
1896		ret_val = e1000e_write_kmrn_reg(hw,
1897						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898						data | (1 << 0));
1899		if (ret_val)
1900			return ret_val;
1901		ret_val = e1000e_read_kmrn_reg(hw,
1902						E1000_KMRNCTRLSTA_HD_CTRL,
1903						&data);
1904		if (ret_val)
1905			return ret_val;
1906		data &= ~(0xF << 8);
1907		data |= (0xB << 8);
1908		ret_val = e1000e_write_kmrn_reg(hw,
1909						E1000_KMRNCTRLSTA_HD_CTRL,
1910						data);
1911		if (ret_val)
1912			return ret_val;
1913
1914		/* Enable jumbo frame workaround in the PHY */
1915		e1e_rphy(hw, PHY_REG(769, 23), &data);
1916		data &= ~(0x7F << 5);
1917		data |= (0x37 << 5);
1918		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919		if (ret_val)
1920			return ret_val;
1921		e1e_rphy(hw, PHY_REG(769, 16), &data);
1922		data &= ~(1 << 13);
1923		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924		if (ret_val)
1925			return ret_val;
1926		e1e_rphy(hw, PHY_REG(776, 20), &data);
1927		data &= ~(0x3FF << 2);
1928		data |= (0x1A << 2);
1929		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930		if (ret_val)
1931			return ret_val;
1932		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933		if (ret_val)
1934			return ret_val;
1935		e1e_rphy(hw, HV_PM_CTRL, &data);
1936		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937		if (ret_val)
1938			return ret_val;
1939	} else {
1940		/* Write MAC register values back to h/w defaults */
1941		mac_reg = er32(FFLT_DBG);
1942		mac_reg &= ~(0xF << 14);
1943		ew32(FFLT_DBG, mac_reg);
1944
1945		mac_reg = er32(RCTL);
1946		mac_reg &= ~E1000_RCTL_SECRC;
1947		ew32(RCTL, mac_reg);
1948
1949		ret_val = e1000e_read_kmrn_reg(hw,
1950						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951						&data);
1952		if (ret_val)
1953			return ret_val;
1954		ret_val = e1000e_write_kmrn_reg(hw,
1955						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956						data & ~(1 << 0));
1957		if (ret_val)
1958			return ret_val;
1959		ret_val = e1000e_read_kmrn_reg(hw,
1960						E1000_KMRNCTRLSTA_HD_CTRL,
1961						&data);
1962		if (ret_val)
1963			return ret_val;
1964		data &= ~(0xF << 8);
1965		data |= (0xB << 8);
1966		ret_val = e1000e_write_kmrn_reg(hw,
1967						E1000_KMRNCTRLSTA_HD_CTRL,
1968						data);
1969		if (ret_val)
1970			return ret_val;
1971
1972		/* Write PHY register values back to h/w defaults */
1973		e1e_rphy(hw, PHY_REG(769, 23), &data);
1974		data &= ~(0x7F << 5);
1975		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976		if (ret_val)
1977			return ret_val;
1978		e1e_rphy(hw, PHY_REG(769, 16), &data);
1979		data |= (1 << 13);
1980		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981		if (ret_val)
1982			return ret_val;
1983		e1e_rphy(hw, PHY_REG(776, 20), &data);
1984		data &= ~(0x3FF << 2);
1985		data |= (0x8 << 2);
1986		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987		if (ret_val)
1988			return ret_val;
1989		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990		if (ret_val)
1991			return ret_val;
1992		e1e_rphy(hw, HV_PM_CTRL, &data);
1993		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994		if (ret_val)
1995			return ret_val;
1996	}
1997
1998	/* re-enable Rx path after enabling/disabling workaround */
1999	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000}
2001
2002/**
2003 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004 *  done after every PHY reset.
 
 
2005 **/
2006static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007{
2008	s32 ret_val = 0;
2009
2010	if (hw->mac.type != e1000_pch2lan)
2011		return 0;
2012
2013	/* Set MDIO slow mode before any other MDIO access */
2014	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 
 
2015
2016	ret_val = hw->phy.ops.acquire(hw);
2017	if (ret_val)
2018		return ret_val;
2019	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020	if (ret_val)
2021		goto release;
2022	/* set MSE higher to enable link to stay up when noise is high */
2023	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024	if (ret_val)
2025		goto release;
2026	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027	if (ret_val)
2028		goto release;
2029	/* drop link after 5 times MSE threshold was reached */
2030	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031release:
2032	hw->phy.ops.release(hw);
2033
2034	return ret_val;
2035}
2036
2037/**
2038 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039 *  @hw:   pointer to the HW structure
2040 *
2041 *  Workaround to set the K1 beacon duration for 82579 parts
 
2042 **/
2043static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044{
2045	s32 ret_val = 0;
2046	u16 status_reg = 0;
2047	u32 mac_reg;
2048	u16 phy_reg;
2049
2050	if (hw->mac.type != e1000_pch2lan)
2051		return 0;
2052
2053	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055	if (ret_val)
2056		return ret_val;
2057
2058	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060		mac_reg = er32(FEXTNVM4);
2061		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064		if (ret_val)
2065			return ret_val;
2066
2067		if (status_reg & HV_M_STATUS_SPEED_1000) {
2068			u16 pm_phy_reg;
2069
2070			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072			/* LV 1G Packet drop issue wa  */
2073			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074			if (ret_val)
2075				return ret_val;
2076			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078			if (ret_val)
2079				return ret_val;
2080		} else {
 
 
 
 
2081			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083		}
2084		ew32(FEXTNVM4, mac_reg);
2085		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086	}
2087
2088	return ret_val;
2089}
2090
2091/**
2092 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093 *  @hw:   pointer to the HW structure
2094 *  @gate: boolean set to true to gate, false to ungate
2095 *
2096 *  Gate/ungate the automatic PHY configuration via hardware; perform
2097 *  the configuration via software instead.
2098 **/
2099static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100{
2101	u32 extcnf_ctrl;
2102
2103	if (hw->mac.type < e1000_pch2lan)
2104		return;
2105
2106	extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108	if (gate)
2109		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110	else
2111		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113	ew32(EXTCNF_CTRL, extcnf_ctrl);
2114}
2115
2116/**
2117 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Check the appropriate indication the MAC has finished configuring the
2121 *  PHY after a software reset.
2122 **/
2123static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124{
2125	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127	/* Wait for basic configuration completes before proceeding */
2128	do {
2129		data = er32(STATUS);
2130		data &= E1000_STATUS_LAN_INIT_DONE;
2131		udelay(100);
2132	} while ((!data) && --loop);
2133
2134	/*
2135	 * If basic configuration is incomplete before the above loop
2136	 * count reaches 0, loading the configuration from NVM will
2137	 * leave the PHY in a bad state possibly resulting in no link.
2138	 */
2139	if (loop == 0)
2140		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142	/* Clear the Init Done bit for the next init event */
2143	data = er32(STATUS);
2144	data &= ~E1000_STATUS_LAN_INIT_DONE;
2145	ew32(STATUS, data);
2146}
2147
2148/**
2149 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150 *  @hw: pointer to the HW structure
2151 **/
2152static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153{
2154	s32 ret_val = 0;
2155	u16 reg;
2156
2157	if (hw->phy.ops.check_reset_block(hw))
2158		return 0;
2159
2160	/* Allow time for h/w to get to quiescent state after reset */
2161	usleep_range(10000, 20000);
2162
2163	/* Perform any necessary post-reset workarounds */
2164	switch (hw->mac.type) {
2165	case e1000_pchlan:
2166		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167		if (ret_val)
2168			return ret_val;
2169		break;
2170	case e1000_pch2lan:
2171		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172		if (ret_val)
2173			return ret_val;
2174		break;
2175	default:
2176		break;
2177	}
2178
2179	/* Clear the host wakeup bit after lcd reset */
2180	if (hw->mac.type >= e1000_pchlan) {
2181		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182		reg &= ~BM_WUC_HOST_WU_BIT;
2183		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184	}
2185
2186	/* Configure the LCD with the extended configuration region in NVM */
2187	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188	if (ret_val)
2189		return ret_val;
2190
2191	/* Configure the LCD with the OEM bits in NVM */
2192	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194	if (hw->mac.type == e1000_pch2lan) {
2195		/* Ungate automatic PHY configuration on non-managed 82579 */
2196		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197			usleep_range(10000, 20000);
2198			e1000_gate_hw_phy_config_ich8lan(hw, false);
2199		}
2200
2201		/* Set EEE LPI Update Timer to 200usec */
2202		ret_val = hw->phy.ops.acquire(hw);
2203		if (ret_val)
2204			return ret_val;
2205		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206					  I82579_LPI_UPDATE_TIMER);
2207		if (!ret_val)
2208			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209		hw->phy.ops.release(hw);
2210	}
2211
2212	return ret_val;
2213}
2214
2215/**
2216 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217 *  @hw: pointer to the HW structure
2218 *
2219 *  Resets the PHY
2220 *  This is a function pointer entry point called by drivers
2221 *  or other shared routines.
2222 **/
2223static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226
2227	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228	if ((hw->mac.type == e1000_pch2lan) &&
2229	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230		e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232	ret_val = e1000e_phy_hw_reset_generic(hw);
2233	if (ret_val)
2234		return ret_val;
2235
2236	return e1000_post_phy_reset_ich8lan(hw);
2237}
2238
2239/**
2240 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241 *  @hw: pointer to the HW structure
2242 *  @active: true to enable LPLU, false to disable
2243 *
2244 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246 *  the phy speed. This function will manually set the LPLU bit and restart
2247 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248 *  since it configures the same bit.
2249 **/
2250static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251{
2252	s32 ret_val = 0;
2253	u16 oem_reg;
2254
2255	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256	if (ret_val)
2257		return ret_val;
2258
2259	if (active)
2260		oem_reg |= HV_OEM_BITS_LPLU;
2261	else
2262		oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264	if (!hw->phy.ops.check_reset_block(hw))
2265		oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268}
2269
2270/**
2271 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272 *  @hw: pointer to the HW structure
2273 *  @active: true to enable LPLU, false to disable
2274 *
2275 *  Sets the LPLU D0 state according to the active flag.  When
2276 *  activating LPLU this function also disables smart speed
2277 *  and vice versa.  LPLU will not be activated unless the
2278 *  device autonegotiation advertisement meets standards of
2279 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280 *  This is a function pointer entry point only called by
2281 *  PHY setup routines.
2282 **/
2283static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284{
2285	struct e1000_phy_info *phy = &hw->phy;
2286	u32 phy_ctrl;
2287	s32 ret_val = 0;
2288	u16 data;
2289
2290	if (phy->type == e1000_phy_ife)
2291		return 0;
2292
2293	phy_ctrl = er32(PHY_CTRL);
2294
2295	if (active) {
2296		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297		ew32(PHY_CTRL, phy_ctrl);
2298
2299		if (phy->type != e1000_phy_igp_3)
2300			return 0;
2301
2302		/*
2303		 * Call gig speed drop workaround on LPLU before accessing
2304		 * any PHY registers
2305		 */
2306		if (hw->mac.type == e1000_ich8lan)
2307			e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309		/* When LPLU is enabled, we should disable SmartSpeed */
2310		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 
 
