Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/bio-integrity.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/signal.h>
  20#include <linux/blkpg.h>
  21#include <linux/bio.h>
  22#include <linux/mempool.h>
  23#include <linux/dax.h>
  24#include <linux/slab.h>
  25#include <linux/idr.h>
  26#include <linux/uio.h>
  27#include <linux/hdreg.h>
  28#include <linux/delay.h>
  29#include <linux/wait.h>
  30#include <linux/pr.h>
  31#include <linux/refcount.h>
  32#include <linux/part_stat.h>
  33#include <linux/blk-crypto.h>
  34#include <linux/blk-crypto-profile.h>
  35
  36#define DM_MSG_PREFIX "core"
  37
 
 
 
 
 
 
 
 
 
 
  38/*
  39 * Cookies are numeric values sent with CHANGE and REMOVE
  40 * uevents while resuming, removing or renaming the device.
  41 */
  42#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  43#define DM_COOKIE_LENGTH 24
  44
  45/*
  46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  48 * ending this fs bio, we will recover its ->bi_private.
  49 */
  50#define REQ_DM_POLL_LIST	REQ_DRV
  51
  52static const char *_name = DM_NAME;
  53
  54static unsigned int major;
  55static unsigned int _major;
  56
  57static DEFINE_IDR(_minor_idr);
  58
  59static DEFINE_SPINLOCK(_minor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61static void do_deferred_remove(struct work_struct *w);
  62
  63static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  64
  65static struct workqueue_struct *deferred_remove_workqueue;
  66
  67atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  68DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  69
  70void dm_issue_global_event(void)
  71{
  72	atomic_inc(&dm_global_event_nr);
  73	wake_up(&dm_global_eventq);
  74}
  75
  76DEFINE_STATIC_KEY_FALSE(stats_enabled);
  77DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  78DEFINE_STATIC_KEY_FALSE(zoned_enabled);
 
 
 
 
 
 
 
 
  79
  80/*
  81 * One of these is allocated (on-stack) per original bio.
 
  82 */
  83struct clone_info {
  84	struct dm_table *map;
  85	struct bio *bio;
  86	struct dm_io *io;
  87	sector_t sector;
  88	unsigned int sector_count;
  89	bool is_abnormal_io:1;
  90	bool submit_as_polled:1;
  91};
  92
  93static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  94{
  95	return container_of(clone, struct dm_target_io, clone);
 
 
  96}
  97
  98void *dm_per_bio_data(struct bio *bio, size_t data_size)
  99{
 100	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 101		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 102	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 103}
 104EXPORT_SYMBOL_GPL(dm_per_bio_data);
 105
 106struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 107{
 108	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 109
 110	if (io->magic == DM_IO_MAGIC)
 111		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 112	BUG_ON(io->magic != DM_TIO_MAGIC);
 113	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 114}
 115EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116
 117unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 118{
 119	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 120}
 121EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 122
 123#define MINOR_ALLOCED ((void *)-1)
 
 
 
 124
 125#define DM_NUMA_NODE NUMA_NO_NODE
 126static int dm_numa_node = DM_NUMA_NODE;
 127
 128#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 129static int swap_bios = DEFAULT_SWAP_BIOS;
 130static int get_swap_bios(void)
 131{
 132	int latch = READ_ONCE(swap_bios);
 133
 134	if (unlikely(latch <= 0))
 135		latch = DEFAULT_SWAP_BIOS;
 136	return latch;
 137}
 138
 139struct table_device {
 140	struct list_head list;
 141	refcount_t count;
 142	struct dm_dev dm_dev;
 143};
 
 
 
 144
 145/*
 146 * Bio-based DM's mempools' reserved IOs set by the user.
 147 */
 148#define RESERVED_BIO_BASED_IOS		16
 149static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 150
 151static int __dm_get_module_param_int(int *module_param, int min, int max)
 152{
 153	int param = READ_ONCE(*module_param);
 154	int modified_param = 0;
 155	bool modified = true;
 156
 157	if (param < min)
 158		modified_param = min;
 159	else if (param > max)
 160		modified_param = max;
 161	else
 162		modified = false;
 163
 164	if (modified) {
 165		(void)cmpxchg(module_param, param, modified_param);
 166		param = modified_param;
 167	}
 168
 169	return param;
 170}
 
 
 
 
 
 
 171
 172unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 173{
 174	unsigned int param = READ_ONCE(*module_param);
 175	unsigned int modified_param = 0;
 
 176
 177	if (!param)
 178		modified_param = def;
 179	else if (param > max)
 180		modified_param = max;
 181
 182	if (modified_param) {
 183		(void)cmpxchg(module_param, param, modified_param);
 184		param = modified_param;
 185	}
 186
 187	return param;
 188}
 
 189
 190unsigned int dm_get_reserved_bio_based_ios(void)
 191{
 192	return __dm_get_module_param(&reserved_bio_based_ios,
 193				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 194}
 195EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 
 
 196
 197static unsigned int dm_get_numa_node(void)
 198{
 199	return __dm_get_module_param_int(&dm_numa_node,
 200					 DM_NUMA_NODE, num_online_nodes() - 1);
 201}
 202
 203static int __init local_init(void)
 204{
 205	int r;
 206
 207	r = dm_uevent_init();
 208	if (r)
 
 209		return r;
 210
 211	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 212	if (!deferred_remove_workqueue) {
 213		r = -ENOMEM;
 214		goto out_uevent_exit;
 215	}
 
 
 
 
 
 
 
 
 
 
 
 216
 217	_major = major;
 218	r = register_blkdev(_major, _name);
 219	if (r < 0)
 220		goto out_free_workqueue;
 221
 222	if (!_major)
 223		_major = r;
 224
 225	return 0;
 226
 227out_free_workqueue:
 228	destroy_workqueue(deferred_remove_workqueue);
 229out_uevent_exit:
 230	dm_uevent_exit();
 
 
 
 
 
 
 
 
 231
 232	return r;
 233}
 234
 235static void local_exit(void)
 236{
 237	destroy_workqueue(deferred_remove_workqueue);
 238
 
 
 239	unregister_blkdev(_major, _name);
 240	dm_uevent_exit();
 241
 242	_major = 0;
 243
 244	DMINFO("cleaned up");
 245}
 246
 247static int (*_inits[])(void) __initdata = {
 248	local_init,
 249	dm_target_init,
 250	dm_linear_init,
 251	dm_stripe_init,
 252	dm_io_init,
 253	dm_kcopyd_init,
 254	dm_interface_init,
 255	dm_statistics_init,
 256};
 257
 258static void (*_exits[])(void) = {
 259	local_exit,
 260	dm_target_exit,
 261	dm_linear_exit,
 262	dm_stripe_exit,
 263	dm_io_exit,
 264	dm_kcopyd_exit,
 265	dm_interface_exit,
 266	dm_statistics_exit,
 267};
 268
 269static int __init dm_init(void)
 270{
 271	const int count = ARRAY_SIZE(_inits);
 272	int r, i;
 273
 274#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 275	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 276	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 277#endif
 278
 279	for (i = 0; i < count; i++) {
 280		r = _inits[i]();
 281		if (r)
 282			goto bad;
 283	}
 284
 285	return 0;
 286bad:
 
 287	while (i--)
 288		_exits[i]();
 289
 290	return r;
 291}
 292
 293static void __exit dm_exit(void)
 294{
 295	int i = ARRAY_SIZE(_exits);
 296
 297	while (i--)
 298		_exits[i]();
 299
 300	/*
 301	 * Should be empty by this point.
 302	 */
 
 303	idr_destroy(&_minor_idr);
 304}
 305
 306/*
 307 * Block device functions
 308 */
 309int dm_deleting_md(struct mapped_device *md)
 310{
 311	return test_bit(DMF_DELETING, &md->flags);
 312}
 313
 314static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 315{
 316	struct mapped_device *md;
 317
 318	spin_lock(&_minor_lock);
 319
 320	md = disk->private_data;
 321	if (!md)
 322		goto out;
 323
 324	if (test_bit(DMF_FREEING, &md->flags) ||
 325	    dm_deleting_md(md)) {
 326		md = NULL;
 327		goto out;
 328	}
 329
 330	dm_get(md);
 331	atomic_inc(&md->open_count);
 
 332out:
 333	spin_unlock(&_minor_lock);
 334
 335	return md ? 0 : -ENXIO;
 336}
 337
 338static void dm_blk_close(struct gendisk *disk)
 339{
 340	struct mapped_device *md;
 341
 342	spin_lock(&_minor_lock);
 343
 344	md = disk->private_data;
 345	if (WARN_ON(!md))
 346		goto out;
 347
 348	if (atomic_dec_and_test(&md->open_count) &&
 349	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 350		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 351
 352	dm_put(md);
 353out:
 354	spin_unlock(&_minor_lock);
 
 
 355}
 356
 357int dm_open_count(struct mapped_device *md)
 358{
 359	return atomic_read(&md->open_count);
 360}
 361
 362/*
 363 * Guarantees nothing is using the device before it's deleted.
 364 */
 365int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 366{
 367	int r = 0;
 368
 369	spin_lock(&_minor_lock);
 370
 371	if (dm_open_count(md)) {
 372		r = -EBUSY;
 373		if (mark_deferred)
 374			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 375	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 376		r = -EEXIST;
 377	else
 378		set_bit(DMF_DELETING, &md->flags);
 379
 380	spin_unlock(&_minor_lock);
 381
 382	return r;
 383}
 384
 385int dm_cancel_deferred_remove(struct mapped_device *md)
 386{
 387	int r = 0;
 388
 389	spin_lock(&_minor_lock);
 390
 391	if (test_bit(DMF_DELETING, &md->flags))
 392		r = -EBUSY;
 393	else
 394		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 395
 396	spin_unlock(&_minor_lock);
 397
 398	return r;
 399}
 400
 401static void do_deferred_remove(struct work_struct *w)
 402{
 403	dm_deferred_remove();
 404}
 405
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 414			    struct block_device **bdev)
 415{
 416	struct dm_target *ti;
 417	struct dm_table *map;
 418	int r;
 
 419
 420retry:
 421	r = -ENOTTY;
 422	map = dm_get_live_table(md, srcu_idx);
 423	if (!map || !dm_table_get_size(map))
 424		return r;
 425
 426	/* We only support devices that have a single target */
 427	if (map->num_targets != 1)
 428		return r;
 429
 430	ti = dm_table_get_target(map, 0);
 431	if (!ti->type->prepare_ioctl)
 432		return r;
 433
 434	if (dm_suspended_md(md))
 435		return -EAGAIN;
 436
 437	r = ti->type->prepare_ioctl(ti, bdev);
 438	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 439		dm_put_live_table(md, *srcu_idx);
 440		fsleep(10000);
 441		goto retry;
 442	}
 443
 444	return r;
 445}
 446
 447static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 448{
 449	dm_put_live_table(md, srcu_idx);
 450}
 451
 452static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 453			unsigned int cmd, unsigned long arg)
 454{
 455	struct mapped_device *md = bdev->bd_disk->private_data;
 456	int r, srcu_idx;
 457
 458	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 459	if (r < 0)
 460		goto out;
 461
 462	if (r > 0) {
 463		/*
 464		 * Target determined this ioctl is being issued against a
 465		 * subset of the parent bdev; require extra privileges.
 466		 */
 467		if (!capable(CAP_SYS_RAWIO)) {
 468			DMDEBUG_LIMIT(
 469	"%s: sending ioctl %x to DM device without required privilege.",
 470				current->comm, cmd);
 471			r = -ENOIOCTLCMD;
 472			goto out;
 473		}
 474	}
 475
 476	if (!bdev->bd_disk->fops->ioctl)
 477		r = -ENOTTY;
 478	else
 479		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 480out:
 481	dm_unprepare_ioctl(md, srcu_idx);
 482	return r;
 483}
 484
 485u64 dm_start_time_ns_from_clone(struct bio *bio)
 486{
 487	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 488}
 489EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 490
 491static inline bool bio_is_flush_with_data(struct bio *bio)
 492{
 493	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 494}
 495
 496static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 497{
 498	/*
 499	 * If REQ_PREFLUSH set, don't account payload, it will be
 500	 * submitted (and accounted) after this flush completes.
 501	 */
 502	if (bio_is_flush_with_data(bio))
 503		return 0;
 504	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 505		return io->sectors;
 506	return bio_sectors(bio);
 507}
 508
 509static void dm_io_acct(struct dm_io *io, bool end)
 510{
 511	struct bio *bio = io->orig_bio;
 512
 513	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 514		if (!end)
 515			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 516					   io->start_time);
 517		else
 518			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 519					 dm_io_sectors(io, bio),
 520					 io->start_time);
 521	}
 522
 523	if (static_branch_unlikely(&stats_enabled) &&
 524	    unlikely(dm_stats_used(&io->md->stats))) {
 525		sector_t sector;
 526
 527		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 528			sector = bio_end_sector(bio) - io->sector_offset;
 529		else
 530			sector = bio->bi_iter.bi_sector;
 531
 532		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 533				    sector, dm_io_sectors(io, bio),
 534				    end, io->start_time, &io->stats_aux);
 535	}
 536}
 537
 538static void __dm_start_io_acct(struct dm_io *io)
 
 539{
 540	dm_io_acct(io, false);
 541}
 542
 543static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 544{
 545	/*
 546	 * Ensure IO accounting is only ever started once.
 547	 */
 548	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 549		return;
 550
 551	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 552	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 553		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 554	} else {
 555		unsigned long flags;
 556		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 557		spin_lock_irqsave(&io->lock, flags);
 558		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 559			spin_unlock_irqrestore(&io->lock, flags);
 560			return;
 561		}
 562		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 563		spin_unlock_irqrestore(&io->lock, flags);
 564	}
 565
 566	__dm_start_io_acct(io);
 567}
 568
 569static void dm_end_io_acct(struct dm_io *io)
 570{
 571	dm_io_acct(io, true);
 572}
 573
 574static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 575{
 576	struct dm_io *io;
 577	struct dm_target_io *tio;
 578	struct bio *clone;
 579
 580	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 581	if (unlikely(!clone))
 582		return NULL;
 583	tio = clone_to_tio(clone);
 584	tio->flags = 0;
 585	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 586	tio->io = NULL;
 587
 588	io = container_of(tio, struct dm_io, tio);
 589	io->magic = DM_IO_MAGIC;
 590	io->status = BLK_STS_OK;
 591
 592	/* one ref is for submission, the other is for completion */
 593	atomic_set(&io->io_count, 2);
 594	this_cpu_inc(*md->pending_io);
 595	io->orig_bio = bio;
 596	io->md = md;
 597	spin_lock_init(&io->lock);
 598	io->start_time = jiffies;
 599	io->flags = 0;
 600	if (blk_queue_io_stat(md->queue))
 601		dm_io_set_flag(io, DM_IO_BLK_STAT);
 602
 603	if (static_branch_unlikely(&stats_enabled) &&
 604	    unlikely(dm_stats_used(&md->stats)))
 605		dm_stats_record_start(&md->stats, &io->stats_aux);
 606
 607	return io;
 608}
 609
 610static void free_io(struct dm_io *io)
 611{
 612	bio_put(&io->tio.clone);
 
 613}
 614
 615static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 616			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 617{
 618	struct mapped_device *md = ci->io->md;
 619	struct dm_target_io *tio;
 620	struct bio *clone;
 621
 622	if (!ci->io->tio.io) {
 623		/* the dm_target_io embedded in ci->io is available */
 624		tio = &ci->io->tio;
 625		/* alloc_io() already initialized embedded clone */
 626		clone = &tio->clone;
 627	} else {
 628		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 629					&md->mempools->bs);
 630		if (!clone)
 631			return NULL;
 632
 633		/* REQ_DM_POLL_LIST shouldn't be inherited */
 634		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 635
 636		tio = clone_to_tio(clone);
 637		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 638	}
 639
 640	tio->magic = DM_TIO_MAGIC;
 641	tio->io = ci->io;
 642	tio->ti = ti;
 643	tio->target_bio_nr = target_bio_nr;
 644	tio->len_ptr = len;
 645	tio->old_sector = 0;
 646
 647	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 648	clone->bi_bdev = md->disk->part0;
 649	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
 650		bio_set_dev(clone, md->disk->part0);
 651
 652	if (len) {
 653		clone->bi_iter.bi_size = to_bytes(*len);
 654		if (bio_integrity(clone))
 655			bio_integrity_trim(clone);
 656	}
 657
 658	return clone;
 
 
 
 
 659}
 660
 661static void free_tio(struct bio *clone)
 662{
 663	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 664		return;
 665	bio_put(clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668/*
 669 * Add the bio to the list of deferred io.
 670 */
 671static void queue_io(struct mapped_device *md, struct bio *bio)
 672{
 673	unsigned long flags;
 674
 675	spin_lock_irqsave(&md->deferred_lock, flags);
 676	bio_list_add(&md->deferred, bio);
 677	spin_unlock_irqrestore(&md->deferred_lock, flags);
 678	queue_work(md->wq, &md->work);
 679}
 680
 681/*
 682 * Everyone (including functions in this file), should use this
 683 * function to access the md->map field, and make sure they call
 684 * dm_put_live_table() when finished.
 685 */
 686struct dm_table *dm_get_live_table(struct mapped_device *md,
 687				   int *srcu_idx) __acquires(md->io_barrier)
 688{
 689	*srcu_idx = srcu_read_lock(&md->io_barrier);
 690
 691	return srcu_dereference(md->map, &md->io_barrier);
 692}
 693
 694void dm_put_live_table(struct mapped_device *md,
 695		       int srcu_idx) __releases(md->io_barrier)
 696{
 697	srcu_read_unlock(&md->io_barrier, srcu_idx);
 698}
 699
 700void dm_sync_table(struct mapped_device *md)
 701{
 702	synchronize_srcu(&md->io_barrier);
 703	synchronize_rcu_expedited();
 704}
 705
 706/*
 707 * A fast alternative to dm_get_live_table/dm_put_live_table.
 708 * The caller must not block between these two functions.
 709 */
 710static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 711{
 712	rcu_read_lock();
 713	return rcu_dereference(md->map);
 714}
 715
 716static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 717{
 718	rcu_read_unlock();
 719}
 720
 721static char *_dm_claim_ptr = "I belong to device-mapper";
 722
 723/*
 724 * Open a table device so we can use it as a map destination.
 725 */
 726static struct table_device *open_table_device(struct mapped_device *md,
 727		dev_t dev, blk_mode_t mode)
 728{
 729	struct table_device *td;
 730	struct file *bdev_file;
 731	struct block_device *bdev;
 732	u64 part_off;
 733	int r;
 734
 735	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 736	if (!td)
 737		return ERR_PTR(-ENOMEM);
 738	refcount_set(&td->count, 1);
 739
 740	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 741	if (IS_ERR(bdev_file)) {
 742		r = PTR_ERR(bdev_file);
 743		goto out_free_td;
 744	}
 745
 746	bdev = file_bdev(bdev_file);
 747
 748	/*
 749	 * We can be called before the dm disk is added.  In that case we can't
 750	 * register the holder relation here.  It will be done once add_disk was
 751	 * called.
 752	 */
 753	if (md->disk->slave_dir) {
 754		r = bd_link_disk_holder(bdev, md->disk);
 755		if (r)
 756			goto out_blkdev_put;
 757	}
 758
 759	td->dm_dev.mode = mode;
 760	td->dm_dev.bdev = bdev;
 761	td->dm_dev.bdev_file = bdev_file;
 762	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
 763						NULL, NULL);
 764	format_dev_t(td->dm_dev.name, dev);
 765	list_add(&td->list, &md->table_devices);
 766	return td;
 767
 768out_blkdev_put:
 769	__fput_sync(bdev_file);
 770out_free_td:
 771	kfree(td);
 772	return ERR_PTR(r);
 773}
 774
 775/*
 776 * Close a table device that we've been using.
 777 */
 778static void close_table_device(struct table_device *td, struct mapped_device *md)
 779{
 780	if (md->disk->slave_dir)
 781		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 782
 783	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
 784	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 785		fput(td->dm_dev.bdev_file);
 786	else
 787		__fput_sync(td->dm_dev.bdev_file);
 788
 789	put_dax(td->dm_dev.dax_dev);
 790	list_del(&td->list);
 791	kfree(td);
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      blk_mode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 807			struct dm_dev **result)
 808{
 809	struct table_device *td;
 810
 811	mutex_lock(&md->table_devices_lock);
 812	td = find_table_device(&md->table_devices, dev, mode);
 813	if (!td) {
 814		td = open_table_device(md, dev, mode);
 815		if (IS_ERR(td)) {
 816			mutex_unlock(&md->table_devices_lock);
 817			return PTR_ERR(td);
 818		}
 819	} else {
 820		refcount_inc(&td->count);
 821	}
 822	mutex_unlock(&md->table_devices_lock);
 823
 824	*result = &td->dm_dev;
 825	return 0;
 826}
 827
 828void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 829{
 830	struct table_device *td = container_of(d, struct table_device, dm_dev);
 
 
 831
 832	mutex_lock(&md->table_devices_lock);
 833	if (refcount_dec_and_test(&td->count))
 834		close_table_device(td, md);
 835	mutex_unlock(&md->table_devices_lock);
 836}
 837
 838/*
 839 * Get the geometry associated with a dm device
 840 */
 841int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	*geo = md->geometry;
 844
 845	return 0;
 846}
 847
 848/*
 849 * Set the geometry of a device.
 850 */
 851int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 852{
 853	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 854
 855	if (geo->start > sz) {
 856		DMERR("Start sector is beyond the geometry limits.");
 857		return -EINVAL;
 858	}
 859
 860	md->geometry = *geo;
 861
 862	return 0;
 863}
 864
 
 
 
 
 
 
 
 
 
 865static int __noflush_suspending(struct mapped_device *md)
 866{
 867	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 868}
 869
 870static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 
 
 
 
 871{
 
 
 
 872	struct mapped_device *md = io->md;
 873
 874	if (first_stage) {
 875		struct dm_io *next = md->requeue_list;
 876
 877		md->requeue_list = io;
 878		io->next = next;
 879	} else {
 880		bio_list_add_head(&md->deferred, io->orig_bio);
 881	}
 882}
 883
 884static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 885{
 886	if (first_stage)
 887		queue_work(md->wq, &md->requeue_work);
 888	else
 889		queue_work(md->wq, &md->work);
 890}
 
 
 
 
 
 
 891
 892/*
 893 * Return true if the dm_io's original bio is requeued.
 894 * io->status is updated with error if requeue disallowed.
 895 */
 896static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 897{
 898	struct bio *bio = io->orig_bio;
 899	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 900	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 901				     (bio->bi_opf & REQ_POLLED));
 902	struct mapped_device *md = io->md;
 903	bool requeued = false;
 904
 905	if (handle_requeue || handle_polled_eagain) {
 906		unsigned long flags;
 907
 908		if (bio->bi_opf & REQ_POLLED) {
 909			/*
 910			 * Upper layer won't help us poll split bio
 911			 * (io->orig_bio may only reflect a subset of the
 912			 * pre-split original) so clear REQ_POLLED.
 913			 */
 914			bio_clear_polled(bio);
 
 
 
 
 
 915		}
 
 
 916
 917		/*
 918		 * Target requested pushing back the I/O or
 919		 * polled IO hit BLK_STS_AGAIN.
 920		 */
 921		spin_lock_irqsave(&md->deferred_lock, flags);
 922		if ((__noflush_suspending(md) &&
 923		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 924		    handle_polled_eagain || first_stage) {
 925			dm_requeue_add_io(io, first_stage);
 926			requeued = true;
 927		} else {
 
 
 
 928			/*
 929			 * noflush suspend was interrupted or this is
 930			 * a write to a zoned target.
 931			 */
 932			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 933		}
 934		spin_unlock_irqrestore(&md->deferred_lock, flags);
 935	}
 936
 937	if (requeued)
 938		dm_kick_requeue(md, first_stage);
 
 
 939
 940	return requeued;
 
 
 941}
 942
 943static void __dm_io_complete(struct dm_io *io, bool first_stage)
 
 
 
 944{
 945	struct bio *bio = io->orig_bio;
 946	struct mapped_device *md = io->md;
 947	blk_status_t io_error;
 948	bool requeued;
 949
 950	requeued = dm_handle_requeue(io, first_stage);
 951	if (requeued && first_stage)
 952		return;
 953
 954	io_error = io->status;
 955	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 956		dm_end_io_acct(io);
 957	else if (!io_error) {
 958		/*
 959		 * Must handle target that DM_MAPIO_SUBMITTED only to
 960		 * then bio_endio() rather than dm_submit_bio_remap()
 
 961		 */
 962		__dm_start_io_acct(io);
 963		dm_end_io_acct(io);
 964	}
 965	free_io(io);
 966	smp_wmb();
 967	this_cpu_dec(*md->pending_io);
 968
 969	/* nudge anyone waiting on suspend queue */
 970	if (unlikely(wq_has_sleeper(&md->wait)))
 971		wake_up(&md->wait);
 972
 973	/* Return early if the original bio was requeued */
 974	if (requeued)
 975		return;
 976
 977	if (bio_is_flush_with_data(bio)) {
 978		/*
 979		 * Preflush done for flush with data, reissue
 980		 * without REQ_PREFLUSH.
 
