Loading...
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS("DMA_BUF");
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162}
163
164/**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
178static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183{
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270}
271
272/**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
287int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293{
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298 uint32_t copy_flags = 0;
299 struct amdgpu_bo *abo_src, *abo_dst;
300
301 if (!adev->mman.buffer_funcs_enabled) {
302 DRM_ERROR("Trying to move memory with ring turned off.\n");
303 return -EINVAL;
304 }
305
306 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308
309 mutex_lock(&adev->mman.gtt_window_lock);
310 while (src_mm.remaining) {
311 uint64_t from, to, cur_size, tiling_flags;
312 uint32_t num_type, data_format, max_com, write_compress_disable;
313 struct dma_fence *next;
314
315 /* Never copy more than 256MiB at once to avoid a timeout */
316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317
318 /* Map src to window 0 and dst to window 1. */
319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 0, ring, tmz, &cur_size, &from);
321 if (r)
322 goto error;
323
324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 1, ring, tmz, &cur_size, &to);
326 if (r)
327 goto error;
328
329 abo_src = ttm_to_amdgpu_bo(src->bo);
330 abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 if (tmz)
332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 (dst->mem->mem_type == TTM_PL_VRAM)) {
338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 write_compress_disable =
344 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
345 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
346 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
347 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
348 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
349 write_compress_disable));
350 }
351
352 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
353 &next, false, true, copy_flags);
354 if (r)
355 goto error;
356
357 dma_fence_put(fence);
358 fence = next;
359
360 amdgpu_res_next(&src_mm, cur_size);
361 amdgpu_res_next(&dst_mm, cur_size);
362 }
363error:
364 mutex_unlock(&adev->mman.gtt_window_lock);
365 if (f)
366 *f = dma_fence_get(fence);
367 dma_fence_put(fence);
368 return r;
369}
370
371/*
372 * amdgpu_move_blit - Copy an entire buffer to another buffer
373 *
374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
375 * help move buffers to and from VRAM.
376 */
377static int amdgpu_move_blit(struct ttm_buffer_object *bo,
378 bool evict,
379 struct ttm_resource *new_mem,
380 struct ttm_resource *old_mem)
381{
382 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
383 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
384 struct amdgpu_copy_mem src, dst;
385 struct dma_fence *fence = NULL;
386 int r;
387
388 src.bo = bo;
389 dst.bo = bo;
390 src.mem = old_mem;
391 dst.mem = new_mem;
392 src.offset = 0;
393 dst.offset = 0;
394
395 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
396 new_mem->size,
397 amdgpu_bo_encrypted(abo),
398 bo->base.resv, &fence);
399 if (r)
400 goto error;
401
402 /* clear the space being freed */
403 if (old_mem->mem_type == TTM_PL_VRAM &&
404 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
405 struct dma_fence *wipe_fence = NULL;
406
407 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
408 false);
409 if (r) {
410 goto error;
411 } else if (wipe_fence) {
412 amdgpu_vram_mgr_set_cleared(bo->resource);
413 dma_fence_put(fence);
414 fence = wipe_fence;
415 }
416 }
417
418 /* Always block for VM page tables before committing the new location */
419 if (bo->type == ttm_bo_type_kernel)
420 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
421 else
422 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
423 dma_fence_put(fence);
424 return r;
425
426error:
427 if (fence)
428 dma_fence_wait(fence, false);
429 dma_fence_put(fence);
430 return r;
431}
432
433/**
434 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
435 * @adev: amdgpu device
436 * @res: the resource to check
437 *
438 * Returns: true if the full resource is CPU visible, false otherwise.
439 */
440bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
441 struct ttm_resource *res)
442{
443 struct amdgpu_res_cursor cursor;
444
445 if (!res)
446 return false;
447
448 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
449 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
450 return true;
451
452 if (res->mem_type != TTM_PL_VRAM)
453 return false;
454
455 amdgpu_res_first(res, 0, res->size, &cursor);
456 while (cursor.remaining) {
457 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
458 return false;
459 amdgpu_res_next(&cursor, cursor.size);
460 }
461
462 return true;
463}
464
465/*
466 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
467 *
468 * Called by amdgpu_bo_move()
469 */
470static bool amdgpu_res_copyable(struct amdgpu_device *adev,
471 struct ttm_resource *mem)
472{
473 if (!amdgpu_res_cpu_visible(adev, mem))
474 return false;
475
476 /* ttm_resource_ioremap only supports contiguous memory */
477 if (mem->mem_type == TTM_PL_VRAM &&
478 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
479 return false;
480
481 return true;
482}
483
484/*
485 * amdgpu_bo_move - Move a buffer object to a new memory location
486 *
487 * Called by ttm_bo_handle_move_mem()
488 */
489static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
490 struct ttm_operation_ctx *ctx,
491 struct ttm_resource *new_mem,
492 struct ttm_place *hop)
493{
494 struct amdgpu_device *adev;
495 struct amdgpu_bo *abo;
496 struct ttm_resource *old_mem = bo->resource;
497 int r;
498
499 if (new_mem->mem_type == TTM_PL_TT ||
500 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
501 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
502 if (r)
503 return r;
504 }
505
506 abo = ttm_to_amdgpu_bo(bo);
507 adev = amdgpu_ttm_adev(bo->bdev);
508
509 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
510 bo->ttm == NULL)) {
511 amdgpu_bo_move_notify(bo, evict, new_mem);
512 ttm_bo_move_null(bo, new_mem);
513 return 0;
514 }
515 if (old_mem->mem_type == TTM_PL_SYSTEM &&
516 (new_mem->mem_type == TTM_PL_TT ||
517 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
518 amdgpu_bo_move_notify(bo, evict, new_mem);
519 ttm_bo_move_null(bo, new_mem);
520 return 0;
521 }
522 if ((old_mem->mem_type == TTM_PL_TT ||
523 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
524 new_mem->mem_type == TTM_PL_SYSTEM) {
525 r = ttm_bo_wait_ctx(bo, ctx);
526 if (r)
527 return r;
528
529 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
530 amdgpu_bo_move_notify(bo, evict, new_mem);
531 ttm_resource_free(bo, &bo->resource);
532 ttm_bo_assign_mem(bo, new_mem);
533 return 0;
534 }
535
536 if (old_mem->mem_type == AMDGPU_PL_GDS ||
537 old_mem->mem_type == AMDGPU_PL_GWS ||
538 old_mem->mem_type == AMDGPU_PL_OA ||
539 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
540 new_mem->mem_type == AMDGPU_PL_GDS ||
541 new_mem->mem_type == AMDGPU_PL_GWS ||
542 new_mem->mem_type == AMDGPU_PL_OA ||
543 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
544 /* Nothing to save here */
545 amdgpu_bo_move_notify(bo, evict, new_mem);
546 ttm_bo_move_null(bo, new_mem);
547 return 0;
548 }
549
550 if (bo->type == ttm_bo_type_device &&
551 new_mem->mem_type == TTM_PL_VRAM &&
552 old_mem->mem_type != TTM_PL_VRAM) {
553 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
554 * accesses the BO after it's moved.
555 */
556 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
557 }
558
559 if (adev->mman.buffer_funcs_enabled &&
560 ((old_mem->mem_type == TTM_PL_SYSTEM &&
561 new_mem->mem_type == TTM_PL_VRAM) ||
562 (old_mem->mem_type == TTM_PL_VRAM &&
563 new_mem->mem_type == TTM_PL_SYSTEM))) {
564 hop->fpfn = 0;
565 hop->lpfn = 0;
566 hop->mem_type = TTM_PL_TT;
567 hop->flags = TTM_PL_FLAG_TEMPORARY;
568 return -EMULTIHOP;
569 }
570
571 amdgpu_bo_move_notify(bo, evict, new_mem);
572 if (adev->mman.buffer_funcs_enabled)
573 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
574 else
575 r = -ENODEV;
576
577 if (r) {
578 /* Check that all memory is CPU accessible */
579 if (!amdgpu_res_copyable(adev, old_mem) ||
580 !amdgpu_res_copyable(adev, new_mem)) {
581 pr_err("Move buffer fallback to memcpy unavailable\n");
582 return r;
583 }
584
585 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
586 if (r)
587 return r;
588 }
589
590 /* update statistics after the move */
591 if (evict)
592 atomic64_inc(&adev->num_evictions);
593 atomic64_add(bo->base.size, &adev->num_bytes_moved);
594 return 0;
595}
596
597/*
598 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
599 *
600 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
601 */
602static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
603 struct ttm_resource *mem)
604{
605 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
606
607 switch (mem->mem_type) {
608 case TTM_PL_SYSTEM:
609 /* system memory */
610 return 0;
611 case TTM_PL_TT:
612 case AMDGPU_PL_PREEMPT:
613 break;
614 case TTM_PL_VRAM:
615 mem->bus.offset = mem->start << PAGE_SHIFT;
616
617 if (adev->mman.aper_base_kaddr &&
618 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
619 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
620 mem->bus.offset;
621
622 mem->bus.offset += adev->gmc.aper_base;
623 mem->bus.is_iomem = true;
624 break;
625 case AMDGPU_PL_DOORBELL:
626 mem->bus.offset = mem->start << PAGE_SHIFT;
627 mem->bus.offset += adev->doorbell.base;
628 mem->bus.is_iomem = true;
629 mem->bus.caching = ttm_uncached;
630 break;
631 default:
632 return -EINVAL;
633 }
634 return 0;
635}
636
637static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
638 unsigned long page_offset)
639{
640 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
641 struct amdgpu_res_cursor cursor;
642
643 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
644 &cursor);
645
646 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
647 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
648
649 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
650}
651
652/**
653 * amdgpu_ttm_domain_start - Returns GPU start address
654 * @adev: amdgpu device object
655 * @type: type of the memory
656 *
657 * Returns:
658 * GPU start address of a memory domain
659 */
660
661uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
662{
663 switch (type) {
664 case TTM_PL_TT:
665 return adev->gmc.gart_start;
666 case TTM_PL_VRAM:
667 return adev->gmc.vram_start;
668 }
669
670 return 0;
671}
672
673/*
674 * TTM backend functions.
675 */
676struct amdgpu_ttm_tt {
677 struct ttm_tt ttm;
678 struct drm_gem_object *gobj;
679 u64 offset;
680 uint64_t userptr;
681 struct task_struct *usertask;
682 uint32_t userflags;
683 bool bound;
684 int32_t pool_id;
685};
686
687#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
688
689#ifdef CONFIG_DRM_AMDGPU_USERPTR
690/*
691 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
692 * memory and start HMM tracking CPU page table update
693 *
694 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
695 * once afterwards to stop HMM tracking
696 */
697int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
698 struct hmm_range **range)
699{
700 struct ttm_tt *ttm = bo->tbo.ttm;
701 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
702 unsigned long start = gtt->userptr;
703 struct vm_area_struct *vma;
704 struct mm_struct *mm;
705 bool readonly;
706 int r = 0;
707
708 /* Make sure get_user_pages_done() can cleanup gracefully */
709 *range = NULL;
710
711 mm = bo->notifier.mm;
712 if (unlikely(!mm)) {
713 DRM_DEBUG_DRIVER("BO is not registered?\n");
714 return -EFAULT;
715 }
716
717 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
718 return -ESRCH;
719
720 mmap_read_lock(mm);
721 vma = vma_lookup(mm, start);
722 if (unlikely(!vma)) {
723 r = -EFAULT;
724 goto out_unlock;
725 }
726 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
727 vma->vm_file)) {
728 r = -EPERM;
729 goto out_unlock;
730 }
731
732 readonly = amdgpu_ttm_tt_is_readonly(ttm);
733 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
734 readonly, NULL, pages, range);
735out_unlock:
736 mmap_read_unlock(mm);
737 if (r)
738 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
739
740 mmput(mm);
741
742 return r;
743}
744
745/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
746 */
747void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
748 struct hmm_range *range)
749{
750 struct amdgpu_ttm_tt *gtt = (void *)ttm;
751
752 if (gtt && gtt->userptr && range)
753 amdgpu_hmm_range_get_pages_done(range);
754}
755
756/*
757 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
758 * Check if the pages backing this ttm range have been invalidated
759 *
760 * Returns: true if pages are still valid
761 */
762bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
763 struct hmm_range *range)
764{
765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
766
767 if (!gtt || !gtt->userptr || !range)
768 return false;
769
770 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
771 gtt->userptr, ttm->num_pages);
772
773 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
774
775 return !amdgpu_hmm_range_get_pages_done(range);
776}
777#endif
778
779/*
780 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
781 *
782 * Called by amdgpu_cs_list_validate(). This creates the page list
783 * that backs user memory and will ultimately be mapped into the device
784 * address space.
785 */
786void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
787{
788 unsigned long i;
789
790 for (i = 0; i < ttm->num_pages; ++i)
791 ttm->pages[i] = pages ? pages[i] : NULL;
792}
793
794/*
795 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
796 *
797 * Called by amdgpu_ttm_backend_bind()
798 **/
799static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
800 struct ttm_tt *ttm)
801{
802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805 enum dma_data_direction direction = write ?
806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807 int r;
808
809 /* Allocate an SG array and squash pages into it */
810 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
811 (u64)ttm->num_pages << PAGE_SHIFT,
812 GFP_KERNEL);
813 if (r)
814 goto release_sg;
815
816 /* Map SG to device */
817 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
818 if (r)
819 goto release_sg_table;
820
821 /* convert SG to linear array of pages and dma addresses */
822 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
823 ttm->num_pages);
824
825 return 0;
826
827release_sg_table:
828 sg_free_table(ttm->sg);
829release_sg:
830 kfree(ttm->sg);
831 ttm->sg = NULL;
832 return r;
833}
834
835/*
836 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
837 */
838static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
839 struct ttm_tt *ttm)
840{
841 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
842 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
843 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
844 enum dma_data_direction direction = write ?
845 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
846
847 /* double check that we don't free the table twice */
848 if (!ttm->sg || !ttm->sg->sgl)
849 return;
850
851 /* unmap the pages mapped to the device */
852 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
853 sg_free_table(ttm->sg);
854}
855
856/*
857 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
858 * MQDn+CtrlStackn where n is the number of XCCs per partition.
859 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
860 * and uses memory type default, UC. The rest of pages_per_xcc are
861 * Ctrl stack and modify their memory type to NC.