2311		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313		if (ret_val)
2314			return ret_val;
2315	} else {
2316		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317		ew32(PHY_CTRL, phy_ctrl);
2318
2319		if (phy->type != e1000_phy_igp_3)
2320			return 0;
2321
2322		/*
2323		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324		 * during Dx states where the power conservation is most
2325		 * important.  During driver activity we should enable
2326		 * SmartSpeed, so performance is maintained.
2327		 */
2328		if (phy->smart_speed == e1000_smart_speed_on) {
2329			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330					   &data);
2331			if (ret_val)
2332				return ret_val;
2333
2334			data |= IGP01E1000_PSCFR_SMART_SPEED;
2335			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336					   data);
2337			if (ret_val)
2338				return ret_val;
2339		} else if (phy->smart_speed == e1000_smart_speed_off) {
2340			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341					   &data);
2342			if (ret_val)
2343				return ret_val;
2344
2345			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347					   data);
2348			if (ret_val)
2349				return ret_val;
2350		}
2351	}
2352
2353	return 0;
2354}
2355
2356/**
2357 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358 *  @hw: pointer to the HW structure
2359 *  @active: true to enable LPLU, false to disable
2360 *
2361 *  Sets the LPLU D3 state according to the active flag.  When
2362 *  activating LPLU this function also disables smart speed
2363 *  and vice versa.  LPLU will not be activated unless the
2364 *  device autonegotiation advertisement meets standards of
2365 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366 *  This is a function pointer entry point only called by
2367 *  PHY setup routines.
2368 **/
2369static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370{
2371	struct e1000_phy_info *phy = &hw->phy;
2372	u32 phy_ctrl;
2373	s32 ret_val = 0;
2374	u16 data;
2375
2376	phy_ctrl = er32(PHY_CTRL);
2377
2378	if (!active) {
2379		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380		ew32(PHY_CTRL, phy_ctrl);
2381
2382		if (phy->type != e1000_phy_igp_3)
2383			return 0;
2384
2385		/*
2386		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387		 * during Dx states where the power conservation is most
2388		 * important.  During driver activity we should enable
2389		 * SmartSpeed, so performance is maintained.
2390		 */
2391		if (phy->smart_speed == e1000_smart_speed_on) {
2392			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393					   &data);
2394			if (ret_val)
2395				return ret_val;
2396
2397			data |= IGP01E1000_PSCFR_SMART_SPEED;
2398			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399					   data);
2400			if (ret_val)
2401				return ret_val;
2402		} else if (phy->smart_speed == e1000_smart_speed_off) {
2403			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404					   &data);
2405			if (ret_val)
2406				return ret_val;
2407
2408			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410					   data);
2411			if (ret_val)
2412				return ret_val;
2413		}
2414	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418		ew32(PHY_CTRL, phy_ctrl);
2419
2420		if (phy->type != e1000_phy_igp_3)
2421			return 0;
2422
2423		/*
2424		 * Call gig speed drop workaround on LPLU before accessing
2425		 * any PHY registers
2426		 */
2427		if (hw->mac.type == e1000_ich8lan)
2428			e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430		/* When LPLU is enabled, we should disable SmartSpeed */
2431		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432		if (ret_val)
2433			return ret_val;
2434
2435		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437	}
2438
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444 *  @hw: pointer to the HW structure
2445 *  @bank:  pointer to the variable that returns the active bank
2446 *
2447 *  Reads signature byte from the NVM using the flash access registers.
2448 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449 **/
2450static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451{
2452	u32 eecd;
2453	struct e1000_nvm_info *nvm = &hw->nvm;
2454	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
 
2456	u8 sig_byte = 0;
2457	s32 ret_val;
2458
2459	switch (hw->mac.type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	case e1000_ich8lan:
2461	case e1000_ich9lan:
2462		eecd = er32(EECD);
2463		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464		    E1000_EECD_SEC1VAL_VALID_MASK) {
2465			if (eecd & E1000_EECD_SEC1VAL)
2466				*bank = 1;
2467			else
2468				*bank = 0;
2469
2470			return 0;
2471		}
2472		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473		/* fall-thru */
2474	default:
2475		/* set bank to 0 in case flash read fails */
2476		*bank = 0;
2477
2478		/* Check bank 0 */
2479		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480		                                        &sig_byte);
2481		if (ret_val)
2482			return ret_val;
2483		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484		    E1000_ICH_NVM_SIG_VALUE) {
2485			*bank = 0;
2486			return 0;
2487		}
2488
2489		/* Check bank 1 */
2490		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491		                                        bank1_offset,
2492		                                        &sig_byte);
2493		if (ret_val)
2494			return ret_val;
2495		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496		    E1000_ICH_NVM_SIG_VALUE) {
2497			*bank = 1;
2498			return 0;
2499		}
2500
2501		e_dbg("ERROR: No valid NVM bank present\n");
2502		return -E1000_ERR_NVM;
2503	}
2504}
2505
2506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508 *  @hw: pointer to the HW structure
2509 *  @offset: The offset (in bytes) of the word(s) to read.
2510 *  @words: Size of data to read in words
2511 *  @data: Pointer to the word(s) to read at offset.
2512 *
2513 *  Reads a word(s) from the NVM using the flash access registers.
2514 **/
2515static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516				  u16 *data)
2517{
2518	struct e1000_nvm_info *nvm = &hw->nvm;
2519	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520	u32 act_offset;
2521	s32 ret_val = 0;
2522	u32 bank = 0;
2523	u16 i, word;
2524
2525	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526	    (words == 0)) {
2527		e_dbg("nvm parameter(s) out of bounds\n");
2528		ret_val = -E1000_ERR_NVM;
2529		goto out;
2530	}
2531
2532	nvm->ops.acquire(hw);
2533
2534	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535	if (ret_val) {
2536		e_dbg("Could not detect valid bank, assuming bank 0\n");
2537		bank = 0;
2538	}
2539
2540	act_offset = (bank) ? nvm->flash_bank_size : 0;
2541	act_offset += offset;
2542
2543	ret_val = 0;
2544	for (i = 0; i < words; i++) {
2545		if (dev_spec->shadow_ram[offset+i].modified) {
2546			data[i] = dev_spec->shadow_ram[offset+i].value;
2547		} else {
2548			ret_val = e1000_read_flash_word_ich8lan(hw,
2549								act_offset + i,
2550								&word);
2551			if (ret_val)
2552				break;
2553			data[i] = word;
2554		}
2555	}
2556
2557	nvm->ops.release(hw);
2558
2559out:
2560	if (ret_val)
2561		e_dbg("NVM read error: %d\n", ret_val);
2562
2563	return ret_val;
2564}
2565
2566/**
2567 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568 *  @hw: pointer to the HW structure
2569 *
2570 *  This function does initial flash setup so that a new read/write/erase cycle
2571 *  can be started.
2572 **/
2573static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574{
2575	union ich8_hws_flash_status hsfsts;
2576	s32 ret_val = -E1000_ERR_NVM;
2577
2578	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580	/* Check if the flash descriptor is valid */
2581	if (!hsfsts.hsf_status.fldesvalid) {
2582		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583		return -E1000_ERR_NVM;
2584	}
2585
2586	/* Clear FCERR and DAEL in hw status by writing 1 */
2587	hsfsts.hsf_status.flcerr = 1;
2588	hsfsts.hsf_status.dael = 1;
 
 
 
 
2589
2590	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592	/*
2593	 * Either we should have a hardware SPI cycle in progress
2594	 * bit to check against, in order to start a new cycle or
2595	 * FDONE bit should be changed in the hardware so that it
2596	 * is 1 after hardware reset, which can then be used as an
2597	 * indication whether a cycle is in progress or has been
2598	 * completed.
2599	 */
2600
2601	if (!hsfsts.hsf_status.flcinprog) {
2602		/*
2603		 * There is no cycle running at present,
2604		 * so we can start a cycle.
2605		 * Begin by setting Flash Cycle Done.
2606		 */
2607		hsfsts.hsf_status.flcdone = 1;
2608		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
2609		ret_val = 0;
2610	} else {
2611		s32 i;
2612
2613		/*
2614		 * Otherwise poll for sometime so the current
2615		 * cycle has a chance to end before giving up.
2616		 */
2617		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619			if (!hsfsts.hsf_status.flcinprog) {
2620				ret_val = 0;
2621				break;
2622			}
2623			udelay(1);
2624		}
2625		if (!ret_val) {
2626			/*
2627			 * Successful in waiting for previous cycle to timeout,
2628			 * now set the Flash Cycle Done.
2629			 */
2630			hsfsts.hsf_status.flcdone = 1;
2631			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
 