 981		 */
 982		bio->bi_opf &= ~REQ_PREFLUSH;
 983		queue_io(md, bio);
 984	} else {
 985		/* done with normal IO or empty flush */
 986		if (io_error)
 987			bio->bi_status = io_error;
 988		bio_endio(bio);
 989	}
 990}
 991
 992static void dm_wq_requeue_work(struct work_struct *work)
 993{
 994	struct mapped_device *md = container_of(work, struct mapped_device,
 995						requeue_work);
 996	unsigned long flags;
 997	struct dm_io *io;
 998
 999	/* reuse deferred lock to simplify dm_handle_requeue */
1000	spin_lock_irqsave(&md->deferred_lock, flags);
1001	io = md->requeue_list;
1002	md->requeue_list = NULL;
1003	spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005	while (io) {
1006		struct dm_io *next = io->next;
 
 
1007
1008		dm_io_rewind(io, &md->disk->bio_split);
 
 
 
 
 
 
1009
1010		io->next = NULL;
1011		__dm_io_complete(io, false);
1012		io = next;
1013		cond_resched();
1014	}
 
1015}
1016
1017/*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 *    this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
1025static void dm_io_complete(struct dm_io *io)
1026{
1027	bool first_requeue;
 
 
 
 
 
 
 
1028
1029	/*
1030	 * Only dm_io that has been split needs two stage requeue, otherwise
1031	 * we may run into long bio clone chain during suspend and OOM could
1032	 * be triggered.
1033	 *
1034	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035	 * also aren't handled via the first stage requeue.
1036	 */
1037	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038		first_requeue = true;
1039	else
1040		first_requeue = false;
 
 
1041
1042	__dm_io_complete(io, first_requeue);
 
1043}
1044
1045/*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1048 */
1049static inline void __dm_io_dec_pending(struct dm_io *io)
1050{
1051	if (atomic_dec_and_test(&io->io_count))
1052		dm_io_complete(io);
1053}
 
1054
1055static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056{
1057	unsigned long flags;
1058
1059	/* Push-back supersedes any I/O errors */
1060	spin_lock_irqsave(&io->lock, flags);
1061	if (!(io->status == BLK_STS_DM_REQUEUE &&
1062	      __noflush_suspending(io->md))) {
1063		io->status = error;
 
 
1064	}
1065	spin_unlock_irqrestore(&io->lock, flags);
 
 
 
1066}
1067
1068static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069{
1070	if (unlikely(error))
1071		dm_io_set_error(io, error);
 
 
1072
1073	__dm_io_dec_pending(io);
1074}
1075
1076/*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
1080static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081{
1082	return &md->queue->limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
1083}
 
1084
1085void disable_discard(struct mapped_device *md)
1086{
1087	struct queue_limits *limits = dm_get_queue_limits(md);
1088
1089	/* device doesn't really support DISCARD, disable it */
1090	limits->max_hw_discard_sectors = 0;
1091}
1092
1093void disable_write_zeroes(struct mapped_device *md)
1094{
1095	struct queue_limits *limits = dm_get_queue_limits(md);
1096
1097	/* device doesn't really support WRITE ZEROES, disable it */
1098	limits->max_write_zeroes_sectors = 0;
 
1099}
1100
1101static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102{
1103	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 
1104}
1105
1106static void clone_endio(struct bio *bio)
1107{
1108	blk_status_t error = bio->bi_status;
1109	struct dm_target_io *tio = clone_to_tio(bio);
1110	struct dm_target *ti = tio->ti;
1111	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112	struct dm_io *io = tio->io;
1113	struct mapped_device *md = io->md;
1114
1115	if (unlikely(error == BLK_STS_TARGET)) {
1116		if (bio_op(bio) == REQ_OP_DISCARD &&
1117		    !bdev_max_discard_sectors(bio->bi_bdev))
1118			disable_discard(md);
1119		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121			disable_write_zeroes(md);
1122	}
1123
1124	if (static_branch_unlikely(&zoned_enabled) &&
1125	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1126		dm_zone_endio(io, bio);
 
 
1127
1128	if (endio) {
1129		int r = endio(ti, bio, &error);
1130
1131		switch (r) {
1132		case DM_ENDIO_REQUEUE:
1133			if (static_branch_unlikely(&zoned_enabled)) {
1134				/*
1135				 * Requeuing writes to a sequential zone of a zoned
1136				 * target will break the sequential write pattern:
1137				 * fail such IO.
1138				 */
1139				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140					error = BLK_STS_IOERR;
1141				else
1142					error = BLK_STS_DM_REQUEUE;
1143			} else
1144				error = BLK_STS_DM_REQUEUE;
1145			fallthrough;
1146		case DM_ENDIO_DONE:
1147			break;
1148		case DM_ENDIO_INCOMPLETE:
1149			/* The target will handle the io */
1150			return;
1151		default:
1152			DMCRIT("unimplemented target endio return value: %d", r);
1153			BUG();
1154		}
1155	}
1156
1157	if (static_branch_unlikely(&swap_bios_enabled) &&
1158	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159		up(&md->swap_bios_semaphore);
1160
1161	free_tio(bio);
1162	dm_io_dec_pending(io, error);
 
 
 
 
 
 
 
1163}
1164
1165/*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
1169static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170						  sector_t target_offset)
1171{
1172	return ti->len - target_offset;
1173}
 
1174
1175static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176			     unsigned int max_granularity,
1177			     unsigned int max_sectors)
1178{
1179	sector_t target_offset = dm_target_offset(ti, sector);
1180	sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182	/*
1183	 * Does the target need to split IO even further?
1184	 * - varied (per target) IO splitting is a tenet of DM; this
1185	 *   explains why stacked chunk_sectors based splitting via
1186	 *   bio_split_to_limits() isn't possible here.
1187	 */
1188	if (!max_granularity)
1189		return len;
1190	return min_t(sector_t, len,
1191		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192		    blk_boundary_sectors_left(target_offset, max_granularity)));
1193}
1194
1195static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
 
 
 
 
1196{
1197	return __max_io_len(ti, sector, ti->max_io_len, 0);
 
 
 
 
 
1198}
1199
1200int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
 
 
 
 
 
1201{
1202	if (len > UINT_MAX) {
1203		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204		      (unsigned long long)len, UINT_MAX);
1205		ti->error = "Maximum size of target IO is too large";
1206		return -EINVAL;
1207	}
1208
1209	ti->max_io_len = (uint32_t) len;
1210
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
1215static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216						sector_t sector, int *srcu_idx)
1217	__acquires(md->io_barrier)
 
1218{
1219	struct dm_table *map;
1220	struct dm_target *ti;
1221
1222	map = dm_get_live_table(md, srcu_idx);
1223	if (!map)
1224		return NULL;
1225
1226	ti = dm_table_find_target(map, sector);
1227	if (!ti)
1228		return NULL;
1229
1230	return ti;
 
 
 
 
 
 
 
 
1231}
1232
1233static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234		long nr_pages, enum dax_access_mode mode, void **kaddr,
1235		pfn_t *pfn)
 
 
1236{
1237	struct mapped_device *md = dax_get_private(dax_dev);
1238	sector_t sector = pgoff * PAGE_SECTORS;
1239	struct dm_target *ti;
1240	long len, ret = -EIO;
1241	int srcu_idx;
1242
1243	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1244
1245	if (!ti)
1246		goto out;
1247	if (!ti->type->direct_access)
1248		goto out;
1249	len = max_io_len(ti, sector) / PAGE_SECTORS;
1250	if (len < 1)
1251		goto out;
1252	nr_pages = min(len, nr_pages);
1253	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 
 
 
 
1257
1258	return ret;
1259}
1260
1261static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262				  size_t nr_pages)
1263{
1264	struct mapped_device *md = dax_get_private(dax_dev);
1265	sector_t sector = pgoff * PAGE_SECTORS;
1266	struct dm_target *ti;
1267	int ret = -EIO;
1268	int srcu_idx;
1269
1270	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
1271
1272	if (!ti)
1273		goto out;
1274	if (WARN_ON(!ti->type->dax_zero_page_range)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275		/*
1276		 * ->zero_page_range() is mandatory dax operation. If we are
1277		 *  here, something is wrong.
1278		 */
1279		goto out;
 
 
 
 
 
 
1280	}
1281	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283	dm_put_live_table(md, srcu_idx);
1284
1285	return ret;
1286}
1287
1288static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289		void *addr, size_t bytes, struct iov_iter *i)
1290{
1291	struct mapped_device *md = dax_get_private(dax_dev);
1292	sector_t sector = pgoff * PAGE_SECTORS;
1293	struct dm_target *ti;
1294	int srcu_idx;
1295	long ret = 0;
 
1296
1297	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298	if (!ti || !ti->type->dax_recovery_write)
1299		goto out;
1300
1301	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302out:
1303	dm_put_live_table(md, srcu_idx);
1304	return ret;
1305}
1306
1307/*
1308 * A target may call dm_accept_partial_bio only from the map routine.  It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * |         1          |       2       |   3   |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 *                      <----- bio_sectors ----->
1324 *                      <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 *	(it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 *	(it may be empty if region 1 is non-empty, although there is no reason
1330 *	 to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
1337void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
 
 
1338{
1339	struct dm_target_io *tio = clone_to_tio(bio);
1340	struct dm_io *io = tio->io;
1341	unsigned int bio_sectors = bio_sectors(bio);
1342
1343	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346	BUG_ON(bio_sectors > *tio->len_ptr);
1347	BUG_ON(n_sectors > bio_sectors);
1348
1349	*tio->len_ptr -= bio_sectors - n_sectors;
1350	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351
1352	/*
1353	 * __split_and_process_bio() may have already saved mapped part
1354	 * for accounting but it is being reduced so update accordingly.
1355	 */
1356	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357	io->sectors = n_sectors;
1358	io->sector_offset = bio_sectors(io->orig_bio);
1359}
1360EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1361
1362/*
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1365 *
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1368 *
1369 * Target should also enable ti->accounts_remapped_io
1370 */
1371void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
 
 
1372{
1373	struct dm_target_io *tio = clone_to_tio(clone);
1374	struct dm_io *io = tio->io;
1375
1376	/* establish bio that will get submitted */
1377	if (!tgt_clone)
1378		tgt_clone = clone;
1379
1380	/*
1381	 * Account io->origin_bio to DM dev on behalf of target
1382	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1383	 */
1384	dm_start_io_acct(io, clone);
 
 
 
 
 
 
 
 
 
 
 
1385
1386	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387			      tio->old_sector);
1388	submit_bio_noacct(tgt_clone);
1389}
1390EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1391
1392static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
 
1393{
1394	mutex_lock(&md->swap_bios_lock);
1395	while (latch < md->swap_bios) {
1396		cond_resched();
1397		down(&md->swap_bios_semaphore);
1398		md->swap_bios--;
1399	}
1400	while (latch > md->swap_bios) {
1401		cond_resched();
1402		up(&md->swap_bios_semaphore);
1403		md->swap_bios++;
1404	}
1405	mutex_unlock(&md->swap_bios_lock);
1406}
1407
1408static void __map_bio(struct bio *clone)
 
1409{
1410	struct dm_target_io *tio = clone_to_tio(clone);
1411	struct dm_target *ti = tio->ti;
1412	struct dm_io *io = tio->io;
1413	struct mapped_device *md = io->md;
1414	int r;
1415
1416	clone->bi_end_io = clone_endio;
1417
1418	/*
1419	 * Map the clone.
 
 
1420	 */
1421	tio->old_sector = clone->bi_iter.bi_sector;
1422
1423	if (static_branch_unlikely(&swap_bios_enabled) &&
1424	    unlikely(swap_bios_limit(ti, clone))) {
1425		int latch = get_swap_bios();
1426
1427		if (unlikely(latch != md->swap_bios))
1428			__set_swap_bios_limit(md, latch);
1429		down(&md->swap_bios_semaphore);
1430	}
1431
1432	if (likely(ti->type->map == linear_map))
1433		r = linear_map(ti, clone);
1434	else if (ti->type->map == stripe_map)
1435		r = stripe_map(ti, clone);
1436	else
1437		r = ti->type->map(ti, clone);
1438
1439	switch (r) {
1440	case DM_MAPIO_SUBMITTED:
1441		/* target has assumed ownership of this io */
1442		if (!ti->accounts_remapped_io)
1443			dm_start_io_acct(io, clone);
1444		break;
1445	case DM_MAPIO_REMAPPED:
1446		dm_submit_bio_remap(clone, NULL);
1447		break;
1448	case DM_MAPIO_KILL:
1449	case DM_MAPIO_REQUEUE:
1450		if (static_branch_unlikely(&swap_bios_enabled) &&
1451		    unlikely(swap_bios_limit(ti, clone)))
1452			up(&md->swap_bios_semaphore);
1453		free_tio(clone);
1454		if (r == DM_MAPIO_KILL)
1455			dm_io_dec_pending(io, BLK_STS_IOERR);
1456		else
1457			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458		break;
1459	default:
1460		DMCRIT("unimplemented target map return value: %d", r);
1461		BUG();
1462	}
1463}
1464
1465static void setup_split_accounting(struct clone_info *ci, unsigned int len)
 
1466{
1467	struct dm_io *io = ci->io;
1468
1469	if (ci->sector_count > len) {
1470		/*
1471		 * Split needed, save the mapped part for accounting.
1472		 * NOTE: dm_accept_partial_bio() will update accordingly.
1473		 */
1474		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475		io->sectors = len;
1476		io->sector_offset = bio_sectors(ci->bio);
1477	}
1478}
1479
1480static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481				struct dm_target *ti, unsigned int num_bios,
1482				unsigned *len, gfp_t gfp_flag)
1483{
1484	struct bio *bio;
1485	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1486
1487	for (; try < 2; try++) {
1488		int bio_nr;
1489
1490		if (try && num_bios > 1)
1491			mutex_lock(&ci->io->md->table_devices_lock);
1492		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493			bio = alloc_tio(ci, ti, bio_nr, len,
1494					try ? GFP_NOIO : GFP_NOWAIT);
1495			if (!bio)
1496				break;
1497
1498			bio_list_add(blist, bio);
1499		}
1500		if (try && num_bios > 1)
1501			mutex_unlock(&ci->io->md->table_devices_lock);
1502		if (bio_nr == num_bios)
1503			return;
1504
1505		while ((bio = bio_list_pop(blist)))
1506			free_tio(bio);
1507	}
1508}
1509
1510static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511					  unsigned int num_bios, unsigned int *len,
1512					  gfp_t gfp_flag)
 
1513{
1514	struct bio_list blist = BIO_EMPTY_LIST;
1515	struct bio *clone;
1516	unsigned int ret = 0;
1517
1518	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1519		return 0;
1520
1521	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1522	if (len)
1523		setup_split_accounting(ci, *len);
1524
1525	/*
1526	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1528	 */
1529	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1530	while ((clone = bio_list_pop(&blist))) {
1531		if (num_bios > 1)
1532			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1533		__map_bio(clone);
1534		ret += 1;
1535	}
1536
1537	return ret;
 
 
 
 
 
1538}
1539
1540static void __send_empty_flush(struct clone_info *ci)
1541{
1542	struct dm_table *t = ci->map;
1543	struct bio flush_bio;
1544
1545	/*
1546	 * Use an on-stack bio for this, it's safe since we don't
1547	 * need to reference it after submit. It's just used as
1548	 * the basis for the clone(s).
1549	 */
1550	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1551		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1552
1553	ci->bio = &flush_bio;
1554	ci->sector_count = 0;
1555	ci->io->tio.clone.bi_iter.bi_size = 0;
 
1556
1557	if (!t->flush_bypasses_map) {
1558		for (unsigned int i = 0; i < t->num_targets; i++) {
1559			unsigned int bios;
1560			struct dm_target *ti = dm_table_get_target(t, i);
1561
1562			if (unlikely(ti->num_flush_bios == 0))
1563				continue;
1564
1565			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1566			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1567						     NULL, GFP_NOWAIT);
1568			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1569		}
1570	} else {
1571		/*
1572		 * Note that there's no need to grab t->devices_lock here
1573		 * because the targets that support flush optimization don't
1574		 * modify the list of devices.
 
1575		 */
1576		struct list_head *devices = dm_table_get_devices(t);
1577		unsigned int len = 0;
1578		struct dm_dev_internal *dd;
1579		list_for_each_entry(dd, devices, list) {
1580			struct bio *clone;
1581			/*
1582			 * Note that the structure dm_target_io is not
1583			 * associated with any target (because the device may be
1584			 * used by multiple targets), so we set tio->ti = NULL.
1585			 * We must check for NULL in the I/O processing path, to
1586			 * avoid NULL pointer dereference.
1587			 */
1588			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1589			atomic_add(1, &ci->io->io_count);
1590			bio_set_dev(clone, dd->dm_dev->bdev);
1591			clone->bi_end_io = clone_endio;
1592			dm_submit_bio_remap(clone, NULL);
1593		}
1594	}
1595
1596	/*
1597	 * alloc_io() takes one extra reference for submission, so the
1598	 * reference won't reach 0 without the following subtraction
1599	 */
1600	atomic_sub(1, &ci->io->io_count);
1601
1602	bio_uninit(ci->bio);
1603}
1604
1605static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1606			       unsigned int num_bios, unsigned int max_granularity,
1607			       unsigned int max_sectors)
1608{
1609	unsigned int len, bios;
1610
1611	len = min_t(sector_t, ci->sector_count,
1612		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1613
1614	atomic_add(num_bios, &ci->io->io_count);
1615	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1616	/*
1617	 * alloc_io() takes one extra reference for submission, so the
1618	 * reference won't reach 0 without the following (+1) subtraction
1619	 */
1620	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1621
1622	ci->sector += len;
1623	ci->sector_count -= len;
1624}
1625
1626static bool is_abnormal_io(struct bio *bio)
1627{
1628	switch (bio_op(bio)) {
1629	case REQ_OP_READ:
1630	case REQ_OP_WRITE:
1631	case REQ_OP_FLUSH:
1632		return false;
1633	case REQ_OP_DISCARD:
1634	case REQ_OP_SECURE_ERASE:
1635	case REQ_OP_WRITE_ZEROES:
1636	case REQ_OP_ZONE_RESET_ALL:
1637		return true;
1638	default:
1639		return false;
1640	}
1641}
1642
1643static blk_status_t __process_abnormal_io(struct clone_info *ci,
1644					  struct dm_target *ti)
1645{
1646	unsigned int num_bios = 0;
1647	unsigned int max_granularity = 0;
1648	unsigned int max_sectors = 0;
1649	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1650
1651	switch (bio_op(ci->bio)) {
1652	case REQ_OP_DISCARD:
1653		num_bios = ti->num_discard_bios;
1654		max_sectors = limits->max_discard_sectors;
1655		if (ti->max_discard_granularity)
1656			max_granularity = max_sectors;
1657		break;
1658	case REQ_OP_SECURE_ERASE:
1659		num_bios = ti->num_secure_erase_bios;
1660		max_sectors = limits->max_secure_erase_sectors;
1661		break;
1662	case REQ_OP_WRITE_ZEROES:
1663		num_bios = ti->num_write_zeroes_bios;
1664		max_sectors = limits->max_write_zeroes_sectors;
1665		break;
1666	default:
1667		break;
1668	}
1669
1670	/*
1671	 * Even though the device advertised support for this type of
1672	 * request, that does not mean every target supports it, and
1673	 * reconfiguration might also have changed that since the
1674	 * check was performed.
1675	 */
1676	if (unlikely(!num_bios))
1677		return BLK_STS_NOTSUPP;
1678
1679	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
 
 
 
 
 
1680
1681	return BLK_STS_OK;
1682}
 
 
 
 
 
 
1683
1684/*
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1688 *
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1692 */
1693static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1694{
1695	return (struct dm_io **)&bio->bi_private;
1696}
1697
1698static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1699{
1700	struct dm_io **head = dm_poll_list_head(bio);
1701
1702	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1703		bio->bi_opf |= REQ_DM_POLL_LIST;
1704		/*
1705		 * Save .bi_private into dm_io, so that we can reuse
1706		 * .bi_private as dm_io list head for storing dm_io list
1707		 */
1708		io->data = bio->bi_private;
1709
1710		/* tell block layer to poll for completion */
1711		bio->bi_cookie = ~BLK_QC_T_NONE;
 
