Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS("DMA_BUF");
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 105		return;
 106	}
 107
 108	/* Object isn't an AMDGPU object so ignore */
 109	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 110		placement->placement = &placements;
 111		placement->num_placement = 1;
 112		return;
 113	}
 114
 115	abo = ttm_to_amdgpu_bo(bo);
 116	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 117		placement->num_placement = 0;
 118		return;
 119	}
 120
 121	switch (bo->resource->mem_type) {
 122	case AMDGPU_PL_GDS:
 123	case AMDGPU_PL_GWS:
 124	case AMDGPU_PL_OA:
 125	case AMDGPU_PL_DOORBELL:
 126		placement->num_placement = 0;
 127		return;
 128
 129	case TTM_PL_VRAM:
 130		if (!adev->mman.buffer_funcs_enabled) {
 131			/* Move to system memory */
 132			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 133
 134		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 135			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 136			   amdgpu_res_cpu_visible(adev, bo->resource)) {
 137
 138			/* Try evicting to the CPU inaccessible part of VRAM
 139			 * first, but only set GTT as busy placement, so this
 140			 * BO will be evicted to GTT rather than causing other
 141			 * BOs to be evicted from VRAM
 142			 */
 143			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 144							AMDGPU_GEM_DOMAIN_GTT |
 145							AMDGPU_GEM_DOMAIN_CPU);
 146			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 147			abo->placements[0].lpfn = 0;
 148			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
 149		} else {
 150			/* Move to GTT memory */
 151			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 152							AMDGPU_GEM_DOMAIN_CPU);
 153		}
 154		break;
 155	case TTM_PL_TT:
 156	case AMDGPU_PL_PREEMPT:
 157	default:
 158		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 159		break;
 160	}
 161	*placement = abo->placement;
 162}
 163
 164/**
 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 166 * @bo: buffer object to map
 167 * @mem: memory object to map
 168 * @mm_cur: range to map
 169 * @window: which GART window to use
 170 * @ring: DMA ring to use for the copy
 171 * @tmz: if we should setup a TMZ enabled mapping
 172 * @size: in number of bytes to map, out number of bytes mapped
 173 * @addr: resulting address inside the MC address space
 174 *
 175 * Setup one of the GART windows to access a specific piece of memory or return
 176 * the physical address for local memory.
 177 */
 178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 179				 struct ttm_resource *mem,
 180				 struct amdgpu_res_cursor *mm_cur,
 181				 unsigned int window, struct amdgpu_ring *ring,
 182				 bool tmz, uint64_t *size, uint64_t *addr)
 183{
 184	struct amdgpu_device *adev = ring->adev;
 185	unsigned int offset, num_pages, num_dw, num_bytes;
 186	uint64_t src_addr, dst_addr;
 187	struct amdgpu_job *job;
 188	void *cpu_addr;
 189	uint64_t flags;
 190	unsigned int i;
 191	int r;
 192
 193	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 194	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 195
 196	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 197		return -EINVAL;
 198
 199	/* Map only what can't be accessed directly */
 200	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 201		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 202			mm_cur->start;
 203		return 0;
 204	}
 205
 206
 207	/*
 208	 * If start begins at an offset inside the page, then adjust the size
 209	 * and addr accordingly
 210	 */
 211	offset = mm_cur->start & ~PAGE_MASK;
 212
 213	num_pages = PFN_UP(*size + offset);
 214	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 215
 216	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 217
 218	*addr = adev->gmc.gart_start;
 219	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 220		AMDGPU_GPU_PAGE_SIZE;
 221	*addr += offset;
 222
 223	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 224	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 225
 226	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 227				     AMDGPU_FENCE_OWNER_UNDEFINED,
 228				     num_dw * 4 + num_bytes,
 229				     AMDGPU_IB_POOL_DELAYED, &job);
 230	if (r)
 231		return r;
 232
 233	src_addr = num_dw * 4;
 234	src_addr += job->ibs[0].gpu_addr;
 235
 236	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 237	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 238	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 239				dst_addr, num_bytes, 0);
 240
 241	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 242	WARN_ON(job->ibs[0].length_dw > num_dw);
 243
 244	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 245	if (tmz)
 246		flags |= AMDGPU_PTE_TMZ;
 247
 248	cpu_addr = &job->ibs[0].ptr[num_dw];
 249
 250	if (mem->mem_type == TTM_PL_TT) {
 251		dma_addr_t *dma_addr;
 252
 253		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 254		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 255	} else {
 256		dma_addr_t dma_address;
 257
 258		dma_address = mm_cur->start;
 259		dma_address += adev->vm_manager.vram_base_offset;
 260
 261		for (i = 0; i < num_pages; ++i) {
 262			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 263					flags, cpu_addr);
 264			dma_address += PAGE_SIZE;
 265		}
 266	}
 267
 268	dma_fence_put(amdgpu_job_submit(job));
 269	return 0;
 270}
 271
 272/**
 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 274 * @adev: amdgpu device
 275 * @src: buffer/address where to read from
 276 * @dst: buffer/address where to write to
 277 * @size: number of bytes to copy
 278 * @tmz: if a secure copy should be used
 279 * @resv: resv object to sync to
 280 * @f: Returns the last fence if multiple jobs are submitted.
 281 *
 282 * The function copies @size bytes from {src->mem + src->offset} to
 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 284 * move and different for a BO to BO copy.
 285 *
 286 */
 287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 288			       const struct amdgpu_copy_mem *src,
 289			       const struct amdgpu_copy_mem *dst,
 290			       uint64_t size, bool tmz,
 291			       struct dma_resv *resv,
 292			       struct dma_fence **f)
 293{
 294	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 295	struct amdgpu_res_cursor src_mm, dst_mm;
 296	struct dma_fence *fence = NULL;
 297	int r = 0;
 298	uint32_t copy_flags = 0;
 299	struct amdgpu_bo *abo_src, *abo_dst;
 300
 301	if (!adev->mman.buffer_funcs_enabled) {
 302		DRM_ERROR("Trying to move memory with ring turned off.\n");
 303		return -EINVAL;
 304	}
 305
 306	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 307	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 308
 309	mutex_lock(&adev->mman.gtt_window_lock);
 310	while (src_mm.remaining) {
 311		uint64_t from, to, cur_size, tiling_flags;
 312		uint32_t num_type, data_format, max_com, write_compress_disable;
 313		struct dma_fence *next;
 314
 315		/* Never copy more than 256MiB at once to avoid a timeout */
 316		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 317
 318		/* Map src to window 0 and dst to window 1. */
 319		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 320					  0, ring, tmz, &cur_size, &from);
 321		if (r)
 322			goto error;
 323
 324		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 325					  1, ring, tmz, &cur_size, &to);
 326		if (r)
 327			goto error;
 328
 329		abo_src = ttm_to_amdgpu_bo(src->bo);
 330		abo_dst = ttm_to_amdgpu_bo(dst->bo);
 331		if (tmz)
 332			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
 333		if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
 334		    (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
 335			copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
 336		if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
 337		    (dst->mem->mem_type == TTM_PL_VRAM)) {
 338			copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
 339			amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
 340			max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
 341			num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
 342			data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
 343			write_compress_disable =
 344				AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
 345			copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
 346				       AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
 347				       AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
 348				       AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
 349							     write_compress_disable));
 350		}
 351
 352		r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
 353				       &next, false, true, copy_flags);
 354		if (r)
 355			goto error;
 356
 357		dma_fence_put(fence);
 358		fence = next;
 359
 360		amdgpu_res_next(&src_mm, cur_size);
 361		amdgpu_res_next(&dst_mm, cur_size);
 362	}
 363error:
 364	mutex_unlock(&adev->mman.gtt_window_lock);
 365	if (f)
 366		*f = dma_fence_get(fence);
 367	dma_fence_put(fence);
 368	return r;
 369}
 370
 371/*
 372 * amdgpu_move_blit - Copy an entire buffer to another buffer
 373 *
 374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 375 * help move buffers to and from VRAM.