2632		} else {
2633			e_dbg("Flash controller busy, cannot get access\n");
2634		}
2635	}
2636
2637	return ret_val;
2638}
2639
2640/**
2641 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642 *  @hw: pointer to the HW structure
2643 *  @timeout: maximum time to wait for completion
2644 *
2645 *  This function starts a flash cycle and waits for its completion.
2646 **/
2647static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648{
2649	union ich8_hws_flash_ctrl hsflctl;
2650	union ich8_hws_flash_status hsfsts;
2651	u32 i = 0;
2652
2653	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
2655	hsflctl.hsf_ctrl.flcgo = 1;
2656	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
2657
2658	/* wait till FDONE bit is set to 1 */
2659	do {
2660		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661		if (hsfsts.hsf_status.flcdone)
2662			break;
2663		udelay(1);
2664	} while (i++ < timeout);
2665
2666	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667		return 0;
2668
2669	return -E1000_ERR_NVM;
2670}
2671
2672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2673 *  e1000_read_flash_word_ich8lan - Read word from flash
2674 *  @hw: pointer to the HW structure
2675 *  @offset: offset to data location
2676 *  @data: pointer to the location for storing the data
2677 *
2678 *  Reads the flash word at offset into data.  Offset is converted
2679 *  to bytes before read.
2680 **/
2681static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682					 u16 *data)
2683{
2684	/* Must convert offset into bytes. */
2685	offset <<= 1;
2686
2687	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688}
2689
2690/**
2691 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692 *  @hw: pointer to the HW structure
2693 *  @offset: The offset of the byte to read.
2694 *  @data: Pointer to a byte to store the value read.
2695 *
2696 *  Reads a single byte from the NVM using the flash access registers.
2697 **/
2698static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699					 u8 *data)
2700{
2701	s32 ret_val;
2702	u16 word = 0;
2703
2704	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
 
 
 
 
 
 
 
2705	if (ret_val)
2706		return ret_val;
2707
2708	*data = (u8)word;
2709
2710	return 0;
2711}
2712
2713/**
2714 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715 *  @hw: pointer to the HW structure
2716 *  @offset: The offset (in bytes) of the byte or word to read.
2717 *  @size: Size of data to read, 1=byte 2=word
2718 *  @data: Pointer to the word to store the value read.
2719 *
2720 *  Reads a byte or word from the NVM using the flash access registers.
2721 **/
2722static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723					 u8 size, u16 *data)
2724{
2725	union ich8_hws_flash_status hsfsts;
2726	union ich8_hws_flash_ctrl hsflctl;
2727	u32 flash_linear_addr;
2728	u32 flash_data = 0;
2729	s32 ret_val = -E1000_ERR_NVM;
2730	u8 count = 0;
2731
2732	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733		return -E1000_ERR_NVM;
2734
2735	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736			    hw->nvm.flash_base_addr;
2737
2738	do {
2739		udelay(1);
2740		/* Steps */
2741		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742		if (ret_val)
2743			break;
2744
2745		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747		hsflctl.hsf_ctrl.fldbcount = size - 1;
2748		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753		ret_val = e1000_flash_cycle_ich8lan(hw,
2754						ICH_FLASH_READ_COMMAND_TIMEOUT);
 
2755
2756		/*
2757		 * Check if FCERR is set to 1, if set to 1, clear it
2758		 * and try the whole sequence a few more times, else
2759		 * read in (shift in) the Flash Data0, the order is
2760		 * least significant byte first msb to lsb
2761		 */
2762		if (!ret_val) {
2763			flash_data = er32flash(ICH_FLASH_FDATA0);
2764			if (size == 1)
2765				*data = (u8)(flash_data & 0x000000FF);
2766			else if (size == 2)
2767				*data = (u16)(flash_data & 0x0000FFFF);
2768			break;
2769		} else {
2770			/*
2771			 * If we've gotten here, then things are probably
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772			 * completely hosed, but if the error condition is
2773			 * detected, it won't hurt to give it another try...
2774			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775			 */
2776			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777			if (hsfsts.hsf_status.flcerr) {
2778				/* Repeat for some time before giving up. */
2779				continue;
2780			} else if (!hsfsts.hsf_status.flcdone) {
2781				e_dbg("Timeout error - flash cycle did not complete.\n");
2782				break;
2783			}
2784		}
2785	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792 *  @hw: pointer to the HW structure
2793 *  @offset: The offset (in bytes) of the word(s) to write.
2794 *  @words: Size of data to write in words
2795 *  @data: Pointer to the word(s) to write at offset.
2796 *
2797 *  Writes a byte or word to the NVM using the flash access registers.
2798 **/
2799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800				   u16 *data)
2801{
2802	struct e1000_nvm_info *nvm = &hw->nvm;
2803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804	u16 i;
2805
2806	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807	    (words == 0)) {
2808		e_dbg("nvm parameter(s) out of bounds\n");
2809		return -E1000_ERR_NVM;
2810	}
2811
2812	nvm->ops.acquire(hw);
2813
2814	for (i = 0; i < words; i++) {
2815		dev_spec->shadow_ram[offset+i].modified = true;
2816		dev_spec->shadow_ram[offset+i].value = data[i];
2817	}
2818
2819	nvm->ops.release(hw);
2820
2821	return 0;
2822}
2823
2824/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826 *  @hw: pointer to the HW structure
2827 *
2828 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829 *  which writes the checksum to the shadow ram.  The changes in the shadow
2830 *  ram are then committed to the EEPROM by processing each bank at a time
2831 *  checking for the modified bit and writing only the pending changes.
2832 *  After a successful commit, the shadow ram is cleared and is ready for
2833 *  future writes.
2834 **/
2835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836{
2837	struct e1000_nvm_info *nvm = &hw->nvm;
2838	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840	s32 ret_val;
2841	u16 data;
2842
2843	ret_val = e1000e_update_nvm_checksum_generic(hw);
2844	if (ret_val)
2845		goto out;
2846
2847	if (nvm->type != e1000_nvm_flash_sw)
2848		goto out;
2849
2850	nvm->ops.acquire(hw);
2851
2852	/*
2853	 * We're writing to the opposite bank so if we're on bank 1,
2854	 * write to bank 0 etc.  We also need to erase the segment that
2855	 * is going to be written
2856	 */
2857	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858	if (ret_val) {
2859		e_dbg("Could not detect valid bank, assuming bank 0\n");
2860		bank = 0;
2861	}
2862
2863	if (bank == 0) {
2864		new_bank_offset = nvm->flash_bank_size;
2865		old_bank_offset = 0;
2866		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867		if (ret_val)
2868			goto release;
2869	} else {
2870		old_bank_offset = nvm->flash_bank_size;
2871		new_bank_offset = 0;
2872		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873		if (ret_val)
2874			goto release;
2875	}
2876
2877	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878		/*
2879		 * Determine whether to write the value stored
2880		 * in the other NVM bank or a modified value stored
2881		 * in the shadow RAM
2882		 */
2883		if (dev_spec->shadow_ram[i].modified) {
2884			data = dev_spec->shadow_ram[i].value;
2885		} else {
2886			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887			                                        old_bank_offset,
2888			                                        &data);
2889			if (ret_val)
2890				break;
2891		}
2892
2893		/*
2894		 * If the word is 0x13, then make sure the signature bits
2895		 * (15:14) are 11b until the commit has completed.
2896		 * This will allow us to write 10b which indicates the
2897		 * signature is valid.  We want to do this after the write
2898		 * has completed so that we don't mark the segment valid
2899		 * while the write is still in progress
2900		 */
2901		if (i == E1000_ICH_NVM_SIG_WORD)
2902			data |= E1000_ICH_NVM_SIG_MASK;
2903
2904		/* Convert offset to bytes. */
2905		act_offset = (i + new_bank_offset) << 1;
2906
2907		udelay(100);
2908		/* Write the bytes to the new bank. */
2909		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910							       act_offset,
2911							       (u8)data);
2912		if (ret_val)
2913			break;
2914
2915		udelay(100);
2916		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917							  act_offset + 1,
2918							  (u8)(data >> 8));
2919		if (ret_val)
2920			break;
2921	}
2922
2923	/*
2924	 * Don't bother writing the segment valid bits if sector
2925	 * programming failed.
2926	 */
2927	if (ret_val) {
2928		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929		e_dbg("Flash commit failed.\n");
2930		goto release;
2931	}
2932
2933	/*
2934	 * Finally validate the new segment by setting bit 15:14
2935	 * to 10b in word 0x13 , this can be done without an
2936	 * erase as well since these bits are 11 to start with
2937	 * and we need to change bit 14 to 0b
2938	 */
2939	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941	if (ret_val)
2942		goto release;
2943
2944	data &= 0xBFFF;
2945	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946						       act_offset * 2 + 1,
2947						       (u8)(data >> 8));
2948	if (ret_val)
2949		goto release;
2950
2951	/*
2952	 * And invalidate the previously valid segment by setting
2953	 * its signature word (0x13) high_byte to 0b. This can be
2954	 * done without an erase because flash erase sets all bits
2955	 * to 1's. We can write 1's to 0's without an erase
2956	 */
2957	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959	if (ret_val)
2960		goto release;
2961
2962	/* Great!  Everything worked, we can now clear the cached entries. */
2963	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964		dev_spec->shadow_ram[i].modified = false;
2965		dev_spec->shadow_ram[i].value = 0xFFFF;
2966	}
2967
2968release:
2969	nvm->ops.release(hw);
2970
2971	/*
2972	 * Reload the EEPROM, or else modifications will not appear
2973	 * until after the next adapter reset.
2974	 */
2975	if (!ret_val) {
2976		nvm->ops.reload(hw);
2977		usleep_range(10000, 20000);
2978	}
2979
2980out:
2981	if (ret_val)
2982		e_dbg("NVM update error: %d\n", ret_val);
2983
2984	return ret_val;
2985}
2986
2987/**
2988 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989 *  @hw: pointer to the HW structure
2990 *
2991 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993 *  calculated, in which case we need to calculate the checksum and set bit 6.
2994 **/
2995static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996{
2997	s32 ret_val;
2998	u16 data;
 