 
 
 
 
 
1712
1713		io->next = NULL;
1714	} else {
1715		/*
1716		 * bio recursed due to split, reuse original poll list,
1717		 * and save bio->bi_private too.
1718		 */
1719		io->data = (*head)->data;
1720		io->next = *head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721	}
1722
1723	*head = io;
1724}
1725
1726/*
1727 * Select the correct strategy for processing a non-flush bio.
1728 */
1729static blk_status_t __split_and_process_bio(struct clone_info *ci)
1730{
1731	struct bio *clone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732	struct dm_target *ti;
1733	unsigned int len;
 
1734
1735	ti = dm_table_find_target(ci->map, ci->sector);
1736	if (unlikely(!ti))
1737		return BLK_STS_IOERR;
1738
1739	if (unlikely(ci->is_abnormal_io))
1740		return __process_abnormal_io(ci, ti);
 
1741
1742	/*
1743	 * Only support bio polling for normal IO, and the target io is
1744	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1745	 */
1746	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
 
 
 
 
1747
1748	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1749	setup_split_accounting(ci, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
1750
1751	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1752		if (unlikely(!dm_target_supports_nowait(ti->type)))
1753			return BLK_STS_NOTSUPP;
1754
1755		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1756		if (unlikely(!clone))
1757			return BLK_STS_AGAIN;
1758	} else {
1759		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1760	}
1761	__map_bio(clone);
1762
1763	ci->sector += len;
1764	ci->sector_count -= len;
 
 
 
 
1765
1766	return BLK_STS_OK;
1767}
1768
1769static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1770			    struct dm_table *map, struct bio *bio, bool is_abnormal)
 
 
 
1771{
1772	ci->map = map;
1773	ci->io = io;
1774	ci->bio = bio;
1775	ci->is_abnormal_io = is_abnormal;
1776	ci->submit_as_polled = false;
1777	ci->sector = bio->bi_iter.bi_sector;
1778	ci->sector_count = bio_sectors(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779
1780	/* Shouldn't happen but sector_count was being set to 0 so... */
1781	if (static_branch_unlikely(&zoned_enabled) &&
1782	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1783		ci->sector_count = 0;
1784}
1785
1786#ifdef CONFIG_BLK_DEV_ZONED
1787static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1788					   struct bio *bio)
1789{
1790	/*
1791	 * For mapped device that need zone append emulation, we must
1792	 * split any large BIO that straddles zone boundaries.
1793	 */
1794	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1795		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1796}
1797static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
 
1798{
1799	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
 
 
 
 
 
1800}
1801
1802static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1803						   struct dm_target *ti)
1804{
1805	struct bio_list blist = BIO_EMPTY_LIST;
1806	struct mapped_device *md = ci->io->md;
1807	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1808	unsigned long *need_reset;
1809	unsigned int i, nr_zones, nr_reset;
1810	unsigned int num_bios = 0;
1811	blk_status_t sts = BLK_STS_OK;
1812	sector_t sector = ti->begin;
1813	struct bio *clone;
1814	int ret;
1815
1816	nr_zones = ti->len >> ilog2(zone_sectors);
1817	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1818	if (!need_reset)
1819		return BLK_STS_RESOURCE;
1820
1821	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1822				       nr_zones, need_reset);
1823	if (ret) {
1824		sts = BLK_STS_IOERR;
1825		goto free_bitmap;
1826	}
1827
1828	/* If we have no zone to reset, we are done. */
1829	nr_reset = bitmap_weight(need_reset, nr_zones);
1830	if (!nr_reset)
1831		goto free_bitmap;
1832
1833	atomic_add(nr_zones, &ci->io->io_count);
 
 
1834
1835	for (i = 0; i < nr_zones; i++) {
 
 
 
 
 
1836
1837		if (!test_bit(i, need_reset)) {
1838			sector += zone_sectors;
1839			continue;
1840		}
1841
1842		if (bio_list_empty(&blist)) {
1843			/* This may take a while, so be nice to others */
1844			if (num_bios)
1845				cond_resched();
 
1846
1847			/*
1848			 * We may need to reset thousands of zones, so let's
1849			 * not go crazy with the clone allocation.
1850			 */
1851			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1852					    NULL, GFP_NOIO);
1853		}
1854
1855		/* Get a clone and change it to a regular reset operation. */
1856		clone = bio_list_pop(&blist);
1857		clone->bi_opf &= ~REQ_OP_MASK;
1858		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1859		clone->bi_iter.bi_sector = sector;
1860		clone->bi_iter.bi_size = 0;
1861		__map_bio(clone);
1862
1863		sector += zone_sectors;
1864		num_bios++;
1865		nr_reset--;
1866	}
1867
1868	WARN_ON_ONCE(!bio_list_empty(&blist));
1869	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1870	ci->sector_count = 0;
 
1871
1872free_bitmap:
1873	bitmap_free(need_reset);
 
 
 
 
1874
1875	return sts;
1876}
1877
1878static void __send_zone_reset_all_native(struct clone_info *ci,
1879					 struct dm_target *ti)
1880{
1881	unsigned int bios;
 
1882
1883	atomic_add(1, &ci->io->io_count);
1884	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1885	atomic_sub(1 - bios, &ci->io->io_count);
1886
1887	ci->sector_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1888}
1889
1890static blk_status_t __send_zone_reset_all(struct clone_info *ci)
 
 
 
1891{
1892	struct dm_table *t = ci->map;
1893	blk_status_t sts = BLK_STS_OK;
1894
1895	for (unsigned int i = 0; i < t->num_targets; i++) {
1896		struct dm_target *ti = dm_table_get_target(t, i);
1897
1898		if (ti->zone_reset_all_supported) {
1899			__send_zone_reset_all_native(ci, ti);
1900			continue;
1901		}
1902
1903		sts = __send_zone_reset_all_emulated(ci, ti);
1904		if (sts != BLK_STS_OK)
1905			break;
1906	}
1907
1908	/* Release the reference that alloc_io() took for submission. */
1909	atomic_sub(1, &ci->io->io_count);
 
1910
1911	return sts;
1912}
1913
1914#else
1915static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1916					   struct bio *bio)
1917{
1918	return false;
1919}
1920static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1921{
1922	return false;
1923}
1924static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1925{
1926	return BLK_STS_NOTSUPP;
1927}
1928#endif
1929
1930/*
1931 * Entry point to split a bio into clones and submit them to the targets.
 
 
1932 */
1933static void dm_split_and_process_bio(struct mapped_device *md,
1934				     struct dm_table *map, struct bio *bio)
1935{
1936	struct clone_info ci;
1937	struct dm_io *io;
1938	blk_status_t error = BLK_STS_OK;
1939	bool is_abnormal, need_split;
1940
1941	is_abnormal = is_abnormal_io(bio);
1942	if (static_branch_unlikely(&zoned_enabled)) {
1943		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1945			(is_abnormal || dm_zone_bio_needs_split(md, bio));
1946	} else {
1947		need_split = is_abnormal;
1948	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949
1950	if (unlikely(need_split)) {
1951		/*
1952		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953		 * otherwise associated queue_limits won't be imposed.
1954		 * Also split the BIO for mapped devices needing zone append
1955		 * emulation to ensure that the BIO does not cross zone
1956		 * boundaries.
1957		 */
1958		bio = bio_split_to_limits(bio);
1959		if (!bio)
1960			return;
1961	}
1962
1963	/*
1964	 * Use the block layer zone write plugging for mapped devices that
1965	 * need zone append emulation (e.g. dm-crypt).
1966	 */
1967	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1968		return;
1969
1970	/* Only support nowait for normal IO */
1971	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1972		io = alloc_io(md, bio, GFP_NOWAIT);
1973		if (unlikely(!io)) {
1974			/* Unable to do anything without dm_io. */
1975			bio_wouldblock_error(bio);
1976			return;
1977		}
1978	} else {
1979		io = alloc_io(md, bio, GFP_NOIO);
1980	}
1981	init_clone_info(&ci, io, map, bio, is_abnormal);
1982
1983	if (bio->bi_opf & REQ_PREFLUSH) {
1984		__send_empty_flush(&ci);
1985		/* dm_io_complete submits any data associated with flush */
1986		goto out;
1987	}
1988
1989	if (static_branch_unlikely(&zoned_enabled) &&
1990	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1991		error = __send_zone_reset_all(&ci);
1992		goto out;
1993	}
1994
1995	error = __split_and_process_bio(&ci);
1996	if (error || !ci.sector_count)
1997		goto out;
1998	/*
1999	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000	 * *after* bios already submitted have been completely processed.
 
 
 
2001	 */
2002	bio_trim(bio, io->sectors, ci.sector_count);
2003	trace_block_split(bio, bio->bi_iter.bi_sector);
2004	bio_inc_remaining(bio);
2005	submit_bio_noacct(bio);
2006out:
2007	/*
2008	 * Drop the extra reference count for non-POLLED bio, and hold one
2009	 * reference for POLLED bio, which will be released in dm_poll_bio
2010	 *
2011	 * Add every dm_io instance into the dm_io list head which is stored
2012	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2013	 */
2014	if (error || !ci.submit_as_polled) {
2015		/*
2016		 * In case of submission failure, the extra reference for
2017		 * submitting io isn't consumed yet
2018		 */
2019		if (error)
2020			atomic_dec(&io->io_count);
2021		dm_io_dec_pending(io, error);
2022	} else
2023		dm_queue_poll_io(bio, io);
2024}
2025
2026static void dm_submit_bio(struct bio *bio)
 
 
 
 
2027{
2028	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2029	int srcu_idx;
2030	struct dm_table *map;
 
 
2031
2032	map = dm_get_live_table(md, &srcu_idx);
2033	if (unlikely(!map)) {
2034		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035			    dm_device_name(md));
2036		bio_io_error(bio);
2037		goto out;
2038	}
 
 
 
 
 
 
 
 
2039
2040	/* If suspended, queue this IO for later */
2041	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2042		if (bio->bi_opf & REQ_NOWAIT)
2043			bio_wouldblock_error(bio);
2044		else if (bio->bi_opf & REQ_RAHEAD)
2045			bio_io_error(bio);
2046		else
2047			queue_io(md, bio);
2048		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	}
2050
2051	dm_split_and_process_bio(md, map, bio);
 
 
 
 
 
 
 
2052out:
2053	dm_put_live_table(md, srcu_idx);
2054}
2055
2056static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2057			  unsigned int flags)
2058{
2059	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2060
2061	/* don't poll if the mapped io is done */
2062	if (atomic_read(&io->io_count) > 1)
2063		bio_poll(&io->tio.clone, iob, flags);
2064
2065	/* bio_poll holds the last reference */
2066	return atomic_read(&io->io_count) == 1;
2067}
 
2068
2069static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2070		       unsigned int flags)
2071{
2072	struct dm_io **head = dm_poll_list_head(bio);
2073	struct dm_io *list = *head;
2074	struct dm_io *tmp = NULL;
2075	struct dm_io *curr, *next;
2076
2077	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2079		return 0;
 
2080
2081	WARN_ON_ONCE(!list);
2082
2083	/*
2084	 * Restore .bi_private before possibly completing dm_io.
2085	 *
2086	 * bio_poll() is only possible once @bio has been completely
2087	 * submitted via submit_bio_noacct()'s depth-first submission.
2088	 * So there is no dm_queue_poll_io() race associated with
2089	 * clearing REQ_DM_POLL_LIST here.
2090	 */
2091	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2092	bio->bi_private = list->data;
2093
2094	for (curr = list, next = curr->next; curr; curr = next, next =
2095			curr ? curr->next : NULL) {
2096		if (dm_poll_dm_io(curr, iob, flags)) {
2097			/*
2098			 * clone_endio() has already occurred, so no
2099			 * error handling is needed here.
2100			 */
2101			__dm_io_dec_pending(curr);
2102		} else {
2103			curr->next = tmp;
2104			tmp = curr;
 
 
 
2105		}
2106	}
2107
2108	/* Not done? */
2109	if (tmp) {
2110		bio->bi_opf |= REQ_DM_POLL_LIST;
2111		/* Reset bio->bi_private to dm_io list head */
2112		*head = tmp;
2113		return 0;
2114	}
2115	return 1;
2116}
2117
2118/*
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2122 */
2123static void free_minor(int minor)
2124{
2125	spin_lock(&_minor_lock);
2126	idr_remove(&_minor_idr, minor);
2127	spin_unlock(&_minor_lock);
2128}
2129
2130/*
2131 * See if the device with a specific minor # is free.
2132 */
2133static int specific_minor(int minor)
2134{
2135	int r;
2136
2137	if (minor >= (1 << MINORBITS))
2138		return -EINVAL;
2139
2140	idr_preload(GFP_KERNEL);
 
 
 
2141	spin_lock(&_minor_lock);
2142
2143	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 
 
 
 
 
 
 
2144
 
 
 
 
 
 
 
2145	spin_unlock(&_minor_lock);
2146	idr_preload_end();
2147	if (r < 0)
2148		return r == -ENOSPC ? -EBUSY : r;
2149	return 0;
2150}
2151
2152static int next_free_minor(int *minor)
2153{
2154	int r;
 
 
 
 
2155
2156	idr_preload(GFP_KERNEL);
2157	spin_lock(&_minor_lock);
2158
2159	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
2160
 
2161	spin_unlock(&_minor_lock);
2162	idr_preload_end();
2163	if (r < 0)
2164		return r;
2165	*minor = r;
2166	return 0;
2167}
2168
2169static const struct block_device_operations dm_blk_dops;
2170static const struct block_device_operations dm_rq_blk_dops;
2171static const struct dax_operations dm_dax_ops;
2172
2173static void dm_wq_work(struct work_struct *work);
2174
2175#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2177{
2178	dm_destroy_crypto_profile(q->crypto_profile);
2179}
2180
2181#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2182
2183static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2184{
2185}
2186#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2187
2188static void cleanup_mapped_device(struct mapped_device *md)
2189{
2190	if (md->wq)
2191		destroy_workqueue(md->wq);
2192	dm_free_md_mempools(md->mempools);
2193
2194	if (md->dax_dev) {
2195		dax_remove_host(md->disk);
2196		kill_dax(md->dax_dev);
2197		put_dax(md->dax_dev);
2198		md->dax_dev = NULL;
2199	}
2200
2201	if (md->disk) {
2202		spin_lock(&_minor_lock);
2203		md->disk->private_data = NULL;
2204		spin_unlock(&_minor_lock);
2205		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2206			struct table_device *td;
2207
2208			dm_sysfs_exit(md);
2209			list_for_each_entry(td, &md->table_devices, list) {
2210				bd_unlink_disk_holder(td->dm_dev.bdev,
2211						      md->disk);
2212			}
2213
2214			/*
2215			 * Hold lock to make sure del_gendisk() won't concurrent
2216			 * with open/close_table_device().
2217			 */
2218			mutex_lock(&md->table_devices_lock);
2219			del_gendisk(md->disk);
2220			mutex_unlock(&md->table_devices_lock);
2221		}
2222		dm_queue_destroy_crypto_profile(md->queue);
2223		put_disk(md->disk);
2224	}
2225
2226	if (md->pending_io) {
2227		free_percpu(md->pending_io);
2228		md->pending_io = NULL;
2229	}
2230
2231	cleanup_srcu_struct(&md->io_barrier);
2232
2233	mutex_destroy(&md->suspend_lock);
2234	mutex_destroy(&md->type_lock);
2235	mutex_destroy(&md->table_devices_lock);
2236	mutex_destroy(&md->swap_bios_lock);
2237
2238	dm_mq_cleanup_mapped_device(md);
 
 
 
 
 
2239}
2240
2241/*
2242 * Allocate and initialise a blank device with a given minor.
2243 */
2244static struct mapped_device *alloc_dev(int minor)
2245{
2246	int r, numa_node_id = dm_get_numa_node();
2247	struct dax_device *dax_dev;
2248	struct mapped_device *md;
2249	void *old_md;
2250
2251	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2252	if (!md) {
2253		DMERR("unable to allocate device, out of memory.");
2254		return NULL;
2255	}
2256
2257	if (!try_module_get(THIS_MODULE))
2258		goto bad_module_get;
2259
2260	/* get a minor number for the dev */
2261	if (minor == DM_ANY_MINOR)
2262		r = next_free_minor(&minor);
2263	else
2264		r = specific_minor(minor);
2265	if (r < 0)
2266		goto bad_minor;
2267
2268	r = init_srcu_struct(&md->io_barrier);
2269	if (r < 0)
2270		goto bad_io_barrier;
2271
2272	md->numa_node_id = numa_node_id;
2273	md->init_tio_pdu = false;
2274	md->type = DM_TYPE_NONE;
 
2275	mutex_init(&md->suspend_lock);
2276	mutex_init(&md->type_lock);
2277	mutex_init(&md->table_devices_lock);
2278	spin_lock_init(&md->deferred_lock);
 
2279	atomic_set(&md->holders, 1);
2280	atomic_set(&md->open_count, 0);
2281	atomic_set(&md->event_nr, 0);
2282	atomic_set(&md->uevent_seq, 0);
2283	INIT_LIST_HEAD(&md->uevent_list);
2284	INIT_LIST_HEAD(&md->table_devices);
2285	spin_lock_init(&md->uevent_lock);
2286
2287	/*
2288	 * default to bio-based until DM table is loaded and md->type
2289	 * established. If request-based table is loaded: blk-mq will
2290	 * override accordingly.
2291	 */
2292	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2293	if (IS_ERR(md->disk)) {
2294		md->disk = NULL;
2295		goto bad;
2296	}
2297	md->queue = md->disk->queue;
2298
 
 
2299	init_waitqueue_head(&md->wait);
2300	INIT_WORK(&md->work, dm_wq_work);
2301	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2302	init_waitqueue_head(&md->eventq);
2303	init_completion(&md->kobj_holder.completion);
2304
2305	md->requeue_list = NULL;
2306	md->swap_bios = get_swap_bios();
2307	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2308	mutex_init(&md->swap_bios_lock);
2309
2310	md->disk->major = _major;
2311	md->disk->first_minor = minor;
2312	md->disk->minors = 1;
2313	md->disk->flags |= GENHD_FL_NO_PART;
2314	md->disk->fops = &dm_blk_dops;
 
2315	md->disk->private_data = md;
2316	sprintf(md->disk->disk_name, "dm-%d", minor);
2317
2318	dax_dev = alloc_dax(md, &dm_dax_ops);
2319	if (IS_ERR(dax_dev)) {
2320		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2321			goto bad;
2322	} else {
2323		set_dax_nocache(dax_dev);
2324		set_dax_nomc(dax_dev);
2325		md->dax_dev = dax_dev;
2326		if (dax_add_host(dax_dev, md->disk))
2327			goto bad;
2328	}
2329
2330	format_dev_t(md->name, MKDEV(_major, minor));
2331
2332	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
 
2333	if (!md->wq)
2334		goto bad;
2335
2336	md->pending_io = alloc_percpu(unsigned long);
2337	if (!md->pending_io)
2338		goto bad;
2339
2340	r = dm_stats_init(&md->stats);
2341	if (r < 0)
2342		goto bad;
2343
2344	/* Populate the mapping, nobody knows we exist yet */
2345	spin_lock(&_minor_lock);
2346	old_md = idr_replace(&_minor_idr, md, minor);
2347	spin_unlock(&_minor_lock);
2348
2349	BUG_ON(old_md != MINOR_ALLOCED);
2350
2351	return md;
2352
2353bad:
2354	cleanup_mapped_device(md);
2355bad_io_barrier:
 
 
 
 
 
2356	free_minor(minor);
2357bad_minor:
2358	module_put(THIS_MODULE);
2359bad_module_get:
2360	kvfree(md);
2361	return NULL;
2362}
2363
2364static void unlock_fs(struct mapped_device *md);
2365
2366static void free_dev(struct mapped_device *md)
2367{
2368	int minor = MINOR(disk_devt(md->disk));
2369
2370	unlock_fs(md);
2371
2372	cleanup_mapped_device(md);
2373
2374	WARN_ON_ONCE(!list_empty(&md->table_devices));
2375	dm_stats_cleanup(&md->stats);
 
 
 
 
 
2376	free_minor(minor);
2377
 
 
 
 
 
 
2378	module_put(THIS_MODULE);
2379	kvfree(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380}
2381
2382/*
2383 * Bind a table to the device.
2384 */
2385static void event_callback(void *context)
2386{
2387	unsigned long flags;
2388	LIST_HEAD(uevents);
2389	struct mapped_device *md = context;
2390
2391	spin_lock_irqsave(&md->uevent_lock, flags);
2392	list_splice_init(&md->uevent_list, &uevents);
2393	spin_unlock_irqrestore(&md->uevent_lock, flags);
2394
2395	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2396
2397	atomic_inc(&md->event_nr);
2398	wake_up(&md->eventq);
2399	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
2402/*
2403 * Returns old map, which caller must destroy.
2404 */
2405static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2406			       struct queue_limits *limits)
2407{
2408	struct dm_table *old_map;
 
2409	sector_t size;
2410	int ret;
2411
2412	lockdep_assert_held(&md->suspend_lock);
2413
2414	size = dm_table_get_size(t);
2415
2416	/*
2417	 * Wipe any geometry if the size of the table changed.
2418	 */
2419	if (size != dm_get_size(md))
2420		memset(&md->geometry, 0, sizeof(md->geometry));
2421
2422	set_capacity(md->disk, size);
2423
2424	dm_table_event_callback(t, event_callback, md);
2425
2426	if (dm_table_request_based(t)) {
2427		/*
2428		 * Leverage the fact that request-based DM targets are
2429		 * immutable singletons - used to optimize dm_mq_queue_rq.
2430		 */
2431		md->immutable_target = dm_table_get_immutable_target(t);
2432
2433		/*
2434		 * There is no need to reload with request-based dm because the
2435		 * size of front_pad doesn't change.
2436		 *
2437		 * Note for future: If you are to reload bioset, prep-ed
2438		 * requests in the queue may refer to bio from the old bioset,
2439		 * so you must walk through the queue to unprep.
2440		 */
2441		if (!md->mempools) {
2442			md->mempools = t->mempools;
2443			t->mempools = NULL;
2444		}
2445	} else {
2446		/*
2447		 * The md may already have mempools that need changing.
2448		 * If so, reload bioset because front_pad may have changed
2449		 * because a different table was loaded.
2450		 */
2451		dm_free_md_mempools(md->mempools);
2452		md->mempools = t->mempools;
2453		t->mempools = NULL;
2454	}
2455
2456	ret = dm_table_set_restrictions(t, md->queue, limits);
2457	if (ret) {
2458		old_map = ERR_PTR(ret);
2459		goto out;
2460	}
2461
2462	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2463	rcu_assign_pointer(md->map, (void *)t);
2464	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2465
2466	if (old_map)
2467		dm_sync_table(md);
2468out:
 