 376 */
 377static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 378			    bool evict,
 379			    struct ttm_resource *new_mem,
 380			    struct ttm_resource *old_mem)
 381{
 382	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 383	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 384	struct amdgpu_copy_mem src, dst;
 385	struct dma_fence *fence = NULL;
 386	int r;
 387
 388	src.bo = bo;
 389	dst.bo = bo;
 390	src.mem = old_mem;
 391	dst.mem = new_mem;
 392	src.offset = 0;
 393	dst.offset = 0;
 394
 395	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 396				       new_mem->size,
 397				       amdgpu_bo_encrypted(abo),
 398				       bo->base.resv, &fence);
 399	if (r)
 400		goto error;
 401
 402	/* clear the space being freed */
 403	if (old_mem->mem_type == TTM_PL_VRAM &&
 404	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 405		struct dma_fence *wipe_fence = NULL;
 406
 407		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
 408				       false);
 409		if (r) {
 410			goto error;
 411		} else if (wipe_fence) {
 412			amdgpu_vram_mgr_set_cleared(bo->resource);
 413			dma_fence_put(fence);
 414			fence = wipe_fence;
 415		}
 416	}
 417
 418	/* Always block for VM page tables before committing the new location */
 419	if (bo->type == ttm_bo_type_kernel)
 420		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 421	else
 422		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 423	dma_fence_put(fence);
 424	return r;
 425
 426error:
 427	if (fence)
 428		dma_fence_wait(fence, false);
 429	dma_fence_put(fence);
 430	return r;
 431}
 432
 433/**
 434 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
 435 * @adev: amdgpu device
 436 * @res: the resource to check
 437 *
 438 * Returns: true if the full resource is CPU visible, false otherwise.
 439 */
 440bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
 441			    struct ttm_resource *res)
 442{
 443	struct amdgpu_res_cursor cursor;
 444
 445	if (!res)
 446		return false;
 447
 448	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
 449	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
 450		return true;
 451
 452	if (res->mem_type != TTM_PL_VRAM)
 453		return false;
 454
 455	amdgpu_res_first(res, 0, res->size, &cursor);
 456	while (cursor.remaining) {
 457		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
 458			return false;
 459		amdgpu_res_next(&cursor, cursor.size);
 460	}
 461
 462	return true;
 463}
 464
 465/*
 466 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
 467 *
 468 * Called by amdgpu_bo_move()
 469 */
 470static bool amdgpu_res_copyable(struct amdgpu_device *adev,
 471				struct ttm_resource *mem)
 472{
 473	if (!amdgpu_res_cpu_visible(adev, mem))
 474		return false;
 475
 476	/* ttm_resource_ioremap only supports contiguous memory */
 477	if (mem->mem_type == TTM_PL_VRAM &&
 478	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
 479		return false;
 480
 481	return true;
 482}
 483
 484/*
 485 * amdgpu_bo_move - Move a buffer object to a new memory location
 486 *
 487 * Called by ttm_bo_handle_move_mem()
 488 */
 489static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 490			  struct ttm_operation_ctx *ctx,
 491			  struct ttm_resource *new_mem,
 492			  struct ttm_place *hop)
 493{
 494	struct amdgpu_device *adev;
 495	struct amdgpu_bo *abo;
 496	struct ttm_resource *old_mem = bo->resource;
 497	int r;
 498
 499	if (new_mem->mem_type == TTM_PL_TT ||
 500	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 501		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 502		if (r)
 503			return r;
 504	}
 505
 506	abo = ttm_to_amdgpu_bo(bo);
 507	adev = amdgpu_ttm_adev(bo->bdev);
 508
 509	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 510			 bo->ttm == NULL)) {
 511		amdgpu_bo_move_notify(bo, evict, new_mem);
 512		ttm_bo_move_null(bo, new_mem);
 513		return 0;
 514	}
 515	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 516	    (new_mem->mem_type == TTM_PL_TT ||
 517	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 518		amdgpu_bo_move_notify(bo, evict, new_mem);
 519		ttm_bo_move_null(bo, new_mem);
 520		return 0;
 521	}
 522	if ((old_mem->mem_type == TTM_PL_TT ||
 523	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 524	    new_mem->mem_type == TTM_PL_SYSTEM) {
 525		r = ttm_bo_wait_ctx(bo, ctx);
 526		if (r)
 527			return r;
 528
 529		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 530		amdgpu_bo_move_notify(bo, evict, new_mem);
 531		ttm_resource_free(bo, &bo->resource);
 532		ttm_bo_assign_mem(bo, new_mem);
 533		return 0;
 534	}
 535
 536	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 537	    old_mem->mem_type == AMDGPU_PL_GWS ||
 538	    old_mem->mem_type == AMDGPU_PL_OA ||
 539	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 540	    new_mem->mem_type == AMDGPU_PL_GDS ||
 541	    new_mem->mem_type == AMDGPU_PL_GWS ||
 542	    new_mem->mem_type == AMDGPU_PL_OA ||
 543	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 544		/* Nothing to save here */
 545		amdgpu_bo_move_notify(bo, evict, new_mem);
 546		ttm_bo_move_null(bo, new_mem);
 547		return 0;
 548	}
 549
 550	if (bo->type == ttm_bo_type_device &&
 551	    new_mem->mem_type == TTM_PL_VRAM &&
 552	    old_mem->mem_type != TTM_PL_VRAM) {
 553		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 554		 * accesses the BO after it's moved.
 555		 */
 556		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 557	}
 558
 559	if (adev->mman.buffer_funcs_enabled &&
 560	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
 561	      new_mem->mem_type == TTM_PL_VRAM) ||
 562	     (old_mem->mem_type == TTM_PL_VRAM &&
 563	      new_mem->mem_type == TTM_PL_SYSTEM))) {
 564		hop->fpfn = 0;
 565		hop->lpfn = 0;
 566		hop->mem_type = TTM_PL_TT;
 567		hop->flags = TTM_PL_FLAG_TEMPORARY;
 568		return -EMULTIHOP;
 569	}
 570
 571	amdgpu_bo_move_notify(bo, evict, new_mem);
 572	if (adev->mman.buffer_funcs_enabled)
 573		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 574	else
 575		r = -ENODEV;
 576
 577	if (r) {
 578		/* Check that all memory is CPU accessible */
 579		if (!amdgpu_res_copyable(adev, old_mem) ||
 580		    !amdgpu_res_copyable(adev, new_mem)) {
 581			pr_err("Move buffer fallback to memcpy unavailable\n");
 582			return r;
 583		}
 584
 585		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 586		if (r)
 587			return r;
 588	}
 589
 590	/* update statistics after the move */
 591	if (evict)
 592		atomic64_inc(&adev->num_evictions);
 593	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 594	return 0;
 595}
 596
 597/*
 598 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 599 *
 600 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 601 */
 602static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 603				     struct ttm_resource *mem)
 604{
 605	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 606
 607	switch (mem->mem_type) {
 608	case TTM_PL_SYSTEM:
 609		/* system memory */
 610		return 0;
 611	case TTM_PL_TT:
 612	case AMDGPU_PL_PREEMPT:
 613		break;
 614	case TTM_PL_VRAM:
 615		mem->bus.offset = mem->start << PAGE_SHIFT;
 616
 617		if (adev->mman.aper_base_kaddr &&
 618		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 619			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 620					mem->bus.offset;
 621
 622		mem->bus.offset += adev->gmc.aper_base;
 623		mem->bus.is_iomem = true;
 624		break;
 625	case AMDGPU_PL_DOORBELL:
 626		mem->bus.offset = mem->start << PAGE_SHIFT;
 627		mem->bus.offset += adev->doorbell.base;
 628		mem->bus.is_iomem = true;
 629		mem->bus.caching = ttm_uncached;
 630		break;
 631	default:
 632		return -EINVAL;
 633	}
 634	return 0;
 635}
 636
 637static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 638					   unsigned long page_offset)
 639{
 640	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 641	struct amdgpu_res_cursor cursor;
 642
 643	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 644			 &cursor);
 645
 646	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 647		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 648
 649	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 650}
 651
 652/**
 653 * amdgpu_ttm_domain_start - Returns GPU start address
 654 * @adev: amdgpu device object
 655 * @type: type of the memory
 656 *
 657 * Returns:
 658 * GPU start address of a memory domain
 659 */
 660
 661uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 662{
 663	switch (type) {
 664	case TTM_PL_TT:
 665		return adev->gmc.gart_start;
 666	case TTM_PL_VRAM:
 667		return adev->gmc.vram_start;
 668	}
 669
 670	return 0;
 671}
 672
 673/*
 674 * TTM backend functions.