 
2999
3000	/*
3001	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002	 * needs to be fixed.  This bit is an indication that the NVM
3003	 * was prepared by OEM software and did not calculate the
3004	 * checksum...a likely scenario.
3005	 */
3006	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007	if (ret_val)
3008		return ret_val;
3009
3010	if (!(data & 0x40)) {
3011		data |= 0x40;
3012		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013		if (ret_val)
3014			return ret_val;
3015		ret_val = e1000e_update_nvm_checksum(hw);
3016		if (ret_val)
3017			return ret_val;
 
 
 
 
3018	}
3019
3020	return e1000e_validate_nvm_checksum_generic(hw);
3021}
3022
3023/**
3024 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025 *  @hw: pointer to the HW structure
3026 *
3027 *  To prevent malicious write/erase of the NVM, set it to be read-only
3028 *  so that the hardware ignores all write/erase cycles of the NVM via
3029 *  the flash control registers.  The shadow-ram copy of the NVM will
3030 *  still be updated, however any updates to this copy will not stick
3031 *  across driver reloads.
3032 **/
3033void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034{
3035	struct e1000_nvm_info *nvm = &hw->nvm;
3036	union ich8_flash_protected_range pr0;
3037	union ich8_hws_flash_status hsfsts;
3038	u32 gfpreg;
3039
3040	nvm->ops.acquire(hw);
3041
3042	gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044	/* Write-protect GbE Sector of NVM */
3045	pr0.regval = er32flash(ICH_FLASH_PR0);
3046	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048	pr0.range.wpe = true;
3049	ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051	/*
3052	 * Lock down a subset of GbE Flash Control Registers, e.g.
3053	 * PR0 to prevent the write-protection from being lifted.
3054	 * Once FLOCKDN is set, the registers protected by it cannot
3055	 * be written until FLOCKDN is cleared by a hardware reset.
3056	 */
3057	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058	hsfsts.hsf_status.flockdn = true;
3059	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061	nvm->ops.release(hw);
3062}
3063
3064/**
3065 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066 *  @hw: pointer to the HW structure
3067 *  @offset: The offset (in bytes) of the byte/word to read.
3068 *  @size: Size of data to read, 1=byte 2=word
3069 *  @data: The byte(s) to write to the NVM.
3070 *
3071 *  Writes one/two bytes to the NVM using the flash access registers.
3072 **/
3073static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074					  u8 size, u16 data)
3075{
3076	union ich8_hws_flash_status hsfsts;
3077	union ich8_hws_flash_ctrl hsflctl;
3078	u32 flash_linear_addr;
3079	u32 flash_data = 0;
3080	s32 ret_val;
3081	u8 count = 0;
3082
3083	if (size < 1 || size > 2 || data > size * 0xff ||
3084	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085		return -E1000_ERR_NVM;
 
 
 
 
3086
3087	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088			    hw->nvm.flash_base_addr;
3089
3090	do {
3091		udelay(1);
3092		/* Steps */
3093		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094		if (ret_val)
3095			break;
 
 
 
 
 
 
 
3096
3097		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099		hsflctl.hsf_ctrl.fldbcount = size -1;
3100		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
 
 
 
3102
3103		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105		if (size == 1)
3106			flash_data = (u32)data & 0x00FF;
3107		else
3108			flash_data = (u32)data;
3109
3110		ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112		/*
3113		 * check if FCERR is set to 1 , if set to 1, clear it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3114		 * and try the whole sequence a few more times else done
3115		 */
3116		ret_val = e1000_flash_cycle_ich8lan(hw,
3117					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
 
 
3118		if (!ret_val)
3119			break;
3120
3121		/*
3122		 * If we're here, then things are most likely
3123		 * completely hosed, but if the error condition
3124		 * is detected, it won't hurt to give it another
3125		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126		 */
3127		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
 
3128		if (hsfsts.hsf_status.flcerr)
3129			/* Repeat for some time before giving up. */
3130			continue;
3131		if (!hsfsts.hsf_status.flcdone) {
3132			e_dbg("Timeout error - flash cycle did not complete.\n");
3133			break;
3134		}
3135	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137	return ret_val;
3138}
3139
3140/**
3141 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142 *  @hw: pointer to the HW structure
3143 *  @offset: The index of the byte to read.
3144 *  @data: The byte to write to the NVM.
3145 *
3146 *  Writes a single byte to the NVM using the flash access registers.
3147 **/
3148static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149					  u8 data)
3150{
3151	u16 word = (u16)data;
3152
3153	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154}
3155
3156/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158 *  @hw: pointer to the HW structure
3159 *  @offset: The offset of the byte to write.
3160 *  @byte: The byte to write to the NVM.
3161 *
3162 *  Writes a single byte to the NVM using the flash access registers.
3163 *  Goes through a retry algorithm before giving up.
3164 **/
3165static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166						u32 offset, u8 byte)
3167{
3168	s32 ret_val;
3169	u16 program_retries;
3170
3171	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172	if (!ret_val)
3173		return ret_val;
3174
3175	for (program_retries = 0; program_retries < 100; program_retries++) {
3176		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177		udelay(100);
3178		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179		if (!ret_val)
3180			break;
3181	}
3182	if (program_retries == 100)
3183		return -E1000_ERR_NVM;
3184
3185	return 0;
3186}
3187
3188/**
3189 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190 *  @hw: pointer to the HW structure
3191 *  @bank: 0 for first bank, 1 for second bank, etc.
3192 *
3193 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194 *  bank N is 4096 * N + flash_reg_addr.
3195 **/
3196static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197{
3198	struct e1000_nvm_info *nvm = &hw->nvm;
3199	union ich8_hws_flash_status hsfsts;
3200	union ich8_hws_flash_ctrl hsflctl;
3201	u32 flash_linear_addr;
3202	/* bank size is in 16bit words - adjust to bytes */
3203	u32 flash_bank_size = nvm->flash_bank_size * 2;
3204	s32 ret_val;
3205	s32 count = 0;
3206	s32 j, iteration, sector_size;
3207
3208	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210	/*
3211	 * Determine HW Sector size: Read BERASE bits of hw flash status
3212	 * register
3213	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214	 *     consecutive sectors.  The start index for the nth Hw sector
3215	 *     can be calculated as = bank * 4096 + n * 256
3216	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217	 *     The start index for the nth Hw sector can be calculated
3218	 *     as = bank * 4096
3219	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220	 *     (ich9 only, otherwise error condition)
3221	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222	 */
3223	switch (hsfsts.hsf_status.berasesz) {
3224	case 0:
3225		/* Hw sector size 256 */
3226		sector_size = ICH_FLASH_SEG_SIZE_256;
3227		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228		break;
3229	case 1:
3230		sector_size = ICH_FLASH_SEG_SIZE_4K;
3231		iteration = 1;
3232		break;
3233	case 2:
3234		sector_size = ICH_FLASH_SEG_SIZE_8K;
3235		iteration = 1;
3236		break;
3237	case 3:
3238		sector_size = ICH_FLASH_SEG_SIZE_64K;
3239		iteration = 1;
3240		break;
3241	default:
3242		return -E1000_ERR_NVM;
3243	}
3244
3245	/* Start with the base address, then add the sector offset. */
3246	flash_linear_addr = hw->nvm.flash_base_addr;
3247	flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249	for (j = 0; j < iteration ; j++) {
3250		do {
 
 
3251			/* Steps */
3252			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253			if (ret_val)
3254				return ret_val;
3255
3256			/*
3257			 * Write a value 11 (block Erase) in Flash
3258			 * Cycle field in hw flash control
3259			 */
3260			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
 