 
 
 
2469	return old_map;
2470}
2471
2472/*
2473 * Returns unbound table for the caller to free.
2474 */
2475static struct dm_table *__unbind(struct mapped_device *md)
2476{
2477	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 
2478
2479	if (!map)
2480		return NULL;
2481
2482	dm_table_event_callback(map, NULL, NULL);
2483	RCU_INIT_POINTER(md->map, NULL);
2484	dm_sync_table(md);
 
2485
2486	return map;
2487}
2488
2489/*
2490 * Constructor for a new device.
2491 */
2492int dm_create(int minor, struct mapped_device **result)
2493{
2494	struct mapped_device *md;
2495
2496	md = alloc_dev(minor);
2497	if (!md)
2498		return -ENXIO;
2499
2500	dm_ima_reset_data(md);
2501
2502	*result = md;
2503	return 0;
2504}
2505
2506/*
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2509 */
2510void dm_lock_md_type(struct mapped_device *md)
2511{
2512	mutex_lock(&md->type_lock);
2513}
2514
2515void dm_unlock_md_type(struct mapped_device *md)
2516{
2517	mutex_unlock(&md->type_lock);
2518}
2519
2520enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
 
 
 
 
 
2521{
2522	return md->type;
2523}
2524
2525struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2526{
2527	return md->immutable_target_type;
2528}
2529
2530/*
2531 * Setup the DM device's queue based on md's type
2532 */
2533int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2534{
2535	enum dm_queue_mode type = dm_table_get_type(t);
2536	struct queue_limits limits;
2537	struct table_device *td;
2538	int r;
2539
2540	WARN_ON_ONCE(type == DM_TYPE_NONE);
 
2541
2542	if (type == DM_TYPE_REQUEST_BASED) {
2543		md->disk->fops = &dm_rq_blk_dops;
2544		r = dm_mq_init_request_queue(md, t);
2545		if (r) {
2546			DMERR("Cannot initialize queue for request-based dm mapped device");
2547			return r;
2548		}
2549	}
2550
2551	r = dm_calculate_queue_limits(t, &limits);
2552	if (r) {
2553		DMERR("Cannot calculate initial queue limits");
2554		return r;
2555	}
2556	r = dm_table_set_restrictions(t, md->queue, &limits);
2557	if (r)
2558		return r;
2559
2560	/*
2561	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562	 * with open_table_device() and close_table_device().
2563	 */
2564	mutex_lock(&md->table_devices_lock);
2565	r = add_disk(md->disk);
2566	mutex_unlock(&md->table_devices_lock);
2567	if (r)
2568		return r;
2569
2570	/*
2571	 * Register the holder relationship for devices added before the disk
2572	 * was live.
2573	 */
2574	list_for_each_entry(td, &md->table_devices, list) {
2575		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2576		if (r)
2577			goto out_undo_holders;
2578	}
2579
2580	r = dm_sysfs_init(md);
2581	if (r)
2582		goto out_undo_holders;
 
 
 
 
 
 
 
2583
2584	md->type = type;
2585	return 0;
2586
2587out_undo_holders:
2588	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2589		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2590	mutex_lock(&md->table_devices_lock);
2591	del_gendisk(md->disk);
2592	mutex_unlock(&md->table_devices_lock);
2593	return r;
2594}
2595
2596struct mapped_device *dm_get_md(dev_t dev)
2597{
2598	struct mapped_device *md;
2599	unsigned int minor = MINOR(dev);
2600
2601	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2602		return NULL;
2603
2604	spin_lock(&_minor_lock);
2605
2606	md = idr_find(&_minor_idr, minor);
2607	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2608	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 
 
2609		md = NULL;
2610		goto out;
2611	}
2612	dm_get(md);
2613out:
2614	spin_unlock(&_minor_lock);
2615
2616	return md;
2617}
 
 
 
 
 
 
 
 
 
 
2618EXPORT_SYMBOL_GPL(dm_get_md);
2619
2620void *dm_get_mdptr(struct mapped_device *md)
2621{
2622	return md->interface_ptr;
2623}
2624
2625void dm_set_mdptr(struct mapped_device *md, void *ptr)
2626{
2627	md->interface_ptr = ptr;
2628}
2629
2630void dm_get(struct mapped_device *md)
2631{
2632	atomic_inc(&md->holders);
2633	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2634}
2635
2636int dm_hold(struct mapped_device *md)
2637{
2638	spin_lock(&_minor_lock);
2639	if (test_bit(DMF_FREEING, &md->flags)) {
2640		spin_unlock(&_minor_lock);
2641		return -EBUSY;
2642	}
2643	dm_get(md);
2644	spin_unlock(&_minor_lock);
2645	return 0;
2646}
2647EXPORT_SYMBOL_GPL(dm_hold);
2648
2649const char *dm_device_name(struct mapped_device *md)
2650{
2651	return md->name;
2652}
2653EXPORT_SYMBOL_GPL(dm_device_name);
2654
2655static void __dm_destroy(struct mapped_device *md, bool wait)
2656{
2657	struct dm_table *map;
2658	int srcu_idx;
2659
2660	might_sleep();
2661
2662	spin_lock(&_minor_lock);
 
2663	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2664	set_bit(DMF_FREEING, &md->flags);
2665	spin_unlock(&_minor_lock);
2666
2667	blk_mark_disk_dead(md->disk);
2668
2669	/*
2670	 * Take suspend_lock so that presuspend and postsuspend methods
2671	 * do not race with internal suspend.
2672	 */
2673	mutex_lock(&md->suspend_lock);
2674	map = dm_get_live_table(md, &srcu_idx);
2675	if (!dm_suspended_md(md)) {
2676		dm_table_presuspend_targets(map);
2677		set_bit(DMF_SUSPENDED, &md->flags);
2678		set_bit(DMF_POST_SUSPENDING, &md->flags);
2679		dm_table_postsuspend_targets(map);
2680	}
2681	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682	dm_put_live_table(md, srcu_idx);
2683	mutex_unlock(&md->suspend_lock);
2684
2685	/*
2686	 * Rare, but there may be I/O requests still going to complete,
2687	 * for example.  Wait for all references to disappear.
2688	 * No one should increment the reference count of the mapped_device,
2689	 * after the mapped_device state becomes DMF_FREEING.
2690	 */
2691	if (wait)
2692		while (atomic_read(&md->holders))
2693			fsleep(1000);
2694	else if (atomic_read(&md->holders))
2695		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696		       dm_device_name(md), atomic_read(&md->holders));
2697
 
 
2698	dm_table_destroy(__unbind(md));
2699	free_dev(md);
2700}
2701
2702void dm_destroy(struct mapped_device *md)
2703{
2704	__dm_destroy(md, true);
2705}
2706
2707void dm_destroy_immediate(struct mapped_device *md)
2708{
2709	__dm_destroy(md, false);
2710}
2711
2712void dm_put(struct mapped_device *md)
2713{
2714	atomic_dec(&md->holders);
2715}
2716EXPORT_SYMBOL_GPL(dm_put);
2717
2718static bool dm_in_flight_bios(struct mapped_device *md)
2719{
2720	int cpu;
2721	unsigned long sum = 0;
2722
2723	for_each_possible_cpu(cpu)
2724		sum += *per_cpu_ptr(md->pending_io, cpu);
2725
2726	return sum != 0;
2727}
2728
2729static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2730{
2731	int r = 0;
2732	DEFINE_WAIT(wait);
2733
2734	while (true) {
2735		prepare_to_wait(&md->wait, &wait, task_state);
2736
2737		if (!dm_in_flight_bios(md))
 
 
 
2738			break;
2739
2740		if (signal_pending_state(task_state, current)) {
2741			r = -ERESTARTSYS;
 
2742			break;
2743		}
2744
2745		io_schedule();
2746	}
2747	finish_wait(&md->wait, &wait);
2748
2749	smp_rmb();
2750
2751	return r;
2752}
2753
2754static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2755{
2756	int r = 0;
2757
2758	if (!queue_is_mq(md->queue))
2759		return dm_wait_for_bios_completion(md, task_state);
2760
2761	while (true) {
2762		if (!blk_mq_queue_inflight(md->queue))
2763			break;
2764
2765		if (signal_pending_state(task_state, current)) {
2766			r = -ERESTARTSYS;
2767			break;
2768		}
2769
2770		fsleep(5000);
2771	}
2772
2773	return r;
2774}
2775
2776/*
2777 * Process the deferred bios
2778 */
2779static void dm_wq_work(struct work_struct *work)
2780{
2781	struct mapped_device *md = container_of(work, struct mapped_device, work);
2782	struct bio *bio;
 
 
 
2783
2784	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2785		spin_lock_irq(&md->deferred_lock);
2786		bio = bio_list_pop(&md->deferred);
2787		spin_unlock_irq(&md->deferred_lock);
2788
2789		if (!bio)
2790			break;
2791
2792		submit_bio_noacct(bio);
2793		cond_resched();
 
 
 
 
 
 
2794	}
 
 
2795}
2796
2797static void dm_queue_flush(struct mapped_device *md)
2798{
2799	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2800	smp_mb__after_atomic();
2801	queue_work(md->wq, &md->work);
2802}
2803
2804/*
2805 * Swap in a new table, returning the old one for the caller to destroy.
2806 */
2807struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2808{
2809	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2810	struct queue_limits limits;
2811	int r;
2812
2813	mutex_lock(&md->suspend_lock);
2814
2815	/* device must be suspended */
2816	if (!dm_suspended_md(md))
2817		goto out;
2818
2819	/*
2820	 * If the new table has no data devices, retain the existing limits.
2821	 * This helps multipath with queue_if_no_path if all paths disappear,
2822	 * then new I/O is queued based on these limits, and then some paths
2823	 * reappear.
2824	 */
2825	if (dm_table_has_no_data_devices(table)) {
2826		live_map = dm_get_live_table_fast(md);
2827		if (live_map)
2828			limits = md->queue->limits;
2829		dm_put_live_table_fast(md);
2830	}
2831
2832	if (!live_map) {
2833		r = dm_calculate_queue_limits(table, &limits);
2834		if (r) {
2835			map = ERR_PTR(r);
2836			goto out;
2837		}
2838	}
2839
2840	map = __bind(md, table, &limits);
2841	dm_issue_global_event();
2842
2843out:
2844	mutex_unlock(&md->suspend_lock);
2845	return map;
2846}
2847
2848/*
2849 * Functions to lock and unlock any filesystem running on the
2850 * device.
2851 */
2852static int lock_fs(struct mapped_device *md)
2853{
2854	int r;
2855
2856	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2857
2858	r = bdev_freeze(md->disk->part0);
2859	if (!r)
2860		set_bit(DMF_FROZEN, &md->flags);
2861	return r;
 
 
 
 
 
 
2862}
2863
2864static void unlock_fs(struct mapped_device *md)
2865{
2866	if (!test_bit(DMF_FROZEN, &md->flags))
2867		return;
2868	bdev_thaw(md->disk->part0);
 
 
2869	clear_bit(DMF_FROZEN, &md->flags);
2870}
2871
2872/*
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 
 
 
 
 
 
 
 
 
2876 *
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
2880 */
2881static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2882			unsigned int suspend_flags, unsigned int task_state,
2883			int dmf_suspended_flag)
2884{
2885	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2886	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2887	int r;
 
2888
2889	lockdep_assert_held(&md->suspend_lock);
 
 
 
 
 
 
 
2890
2891	/*
2892	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893	 * This flag is cleared before dm_suspend returns.
2894	 */
2895	if (noflush)
2896		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2897	else
2898		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2899
2900	/*
2901	 * This gets reverted if there's an error later and the targets
2902	 * provide the .presuspend_undo hook.
2903	 */
2904	dm_table_presuspend_targets(map);
2905
2906	/*
2907	 * Flush I/O to the device.
2908	 * Any I/O submitted after lock_fs() may not be flushed.
2909	 * noflush takes precedence over do_lockfs.
2910	 * (lock_fs() flushes I/Os and waits for them to complete.)
2911	 */
2912	if (!noflush && do_lockfs) {
2913		r = lock_fs(md);
2914		if (r) {
2915			dm_table_presuspend_undo_targets(map);
2916			return r;
2917		}
2918	}
2919
2920	/*
2921	 * Here we must make sure that no processes are submitting requests
2922	 * to target drivers i.e. no one may be executing
2923	 * dm_split_and_process_bio from dm_submit_bio.
 
2924	 *
2925	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926	 * we take the write lock. To prevent any process from reentering
2927	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929	 * flush_workqueue(md->wq).
2930	 */
 
2931	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2932	if (map)
2933		synchronize_srcu(&md->io_barrier);
2934
2935	/*
2936	 * Stop md->queue before flushing md->wq in case request-based
2937	 * dm defers requests to md->wq from md->queue.
2938	 */
2939	if (dm_request_based(md))
2940		dm_stop_queue(md->queue);
2941
2942	flush_workqueue(md->wq);
2943
2944	/*
2945	 * At this point no more requests are entering target request routines.
2946	 * We call dm_wait_for_completion to wait for all existing requests
2947	 * to finish.
2948	 */
2949	r = dm_wait_for_completion(md, task_state);
2950	if (!r)
2951		set_bit(dmf_suspended_flag, &md->flags);
2952
 
2953	if (noflush)
2954		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955	if (map)
2956		synchronize_srcu(&md->io_barrier);
2957
2958	/* were we interrupted ? */
2959	if (r < 0) {
2960		dm_queue_flush(md);
2961
2962		if (dm_request_based(md))
2963			dm_start_queue(md->queue);
2964
2965		unlock_fs(md);
2966		dm_table_presuspend_undo_targets(map);
2967		/* pushback list is already flushed, so skip flush */
2968	}
2969
2970	return r;
2971}
2972
2973/*
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem.  For example we might want to move some data in
2976 * the background.  Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2979 */
2980/*
2981 * Suspend mechanism in request-based dm.
2982 *
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2986 *
2987 * To abort suspend, start the request_queue.
2988 */
2989int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2990{
2991	struct dm_table *map = NULL;
2992	int r = 0;
2993
2994retry:
2995	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2996
2997	if (dm_suspended_md(md)) {
2998		r = -EINVAL;
2999		goto out_unlock;
3000	}
3001
3002	if (dm_suspended_internally_md(md)) {
3003		/* already internally suspended, wait for internal resume */
3004		mutex_unlock(&md->suspend_lock);
3005		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3006		if (r)
3007			return r;
3008		goto retry;
3009	}
3010
3011	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3012	if (!map) {
3013		/* avoid deadlock with fs/namespace.c:do_mount() */
3014		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3015	}
3016
3017	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3018	if (r)
3019		goto out_unlock;
3020
3021	set_bit(DMF_POST_SUSPENDING, &md->flags);
3022	dm_table_postsuspend_targets(map);
3023	clear_bit(DMF_POST_SUSPENDING, &md->flags);
 
 
3024
3025out_unlock:
3026	mutex_unlock(&md->suspend_lock);
3027	return r;
3028}
3029
3030static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3031{
3032	if (map) {
3033		int r = dm_table_resume_targets(map);
3034
3035		if (r)
3036			return r;
3037	}
3038
3039	dm_queue_flush(md);
3040
3041	/*
3042	 * Flushing deferred I/Os must be done after targets are resumed
3043	 * so that mapping of targets can work correctly.
3044	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3045	 */
3046	if (dm_request_based(md))
3047		dm_start_queue(md->queue);
3048
3049	unlock_fs(md);
3050
3051	return 0;
3052}
3053
3054int dm_resume(struct mapped_device *md)
3055{
3056	int r;
3057	struct dm_table *map = NULL;
3058
3059retry:
3060	r = -EINVAL;
3061	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3062
3063	if (!dm_suspended_md(md))
3064		goto out;
3065
3066	if (dm_suspended_internally_md(md)) {
3067		/* already internally suspended, wait for internal resume */
3068		mutex_unlock(&md->suspend_lock);
3069		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3070		if (r)
3071			return r;
3072		goto retry;
3073	}
3074
3075	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3076	if (!map || !dm_table_get_size(map))
3077		goto out;
3078
3079	r = __dm_resume(md, map);
3080	if (r)
3081		goto out;
3082
3083	clear_bit(DMF_SUSPENDED, &md->flags);
3084out:
3085	mutex_unlock(&md->suspend_lock);
3086
3087	return r;
3088}
3089
3090/*
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3094 */
3095
3096static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3097{
3098	struct dm_table *map = NULL;
3099
3100	lockdep_assert_held(&md->suspend_lock);
3101
3102	if (md->internal_suspend_count++)
3103		return; /* nested internal suspend */
3104
3105	if (dm_suspended_md(md)) {
3106		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107		return; /* nest suspend */
3108	}
3109
3110	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3111
3112	/*
3113	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115	 * would require changing .presuspend to return an error -- avoid this
3116	 * until there is a need for more elaborate variants of internal suspend.
3117	 */
3118	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3119			    DMF_SUSPENDED_INTERNALLY);
3120
3121	set_bit(DMF_POST_SUSPENDING, &md->flags);
3122	dm_table_postsuspend_targets(map);
3123	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3124}
3125
3126static void __dm_internal_resume(struct mapped_device *md)
3127{
3128	int r;
3129	struct dm_table *map;
3130
3131	BUG_ON(!md->internal_suspend_count);
3132
3133	if (--md->internal_suspend_count)
3134		return; /* resume from nested internal suspend */
3135
3136	if (dm_suspended_md(md))
3137		goto done; /* resume from nested suspend */
3138
3139	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3140	r = __dm_resume(md, map);
3141	if (r) {
3142		/*
3143		 * If a preresume method of some target failed, we are in a
3144		 * tricky situation. We can't return an error to the caller. We
3145		 * can't fake success because then the "resume" and
3146		 * "postsuspend" methods would not be paired correctly, and it
3147		 * would break various targets, for example it would cause list
3148		 * corruption in the "origin" target.
3149		 *
3150		 * So, we fake normal suspend here, to make sure that the
3151		 * "resume" and "postsuspend" methods will be paired correctly.
3152		 */
3153		DMERR("Preresume method failed: %d", r);
3154		set_bit(DMF_SUSPENDED, &md->flags);
3155	}
3156done:
3157	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3158	smp_mb__after_atomic();
3159	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3160}
3161
3162void dm_internal_suspend_noflush(struct mapped_device *md)
3163{
3164	mutex_lock(&md->suspend_lock);
3165	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3166	mutex_unlock(&md->suspend_lock);
3167}
3168EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3169
3170void dm_internal_resume(struct mapped_device *md)
3171{
3172	mutex_lock(&md->suspend_lock);
3173	__dm_internal_resume(md);
3174	mutex_unlock(&md->suspend_lock);
3175}
3176EXPORT_SYMBOL_GPL(dm_internal_resume);
3177
3178/*
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3181 */
3182
3183void dm_internal_suspend_fast(struct mapped_device *md)
3184{
3185	mutex_lock(&md->suspend_lock);
3186	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3187		return;
3188
3189	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3190	synchronize_srcu(&md->io_barrier);
3191	flush_workqueue(md->wq);
3192	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3193}
3194EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3195
3196void dm_internal_resume_fast(struct mapped_device *md)
3197{
3198	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3199		goto done;
3200
3201	dm_queue_flush(md);
3202
3203done:
3204	mutex_unlock(&md->suspend_lock);
3205}
3206EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3207
3208/*
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3212 */
3213int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3214		      unsigned int cookie, bool need_resize_uevent)
3215{
3216	int r;
3217	unsigned int noio_flag;
3218	char udev_cookie[DM_COOKIE_LENGTH];
3219	char *envp[3] = { NULL, NULL, NULL };
3220	char **envpp = envp;
3221	if (cookie) {
 
 
3222		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3223			 DM_COOKIE_ENV_VAR_NAME, cookie);
3224		*envpp++ = udev_cookie;
 
3225	}
3226	if (need_resize_uevent) {
3227		*envpp++ = "RESIZE=1";
3228	}
3229
3230	noio_flag = memalloc_noio_save();
3231
3232	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3233
3234	memalloc_noio_restore(noio_flag);
3235
3236	return r;
3237}
3238
3239uint32_t dm_next_uevent_seq(struct mapped_device *md)
3240{
3241	return atomic_add_return(1, &md->uevent_seq);
3242}
3243
3244uint32_t dm_get_event_nr(struct mapped_device *md)
3245{
3246	return atomic_read(&md->event_nr);
3247}
3248
3249int dm_wait_event(struct mapped_device *md, int event_nr)
3250{
3251	return wait_event_interruptible(md->eventq,
3252			(event_nr != atomic_read(&md->event_nr)));
3253}
3254
3255void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3256{
3257	unsigned long flags;
3258
3259	spin_lock_irqsave(&md->uevent_lock, flags);
3260	list_add(elist, &md->uevent_list);
3261	spin_unlock_irqrestore(&md->uevent_lock, flags);
3262}
3263
3264/*
3265 * The gendisk is only valid as long as you have a reference
3266 * count on 'md'.
3267 */
3268struct gendisk *dm_disk(struct mapped_device *md)
3269{
3270	return md->disk;
3271}
3272EXPORT_SYMBOL_GPL(dm_disk);
3273
3274struct kobject *dm_kobject(struct mapped_device *md)
3275{
3276	return &md->kobj_holder.kobj;
3277}
3278
 
 
 
 
3279struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3280{
3281	struct mapped_device *md;
3282
3283	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 
 
3284
3285	spin_lock(&_minor_lock);
3286	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3287		md = NULL;
3288		goto out;
3289	}
3290	dm_get(md);
3291out:
3292	spin_unlock(&_minor_lock);
3293
 