862 */
863static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
864 struct ttm_tt *ttm, uint64_t flags)
865{
866 struct amdgpu_ttm_tt *gtt = (void *)ttm;
867 uint64_t total_pages = ttm->num_pages;
868 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
869 uint64_t page_idx, pages_per_xcc;
870 int i;
871 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
872
873 pages_per_xcc = total_pages;
874 do_div(pages_per_xcc, num_xcc);
875
876 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
877 /* MQD page: use default flags */
878 amdgpu_gart_bind(adev,
879 gtt->offset + (page_idx << PAGE_SHIFT),
880 1, >t->ttm.dma_address[page_idx], flags);
881 /*
882 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
883 * the second page of the BO onward.
884 */
885 amdgpu_gart_bind(adev,
886 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
887 pages_per_xcc - 1,
888 >t->ttm.dma_address[page_idx + 1],
889 ctrl_flags);
890 }
891}
892
893static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
894 struct ttm_buffer_object *tbo,
895 uint64_t flags)
896{
897 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
898 struct ttm_tt *ttm = tbo->ttm;
899 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
900
901 if (amdgpu_bo_encrypted(abo))
902 flags |= AMDGPU_PTE_TMZ;
903
904 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
905 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
906 } else {
907 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
908 gtt->ttm.dma_address, flags);
909 }
910 gtt->bound = true;
911}
912
913/*
914 * amdgpu_ttm_backend_bind - Bind GTT memory
915 *
916 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
917 * This handles binding GTT memory to the device address space.
918 */
919static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
920 struct ttm_tt *ttm,
921 struct ttm_resource *bo_mem)
922{
923 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
924 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
925 uint64_t flags;
926 int r;
927
928 if (!bo_mem)
929 return -EINVAL;
930
931 if (gtt->bound)
932 return 0;
933
934 if (gtt->userptr) {
935 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
936 if (r) {
937 DRM_ERROR("failed to pin userptr\n");
938 return r;
939 }
940 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
941 if (!ttm->sg) {
942 struct dma_buf_attachment *attach;
943 struct sg_table *sgt;
944
945 attach = gtt->gobj->import_attach;
946 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
947 if (IS_ERR(sgt))
948 return PTR_ERR(sgt);
949
950 ttm->sg = sgt;
951 }
952
953 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
954 ttm->num_pages);
955 }
956
957 if (!ttm->num_pages) {
958 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
959 ttm->num_pages, bo_mem, ttm);
960 }
961
962 if (bo_mem->mem_type != TTM_PL_TT ||
963 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
964 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
965 return 0;
966 }
967
968 /* compute PTE flags relevant to this BO memory */
969 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
970
971 /* bind pages into GART page tables */
972 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
973 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
974 gtt->ttm.dma_address, flags);
975 gtt->bound = true;
976 return 0;
977}
978
979/*
980 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
981 * through AGP or GART aperture.
982 *
983 * If bo is accessible through AGP aperture, then use AGP aperture
984 * to access bo; otherwise allocate logical space in GART aperture
985 * and map bo to GART aperture.
986 */
987int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
988{
989 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
990 struct ttm_operation_ctx ctx = { false, false };
991 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
992 struct ttm_placement placement;
993 struct ttm_place placements;
994 struct ttm_resource *tmp;
995 uint64_t addr, flags;
996 int r;
997
998 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
999 return 0;
1000
1001 addr = amdgpu_gmc_agp_addr(bo);
1002 if (addr != AMDGPU_BO_INVALID_OFFSET)
1003 return 0;
1004
1005 /* allocate GART space */
1006 placement.num_placement = 1;
1007 placement.placement = &placements;
1008 placements.fpfn = 0;
1009 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1010 placements.mem_type = TTM_PL_TT;
1011 placements.flags = bo->resource->placement;
1012
1013 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1014 if (unlikely(r))
1015 return r;
1016
1017 /* compute PTE flags for this buffer object */
1018 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1019
1020 /* Bind pages */
1021 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1022 amdgpu_ttm_gart_bind(adev, bo, flags);
1023 amdgpu_gart_invalidate_tlb(adev);
1024 ttm_resource_free(bo, &bo->resource);
1025 ttm_bo_assign_mem(bo, tmp);
1026
1027 return 0;
1028}
1029
1030/*
1031 * amdgpu_ttm_recover_gart - Rebind GTT pages
1032 *
1033 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1034 * rebind GTT pages during a GPU reset.
1035 */
1036void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1037{
1038 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1039 uint64_t flags;
1040
1041 if (!tbo->ttm)
1042 return;
1043
1044 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1045 amdgpu_ttm_gart_bind(adev, tbo, flags);
1046}
1047
1048/*
1049 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1050 *
1051 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1052 * ttm_tt_destroy().
1053 */
1054static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1055 struct ttm_tt *ttm)
1056{
1057 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1058 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1059
1060 /* if the pages have userptr pinning then clear that first */
1061 if (gtt->userptr) {
1062 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1063 } else if (ttm->sg && gtt->gobj->import_attach) {
1064 struct dma_buf_attachment *attach;
1065
1066 attach = gtt->gobj->import_attach;
1067 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1068 ttm->sg = NULL;
1069 }
1070
1071 if (!gtt->bound)
1072 return;
1073
1074 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1075 return;
1076
1077 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1078 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1079 gtt->bound = false;
1080}
1081
1082static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1083 struct ttm_tt *ttm)
1084{
1085 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1086
1087 if (gtt->usertask)
1088 put_task_struct(gtt->usertask);
1089
1090 ttm_tt_fini(>t->ttm);
1091 kfree(gtt);
1092}
1093
1094/**
1095 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1096 *
1097 * @bo: The buffer object to create a GTT ttm_tt object around
1098 * @page_flags: Page flags to be added to the ttm_tt object
1099 *
1100 * Called by ttm_tt_create().
1101 */
1102static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1103 uint32_t page_flags)
1104{
1105 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1106 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1107 struct amdgpu_ttm_tt *gtt;
1108 enum ttm_caching caching;
1109
1110 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1111 if (!gtt)
1112 return NULL;
1113
1114 gtt->gobj = &bo->base;
1115 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1116 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1117 else
1118 gtt->pool_id = abo->xcp_id;
1119
1120 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1121 caching = ttm_write_combined;
1122 else
1123 caching = ttm_cached;
1124
1125 /* allocate space for the uninitialized page entries */
1126 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1127 kfree(gtt);
1128 return NULL;
1129 }
1130 return >t->ttm;
1131}
1132
1133/*
1134 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1135 *
1136 * Map the pages of a ttm_tt object to an address space visible
1137 * to the underlying device.
1138 */
1139static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1140 struct ttm_tt *ttm,
1141 struct ttm_operation_ctx *ctx)
1142{
1143 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1144 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1145 struct ttm_pool *pool;
1146 pgoff_t i;
1147 int ret;
1148
1149 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1150 if (gtt->userptr) {
1151 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1152 if (!ttm->sg)
1153 return -ENOMEM;
1154 return 0;
1155 }
1156
1157 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1158 return 0;
1159
1160 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1161 pool = &adev->mman.ttm_pools[gtt->pool_id];
1162 else
1163 pool = &adev->mman.bdev.pool;
1164 ret = ttm_pool_alloc(pool, ttm, ctx);
1165 if (ret)
1166 return ret;
1167
1168 for (i = 0; i < ttm->num_pages; ++i)
1169 ttm->pages[i]->mapping = bdev->dev_mapping;
1170
1171 return 0;
1172}
1173
1174/*
1175 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1176 *
1177 * Unmaps pages of a ttm_tt object from the device address space and
1178 * unpopulates the page array backing it.
1179 */
1180static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1181 struct ttm_tt *ttm)
1182{
1183 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1184 struct amdgpu_device *adev;
1185 struct ttm_pool *pool;
1186 pgoff_t i;
1187
1188 amdgpu_ttm_backend_unbind(bdev, ttm);
1189
1190 if (gtt->userptr) {
1191 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1192 kfree(ttm->sg);
1193 ttm->sg = NULL;
1194 return;
1195 }
1196
1197 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1198 return;
1199
1200 for (i = 0; i < ttm->num_pages; ++i)
1201 ttm->pages[i]->mapping = NULL;
1202
1203 adev = amdgpu_ttm_adev(bdev);
1204
1205 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1206 pool = &adev->mman.ttm_pools[gtt->pool_id];
1207 else
1208 pool = &adev->mman.bdev.pool;
1209
1210 return ttm_pool_free(pool, ttm);
1211}
1212
1213/**
1214 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1215 * task
1216 *
1217 * @tbo: The ttm_buffer_object that contains the userptr
1218 * @user_addr: The returned value
1219 */
1220int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1221 uint64_t *user_addr)
1222{
1223 struct amdgpu_ttm_tt *gtt;
1224
1225 if (!tbo->ttm)
1226 return -EINVAL;
1227
1228 gtt = (void *)tbo->ttm;
1229 *user_addr = gtt->userptr;
1230 return 0;
1231}
1232
1233/**
1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235 * task
1236 *
1237 * @bo: The ttm_buffer_object to bind this userptr to
1238 * @addr: The address in the current tasks VM space to use
1239 * @flags: Requirements of userptr object.
1240 *
1241 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1242 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1243 * initialize GPU VM for a KFD process.
1244 */
1245int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1246 uint64_t addr, uint32_t flags)
1247{
1248 struct amdgpu_ttm_tt *gtt;
1249
1250 if (!bo->ttm) {
1251 /* TODO: We want a separate TTM object type for userptrs */
1252 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1253 if (bo->ttm == NULL)
1254 return -ENOMEM;
1255 }
1256
1257 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1258 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1259
1260 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1261 gtt->userptr = addr;
1262 gtt->userflags = flags;
1263
1264 if (gtt->usertask)
1265 put_task_struct(gtt->usertask);
1266 gtt->usertask = current->group_leader;
1267 get_task_struct(gtt->usertask);
1268
1269 return 0;
1270}
1271
1272/*
1273 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1274 */
1275struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1276{
1277 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1278
1279 if (gtt == NULL)
1280 return NULL;
1281
1282 if (gtt->usertask == NULL)
1283 return NULL;
1284
1285 return gtt->usertask->mm;
1286}
1287
1288/*
1289 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1290 * address range for the current task.
1291 *
1292 */
1293bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1294 unsigned long end, unsigned long *userptr)
1295{
1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297 unsigned long size;
1298
1299 if (gtt == NULL || !gtt->userptr)
1300 return false;
1301
1302 /* Return false if no part of the ttm_tt object lies within
1303 * the range
1304 */
1305 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1306 if (gtt->userptr > end || gtt->userptr + size <= start)
1307 return false;
1308
1309 if (userptr)
1310 *userptr = gtt->userptr;
1311 return true;
1312}
1313
1314/*
1315 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1316 */
1317bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1318{
1319 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1320
1321 if (gtt == NULL || !gtt->userptr)
1322 return false;
1323
1324 return true;
1325}
1326
1327/*
1328 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1329 */
1330bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1331{
1332 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334 if (gtt == NULL)
1335 return false;
1336
1337 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1338}
1339
1340/**
1341 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1342 *
1343 * @ttm: The ttm_tt object to compute the flags for
1344 * @mem: The memory registry backing this ttm_tt object
1345 *
1346 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1347 */
1348uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1349{
1350 uint64_t flags = 0;
1351
1352 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1353 flags |= AMDGPU_PTE_VALID;
1354
1355 if (mem && (mem->mem_type == TTM_PL_TT ||
1356 mem->mem_type == AMDGPU_PL_DOORBELL ||
1357 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1358 flags |= AMDGPU_PTE_SYSTEM;
1359
1360 if (ttm->caching == ttm_cached)
1361 flags |= AMDGPU_PTE_SNOOPED;
1362 }
1363
1364 if (mem && mem->mem_type == TTM_PL_VRAM &&
1365 mem->bus.caching == ttm_cached)
1366 flags |= AMDGPU_PTE_SNOOPED;
1367
1368 return flags;
1369}
1370
1371/**
1372 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1373 *
1374 * @adev: amdgpu_device pointer
1375 * @ttm: The ttm_tt object to compute the flags for
1376 * @mem: The memory registry backing this ttm_tt object
1377 *
1378 * Figure out the flags to use for a VM PTE (Page Table Entry).
1379 */
1380uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1381 struct ttm_resource *mem)
1382{
1383 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1384
1385 flags |= adev->gart.gart_pte_flags;
1386 flags |= AMDGPU_PTE_READABLE;
1387
1388 if (!amdgpu_ttm_tt_is_readonly(ttm))
1389 flags |= AMDGPU_PTE_WRITEABLE;
1390
1391 return flags;
1392}
1393
1394/*
1395 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1396 * object.
1397 *
1398 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1399 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1400 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1401 * used to clean out a memory space.
1402 */
1403static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1404 const struct ttm_place *place)
1405{
1406 struct dma_resv_iter resv_cursor;
1407 struct dma_fence *f;
1408
1409 if (!amdgpu_bo_is_amdgpu_bo(bo))
1410 return ttm_bo_eviction_valuable(bo, place);
1411
1412 /* Swapout? */
1413 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1414 return true;
1415
1416 if (bo->type == ttm_bo_type_kernel &&
1417 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1418 return false;
1419
1420 /* If bo is a KFD BO, check if the bo belongs to the current process.
1421 * If true, then return false as any KFD process needs all its BOs to
1422 * be resident to run successfully
1423 */
1424 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1425 DMA_RESV_USAGE_BOOKKEEP, f) {
1426 if (amdkfd_fence_check_mm(f, current->mm) &&
1427 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1428 return false;
1429 }
1430
1431 /* Preemptible BOs don't own system resources managed by the
1432 * driver (pages, VRAM, GART space). They point to resources
1433 * owned by someone else (e.g. pageable memory in user mode
1434 * or a DMABuf). They are used in a preemptible context so we
1435 * can guarantee no deadlocks and good QoS in case of MMU
1436 * notifiers or DMABuf move notifiers from the resource owner.