 675 */
 676struct amdgpu_ttm_tt {
 677	struct ttm_tt	ttm;
 678	struct drm_gem_object	*gobj;
 679	u64			offset;
 680	uint64_t		userptr;
 681	struct task_struct	*usertask;
 682	uint32_t		userflags;
 683	bool			bound;
 684	int32_t			pool_id;
 685};
 686
 687#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 688
 689#ifdef CONFIG_DRM_AMDGPU_USERPTR
 690/*
 691 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 692 * memory and start HMM tracking CPU page table update
 693 *
 694 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 695 * once afterwards to stop HMM tracking
 696 */
 697int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 698				 struct hmm_range **range)
 699{
 700	struct ttm_tt *ttm = bo->tbo.ttm;
 701	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 702	unsigned long start = gtt->userptr;
 703	struct vm_area_struct *vma;
 704	struct mm_struct *mm;
 705	bool readonly;
 706	int r = 0;
 707
 708	/* Make sure get_user_pages_done() can cleanup gracefully */
 709	*range = NULL;
 710
 711	mm = bo->notifier.mm;
 712	if (unlikely(!mm)) {
 713		DRM_DEBUG_DRIVER("BO is not registered?\n");
 714		return -EFAULT;
 715	}
 716
 717	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 718		return -ESRCH;
 719
 720	mmap_read_lock(mm);
 721	vma = vma_lookup(mm, start);
 722	if (unlikely(!vma)) {
 723		r = -EFAULT;
 724		goto out_unlock;
 725	}
 726	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 727		vma->vm_file)) {
 728		r = -EPERM;
 729		goto out_unlock;
 730	}
 731
 732	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 733	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 734				       readonly, NULL, pages, range);
 735out_unlock:
 736	mmap_read_unlock(mm);
 737	if (r)
 738		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 739
 740	mmput(mm);
 741
 742	return r;
 743}
 744
 745/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 746 */
 747void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 748				      struct hmm_range *range)
 749{
 750	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 751
 752	if (gtt && gtt->userptr && range)
 753		amdgpu_hmm_range_get_pages_done(range);
 754}
 755
 756/*
 757 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 758 * Check if the pages backing this ttm range have been invalidated
 759 *
 760 * Returns: true if pages are still valid
 761 */
 762bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 763				       struct hmm_range *range)
 764{
 765	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 766
 767	if (!gtt || !gtt->userptr || !range)
 768		return false;
 769
 770	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 771		gtt->userptr, ttm->num_pages);
 772
 773	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 774
 775	return !amdgpu_hmm_range_get_pages_done(range);
 776}
 777#endif
 778
 779/*
 780 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 781 *
 782 * Called by amdgpu_cs_list_validate(). This creates the page list
 783 * that backs user memory and will ultimately be mapped into the device
 784 * address space.
 785 */
 786void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 787{
 788	unsigned long i;
 789
 790	for (i = 0; i < ttm->num_pages; ++i)
 791		ttm->pages[i] = pages ? pages[i] : NULL;
 792}
 793
 794/*
 795 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 796 *
 797 * Called by amdgpu_ttm_backend_bind()
 798 **/
 799static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 800				     struct ttm_tt *ttm)
 801{
 802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 805	enum dma_data_direction direction = write ?
 806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 807	int r;
 808
 809	/* Allocate an SG array and squash pages into it */
 810	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 811				      (u64)ttm->num_pages << PAGE_SHIFT,
 812				      GFP_KERNEL);
 813	if (r)
 814		goto release_sg;
 815
 816	/* Map SG to device */
 817	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 818	if (r)
 819		goto release_sg_table;
 820
 821	/* convert SG to linear array of pages and dma addresses */
 822	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 823				       ttm->num_pages);
 824
 825	return 0;
 826
 827release_sg_table:
 828	sg_free_table(ttm->sg);
 829release_sg:
 830	kfree(ttm->sg);
 831	ttm->sg = NULL;
 832	return r;
 833}
 834
 835/*
 836 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 837 */
 838static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 839					struct ttm_tt *ttm)
 840{
 841	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 842	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 843	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 844	enum dma_data_direction direction = write ?
 845		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 846
 847	/* double check that we don't free the table twice */
 848	if (!ttm->sg || !ttm->sg->sgl)
 849		return;
 850
 851	/* unmap the pages mapped to the device */
 852	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 853	sg_free_table(ttm->sg);
 854}
 855
 856/*
 857 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 858 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 859 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 860 * and uses memory type default, UC. The rest of pages_per_xcc are
 861 * Ctrl stack and modify their memory type to NC.
 862 */
 863static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 864				struct ttm_tt *ttm, uint64_t flags)
 865{
 866	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 867	uint64_t total_pages = ttm->num_pages;
 868	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 869	uint64_t page_idx, pages_per_xcc;
 870	int i;
 871	uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
 872
 873	pages_per_xcc = total_pages;
 874	do_div(pages_per_xcc, num_xcc);
 875
 876	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 877		/* MQD page: use default flags */
 878		amdgpu_gart_bind(adev,
 879				gtt->offset + (page_idx << PAGE_SHIFT),
 880				1, &gtt->ttm.dma_address[page_idx], flags);
 881		/*
 882		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 883		 * the second page of the BO onward.
 884		 */
 885		amdgpu_gart_bind(adev,
 886				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 887				pages_per_xcc - 1,
 888				&gtt->ttm.dma_address[page_idx + 1],
 889				ctrl_flags);
 890	}
 891}
 892
 893static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 894				 struct ttm_buffer_object *tbo,
 895				 uint64_t flags)
 896{
 897	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 898	struct ttm_tt *ttm = tbo->ttm;
 899	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 900
 901	if (amdgpu_bo_encrypted(abo))
 902		flags |= AMDGPU_PTE_TMZ;
 903
 904	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 905		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 906	} else {
 907		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 908				 gtt->ttm.dma_address, flags);
 909	}
 910	gtt->bound = true;
 911}
 912
 913/*
 914 * amdgpu_ttm_backend_bind - Bind GTT memory
 915 *
 916 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 917 * This handles binding GTT memory to the device address space.
 918 */
 919static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 920				   struct ttm_tt *ttm,
 921				   struct ttm_resource *bo_mem)
 922{
 923	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 924	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 925	uint64_t flags;
 926	int r;
 927
 928	if (!bo_mem)
 929		return -EINVAL;
 930
 931	if (gtt->bound)
 932		return 0;
 933
 934	if (gtt->userptr) {
 935		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 936		if (r) {
 937			DRM_ERROR("failed to pin userptr\n");
 938			return r;
 939		}
 940	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 941		if (!ttm->sg) {
 942			struct dma_buf_attachment *attach;
 943			struct sg_table *sgt;
 944
 945			attach = gtt->gobj->import_attach;
 946			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 947			if (IS_ERR(sgt))
 948				return PTR_ERR(sgt);
 949
 950			ttm->sg = sgt;
 951		}
 952
 953		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 954					       ttm->num_pages);
 955	}
 956
 957	if (!ttm->num_pages) {
 958		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 959		     ttm->num_pages, bo_mem, ttm);
 960	}
 961
 962	if (bo_mem->mem_type != TTM_PL_TT ||
 963	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 964		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 965		return 0;
 966	}
 967
 968	/* compute PTE flags relevant to this BO memory */
 969	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 970
 971	/* bind pages into GART page tables */
 972	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 973	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 974			 gtt->ttm.dma_address, flags);
 975	gtt->bound = true;
 976	return 0;
 977}
 978
 979/*
 980 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 981 * through AGP or GART aperture.
 982 *
 983 * If bo is accessible through AGP aperture, then use AGP aperture
 984 * to access bo; otherwise allocate logical space in GART aperture
 985 * and map bo to GART aperture.
 986 */
 987int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 988{
 989	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 990	struct ttm_operation_ctx ctx = { false, false };
 991	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 992	struct ttm_placement placement;
 993	struct ttm_place placements;
 994	struct ttm_resource *tmp;
 995	uint64_t addr, flags;
 996	int r;
 997
 998	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 999		return 0;
1000
1001	addr = amdgpu_gmc_agp_addr(bo);
1002	if (addr != AMDGPU_BO_INVALID_OFFSET)
1003		return 0;
1004
1005	/* allocate GART space */
1006	placement.num_placement = 1;
1007	placement.placement = &placements;
1008	placements.fpfn = 0;
1009	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1010	placements.mem_type = TTM_PL_TT;
1011	placements.flags = bo->resource->placement;
1012
1013	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1014	if (unlikely(r))
1015		return r;
1016
1017	/* compute PTE flags for this buffer object */
1018	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1019
1020	/* Bind pages */
1021	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1022	amdgpu_ttm_gart_bind(adev, bo, flags);
1023	amdgpu_gart_invalidate_tlb(adev);
1024	ttm_resource_free(bo, &bo->resource);
1025	ttm_bo_assign_mem(bo, tmp);
1026
1027	return 0;
1028}
1029
1030/*
1031 * amdgpu_ttm_recover_gart - Rebind GTT pages
1032 *
1033 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1034 * rebind GTT pages during a GPU reset.