3294	return md;
3295}
3296
3297int dm_suspended_md(struct mapped_device *md)
3298{
3299	return test_bit(DMF_SUSPENDED, &md->flags);
3300}
3301
3302static int dm_post_suspending_md(struct mapped_device *md)
3303{
3304	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3305}
3306
3307int dm_suspended_internally_md(struct mapped_device *md)
3308{
3309	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310}
3311
3312int dm_test_deferred_remove_flag(struct mapped_device *md)
3313{
3314	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3315}
3316
3317int dm_suspended(struct dm_target *ti)
3318{
3319	return dm_suspended_md(ti->table->md);
3320}
3321EXPORT_SYMBOL_GPL(dm_suspended);
3322
3323int dm_post_suspending(struct dm_target *ti)
3324{
3325	return dm_post_suspending_md(ti->table->md);
3326}
3327EXPORT_SYMBOL_GPL(dm_post_suspending);
3328
3329int dm_noflush_suspending(struct dm_target *ti)
3330{
3331	return __noflush_suspending(ti->table->md);
3332}
3333EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3334
3335void dm_free_md_mempools(struct dm_md_mempools *pools)
3336{
3337	if (!pools)
3338		return;
3339
3340	bioset_exit(&pools->bs);
3341	bioset_exit(&pools->io_bs);
3342
3343	kfree(pools);
3344}
3345
3346struct dm_blkdev_id {
3347	u8 *id;
3348	enum blk_unique_id type;
3349};
3350
3351static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3352				sector_t start, sector_t len, void *data)
3353{
3354	struct dm_blkdev_id *dm_id = data;
3355	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3356
3357	if (!fops->get_unique_id)
3358		return 0;
3359
3360	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3361}
3362
3363/*
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result.  Reasonable use expects all devices to have the
3366 * same unique id.
3367 */
3368static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3369		enum blk_unique_id type)
3370{
3371	struct mapped_device *md = disk->private_data;
3372	struct dm_table *table;
3373	struct dm_target *ti;
3374	int ret = 0, srcu_idx;
3375
3376	struct dm_blkdev_id dm_id = {
3377		.id = id,
3378		.type = type,
3379	};
3380
3381	table = dm_get_live_table(md, &srcu_idx);
3382	if (!table || !dm_table_get_size(table))
3383		goto out;
3384
3385	/* We only support devices that have a single target */
3386	if (table->num_targets != 1)
3387		goto out;
3388	ti = dm_table_get_target(table, 0);
3389
3390	if (!ti->type->iterate_devices)
3391		goto out;
3392
3393	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3394out:
3395	dm_put_live_table(md, srcu_idx);
3396	return ret;
3397}
3398
3399struct dm_pr {
3400	u64	old_key;
3401	u64	new_key;
3402	u32	flags;
3403	bool	abort;
3404	bool	fail_early;
3405	int	ret;
3406	enum pr_type type;
3407	struct pr_keys *read_keys;
3408	struct pr_held_reservation *rsv;
3409};
3410
3411static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3412		      struct dm_pr *pr)
3413{
3414	struct mapped_device *md = bdev->bd_disk->private_data;
3415	struct dm_table *table;
3416	struct dm_target *ti;
3417	int ret = -ENOTTY, srcu_idx;
3418
3419	table = dm_get_live_table(md, &srcu_idx);
3420	if (!table || !dm_table_get_size(table))
3421		goto out;
3422
3423	/* We only support devices that have a single target */
3424	if (table->num_targets != 1)
3425		goto out;
3426	ti = dm_table_get_target(table, 0);
3427
3428	if (dm_suspended_md(md)) {
3429		ret = -EAGAIN;
3430		goto out;
3431	}
3432
3433	ret = -EINVAL;
3434	if (!ti->type->iterate_devices)
3435		goto out;
3436
3437	ti->type->iterate_devices(ti, fn, pr);
3438	ret = 0;
3439out:
3440	dm_put_live_table(md, srcu_idx);
3441	return ret;
3442}
3443
3444/*
3445 * For register / unregister we need to manually call out to every path.
3446 */
3447static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3448			    sector_t start, sector_t len, void *data)
3449{
3450	struct dm_pr *pr = data;
3451	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3452	int ret;
3453
3454	if (!ops || !ops->pr_register) {
3455		pr->ret = -EOPNOTSUPP;
3456		return -1;
3457	}
3458
3459	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3460	if (!ret)
3461		return 0;
3462
3463	if (!pr->ret)
3464		pr->ret = ret;
3465
3466	if (pr->fail_early)
3467		return -1;
3468
3469	return 0;
3470}
3471
3472static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3473			  u32 flags)
3474{
3475	struct dm_pr pr = {
3476		.old_key	= old_key,
3477		.new_key	= new_key,
3478		.flags		= flags,
3479		.fail_early	= true,
3480		.ret		= 0,
3481	};
3482	int ret;
3483
3484	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3485	if (ret) {
3486		/* Didn't even get to register a path */
3487		return ret;
3488	}
3489
3490	if (!pr.ret)
3491		return 0;
3492	ret = pr.ret;
3493
3494	if (!new_key)
3495		return ret;
3496
3497	/* unregister all paths if we failed to register any path */
3498	pr.old_key = new_key;
3499	pr.new_key = 0;
3500	pr.flags = 0;
3501	pr.fail_early = false;
3502	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3503	return ret;
3504}
3505
3506
3507static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3508			   sector_t start, sector_t len, void *data)
3509{
3510	struct dm_pr *pr = data;
3511	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3512
3513	if (!ops || !ops->pr_reserve) {
3514		pr->ret = -EOPNOTSUPP;
3515		return -1;
3516	}
3517
3518	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3519	if (!pr->ret)
3520		return -1;
3521
3522	return 0;
3523}
3524
3525static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3526			 u32 flags)
3527{
3528	struct dm_pr pr = {
3529		.old_key	= key,
3530		.flags		= flags,
3531		.type		= type,
3532		.fail_early	= false,
3533		.ret		= 0,
3534	};
3535	int ret;
3536
3537	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3538	if (ret)
3539		return ret;
3540
3541	return pr.ret;
3542}
3543
3544/*
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3549 */
3550static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3551			   sector_t start, sector_t len, void *data)
3552{
3553	struct dm_pr *pr = data;
3554	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3555
3556	if (!ops || !ops->pr_release) {
3557		pr->ret = -EOPNOTSUPP;
3558		return -1;
3559	}
3560
3561	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3562	if (pr->ret)
3563		return -1;
3564
3565	return 0;
3566}
3567
3568static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3569{
3570	struct dm_pr pr = {
3571		.old_key	= key,
3572		.type		= type,
3573		.fail_early	= false,
3574	};
3575	int ret;
3576
3577	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3578	if (ret)
3579		return ret;
3580
3581	return pr.ret;
3582}
3583
3584static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3585			   sector_t start, sector_t len, void *data)
3586{
3587	struct dm_pr *pr = data;
3588	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3589
3590	if (!ops || !ops->pr_preempt) {
3591		pr->ret = -EOPNOTSUPP;
3592		return -1;
3593	}
3594
3595	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3596				  pr->abort);
3597	if (!pr->ret)
3598		return -1;
3599
3600	return 0;
3601}
3602
3603static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3604			 enum pr_type type, bool abort)
3605{
3606	struct dm_pr pr = {
3607		.new_key	= new_key,
3608		.old_key	= old_key,
3609		.type		= type,
3610		.fail_early	= false,
3611	};
3612	int ret;
3613
3614	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3615	if (ret)
3616		return ret;
 
 
3617
3618	return pr.ret;
3619}
 
3620
3621static int dm_pr_clear(struct block_device *bdev, u64 key)
3622{
3623	struct mapped_device *md = bdev->bd_disk->private_data;
3624	const struct pr_ops *ops;
3625	int r, srcu_idx;
3626
3627	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3628	if (r < 0)
3629		goto out;
3630
3631	ops = bdev->bd_disk->fops->pr_ops;
3632	if (ops && ops->pr_clear)
3633		r = ops->pr_clear(bdev, key);
3634	else
3635		r = -EOPNOTSUPP;
3636out:
3637	dm_unprepare_ioctl(md, srcu_idx);
3638	return r;
3639}
3640
3641static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3642			     sector_t start, sector_t len, void *data)
3643{
3644	struct dm_pr *pr = data;
3645	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3646
3647	if (!ops || !ops->pr_read_keys) {
3648		pr->ret = -EOPNOTSUPP;
3649		return -1;
3650	}
3651
3652	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3653	if (!pr->ret)
3654		return -1;
3655
3656	return 0;
3657}
3658
3659static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3660{
3661	struct dm_pr pr = {
3662		.read_keys = keys,
3663	};
3664	int ret;
3665
3666	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3667	if (ret)
3668		return ret;
3669
3670	return pr.ret;
3671}
3672
3673static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3674				    sector_t start, sector_t len, void *data)
3675{
3676	struct dm_pr *pr = data;
3677	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3678
3679	if (!ops || !ops->pr_read_reservation) {
3680		pr->ret = -EOPNOTSUPP;
3681		return -1;
3682	}
3683
3684	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3685	if (!pr->ret)
3686		return -1;
3687
3688	return 0;
3689}
3690
3691static int dm_pr_read_reservation(struct block_device *bdev,
3692				  struct pr_held_reservation *rsv)
3693{
3694	struct dm_pr pr = {
3695		.rsv = rsv,
3696	};
3697	int ret;
3698
3699	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3700	if (ret)
3701		return ret;
3702
3703	return pr.ret;
3704}
3705
3706static const struct pr_ops dm_pr_ops = {
3707	.pr_register	= dm_pr_register,
3708	.pr_reserve	= dm_pr_reserve,
3709	.pr_release	= dm_pr_release,
3710	.pr_preempt	= dm_pr_preempt,
3711	.pr_clear	= dm_pr_clear,
3712	.pr_read_keys	= dm_pr_read_keys,
3713	.pr_read_reservation = dm_pr_read_reservation,
3714};
3715
3716static const struct block_device_operations dm_blk_dops = {
3717	.submit_bio = dm_submit_bio,
3718	.poll_bio = dm_poll_bio,
3719	.open = dm_blk_open,
3720	.release = dm_blk_close,
3721	.ioctl = dm_blk_ioctl,
3722	.getgeo = dm_blk_getgeo,
3723	.report_zones = dm_blk_report_zones,
3724	.get_unique_id = dm_blk_get_unique_id,
3725	.pr_ops = &dm_pr_ops,
3726	.owner = THIS_MODULE
3727};
3728
3729static const struct block_device_operations dm_rq_blk_dops = {
3730	.open = dm_blk_open,
3731	.release = dm_blk_close,
3732	.ioctl = dm_blk_ioctl,
3733	.getgeo = dm_blk_getgeo,
3734	.get_unique_id = dm_blk_get_unique_id,
3735	.pr_ops = &dm_pr_ops,
3736	.owner = THIS_MODULE
3737};
3738
3739static const struct dax_operations dm_dax_ops = {
3740	.direct_access = dm_dax_direct_access,
3741	.zero_page_range = dm_dax_zero_page_range,
3742	.recovery_write = dm_dax_recovery_write,
3743};
3744
3745/*
3746 * module hooks
3747 */
3748module_init(dm_init);
3749module_exit(dm_exit);
3750
3751module_param(major, uint, 0);
3752MODULE_PARM_DESC(major, "The major number of the device mapper");
3753
3754module_param(reserved_bio_based_ios, uint, 0644);
3755MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3756
3757module_param(dm_numa_node, int, 0644);
3758MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3759
3760module_param(swap_bios, int, 0644);
3761MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3762
3763MODULE_DESCRIPTION(DM_NAME " driver");
3764MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765MODULE_LICENSE("GPL");
v3.5.6
 
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
 
  10
 
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22
  23#include <trace/events/block.h>
 
 
 
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
 
 
 
 
 
 
 
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
  52/*
  53 * For bio-based dm.
  54 * One of these is allocated per bio.
  55 */
  56struct dm_io {
  57	struct mapped_device *md;
  58	int error;
  59	atomic_t io_count;
  60	struct bio *bio;
  61	unsigned long start_time;
  62	spinlock_t endio_lock;
  63};
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per target within a bio.  Hopefully
  68 * this will be simplified out one day.
  69 */
  70struct dm_target_io {
  71	struct dm_io *io;
  72	struct dm_target *ti;
  73	union map_info info;
  74};
 
 
 
 
  75
  76/*
  77 * For request-based dm.
  78 * One of these is allocated per request.
  79 */
  80struct dm_rq_target_io {
  81	struct mapped_device *md;
  82	struct dm_target *ti;
  83	struct request *orig, clone;
  84	int error;
  85	union map_info info;
  86};
  87
  88/*
  89 * For request-based dm.
  90 * One of these is allocated per bio.
  91 */
  92struct dm_rq_clone_bio_info {
  93	struct bio *orig;
  94	struct dm_rq_target_io *tio;
 
 
 
 
 
  95};
  96
  97union map_info *dm_get_mapinfo(struct bio *bio)
  98{
  99	if (bio && bio->bi_private)
 100		return &((struct dm_target_io *)bio->bi_private)->info;
 101	return NULL;
 102}
 103
 104union map_info *dm_get_rq_mapinfo(struct request *rq)
 105{
 106	if (rq && rq->end_io_data)
 107		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
 108	return NULL;
 109}
 110EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
 111
 112#define MINOR_ALLOCED ((void *)-1)
 
 
 113
 114/*
 115 * Bits for the md->flags field.
 116 */
 117#define DMF_BLOCK_IO_FOR_SUSPEND 0
 118#define DMF_SUSPENDED 1
 119#define DMF_FROZEN 2
 120#define DMF_FREEING 3
 121#define DMF_DELETING 4
 122#define DMF_NOFLUSH_SUSPENDING 5
 123#define DMF_MERGE_IS_OPTIONAL 6
 124
 125/*
 126 * Work processed by per-device workqueue.
 127 */
 128struct mapped_device {
 129	struct rw_semaphore io_lock;
 130	struct mutex suspend_lock;
 131	rwlock_t map_lock;
 132	atomic_t holders;
 133	atomic_t open_count;
 134
 135	unsigned long flags;
 
 
 
 
 136
 137	struct request_queue *queue;
 138	unsigned type;
 139	/* Protect queue and type against concurrent access. */
 140	struct mutex type_lock;
 141
 142	struct target_type *immutable_target_type;
 
 143
 144	struct gendisk *disk;
 145	char name[16];
 
 
 
 146
 147	void *interface_ptr;
 
 
 
 148
 149	/*
 150	 * A list of ios that arrived while we were suspended.
 151	 */
 152	atomic_t pending[2];
 153	wait_queue_head_t wait;
 154	struct work_struct work;
 155	struct bio_list deferred;
 156	spinlock_t deferred_lock;
 157
 158	/*
 159	 * Processing queue (flush)
 160	 */
 161	struct workqueue_struct *wq;
 
 162
 163	/*
 164	 * The current mapping.
 165	 */
 166	struct dm_table *map;
 
 167
 168	/*
 169	 * io objects are allocated from here.
 170	 */
 171	mempool_t *io_pool;
 172	mempool_t *tio_pool;
 
 173
 174	struct bio_set *bs;
 
 
 
 175
 176	/*
 177	 * Event handling.
 178	 */
 179	atomic_t event_nr;
 180	wait_queue_head_t eventq;
 181	atomic_t uevent_seq;
 182	struct list_head uevent_list;
 183	spinlock_t uevent_lock; /* Protect access to uevent_list */
 184
 185	/*
 186	 * freeze/thaw support require holding onto a super block
 187	 */
 188	struct super_block *frozen_sb;
 189	struct block_device *bdev;
 190
 191	/* forced geometry settings */
 192	struct hd_geometry geometry;
 
 
 193
 194	/* sysfs handle */
 195	struct kobject kobj;
 
 
 196
 197	/* zero-length flush that will be cloned and submitted to targets */
 198	struct bio flush_bio;
 199};
 200
 201/*
 202 * For mempools pre-allocation at the table loading time.
 203 */
 204struct dm_md_mempools {
 205	mempool_t *io_pool;
 206	mempool_t *tio_pool;
 207	struct bio_set *bs;
 208};
 209
 210#define MIN_IOS 256
 211static struct kmem_cache *_io_cache;
 212static struct kmem_cache *_tio_cache;
 213static struct kmem_cache *_rq_tio_cache;
 214static struct kmem_cache *_rq_bio_info_cache;
 215
 216static int __init local_init(void)
 217{
 218	int r = -ENOMEM;
 219
 220	/* allocate a slab for the dm_ios */
 221	_io_cache = KMEM_CACHE(dm_io, 0);
 222	if (!_io_cache)
 223		return r;
 224
 225	/* allocate a slab for the target ios */
 226	_tio_cache = KMEM_CACHE(dm_target_io, 0);
 227	if (!_tio_cache)
 228		goto out_free_io_cache;
 229
 230	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 231	if (!_rq_tio_cache)
 232		goto out_free_tio_cache;
 233
 234	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
 235	if (!_rq_bio_info_cache)
 236		goto out_free_rq_tio_cache;
 237
 238	r = dm_uevent_init();
 239	if (r)
 240		goto out_free_rq_bio_info_cache;
 241
 242	_major = major;
 243	r = register_blkdev(_major, _name);
 244	if (r < 0)
 245		goto out_uevent_exit;
 246
 247	if (!_major)
 248		_major = r;
 249
 250	return 0;
 251
 
 
 252out_uevent_exit:
 253	dm_uevent_exit();
 254out_free_rq_bio_info_cache:
 255	kmem_cache_destroy(_rq_bio_info_cache);
 256out_free_rq_tio_cache:
 257	kmem_cache_destroy(_rq_tio_cache);
 258out_free_tio_cache:
 259	kmem_cache_destroy(_tio_cache);
 260out_free_io_cache:
 261	kmem_cache_destroy(_io_cache);
 262
 263	return r;
 264}
 265
 266static void local_exit(void)
 267{
 268	kmem_cache_destroy(_rq_bio_info_cache);
 269	kmem_cache_destroy(_rq_tio_cache);
 270	kmem_cache_destroy(_tio_cache);
 271	kmem_cache_destroy(_io_cache);
 272	unregister_blkdev(_major, _name);
 273	dm_uevent_exit();
 274
 275	_major = 0;
 276
 277	DMINFO("cleaned up");
 278}
 279
 280static int (*_inits[])(void) __initdata = {
 281	local_init,
 282	dm_target_init,
 283	dm_linear_init,
 284	dm_stripe_init,
 285	dm_io_init,
 286	dm_kcopyd_init,
 287	dm_interface_init,
 
 288};
 289
 290static void (*_exits[])(void) = {
 291	local_exit,
 292	dm_target_exit,
 293	dm_linear_exit,
 294	dm_stripe_exit,
 295	dm_io_exit,
 296	dm_kcopyd_exit,
 297	dm_interface_exit,
 
 298};
 299
 300static int __init dm_init(void)
 301{
 302	const int count = ARRAY_SIZE(_inits);
 
 303
 304	int r, i;
 
 
 
 305
 306	for (i = 0; i < count; i++) {
 307		r = _inits[i]();
 308		if (r)
 309			goto bad;
 310	}
 311
 312	return 0;
 313
 314      bad:
 315	while (i--)
 316		_exits[i]();
 317
 318	return r;
 319}
 320
 321static void __exit dm_exit(void)
 322{
 323	int i = ARRAY_SIZE(_exits);
 324
 325	while (i--)
 326		_exits[i]();
 327
 328	/*
 329	 * Should be empty by this point.
 330	 */
 331	idr_remove_all(&_minor_idr);
 332	idr_destroy(&_minor_idr);
 333}
 334
 335/*
 336 * Block device functions
 337 */
 338int dm_deleting_md(struct mapped_device *md)
 339{
 340	return test_bit(DMF_DELETING, &md->flags);
 341}
 342
 343static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 344{
 345	struct mapped_device *md;
 346
 347	spin_lock(&_minor_lock);
 348
 349	md = bdev->bd_disk->private_data;
 350	if (!md)
 351		goto out;
 352
 353	if (test_bit(DMF_FREEING, &md->flags) ||
 354	    dm_deleting_md(md)) {
 355		md = NULL;
 356		goto out;
 357	}
 358
 359	dm_get(md);
 360	atomic_inc(&md->open_count);
 361
 362out:
 363	spin_unlock(&_minor_lock);
 364
 365	return md ? 0 : -ENXIO;
 366}
 367
 368static int dm_blk_close(struct gendisk *disk, fmode_t mode)
 369{
 370	struct mapped_device *md = disk->private_data;
 371
 372	spin_lock(&_minor_lock);
 373
 374	atomic_dec(&md->open_count);
 
 
 
 
 
 
 
 375	dm_put(md);
 376
 377	spin_unlock(&_minor_lock);
 378
 379	return 0;
 380}
 381
 382int dm_open_count(struct mapped_device *md)
 383{
 384	return atomic_read(&md->open_count);
 385}
 386
 387/*
 388 * Guarantees nothing is using the device before it's deleted.
 389 */
 390int dm_lock_for_deletion(struct mapped_device *md)
 391{
 392	int r = 0;
 393
 394	spin_lock(&_minor_lock);
 395
 396	if (dm_open_count(md))
 397		r = -EBUSY;
 
 
 
 
 398	else
 399		set_bit(DMF_DELETING, &md->flags);
 400
 401	spin_unlock(&_minor_lock);
 402
 403	return r;
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 414			unsigned int cmd, unsigned long arg)
 415{
 416	struct mapped_device *md = bdev->bd_disk->private_data;
 417	struct dm_table *map = dm_get_live_table(md);
 418	struct dm_target *tgt;
 419	int r = -ENOTTY;
 420
 
 
 
 421	if (!map || !dm_table_get_size(map))
 422		goto out;
 423
 424	/* We only support devices that have a single target */
 425	if (dm_table_get_num_targets(map) != 1)
 426		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427
 428	tgt = dm_table_get_target(map, 0);
 
 
 
 
 429
 430	if (dm_suspended_md(md)) {
 431		r = -EAGAIN;
 432		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 433	}
 434
 435	if (tgt->type->ioctl)
 436		r = tgt->type->ioctl(tgt, cmd, arg);
 437
 
 438out:
 439	dm_table_put(map);
 
 
 440
 441	return r;
 
 
 442}
 
 443
 444static struct dm_io *alloc_io(struct mapped_device *md)
 445{
 446	return mempool_alloc(md->io_pool, GFP_NOIO);
 447}
 448
 449static void free_io(struct mapped_device *md, struct dm_io *io)
 450{
 451	mempool_free(io, md->io_pool);
 
 
 
 
 
 
 
 
 452}
 453
 454static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 455{
 456	mempool_free(tio, md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457}
 458
 459static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
 460					    gfp_t gfp_mask)
 461{
 462	return mempool_alloc(md->tio_pool, gfp_mask);
 463}
 464
 465static void free_rq_tio(struct dm_rq_target_io *tio)
 466{
 467	mempool_free(tio, tio->md->tio_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
 471{
 472	return mempool_alloc(md->io_pool, GFP_ATOMIC);
 473}
 474
 475static void free_bio_info(struct dm_rq_clone_bio_info *info)
 476{
 477	mempool_free(info, info->tio->md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480static int md_in_flight(struct mapped_device *md)
 481{
 482	return atomic_read(&md->pending[READ]) +
 483	       atomic_read(&md->pending[WRITE]);
 484}
 485
 486static void start_io_acct(struct dm_io *io)
 
 487{
 488	struct mapped_device *md = io->md;
 489	int cpu;
 490	int rw = bio_data_dir(io->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491
 492	io->start_time = jiffies;
 
 
 