1437 */
1438 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1439 return false;
1440
1441 if (bo->resource->mem_type == TTM_PL_TT &&
1442 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1443 return false;
1444
1445 return ttm_bo_eviction_valuable(bo, place);
1446}
1447
1448static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1449 void *buf, size_t size, bool write)
1450{
1451 while (size) {
1452 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1453 uint64_t bytes = 4 - (pos & 0x3);
1454 uint32_t shift = (pos & 0x3) * 8;
1455 uint32_t mask = 0xffffffff << shift;
1456 uint32_t value = 0;
1457
1458 if (size < bytes) {
1459 mask &= 0xffffffff >> (bytes - size) * 8;
1460 bytes = size;
1461 }
1462
1463 if (mask != 0xffffffff) {
1464 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1465 if (write) {
1466 value &= ~mask;
1467 value |= (*(uint32_t *)buf << shift) & mask;
1468 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1469 } else {
1470 value = (value & mask) >> shift;
1471 memcpy(buf, &value, bytes);
1472 }
1473 } else {
1474 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1475 }
1476
1477 pos += bytes;
1478 buf += bytes;
1479 size -= bytes;
1480 }
1481}
1482
1483static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1484 unsigned long offset, void *buf,
1485 int len, int write)
1486{
1487 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1488 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1489 struct amdgpu_res_cursor src_mm;
1490 struct amdgpu_job *job;
1491 struct dma_fence *fence;
1492 uint64_t src_addr, dst_addr;
1493 unsigned int num_dw;
1494 int r, idx;
1495
1496 if (len != PAGE_SIZE)
1497 return -EINVAL;
1498
1499 if (!adev->mman.sdma_access_ptr)
1500 return -EACCES;
1501
1502 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1503 return -ENODEV;
1504
1505 if (write)
1506 memcpy(adev->mman.sdma_access_ptr, buf, len);
1507
1508 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1509 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1510 AMDGPU_FENCE_OWNER_UNDEFINED,
1511 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1512 &job);
1513 if (r)
1514 goto out;
1515
1516 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1517 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1518 src_mm.start;
1519 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1520 if (write)
1521 swap(src_addr, dst_addr);
1522
1523 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1524 PAGE_SIZE, 0);
1525
1526 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1527 WARN_ON(job->ibs[0].length_dw > num_dw);
1528
1529 fence = amdgpu_job_submit(job);
1530
1531 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1532 r = -ETIMEDOUT;
1533 dma_fence_put(fence);
1534
1535 if (!(r || write))
1536 memcpy(buf, adev->mman.sdma_access_ptr, len);
1537out:
1538 drm_dev_exit(idx);
1539 return r;
1540}
1541
1542/**
1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1544 *
1545 * @bo: The buffer object to read/write
1546 * @offset: Offset into buffer object
1547 * @buf: Secondary buffer to write/read from
1548 * @len: Length in bytes of access
1549 * @write: true if writing
1550 *
1551 * This is used to access VRAM that backs a buffer object via MMIO
1552 * access for debugging purposes.
1553 */
1554static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1555 unsigned long offset, void *buf, int len,
1556 int write)
1557{
1558 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1559 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1560 struct amdgpu_res_cursor cursor;
1561 int ret = 0;
1562
1563 if (bo->resource->mem_type != TTM_PL_VRAM)
1564 return -EIO;
1565
1566 if (amdgpu_device_has_timeouts_enabled(adev) &&
1567 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1568 return len;
1569
1570 amdgpu_res_first(bo->resource, offset, len, &cursor);
1571 while (cursor.remaining) {
1572 size_t count, size = cursor.size;
1573 loff_t pos = cursor.start;
1574
1575 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1576 size -= count;
1577 if (size) {
1578 /* using MM to access rest vram and handle un-aligned address */
1579 pos += count;
1580 buf += count;
1581 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1582 }
1583
1584 ret += cursor.size;
1585 buf += cursor.size;
1586 amdgpu_res_next(&cursor, cursor.size);
1587 }
1588
1589 return ret;
1590}
1591
1592static void
1593amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1594{
1595 amdgpu_bo_move_notify(bo, false, NULL);
1596}
1597
1598static struct ttm_device_funcs amdgpu_bo_driver = {
1599 .ttm_tt_create = &amdgpu_ttm_tt_create,
1600 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1601 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1602 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1603 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1604 .evict_flags = &amdgpu_evict_flags,
1605 .move = &amdgpu_bo_move,
1606 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1607 .release_notify = &amdgpu_bo_release_notify,
1608 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1609 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1610 .access_memory = &amdgpu_ttm_access_memory,
1611};
1612
1613/*
1614 * Firmware Reservation functions
1615 */
1616/**
1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1618 *
1619 * @adev: amdgpu_device pointer
1620 *
1621 * free fw reserved vram if it has been reserved.
1622 */
1623static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1624{
1625 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1626 NULL, &adev->mman.fw_vram_usage_va);
1627}
1628
1629/*
1630 * Driver Reservation functions
1631 */
1632/**
1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1634 *
1635 * @adev: amdgpu_device pointer
1636 *
1637 * free drv reserved vram if it has been reserved.
1638 */
1639static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1640{
1641 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1642 NULL,
1643 &adev->mman.drv_vram_usage_va);
1644}
1645
1646/**
1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1648 *
1649 * @adev: amdgpu_device pointer
1650 *
1651 * create bo vram reservation from fw.
1652 */
1653static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1654{
1655 uint64_t vram_size = adev->gmc.visible_vram_size;
1656
1657 adev->mman.fw_vram_usage_va = NULL;
1658 adev->mman.fw_vram_usage_reserved_bo = NULL;
1659
1660 if (adev->mman.fw_vram_usage_size == 0 ||
1661 adev->mman.fw_vram_usage_size > vram_size)
1662 return 0;
1663
1664 return amdgpu_bo_create_kernel_at(adev,
1665 adev->mman.fw_vram_usage_start_offset,
1666 adev->mman.fw_vram_usage_size,
1667 &adev->mman.fw_vram_usage_reserved_bo,
1668 &adev->mman.fw_vram_usage_va);
1669}
1670
1671/**
1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * create bo vram reservation from drv.
1677 */
1678static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1679{
1680 u64 vram_size = adev->gmc.visible_vram_size;
1681
1682 adev->mman.drv_vram_usage_va = NULL;
1683 adev->mman.drv_vram_usage_reserved_bo = NULL;
1684
1685 if (adev->mman.drv_vram_usage_size == 0 ||
1686 adev->mman.drv_vram_usage_size > vram_size)
1687 return 0;
1688
1689 return amdgpu_bo_create_kernel_at(adev,
1690 adev->mman.drv_vram_usage_start_offset,
1691 adev->mman.drv_vram_usage_size,
1692 &adev->mman.drv_vram_usage_reserved_bo,
1693 &adev->mman.drv_vram_usage_va);
1694}
1695
1696/*
1697 * Memoy training reservation functions
1698 */
1699
1700/**
1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1702 *
1703 * @adev: amdgpu_device pointer
1704 *
1705 * free memory training reserved vram if it has been reserved.
1706 */
1707static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1708{
1709 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1710
1711 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1712 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1713 ctx->c2p_bo = NULL;
1714
1715 return 0;
1716}
1717
1718static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1719 uint32_t reserve_size)
1720{
1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1722
1723 memset(ctx, 0, sizeof(*ctx));
1724
1725 ctx->c2p_train_data_offset =
1726 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1727 ctx->p2c_train_data_offset =
1728 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1729 ctx->train_data_size =
1730 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1731
1732 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1733 ctx->train_data_size,
1734 ctx->p2c_train_data_offset,
1735 ctx->c2p_train_data_offset);
1736}
1737
1738/*
1739 * reserve TMR memory at the top of VRAM which holds
1740 * IP Discovery data and is protected by PSP.
1741 */
1742static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1743{
1744 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745 bool mem_train_support = false;
1746 uint32_t reserve_size = 0;
1747 int ret;
1748
1749 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1750 if (amdgpu_atomfirmware_mem_training_supported(adev))
1751 mem_train_support = true;
1752 else
1753 DRM_DEBUG("memory training does not support!\n");
1754 }
1755
1756 /*
1757 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1758 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1759 *
1760 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1761 * discovery data and G6 memory training data respectively
1762 */
1763 if (adev->bios)
1764 reserve_size =
1765 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1766
1767 if (!adev->bios &&
1768 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1769 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1770 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1771 else if (!reserve_size)
1772 reserve_size = DISCOVERY_TMR_OFFSET;
1773
1774 if (mem_train_support) {
1775 /* reserve vram for mem train according to TMR location */
1776 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1777 ret = amdgpu_bo_create_kernel_at(adev,
1778 ctx->c2p_train_data_offset,
1779 ctx->train_data_size,
1780 &ctx->c2p_bo,
1781 NULL);
1782 if (ret) {
1783 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1784 amdgpu_ttm_training_reserve_vram_fini(adev);
1785 return ret;
1786 }
1787 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1788 }
1789
1790 if (!adev->gmc.is_app_apu) {
1791 ret = amdgpu_bo_create_kernel_at(
1792 adev, adev->gmc.real_vram_size - reserve_size,
1793 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1794 if (ret) {
1795 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1796 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1797 NULL, NULL);
1798 return ret;
1799 }
1800 } else {
1801 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1802 }
1803
1804 return 0;
1805}
1806
1807static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1808{
1809 int i;
1810
1811 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1812 return 0;
1813
1814 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1815 sizeof(*adev->mman.ttm_pools),
1816 GFP_KERNEL);
1817 if (!adev->mman.ttm_pools)
1818 return -ENOMEM;
1819
1820 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1821 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1822 adev->gmc.mem_partitions[i].numa.node,
1823 false, false);
1824 }
1825 return 0;
1826}
1827
1828static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1829{
1830 int i;
1831
1832 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1833 return;
1834
1835 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1836 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1837
1838 kfree(adev->mman.ttm_pools);
1839 adev->mman.ttm_pools = NULL;
1840}
1841
1842/*
1843 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1844 * gtt/vram related fields.
1845 *
1846 * This initializes all of the memory space pools that the TTM layer
1847 * will need such as the GTT space (system memory mapped to the device),
1848 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1849 * can be mapped per VMID.
1850 */
1851int amdgpu_ttm_init(struct amdgpu_device *adev)
1852{
1853 uint64_t gtt_size;
1854 int r;
1855
1856 mutex_init(&adev->mman.gtt_window_lock);
1857
1858 dma_set_max_seg_size(adev->dev, UINT_MAX);
1859 /* No others user of address space so set it to 0 */
1860 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1861 adev_to_drm(adev)->anon_inode->i_mapping,
1862 adev_to_drm(adev)->vma_offset_manager,
1863 adev->need_swiotlb,
1864 dma_addressing_limited(adev->dev));
1865 if (r) {
1866 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1867 return r;
1868 }
1869
1870 r = amdgpu_ttm_pools_init(adev);
1871 if (r) {
1872 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1873 return r;
1874 }
1875 adev->mman.initialized = true;
1876
1877 /* Initialize VRAM pool with all of VRAM divided into pages */
1878 r = amdgpu_vram_mgr_init(adev);
1879 if (r) {
1880 DRM_ERROR("Failed initializing VRAM heap.\n");
1881 return r;
1882 }
1883
1884 /* Change the size here instead of the init above so only lpfn is affected */
1885 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1886#ifdef CONFIG_64BIT
1887#ifdef CONFIG_X86
1888 if (adev->gmc.xgmi.connected_to_cpu)
1889 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1890 adev->gmc.visible_vram_size);
1891
1892 else if (adev->gmc.is_app_apu)
1893 DRM_DEBUG_DRIVER(
1894 "No need to ioremap when real vram size is 0\n");
1895 else
1896#endif
1897 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1898 adev->gmc.visible_vram_size);
1899#endif
1900
1901 /*
1902 *The reserved vram for firmware must be pinned to the specified
1903 *place on the VRAM, so reserve it early.
1904 */
1905 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1906 if (r)
1907 return r;
1908
1909 /*
1910 *The reserved vram for driver must be pinned to the specified
1911 *place on the VRAM, so reserve it early.
1912 */
1913 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1914 if (r)
1915 return r;
1916
1917 /*
1918 * only NAVI10 and onwards ASIC support for IP discovery.
1919 * If IP discovery enabled, a block of memory should be
1920 * reserved for IP discovey.
1921 */
1922 if (adev->mman.discovery_bin) {
1923 r = amdgpu_ttm_reserve_tmr(adev);
1924 if (r)
1925 return r;
1926 }
1927
1928 /* allocate memory as required for VGA
1929 * This is used for VGA emulation and pre-OS scanout buffers to
1930 * avoid display artifacts while transitioning between pre-OS
1931 * and driver.
1932 */
1933 if (!adev->gmc.is_app_apu) {
1934 r = amdgpu_bo_create_kernel_at(adev, 0,
1935 adev->mman.stolen_vga_size,
1936 &adev->mman.stolen_vga_memory,
1937 NULL);
1938 if (r)
1939 return r;
1940
1941 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1942 adev->mman.stolen_extended_size,
1943 &adev->mman.stolen_extended_memory,
1944 NULL);
1945
1946 if (r)
1947 return r;
1948
1949 r = amdgpu_bo_create_kernel_at(adev,
1950 adev->mman.stolen_reserved_offset,
1951 adev->mman.stolen_reserved_size,
1952 &adev->mman.stolen_reserved_memory,
1953 NULL);
1954 if (r)
1955 return r;
1956 } else {
1957 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1958 }
1959
1960 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1961 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1962
1963 /* Compute GTT size, either based on TTM limit
1964 * or whatever the user passed on module init.