 
3261			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
3263
3264			/*
3265			 * Write the last 24 bits of an index within the
3266			 * block into Flash Linear address field in Flash
3267			 * Address.
3268			 */
3269			flash_linear_addr += (j * sector_size);
3270			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272			ret_val = e1000_flash_cycle_ich8lan(hw,
3273					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274			if (!ret_val)
3275				break;
3276
3277			/*
3278			 * Check if FCERR is set to 1.  If 1,
3279			 * clear it and try the whole sequence
3280			 * a few more times else Done
3281			 */
3282			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283			if (hsfsts.hsf_status.flcerr)
3284				/* repeat for some time before giving up */
3285				continue;
3286			else if (!hsfsts.hsf_status.flcdone)
3287				return ret_val;
3288		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289	}
3290
3291	return 0;
3292}
3293
3294/**
3295 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296 *  @hw: pointer to the HW structure
3297 *  @data: Pointer to the LED settings
3298 *
3299 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300 *  settings is all 0's or F's, set the LED default to a valid LED default
3301 *  setting.
3302 **/
3303static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304{
3305	s32 ret_val;
3306
3307	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308	if (ret_val) {
3309		e_dbg("NVM Read Error\n");
3310		return ret_val;
3311	}
3312
3313	if (*data == ID_LED_RESERVED_0000 ||
3314	    *data == ID_LED_RESERVED_FFFF)
3315		*data = ID_LED_DEFAULT_ICH8LAN;
3316
3317	return 0;
3318}
3319
3320/**
3321 *  e1000_id_led_init_pchlan - store LED configurations
3322 *  @hw: pointer to the HW structure
3323 *
3324 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325 *  the PHY LED configuration register.
3326 *
3327 *  PCH also does not have an "always on" or "always off" mode which
3328 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331 *  link based on logic in e1000_led_[on|off]_pchlan().
3332 **/
3333static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334{
3335	struct e1000_mac_info *mac = &hw->mac;
3336	s32 ret_val;
3337	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339	u16 data, i, temp, shift;
3340
3341	/* Get default ID LED modes */
3342	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343	if (ret_val)
3344		return ret_val;
3345
3346	mac->ledctl_default = er32(LEDCTL);
3347	mac->ledctl_mode1 = mac->ledctl_default;
3348	mac->ledctl_mode2 = mac->ledctl_default;
3349
3350	for (i = 0; i < 4; i++) {
3351		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352		shift = (i * 5);
3353		switch (temp) {
3354		case ID_LED_ON1_DEF2:
3355		case ID_LED_ON1_ON2:
3356		case ID_LED_ON1_OFF2:
3357			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358			mac->ledctl_mode1 |= (ledctl_on << shift);
3359			break;
3360		case ID_LED_OFF1_DEF2:
3361		case ID_LED_OFF1_ON2:
3362		case ID_LED_OFF1_OFF2:
3363			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364			mac->ledctl_mode1 |= (ledctl_off << shift);
3365			break;
3366		default:
3367			/* Do nothing */
3368			break;
3369		}
3370		switch (temp) {
3371		case ID_LED_DEF1_ON2:
3372		case ID_LED_ON1_ON2:
3373		case ID_LED_OFF1_ON2:
3374			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375			mac->ledctl_mode2 |= (ledctl_on << shift);
3376			break;
3377		case ID_LED_DEF1_OFF2:
3378		case ID_LED_ON1_OFF2:
3379		case ID_LED_OFF1_OFF2:
3380			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381			mac->ledctl_mode2 |= (ledctl_off << shift);
3382			break;
3383		default:
3384			/* Do nothing */
3385			break;
3386		}
3387	}
3388
3389	return 0;
3390}
3391
3392/**
3393 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394 *  @hw: pointer to the HW structure
3395 *
3396 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397 *  register, so the the bus width is hard coded.
3398 **/
3399static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400{
3401	struct e1000_bus_info *bus = &hw->bus;
3402	s32 ret_val;
3403
3404	ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406	/*
3407	 * ICH devices are "PCI Express"-ish.  They have
3408	 * a configuration space, but do not contain
3409	 * PCI Express Capability registers, so bus width
3410	 * must be hardcoded.
3411	 */
3412	if (bus->width == e1000_bus_width_unknown)
3413		bus->width = e1000_bus_width_pcie_x1;
3414
3415	return ret_val;
3416}
3417
3418/**
3419 *  e1000_reset_hw_ich8lan - Reset the hardware
3420 *  @hw: pointer to the HW structure
3421 *
3422 *  Does a full reset of the hardware which includes a reset of the PHY and
3423 *  MAC.
3424 **/
3425static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426{
3427	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428	u16 kum_cfg;
3429	u32 ctrl, reg;
3430	s32 ret_val;
3431
3432	/*
3433	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434	 * on the last TLP read/write transaction when MAC is reset.
3435	 */
3436	ret_val = e1000e_disable_pcie_master(hw);
3437	if (ret_val)
3438		e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440	e_dbg("Masking off all interrupts\n");
3441	ew32(IMC, 0xffffffff);
3442
3443	/*
3444	 * Disable the Transmit and Receive units.  Then delay to allow
3445	 * any pending transactions to complete before we hit the MAC
3446	 * with the global reset.
3447	 */
3448	ew32(RCTL, 0);
3449	ew32(TCTL, E1000_TCTL_PSP);
3450	e1e_flush();
3451
3452	usleep_range(10000, 20000);
3453
3454	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3455	if (hw->mac.type == e1000_ich8lan) {
3456		/* Set Tx and Rx buffer allocation to 8k apiece. */
3457		ew32(PBA, E1000_PBA_8K);
3458		/* Set Packet Buffer Size to 16k. */
3459		ew32(PBS, E1000_PBS_16K);
3460	}
3461
3462	if (hw->mac.type == e1000_pchlan) {
3463		/* Save the NVM K1 bit setting */
3464		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465		if (ret_val)
3466			return ret_val;
3467
3468		if (kum_cfg & E1000_NVM_K1_ENABLE)
3469			dev_spec->nvm_k1_enabled = true;
3470		else
3471			dev_spec->nvm_k1_enabled = false;
3472	}
3473
3474	ctrl = er32(CTRL);
3475
3476	if (!hw->phy.ops.check_reset_block(hw)) {
3477		/*
3478		 * Full-chip reset requires MAC and PHY reset at the same
3479		 * time to make sure the interface between MAC and the
3480		 * external PHY is reset.
3481		 */
3482		ctrl |= E1000_CTRL_PHY_RST;
3483
3484		/*
3485		 * Gate automatic PHY configuration by hardware on
3486		 * non-managed 82579
3487		 */
3488		if ((hw->mac.type == e1000_pch2lan) &&
3489		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490			e1000_gate_hw_phy_config_ich8lan(hw, true);
3491	}
3492	ret_val = e1000_acquire_swflag_ich8lan(hw);
3493	e_dbg("Issuing a global reset to ich8lan\n");
3494	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495	/* cannot issue a flush here because it hangs the hardware */
3496	msleep(20);
3497
3498	/* Set Phy Config Counter to 50msec */
3499	if (hw->mac.type == e1000_pch2lan) {
3500		reg = er32(FEXTNVM3);
3501		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503		ew32(FEXTNVM3, reg);
3504	}
3505
3506	if (!ret_val)
3507		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509	if (ctrl & E1000_CTRL_PHY_RST) {
3510		ret_val = hw->phy.ops.get_cfg_done(hw);
3511		if (ret_val)
3512			return ret_val;
3513
3514		ret_val = e1000_post_phy_reset_ich8lan(hw);
3515		if (ret_val)
3516			return ret_val;
3517	}
3518
3519	/*
3520	 * For PCH, this write will make sure that any noise
3521	 * will be detected as a CRC error and be dropped rather than show up
3522	 * as a bad packet to the DMA engine.
3523	 */
3524	if (hw->mac.type == e1000_pchlan)
3525		ew32(CRC_OFFSET, 0x65656565);
3526
3527	ew32(IMC, 0xffffffff);
3528	er32(ICR);
3529
3530	reg = er32(KABGTXD);
3531	reg |= E1000_KABGTXD_BGSQLBIAS;
3532	ew32(KABGTXD, reg);
3533
3534	return 0;
3535}
3536
3537/**
3538 *  e1000_init_hw_ich8lan - Initialize the hardware
3539 *  @hw: pointer to the HW structure
3540 *
3541 *  Prepares the hardware for transmit and receive by doing the following:
3542 *   - initialize hardware bits
3543 *   - initialize LED identification
3544 *   - setup receive address registers
3545 *   - setup flow control
3546 *   - setup transmit descriptors
3547 *   - clear statistics
3548 **/
3549static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550{
3551	struct e1000_mac_info *mac = &hw->mac;
3552	u32 ctrl_ext, txdctl, snoop;
3553	s32 ret_val;
3554	u16 i;
3555
3556	e1000_initialize_hw_bits_ich8lan(hw);
3557
3558	/* Initialize identification LED */
3559	ret_val = mac->ops.id_led_init(hw);
 
3560	if (ret_val)
3561		e_dbg("Error initializing identification LED\n");
3562		/* This is not fatal and we should not stop init due to this */
3563
3564	/* Setup the receive address. */
3565	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567	/* Zero out the Multicast HASH table */
3568	e_dbg("Zeroing the MTA\n");
3569	for (i = 0; i < mac->mta_reg_count; i++)
3570		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572	/*
3573	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3575	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576	 */
3577	if (hw->phy.type == e1000_phy_82578) {
3578		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579		i &= ~BM_WUC_HOST_WU_BIT;
3580		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582		if (ret_val)
3583			return ret_val;
3584	}
3585
3586	/* Setup link and flow control */
3587	ret_val = mac->ops.setup_link(hw);
3588
3589	/* Set the transmit descriptor write-back policy for both queues */
3590	txdctl = er32(TXDCTL(0));
3591	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592		 E1000_TXDCTL_FULL_TX_DESC_WB;
3593	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595	ew32(TXDCTL(0), txdctl);
3596	txdctl = er32(TXDCTL(1));
3597	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598		 E1000_TXDCTL_FULL_TX_DESC_WB;
3599	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601	ew32(TXDCTL(1), txdctl);
3602
3603	/*
3604	 * ICH8 has opposite polarity of no_snoop bits.
3605	 * By default, we should use snoop behavior.
3606	 */
3607	if (mac->type == e1000_ich8lan)
3608		snoop = PCIE_ICH8_SNOOP_ALL;
3609	else
3610		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611	e1000e_set_pcie_no_snoop(hw, snoop);
3612
 
 
 
 
 
 
 
 
 
3613	ctrl_ext = er32(CTRL_EXT);
3614	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615	ew32(CTRL_EXT, ctrl_ext);
3616
3617	/*
3618	 * Clear all of the statistics registers (clear on read).  It is
3619	 * important that we do this after we have tried to establish link
3620	 * because the symbol error count will increment wildly if there
3621	 * is no link.
3622	 */
3623	e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625	return ret_val;
3626}
 
3627/**
3628 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629 *  @hw: pointer to the HW structure
3630 *
3631 *  Sets/Clears required hardware bits necessary for correctly setting up the
3632 *  hardware for transmit and receive.
3633 **/
3634static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635{
3636	u32 reg;
3637
3638	/* Extended Device Control */
3639	reg = er32(CTRL_EXT);
3640	reg |= (1 << 22);
3641	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642	if (hw->mac.type >= e1000_pchlan)
3643		reg |= E1000_CTRL_EXT_PHYPDEN;
3644	ew32(CTRL_EXT, reg);
3645
3646	/* Transmit Descriptor Control 0 */
3647	reg = er32(TXDCTL(0));
3648	reg |= (1 << 22);
3649	ew32(TXDCTL(0), reg);
3650
3651	/* Transmit Descriptor Control 1 */
3652	reg = er32(TXDCTL(1));
3653	reg |= (1 << 22);
3654	ew32(TXDCTL(1), reg);
3655
3656	/* Transmit Arbitration Control 0 */
3657	reg = er32(TARC(0));
3658	if (hw->mac.type == e1000_ich8lan)
3659		reg |= (1 << 28) | (1 << 29);
3660	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661	ew32(TARC(0), reg);
3662
3663	/* Transmit Arbitration Control 1 */
3664	reg = er32(TARC(1));
3665	if (er32(TCTL) & E1000_TCTL_MULR)
3666		reg &= ~(1 << 28);
3667	else
3668		reg |= (1 << 28);
3669	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670	ew32(TARC(1), reg);
3671
3672	/* Device Status */
3673	if (hw->mac.type == e1000_ich8lan) {
3674		reg = er32(STATUS);
3675		reg &= ~(1 << 31);
3676		ew32(STATUS, reg);
3677	}
3678
3679	/*
3680	 * work-around descriptor data corruption issue during nfs v2 udp
3681	 * traffic, just disable the nfs filtering capability
3682	 */
3683	reg = er32(RFCTL);
3684	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686	/*
3687	 * Disable IPv6 extension header parsing because some malformed
3688	 * IPv6 headers can hang the Rx.
3689	 */
3690	if (hw->mac.type == e1000_ich8lan)
3691		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692	ew32(RFCTL, reg);
 