 
 493
 494	cpu = part_stat_lock();
 495	part_round_stats(cpu, &dm_disk(md)->part0);
 496	part_stat_unlock();
 497	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 498		atomic_inc_return(&md->pending[rw]));
 499}
 500
 501static void end_io_acct(struct dm_io *io)
 502{
 503	struct mapped_device *md = io->md;
 504	struct bio *bio = io->bio;
 505	unsigned long duration = jiffies - io->start_time;
 506	int pending, cpu;
 507	int rw = bio_data_dir(bio);
 508
 509	cpu = part_stat_lock();
 510	part_round_stats(cpu, &dm_disk(md)->part0);
 511	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
 512	part_stat_unlock();
 513
 514	/*
 515	 * After this is decremented the bio must not be touched if it is
 516	 * a flush.
 517	 */
 518	pending = atomic_dec_return(&md->pending[rw]);
 519	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 520	pending += atomic_read(&md->pending[rw^0x1]);
 521
 522	/* nudge anyone waiting on suspend queue */
 523	if (!pending)
 524		wake_up(&md->wait);
 525}
 526
 527/*
 528 * Add the bio to the list of deferred io.
 529 */
 530static void queue_io(struct mapped_device *md, struct bio *bio)
 531{
 532	unsigned long flags;
 533
 534	spin_lock_irqsave(&md->deferred_lock, flags);
 535	bio_list_add(&md->deferred, bio);
 536	spin_unlock_irqrestore(&md->deferred_lock, flags);
 537	queue_work(md->wq, &md->work);
 538}
 539
 540/*
 541 * Everyone (including functions in this file), should use this
 542 * function to access the md->map field, and make sure they call
 543 * dm_table_put() when finished.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544 */
 545struct dm_table *dm_get_live_table(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546{
 547	struct dm_table *t;
 548	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550	read_lock_irqsave(&md->map_lock, flags);
 551	t = md->map;
 552	if (t)
 553		dm_table_get(t);
 554	read_unlock_irqrestore(&md->map_lock, flags);
 555
 556	return t;
 
 
 
 557}
 558
 559/*
 560 * Get the geometry associated with a dm device
 561 */
 562int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 563{
 564	*geo = md->geometry;
 565
 566	return 0;
 567}
 568
 569/*
 570 * Set the geometry of a device.
 571 */
 572int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 573{
 574	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 575
 576	if (geo->start > sz) {
 577		DMWARN("Start sector is beyond the geometry limits.");
 578		return -EINVAL;
 579	}
 580
 581	md->geometry = *geo;
 582
 583	return 0;
 584}
 585
 586/*-----------------------------------------------------------------
 587 * CRUD START:
 588 *   A more elegant soln is in the works that uses the queue
 589 *   merge fn, unfortunately there are a couple of changes to
 590 *   the block layer that I want to make for this.  So in the
 591 *   interests of getting something for people to use I give
 592 *   you this clearly demarcated crap.
 593 *---------------------------------------------------------------*/
 594
 595static int __noflush_suspending(struct mapped_device *md)
 596{
 597	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 598}
 599
 600/*
 601 * Decrements the number of outstanding ios that a bio has been
 602 * cloned into, completing the original io if necc.
 603 */
 604static void dec_pending(struct dm_io *io, int error)
 605{
 606	unsigned long flags;
 607	int io_error;
 608	struct bio *bio;
 609	struct mapped_device *md = io->md;
 610
 611	/* Push-back supersedes any I/O errors */
 612	if (unlikely(error)) {
 613		spin_lock_irqsave(&io->endio_lock, flags);
 614		if (!(io->error > 0 && __noflush_suspending(md)))
 615			io->error = error;
 616		spin_unlock_irqrestore(&io->endio_lock, flags);
 
 617	}
 
 618
 619	if (atomic_dec_and_test(&io->io_count)) {
 620		if (io->error == DM_ENDIO_REQUEUE) {
 621			/*
 622			 * Target requested pushing back the I/O.
 623			 */
 624			spin_lock_irqsave(&md->deferred_lock, flags);
 625			if (__noflush_suspending(md))
 626				bio_list_add_head(&md->deferred, io->bio);
 627			else
 628				/* noflush suspend was interrupted. */
 629				io->error = -EIO;
 630			spin_unlock_irqrestore(&md->deferred_lock, flags);
 631		}
 632
 633		io_error = io->error;
 634		bio = io->bio;
 635		end_io_acct(io);
 636		free_io(md, io);
 
 
 
 
 
 
 
 
 637
 638		if (io_error == DM_ENDIO_REQUEUE)
 639			return;
 640
 641		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
 642			/*
 643			 * Preflush done for flush with data, reissue
 644			 * without REQ_FLUSH.
 
 645			 */
 646			bio->bi_rw &= ~REQ_FLUSH;
 647			queue_io(md, bio);
 648		} else {
 649			/* done with normal IO or empty flush */
 650			trace_block_bio_complete(md->queue, bio, io_error);
 651			bio_endio(bio, io_error);
 652		}
 653	}
 654}
 655
 656static void clone_endio(struct bio *bio, int error)
 657{
 658	int r = 0;
 659	struct dm_target_io *tio = bio->bi_private;
 660	struct dm_io *io = tio->io;
 661	struct mapped_device *md = tio->io->md;
 662	dm_endio_fn endio = tio->ti->type->end_io;
 663
 664	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
 665		error = -EIO;
 666
 667	if (endio) {
 668		r = endio(tio->ti, bio, error, &tio->info);
 669		if (r < 0 || r == DM_ENDIO_REQUEUE)
 670			/*
 671			 * error and requeue request are handled
 672			 * in dec_pending().
 673			 */
 674			error = r;
 675		else if (r == DM_ENDIO_INCOMPLETE)
 676			/* The target will handle the io */
 677			return;
 678		else if (r) {
 679			DMWARN("unimplemented target endio return value: %d", r);
 680			BUG();
 681		}
 
 682	}
 683
 684	/*
 685	 * Store md for cleanup instead of tio which is about to get freed.
 686	 */
 687	bio->bi_private = md->bs;
 688
 689	free_tio(md, tio);
 690	bio_put(bio);
 691	dec_pending(io, error);
 692}
 693
 694/*
 695 * Partial completion handling for request-based dm
 696 */
 697static void end_clone_bio(struct bio *clone, int error)
 698{
 699	struct dm_rq_clone_bio_info *info = clone->bi_private;
 700	struct dm_rq_target_io *tio = info->tio;
 701	struct bio *bio = info->orig;
 702	unsigned int nr_bytes = info->orig->bi_size;
 703
 704	bio_put(clone);
 
 
 705
 706	if (tio->error)
 
 
 
 707		/*
 708		 * An error has already been detected on the request.
 709		 * Once error occurred, just let clone->end_io() handle
 710		 * the remainder.
 711		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 712		return;
 713	else if (error) {
 
 714		/*
 715		 * Don't notice the error to the upper layer yet.
 716		 * The error handling decision is made by the target driver,
 717		 * when the request is completed.
 718		 */
 719		tio->error = error;
 720		return;
 
 
 
 
 
 721	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722
 723	/*
 724	 * I/O for the bio successfully completed.
 725	 * Notice the data completion to the upper layer.
 726	 */
 727
 728	/*
 729	 * bios are processed from the head of the list.
 730	 * So the completing bio should always be rq->bio.
 731	 * If it's not, something wrong is happening.
 732	 */
 733	if (tio->orig->bio != bio)
 734		DMERR("bio completion is going in the middle of the request");
 735
 736	/*
 737	 * Update the original request.
 738	 * Do not use blk_end_request() here, because it may complete
 739	 * the original request before the clone, and break the ordering.
 740	 */
 741	blk_update_request(tio->orig, 0, nr_bytes);
 742}
 743
 744/*
 745 * Don't touch any member of the md after calling this function because
 746 * the md may be freed in dm_put() at the end of this function.
 747 * Or do dm_get() before calling this function and dm_put() later.
 
 
 
 748 */
 749static void rq_completed(struct mapped_device *md, int rw, int run_queue)
 750{
 751	atomic_dec(&md->pending[rw]);
 752
 753	/* nudge anyone waiting on suspend queue */
 754	if (!md_in_flight(md))
 755		wake_up(&md->wait);
 756
 757	if (run_queue)
 758		blk_run_queue(md->queue);
 759
 760	/*
 761	 * dm_put() must be at the end of this function. See the comment above
 
 
 
 
 
 762	 */
 763	dm_put(md);
 764}
 765
 766static void free_rq_clone(struct request *clone)
 767{
 768	struct dm_rq_target_io *tio = clone->end_io_data;
 769
 770	blk_rq_unprep_clone(clone);
 771	free_rq_tio(tio);
 772}
 773
 774/*
 775 * Complete the clone and the original request.
 776 * Must be called without queue lock.
 777 */
 778static void dm_end_request(struct request *clone, int error)
 779{
 780	int rw = rq_data_dir(clone);
 781	struct dm_rq_target_io *tio = clone->end_io_data;
 782	struct mapped_device *md = tio->md;
 783	struct request *rq = tio->orig;
 784
 785	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 786		rq->errors = clone->errors;
 787		rq->resid_len = clone->resid_len;
 788
 789		if (rq->sense)
 790			/*
 791			 * We are using the sense buffer of the original
 792			 * request.
 793			 * So setting the length of the sense data is enough.
 794			 */
 795			rq->sense_len = clone->sense_len;
 796	}
 797
 798	free_rq_clone(clone);
 799	blk_end_request_all(rq, error);
 800	rq_completed(md, rw, true);
 801}
 802
 803static void dm_unprep_request(struct request *rq)
 804{
 805	struct request *clone = rq->special;
 806
 807	rq->special = NULL;
 808	rq->cmd_flags &= ~REQ_DONTPREP;
 809
 810	free_rq_clone(clone);
 811}
 812
 813/*
 814 * Requeue the original request of a clone.
 
 815 */
 816void dm_requeue_unmapped_request(struct request *clone)
 817{
 818	int rw = rq_data_dir(clone);
 819	struct dm_rq_target_io *tio = clone->end_io_data;
 820	struct mapped_device *md = tio->md;
 821	struct request *rq = tio->orig;
 822	struct request_queue *q = rq->q;
 823	unsigned long flags;
 824
 825	dm_unprep_request(rq);
 826
 827	spin_lock_irqsave(q->queue_lock, flags);
 828	blk_requeue_request(q, rq);
 829	spin_unlock_irqrestore(q->queue_lock, flags);
 830
 831	rq_completed(md, rw, 0);
 832}
 833EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
 834
 835static void __stop_queue(struct request_queue *q)
 836{
 837	blk_stop_queue(q);
 
 
 
 838}
 839
 840static void stop_queue(struct request_queue *q)
 841{
 842	unsigned long flags;
 843
 844	spin_lock_irqsave(q->queue_lock, flags);
 845	__stop_queue(q);
 846	spin_unlock_irqrestore(q->queue_lock, flags);
 847}
 848
 849static void __start_queue(struct request_queue *q)
 850{
 851	if (blk_queue_stopped(q))
 852		blk_start_queue(q);
 853}
 854
 855static void start_queue(struct request_queue *q)
 856{
 857	unsigned long flags;
 
 
 
 
 
 858
 859	spin_lock_irqsave(q->queue_lock, flags);
 860	__start_queue(q);
 861	spin_unlock_irqrestore(q->queue_lock, flags);
 862}
 
 
 
 
 863
 864static void dm_done(struct request *clone, int error, bool mapped)
 865{
 866	int r = error;
 867	struct dm_rq_target_io *tio = clone->end_io_data;
 868	dm_request_endio_fn rq_end_io = NULL;
 869
 870	if (tio->ti) {
 871		rq_end_io = tio->ti->type->rq_end_io;
 872
 873		if (mapped && rq_end_io)
 874			r = rq_end_io(tio->ti, clone, error, &tio->info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875	}
 876
 877	if (r <= 0)
 878		/* The target wants to complete the I/O */
 879		dm_end_request(clone, r);
 880	else if (r == DM_ENDIO_INCOMPLETE)
 881		/* The target will handle the I/O */
 882		return;
 883	else if (r == DM_ENDIO_REQUEUE)
 884		/* The target wants to requeue the I/O */
 885		dm_requeue_unmapped_request(clone);
 886	else {
 887		DMWARN("unimplemented target endio return value: %d", r);
 888		BUG();
 889	}
 890}
 891
 892/*
 893 * Request completion handler for request-based dm
 
 894 */
 895static void dm_softirq_done(struct request *rq)
 
 896{
 897	bool mapped = true;
 898	struct request *clone = rq->completion_data;
 899	struct dm_rq_target_io *tio = clone->end_io_data;
 900
 901	if (rq->cmd_flags & REQ_FAILED)
 902		mapped = false;
 
 
 
 
 903
 904	dm_done(clone, tio->error, mapped);
 
 
 
 
 
 
 
 
 
 
 905}
 906
 907/*
 908 * Complete the clone and the original request with the error status
 909 * through softirq context.
 910 */
 911static void dm_complete_request(struct request *clone, int error)
 912{
 913	struct dm_rq_target_io *tio = clone->end_io_data;
 914	struct request *rq = tio->orig;
 915
 916	tio->error = error;
 917	rq->completion_data = clone;
 918	blk_complete_request(rq);
 919}
 920
 921/*
 922 * Complete the not-mapped clone and the original request with the error status
 923 * through softirq context.
 924 * Target's rq_end_io() function isn't called.
 925 * This may be used when the target's map_rq() function fails.
 926 */
 927void dm_kill_unmapped_request(struct request *clone, int error)
 928{
 929	struct dm_rq_target_io *tio = clone->end_io_data;
 930	struct request *rq = tio->orig;
 
 
 
 
 931
 932	rq->cmd_flags |= REQ_FAILED;
 933	dm_complete_request(clone, error);
 
 934}
 935EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
 936
 937/*
 938 * Called with the queue lock held
 939 */
 940static void end_clone_request(struct request *clone, int error)
 941{
 942	/*
 943	 * For just cleaning up the information of the queue in which
 944	 * the clone was dispatched.
 945	 * The clone is *NOT* freed actually here because it is alloced from
 946	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
 947	 */
 948	__blk_put_request(clone->q, clone);
 
 
 
 949
 950	/*
 951	 * Actual request completion is done in a softirq context which doesn't
 952	 * hold the queue lock.  Otherwise, deadlock could occur because:
 953	 *     - another request may be submitted by the upper level driver
 954	 *       of the stacking during the completion
 955	 *     - the submission which requires queue lock may be done
 956	 *       against this queue
 957	 */
 958	dm_complete_request(clone, error);
 959}
 960
 961/*
 962 * Return maximum size of I/O possible at the supplied sector up to the current
 963 * target boundary.
 964 */
 965static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 966{
 967	sector_t target_offset = dm_target_offset(ti, sector);
 
 
 
 
 968
 969	return ti->len - target_offset;
 970}
 971
 972static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 973{
 974	sector_t len = max_io_len_target_boundary(sector, ti);
 
 
 
 
 
 
 975
 976	/*
 977	 * Does the target need to split even further ?
 978	 */
 979	if (ti->split_io) {
 980		sector_t boundary;
 981		sector_t offset = dm_target_offset(ti, sector);
 982		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
 983			   - offset;
 984		if (len > boundary)
 985			len = boundary;
 986	}
 987
 988	return len;
 989}
 990
 991static void __map_bio(struct dm_target *ti, struct bio *clone,
 992		      struct dm_target_io *tio)
 993{
 994	int r;
 995	sector_t sector;
 996	struct mapped_device *md;
 
 
 997
 998	clone->bi_end_io = clone_endio;
 999	clone->bi_private = tio;
1000
1001	/*
1002	 * Map the clone.  If r == 0 we don't need to do
1003	 * anything, the target has assumed ownership of
1004	 * this io.
1005	 */
1006	atomic_inc(&tio->io->io_count);
1007	sector = clone->bi_sector;
1008	r = ti->type->map(ti, clone, &tio->info);
1009	if (r == DM_MAPIO_REMAPPED) {
1010		/* the bio has been remapped so dispatch it */
1011
1012		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1013				      tio->io->bio->bi_bdev->bd_dev, sector);
1014
1015		generic_make_request(clone);
1016	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1017		/* error the io and bail out, or requeue it if needed */
1018		md = tio->io->md;
1019		dec_pending(tio->io, r);
1020		/*
1021		 * Store bio_set for cleanup.
 
1022		 */
1023		clone->bi_end_io = NULL;
1024		clone->bi_private = md->bs;
1025		bio_put(clone);
1026		free_tio(md, tio);
1027	} else if (r) {
1028		DMWARN("unimplemented target map return value: %d", r);
1029		BUG();
1030	}
 
 
 
 
 
1031}
1032
1033struct clone_info {
1034	struct mapped_device *md;
1035	struct dm_table *map;
1036	struct bio *bio;
1037	struct dm_io *io;
1038	sector_t sector;
1039	sector_t sector_count;
1040	unsigned short idx;
1041};
1042
1043static void dm_bio_destructor(struct bio *bio)
1044{
1045	struct bio_set *bs = bio->bi_private;
1046
1047	bio_free(bio, bs);
 
 
 
1048}
1049
1050/*
1051 * Creates a little bio that just does part of a bvec.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052 */
1053static struct bio *split_bvec(struct bio *bio, sector_t sector,
1054			      unsigned short idx, unsigned int offset,
1055			      unsigned int len, struct bio_set *bs)
1056{
1057	struct bio *clone;
1058	struct bio_vec *bv = bio->bi_io_vec + idx;
 
 
 
 
 
 
 
1059
1060	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1061	clone->bi_destructor = dm_bio_destructor;
1062	*clone->bi_io_vec = *bv;
1063
1064	clone->bi_sector = sector;
1065	clone->bi_bdev = bio->bi_bdev;
1066	clone->bi_rw = bio->bi_rw;
1067	clone->bi_vcnt = 1;
1068	clone->bi_size = to_bytes(len);
1069	clone->bi_io_vec->bv_offset = offset;
1070	clone->bi_io_vec->bv_len = clone->bi_size;
1071	clone->bi_flags |= 1 << BIO_CLONED;
1072
1073	if (bio_integrity(bio)) {
1074		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1075		bio_integrity_trim(clone,
1076				   bio_sector_offset(bio, idx, offset), len);
1077	}
1078
1079	return clone;
 
 
 
 
 
 
1080}
 
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
 
 
 
 
 
 
1084 */
1085static struct bio *clone_bio(struct bio *bio, sector_t sector,
1086			     unsigned short idx, unsigned short bv_count,
1087			     unsigned int len, struct bio_set *bs)
1088{
1089	struct bio *clone;
 
 
 
 
 
1090
1091	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1092	__bio_clone(clone, bio);
1093	clone->bi_destructor = dm_bio_destructor;
1094	clone->bi_sector = sector;
1095	clone->bi_idx = idx;
1096	clone->bi_vcnt = idx + bv_count;
1097	clone->bi_size = to_bytes(len);
1098	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1099
1100	if (bio_integrity(bio)) {
1101		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1102
1103		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1104			bio_integrity_trim(clone,
1105					   bio_sector_offset(bio, idx, 0), len);
1106	}
1107
1108	return clone;
 
 
1109}
 
1110
1111static struct dm_target_io *alloc_tio(struct clone_info *ci,
1112				      struct dm_target *ti)
1113{
1114	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1115
1116	tio->io = ci->io;
1117	tio->ti = ti;
1118	memset(&tio->info, 0, sizeof(tio->info));
1119
1120	return tio;
 
 
 
 
 
1121}
1122
1123static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1124				   unsigned request_nr, sector_t len)
1125{
1126	struct dm_target_io *tio = alloc_tio(ci, ti);
1127	struct bio *clone;
 
 
 
1128
1129	tio->info.target_request_nr = request_nr;
1130
1131	/*
1132	 * Discard requests require the bio's inline iovecs be initialized.
1133	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1134	 * and discard, so no need for concern about wasted bvec allocations.
1135	 */
1136	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1137	__bio_clone(clone, ci->bio);
1138	clone->bi_destructor = dm_bio_destructor;
1139	if (len) {
1140		clone->bi_sector = ci->sector;
1141		clone->bi_size = to_bytes(len);
 
 
 
1142	}
1143
1144	__map_bio(ti, clone, tio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145}
1146
1147static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1148				    unsigned num_requests, sector_t len)
1149{
1150	unsigned request_nr;
1151
1152	for (request_nr = 0; request_nr < num_requests; request_nr++)
1153		__issue_target_request(ci, ti, request_nr, len);
 
 
 
 
 
 
 
1154}
1155
1156static int __clone_and_map_empty_flush(struct clone_info *ci)
 
 
1157{
1158	unsigned target_nr = 0;
1159	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
1160
1161	BUG_ON(bio_has_data(ci->bio));
1162	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1163		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
 
 
 
1164
1165	return 0;
 
 
1166}
1167
1168/*
1169 * Perform all io with a single clone.
1170 */
1171static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1172{
1173	struct bio *clone, *bio = ci->bio;
1174	struct dm_target_io *tio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
1176	tio = alloc_tio(ci, ti);
1177	clone = clone_bio(bio, ci->sector, ci->idx,
1178			  bio->bi_vcnt - ci->idx, ci->sector_count,
1179			  ci->md->bs);
1180	__map_bio(ti, clone, tio);
1181	ci->sector_count = 0;
1182}
1183
1184static int __clone_and_map_discard(struct clone_info *ci)
1185{
1186	struct dm_target *ti;
1187	sector_t len;
 
 
 
 
 
 
 
 
1188
1189	do {
1190		ti = dm_table_find_target(ci->map, ci->sector);
1191		if (!dm_target_is_valid(ti))
1192			return -EIO;
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194		/*
1195		 * Even though the device advertised discard support,
1196		 * that does not mean every target supports it, and
1197		 * reconfiguration might also have changed that since the
1198		 * check was performed.
1199		 */
1200		if (!ti->num_discard_requests)
1201			return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202
1203		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
 
1204
1205		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
 
 
 
 
 
 
 
1206
1207		ci->sector += len;
1208	} while (ci->sector_count -= len);
 
 
 
 
 
 
 
 
1209
1210	return 0;
 
1211}
1212
1213static int __clone_and_map(struct clone_info *ci)
1214{
1215	struct bio *clone, *bio = ci->bio;
1216	struct dm_target *ti;
1217	sector_t len = 0, max;
1218	struct dm_target_io *tio;
 
 
 
 
 
 
 
 
 
 
1219
1220	if (unlikely(bio->bi_rw & REQ_DISCARD))
1221		return __clone_and_map_discard(ci);
 
 
 
 
 
1222
1223	ti = dm_table_find_target(ci->map, ci->sector);
1224	if (!dm_target_is_valid(ti))
1225		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226
1227	max = max_io_len(ci->sector, ti);
 
 
 
 
 
 
 
1228
1229	if (ci->sector_count <= max) {
1230		/*
1231		 * Optimise for the simple case where we can do all of
1232		 * the remaining io with a single clone.
1233		 */
1234		__clone_and_map_simple(ci, ti);
1235
1236	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1237		/*
1238		 * There are some bvecs that don't span targets.
1239		 * Do as many of these as possible.
1240		 */
1241		int i;
1242		sector_t remaining = max;
1243		sector_t bv_len;
1244
1245		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1246			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
 
 
 
 
 
 
 
 
 
 
 
1247
1248			if (bv_len > remaining)
1249				break;
 
1250
1251			remaining -= bv_len;
1252			len += bv_len;
1253		}
 
 
 
 
1254
1255		tio = alloc_tio(ci, ti);
1256		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1257				  ci->md->bs);
1258		__map_bio(ti, clone, tio);
1259
1260		ci->sector += len;
1261		ci->sector_count -= len;
1262		ci->idx = i;
1263
 
1264	} else {
1265		/*
1266		 * Handle a bvec that must be split between two or more targets.
 