1035 */
1036void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1037{
1038	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1039	uint64_t flags;
1040
1041	if (!tbo->ttm)
1042		return;
1043
1044	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1045	amdgpu_ttm_gart_bind(adev, tbo, flags);
1046}
1047
1048/*
1049 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1050 *
1051 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1052 * ttm_tt_destroy().
1053 */
1054static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1055				      struct ttm_tt *ttm)
1056{
1057	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1058	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1059
1060	/* if the pages have userptr pinning then clear that first */
1061	if (gtt->userptr) {
1062		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1063	} else if (ttm->sg && gtt->gobj->import_attach) {
1064		struct dma_buf_attachment *attach;
1065
1066		attach = gtt->gobj->import_attach;
1067		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1068		ttm->sg = NULL;
1069	}
1070
1071	if (!gtt->bound)
1072		return;
1073
1074	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1075		return;
1076
1077	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1078	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1079	gtt->bound = false;
1080}
1081
1082static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1083				       struct ttm_tt *ttm)
1084{
1085	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1086
1087	if (gtt->usertask)
1088		put_task_struct(gtt->usertask);
1089
1090	ttm_tt_fini(&gtt->ttm);
1091	kfree(gtt);
1092}
1093
1094/**
1095 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1096 *
1097 * @bo: The buffer object to create a GTT ttm_tt object around
1098 * @page_flags: Page flags to be added to the ttm_tt object
1099 *
1100 * Called by ttm_tt_create().
1101 */
1102static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1103					   uint32_t page_flags)
1104{
1105	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1106	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1107	struct amdgpu_ttm_tt *gtt;
1108	enum ttm_caching caching;
1109
1110	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1111	if (!gtt)
1112		return NULL;
1113
1114	gtt->gobj = &bo->base;
1115	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1116		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1117	else
1118		gtt->pool_id = abo->xcp_id;
1119
1120	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1121		caching = ttm_write_combined;
1122	else
1123		caching = ttm_cached;
1124
1125	/* allocate space for the uninitialized page entries */
1126	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1127		kfree(gtt);
1128		return NULL;
1129	}
1130	return &gtt->ttm;
1131}
1132
1133/*
1134 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1135 *
1136 * Map the pages of a ttm_tt object to an address space visible
1137 * to the underlying device.
1138 */
1139static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1140				  struct ttm_tt *ttm,
1141				  struct ttm_operation_ctx *ctx)
1142{
1143	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1144	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1145	struct ttm_pool *pool;
1146	pgoff_t i;
1147	int ret;
1148
1149	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1150	if (gtt->userptr) {
1151		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1152		if (!ttm->sg)
1153			return -ENOMEM;
1154		return 0;
1155	}
1156
1157	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1158		return 0;
1159
1160	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1161		pool = &adev->mman.ttm_pools[gtt->pool_id];
1162	else
1163		pool = &adev->mman.bdev.pool;
1164	ret = ttm_pool_alloc(pool, ttm, ctx);
1165	if (ret)
1166		return ret;
1167
1168	for (i = 0; i < ttm->num_pages; ++i)
1169		ttm->pages[i]->mapping = bdev->dev_mapping;
1170
1171	return 0;
1172}
1173
1174/*
1175 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1176 *
1177 * Unmaps pages of a ttm_tt object from the device address space and
1178 * unpopulates the page array backing it.
1179 */
1180static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1181				     struct ttm_tt *ttm)
1182{
1183	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1184	struct amdgpu_device *adev;
1185	struct ttm_pool *pool;
1186	pgoff_t i;
1187
1188	amdgpu_ttm_backend_unbind(bdev, ttm);
1189
1190	if (gtt->userptr) {
1191		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1192		kfree(ttm->sg);
1193		ttm->sg = NULL;
1194		return;
1195	}
1196
1197	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1198		return;
1199
1200	for (i = 0; i < ttm->num_pages; ++i)
1201		ttm->pages[i]->mapping = NULL;
1202
1203	adev = amdgpu_ttm_adev(bdev);
1204
1205	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1206		pool = &adev->mman.ttm_pools[gtt->pool_id];
1207	else
1208		pool = &adev->mman.bdev.pool;
1209
1210	return ttm_pool_free(pool, ttm);
1211}
1212
1213/**
1214 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1215 * task
1216 *
1217 * @tbo: The ttm_buffer_object that contains the userptr
1218 * @user_addr:  The returned value
1219 */
1220int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1221			      uint64_t *user_addr)
1222{
1223	struct amdgpu_ttm_tt *gtt;
1224
1225	if (!tbo->ttm)
1226		return -EINVAL;
1227
1228	gtt = (void *)tbo->ttm;
1229	*user_addr = gtt->userptr;
1230	return 0;
1231}
1232
1233/**
1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235 * task
1236 *
1237 * @bo: The ttm_buffer_object to bind this userptr to
1238 * @addr:  The address in the current tasks VM space to use
1239 * @flags: Requirements of userptr object.
1240 *
1241 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1242 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1243 * initialize GPU VM for a KFD process.
1244 */
1245int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1246			      uint64_t addr, uint32_t flags)
1247{
1248	struct amdgpu_ttm_tt *gtt;
1249
1250	if (!bo->ttm) {
1251		/* TODO: We want a separate TTM object type for userptrs */
1252		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1253		if (bo->ttm == NULL)
1254			return -ENOMEM;
1255	}
1256
1257	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1258	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1259
1260	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1261	gtt->userptr = addr;
1262	gtt->userflags = flags;
1263
1264	if (gtt->usertask)
1265		put_task_struct(gtt->usertask);
1266	gtt->usertask = current->group_leader;
1267	get_task_struct(gtt->usertask);
1268
1269	return 0;
1270}
1271
1272/*
1273 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1274 */
1275struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1276{
1277	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1278
1279	if (gtt == NULL)
1280		return NULL;
1281
1282	if (gtt->usertask == NULL)
1283		return NULL;
1284
1285	return gtt->usertask->mm;
1286}
1287
1288/*
1289 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1290 * address range for the current task.
1291 *
1292 */
1293bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1294				  unsigned long end, unsigned long *userptr)
1295{
1296	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297	unsigned long size;
1298
1299	if (gtt == NULL || !gtt->userptr)
1300		return false;
1301
1302	/* Return false if no part of the ttm_tt object lies within
1303	 * the range
1304	 */
1305	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1306	if (gtt->userptr > end || gtt->userptr + size <= start)
1307		return false;
1308
1309	if (userptr)
1310		*userptr = gtt->userptr;
1311	return true;
1312}
1313
1314/*
1315 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1316 */
1317bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1318{
1319	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1320
1321	if (gtt == NULL || !gtt->userptr)
1322		return false;
1323
1324	return true;
1325}
1326
1327/*
1328 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1329 */
1330bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1331{
1332	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334	if (gtt == NULL)
1335		return false;
1336
1337	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1338}
1339
1340/**
1341 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1342 *
1343 * @ttm: The ttm_tt object to compute the flags for
1344 * @mem: The memory registry backing this ttm_tt object
1345 *
1346 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1347 */
1348uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1349{
1350	uint64_t flags = 0;
1351
1352	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1353		flags |= AMDGPU_PTE_VALID;
1354
1355	if (mem && (mem->mem_type == TTM_PL_TT ||
1356		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1357		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1358		flags |= AMDGPU_PTE_SYSTEM;
1359
1360		if (ttm->caching == ttm_cached)
1361			flags |= AMDGPU_PTE_SNOOPED;
1362	}
1363
1364	if (mem && mem->mem_type == TTM_PL_VRAM &&
1365			mem->bus.caching == ttm_cached)
1366		flags |= AMDGPU_PTE_SNOOPED;
1367
1368	return flags;
1369}
1370
1371/**
1372 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1373 *
1374 * @adev: amdgpu_device pointer
1375 * @ttm: The ttm_tt object to compute the flags for
1376 * @mem: The memory registry backing this ttm_tt object
1377 *
1378 * Figure out the flags to use for a VM PTE (Page Table Entry).
1379 */
1380uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1381				 struct ttm_resource *mem)
1382{
1383	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1384
1385	flags |= adev->gart.gart_pte_flags;
1386	flags |= AMDGPU_PTE_READABLE;
1387
1388	if (!amdgpu_ttm_tt_is_readonly(ttm))
1389		flags |= AMDGPU_PTE_WRITEABLE;
1390
1391	return flags;
1392}
1393
1394/*
1395 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1396 * object.