1965 */
1966 if (amdgpu_gtt_size == -1)
1967 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1968 else
1969 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1970
1971 /* Initialize GTT memory pool */
1972 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1973 if (r) {
1974 DRM_ERROR("Failed initializing GTT heap.\n");
1975 return r;
1976 }
1977 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1978 (unsigned int)(gtt_size / (1024 * 1024)));
1979
1980 /* Initialize doorbell pool on PCI BAR */
1981 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1982 if (r) {
1983 DRM_ERROR("Failed initializing doorbell heap.\n");
1984 return r;
1985 }
1986
1987 /* Create a boorbell page for kernel usages */
1988 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1989 if (r) {
1990 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1991 return r;
1992 }
1993
1994 /* Initialize preemptible memory pool */
1995 r = amdgpu_preempt_mgr_init(adev);
1996 if (r) {
1997 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1998 return r;
1999 }
2000
2001 /* Initialize various on-chip memory pools */
2002 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2003 if (r) {
2004 DRM_ERROR("Failed initializing GDS heap.\n");
2005 return r;
2006 }
2007
2008 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2009 if (r) {
2010 DRM_ERROR("Failed initializing gws heap.\n");
2011 return r;
2012 }
2013
2014 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2015 if (r) {
2016 DRM_ERROR("Failed initializing oa heap.\n");
2017 return r;
2018 }
2019 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2020 AMDGPU_GEM_DOMAIN_GTT,
2021 &adev->mman.sdma_access_bo, NULL,
2022 &adev->mman.sdma_access_ptr))
2023 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2024
2025 return 0;
2026}
2027
2028/*
2029 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2030 */
2031void amdgpu_ttm_fini(struct amdgpu_device *adev)
2032{
2033 int idx;
2034
2035 if (!adev->mman.initialized)
2036 return;
2037
2038 amdgpu_ttm_pools_fini(adev);
2039
2040 amdgpu_ttm_training_reserve_vram_fini(adev);
2041 /* return the stolen vga memory back to VRAM */
2042 if (!adev->gmc.is_app_apu) {
2043 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2044 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2045 /* return the FW reserved memory back to VRAM */
2046 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2047 NULL);
2048 if (adev->mman.stolen_reserved_size)
2049 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2050 NULL, NULL);
2051 }
2052 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2053 &adev->mman.sdma_access_ptr);
2054 amdgpu_ttm_fw_reserve_vram_fini(adev);
2055 amdgpu_ttm_drv_reserve_vram_fini(adev);
2056
2057 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2058
2059 if (adev->mman.aper_base_kaddr)
2060 iounmap(adev->mman.aper_base_kaddr);
2061 adev->mman.aper_base_kaddr = NULL;
2062
2063 drm_dev_exit(idx);
2064 }
2065
2066 amdgpu_vram_mgr_fini(adev);
2067 amdgpu_gtt_mgr_fini(adev);
2068 amdgpu_preempt_mgr_fini(adev);
2069 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2070 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2071 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2072 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2073 ttm_device_fini(&adev->mman.bdev);
2074 adev->mman.initialized = false;
2075 DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2090 uint64_t size;
2091 int r;
2092
2093 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2094 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2095 return;
2096
2097 if (enable) {
2098 struct amdgpu_ring *ring;
2099 struct drm_gpu_scheduler *sched;
2100
2101 ring = adev->mman.buffer_funcs_ring;
2102 sched = &ring->sched;
2103 r = drm_sched_entity_init(&adev->mman.high_pr,
2104 DRM_SCHED_PRIORITY_KERNEL, &sched,
2105 1, NULL);
2106 if (r) {
2107 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108 r);
2109 return;
2110 }
2111
2112 r = drm_sched_entity_init(&adev->mman.low_pr,
2113 DRM_SCHED_PRIORITY_NORMAL, &sched,
2114 1, NULL);
2115 if (r) {
2116 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2117 r);
2118 goto error_free_entity;
2119 }
2120 } else {
2121 drm_sched_entity_destroy(&adev->mman.high_pr);
2122 drm_sched_entity_destroy(&adev->mman.low_pr);
2123 dma_fence_put(man->move);
2124 man->move = NULL;
2125 }
2126
2127 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2128 if (enable)
2129 size = adev->gmc.real_vram_size;
2130 else
2131 size = adev->gmc.visible_vram_size;
2132 man->size = size;
2133 adev->mman.buffer_funcs_enabled = enable;
2134
2135 return;
2136
2137error_free_entity:
2138 drm_sched_entity_destroy(&adev->mman.high_pr);
2139}
2140
2141static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2142 bool direct_submit,
2143 unsigned int num_dw,
2144 struct dma_resv *resv,
2145 bool vm_needs_flush,
2146 struct amdgpu_job **job,
2147 bool delayed)
2148{
2149 enum amdgpu_ib_pool_type pool = direct_submit ?
2150 AMDGPU_IB_POOL_DIRECT :
2151 AMDGPU_IB_POOL_DELAYED;
2152 int r;
2153 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2154 &adev->mman.high_pr;
2155 r = amdgpu_job_alloc_with_ib(adev, entity,
2156 AMDGPU_FENCE_OWNER_UNDEFINED,
2157 num_dw * 4, pool, job);
2158 if (r)
2159 return r;
2160
2161 if (vm_needs_flush) {
2162 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2163 adev->gmc.pdb0_bo :
2164 adev->gart.bo);
2165 (*job)->vm_needs_flush = true;
2166 }
2167 if (!resv)
2168 return 0;
2169
2170 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2171 DMA_RESV_USAGE_BOOKKEEP);
2172}
2173
2174int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2175 uint64_t dst_offset, uint32_t byte_count,
2176 struct dma_resv *resv,
2177 struct dma_fence **fence, bool direct_submit,
2178 bool vm_needs_flush, uint32_t copy_flags)
2179{
2180 struct amdgpu_device *adev = ring->adev;
2181 unsigned int num_loops, num_dw;
2182 struct amdgpu_job *job;
2183 uint32_t max_bytes;
2184 unsigned int i;
2185 int r;
2186
2187 if (!direct_submit && !ring->sched.ready) {
2188 DRM_ERROR("Trying to move memory with ring turned off.\n");
2189 return -EINVAL;
2190 }
2191
2192 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2193 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2194 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2195 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2196 resv, vm_needs_flush, &job, false);
2197 if (r)
2198 return r;
2199
2200 for (i = 0; i < num_loops; i++) {
2201 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2202
2203 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2204 dst_offset, cur_size_in_bytes, copy_flags);
2205 src_offset += cur_size_in_bytes;
2206 dst_offset += cur_size_in_bytes;
2207 byte_count -= cur_size_in_bytes;
2208 }
2209
2210 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2211 WARN_ON(job->ibs[0].length_dw > num_dw);
2212 if (direct_submit)
2213 r = amdgpu_job_submit_direct(job, ring, fence);
2214 else
2215 *fence = amdgpu_job_submit(job);
2216 if (r)
2217 goto error_free;
2218
2219 return r;
2220
2221error_free:
2222 amdgpu_job_free(job);
2223 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2224 return r;
2225}
2226
2227static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2228 uint64_t dst_addr, uint32_t byte_count,
2229 struct dma_resv *resv,
2230 struct dma_fence **fence,
2231 bool vm_needs_flush, bool delayed)
2232{
2233 struct amdgpu_device *adev = ring->adev;
2234 unsigned int num_loops, num_dw;
2235 struct amdgpu_job *job;
2236 uint32_t max_bytes;
2237 unsigned int i;
2238 int r;
2239
2240 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2241 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2242 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2243 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2244 &job, delayed);
2245 if (r)
2246 return r;
2247
2248 for (i = 0; i < num_loops; i++) {
2249 uint32_t cur_size = min(byte_count, max_bytes);
2250
2251 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2252 cur_size);
2253
2254 dst_addr += cur_size;
2255 byte_count -= cur_size;
2256 }
2257
2258 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2259 WARN_ON(job->ibs[0].length_dw > num_dw);
2260 *fence = amdgpu_job_submit(job);
2261 return 0;
2262}
2263
2264/**
2265 * amdgpu_ttm_clear_buffer - clear memory buffers
2266 * @bo: amdgpu buffer object
2267 * @resv: reservation object
2268 * @fence: dma_fence associated with the operation
2269 *
2270 * Clear the memory buffer resource.
2271 *
2272 * Returns:
2273 * 0 for success or a negative error code on failure.
2274 */
2275int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2276 struct dma_resv *resv,
2277 struct dma_fence **fence)
2278{
2279 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2280 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2281 struct amdgpu_res_cursor cursor;
2282 u64 addr;
2283 int r = 0;
2284
2285 if (!adev->mman.buffer_funcs_enabled)
2286 return -EINVAL;
2287
2288 if (!fence)
2289 return -EINVAL;
2290
2291 *fence = dma_fence_get_stub();
2292
2293 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2294
2295 mutex_lock(&adev->mman.gtt_window_lock);
2296 while (cursor.remaining) {
2297 struct dma_fence *next = NULL;
2298 u64 size;
2299
2300 if (amdgpu_res_cleared(&cursor)) {
2301 amdgpu_res_next(&cursor, cursor.size);
2302 continue;
2303 }
2304
2305 /* Never clear more than 256MiB at once to avoid timeouts */
2306 size = min(cursor.size, 256ULL << 20);
2307
2308 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2309 1, ring, false, &size, &addr);
2310 if (r)
2311 goto err;
2312
2313 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2314 &next, true, true);
2315 if (r)
2316 goto err;
2317
2318 dma_fence_put(*fence);
2319 *fence = next;
2320
2321 amdgpu_res_next(&cursor, size);
2322 }
2323err:
2324 mutex_unlock(&adev->mman.gtt_window_lock);
2325
2326 return r;
2327}
2328
2329int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2330 uint32_t src_data,
2331 struct dma_resv *resv,
2332 struct dma_fence **f,
2333 bool delayed)
2334{
2335 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2336 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2337 struct dma_fence *fence = NULL;
2338 struct amdgpu_res_cursor dst;
2339 int r;
2340
2341 if (!adev->mman.buffer_funcs_enabled) {
2342 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2343 return -EINVAL;
2344 }
2345
2346 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2347
2348 mutex_lock(&adev->mman.gtt_window_lock);
2349 while (dst.remaining) {
2350 struct dma_fence *next;
2351 uint64_t cur_size, to;
2352
2353 /* Never fill more than 256MiB at once to avoid timeouts */
2354 cur_size = min(dst.size, 256ULL << 20);
2355
2356 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2357 1, ring, false, &cur_size, &to);
2358 if (r)
2359 goto error;
2360
2361 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2362 &next, true, delayed);
2363 if (r)
2364 goto error;
2365
2366 dma_fence_put(fence);
2367 fence = next;
2368
2369 amdgpu_res_next(&dst, cur_size);
2370 }
2371error:
2372 mutex_unlock(&adev->mman.gtt_window_lock);
2373 if (f)
2374 *f = dma_fence_get(fence);
2375 dma_fence_put(fence);
2376 return r;
2377}
2378
2379/**
2380 * amdgpu_ttm_evict_resources - evict memory buffers
2381 * @adev: amdgpu device object
2382 * @mem_type: evicted BO's memory type
2383 *
2384 * Evicts all @mem_type buffers on the lru list of the memory type.
2385 *
2386 * Returns:
2387 * 0 for success or a negative error code on failure.
2388 */
2389int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2390{
2391 struct ttm_resource_manager *man;
2392
2393 switch (mem_type) {
2394 case TTM_PL_VRAM:
2395 case TTM_PL_TT:
2396 case AMDGPU_PL_GWS:
2397 case AMDGPU_PL_GDS:
2398 case AMDGPU_PL_OA:
2399 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2400 break;
2401 default:
2402 DRM_ERROR("Trying to evict invalid memory type\n");
2403 return -EINVAL;
2404 }
2405
2406 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2407}
2408
2409#if defined(CONFIG_DEBUG_FS)
2410
2411static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2412{
2413 struct amdgpu_device *adev = m->private;
2414
2415 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2416}
2417
2418DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2419
2420/*
2421 * amdgpu_ttm_vram_read - Linear read access to VRAM
2422 *
2423 * Accesses VRAM via MMIO for debugging purposes.
2424 */
2425static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2426 size_t size, loff_t *pos)
2427{
2428 struct amdgpu_device *adev = file_inode(f)->i_private;
2429 ssize_t result = 0;
2430
2431 if (size & 0x3 || *pos & 0x3)
2432 return -EINVAL;
2433
2434 if (*pos >= adev->gmc.mc_vram_size)
2435 return -ENXIO;
2436
2437 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2438 while (size) {
2439 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2440 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2441
2442 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2443 if (copy_to_user(buf, value, bytes))
2444 return -EFAULT;
2445
2446 result += bytes;
2447 buf += bytes;
2448 *pos += bytes;
2449 size -= bytes;
2450 }
2451
2452 return result;
2453}
2454
2455/*
2456 * amdgpu_ttm_vram_write - Linear write access to VRAM
2457 *
2458 * Accesses VRAM via MMIO for debugging purposes.