1267		 */
1268		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1269		sector_t remaining = to_sector(bv->bv_len);
1270		unsigned int offset = 0;
1271
1272		do {
1273			if (offset) {
1274				ti = dm_table_find_target(ci->map, ci->sector);
1275				if (!dm_target_is_valid(ti))
1276					return -EIO;
1277
1278				max = max_io_len(ci->sector, ti);
1279			}
1280
1281			len = min(remaining, max);
1282
1283			tio = alloc_tio(ci, ti);
1284			clone = split_bvec(bio, ci->sector, ci->idx,
1285					   bv->bv_offset + offset, len,
1286					   ci->md->bs);
1287
1288			__map_bio(ti, clone, tio);
1289
1290			ci->sector += len;
1291			ci->sector_count -= len;
1292			offset += to_bytes(len);
1293		} while (remaining -= len);
1294
1295		ci->idx++;
1296	}
1297
1298	return 0;
1299}
1300
1301/*
1302 * Split the bio into several clones and submit it to targets.
1303 */
1304static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1305{
1306	struct clone_info ci;
1307	int error = 0;
1308
1309	ci.map = dm_get_live_table(md);
1310	if (unlikely(!ci.map)) {
1311		bio_io_error(bio);
1312		return;
1313	}
1314
1315	ci.md = md;
1316	ci.io = alloc_io(md);
1317	ci.io->error = 0;
1318	atomic_set(&ci.io->io_count, 1);
1319	ci.io->bio = bio;
1320	ci.io->md = md;
1321	spin_lock_init(&ci.io->endio_lock);
1322	ci.sector = bio->bi_sector;
1323	ci.idx = bio->bi_idx;
1324
1325	start_io_acct(ci.io);
1326	if (bio->bi_rw & REQ_FLUSH) {
1327		ci.bio = &ci.md->flush_bio;
1328		ci.sector_count = 0;
1329		error = __clone_and_map_empty_flush(&ci);
1330		/* dec_pending submits any data associated with flush */
1331	} else {
1332		ci.bio = bio;
1333		ci.sector_count = bio_sectors(bio);
1334		while (ci.sector_count && !error)
1335			error = __clone_and_map(&ci);
1336	}
1337
1338	/* drop the extra reference count */
1339	dec_pending(ci.io, error);
1340	dm_table_put(ci.map);
1341}
1342/*-----------------------------------------------------------------
1343 * CRUD END
1344 *---------------------------------------------------------------*/
1345
1346static int dm_merge_bvec(struct request_queue *q,
1347			 struct bvec_merge_data *bvm,
1348			 struct bio_vec *biovec)
1349{
1350	struct mapped_device *md = q->queuedata;
1351	struct dm_table *map = dm_get_live_table(md);
1352	struct dm_target *ti;
1353	sector_t max_sectors;
1354	int max_size = 0;
1355
1356	if (unlikely(!map))
1357		goto out;
 
1358
1359	ti = dm_table_find_target(map, bvm->bi_sector);
1360	if (!dm_target_is_valid(ti))
1361		goto out_table;
1362
1363	/*
1364	 * Find maximum amount of I/O that won't need splitting
 
1365	 */
1366	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1367			  (sector_t) BIO_MAX_SECTORS);
1368	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1369	if (max_size < 0)
1370		max_size = 0;
1371
1372	/*
1373	 * merge_bvec_fn() returns number of bytes
1374	 * it can accept at this offset
1375	 * max is precomputed maximal io size
1376	 */
1377	if (max_size && ti->type->merge)
1378		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1379	/*
1380	 * If the target doesn't support merge method and some of the devices
1381	 * provided their merge_bvec method (we know this by looking at
1382	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1383	 * entries.  So always set max_size to 0, and the code below allows
1384	 * just one page.
1385	 */
1386	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1387
1388		max_size = 0;
 
 
1389
1390out_table:
1391	dm_table_put(map);
 
 
 
 
 
1392
1393out:
1394	/*
1395	 * Always allow an entire first page
1396	 */
1397	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1398		max_size = biovec->bv_len;
1399
1400	return max_size;
1401}
1402
1403/*
1404 * The request function that just remaps the bio built up by
1405 * dm_merge_bvec.
1406 */
1407static void _dm_request(struct request_queue *q, struct bio *bio)
1408{
1409	int rw = bio_data_dir(bio);
1410	struct mapped_device *md = q->queuedata;
1411	int cpu;
1412
1413	down_read(&md->io_lock);
1414
1415	cpu = part_stat_lock();
1416	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1417	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1418	part_stat_unlock();
1419
1420	/* if we're suspended, we have to queue this io for later */
1421	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1422		up_read(&md->io_lock);
1423
1424		if (bio_rw(bio) != READA)
1425			queue_io(md, bio);
1426		else
1427			bio_io_error(bio);
1428		return;
1429	}
1430
1431	__split_and_process_bio(md, bio);
1432	up_read(&md->io_lock);
1433	return;
 
1434}
1435
1436static int dm_request_based(struct mapped_device *md)
 
 
1437{
1438	return blk_queue_stackable(md->queue);
 
 
 
 
 
1439}
1440
1441static void dm_request(struct request_queue *q, struct bio *bio)
1442{
1443	struct mapped_device *md = q->queuedata;
1444
1445	if (dm_request_based(md))
1446		blk_queue_bio(q, bio);
1447	else
1448		_dm_request(q, bio);
1449}
1450
1451void dm_dispatch_request(struct request *rq)
 
1452{
1453	int r;
 
 
 
 
 
 
 
 
 
1454
1455	if (blk_queue_io_stat(rq->q))
1456		rq->cmd_flags |= REQ_IO_STAT;
 
 
1457
1458	rq->start_time = jiffies;
1459	r = blk_insert_cloned_request(rq->q, rq);
1460	if (r)
1461		dm_complete_request(rq, r);
1462}
1463EXPORT_SYMBOL_GPL(dm_dispatch_request);
1464
1465static void dm_rq_bio_destructor(struct bio *bio)
1466{
1467	struct dm_rq_clone_bio_info *info = bio->bi_private;
1468	struct mapped_device *md = info->tio->md;
1469
1470	free_bio_info(info);
1471	bio_free(bio, md->bs);
1472}
1473
1474static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1475				 void *data)
1476{
1477	struct dm_rq_target_io *tio = data;
1478	struct mapped_device *md = tio->md;
1479	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1480
1481	if (!info)
1482		return -ENOMEM;
 
 
1483
1484	info->orig = bio_orig;
1485	info->tio = tio;
1486	bio->bi_end_io = end_clone_bio;
1487	bio->bi_private = info;
1488	bio->bi_destructor = dm_rq_bio_destructor;
1489
1490	return 0;
1491}
 
 
 
 
 
1492
1493static int setup_clone(struct request *clone, struct request *rq,
1494		       struct dm_rq_target_io *tio)
1495{
1496	int r;
 
 
 
 
 
 
 
 
1497
1498	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1499			      dm_rq_bio_constructor, tio);
1500	if (r)
1501		return r;
1502
1503	clone->cmd = rq->cmd;
1504	clone->cmd_len = rq->cmd_len;
1505	clone->sense = rq->sense;
1506	clone->buffer = rq->buffer;
1507	clone->end_io = end_clone_request;
1508	clone->end_io_data = tio;
1509
1510	return 0;
1511}
1512
1513static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1514				gfp_t gfp_mask)
1515{
1516	struct request *clone;
1517	struct dm_rq_target_io *tio;
1518
1519	tio = alloc_rq_tio(md, gfp_mask);
1520	if (!tio)
1521		return NULL;
1522
1523	tio->md = md;
1524	tio->ti = NULL;
1525	tio->orig = rq;
1526	tio->error = 0;
1527	memset(&tio->info, 0, sizeof(tio->info));
1528
1529	clone = &tio->clone;
1530	if (setup_clone(clone, rq, tio)) {
1531		/* -ENOMEM */
1532		free_rq_tio(tio);
1533		return NULL;
1534	}
1535
1536	return clone;
1537}
1538
1539/*
1540 * Called with the queue lock held.
1541 */
1542static int dm_prep_fn(struct request_queue *q, struct request *rq)
1543{
1544	struct mapped_device *md = q->queuedata;
1545	struct request *clone;
 
 
 
1546
1547	if (unlikely(rq->special)) {
1548		DMWARN("Already has something in rq->special.");
1549		return BLKPREP_KILL;
 
 
 
 
 
1550	}
1551
1552	clone = clone_rq(rq, md, GFP_ATOMIC);
1553	if (!clone)
1554		return BLKPREP_DEFER;
1555
1556	rq->special = clone;
1557	rq->cmd_flags |= REQ_DONTPREP;
1558
1559	return BLKPREP_OK;
 
 
 
 
 
 
 
 
 
 
 
 
1560}
 
1561
1562/*
1563 * Returns:
1564 * 0  : the request has been processed (not requeued)
1565 * !0 : the request has been requeued
1566 */
1567static int map_request(struct dm_target *ti, struct request *clone,
1568		       struct mapped_device *md)
1569{
1570	int r, requeued = 0;
1571	struct dm_rq_target_io *tio = clone->end_io_data;
 
 
1572
1573	tio->ti = ti;
1574	r = ti->type->map_rq(ti, clone, &tio->info);
1575	switch (r) {
1576	case DM_MAPIO_SUBMITTED:
1577		/* The target has taken the I/O to submit by itself later */
1578		break;
1579	case DM_MAPIO_REMAPPED:
1580		/* The target has remapped the I/O so dispatch it */
1581		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1582				     blk_rq_pos(tio->orig));
1583		dm_dispatch_request(clone);
1584		break;
1585	case DM_MAPIO_REQUEUE:
1586		/* The target wants to requeue the I/O */
1587		dm_requeue_unmapped_request(clone);
1588		requeued = 1;
1589		break;
1590	default:
1591		if (r > 0) {
1592			DMWARN("unimplemented target map return value: %d", r);
1593			BUG();
1594		}
1595
1596		/* The target wants to complete the I/O */
1597		dm_kill_unmapped_request(clone, r);
1598		break;
 
 
 
 
 
 
 
 
1599	}
1600
1601	return requeued;
1602}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603
1604static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1605{
1606	struct request *clone;
 
 
1607
1608	blk_start_request(orig);
1609	clone = orig->special;
1610	atomic_inc(&md->pending[rq_data_dir(clone)]);
 
 
1611
 
 
 
1612	/*
1613	 * Hold the md reference here for the in-flight I/O.
1614	 * We can't rely on the reference count by device opener,
1615	 * because the device may be closed during the request completion
1616	 * when all bios are completed.
1617	 * See the comment in rq_completed() too.
1618	 */
1619	dm_get(md);
1620
1621	return clone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622}
1623
1624/*
1625 * q->request_fn for request-based dm.
1626 * Called with the queue lock held.
1627 */
1628static void dm_request_fn(struct request_queue *q)
1629{
1630	struct mapped_device *md = q->queuedata;
1631	struct dm_table *map = dm_get_live_table(md);
1632	struct dm_target *ti;
1633	struct request *rq, *clone;
1634	sector_t pos;
1635
1636	/*
1637	 * For suspend, check blk_queue_stopped() and increment
1638	 * ->pending within a single queue_lock not to increment the
1639	 * number of in-flight I/Os after the queue is stopped in
1640	 * dm_suspend().
1641	 */
1642	while (!blk_queue_stopped(q)) {
1643		rq = blk_peek_request(q);
1644		if (!rq)
1645			goto delay_and_out;
1646
1647		/* always use block 0 to find the target for flushes for now */
1648		pos = 0;
1649		if (!(rq->cmd_flags & REQ_FLUSH))
1650			pos = blk_rq_pos(rq);
1651
1652		ti = dm_table_find_target(map, pos);
1653		if (!dm_target_is_valid(ti)) {
1654			/*
1655			 * Must perform setup, that dm_done() requires,
1656			 * before calling dm_kill_unmapped_request
1657			 */
1658			DMERR_LIMIT("request attempted access beyond the end of device");
1659			clone = dm_start_request(md, rq);
1660			dm_kill_unmapped_request(clone, -EIO);
1661			continue;
1662		}
1663
1664		if (ti->type->busy && ti->type->busy(ti))
1665			goto delay_and_out;
1666
1667		clone = dm_start_request(md, rq);
1668
1669		spin_unlock(q->queue_lock);
1670		if (map_request(ti, clone, md))
1671			goto requeued;
1672
1673		BUG_ON(!irqs_disabled());
1674		spin_lock(q->queue_lock);
1675	}
1676
1677	goto out;
1678
1679requeued:
1680	BUG_ON(!irqs_disabled());
1681	spin_lock(q->queue_lock);
1682
1683delay_and_out:
1684	blk_delay_queue(q, HZ / 10);
1685out:
1686	dm_table_put(map);
1687}
1688
1689int dm_underlying_device_busy(struct request_queue *q)
 
1690{
1691	return blk_lld_busy(q);
 
 
 
 
 
 
 
1692}
1693EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1694
1695static int dm_lld_busy(struct request_queue *q)
 
1696{
1697	int r;
1698	struct mapped_device *md = q->queuedata;
1699	struct dm_table *map = dm_get_live_table(md);
 
1700
1701	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1702		r = 1;
1703	else
1704		r = dm_table_any_busy_target(map);
1705
1706	dm_table_put(map);
1707
1708	return r;
1709}
1710
1711static int dm_any_congested(void *congested_data, int bdi_bits)
1712{
1713	int r = bdi_bits;
1714	struct mapped_device *md = congested_data;
1715	struct dm_table *map;
1716
1717	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1718		map = dm_get_live_table(md);
1719		if (map) {
 
 
1720			/*
1721			 * Request-based dm cares about only own queue for
1722			 * the query about congestion status of request_queue
1723			 */
1724			if (dm_request_based(md))
1725				r = md->queue->backing_dev_info.state &
1726				    bdi_bits;
1727			else
1728				r = dm_table_any_congested(map, bdi_bits);
1729
1730			dm_table_put(map);
1731		}
1732	}
1733
1734	return r;
 
 
 
 
 
 
 
1735}
1736
1737/*-----------------------------------------------------------------
 
1738 * An IDR is used to keep track of allocated minor numbers.
1739 *---------------------------------------------------------------*/
 
1740static void free_minor(int minor)
1741{
1742	spin_lock(&_minor_lock);
1743	idr_remove(&_minor_idr, minor);
1744	spin_unlock(&_minor_lock);
1745}
1746
1747/*
1748 * See if the device with a specific minor # is free.
1749 */
1750static int specific_minor(int minor)
1751{
1752	int r, m;
1753
1754	if (minor >= (1 << MINORBITS))
1755		return -EINVAL;
1756
1757	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758	if (!r)
1759		return -ENOMEM;
1760
1761	spin_lock(&_minor_lock);
1762
1763	if (idr_find(&_minor_idr, minor)) {
1764		r = -EBUSY;
1765		goto out;
1766	}
1767
1768	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1769	if (r)
1770		goto out;
1771
1772	if (m != minor) {
1773		idr_remove(&_minor_idr, m);
1774		r = -EBUSY;
1775		goto out;
1776	}
1777
1778out:
1779	spin_unlock(&_minor_lock);
1780	return r;
 
 
 
1781}
1782
1783static int next_free_minor(int *minor)
1784{
1785	int r, m;
1786
1787	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1788	if (!r)
1789		return -ENOMEM;
1790
 
1791	spin_lock(&_minor_lock);
1792
1793	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1794	if (r)
1795		goto out;
1796
1797	if (m >= (1 << MINORBITS)) {
1798		idr_remove(&_minor_idr, m);
1799		r = -ENOSPC;
1800		goto out;
1801	}
1802
1803	*minor = m;
1804
1805out:
1806	spin_unlock(&_minor_lock);
1807	return r;
 
 
 
 
1808}
1809
1810static const struct block_device_operations dm_blk_dops;
 
 
1811
1812static void dm_wq_work(struct work_struct *work);
1813
1814static void dm_init_md_queue(struct mapped_device *md)
 
1815{
1816	/*
1817	 * Request-based dm devices cannot be stacked on top of bio-based dm
1818	 * devices.  The type of this dm device has not been decided yet.
1819	 * The type is decided at the first table loading time.
1820	 * To prevent problematic device stacking, clear the queue flag
1821	 * for request stacking support until then.
1822	 *
1823	 * This queue is new, so no concurrency on the queue_flags.
1824	 */
1825	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826
1827	md->queue->queuedata = md;
1828	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1829	md->queue->backing_dev_info.congested_data = md;
1830	blk_queue_make_request(md->queue, dm_request);
1831	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1832	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1833}
1834
1835/*
1836 * Allocate and initialise a blank device with a given minor.
1837 */
1838static struct mapped_device *alloc_dev(int minor)
1839{
1840	int r;
1841	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
 
1842	void *old_md;
1843
 
1844	if (!md) {
1845		DMWARN("unable to allocate device, out of memory.");
1846		return NULL;
1847	}
1848
1849	if (!try_module_get(THIS_MODULE))
1850		goto bad_module_get;
1851
1852	/* get a minor number for the dev */
1853	if (minor == DM_ANY_MINOR)
1854		r = next_free_minor(&minor);
1855	else
1856		r = specific_minor(minor);
1857	if (r < 0)
1858		goto bad_minor;
1859
 
 
 
 
 
 
1860	md->type = DM_TYPE_NONE;
1861	init_rwsem(&md->io_lock);
1862	mutex_init(&md->suspend_lock);
1863	mutex_init(&md->type_lock);
 
1864	spin_lock_init(&md->deferred_lock);
1865	rwlock_init(&md->map_lock);
1866	atomic_set(&md->holders, 1);
1867	atomic_set(&md->open_count, 0);
1868	atomic_set(&md->event_nr, 0);
1869	atomic_set(&md->uevent_seq, 0);
1870	INIT_LIST_HEAD(&md->uevent_list);
 
1871	spin_lock_init(&md->uevent_lock);
1872
1873	md->queue = blk_alloc_queue(GFP_KERNEL);
1874	if (!md->queue)
1875		goto bad_queue;
1876
1877	dm_init_md_queue(md);
1878
1879	md->disk = alloc_disk(1);
1880	if (!md->disk)
1881		goto bad_disk;
 
 
1882
1883	atomic_set(&md->pending[0], 0);
1884	atomic_set(&md->pending[1], 0);
1885	init_waitqueue_head(&md->wait);
1886	INIT_WORK(&md->work, dm_wq_work);
 
1887	init_waitqueue_head(&md->eventq);
 
 
 
 
 
 
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
 
 
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895	add_disk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
1896	format_dev_t(md->name, MKDEV(_major, minor));
1897
1898	md->wq = alloc_workqueue("kdmflush",
1899				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1900	if (!md->wq)
1901		goto bad_thread;
1902
1903	md->bdev = bdget_disk(md->disk, 0);
1904	if (!md->bdev)
1905		goto bad_bdev;
1906
1907	bio_init(&md->flush_bio);
1908	md->flush_bio.bi_bdev = md->bdev;
1909	md->flush_bio.bi_rw = WRITE_FLUSH;
1910
1911	/* Populate the mapping, nobody knows we exist yet */
1912	spin_lock(&_minor_lock);
1913	old_md = idr_replace(&_minor_idr, md, minor);
1914	spin_unlock(&_minor_lock);
1915
1916	BUG_ON(old_md != MINOR_ALLOCED);
1917
1918	return md;
1919
1920bad_bdev:
1921	destroy_workqueue(md->wq);
1922bad_thread:
1923	del_gendisk(md->disk);
1924	put_disk(md->disk);
1925bad_disk:
1926	blk_cleanup_queue(md->queue);
1927bad_queue:
1928	free_minor(minor);
1929bad_minor:
1930	module_put(THIS_MODULE);
1931bad_module_get:
1932	kfree(md);
1933	return NULL;
1934}
1935
1936static void unlock_fs(struct mapped_device *md);
1937
1938static void free_dev(struct mapped_device *md)
1939{
1940	int minor = MINOR(disk_devt(md->disk));
1941
1942	unlock_fs(md);
1943	bdput(md->bdev);
1944	destroy_workqueue(md->wq);
1945	if (md->tio_pool)
1946		mempool_destroy(md->tio_pool);
1947	if (md->io_pool)
1948		mempool_destroy(md->io_pool);
1949	if (md->bs)
1950		bioset_free(md->bs);
1951	blk_integrity_unregister(md->disk);
1952	del_gendisk(md->disk);
1953	free_minor(minor);
1954
1955	spin_lock(&_minor_lock);
1956	md->disk->private_data = NULL;
1957	spin_unlock(&_minor_lock);
1958
1959	put_disk(md->disk);
1960	blk_cleanup_queue(md->queue);
1961	module_put(THIS_MODULE);
1962	kfree(md);
1963}
1964
1965static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1966{
1967	struct dm_md_mempools *p;
1968
1969	if (md->io_pool && md->tio_pool && md->bs)
1970		/* the md already has necessary mempools */
1971		goto out;
1972
1973	p = dm_table_get_md_mempools(t);
1974	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1975
1976	md->io_pool = p->io_pool;
1977	p->io_pool = NULL;
1978	md->tio_pool = p->tio_pool;
1979	p->tio_pool = NULL;
1980	md->bs = p->bs;
1981	p->bs = NULL;
1982
1983out:
1984	/* mempool bind completed, now no need any mempools in the table */
1985	dm_table_free_md_mempools(t);
1986}
1987
1988/*
1989 * Bind a table to the device.
1990 */
1991static void event_callback(void *context)
1992{
1993	unsigned long flags;
1994	LIST_HEAD(uevents);
1995	struct mapped_device *md = (struct mapped_device *) context;
1996
1997	spin_lock_irqsave(&md->uevent_lock, flags);
1998	list_splice_init(&md->uevent_list, &uevents);
1999	spin_unlock_irqrestore(&md->uevent_lock, flags);
2000
2001	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002
2003	atomic_inc(&md->event_nr);
2004	wake_up(&md->eventq);
2005}
2006
2007/*
2008 * Protected by md->suspend_lock obtained by dm_swap_table().
2009 */
2010static void __set_size(struct mapped_device *md, sector_t size)
2011{
2012	set_capacity(md->disk, size);
2013
2014	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2015}
2016
2017/*
2018 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2019 *
2020 * If this function returns 0, then the device is either a non-dm
2021 * device without a merge_bvec_fn, or it is a dm device that is
2022 * able to split any bios it receives that are too big.
2023 */
2024int dm_queue_merge_is_compulsory(struct request_queue *q)
2025{
2026	struct mapped_device *dev_md;
2027
2028	if (!q->merge_bvec_fn)
2029		return 0;
2030
2031	if (q->make_request_fn == dm_request) {
2032		dev_md = q->queuedata;
2033		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2034			return 0;
2035	}
2036
2037	return 1;
2038}
2039
2040static int dm_device_merge_is_compulsory(struct dm_target *ti,
2041					 struct dm_dev *dev, sector_t start,
2042					 sector_t len, void *data)
2043{
2044	struct block_device *bdev = dev->bdev;
2045	struct request_queue *q = bdev_get_queue(bdev);
2046
2047	return dm_queue_merge_is_compulsory(q);
2048}
2049
2050/*
2051 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2052 * on the properties of the underlying devices.
2053 */
2054static int dm_table_merge_is_optional(struct dm_table *table)
2055{
2056	unsigned i = 0;
2057	struct dm_target *ti;
2058
2059	while (i < dm_table_get_num_targets(table)) {
2060		ti = dm_table_get_target(table, i++);
2061
2062		if (ti->type->iterate_devices &&
2063		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2064			return 0;
2065	}
2066
2067	return 1;
2068}
2069
2070/*
2071 * Returns old map, which caller must destroy.
2072 */
2073static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2074			       struct queue_limits *limits)
2075{
2076	struct dm_table *old_map;
2077	struct request_queue *q = md->queue;
2078	sector_t size;
2079	unsigned long flags;
2080	int merge_is_optional;
 