1397 *
1398 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1399 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1400 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1401 * used to clean out a memory space.
1402 */
1403static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1404					    const struct ttm_place *place)
1405{
1406	struct dma_resv_iter resv_cursor;
1407	struct dma_fence *f;
1408
1409	if (!amdgpu_bo_is_amdgpu_bo(bo))
1410		return ttm_bo_eviction_valuable(bo, place);
1411
1412	/* Swapout? */
1413	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1414		return true;
1415
1416	if (bo->type == ttm_bo_type_kernel &&
1417	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1418		return false;
1419
1420	/* If bo is a KFD BO, check if the bo belongs to the current process.
1421	 * If true, then return false as any KFD process needs all its BOs to
1422	 * be resident to run successfully
1423	 */
1424	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1425				DMA_RESV_USAGE_BOOKKEEP, f) {
1426		if (amdkfd_fence_check_mm(f, current->mm) &&
1427		    !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1428			return false;
1429	}
1430
1431	/* Preemptible BOs don't own system resources managed by the
1432	 * driver (pages, VRAM, GART space). They point to resources
1433	 * owned by someone else (e.g. pageable memory in user mode
1434	 * or a DMABuf). They are used in a preemptible context so we
1435	 * can guarantee no deadlocks and good QoS in case of MMU
1436	 * notifiers or DMABuf move notifiers from the resource owner.
1437	 */
1438	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1439		return false;
1440
1441	if (bo->resource->mem_type == TTM_PL_TT &&
1442	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1443		return false;
1444
1445	return ttm_bo_eviction_valuable(bo, place);
1446}
1447
1448static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1449				      void *buf, size_t size, bool write)
1450{
1451	while (size) {
1452		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1453		uint64_t bytes = 4 - (pos & 0x3);
1454		uint32_t shift = (pos & 0x3) * 8;
1455		uint32_t mask = 0xffffffff << shift;
1456		uint32_t value = 0;
1457
1458		if (size < bytes) {
1459			mask &= 0xffffffff >> (bytes - size) * 8;
1460			bytes = size;
1461		}
1462
1463		if (mask != 0xffffffff) {
1464			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1465			if (write) {
1466				value &= ~mask;
1467				value |= (*(uint32_t *)buf << shift) & mask;
1468				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1469			} else {
1470				value = (value & mask) >> shift;
1471				memcpy(buf, &value, bytes);
1472			}
1473		} else {
1474			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1475		}
1476
1477		pos += bytes;
1478		buf += bytes;
1479		size -= bytes;
1480	}
1481}
1482
1483static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1484					unsigned long offset, void *buf,
1485					int len, int write)
1486{
1487	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1488	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1489	struct amdgpu_res_cursor src_mm;
1490	struct amdgpu_job *job;
1491	struct dma_fence *fence;
1492	uint64_t src_addr, dst_addr;
1493	unsigned int num_dw;
1494	int r, idx;
1495
1496	if (len != PAGE_SIZE)
1497		return -EINVAL;
1498
1499	if (!adev->mman.sdma_access_ptr)
1500		return -EACCES;
1501
1502	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1503		return -ENODEV;
1504
1505	if (write)
1506		memcpy(adev->mman.sdma_access_ptr, buf, len);
1507
1508	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1509	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1510				     AMDGPU_FENCE_OWNER_UNDEFINED,
1511				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1512				     &job);
1513	if (r)
1514		goto out;
1515
1516	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1517	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1518		src_mm.start;
1519	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1520	if (write)
1521		swap(src_addr, dst_addr);
1522
1523	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1524				PAGE_SIZE, 0);
1525
1526	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1527	WARN_ON(job->ibs[0].length_dw > num_dw);
1528
1529	fence = amdgpu_job_submit(job);
1530
1531	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1532		r = -ETIMEDOUT;
1533	dma_fence_put(fence);
1534
1535	if (!(r || write))
1536		memcpy(buf, adev->mman.sdma_access_ptr, len);
1537out:
1538	drm_dev_exit(idx);
1539	return r;
1540}
1541
1542/**
1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1544 *
1545 * @bo:  The buffer object to read/write
1546 * @offset:  Offset into buffer object
1547 * @buf:  Secondary buffer to write/read from
1548 * @len: Length in bytes of access
1549 * @write:  true if writing
1550 *
1551 * This is used to access VRAM that backs a buffer object via MMIO
1552 * access for debugging purposes.
1553 */
1554static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1555				    unsigned long offset, void *buf, int len,
1556				    int write)
1557{
1558	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1559	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1560	struct amdgpu_res_cursor cursor;
1561	int ret = 0;
1562
1563	if (bo->resource->mem_type != TTM_PL_VRAM)
1564		return -EIO;
1565
1566	if (amdgpu_device_has_timeouts_enabled(adev) &&
1567			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1568		return len;
1569
1570	amdgpu_res_first(bo->resource, offset, len, &cursor);
1571	while (cursor.remaining) {
1572		size_t count, size = cursor.size;
1573		loff_t pos = cursor.start;
1574
1575		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1576		size -= count;
1577		if (size) {
1578			/* using MM to access rest vram and handle un-aligned address */
1579			pos += count;
1580			buf += count;
1581			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1582		}
1583
1584		ret += cursor.size;
1585		buf += cursor.size;
1586		amdgpu_res_next(&cursor, cursor.size);
1587	}
1588
1589	return ret;
1590}
1591
1592static void
1593amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1594{
1595	amdgpu_bo_move_notify(bo, false, NULL);
1596}
1597
1598static struct ttm_device_funcs amdgpu_bo_driver = {
1599	.ttm_tt_create = &amdgpu_ttm_tt_create,
1600	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1601	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1602	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1603	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1604	.evict_flags = &amdgpu_evict_flags,
1605	.move = &amdgpu_bo_move,
1606	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1607	.release_notify = &amdgpu_bo_release_notify,
1608	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1609	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1610	.access_memory = &amdgpu_ttm_access_memory,
1611};
1612
1613/*
1614 * Firmware Reservation functions
1615 */
1616/**
1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1618 *
1619 * @adev: amdgpu_device pointer
1620 *
1621 * free fw reserved vram if it has been reserved.
1622 */
1623static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1624{
1625	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1626		NULL, &adev->mman.fw_vram_usage_va);
1627}
1628
1629/*
1630 * Driver Reservation functions
1631 */
1632/**
1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1634 *
1635 * @adev: amdgpu_device pointer
1636 *
1637 * free drv reserved vram if it has been reserved.
1638 */
1639static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1640{
1641	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1642						  NULL,
1643						  &adev->mman.drv_vram_usage_va);
1644}
1645
1646/**
1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1648 *
1649 * @adev: amdgpu_device pointer
1650 *
1651 * create bo vram reservation from fw.
1652 */
1653static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1654{
1655	uint64_t vram_size = adev->gmc.visible_vram_size;
1656
1657	adev->mman.fw_vram_usage_va = NULL;
1658	adev->mman.fw_vram_usage_reserved_bo = NULL;
1659
1660	if (adev->mman.fw_vram_usage_size == 0 ||
1661	    adev->mman.fw_vram_usage_size > vram_size)
1662		return 0;
1663
1664	return amdgpu_bo_create_kernel_at(adev,
1665					  adev->mman.fw_vram_usage_start_offset,
1666					  adev->mman.fw_vram_usage_size,
1667					  &adev->mman.fw_vram_usage_reserved_bo,
1668					  &adev->mman.fw_vram_usage_va);
1669}
1670
1671/**
1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * create bo vram reservation from drv.
1677 */
1678static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1679{
1680	u64 vram_size = adev->gmc.visible_vram_size;
1681
1682	adev->mman.drv_vram_usage_va = NULL;
1683	adev->mman.drv_vram_usage_reserved_bo = NULL;
1684
1685	if (adev->mman.drv_vram_usage_size == 0 ||
1686	    adev->mman.drv_vram_usage_size > vram_size)
1687		return 0;
1688
1689	return amdgpu_bo_create_kernel_at(adev,
1690					  adev->mman.drv_vram_usage_start_offset,
1691					  adev->mman.drv_vram_usage_size,
1692					  &adev->mman.drv_vram_usage_reserved_bo,
1693					  &adev->mman.drv_vram_usage_va);
1694}
1695
1696/*
1697 * Memoy training reservation functions
1698 */
1699
1700/**
1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1702 *
1703 * @adev: amdgpu_device pointer
1704 *
1705 * free memory training reserved vram if it has been reserved.