 
 
 
 
 
 
 
 
 
 
3693}
3694
3695/**
3696 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697 *  @hw: pointer to the HW structure
3698 *
3699 *  Determines which flow control settings to use, then configures flow
3700 *  control.  Calls the appropriate media-specific link configuration
3701 *  function.  Assuming the adapter has a valid link partner, a valid link
3702 *  should be established.  Assumes the hardware has previously been reset
3703 *  and the transmitter and receiver are not enabled.
3704 **/
3705static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706{
3707	s32 ret_val;
3708
3709	if (hw->phy.ops.check_reset_block(hw))
3710		return 0;
3711
3712	/*
3713	 * ICH parts do not have a word in the NVM to determine
3714	 * the default flow control setting, so we explicitly
3715	 * set it to full.
3716	 */
3717	if (hw->fc.requested_mode == e1000_fc_default) {
3718		/* Workaround h/w hang when Tx flow control enabled */
3719		if (hw->mac.type == e1000_pchlan)
3720			hw->fc.requested_mode = e1000_fc_rx_pause;
3721		else
3722			hw->fc.requested_mode = e1000_fc_full;
3723	}
3724
3725	/*
3726	 * Save off the requested flow control mode for use later.  Depending
3727	 * on the link partner's capabilities, we may or may not use this mode.
3728	 */
3729	hw->fc.current_mode = hw->fc.requested_mode;
3730
3731	e_dbg("After fix-ups FlowControl is now = %x\n",
3732		hw->fc.current_mode);
3733
3734	/* Continue to configure the copper link. */
3735	ret_val = hw->mac.ops.setup_physical_interface(hw);
3736	if (ret_val)
3737		return ret_val;
3738
3739	ew32(FCTTV, hw->fc.pause_time);
3740	if ((hw->phy.type == e1000_phy_82578) ||
3741	    (hw->phy.type == e1000_phy_82579) ||
3742	    (hw->phy.type == e1000_phy_i217) ||
3743	    (hw->phy.type == e1000_phy_82577)) {
3744		ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747				   hw->fc.pause_time);
3748		if (ret_val)
3749			return ret_val;
3750	}
3751
3752	return e1000e_set_fc_watermarks(hw);
3753}
3754
3755/**
3756 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757 *  @hw: pointer to the HW structure
3758 *
3759 *  Configures the kumeran interface to the PHY to wait the appropriate time
3760 *  when polling the PHY, then call the generic setup_copper_link to finish
3761 *  configuring the copper link.
3762 **/
3763static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764{
3765	u32 ctrl;
3766	s32 ret_val;
3767	u16 reg_data;
3768
3769	ctrl = er32(CTRL);
3770	ctrl |= E1000_CTRL_SLU;
3771	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772	ew32(CTRL, ctrl);
3773
3774	/*
3775	 * Set the mac to wait the maximum time between each iteration
3776	 * and increase the max iterations when polling the phy;
3777	 * this fixes erroneous timeouts at 10Mbps.
3778	 */
3779	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780	if (ret_val)
3781		return ret_val;
3782	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783	                               &reg_data);
3784	if (ret_val)
3785		return ret_val;
3786	reg_data |= 0x3F;
3787	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788	                                reg_data);
3789	if (ret_val)
3790		return ret_val;
3791
3792	switch (hw->phy.type) {
3793	case e1000_phy_igp_3:
3794		ret_val = e1000e_copper_link_setup_igp(hw);
3795		if (ret_val)
3796			return ret_val;
3797		break;
3798	case e1000_phy_bm:
3799	case e1000_phy_82578:
3800		ret_val = e1000e_copper_link_setup_m88(hw);
3801		if (ret_val)
3802			return ret_val;
3803		break;
3804	case e1000_phy_82577:
3805	case e1000_phy_82579:
3806	case e1000_phy_i217:
3807		ret_val = e1000_copper_link_setup_82577(hw);
3808		if (ret_val)
3809			return ret_val;
3810		break;
3811	case e1000_phy_ife:
3812		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813		if (ret_val)
3814			return ret_val;
3815
3816		reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818		switch (hw->phy.mdix) {
3819		case 1:
3820			reg_data &= ~IFE_PMC_FORCE_MDIX;
3821			break;
3822		case 2:
3823			reg_data |= IFE_PMC_FORCE_MDIX;
3824			break;
3825		case 0:
3826		default:
3827			reg_data |= IFE_PMC_AUTO_MDIX;
3828			break;
3829		}
3830		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831		if (ret_val)
3832			return ret_val;
3833		break;
3834	default:
3835		break;
3836	}
3837
3838	return e1000e_setup_copper_link(hw);
3839}
3840
3841/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843 *  @hw: pointer to the HW structure
3844 *  @speed: pointer to store current link speed
3845 *  @duplex: pointer to store the current link duplex
3846 *
3847 *  Calls the generic get_speed_and_duplex to retrieve the current link
3848 *  information and then calls the Kumeran lock loss workaround for links at
3849 *  gigabit speeds.
3850 **/
3851static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852					  u16 *duplex)
3853{
3854	s32 ret_val;
3855
3856	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857	if (ret_val)
3858		return ret_val;
3859
3860	if ((hw->mac.type == e1000_ich8lan) &&
3861	    (hw->phy.type == e1000_phy_igp_3) &&
3862	    (*speed == SPEED_1000)) {
3863		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864	}
3865
3866	return ret_val;
3867}
3868
3869/**
3870 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871 *  @hw: pointer to the HW structure
3872 *
3873 *  Work-around for 82566 Kumeran PCS lock loss:
3874 *  On link status change (i.e. PCI reset, speed change) and link is up and
3875 *  speed is gigabit-
3876 *    0) if workaround is optionally disabled do nothing
3877 *    1) wait 1ms for Kumeran link to come up
3878 *    2) check Kumeran Diagnostic register PCS lock loss bit
3879 *    3) if not set the link is locked (all is good), otherwise...
3880 *    4) reset the PHY
3881 *    5) repeat up to 10 times
3882 *  Note: this is only called for IGP3 copper when speed is 1gb.
3883 **/
3884static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885{
3886	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887	u32 phy_ctrl;
3888	s32 ret_val;
3889	u16 i, data;
3890	bool link;
3891
3892	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893		return 0;
3894
3895	/*
3896	 * Make sure link is up before proceeding.  If not just return.
3897	 * Attempting this while link is negotiating fouled up link
3898	 * stability
3899	 */
3900	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901	if (!link)
3902		return 0;
3903
3904	for (i = 0; i < 10; i++) {
3905		/* read once to clear */
3906		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907		if (ret_val)
3908			return ret_val;
3909		/* and again to get new status */
3910		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911		if (ret_val)
3912			return ret_val;
3913
3914		/* check for PCS lock */
3915		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916			return 0;
3917
3918		/* Issue PHY reset */
3919		e1000_phy_hw_reset(hw);
3920		mdelay(5);
3921	}
3922	/* Disable GigE link negotiation */
3923	phy_ctrl = er32(PHY_CTRL);
3924	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926	ew32(PHY_CTRL, phy_ctrl);
3927
3928	/*
3929	 * Call gig speed drop workaround on Gig disable before accessing
3930	 * any PHY registers
3931	 */
3932	e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934	/* unable to acquire PCS lock */
3935	return -E1000_ERR_PHY;
3936}
3937
3938/**
3939 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940 *  @hw: pointer to the HW structure
3941 *  @state: boolean value used to set the current Kumeran workaround state
3942 *
3943 *  If ICH8, set the current Kumeran workaround state (enabled - true
3944 *  /disabled - false).
3945 **/
3946void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947						 bool state)
3948{
3949	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951	if (hw->mac.type != e1000_ich8lan) {
3952		e_dbg("Workaround applies to ICH8 only.\n");
3953		return;
3954	}
3955
3956	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957}
3958
3959/**
3960 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961 *  @hw: pointer to the HW structure
3962 *
3963 *  Workaround for 82566 power-down on D3 entry:
3964 *    1) disable gigabit link
3965 *    2) write VR power-down enable
3966 *    3) read it back
3967 *  Continue if successful, else issue LCD reset and repeat
3968 **/
3969void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970{
3971	u32 reg;
3972	u16 data;
3973	u8  retry = 0;
3974
3975	if (hw->phy.type != e1000_phy_igp_3)
3976		return;
3977
3978	/* Try the workaround twice (if needed) */
3979	do {
3980		/* Disable link */
3981		reg = er32(PHY_CTRL);
3982		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984		ew32(PHY_CTRL, reg);
3985
3986		/*
3987		 * Call gig speed drop workaround on Gig disable before
3988		 * accessing any PHY registers
3989		 */
3990		if (hw->mac.type == e1000_ich8lan)
3991			e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993		/* Write VR power-down enable */
3994		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998		/* Read it back and test */
3999		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002			break;
4003
4004		/* Issue PHY reset and repeat at most one more time */
4005		reg = er32(CTRL);
4006		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007		retry++;
4008	} while (retry);
4009}
4010
4011/**
4012 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013 *  @hw: pointer to the HW structure
4014 *
4015 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016 *  LPLU, Gig disable, MDIC PHY reset):
4017 *    1) Set Kumeran Near-end loopback
4018 *    2) Clear Kumeran Near-end loopback
4019 *  Should only be called for ICH8[m] devices with any 1G Phy.
4020 **/
4021void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022{
4023	s32 ret_val;
4024	u16 reg_data;
4025
4026	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027		return;
4028
4029	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030				      &reg_data);
4031	if (ret_val)
4032		return;
4033	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035				       reg_data);
4036	if (ret_val)
4037		return;
4038	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040				       reg_data);
4041}
4042
4043/**
4044 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045 *  @hw: pointer to the HW structure
4046 *
4047 *  During S0 to Sx transition, it is possible the link remains at gig
4048 *  instead of negotiating to a lower speed.  Before going to Sx, set
4049 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052 *  needs to be written.
4053 *  Parts that support (and are linked to a partner which support) EEE in
4054 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055 *  than 10Mbps w/o EEE.
4056 **/
4057void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058{
4059	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060	u32 phy_ctrl;
4061	s32 ret_val;
4062
4063	phy_ctrl = er32(PHY_CTRL);
4064	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
 