2081
2082	size = dm_table_get_size(t);
2083
2084	/*
2085	 * Wipe any geometry if the size of the table changed.
2086	 */
2087	if (size != get_capacity(md->disk))
2088		memset(&md->geometry, 0, sizeof(md->geometry));
2089
2090	__set_size(md, size);
2091
2092	dm_table_event_callback(t, event_callback, md);
2093
2094	/*
2095	 * The queue hasn't been stopped yet, if the old table type wasn't
2096	 * for request-based during suspension.  So stop it to prevent
2097	 * I/O mapping before resume.
2098	 * This must be done before setting the queue restrictions,
2099	 * because request-based dm may be run just after the setting.
2100	 */
2101	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2102		stop_queue(q);
2103
2104	__bind_mempools(md, t);
2105
2106	merge_is_optional = dm_table_merge_is_optional(t);
2107
2108	write_lock_irqsave(&md->map_lock, flags);
2109	old_map = md->map;
2110	md->map = t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2112
2113	dm_table_set_restrictions(t, q, limits);
2114	if (merge_is_optional)
2115		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2116	else
2117		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118	write_unlock_irqrestore(&md->map_lock, flags);
2119
2120	return old_map;
2121}
2122
2123/*
2124 * Returns unbound table for the caller to free.
2125 */
2126static struct dm_table *__unbind(struct mapped_device *md)
2127{
2128	struct dm_table *map = md->map;
2129	unsigned long flags;
2130
2131	if (!map)
2132		return NULL;
2133
2134	dm_table_event_callback(map, NULL, NULL);
2135	write_lock_irqsave(&md->map_lock, flags);
2136	md->map = NULL;
2137	write_unlock_irqrestore(&md->map_lock, flags);
2138
2139	return map;
2140}
2141
2142/*
2143 * Constructor for a new device.
2144 */
2145int dm_create(int minor, struct mapped_device **result)
2146{
2147	struct mapped_device *md;
2148
2149	md = alloc_dev(minor);
2150	if (!md)
2151		return -ENXIO;
2152
2153	dm_sysfs_init(md);
2154
2155	*result = md;
2156	return 0;
2157}
2158
2159/*
2160 * Functions to manage md->type.
2161 * All are required to hold md->type_lock.
2162 */
2163void dm_lock_md_type(struct mapped_device *md)
2164{
2165	mutex_lock(&md->type_lock);
2166}
2167
2168void dm_unlock_md_type(struct mapped_device *md)
2169{
2170	mutex_unlock(&md->type_lock);
2171}
2172
2173void dm_set_md_type(struct mapped_device *md, unsigned type)
2174{
2175	md->type = type;
2176}
2177
2178unsigned dm_get_md_type(struct mapped_device *md)
2179{
2180	return md->type;
2181}
2182
2183struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2184{
2185	return md->immutable_target_type;
2186}
2187
2188/*
2189 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2190 */
2191static int dm_init_request_based_queue(struct mapped_device *md)
2192{
2193	struct request_queue *q = NULL;
 
 
 
2194
2195	if (md->queue->elevator)
2196		return 1;
2197
2198	/* Fully initialize the queue */
2199	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2200	if (!q)
2201		return 0;
 
 
 
 
2202
2203	md->queue = q;
2204	dm_init_md_queue(md);
2205	blk_queue_softirq_done(md->queue, dm_softirq_done);
2206	blk_queue_prep_rq(md->queue, dm_prep_fn);
2207	blk_queue_lld_busy(md->queue, dm_lld_busy);
 
 
 
2208
2209	elv_register_queue(md->queue);
 
 
 
 
 
 
 
 
2210
2211	return 1;
2212}
 
 
 
 
 
 
 
2213
2214/*
2215 * Setup the DM device's queue based on md's type
2216 */
2217int dm_setup_md_queue(struct mapped_device *md)
2218{
2219	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2220	    !dm_init_request_based_queue(md)) {
2221		DMWARN("Cannot initialize queue for request-based mapped device");
2222		return -EINVAL;
2223	}
2224
 
2225	return 0;
 
 
 
 
 
 
 
 
2226}
2227
2228static struct mapped_device *dm_find_md(dev_t dev)
2229{
2230	struct mapped_device *md;
2231	unsigned minor = MINOR(dev);
2232
2233	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2234		return NULL;
2235
2236	spin_lock(&_minor_lock);
2237
2238	md = idr_find(&_minor_idr, minor);
2239	if (md && (md == MINOR_ALLOCED ||
2240		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2241		   dm_deleting_md(md) ||
2242		   test_bit(DMF_FREEING, &md->flags))) {
2243		md = NULL;
2244		goto out;
2245	}
2246
2247out:
2248	spin_unlock(&_minor_lock);
2249
2250	return md;
2251}
2252
2253struct mapped_device *dm_get_md(dev_t dev)
2254{
2255	struct mapped_device *md = dm_find_md(dev);
2256
2257	if (md)
2258		dm_get(md);
2259
2260	return md;
2261}
2262EXPORT_SYMBOL_GPL(dm_get_md);
2263
2264void *dm_get_mdptr(struct mapped_device *md)
2265{
2266	return md->interface_ptr;
2267}
2268
2269void dm_set_mdptr(struct mapped_device *md, void *ptr)
2270{
2271	md->interface_ptr = ptr;
2272}
2273
2274void dm_get(struct mapped_device *md)
2275{
2276	atomic_inc(&md->holders);
2277	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2278}
2279
 
 
 
 
 
 
 
 
 
 
 
 
 
2280const char *dm_device_name(struct mapped_device *md)
2281{
2282	return md->name;
2283}
2284EXPORT_SYMBOL_GPL(dm_device_name);
2285
2286static void __dm_destroy(struct mapped_device *md, bool wait)
2287{
2288	struct dm_table *map;
 
2289
2290	might_sleep();
2291
2292	spin_lock(&_minor_lock);
2293	map = dm_get_live_table(md);
2294	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2295	set_bit(DMF_FREEING, &md->flags);
2296	spin_unlock(&_minor_lock);
2297
 
 
 
 
 
 
 
 
2298	if (!dm_suspended_md(md)) {
2299		dm_table_presuspend_targets(map);
 
 
2300		dm_table_postsuspend_targets(map);
2301	}
 
 
 
2302
2303	/*
2304	 * Rare, but there may be I/O requests still going to complete,
2305	 * for example.  Wait for all references to disappear.
2306	 * No one should increment the reference count of the mapped_device,
2307	 * after the mapped_device state becomes DMF_FREEING.
2308	 */
2309	if (wait)
2310		while (atomic_read(&md->holders))
2311			msleep(1);
2312	else if (atomic_read(&md->holders))
2313		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2314		       dm_device_name(md), atomic_read(&md->holders));
2315
2316	dm_sysfs_exit(md);
2317	dm_table_put(map);
2318	dm_table_destroy(__unbind(md));
2319	free_dev(md);
2320}
2321
2322void dm_destroy(struct mapped_device *md)
2323{
2324	__dm_destroy(md, true);
2325}
2326
2327void dm_destroy_immediate(struct mapped_device *md)
2328{
2329	__dm_destroy(md, false);
2330}
2331
2332void dm_put(struct mapped_device *md)
2333{
2334	atomic_dec(&md->holders);
2335}
2336EXPORT_SYMBOL_GPL(dm_put);
2337
2338static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
 
 
 
 
 
 
 
 
 
 
 
2339{
2340	int r = 0;
2341	DECLARE_WAITQUEUE(wait, current);
2342
2343	add_wait_queue(&md->wait, &wait);
 
2344
2345	while (1) {
2346		set_current_state(interruptible);
2347
2348		if (!md_in_flight(md))
2349			break;
2350
2351		if (interruptible == TASK_INTERRUPTIBLE &&
2352		    signal_pending(current)) {
2353			r = -EINTR;
2354			break;
2355		}
2356
2357		io_schedule();
2358	}
2359	set_current_state(TASK_RUNNING);
2360
2361	remove_wait_queue(&md->wait, &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2362
2363	return r;
2364}
2365
2366/*
2367 * Process the deferred bios
2368 */
2369static void dm_wq_work(struct work_struct *work)
2370{
2371	struct mapped_device *md = container_of(work, struct mapped_device,
2372						work);
2373	struct bio *c;
2374
2375	down_read(&md->io_lock);
2376
2377	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2378		spin_lock_irq(&md->deferred_lock);
2379		c = bio_list_pop(&md->deferred);
2380		spin_unlock_irq(&md->deferred_lock);
2381
2382		if (!c)
2383			break;
2384
2385		up_read(&md->io_lock);
2386
2387		if (dm_request_based(md))
2388			generic_make_request(c);
2389		else
2390			__split_and_process_bio(md, c);
2391
2392		down_read(&md->io_lock);
2393	}
2394
2395	up_read(&md->io_lock);
2396}
2397
2398static void dm_queue_flush(struct mapped_device *md)
2399{
2400	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401	smp_mb__after_clear_bit();
2402	queue_work(md->wq, &md->work);
2403}
2404
2405/*
2406 * Swap in a new table, returning the old one for the caller to destroy.
2407 */
2408struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409{
2410	struct dm_table *map = ERR_PTR(-EINVAL);
2411	struct queue_limits limits;
2412	int r;
2413
2414	mutex_lock(&md->suspend_lock);
2415
2416	/* device must be suspended */
2417	if (!dm_suspended_md(md))
2418		goto out;
2419
2420	r = dm_calculate_queue_limits(table, &limits);
2421	if (r) {
2422		map = ERR_PTR(r);
2423		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	}
2425
2426	map = __bind(md, table, &limits);
 
2427
2428out:
2429	mutex_unlock(&md->suspend_lock);
2430	return map;
2431}
2432
2433/*
2434 * Functions to lock and unlock any filesystem running on the
2435 * device.
2436 */
2437static int lock_fs(struct mapped_device *md)
2438{
2439	int r;
2440
2441	WARN_ON(md->frozen_sb);
2442
2443	md->frozen_sb = freeze_bdev(md->bdev);
2444	if (IS_ERR(md->frozen_sb)) {
2445		r = PTR_ERR(md->frozen_sb);
2446		md->frozen_sb = NULL;
2447		return r;
2448	}
2449
2450	set_bit(DMF_FROZEN, &md->flags);
2451
2452	return 0;
2453}
2454
2455static void unlock_fs(struct mapped_device *md)
2456{
2457	if (!test_bit(DMF_FROZEN, &md->flags))
2458		return;
2459
2460	thaw_bdev(md->bdev, md->frozen_sb);
2461	md->frozen_sb = NULL;
2462	clear_bit(DMF_FROZEN, &md->flags);
2463}
2464
2465/*
2466 * We need to be able to change a mapping table under a mounted
2467 * filesystem.  For example we might want to move some data in
2468 * the background.  Before the table can be swapped with
2469 * dm_bind_table, dm_suspend must be called to flush any in
2470 * flight bios and ensure that any further io gets deferred.
2471 */
2472/*
2473 * Suspend mechanism in request-based dm.
2474 *
2475 * 1. Flush all I/Os by lock_fs() if needed.
2476 * 2. Stop dispatching any I/O by stopping the request_queue.
2477 * 3. Wait for all in-flight I/Os to be completed or requeued.
2478 *
2479 * To abort suspend, start the request_queue.
2480 */
2481int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
 
 
 
 
2482{
2483	struct dm_table *map = NULL;
2484	int r = 0;
2485	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2486	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2487
2488	mutex_lock(&md->suspend_lock);
2489
2490	if (dm_suspended_md(md)) {
2491		r = -EINVAL;
2492		goto out_unlock;
2493	}
2494
2495	map = dm_get_live_table(md);
2496
2497	/*
2498	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2499	 * This flag is cleared before dm_suspend returns.
2500	 */
2501	if (noflush)
2502		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2503
2504	/* This does not get reverted if there's an error later. */
 
 
 
2505	dm_table_presuspend_targets(map);
2506
2507	/*
2508	 * Flush I/O to the device.
2509	 * Any I/O submitted after lock_fs() may not be flushed.
2510	 * noflush takes precedence over do_lockfs.
2511	 * (lock_fs() flushes I/Os and waits for them to complete.)
2512	 */
2513	if (!noflush && do_lockfs) {
2514		r = lock_fs(md);
2515		if (r)
2516			goto out;
 
 
2517	}
2518
2519	/*
2520	 * Here we must make sure that no processes are submitting requests
2521	 * to target drivers i.e. no one may be executing
2522	 * __split_and_process_bio. This is called from dm_request and
2523	 * dm_wq_work.
2524	 *
2525	 * To get all processes out of __split_and_process_bio in dm_request,
2526	 * we take the write lock. To prevent any process from reentering
2527	 * __split_and_process_bio from dm_request and quiesce the thread
2528	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2529	 * flush_workqueue(md->wq).
2530	 */
2531	down_write(&md->io_lock);
2532	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533	up_write(&md->io_lock);
 
2534
2535	/*
2536	 * Stop md->queue before flushing md->wq in case request-based
2537	 * dm defers requests to md->wq from md->queue.
2538	 */
2539	if (dm_request_based(md))
2540		stop_queue(md->queue);
2541
2542	flush_workqueue(md->wq);
2543
2544	/*
2545	 * At this point no more requests are entering target request routines.
2546	 * We call dm_wait_for_completion to wait for all existing requests
2547	 * to finish.
2548	 */
2549	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
 
 
2550
2551	down_write(&md->io_lock);
2552	if (noflush)
2553		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554	up_write(&md->io_lock);
 
2555
2556	/* were we interrupted ? */
2557	if (r < 0) {
2558		dm_queue_flush(md);
2559
2560		if (dm_request_based(md))
2561			start_queue(md->queue);
2562
2563		unlock_fs(md);
2564		goto out; /* pushback list is already flushed, so skip flush */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565	}
2566
2567	/*
2568	 * If dm_wait_for_completion returned 0, the device is completely
2569	 * quiescent now. There is no request-processing activity. All new
2570	 * requests are being added to md->deferred list.
2571	 */
 
 
 
 
 
 
 
 
 
2572
2573	set_bit(DMF_SUSPENDED, &md->flags);
 
 
2574
 
2575	dm_table_postsuspend_targets(map);
2576
2577out:
2578	dm_table_put(map);
2579
2580out_unlock:
2581	mutex_unlock(&md->suspend_lock);
2582	return r;
2583}
2584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585int dm_resume(struct mapped_device *md)
2586{
2587	int r = -EINVAL;
2588	struct dm_table *map = NULL;
2589
2590	mutex_lock(&md->suspend_lock);
 
 
 
2591	if (!dm_suspended_md(md))
2592		goto out;
2593
2594	map = dm_get_live_table(md);
 
 
 
 
 
 
 
 
 
2595	if (!map || !dm_table_get_size(map))
2596		goto out;
2597
2598	r = dm_table_resume_targets(map);
2599	if (r)
2600		goto out;
2601
2602	dm_queue_flush(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603
2604	/*
2605	 * Flushing deferred I/Os must be done after targets are resumed
2606	 * so that mapping of targets can work correctly.
2607	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 
2608	 */
2609	if (dm_request_based(md))
2610		start_queue(md->queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611
2612	unlock_fs(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613
2614	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
 
 
 
 
2615
2616	r = 0;
2617out:
2618	dm_table_put(map);
 
2619	mutex_unlock(&md->suspend_lock);
 
 
2620
2621	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622}
 
2623
2624/*-----------------------------------------------------------------
 
2625 * Event notification.
2626 *---------------------------------------------------------------*/
 
2627int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2628		       unsigned cookie)
2629{
 
 
2630	char udev_cookie[DM_COOKIE_LENGTH];
2631	char *envp[] = { udev_cookie, NULL };
2632
2633	if (!cookie)
2634		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2635	else {
2636		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2637			 DM_COOKIE_ENV_VAR_NAME, cookie);
2638		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2639					  action, envp);
2640	}
 
 
 
 
 
 
 
 
 
 
 
2641}
2642
2643uint32_t dm_next_uevent_seq(struct mapped_device *md)
2644{
2645	return atomic_add_return(1, &md->uevent_seq);
2646}
2647
2648uint32_t dm_get_event_nr(struct mapped_device *md)
2649{
2650	return atomic_read(&md->event_nr);
2651}
2652
2653int dm_wait_event(struct mapped_device *md, int event_nr)
2654{
2655	return wait_event_interruptible(md->eventq,
2656			(event_nr != atomic_read(&md->event_nr)));
2657}
2658
2659void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2660{
2661	unsigned long flags;
2662
2663	spin_lock_irqsave(&md->uevent_lock, flags);
2664	list_add(elist, &md->uevent_list);
2665	spin_unlock_irqrestore(&md->uevent_lock, flags);
2666}
2667
2668/*
2669 * The gendisk is only valid as long as you have a reference
2670 * count on 'md'.
2671 */
2672struct gendisk *dm_disk(struct mapped_device *md)
2673{
2674	return md->disk;
2675}
 
2676
2677struct kobject *dm_kobject(struct mapped_device *md)
2678{
2679	return &md->kobj;
2680}
2681
2682/*
2683 * struct mapped_device should not be exported outside of dm.c
2684 * so use this check to verify that kobj is part of md structure
2685 */
2686struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2687{
2688	struct mapped_device *md;
2689
2690	md = container_of(kobj, struct mapped_device, kobj);
2691	if (&md->kobj != kobj)
2692		return NULL;
2693
2694	if (test_bit(DMF_FREEING, &md->flags) ||
2695	    dm_deleting_md(md))
2696		return NULL;
 
 
 
 
 
2697
2698	dm_get(md);
2699	return md;
2700}
2701
2702int dm_suspended_md(struct mapped_device *md)
2703{
2704	return test_bit(DMF_SUSPENDED, &md->flags);
2705}
2706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707int dm_suspended(struct dm_target *ti)
2708{
2709	return dm_suspended_md(dm_table_get_md(ti->table));
2710}
2711EXPORT_SYMBOL_GPL(dm_suspended);
2712
 
 
 
 
 
 
2713int dm_noflush_suspending(struct dm_target *ti)
2714{
2715	return __noflush_suspending(dm_table_get_md(ti->table));
2716}
2717EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2718
2719struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2720{
2721	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2722	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723
2724	if (!pools)
2725		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726
2727	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2728			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2729			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2730	if (!pools->io_pool)
2731		goto free_pools_and_out;
 
 
 
 
 
2732
2733	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2734			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2735			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2736	if (!pools->tio_pool)
2737		goto free_io_pool_and_out;
2738
2739	pools->bs = bioset_create(pool_size, 0);
2740	if (!pools->bs)
2741		goto free_tio_pool_and_out;
2742
2743	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744		goto free_bioset_and_out;
 
 
 
2745
2746	return pools;
 
 
2747
2748free_bioset_and_out:
2749	bioset_free(pools->bs);
 
 
 
 
 
 
 
2750
2751free_tio_pool_and_out:
2752	mempool_destroy(pools->tio_pool);
 
 
 
2753
2754free_io_pool_and_out:
2755	mempool_destroy(pools->io_pool);
 
 
2756
2757free_pools_and_out:
2758	kfree(pools);
 
2759
2760	return NULL;
2761}
2762
2763void dm_free_md_mempools(struct dm_md_mempools *pools)
2764{
2765	if (!pools)
2766		return;
 
 
 
 
 
 
 
 
 
2767
2768	if (pools->io_pool)
2769		mempool_destroy(pools->io_pool);
 
 
 
2770
2771	if (pools->tio_pool)
2772		mempool_destroy(pools->tio_pool);
 
 
2773
2774	if (pools->bs)
2775		bioset_free(pools->bs);
 
2776
2777	kfree(pools);
2778}
2779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780static const struct block_device_operations dm_blk_dops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
2781	.open = dm_blk_open,
2782	.release = dm_blk_close,
2783	.ioctl = dm_blk_ioctl,
2784	.getgeo = dm_blk_getgeo,
 
 
2785	.owner = THIS_MODULE
2786};
2787
2788EXPORT_SYMBOL(dm_get_mapinfo);
 
 
 
 
2789
2790/*
2791 * module hooks
2792 */
2793module_init(dm_init);
2794module_exit(dm_exit);
2795
2796module_param(major, uint, 0);
2797MODULE_PARM_DESC(major, "The major number of the device mapper");
 
 
 
 
 
 
 
 
 
 
2798MODULE_DESCRIPTION(DM_NAME " driver");
2799MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2800MODULE_LICENSE("GPL");