1706 */
1707static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1708{
1709	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1710
1711	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1712	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1713	ctx->c2p_bo = NULL;
1714
1715	return 0;
1716}
1717
1718static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1719						uint32_t reserve_size)
1720{
1721	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1722
1723	memset(ctx, 0, sizeof(*ctx));
1724
1725	ctx->c2p_train_data_offset =
1726		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1727	ctx->p2c_train_data_offset =
1728		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1729	ctx->train_data_size =
1730		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1731
1732	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1733			ctx->train_data_size,
1734			ctx->p2c_train_data_offset,
1735			ctx->c2p_train_data_offset);
1736}
1737
1738/*
1739 * reserve TMR memory at the top of VRAM which holds
1740 * IP Discovery data and is protected by PSP.
1741 */
1742static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1743{
1744	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745	bool mem_train_support = false;
1746	uint32_t reserve_size = 0;
1747	int ret;
1748
1749	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1750		if (amdgpu_atomfirmware_mem_training_supported(adev))
1751			mem_train_support = true;
1752		else
1753			DRM_DEBUG("memory training does not support!\n");
1754	}
1755
1756	/*
1757	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1758	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1759	 *
1760	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1761	 * discovery data and G6 memory training data respectively
1762	 */
1763	if (adev->bios)
1764		reserve_size =
1765			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1766
1767	if (!adev->bios &&
1768	    (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1769	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1770		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1771	else if (!reserve_size)
1772		reserve_size = DISCOVERY_TMR_OFFSET;
1773
1774	if (mem_train_support) {
1775		/* reserve vram for mem train according to TMR location */
1776		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1777		ret = amdgpu_bo_create_kernel_at(adev,
1778						 ctx->c2p_train_data_offset,
1779						 ctx->train_data_size,
1780						 &ctx->c2p_bo,
1781						 NULL);
1782		if (ret) {
1783			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1784			amdgpu_ttm_training_reserve_vram_fini(adev);
1785			return ret;
1786		}
1787		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1788	}
1789
1790	if (!adev->gmc.is_app_apu) {
1791		ret = amdgpu_bo_create_kernel_at(
1792			adev, adev->gmc.real_vram_size - reserve_size,
1793			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1794		if (ret) {
1795			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1796			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1797					      NULL, NULL);
1798			return ret;
1799		}
1800	} else {
1801		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1802	}
1803
1804	return 0;
1805}
1806
1807static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1808{
1809	int i;
1810
1811	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1812		return 0;
1813
1814	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1815				       sizeof(*adev->mman.ttm_pools),
1816				       GFP_KERNEL);
1817	if (!adev->mman.ttm_pools)
1818		return -ENOMEM;
1819
1820	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1821		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1822			      adev->gmc.mem_partitions[i].numa.node,
1823			      false, false);
1824	}
1825	return 0;
1826}
1827
1828static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1829{
1830	int i;
1831
1832	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1833		return;
1834
1835	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1836		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1837
1838	kfree(adev->mman.ttm_pools);
1839	adev->mman.ttm_pools = NULL;
1840}
1841
1842/*
1843 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1844 * gtt/vram related fields.
1845 *
1846 * This initializes all of the memory space pools that the TTM layer
1847 * will need such as the GTT space (system memory mapped to the device),
1848 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1849 * can be mapped per VMID.
1850 */
1851int amdgpu_ttm_init(struct amdgpu_device *adev)
1852{
1853	uint64_t gtt_size;
1854	int r;
1855
1856	mutex_init(&adev->mman.gtt_window_lock);
1857
1858	dma_set_max_seg_size(adev->dev, UINT_MAX);
1859	/* No others user of address space so set it to 0 */
1860	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1861			       adev_to_drm(adev)->anon_inode->i_mapping,
1862			       adev_to_drm(adev)->vma_offset_manager,
1863			       adev->need_swiotlb,
1864			       dma_addressing_limited(adev->dev));
1865	if (r) {
1866		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1867		return r;
1868	}
1869
1870	r = amdgpu_ttm_pools_init(adev);
1871	if (r) {
1872		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1873		return r;
1874	}
1875	adev->mman.initialized = true;
1876
1877	/* Initialize VRAM pool with all of VRAM divided into pages */
1878	r = amdgpu_vram_mgr_init(adev);
1879	if (r) {
1880		DRM_ERROR("Failed initializing VRAM heap.\n");
1881		return r;
1882	}
1883
1884	/* Change the size here instead of the init above so only lpfn is affected */
1885	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1886#ifdef CONFIG_64BIT
1887#ifdef CONFIG_X86
1888	if (adev->gmc.xgmi.connected_to_cpu)
1889		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1890				adev->gmc.visible_vram_size);
1891
1892	else if (adev->gmc.is_app_apu)
1893		DRM_DEBUG_DRIVER(
1894			"No need to ioremap when real vram size is 0\n");
1895	else
1896#endif
1897		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1898				adev->gmc.visible_vram_size);
1899#endif
1900
1901	/*
1902	 *The reserved vram for firmware must be pinned to the specified
1903	 *place on the VRAM, so reserve it early.
1904	 */
1905	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1906	if (r)
1907		return r;
1908
1909	/*
1910	 *The reserved vram for driver must be pinned to the specified
1911	 *place on the VRAM, so reserve it early.
1912	 */
1913	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1914	if (r)
1915		return r;
1916
1917	/*
1918	 * only NAVI10 and onwards ASIC support for IP discovery.
1919	 * If IP discovery enabled, a block of memory should be
1920	 * reserved for IP discovey.
1921	 */
1922	if (adev->mman.discovery_bin) {
1923		r = amdgpu_ttm_reserve_tmr(adev);
1924		if (r)
1925			return r;
1926	}
1927
1928	/* allocate memory as required for VGA
1929	 * This is used for VGA emulation and pre-OS scanout buffers to
1930	 * avoid display artifacts while transitioning between pre-OS
1931	 * and driver.
1932	 */
1933	if (!adev->gmc.is_app_apu) {
1934		r = amdgpu_bo_create_kernel_at(adev, 0,
1935					       adev->mman.stolen_vga_size,
1936					       &adev->mman.stolen_vga_memory,
1937					       NULL);
1938		if (r)
1939			return r;
1940
1941		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1942					       adev->mman.stolen_extended_size,
1943					       &adev->mman.stolen_extended_memory,
1944					       NULL);
1945
1946		if (r)
1947			return r;
1948
1949		r = amdgpu_bo_create_kernel_at(adev,
1950					       adev->mman.stolen_reserved_offset,
1951					       adev->mman.stolen_reserved_size,
1952					       &adev->mman.stolen_reserved_memory,
1953					       NULL);
1954		if (r)
1955			return r;
1956	} else {
1957		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1958	}
1959
1960	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1961		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1962
1963	/* Compute GTT size, either based on TTM limit
1964	 * or whatever the user passed on module init.