4065	if (hw->phy.type == e1000_phy_i217) {
4066		u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
4067
4068		ret_val = hw->phy.ops.acquire(hw);
4069		if (ret_val)
4070			goto out;
4071
4072		if (!dev_spec->eee_disable) {
4073			u16 eee_advert;
4074
4075			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076						  I217_EEE_ADVERTISEMENT);
 
 
4077			if (ret_val)
4078				goto release;
4079			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081			/*
4082			 * Disable LPLU if both link partners support 100BaseT
4083			 * EEE and 100Full is advertised on both ends of the
4084			 * link.
 
4085			 */
4086			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087			    (dev_spec->eee_lp_ability &
4088			     I217_EEE_100_SUPPORTED) &&
4089			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091					      E1000_PHY_CTRL_NOND0A_LPLU);
 
 
 
 
 
 
 
 
4092		}
4093
4094		/*
4095		 * For i217 Intel Rapid Start Technology support,
4096		 * when the system is going into Sx and no manageability engine
4097		 * is present, the driver must configure proxy to reset only on
4098		 * power good.  LPI (Low Power Idle) state must also reset only
4099		 * on power good, as well as the MTA (Multicast table array).
4100		 * The SMBus release must also be disabled on LCD reset.
4101		 */
4102		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104			/* Enable proxy to reset only on power good. */
4105			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109			/*
4110			 * Set bit enable LPI (EEE) to reset only on
4111			 * power good.
4112			 */
4113			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117			/* Disable the SMB release on LCD reset. */
4118			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121		}
4122
4123		/*
4124		 * Enable MTA to reset for Intel Rapid Start Technology
4125		 * Support
4126		 */
4127		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131release:
4132		hw->phy.ops.release(hw);
4133	}
4134out:
4135	ew32(PHY_CTRL, phy_ctrl);
4136
4137	if (hw->mac.type == e1000_ich8lan)
4138		e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140	if (hw->mac.type >= e1000_pchlan) {
4141		e1000_oem_bits_config_ich8lan(hw, false);
4142
4143		/* Reset PHY to activate OEM bits on 82577/8 */
4144		if (hw->mac.type == e1000_pchlan)
4145			e1000e_phy_hw_reset_generic(hw);
4146
4147		ret_val = hw->phy.ops.acquire(hw);
4148		if (ret_val)
4149			return;
4150		e1000_write_smbus_addr(hw);
4151		hw->phy.ops.release(hw);
4152	}
4153}
4154
4155/**
4156 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157 *  @hw: pointer to the HW structure
4158 *
4159 *  During Sx to S0 transitions on non-managed devices or managed devices
4160 *  on which PHY resets are not blocked, if the PHY registers cannot be
4161 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162 *  the PHY.
4163 *  On i217, setup Intel Rapid Start Technology.
4164 **/
4165void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166{
4167	s32 ret_val;
4168
4169	if (hw->mac.type < e1000_pch2lan)
4170		return;
4171
4172	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173	if (ret_val) {
4174		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175		return;
4176	}
4177
4178	/*
4179	 * For i217 Intel Rapid Start Technology support when the system
4180	 * is transitioning from Sx and no manageability engine is present
4181	 * configure SMBus to restore on reset, disable proxy, and enable
4182	 * the reset on MTA (Multicast table array).
4183	 */
4184	if (hw->phy.type == e1000_phy_i217) {
4185		u16 phy_reg;
4186
4187		ret_val = hw->phy.ops.acquire(hw);
4188		if (ret_val) {
4189			e_dbg("Failed to setup iRST\n");
4190			return;
4191		}
4192
 
 
 
 
 
4193		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194			/*
4195			 * Restore clear on SMB if no manageability engine
4196			 * is present
4197			 */
4198			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199			if (ret_val)
4200				goto release;
4201			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204			/* Disable Proxy */
4205			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206		}
4207		/* Enable reset on MTA */
4208		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209		if (ret_val)
4210			goto release;
4211		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213release:
4214		if (ret_val)
4215			e_dbg("Error %d in resume workarounds\n", ret_val);
4216		hw->phy.ops.release(hw);
4217	}
4218}
4219
4220/**
4221 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222 *  @hw: pointer to the HW structure
4223 *
4224 *  Return the LED back to the default configuration.
4225 **/
4226static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227{
4228	if (hw->phy.type == e1000_phy_ife)
4229		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231	ew32(LEDCTL, hw->mac.ledctl_default);
4232	return 0;
4233}
4234
4235/**
4236 *  e1000_led_on_ich8lan - Turn LEDs on
4237 *  @hw: pointer to the HW structure
4238 *
4239 *  Turn on the LEDs.
4240 **/
4241static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242{
4243	if (hw->phy.type == e1000_phy_ife)
4244		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247	ew32(LEDCTL, hw->mac.ledctl_mode2);
4248	return 0;
4249}
4250
4251/**
4252 *  e1000_led_off_ich8lan - Turn LEDs off
4253 *  @hw: pointer to the HW structure
4254 *
4255 *  Turn off the LEDs.
4256 **/
4257static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258{
4259	if (hw->phy.type == e1000_phy_ife)
4260		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261				(IFE_PSCL_PROBE_MODE |
4262				 IFE_PSCL_PROBE_LEDS_OFF));
4263
4264	ew32(LEDCTL, hw->mac.ledctl_mode1);
4265	return 0;
4266}
4267
4268/**
4269 *  e1000_setup_led_pchlan - Configures SW controllable LED
4270 *  @hw: pointer to the HW structure
4271 *
4272 *  This prepares the SW controllable LED for use.
4273 **/
4274static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275{
4276	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277}
4278
4279/**
4280 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281 *  @hw: pointer to the HW structure
4282 *
4283 *  Return the LED back to the default configuration.
4284 **/
4285static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286{
4287	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288}
4289
4290/**
4291 *  e1000_led_on_pchlan - Turn LEDs on
4292 *  @hw: pointer to the HW structure
4293 *
4294 *  Turn on the LEDs.
4295 **/
4296static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297{
4298	u16 data = (u16)hw->mac.ledctl_mode2;
4299	u32 i, led;
4300
4301	/*
4302	 * If no link, then turn LED on by setting the invert bit
4303	 * for each LED that's mode is "link_up" in ledctl_mode2.
4304	 */
4305	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306		for (i = 0; i < 3; i++) {
4307			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309			    E1000_LEDCTL_MODE_LINK_UP)
4310				continue;
4311			if (led & E1000_PHY_LED0_IVRT)
4312				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313			else
4314				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315		}
4316	}
4317
4318	return e1e_wphy(hw, HV_LED_CONFIG, data);
4319}
4320
4321/**
4322 *  e1000_led_off_pchlan - Turn LEDs off
4323 *  @hw: pointer to the HW structure
4324 *
4325 *  Turn off the LEDs.
4326 **/
4327static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328{
4329	u16 data = (u16)hw->mac.ledctl_mode1;
4330	u32 i, led;
4331
4332	/*
4333	 * If no link, then turn LED off by clearing the invert bit
4334	 * for each LED that's mode is "link_up" in ledctl_mode1.
4335	 */
4336	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337		for (i = 0; i < 3; i++) {
4338			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340			    E1000_LEDCTL_MODE_LINK_UP)
4341				continue;
4342			if (led & E1000_PHY_LED0_IVRT)
4343				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344			else
4345				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346		}
4347	}
4348
4349	return e1e_wphy(hw, HV_LED_CONFIG, data);
4350}
4351
4352/**
4353 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354 *  @hw: pointer to the HW structure
4355 *
4356 *  Read appropriate register for the config done bit for completion status
4357 *  and configure the PHY through s/w for EEPROM-less parts.
4358 *
4359 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360 *  config done bit, so only an error is logged and continues.  If we were
4361 *  to return with error, EEPROM-less silicon would not be able to be reset
4362 *  or change link.
4363 **/
4364static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365{
4366	s32 ret_val = 0;
4367	u32 bank = 0;
4368	u32 status;
4369
4370	e1000e_get_cfg_done(hw);
4371
4372	/* Wait for indication from h/w that it has completed basic config */
4373	if (hw->mac.type >= e1000_ich10lan) {
4374		e1000_lan_init_done_ich8lan(hw);
4375	} else {
4376		ret_val = e1000e_get_auto_rd_done(hw);
4377		if (ret_val) {
4378			/*
4379			 * When auto config read does not complete, do not
4380			 * return with an error. This can happen in situations
4381			 * where there is no eeprom and prevents getting link.
4382			 */
4383			e_dbg("Auto Read Done did not complete\n");
4384			ret_val = 0;
4385		}
4386	}
4387
4388	/* Clear PHY Reset Asserted bit */
4389	status = er32(STATUS);
4390	if (status & E1000_STATUS_PHYRA)
4391		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392	else
4393		e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396	if (hw->mac.type <= e1000_ich9lan) {
4397		if (!(er32(EECD) & E1000_EECD_PRES) &&
4398		    (hw->phy.type == e1000_phy_igp_3)) {
4399			e1000e_phy_init_script_igp3(hw);
4400		}
4401	} else {
4402		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403			/* Maybe we should do a basic PHY config */
4404			e_dbg("EEPROM not present\n");
4405			ret_val = -E1000_ERR_CONFIG;
4406		}
4407	}
4408
4409	return ret_val;
4410}
4411
4412/**
4413 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414 * @hw: pointer to the HW structure
4415 *
4416 * In the case of a PHY power down to save power, or to turn off link during a
4417 * driver unload, or wake on lan is not enabled, remove the link.
4418 **/
4419static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420{
4421	/* If the management interface is not enabled, then power down */
4422	if (!(hw->mac.ops.check_mng_mode(hw) ||
4423	      hw->phy.ops.check_reset_block(hw)))
4424		e1000_power_down_phy_copper(hw);
4425}
4426
4427/**
4428 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429 *  @hw: pointer to the HW structure
4430 *
4431 *  Clears hardware counters specific to the silicon family and calls
4432 *  clear_hw_cntrs_generic to clear all general purpose counters.
4433 **/
4434static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435{
4436	u16 phy_data;
4437	s32 ret_val;
4438
4439	e1000e_clear_hw_cntrs_base(hw);
4440
4441	er32(ALGNERRC);
4442	er32(RXERRC);
4443	er32(TNCRS);
4444	er32(CEXTERR);
4445	er32(TSCTC);
4446	er32(TSCTFC);
4447
4448	er32(MGTPRC);
4449	er32(MGTPDC);
4450	er32(MGTPTC);
4451
4452	er32(IAC);
4453	er32(ICRXOC);
4454
4455	/* Clear PHY statistics registers */
4456	if ((hw->phy.type == e1000_phy_82578) ||
4457	    (hw->phy.type == e1000_phy_82579) ||
4458	    (hw->phy.type == e1000_phy_i217) ||
4459	    (hw->phy.type == e1000_phy_82577)) {
4460		ret_val = hw->phy.ops.acquire(hw);
4461		if (ret_val)
4462			return;
4463		ret_val = hw->phy.ops.set_page(hw,
4464					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465		if (ret_val)
4466			goto release;
4467		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481release:
4482		hw->phy.ops.release(hw);
4483	}
4484}
4485
4486static const struct e1000_mac_operations ich8_mac_ops = {
4487	/* check_mng_mode dependent on mac type */
4488	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4489	/* cleanup_led dependent on mac type */
4490	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4491	.get_bus_info		= e1000_get_bus_info_ich8lan,
4492	.set_lan_id		= e1000_set_lan_id_single_port,
4493	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4494	/* led_on dependent on mac type */
4495	/* led_off dependent on mac type */
4496	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4497	.reset_hw		= e1000_reset_hw_ich8lan,
4498	.init_hw		= e1000_init_hw_ich8lan,
4499	.setup_link		= e1000_setup_link_ich8lan,
4500	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501	/* id_led_init dependent on mac type */
4502	.config_collision_dist	= e1000e_config_collision_dist_generic,
4503	.rar_set		= e1000e_rar_set_generic,
 