2459 */
2460static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2461 size_t size, loff_t *pos)
2462{
2463 struct amdgpu_device *adev = file_inode(f)->i_private;
2464 ssize_t result = 0;
2465 int r;
2466
2467 if (size & 0x3 || *pos & 0x3)
2468 return -EINVAL;
2469
2470 if (*pos >= adev->gmc.mc_vram_size)
2471 return -ENXIO;
2472
2473 while (size) {
2474 uint32_t value;
2475
2476 if (*pos >= adev->gmc.mc_vram_size)
2477 return result;
2478
2479 r = get_user(value, (uint32_t *)buf);
2480 if (r)
2481 return r;
2482
2483 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2484
2485 result += 4;
2486 buf += 4;
2487 *pos += 4;
2488 size -= 4;
2489 }
2490
2491 return result;
2492}
2493
2494static const struct file_operations amdgpu_ttm_vram_fops = {
2495 .owner = THIS_MODULE,
2496 .read = amdgpu_ttm_vram_read,
2497 .write = amdgpu_ttm_vram_write,
2498 .llseek = default_llseek,
2499};
2500
2501/*
2502 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2503 *
2504 * This function is used to read memory that has been mapped to the
2505 * GPU and the known addresses are not physical addresses but instead
2506 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2507 */
2508static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2509 size_t size, loff_t *pos)
2510{
2511 struct amdgpu_device *adev = file_inode(f)->i_private;
2512 struct iommu_domain *dom;
2513 ssize_t result = 0;
2514 int r;
2515
2516 /* retrieve the IOMMU domain if any for this device */
2517 dom = iommu_get_domain_for_dev(adev->dev);
2518
2519 while (size) {
2520 phys_addr_t addr = *pos & PAGE_MASK;
2521 loff_t off = *pos & ~PAGE_MASK;
2522 size_t bytes = PAGE_SIZE - off;
2523 unsigned long pfn;
2524 struct page *p;
2525 void *ptr;
2526
2527 bytes = min(bytes, size);
2528
2529 /* Translate the bus address to a physical address. If
2530 * the domain is NULL it means there is no IOMMU active
2531 * and the address translation is the identity
2532 */
2533 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2534
2535 pfn = addr >> PAGE_SHIFT;
2536 if (!pfn_valid(pfn))
2537 return -EPERM;
2538
2539 p = pfn_to_page(pfn);
2540 if (p->mapping != adev->mman.bdev.dev_mapping)
2541 return -EPERM;
2542
2543 ptr = kmap_local_page(p);
2544 r = copy_to_user(buf, ptr + off, bytes);
2545 kunmap_local(ptr);
2546 if (r)
2547 return -EFAULT;
2548
2549 size -= bytes;
2550 *pos += bytes;
2551 result += bytes;
2552 }
2553
2554 return result;
2555}
2556
2557/*
2558 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2559 *
2560 * This function is used to write memory that has been mapped to the
2561 * GPU and the known addresses are not physical addresses but instead
2562 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2563 */
2564static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2565 size_t size, loff_t *pos)
2566{
2567 struct amdgpu_device *adev = file_inode(f)->i_private;
2568 struct iommu_domain *dom;
2569 ssize_t result = 0;
2570 int r;
2571
2572 dom = iommu_get_domain_for_dev(adev->dev);
2573
2574 while (size) {
2575 phys_addr_t addr = *pos & PAGE_MASK;
2576 loff_t off = *pos & ~PAGE_MASK;
2577 size_t bytes = PAGE_SIZE - off;
2578 unsigned long pfn;
2579 struct page *p;
2580 void *ptr;
2581
2582 bytes = min(bytes, size);
2583
2584 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2585
2586 pfn = addr >> PAGE_SHIFT;
2587 if (!pfn_valid(pfn))
2588 return -EPERM;
2589
2590 p = pfn_to_page(pfn);
2591 if (p->mapping != adev->mman.bdev.dev_mapping)
2592 return -EPERM;
2593
2594 ptr = kmap_local_page(p);
2595 r = copy_from_user(ptr + off, buf, bytes);
2596 kunmap_local(ptr);
2597 if (r)
2598 return -EFAULT;
2599
2600 size -= bytes;
2601 *pos += bytes;
2602 result += bytes;
2603 }
2604
2605 return result;
2606}
2607
2608static const struct file_operations amdgpu_ttm_iomem_fops = {
2609 .owner = THIS_MODULE,
2610 .read = amdgpu_iomem_read,
2611 .write = amdgpu_iomem_write,
2612 .llseek = default_llseek
2613};
2614
2615#endif
2616
2617void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2618{
2619#if defined(CONFIG_DEBUG_FS)
2620 struct drm_minor *minor = adev_to_drm(adev)->primary;
2621 struct dentry *root = minor->debugfs_root;
2622
2623 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2624 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2625 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2626 &amdgpu_ttm_iomem_fops);
2627 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2628 &amdgpu_ttm_page_pool_fops);
2629 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2630 TTM_PL_VRAM),
2631 root, "amdgpu_vram_mm");
2632 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2633 TTM_PL_TT),
2634 root, "amdgpu_gtt_mm");
2635 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2636 AMDGPU_PL_GDS),
2637 root, "amdgpu_gds_mm");
2638 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2639 AMDGPU_PL_GWS),
2640 root, "amdgpu_gws_mm");
2641 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2642 AMDGPU_PL_OA),
2643 root, "amdgpu_oa_mm");
2644
2645#endif
2646}
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/hmm.h>
36#include <linux/pagemap.h>
37#include <linux/sched/task.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swiotlb.h>
42
43#include <drm/ttm/ttm_bo_api.h>
44#include <drm/ttm/ttm_bo_driver.h>
45#include <drm/ttm/ttm_placement.h>
46#include <drm/ttm/ttm_module.h>
47#include <drm/ttm/ttm_page_alloc.h>
48
49#include <drm/drm_debugfs.h>
50#include <drm/amdgpu_drm.h>
51
52#include "amdgpu.h"
53#include "amdgpu_object.h"
54#include "amdgpu_trace.h"
55#include "amdgpu_amdkfd.h"
56#include "amdgpu_sdma.h"
57#include "bif/bif_4_1_d.h"
58
59static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 struct ttm_mem_reg *mem, unsigned num_pages,
61 uint64_t offset, unsigned window,
62 struct amdgpu_ring *ring,
63 uint64_t *addr);
64
65static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67
68static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69{
70 return 0;
71}
72
73/**
74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75 * memory request.
76 *
77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78 * @type: The type of memory requested
79 * @man: The memory type manager for each domain
80 *
81 * This is called by ttm_bo_init_mm() when a buffer object is being
82 * initialized.
83 */
84static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 struct ttm_mem_type_manager *man)
86{
87 struct amdgpu_device *adev;
88
89 adev = amdgpu_ttm_adev(bdev);
90
91 switch (type) {
92 case TTM_PL_SYSTEM:
93 /* System memory */
94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 man->available_caching = TTM_PL_MASK_CACHING;
96 man->default_caching = TTM_PL_FLAG_CACHED;
97 break;
98 case TTM_PL_TT:
99 /* GTT memory */
100 man->func = &amdgpu_gtt_mgr_func;
101 man->gpu_offset = adev->gmc.gart_start;
102 man->available_caching = TTM_PL_MASK_CACHING;
103 man->default_caching = TTM_PL_FLAG_CACHED;
104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 break;
106 case TTM_PL_VRAM:
107 /* "On-card" video ram */
108 man->func = &amdgpu_vram_mgr_func;
109 man->gpu_offset = adev->gmc.vram_start;
110 man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 TTM_MEMTYPE_FLAG_MAPPABLE;
112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 man->default_caching = TTM_PL_FLAG_WC;
114 break;
115 case AMDGPU_PL_GDS:
116 case AMDGPU_PL_GWS:
117 case AMDGPU_PL_OA:
118 /* On-chip GDS memory*/
119 man->func = &ttm_bo_manager_func;
120 man->gpu_offset = 0;
121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 man->available_caching = TTM_PL_FLAG_UNCACHED;
123 man->default_caching = TTM_PL_FLAG_UNCACHED;
124 break;
125 default:
126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 return -EINVAL;
128 }
129 return 0;
130}
131
132/**
133 * amdgpu_evict_flags - Compute placement flags
134 *
135 * @bo: The buffer object to evict
136 * @placement: Possible destination(s) for evicted BO
137 *
138 * Fill in placement data when ttm_bo_evict() is called
139 */
140static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 struct ttm_placement *placement)
142{
143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 struct amdgpu_bo *abo;
145 static const struct ttm_place placements = {
146 .fpfn = 0,
147 .lpfn = 0,
148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 };
150
151 /* Don't handle scatter gather BOs */
152 if (bo->type == ttm_bo_type_sg) {
153 placement->num_placement = 0;
154 placement->num_busy_placement = 0;
155 return;
156 }
157
158 /* Object isn't an AMDGPU object so ignore */
159 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 placement->placement = &placements;
161 placement->busy_placement = &placements;
162 placement->num_placement = 1;
163 placement->num_busy_placement = 1;
164 return;
165 }
166
167 abo = ttm_to_amdgpu_bo(bo);
168 switch (bo->mem.mem_type) {
169 case AMDGPU_PL_GDS:
170 case AMDGPU_PL_GWS:
171 case AMDGPU_PL_OA:
172 placement->num_placement = 0;
173 placement->num_busy_placement = 0;
174 return;
175
176 case TTM_PL_VRAM:
177 if (!adev->mman.buffer_funcs_enabled) {
178 /* Move to system memory */
179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 amdgpu_bo_in_cpu_visible_vram(abo)) {
183
184 /* Try evicting to the CPU inaccessible part of VRAM
185 * first, but only set GTT as busy placement, so this
186 * BO will be evicted to GTT rather than causing other
187 * BOs to be evicted from VRAM
188 */
189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 AMDGPU_GEM_DOMAIN_GTT);
191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 abo->placements[0].lpfn = 0;
193 abo->placement.busy_placement = &abo->placements[1];
194 abo->placement.num_busy_placement = 1;
195 } else {
196 /* Move to GTT memory */
197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 }
199 break;
200 case TTM_PL_TT:
201 default:
202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 break;
204 }
205 *placement = abo->placement;
206}
207
208/**
209 * amdgpu_verify_access - Verify access for a mmap call
210 *
211 * @bo: The buffer object to map
212 * @filp: The file pointer from the process performing the mmap
213 *
214 * This is called by ttm_bo_mmap() to verify whether a process
215 * has the right to mmap a BO to their process space.
216 */
217static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218{
219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220
221 /*
222 * Don't verify access for KFD BOs. They don't have a GEM
223 * object associated with them.
224 */
225 if (abo->kfd_bo)
226 return 0;
227
228 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 return -EPERM;
230 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
231 filp->private_data);
232}
233
234/**
235 * amdgpu_move_null - Register memory for a buffer object
236 *
237 * @bo: The bo to assign the memory to
238 * @new_mem: The memory to be assigned.
239 *
240 * Assign the memory from new_mem to the memory of the buffer object bo.
241 */
242static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 struct ttm_mem_reg *new_mem)
244{
245 struct ttm_mem_reg *old_mem = &bo->mem;
246
247 BUG_ON(old_mem->mm_node != NULL);
248 *old_mem = *new_mem;
249 new_mem->mm_node = NULL;
250}
251
252/**
253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254 *
255 * @bo: The bo to assign the memory to.
256 * @mm_node: Memory manager node for drm allocator.
257 * @mem: The region where the bo resides.
258 *
259 */
260static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 struct drm_mm_node *mm_node,
262 struct ttm_mem_reg *mem)
263{
264 uint64_t addr = 0;
265
266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 addr = mm_node->start << PAGE_SHIFT;
268 addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 }
270 return addr;
271}
272
273/**
274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275 * @offset. It also modifies the offset to be within the drm_mm_node returned
276 *
277 * @mem: The region where the bo resides.
278 * @offset: The offset that drm_mm_node is used for finding.
279 *
280 */
281static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 unsigned long *offset)
283{
284 struct drm_mm_node *mm_node = mem->mm_node;
285
286 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 *offset -= (mm_node->size << PAGE_SHIFT);
288 ++mm_node;
289 }
290 return mm_node;
291}
292
293/**
294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295 *
296 * The function copies @size bytes from {src->mem + src->offset} to
297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 * move and different for a BO to BO copy.
299 *
300 * @f: Returns the last fence if multiple jobs are submitted.
301 */
302int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 struct amdgpu_copy_mem *src,
304 struct amdgpu_copy_mem *dst,
305 uint64_t size,
306 struct dma_resv *resv,
307 struct dma_fence **f)
308{
309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 struct drm_mm_node *src_mm, *dst_mm;
311 uint64_t src_node_start, dst_node_start, src_node_size,
312 dst_node_size, src_page_offset, dst_page_offset;
313 struct dma_fence *fence = NULL;
314 int r = 0;
315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 AMDGPU_GPU_PAGE_SIZE);
317
318 if (!adev->mman.buffer_funcs_enabled) {
319 DRM_ERROR("Trying to move memory with ring turned off.\n");
320 return -EINVAL;
321 }
322
323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 src->offset;
326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 src_page_offset = src_node_start & (PAGE_SIZE - 1);
328
329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 dst->offset;
332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334
335 mutex_lock(&adev->mman.gtt_window_lock);
336
337 while (size) {
338 unsigned long cur_size;
339 uint64_t from = src_node_start, to = dst_node_start;
340 struct dma_fence *next;
341
342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 * begins at an offset, then adjust the size accordingly
344 */
345 cur_size = min3(min(src_node_size, dst_node_size), size,
346 GTT_MAX_BYTES);
347 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 cur_size + dst_page_offset > GTT_MAX_BYTES)
349 cur_size -= max(src_page_offset, dst_page_offset);
350
351 /* Map only what needs to be accessed. Map src to window 0 and
352 * dst to window 1
353 */
354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 r = amdgpu_map_buffer(src->bo, src->mem,
356 PFN_UP(cur_size + src_page_offset),
357 src_node_start, 0, ring,
358 &from);
359 if (r)
360 goto error;
361 /* Adjust the offset because amdgpu_map_buffer returns
362 * start of mapped page
363 */
364 from += src_page_offset;
365 }
366
367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 r = amdgpu_map_buffer(dst->bo, dst->mem,
369 PFN_UP(cur_size + dst_page_offset),
370 dst_node_start, 1, ring,
371 &to);
372 if (r)
373 goto error;
374 to += dst_page_offset;
375 }
376
377 r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 resv, &next, false, true);
379 if (r)
380 goto error;
381
382 dma_fence_put(fence);
383 fence = next;
384
385 size -= cur_size;
386 if (!size)
387 break;
388
389 src_node_size -= cur_size;
390 if (!src_node_size) {
391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 src->mem);
393 src_node_size = (src_mm->size << PAGE_SHIFT);
394 src_page_offset = 0;
395 } else {
396 src_node_start += cur_size;
397 src_page_offset = src_node_start & (PAGE_SIZE - 1);
398 }
399 dst_node_size -= cur_size;
400 if (!dst_node_size) {
401 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402 dst->mem);
403 dst_node_size = (dst_mm->size << PAGE_SHIFT);
404 dst_page_offset = 0;
405 } else {
406 dst_node_start += cur_size;
407 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408 }
409 }
410error:
411 mutex_unlock(&adev->mman.gtt_window_lock);
412 if (f)
413 *f = dma_fence_get(fence);
414 dma_fence_put(fence);
415 return r;
416}
417
418/**
419 * amdgpu_move_blit - Copy an entire buffer to another buffer
420 *
421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422 * help move buffers to and from VRAM.
423 */
424static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425 bool evict, bool no_wait_gpu,
426 struct ttm_mem_reg *new_mem,
427 struct ttm_mem_reg *old_mem)
428{
429 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430 struct amdgpu_copy_mem src, dst;
431 struct dma_fence *fence = NULL;
432 int r;
433
434 src.bo = bo;
435 dst.bo = bo;
436 src.mem = old_mem;
437 dst.mem = new_mem;
438 src.offset = 0;
439 dst.offset = 0;
440
441 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442 new_mem->num_pages << PAGE_SHIFT,
443 bo->base.resv, &fence);
444 if (r)
445 goto error;
446
447 /* clear the space being freed */
448 if (old_mem->mem_type == TTM_PL_VRAM &&
449 (ttm_to_amdgpu_bo(bo)->flags &
450 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451 struct dma_fence *wipe_fence = NULL;
452
453 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454 NULL, &wipe_fence);
455 if (r) {
456 goto error;
457 } else if (wipe_fence) {
458 dma_fence_put(fence);
459 fence = wipe_fence;
460 }
461 }
462
463 /* Always block for VM page tables before committing the new location */
464 if (bo->type == ttm_bo_type_kernel)
465 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466 else
467 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468 dma_fence_put(fence);
469 return r;
470
471error:
472 if (fence)
473 dma_fence_wait(fence, false);
474 dma_fence_put(fence);
475 return r;
476}
477
478/**
479 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480 *
481 * Called by amdgpu_bo_move().