1965	 */
1966	if (amdgpu_gtt_size == -1)
1967		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1968	else
1969		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1970
1971	/* Initialize GTT memory pool */
1972	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1973	if (r) {
1974		DRM_ERROR("Failed initializing GTT heap.\n");
1975		return r;
1976	}
1977	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1978		 (unsigned int)(gtt_size / (1024 * 1024)));
1979
1980	/* Initialize doorbell pool on PCI BAR */
1981	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1982	if (r) {
1983		DRM_ERROR("Failed initializing doorbell heap.\n");
1984		return r;
1985	}
1986
1987	/* Create a boorbell page for kernel usages */
1988	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1989	if (r) {
1990		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1991		return r;
1992	}
1993
1994	/* Initialize preemptible memory pool */
1995	r = amdgpu_preempt_mgr_init(adev);
1996	if (r) {
1997		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1998		return r;
1999	}
2000
2001	/* Initialize various on-chip memory pools */
2002	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2003	if (r) {
2004		DRM_ERROR("Failed initializing GDS heap.\n");
2005		return r;
2006	}
2007
2008	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2009	if (r) {
2010		DRM_ERROR("Failed initializing gws heap.\n");
2011		return r;
2012	}
2013
2014	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2015	if (r) {
2016		DRM_ERROR("Failed initializing oa heap.\n");
2017		return r;
2018	}
2019	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2020				AMDGPU_GEM_DOMAIN_GTT,
2021				&adev->mman.sdma_access_bo, NULL,
2022				&adev->mman.sdma_access_ptr))
2023		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2024
2025	return 0;
2026}
2027
2028/*
2029 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2030 */
2031void amdgpu_ttm_fini(struct amdgpu_device *adev)
2032{
2033	int idx;
2034
2035	if (!adev->mman.initialized)
2036		return;
2037
2038	amdgpu_ttm_pools_fini(adev);
2039
2040	amdgpu_ttm_training_reserve_vram_fini(adev);
2041	/* return the stolen vga memory back to VRAM */
2042	if (!adev->gmc.is_app_apu) {
2043		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2044		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2045		/* return the FW reserved memory back to VRAM */
2046		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2047				      NULL);
2048		if (adev->mman.stolen_reserved_size)
2049			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2050					      NULL, NULL);
2051	}
2052	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2053					&adev->mman.sdma_access_ptr);
2054	amdgpu_ttm_fw_reserve_vram_fini(adev);
2055	amdgpu_ttm_drv_reserve_vram_fini(adev);
2056
2057	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2058
2059		if (adev->mman.aper_base_kaddr)
2060			iounmap(adev->mman.aper_base_kaddr);
2061		adev->mman.aper_base_kaddr = NULL;
2062
2063		drm_dev_exit(idx);
2064	}
2065
2066	amdgpu_vram_mgr_fini(adev);
2067	amdgpu_gtt_mgr_fini(adev);
2068	amdgpu_preempt_mgr_fini(adev);
2069	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2070	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2071	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2072	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2073	ttm_device_fini(&adev->mman.bdev);
2074	adev->mman.initialized = false;
2075	DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2090	uint64_t size;
2091	int r;
2092
2093	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2094	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2095		return;
2096
2097	if (enable) {
2098		struct amdgpu_ring *ring;
2099		struct drm_gpu_scheduler *sched;
2100
2101		ring = adev->mman.buffer_funcs_ring;
2102		sched = &ring->sched;
2103		r = drm_sched_entity_init(&adev->mman.high_pr,
2104					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2105					  1, NULL);
2106		if (r) {
2107			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108				  r);
2109			return;
2110		}
2111
2112		r = drm_sched_entity_init(&adev->mman.low_pr,
2113					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2114					  1, NULL);
2115		if (r) {
2116			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2117				  r);
2118			goto error_free_entity;
2119		}
2120	} else {
2121		drm_sched_entity_destroy(&adev->mman.high_pr);
2122		drm_sched_entity_destroy(&adev->mman.low_pr);
2123		dma_fence_put(man->move);
2124		man->move = NULL;
2125	}
2126
2127	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2128	if (enable)
2129		size = adev->gmc.real_vram_size;
2130	else
2131		size = adev->gmc.visible_vram_size;
2132	man->size = size;
2133	adev->mman.buffer_funcs_enabled = enable;
2134
2135	return;
2136
2137error_free_entity:
2138	drm_sched_entity_destroy(&adev->mman.high_pr);
2139}
2140
2141static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2142				  bool direct_submit,
2143				  unsigned int num_dw,
2144				  struct dma_resv *resv,
2145				  bool vm_needs_flush,
2146				  struct amdgpu_job **job,
2147				  bool delayed)
2148{
2149	enum amdgpu_ib_pool_type pool = direct_submit ?
2150		AMDGPU_IB_POOL_DIRECT :
2151		AMDGPU_IB_POOL_DELAYED;
2152	int r;
2153	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2154						    &adev->mman.high_pr;
2155	r = amdgpu_job_alloc_with_ib(adev, entity,
2156				     AMDGPU_FENCE_OWNER_UNDEFINED,
2157				     num_dw * 4, pool, job);
2158	if (r)
2159		return r;
2160
2161	if (vm_needs_flush) {
2162		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2163							adev->gmc.pdb0_bo :
2164							adev->gart.bo);
2165		(*job)->vm_needs_flush = true;
2166	}
2167	if (!resv)
2168		return 0;
2169
2170	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2171						   DMA_RESV_USAGE_BOOKKEEP);
2172}
2173
2174int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2175		       uint64_t dst_offset, uint32_t byte_count,
2176		       struct dma_resv *resv,
2177		       struct dma_fence **fence, bool direct_submit,
2178		       bool vm_needs_flush, uint32_t copy_flags)
2179{
2180	struct amdgpu_device *adev = ring->adev;
2181	unsigned int num_loops, num_dw;
2182	struct amdgpu_job *job;
2183	uint32_t max_bytes;
2184	unsigned int i;
2185	int r;
2186
2187	if (!direct_submit && !ring->sched.ready) {
2188		DRM_ERROR("Trying to move memory with ring turned off.\n");
2189		return -EINVAL;
2190	}
2191
2192	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2193	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2194	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2195	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2196				   resv, vm_needs_flush, &job, false);
2197	if (r)
2198		return r;
2199
2200	for (i = 0; i < num_loops; i++) {
2201		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2202
2203		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2204					dst_offset, cur_size_in_bytes, copy_flags);
2205		src_offset += cur_size_in_bytes;
2206		dst_offset += cur_size_in_bytes;
2207		byte_count -= cur_size_in_bytes;
2208	}
2209
2210	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2211	WARN_ON(job->ibs[0].length_dw > num_dw);
2212	if (direct_submit)
2213		r = amdgpu_job_submit_direct(job, ring, fence);
2214	else
2215		*fence = amdgpu_job_submit(job);
2216	if (r)
2217		goto error_free;
2218
2219	return r;
2220
2221error_free:
2222	amdgpu_job_free(job);
2223	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2224	return r;
2225}
2226
2227static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2228			       uint64_t dst_addr, uint32_t byte_count,
2229			       struct dma_resv *resv,
2230			       struct dma_fence **fence,
2231			       bool vm_needs_flush, bool delayed)
2232{
2233	struct amdgpu_device *adev = ring->adev;
2234	unsigned int num_loops, num_dw;
2235	struct amdgpu_job *job;
2236	uint32_t max_bytes;
2237	unsigned int i;
2238	int r;
2239
2240	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2241	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2242	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2243	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2244				   &job, delayed);
2245	if (r)
2246		return r;
2247
2248	for (i = 0; i < num_loops; i++) {
2249		uint32_t cur_size = min(byte_count, max_bytes);
2250
2251		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2252					cur_size);
2253
2254		dst_addr += cur_size;
2255		byte_count -= cur_size;
2256	}
2257
2258	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2259	WARN_ON(job->ibs[0].length_dw > num_dw);
2260	*fence = amdgpu_job_submit(job);
2261	return 0;
2262}
2263
2264/**
2265 * amdgpu_ttm_clear_buffer - clear memory buffers
2266 * @bo: amdgpu buffer object
2267 * @resv: reservation object
2268 * @fence: dma_fence associated with the operation
2269 *
2270 * Clear the memory buffer resource.
2271 *
2272 * Returns:
2273 * 0 for success or a negative error code on failure.
2274 */
2275int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2276			    struct dma_resv *resv,
2277			    struct dma_fence **fence)
2278{
2279	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2280	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2281	struct amdgpu_res_cursor cursor;
2282	u64 addr;
2283	int r = 0;
2284
2285	if (!adev->mman.buffer_funcs_enabled)
2286		return -EINVAL;
2287
2288	if (!fence)
2289		return -EINVAL;
2290
2291	*fence = dma_fence_get_stub();
2292
2293	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2294
2295	mutex_lock(&adev->mman.gtt_window_lock);
2296	while (cursor.remaining) {
2297		struct dma_fence *next = NULL;
2298		u64 size;
2299
2300		if (amdgpu_res_cleared(&cursor)) {
2301			amdgpu_res_next(&cursor, cursor.size);
2302			continue;
2303		}
2304
2305		/* Never clear more than 256MiB at once to avoid timeouts */
2306		size = min(cursor.size, 256ULL << 20);
2307
2308		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2309					  1, ring, false, &size, &addr);
2310		if (r)
2311			goto err;
2312
2313		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2314					&next, true, true);
2315		if (r)
2316			goto err;
2317
2318		dma_fence_put(*fence);
2319		*fence = next;
2320
2321		amdgpu_res_next(&cursor, size);
2322	}
2323err:
2324	mutex_unlock(&adev->mman.gtt_window_lock);
2325
2326	return r;
2327}
2328
2329int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2330			uint32_t src_data,
2331			struct dma_resv *resv,
2332			struct dma_fence **f,
2333			bool delayed)
2334{
2335	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2336	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2337	struct dma_fence *fence = NULL;
2338	struct amdgpu_res_cursor dst;
2339	int r;
2340
2341	if (!adev->mman.buffer_funcs_enabled) {
2342		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2343		return -EINVAL;
2344	}
2345
2346	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2347
2348	mutex_lock(&adev->mman.gtt_window_lock);
2349	while (dst.remaining) {
2350		struct dma_fence *next;
2351		uint64_t cur_size, to;
2352
2353		/* Never fill more than 256MiB at once to avoid timeouts */
2354		cur_size = min(dst.size, 256ULL << 20);
2355
2356		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2357					  1, ring, false, &cur_size, &to);
2358		if (r)
2359			goto error;
2360
2361		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2362					&next, true, delayed);
2363		if (r)
2364			goto error;
2365
2366		dma_fence_put(fence);
2367		fence = next;
2368
2369		amdgpu_res_next(&dst, cur_size);
2370	}
2371error:
2372	mutex_unlock(&adev->mman.gtt_window_lock);
2373	if (f)
2374		*f = dma_fence_get(fence);
2375	dma_fence_put(fence);
2376	return r;
2377}
2378
2379/**
2380 * amdgpu_ttm_evict_resources - evict memory buffers
2381 * @adev: amdgpu device object
2382 * @mem_type: evicted BO's memory type
2383 *
2384 * Evicts all @mem_type buffers on the lru list of the memory type.