4504};
4505
4506static const struct e1000_phy_operations ich8_phy_ops = {
4507	.acquire		= e1000_acquire_swflag_ich8lan,
4508	.check_reset_block	= e1000_check_reset_block_ich8lan,
4509	.commit			= NULL,
4510	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4511	.get_cable_length	= e1000e_get_cable_length_igp_2,
4512	.read_reg		= e1000e_read_phy_reg_igp,
4513	.release		= e1000_release_swflag_ich8lan,
4514	.reset			= e1000_phy_hw_reset_ich8lan,
4515	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4516	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4517	.write_reg		= e1000e_write_phy_reg_igp,
4518};
4519
4520static const struct e1000_nvm_operations ich8_nvm_ops = {
4521	.acquire		= e1000_acquire_nvm_ich8lan,
4522	.read		 	= e1000_read_nvm_ich8lan,
4523	.release		= e1000_release_nvm_ich8lan,
4524	.reload			= e1000e_reload_nvm_generic,
4525	.update			= e1000_update_nvm_checksum_ich8lan,
4526	.valid_led_default	= e1000_valid_led_default_ich8lan,
4527	.validate		= e1000_validate_nvm_checksum_ich8lan,
4528	.write			= e1000_write_nvm_ich8lan,
4529};
4530
 
 
 
 
 
 
 
 
 
 
 
4531const struct e1000_info e1000_ich8_info = {
4532	.mac			= e1000_ich8lan,
4533	.flags			= FLAG_HAS_WOL
4534				  | FLAG_IS_ICH
4535				  | FLAG_HAS_CTRLEXT_ON_LOAD
4536				  | FLAG_HAS_AMT
4537				  | FLAG_HAS_FLASH
4538				  | FLAG_APME_IN_WUC,
4539	.pba			= 8,
4540	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4541	.get_variants		= e1000_get_variants_ich8lan,
4542	.mac_ops		= &ich8_mac_ops,
4543	.phy_ops		= &ich8_phy_ops,
4544	.nvm_ops		= &ich8_nvm_ops,
4545};
4546
4547const struct e1000_info e1000_ich9_info = {
4548	.mac			= e1000_ich9lan,
4549	.flags			= FLAG_HAS_JUMBO_FRAMES
4550				  | FLAG_IS_ICH
4551				  | FLAG_HAS_WOL
4552				  | FLAG_HAS_CTRLEXT_ON_LOAD
4553				  | FLAG_HAS_AMT
4554				  | FLAG_HAS_FLASH
4555				  | FLAG_APME_IN_WUC,
4556	.pba			= 18,
4557	.max_hw_frame_size	= DEFAULT_JUMBO,
4558	.get_variants		= e1000_get_variants_ich8lan,
4559	.mac_ops		= &ich8_mac_ops,
4560	.phy_ops		= &ich8_phy_ops,
4561	.nvm_ops		= &ich8_nvm_ops,
4562};
4563
4564const struct e1000_info e1000_ich10_info = {
4565	.mac			= e1000_ich10lan,
4566	.flags			= FLAG_HAS_JUMBO_FRAMES
4567				  | FLAG_IS_ICH
4568				  | FLAG_HAS_WOL
4569				  | FLAG_HAS_CTRLEXT_ON_LOAD
4570				  | FLAG_HAS_AMT
4571				  | FLAG_HAS_FLASH
4572				  | FLAG_APME_IN_WUC,
4573	.pba			= 18,
4574	.max_hw_frame_size	= DEFAULT_JUMBO,
4575	.get_variants		= e1000_get_variants_ich8lan,
4576	.mac_ops		= &ich8_mac_ops,
4577	.phy_ops		= &ich8_phy_ops,
4578	.nvm_ops		= &ich8_nvm_ops,
4579};
4580
4581const struct e1000_info e1000_pch_info = {
4582	.mac			= e1000_pchlan,
4583	.flags			= FLAG_IS_ICH
4584				  | FLAG_HAS_WOL
4585				  | FLAG_HAS_CTRLEXT_ON_LOAD
4586				  | FLAG_HAS_AMT
4587				  | FLAG_HAS_FLASH
4588				  | FLAG_HAS_JUMBO_FRAMES
4589				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590				  | FLAG_APME_IN_WUC,
4591	.flags2			= FLAG2_HAS_PHY_STATS,
4592	.pba			= 26,
4593	.max_hw_frame_size	= 4096,
4594	.get_variants		= e1000_get_variants_ich8lan,
4595	.mac_ops		= &ich8_mac_ops,
4596	.phy_ops		= &ich8_phy_ops,
4597	.nvm_ops		= &ich8_nvm_ops,
4598};
4599
4600const struct e1000_info e1000_pch2_info = {
4601	.mac			= e1000_pch2lan,
4602	.flags			= FLAG_IS_ICH
4603				  | FLAG_HAS_WOL
 
4604				  | FLAG_HAS_CTRLEXT_ON_LOAD
4605				  | FLAG_HAS_AMT
4606				  | FLAG_HAS_FLASH
4607				  | FLAG_HAS_JUMBO_FRAMES
4608				  | FLAG_APME_IN_WUC,
4609	.flags2			= FLAG2_HAS_PHY_STATS
4610				  | FLAG2_HAS_EEE,
 
4611	.pba			= 26,
4612	.max_hw_frame_size	= DEFAULT_JUMBO,
4613	.get_variants		= e1000_get_variants_ich8lan,
4614	.mac_ops		= &ich8_mac_ops,
4615	.phy_ops		= &ich8_phy_ops,
4616	.nvm_ops		= &ich8_nvm_ops,
4617};
4618
4619const struct e1000_info e1000_pch_lpt_info = {
4620	.mac			= e1000_pch_lpt,
4621	.flags			= FLAG_IS_ICH
4622				  | FLAG_HAS_WOL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4623				  | FLAG_HAS_CTRLEXT_ON_LOAD
4624				  | FLAG_HAS_AMT
4625				  | FLAG_HAS_FLASH
4626				  | FLAG_HAS_JUMBO_FRAMES
4627				  | FLAG_APME_IN_WUC,
4628	.flags2			= FLAG2_HAS_PHY_STATS
4629				  | FLAG2_HAS_EEE,
4630	.pba			= 26,
4631	.max_hw_frame_size	= DEFAULT_JUMBO,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632	.get_variants		= e1000_get_variants_ich8lan,
4633	.mac_ops		= &ich8_mac_ops,
4634	.phy_ops		= &ich8_phy_ops,
4635	.nvm_ops		= &ich8_nvm_ops,
4636};