482 */
483static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484 struct ttm_operation_ctx *ctx,
485 struct ttm_mem_reg *new_mem)
486{
487 struct amdgpu_device *adev;
488 struct ttm_mem_reg *old_mem = &bo->mem;
489 struct ttm_mem_reg tmp_mem;
490 struct ttm_place placements;
491 struct ttm_placement placement;
492 int r;
493
494 adev = amdgpu_ttm_adev(bo->bdev);
495
496 /* create space/pages for new_mem in GTT space */
497 tmp_mem = *new_mem;
498 tmp_mem.mm_node = NULL;
499 placement.num_placement = 1;
500 placement.placement = &placements;
501 placement.num_busy_placement = 1;
502 placement.busy_placement = &placements;
503 placements.fpfn = 0;
504 placements.lpfn = 0;
505 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507 if (unlikely(r)) {
508 pr_err("Failed to find GTT space for blit from VRAM\n");
509 return r;
510 }
511
512 /* set caching flags */
513 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514 if (unlikely(r)) {
515 goto out_cleanup;
516 }
517
518 /* Bind the memory to the GTT space */
519 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520 if (unlikely(r)) {
521 goto out_cleanup;
522 }
523
524 /* blit VRAM to GTT */
525 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526 if (unlikely(r)) {
527 goto out_cleanup;
528 }
529
530 /* move BO (in tmp_mem) to new_mem */
531 r = ttm_bo_move_ttm(bo, ctx, new_mem);
532out_cleanup:
533 ttm_bo_mem_put(bo, &tmp_mem);
534 return r;
535}
536
537/**
538 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539 *
540 * Called by amdgpu_bo_move().
541 */
542static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543 struct ttm_operation_ctx *ctx,
544 struct ttm_mem_reg *new_mem)
545{
546 struct amdgpu_device *adev;
547 struct ttm_mem_reg *old_mem = &bo->mem;
548 struct ttm_mem_reg tmp_mem;
549 struct ttm_placement placement;
550 struct ttm_place placements;
551 int r;
552
553 adev = amdgpu_ttm_adev(bo->bdev);
554
555 /* make space in GTT for old_mem buffer */
556 tmp_mem = *new_mem;
557 tmp_mem.mm_node = NULL;
558 placement.num_placement = 1;
559 placement.placement = &placements;
560 placement.num_busy_placement = 1;
561 placement.busy_placement = &placements;
562 placements.fpfn = 0;
563 placements.lpfn = 0;
564 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
565 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
566 if (unlikely(r)) {
567 pr_err("Failed to find GTT space for blit to VRAM\n");
568 return r;
569 }
570
571 /* move/bind old memory to GTT space */
572 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
573 if (unlikely(r)) {
574 goto out_cleanup;
575 }
576
577 /* copy to VRAM */
578 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
579 if (unlikely(r)) {
580 goto out_cleanup;
581 }
582out_cleanup:
583 ttm_bo_mem_put(bo, &tmp_mem);
584 return r;
585}
586
587/**
588 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
589 *
590 * Called by amdgpu_bo_move()
591 */
592static bool amdgpu_mem_visible(struct amdgpu_device *adev,
593 struct ttm_mem_reg *mem)
594{
595 struct drm_mm_node *nodes = mem->mm_node;
596
597 if (mem->mem_type == TTM_PL_SYSTEM ||
598 mem->mem_type == TTM_PL_TT)
599 return true;
600 if (mem->mem_type != TTM_PL_VRAM)
601 return false;
602
603 /* ttm_mem_reg_ioremap only supports contiguous memory */
604 if (nodes->size != mem->num_pages)
605 return false;
606
607 return ((nodes->start + nodes->size) << PAGE_SHIFT)
608 <= adev->gmc.visible_vram_size;
609}
610
611/**
612 * amdgpu_bo_move - Move a buffer object to a new memory location
613 *
614 * Called by ttm_bo_handle_move_mem()
615 */
616static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
617 struct ttm_operation_ctx *ctx,
618 struct ttm_mem_reg *new_mem)
619{
620 struct amdgpu_device *adev;
621 struct amdgpu_bo *abo;
622 struct ttm_mem_reg *old_mem = &bo->mem;
623 int r;
624
625 /* Can't move a pinned BO */
626 abo = ttm_to_amdgpu_bo(bo);
627 if (WARN_ON_ONCE(abo->pin_count > 0))
628 return -EINVAL;
629
630 adev = amdgpu_ttm_adev(bo->bdev);
631
632 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
633 amdgpu_move_null(bo, new_mem);
634 return 0;
635 }
636 if ((old_mem->mem_type == TTM_PL_TT &&
637 new_mem->mem_type == TTM_PL_SYSTEM) ||
638 (old_mem->mem_type == TTM_PL_SYSTEM &&
639 new_mem->mem_type == TTM_PL_TT)) {
640 /* bind is enough */
641 amdgpu_move_null(bo, new_mem);
642 return 0;
643 }
644 if (old_mem->mem_type == AMDGPU_PL_GDS ||
645 old_mem->mem_type == AMDGPU_PL_GWS ||
646 old_mem->mem_type == AMDGPU_PL_OA ||
647 new_mem->mem_type == AMDGPU_PL_GDS ||
648 new_mem->mem_type == AMDGPU_PL_GWS ||
649 new_mem->mem_type == AMDGPU_PL_OA) {
650 /* Nothing to save here */
651 amdgpu_move_null(bo, new_mem);
652 return 0;
653 }
654
655 if (!adev->mman.buffer_funcs_enabled) {
656 r = -ENODEV;
657 goto memcpy;
658 }
659
660 if (old_mem->mem_type == TTM_PL_VRAM &&
661 new_mem->mem_type == TTM_PL_SYSTEM) {
662 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
663 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
664 new_mem->mem_type == TTM_PL_VRAM) {
665 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
666 } else {
667 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
668 new_mem, old_mem);
669 }
670
671 if (r) {
672memcpy:
673 /* Check that all memory is CPU accessible */
674 if (!amdgpu_mem_visible(adev, old_mem) ||
675 !amdgpu_mem_visible(adev, new_mem)) {
676 pr_err("Move buffer fallback to memcpy unavailable\n");
677 return r;
678 }
679
680 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
681 if (r)
682 return r;
683 }
684
685 if (bo->type == ttm_bo_type_device &&
686 new_mem->mem_type == TTM_PL_VRAM &&
687 old_mem->mem_type != TTM_PL_VRAM) {
688 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
689 * accesses the BO after it's moved.
690 */
691 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
692 }
693
694 /* update statistics */
695 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
696 return 0;
697}
698
699/**
700 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
701 *
702 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
703 */
704static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
705{
706 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
707 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
708 struct drm_mm_node *mm_node = mem->mm_node;
709
710 mem->bus.addr = NULL;
711 mem->bus.offset = 0;
712 mem->bus.size = mem->num_pages << PAGE_SHIFT;
713 mem->bus.base = 0;
714 mem->bus.is_iomem = false;
715 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
716 return -EINVAL;
717 switch (mem->mem_type) {
718 case TTM_PL_SYSTEM:
719 /* system memory */
720 return 0;
721 case TTM_PL_TT:
722 break;
723 case TTM_PL_VRAM:
724 mem->bus.offset = mem->start << PAGE_SHIFT;
725 /* check if it's visible */
726 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
727 return -EINVAL;
728 /* Only physically contiguous buffers apply. In a contiguous
729 * buffer, size of the first mm_node would match the number of
730 * pages in ttm_mem_reg.
731 */
732 if (adev->mman.aper_base_kaddr &&
733 (mm_node->size == mem->num_pages))
734 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
735 mem->bus.offset;
736
737 mem->bus.base = adev->gmc.aper_base;
738 mem->bus.is_iomem = true;
739 break;
740 default:
741 return -EINVAL;
742 }
743 return 0;
744}
745
746static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
747{
748}
749
750static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
751 unsigned long page_offset)
752{
753 struct drm_mm_node *mm;
754 unsigned long offset = (page_offset << PAGE_SHIFT);
755
756 mm = amdgpu_find_mm_node(&bo->mem, &offset);
757 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
758 (offset >> PAGE_SHIFT);
759}
760
761/*
762 * TTM backend functions.
763 */
764struct amdgpu_ttm_tt {
765 struct ttm_dma_tt ttm;
766 u64 offset;
767 uint64_t userptr;
768 struct task_struct *usertask;
769 uint32_t userflags;
770#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
771 struct hmm_range *range;
772#endif
773};
774
775/**
776 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
777 * memory and start HMM tracking CPU page table update
778 *
779 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
780 * once afterwards to stop HMM tracking
781 */
782#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
783
784#define MAX_RETRY_HMM_RANGE_FAULT 16
785
786int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
787{
788 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
789 struct ttm_tt *ttm = bo->tbo.ttm;
790 struct amdgpu_ttm_tt *gtt = (void *)ttm;
791 struct mm_struct *mm = gtt->usertask->mm;
792 unsigned long start = gtt->userptr;
793 struct vm_area_struct *vma;
794 struct hmm_range *range;
795 unsigned long i;
796 uint64_t *pfns;
797 int r = 0;
798
799 if (!mm) /* Happens during process shutdown */
800 return -ESRCH;
801
802 if (unlikely(!mirror)) {
803 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
804 r = -EFAULT;
805 goto out;
806 }
807
808 vma = find_vma(mm, start);
809 if (unlikely(!vma || start < vma->vm_start)) {
810 r = -EFAULT;
811 goto out;
812 }
813 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
814 vma->vm_file)) {
815 r = -EPERM;
816 goto out;
817 }
818
819 range = kzalloc(sizeof(*range), GFP_KERNEL);
820 if (unlikely(!range)) {
821 r = -ENOMEM;
822 goto out;
823 }
824
825 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
826 if (unlikely(!pfns)) {
827 r = -ENOMEM;
828 goto out_free_ranges;
829 }
830
831 amdgpu_hmm_init_range(range);
832 range->default_flags = range->flags[HMM_PFN_VALID];
833 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
834 0 : range->flags[HMM_PFN_WRITE];
835 range->pfn_flags_mask = 0;
836 range->pfns = pfns;
837 range->start = start;
838 range->end = start + ttm->num_pages * PAGE_SIZE;
839
840 hmm_range_register(range, mirror);
841
842 /*
843 * Just wait for range to be valid, safe to ignore return value as we
844 * will use the return value of hmm_range_fault() below under the
845 * mmap_sem to ascertain the validity of the range.
846 */
847 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
848
849 down_read(&mm->mmap_sem);
850 r = hmm_range_fault(range, 0);
851 up_read(&mm->mmap_sem);
852
853 if (unlikely(r < 0))
854 goto out_free_pfns;
855
856 for (i = 0; i < ttm->num_pages; i++) {
857 pages[i] = hmm_device_entry_to_page(range, pfns[i]);
858 if (unlikely(!pages[i])) {
859 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
860 i, pfns[i]);
861 r = -ENOMEM;
862
863 goto out_free_pfns;
864 }
865 }
866
867 gtt->range = range;
868
869 return 0;
870
871out_free_pfns:
872 hmm_range_unregister(range);
873 kvfree(pfns);
874out_free_ranges:
875 kfree(range);
876out:
877 return r;
878}
879
880/**
881 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
882 * Check if the pages backing this ttm range have been invalidated
883 *
884 * Returns: true if pages are still valid
885 */
886bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
887{
888 struct amdgpu_ttm_tt *gtt = (void *)ttm;
889 bool r = false;
890
891 if (!gtt || !gtt->userptr)
892 return false;
893
894 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
895 gtt->userptr, ttm->num_pages);
896
897 WARN_ONCE(!gtt->range || !gtt->range->pfns,
898 "No user pages to check\n");
899
900 if (gtt->range) {
901 r = hmm_range_valid(gtt->range);
902 hmm_range_unregister(gtt->range);
903
904 kvfree(gtt->range->pfns);
905 kfree(gtt->range);
906 gtt->range = NULL;
907 }
908
909 return r;
910}
911#endif
912
913/**
914 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
915 *
916 * Called by amdgpu_cs_list_validate(). This creates the page list
917 * that backs user memory and will ultimately be mapped into the device
918 * address space.
919 */
920void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
921{
922 unsigned long i;
923
924 for (i = 0; i < ttm->num_pages; ++i)
925 ttm->pages[i] = pages ? pages[i] : NULL;
926}
927
928/**
929 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
930 *
931 * Called by amdgpu_ttm_backend_bind()
932 **/
933static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
934{
935 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
936 struct amdgpu_ttm_tt *gtt = (void *)ttm;
937 unsigned nents;
938 int r;
939
940 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
941 enum dma_data_direction direction = write ?
942 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
943
944 /* Allocate an SG array and squash pages into it */
945 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
946 ttm->num_pages << PAGE_SHIFT,
947 GFP_KERNEL);
948 if (r)
949 goto release_sg;
950
951 /* Map SG to device */
952 r = -ENOMEM;
953 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
954 if (nents != ttm->sg->nents)
955 goto release_sg;
956
957 /* convert SG to linear array of pages and dma addresses */
958 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
959 gtt->ttm.dma_address, ttm->num_pages);
960
961 return 0;
962
963release_sg:
964 kfree(ttm->sg);
965 return r;
966}
967
968/**
969 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
970 */
971static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
972{
973 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
974 struct amdgpu_ttm_tt *gtt = (void *)ttm;
975
976 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
977 enum dma_data_direction direction = write ?
978 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
979
980 /* double check that we don't free the table twice */
981 if (!ttm->sg->sgl)
982 return;
983
984 /* unmap the pages mapped to the device */
985 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
986
987 sg_free_table(ttm->sg);
988
989#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
990 if (gtt->range &&
991 ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
992 gtt->range->pfns[0]))
993 WARN_ONCE(1, "Missing get_user_page_done\n");
994#endif
995}
996
997int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
998 struct ttm_buffer_object *tbo,
999 uint64_t flags)
1000{
1001 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1002 struct ttm_tt *ttm = tbo->ttm;
1003 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1004 int r;
1005
1006 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1007 uint64_t page_idx = 1;
1008
1009 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1010 ttm->pages, gtt->ttm.dma_address, flags);
1011 if (r)
1012 goto gart_bind_fail;
1013
1014 /* Patch mtype of the second part BO */
1015 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1016 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1017
1018 r = amdgpu_gart_bind(adev,
1019 gtt->offset + (page_idx << PAGE_SHIFT),
1020 ttm->num_pages - page_idx,
1021 &ttm->pages[page_idx],
1022 &(gtt->ttm.dma_address[page_idx]), flags);
1023 } else {
1024 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1025 ttm->pages, gtt->ttm.dma_address, flags);
1026 }
1027
1028gart_bind_fail:
1029 if (r)
1030 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1031 ttm->num_pages, gtt->offset);
1032
1033 return r;
1034}
1035
1036/**
1037 * amdgpu_ttm_backend_bind - Bind GTT memory
1038 *
1039 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1040 * This handles binding GTT memory to the device address space.