2385 *
2386 * Returns:
2387 * 0 for success or a negative error code on failure.
2388 */
2389int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2390{
2391	struct ttm_resource_manager *man;
2392
2393	switch (mem_type) {
2394	case TTM_PL_VRAM:
2395	case TTM_PL_TT:
2396	case AMDGPU_PL_GWS:
2397	case AMDGPU_PL_GDS:
2398	case AMDGPU_PL_OA:
2399		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2400		break;
2401	default:
2402		DRM_ERROR("Trying to evict invalid memory type\n");
2403		return -EINVAL;
2404	}
2405
2406	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2407}
2408
2409#if defined(CONFIG_DEBUG_FS)
2410
2411static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2412{
2413	struct amdgpu_device *adev = m->private;
2414
2415	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2416}
2417
2418DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2419
2420/*
2421 * amdgpu_ttm_vram_read - Linear read access to VRAM
2422 *
2423 * Accesses VRAM via MMIO for debugging purposes.
2424 */
2425static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2426				    size_t size, loff_t *pos)
2427{
2428	struct amdgpu_device *adev = file_inode(f)->i_private;
2429	ssize_t result = 0;
2430
2431	if (size & 0x3 || *pos & 0x3)
2432		return -EINVAL;
2433
2434	if (*pos >= adev->gmc.mc_vram_size)
2435		return -ENXIO;
2436
2437	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2438	while (size) {
2439		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2440		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2441
2442		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2443		if (copy_to_user(buf, value, bytes))
2444			return -EFAULT;
2445
2446		result += bytes;
2447		buf += bytes;
2448		*pos += bytes;
2449		size -= bytes;
2450	}
2451
2452	return result;
2453}
2454
2455/*
2456 * amdgpu_ttm_vram_write - Linear write access to VRAM
2457 *
2458 * Accesses VRAM via MMIO for debugging purposes.
2459 */
2460static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2461				    size_t size, loff_t *pos)
2462{
2463	struct amdgpu_device *adev = file_inode(f)->i_private;
2464	ssize_t result = 0;
2465	int r;
2466
2467	if (size & 0x3 || *pos & 0x3)
2468		return -EINVAL;
2469
2470	if (*pos >= adev->gmc.mc_vram_size)
2471		return -ENXIO;
2472
2473	while (size) {
2474		uint32_t value;
2475
2476		if (*pos >= adev->gmc.mc_vram_size)
2477			return result;
2478
2479		r = get_user(value, (uint32_t *)buf);
2480		if (r)
2481			return r;
2482
2483		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2484
2485		result += 4;
2486		buf += 4;
2487		*pos += 4;
2488		size -= 4;
2489	}
2490
2491	return result;
2492}
2493
2494static const struct file_operations amdgpu_ttm_vram_fops = {
2495	.owner = THIS_MODULE,
2496	.read = amdgpu_ttm_vram_read,
2497	.write = amdgpu_ttm_vram_write,
2498	.llseek = default_llseek,
2499};
2500
2501/*
2502 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2503 *
2504 * This function is used to read memory that has been mapped to the
2505 * GPU and the known addresses are not physical addresses but instead
2506 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2507 */
2508static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2509				 size_t size, loff_t *pos)
2510{
2511	struct amdgpu_device *adev = file_inode(f)->i_private;
2512	struct iommu_domain *dom;
2513	ssize_t result = 0;
2514	int r;
2515
2516	/* retrieve the IOMMU domain if any for this device */
2517	dom = iommu_get_domain_for_dev(adev->dev);
2518
2519	while (size) {
2520		phys_addr_t addr = *pos & PAGE_MASK;
2521		loff_t off = *pos & ~PAGE_MASK;
2522		size_t bytes = PAGE_SIZE - off;
2523		unsigned long pfn;
2524		struct page *p;
2525		void *ptr;
2526
2527		bytes = min(bytes, size);
2528
2529		/* Translate the bus address to a physical address.  If
2530		 * the domain is NULL it means there is no IOMMU active
2531		 * and the address translation is the identity
2532		 */
2533		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2534
2535		pfn = addr >> PAGE_SHIFT;
2536		if (!pfn_valid(pfn))
2537			return -EPERM;
2538
2539		p = pfn_to_page(pfn);
2540		if (p->mapping != adev->mman.bdev.dev_mapping)
2541			return -EPERM;
2542
2543		ptr = kmap_local_page(p);
2544		r = copy_to_user(buf, ptr + off, bytes);
2545		kunmap_local(ptr);
2546		if (r)
2547			return -EFAULT;
2548
2549		size -= bytes;
2550		*pos += bytes;
2551		result += bytes;
2552	}
2553
2554	return result;
2555}
2556
2557/*
2558 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2559 *
2560 * This function is used to write memory that has been mapped to the
2561 * GPU and the known addresses are not physical addresses but instead
2562 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2563 */
2564static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2565				 size_t size, loff_t *pos)
2566{
2567	struct amdgpu_device *adev = file_inode(f)->i_private;
2568	struct iommu_domain *dom;
2569	ssize_t result = 0;
2570	int r;
2571
2572	dom = iommu_get_domain_for_dev(adev->dev);
2573
2574	while (size) {
2575		phys_addr_t addr = *pos & PAGE_MASK;
2576		loff_t off = *pos & ~PAGE_MASK;
2577		size_t bytes = PAGE_SIZE - off;
2578		unsigned long pfn;
2579		struct page *p;
2580		void *ptr;
2581
2582		bytes = min(bytes, size);
2583
2584		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2585
2586		pfn = addr >> PAGE_SHIFT;
2587		if (!pfn_valid(pfn))
2588			return -EPERM;
2589
2590		p = pfn_to_page(pfn);
2591		if (p->mapping != adev->mman.bdev.dev_mapping)
2592			return -EPERM;
2593
2594		ptr = kmap_local_page(p);
2595		r = copy_from_user(ptr + off, buf, bytes);
2596		kunmap_local(ptr);
2597		if (r)
2598			return -EFAULT;
2599
2600		size -= bytes;
2601		*pos += bytes;
2602		result += bytes;
2603	}
2604
2605	return result;
2606}
2607
2608static const struct file_operations amdgpu_ttm_iomem_fops = {
2609	.owner = THIS_MODULE,
2610	.read = amdgpu_iomem_read,
2611	.write = amdgpu_iomem_write,
2612	.llseek = default_llseek
2613};
2614
2615#endif
2616
2617void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2618{
2619#if defined(CONFIG_DEBUG_FS)
2620	struct drm_minor *minor = adev_to_drm(adev)->primary;
2621	struct dentry *root = minor->debugfs_root;
2622
2623	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2624				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2625	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2626			    &amdgpu_ttm_iomem_fops);
2627	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2628			    &amdgpu_ttm_page_pool_fops);
2629	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2630							     TTM_PL_VRAM),
2631					    root, "amdgpu_vram_mm");
2632	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2633							     TTM_PL_TT),
2634					    root, "amdgpu_gtt_mm");
2635	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2636							     AMDGPU_PL_GDS),
2637					    root, "amdgpu_gds_mm");
2638	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2639							     AMDGPU_PL_GWS),
2640					    root, "amdgpu_gws_mm");
2641	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2642							     AMDGPU_PL_OA),
2643					    root, "amdgpu_oa_mm");
2644
2645#endif
2646}