1041 */
1042static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1043 struct ttm_mem_reg *bo_mem)
1044{
1045 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1046 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1047 uint64_t flags;
1048 int r = 0;
1049
1050 if (gtt->userptr) {
1051 r = amdgpu_ttm_tt_pin_userptr(ttm);
1052 if (r) {
1053 DRM_ERROR("failed to pin userptr\n");
1054 return r;
1055 }
1056 }
1057 if (!ttm->num_pages) {
1058 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1059 ttm->num_pages, bo_mem, ttm);
1060 }
1061
1062 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1063 bo_mem->mem_type == AMDGPU_PL_GWS ||
1064 bo_mem->mem_type == AMDGPU_PL_OA)
1065 return -EINVAL;
1066
1067 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1068 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1069 return 0;
1070 }
1071
1072 /* compute PTE flags relevant to this BO memory */
1073 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1074
1075 /* bind pages into GART page tables */
1076 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1077 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078 ttm->pages, gtt->ttm.dma_address, flags);
1079
1080 if (r)
1081 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1082 ttm->num_pages, gtt->offset);
1083 return r;
1084}
1085
1086/**
1087 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1088 */
1089int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1090{
1091 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1092 struct ttm_operation_ctx ctx = { false, false };
1093 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1094 struct ttm_mem_reg tmp;
1095 struct ttm_placement placement;
1096 struct ttm_place placements;
1097 uint64_t addr, flags;
1098 int r;
1099
1100 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1101 return 0;
1102
1103 addr = amdgpu_gmc_agp_addr(bo);
1104 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1105 bo->mem.start = addr >> PAGE_SHIFT;
1106 } else {
1107
1108 /* allocate GART space */
1109 tmp = bo->mem;
1110 tmp.mm_node = NULL;
1111 placement.num_placement = 1;
1112 placement.placement = &placements;
1113 placement.num_busy_placement = 1;
1114 placement.busy_placement = &placements;
1115 placements.fpfn = 0;
1116 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1117 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1118 TTM_PL_FLAG_TT;
1119
1120 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1121 if (unlikely(r))
1122 return r;
1123
1124 /* compute PTE flags for this buffer object */
1125 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1126
1127 /* Bind pages */
1128 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1129 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1130 if (unlikely(r)) {
1131 ttm_bo_mem_put(bo, &tmp);
1132 return r;
1133 }
1134
1135 ttm_bo_mem_put(bo, &bo->mem);
1136 bo->mem = tmp;
1137 }
1138
1139 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1140 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1141
1142 return 0;
1143}
1144
1145/**
1146 * amdgpu_ttm_recover_gart - Rebind GTT pages
1147 *
1148 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1149 * rebind GTT pages during a GPU reset.
1150 */
1151int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1152{
1153 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1154 uint64_t flags;
1155 int r;
1156
1157 if (!tbo->ttm)
1158 return 0;
1159
1160 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1161 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1162
1163 return r;
1164}
1165
1166/**
1167 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1168 *
1169 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1170 * ttm_tt_destroy().
1171 */
1172static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1173{
1174 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1175 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1176 int r;
1177
1178 /* if the pages have userptr pinning then clear that first */
1179 if (gtt->userptr)
1180 amdgpu_ttm_tt_unpin_userptr(ttm);
1181
1182 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1183 return 0;
1184
1185 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1186 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1187 if (r)
1188 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1189 gtt->ttm.ttm.num_pages, gtt->offset);
1190 return r;
1191}
1192
1193static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1194{
1195 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1196
1197 if (gtt->usertask)
1198 put_task_struct(gtt->usertask);
1199
1200 ttm_dma_tt_fini(>t->ttm);
1201 kfree(gtt);
1202}
1203
1204static struct ttm_backend_func amdgpu_backend_func = {
1205 .bind = &amdgpu_ttm_backend_bind,
1206 .unbind = &amdgpu_ttm_backend_unbind,
1207 .destroy = &amdgpu_ttm_backend_destroy,
1208};
1209
1210/**
1211 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1212 *
1213 * @bo: The buffer object to create a GTT ttm_tt object around
1214 *
1215 * Called by ttm_tt_create().
1216 */
1217static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1218 uint32_t page_flags)
1219{
1220 struct amdgpu_device *adev;
1221 struct amdgpu_ttm_tt *gtt;
1222
1223 adev = amdgpu_ttm_adev(bo->bdev);
1224
1225 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1226 if (gtt == NULL) {
1227 return NULL;
1228 }
1229 gtt->ttm.ttm.func = &amdgpu_backend_func;
1230
1231 /* allocate space for the uninitialized page entries */
1232 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1233 kfree(gtt);
1234 return NULL;
1235 }
1236 return >t->ttm.ttm;
1237}
1238
1239/**
1240 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1241 *
1242 * Map the pages of a ttm_tt object to an address space visible
1243 * to the underlying device.
1244 */
1245static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1246 struct ttm_operation_ctx *ctx)
1247{
1248 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1249 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1250 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1251
1252 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1253 if (gtt && gtt->userptr) {
1254 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1255 if (!ttm->sg)
1256 return -ENOMEM;
1257
1258 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1259 ttm->state = tt_unbound;
1260 return 0;
1261 }
1262
1263 if (slave && ttm->sg) {
1264 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1265 gtt->ttm.dma_address,
1266 ttm->num_pages);
1267 ttm->state = tt_unbound;
1268 return 0;
1269 }
1270
1271#ifdef CONFIG_SWIOTLB
1272 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1273 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1274 }
1275#endif
1276
1277 /* fall back to generic helper to populate the page array
1278 * and map them to the device */
1279 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1280}
1281
1282/**
1283 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1284 *
1285 * Unmaps pages of a ttm_tt object from the device address space and
1286 * unpopulates the page array backing it.
1287 */
1288static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1289{
1290 struct amdgpu_device *adev;
1291 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1292 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1293
1294 if (gtt && gtt->userptr) {
1295 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1296 kfree(ttm->sg);
1297 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1298 return;
1299 }
1300
1301 if (slave)
1302 return;
1303
1304 adev = amdgpu_ttm_adev(ttm->bdev);
1305
1306#ifdef CONFIG_SWIOTLB
1307 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1308 ttm_dma_unpopulate(>t->ttm, adev->dev);
1309 return;
1310 }
1311#endif
1312
1313 /* fall back to generic helper to unmap and unpopulate array */
1314 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1315}
1316
1317/**
1318 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1319 * task
1320 *
1321 * @ttm: The ttm_tt object to bind this userptr object to
1322 * @addr: The address in the current tasks VM space to use
1323 * @flags: Requirements of userptr object.
1324 *
1325 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1326 * to current task
1327 */
1328int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1329 uint32_t flags)
1330{
1331 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1332
1333 if (gtt == NULL)
1334 return -EINVAL;
1335
1336 gtt->userptr = addr;
1337 gtt->userflags = flags;
1338
1339 if (gtt->usertask)
1340 put_task_struct(gtt->usertask);
1341 gtt->usertask = current->group_leader;
1342 get_task_struct(gtt->usertask);
1343
1344 return 0;
1345}
1346
1347/**
1348 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349 */
1350struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351{
1352 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353
1354 if (gtt == NULL)
1355 return NULL;
1356
1357 if (gtt->usertask == NULL)
1358 return NULL;
1359
1360 return gtt->usertask->mm;
1361}
1362
1363/**
1364 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1365 * address range for the current task.
1366 *
1367 */
1368bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1369 unsigned long end)
1370{
1371 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372 unsigned long size;
1373
1374 if (gtt == NULL || !gtt->userptr)
1375 return false;
1376
1377 /* Return false if no part of the ttm_tt object lies within
1378 * the range
1379 */
1380 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1381 if (gtt->userptr > end || gtt->userptr + size <= start)
1382 return false;
1383
1384 return true;
1385}
1386
1387/**
1388 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1389 */
1390bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1391{
1392 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1393
1394 if (gtt == NULL || !gtt->userptr)
1395 return false;
1396
1397 return true;
1398}
1399
1400/**
1401 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1402 */
1403bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1404{
1405 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1406
1407 if (gtt == NULL)
1408 return false;
1409
1410 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1411}
1412
1413/**
1414 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1415 *
1416 * @ttm: The ttm_tt object to compute the flags for
1417 * @mem: The memory registry backing this ttm_tt object
1418 *
1419 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1420 */
1421uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1422{
1423 uint64_t flags = 0;
1424
1425 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1426 flags |= AMDGPU_PTE_VALID;
1427
1428 if (mem && mem->mem_type == TTM_PL_TT) {
1429 flags |= AMDGPU_PTE_SYSTEM;
1430
1431 if (ttm->caching_state == tt_cached)
1432 flags |= AMDGPU_PTE_SNOOPED;
1433 }
1434
1435 return flags;
1436}
1437
1438/**
1439 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1440 *
1441 * @ttm: The ttm_tt object to compute the flags for
1442 * @mem: The memory registry backing this ttm_tt object
1443
1444 * Figure out the flags to use for a VM PTE (Page Table Entry).
1445 */
1446uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1447 struct ttm_mem_reg *mem)
1448{
1449 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450
1451 flags |= adev->gart.gart_pte_flags;
1452 flags |= AMDGPU_PTE_READABLE;
1453
1454 if (!amdgpu_ttm_tt_is_readonly(ttm))
1455 flags |= AMDGPU_PTE_WRITEABLE;
1456
1457 return flags;
1458}
1459
1460/**
1461 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462 * object.
1463 *
1464 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467 * used to clean out a memory space.
1468 */
1469static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470 const struct ttm_place *place)
1471{
1472 unsigned long num_pages = bo->mem.num_pages;
1473 struct drm_mm_node *node = bo->mem.mm_node;
1474 struct dma_resv_list *flist;
1475 struct dma_fence *f;
1476 int i;
1477
1478 /* Don't evict VM page tables while they are busy, otherwise we can't
1479 * cleanly handle page faults.
1480 */
1481 if (bo->type == ttm_bo_type_kernel &&
1482 !dma_resv_test_signaled_rcu(bo->base.resv, true))
1483 return false;
1484
1485 /* If bo is a KFD BO, check if the bo belongs to the current process.
1486 * If true, then return false as any KFD process needs all its BOs to
1487 * be resident to run successfully
1488 */
1489 flist = dma_resv_get_list(bo->base.resv);
1490 if (flist) {
1491 for (i = 0; i < flist->shared_count; ++i) {
1492 f = rcu_dereference_protected(flist->shared[i],
1493 dma_resv_held(bo->base.resv));
1494 if (amdkfd_fence_check_mm(f, current->mm))
1495 return false;
1496 }
1497 }
1498
1499 switch (bo->mem.mem_type) {
1500 case TTM_PL_TT:
1501 return true;
1502
1503 case TTM_PL_VRAM:
1504 /* Check each drm MM node individually */
1505 while (num_pages) {
1506 if (place->fpfn < (node->start + node->size) &&
1507 !(place->lpfn && place->lpfn <= node->start))
1508 return true;
1509
1510 num_pages -= node->size;
1511 ++node;
1512 }
1513 return false;
1514
1515 default:
1516 break;
1517 }
1518
1519 return ttm_bo_eviction_valuable(bo, place);
1520}
1521
1522/**
1523 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1524 *
1525 * @bo: The buffer object to read/write
1526 * @offset: Offset into buffer object
1527 * @buf: Secondary buffer to write/read from
1528 * @len: Length in bytes of access
1529 * @write: true if writing
1530 *
1531 * This is used to access VRAM that backs a buffer object via MMIO
1532 * access for debugging purposes.
1533 */
1534static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1535 unsigned long offset,
1536 void *buf, int len, int write)
1537{
1538 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1539 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1540 struct drm_mm_node *nodes;
1541 uint32_t value = 0;
1542 int ret = 0;
1543 uint64_t pos;
1544 unsigned long flags;
1545
1546 if (bo->mem.mem_type != TTM_PL_VRAM)
1547 return -EIO;
1548
1549 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1550 pos = (nodes->start << PAGE_SHIFT) + offset;
1551
1552 while (len && pos < adev->gmc.mc_vram_size) {
1553 uint64_t aligned_pos = pos & ~(uint64_t)3;
1554 uint32_t bytes = 4 - (pos & 3);
1555 uint32_t shift = (pos & 3) * 8;
1556 uint32_t mask = 0xffffffff << shift;
1557
1558 if (len < bytes) {
1559 mask &= 0xffffffff >> (bytes - len) * 8;
1560 bytes = len;
1561 }
1562
1563 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1564 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1565 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1566 if (!write || mask != 0xffffffff)
1567 value = RREG32_NO_KIQ(mmMM_DATA);
1568 if (write) {
1569 value &= ~mask;
1570 value |= (*(uint32_t *)buf << shift) & mask;
1571 WREG32_NO_KIQ(mmMM_DATA, value);
1572 }
1573 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1574 if (!write) {
1575 value = (value & mask) >> shift;
1576 memcpy(buf, &value, bytes);
1577 }
1578
1579 ret += bytes;
1580 buf = (uint8_t *)buf + bytes;
1581 pos += bytes;
1582 len -= bytes;
1583 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1584 ++nodes;
1585 pos = (nodes->start << PAGE_SHIFT);
1586 }
1587 }
1588
1589 return ret;
1590}
1591
1592static struct ttm_bo_driver amdgpu_bo_driver = {
1593 .ttm_tt_create = &amdgpu_ttm_tt_create,
1594 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596 .invalidate_caches = &amdgpu_invalidate_caches,
1597 .init_mem_type = &amdgpu_init_mem_type,
1598 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1599 .evict_flags = &amdgpu_evict_flags,
1600 .move = &amdgpu_bo_move,
1601 .verify_access = &amdgpu_verify_access,
1602 .move_notify = &amdgpu_bo_move_notify,
1603 .release_notify = &amdgpu_bo_release_notify,
1604 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1605 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1606 .io_mem_free = &amdgpu_ttm_io_mem_free,
1607 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1608 .access_memory = &amdgpu_ttm_access_memory,
1609 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1610};
1611
1612/*
1613 * Firmware Reservation functions
1614 */
1615/**
1616 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1617 *
1618 * @adev: amdgpu_device pointer
1619 *
1620 * free fw reserved vram if it has been reserved.
1621 */
1622static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1623{
1624 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1625 NULL, &adev->fw_vram_usage.va);
1626}
1627
1628/**
1629 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630 *
1631 * @adev: amdgpu_device pointer
1632 *
1633 * create bo vram reservation from fw.
1634 */
1635static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636{
1637 struct ttm_operation_ctx ctx = { false, false };
1638 struct amdgpu_bo_param bp;
1639 int r = 0;
1640 int i;
1641 u64 vram_size = adev->gmc.visible_vram_size;
1642 u64 offset = adev->fw_vram_usage.start_offset;
1643 u64 size = adev->fw_vram_usage.size;
1644 struct amdgpu_bo *bo;
1645
1646 memset(&bp, 0, sizeof(bp));
1647 bp.size = adev->fw_vram_usage.size;
1648 bp.byte_align = PAGE_SIZE;
1649 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1650 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1651 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1652 bp.type = ttm_bo_type_kernel;
1653 bp.resv = NULL;
1654 adev->fw_vram_usage.va = NULL;
1655 adev->fw_vram_usage.reserved_bo = NULL;
1656
1657 if (adev->fw_vram_usage.size > 0 &&
1658 adev->fw_vram_usage.size <= vram_size) {
1659
1660 r = amdgpu_bo_create(adev, &bp,
1661 &adev->fw_vram_usage.reserved_bo);
1662 if (r)
1663 goto error_create;
1664
1665 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1666 if (r)
1667 goto error_reserve;
1668
1669 /* remove the original mem node and create a new one at the
1670 * request position
1671 */
1672 bo = adev->fw_vram_usage.reserved_bo;
1673 offset = ALIGN(offset, PAGE_SIZE);
1674 for (i = 0; i < bo->placement.num_placement; ++i) {
1675 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1676 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1677 }
1678
1679 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1680 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1681 &bo->tbo.mem, &ctx);
1682 if (r)
1683 goto error_pin;
1684
1685 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1686 AMDGPU_GEM_DOMAIN_VRAM,
1687 adev->fw_vram_usage.start_offset,
1688 (adev->fw_vram_usage.start_offset +
1689 adev->fw_vram_usage.size));
1690 if (r)
1691 goto error_pin;
1692 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1693 &adev->fw_vram_usage.va);
1694 if (r)
1695 goto error_kmap;
1696
1697 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1698 }
1699 return r;
1700
1701error_kmap:
1702 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1703error_pin:
1704 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1705error_reserve:
1706 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1707error_create:
1708 adev->fw_vram_usage.va = NULL;
1709 adev->fw_vram_usage.reserved_bo = NULL;
1710 return r;
1711}
1712/**
1713 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1714 * gtt/vram related fields.
1715 *
1716 * This initializes all of the memory space pools that the TTM layer
1717 * will need such as the GTT space (system memory mapped to the device),
1718 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1719 * can be mapped per VMID.
1720 */
1721int amdgpu_ttm_init(struct amdgpu_device *adev)
1722{
1723 uint64_t gtt_size;
1724 int r;
1725 u64 vis_vram_limit;
1726 void *stolen_vga_buf;
1727
1728 mutex_init(&adev->mman.gtt_window_lock);
1729
1730 /* No others user of address space so set it to 0 */
1731 r = ttm_bo_device_init(&adev->mman.bdev,
1732 &amdgpu_bo_driver,
1733 adev->ddev->anon_inode->i_mapping,
1734 dma_addressing_limited(adev->dev));
1735 if (r) {
1736 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1737 return r;
1738 }
1739 adev->mman.initialized = true;
1740
1741 /* We opt to avoid OOM on system pages allocations */
1742 adev->mman.bdev.no_retry = true;
1743
1744 /* Initialize VRAM pool with all of VRAM divided into pages */
1745 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1746 adev->gmc.real_vram_size >> PAGE_SHIFT);
1747 if (r) {
1748 DRM_ERROR("Failed initializing VRAM heap.\n");
1749 return r;
1750 }
1751
1752 /* Reduce size of CPU-visible VRAM if requested */
1753 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1754 if (amdgpu_vis_vram_limit > 0 &&
1755 vis_vram_limit <= adev->gmc.visible_vram_size)
1756 adev->gmc.visible_vram_size = vis_vram_limit;
1757
1758 /* Change the size here instead of the init above so only lpfn is affected */
1759 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1760#ifdef CONFIG_64BIT
1761 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1762 adev->gmc.visible_vram_size);
1763#endif
1764
1765 /*
1766 *The reserved vram for firmware must be pinned to the specified
1767 *place on the VRAM, so reserve it early.
1768 */
1769 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1770 if (r) {
1771 return r;
1772 }
1773
1774 /* allocate memory as required for VGA
1775 * This is used for VGA emulation and pre-OS scanout buffers to
1776 * avoid display artifacts while transitioning between pre-OS
1777 * and driver. */
1778 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1779 AMDGPU_GEM_DOMAIN_VRAM,
1780 &adev->stolen_vga_memory,
1781 NULL, &stolen_vga_buf);
1782 if (r)
1783 return r;
1784 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1785 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1786
1787 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1788 * or whatever the user passed on module init */
1789 if (amdgpu_gtt_size == -1) {
1790 struct sysinfo si;
1791
1792 si_meminfo(&si);
1793 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1794 adev->gmc.mc_vram_size),
1795 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1796 }
1797 else
1798 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1799
1800 /* Initialize GTT memory pool */
1801 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1802 if (r) {
1803 DRM_ERROR("Failed initializing GTT heap.\n");
1804 return r;
1805 }
1806 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1807 (unsigned)(gtt_size / (1024 * 1024)));
1808
1809 /* Initialize various on-chip memory pools */
1810 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1811 adev->gds.gds_size);
1812 if (r) {
1813 DRM_ERROR("Failed initializing GDS heap.\n");
1814 return r;
1815 }
1816
1817 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1818 adev->gds.gws_size);
1819 if (r) {
1820 DRM_ERROR("Failed initializing gws heap.\n");
1821 return r;
1822 }
1823
1824 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1825 adev->gds.oa_size);
1826 if (r) {
1827 DRM_ERROR("Failed initializing oa heap.\n");
1828 return r;
1829 }
1830
1831 /* Register debugfs entries for amdgpu_ttm */
1832 r = amdgpu_ttm_debugfs_init(adev);
1833 if (r) {
1834 DRM_ERROR("Failed to init debugfs\n");
1835 return r;
1836 }
1837 return 0;
1838}
1839
1840/**
1841 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1842 */
1843void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1844{
1845 void *stolen_vga_buf;
1846 /* return the VGA stolen memory (if any) back to VRAM */
1847 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1848}
1849
1850/**
1851 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1852 */
1853void amdgpu_ttm_fini(struct amdgpu_device *adev)
1854{
1855 if (!adev->mman.initialized)
1856 return;
1857
1858 amdgpu_ttm_debugfs_fini(adev);
1859 amdgpu_ttm_fw_reserve_vram_fini(adev);
1860 if (adev->mman.aper_base_kaddr)
1861 iounmap(adev->mman.aper_base_kaddr);
1862 adev->mman.aper_base_kaddr = NULL;
1863
1864 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1865 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1866 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1867 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1868 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1869 ttm_bo_device_release(&adev->mman.bdev);
1870 adev->mman.initialized = false;
1871 DRM_INFO("amdgpu: ttm finalized\n");
1872}
1873
1874/**
1875 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1876 *
1877 * @adev: amdgpu_device pointer
1878 * @enable: true when we can use buffer functions.
1879 *
1880 * Enable/disable use of buffer functions during suspend/resume. This should
1881 * only be called at bootup or when userspace isn't running.
1882 */
1883void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1884{
1885 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1886 uint64_t size;
1887 int r;
1888
1889 if (!adev->mman.initialized || adev->in_gpu_reset ||
1890 adev->mman.buffer_funcs_enabled == enable)
1891 return;
1892
1893 if (enable) {
1894 struct amdgpu_ring *ring;
1895 struct drm_sched_rq *rq;
1896
1897 ring = adev->mman.buffer_funcs_ring;
1898 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1899 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1900 if (r) {
1901 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1902 r);
1903 return;
1904 }
1905 } else {
1906 drm_sched_entity_destroy(&adev->mman.entity);
1907 dma_fence_put(man->move);
1908 man->move = NULL;
1909 }
1910
1911 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1912 if (enable)
1913 size = adev->gmc.real_vram_size;
1914 else
1915 size = adev->gmc.visible_vram_size;
1916 man->size = size >> PAGE_SHIFT;
1917 adev->mman.buffer_funcs_enabled = enable;
1918}
1919
1920int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1921{
1922 struct drm_file *file_priv = filp->private_data;
1923 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1924
1925 if (adev == NULL)
1926 return -EINVAL;
1927
1928 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1929}
1930
1931static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1932 struct ttm_mem_reg *mem, unsigned num_pages,
1933 uint64_t offset, unsigned window,
1934 struct amdgpu_ring *ring,
1935 uint64_t *addr)
1936{
1937 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1938 struct amdgpu_device *adev = ring->adev;
1939 struct ttm_tt *ttm = bo->ttm;
1940 struct amdgpu_job *job;
1941 unsigned num_dw, num_bytes;
1942 dma_addr_t *dma_address;
1943 struct dma_fence *fence;
1944 uint64_t src_addr, dst_addr;
1945 uint64_t flags;
1946 int r;
1947
1948 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1949 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1950
1951 *addr = adev->gmc.gart_start;
1952 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1953 AMDGPU_GPU_PAGE_SIZE;
1954
1955 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1956 while (num_dw & 0x7)
1957 num_dw++;
1958
1959 num_bytes = num_pages * 8;
1960
1961 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1962 if (r)
1963 return r;
1964
1965 src_addr = num_dw * 4;
1966 src_addr += job->ibs[0].gpu_addr;
1967
1968 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1969 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1970 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1971 dst_addr, num_bytes);
1972
1973 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1974 WARN_ON(job->ibs[0].length_dw > num_dw);
1975
1976 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
1977 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1978 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1979 &job->ibs[0].ptr[num_dw]);
1980 if (r)
1981 goto error_free;
1982
1983 r = amdgpu_job_submit(job, &adev->mman.entity,
1984 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1985 if (r)
1986 goto error_free;
1987
1988 dma_fence_put(fence);
1989
1990 return r;
1991
1992error_free:
1993 amdgpu_job_free(job);
1994 return r;
1995}
1996
1997int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1998 uint64_t dst_offset, uint32_t byte_count,
1999 struct dma_resv *resv,
2000 struct dma_fence **fence, bool direct_submit,
2001 bool vm_needs_flush)
2002{
2003 struct amdgpu_device *adev = ring->adev;
2004 struct amdgpu_job *job;
2005
2006 uint32_t max_bytes;
2007 unsigned num_loops, num_dw;
2008 unsigned i;
2009 int r;
2010
2011 if (direct_submit && !ring->sched.ready) {
2012 DRM_ERROR("Trying to move memory with ring turned off.\n");
2013 return -EINVAL;
2014 }
2015
2016 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2017 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2018 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2019
2020 /* for IB padding */
2021 while (num_dw & 0x7)
2022 num_dw++;
2023
2024 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2025 if (r)
2026 return r;
2027
2028 if (vm_needs_flush) {
2029 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2030 job->vm_needs_flush = true;
2031 }
2032 if (resv) {
2033 r = amdgpu_sync_resv(adev, &job->sync, resv,
2034 AMDGPU_FENCE_OWNER_UNDEFINED,
2035 false);
2036 if (r) {
2037 DRM_ERROR("sync failed (%d).\n", r);
2038 goto error_free;
2039 }
2040 }
2041
2042 for (i = 0; i < num_loops; i++) {
2043 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2044
2045 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2046 dst_offset, cur_size_in_bytes);
2047
2048 src_offset += cur_size_in_bytes;
2049 dst_offset += cur_size_in_bytes;
2050 byte_count -= cur_size_in_bytes;
2051 }
2052
2053 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2054 WARN_ON(job->ibs[0].length_dw > num_dw);
2055 if (direct_submit)
2056 r = amdgpu_job_submit_direct(job, ring, fence);
2057 else
2058 r = amdgpu_job_submit(job, &adev->mman.entity,
2059 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2060 if (r)
2061 goto error_free;
2062
2063 return r;
2064
2065error_free:
2066 amdgpu_job_free(job);
2067 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2068 return r;
2069}
2070
2071int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2072 uint32_t src_data,
2073 struct dma_resv *resv,
2074 struct dma_fence **fence)
2075{
2076 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2077 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2078 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2079
2080 struct drm_mm_node *mm_node;
2081 unsigned long num_pages;
2082 unsigned int num_loops, num_dw;
2083
2084 struct amdgpu_job *job;
2085 int r;
2086
2087 if (!adev->mman.buffer_funcs_enabled) {
2088 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2089 return -EINVAL;
2090 }
2091
2092 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2093 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2094 if (r)
2095 return r;
2096 }
2097
2098 num_pages = bo->tbo.num_pages;
2099 mm_node = bo->tbo.mem.mm_node;
2100 num_loops = 0;
2101 while (num_pages) {
2102 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2103
2104 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2105 num_pages -= mm_node->size;
2106 ++mm_node;
2107 }
2108 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2109
2110 /* for IB padding */
2111 num_dw += 64;
2112
2113 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2114 if (r)
2115 return r;
2116
2117 if (resv) {
2118 r = amdgpu_sync_resv(adev, &job->sync, resv,
2119 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2120 if (r) {
2121 DRM_ERROR("sync failed (%d).\n", r);
2122 goto error_free;
2123 }
2124 }
2125
2126 num_pages = bo->tbo.num_pages;
2127 mm_node = bo->tbo.mem.mm_node;
2128
2129 while (num_pages) {
2130 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2131 uint64_t dst_addr;
2132
2133 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2134 while (byte_count) {
2135 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2136 max_bytes);
2137
2138 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2139 dst_addr, cur_size_in_bytes);
2140
2141 dst_addr += cur_size_in_bytes;
2142 byte_count -= cur_size_in_bytes;
2143 }
2144
2145 num_pages -= mm_node->size;
2146 ++mm_node;
2147 }
2148
2149 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2150 WARN_ON(job->ibs[0].length_dw > num_dw);
2151 r = amdgpu_job_submit(job, &adev->mman.entity,
2152 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2153 if (r)
2154 goto error_free;
2155
2156 return 0;
2157
2158error_free:
2159 amdgpu_job_free(job);
2160 return r;
2161}
2162
2163#if defined(CONFIG_DEBUG_FS)
2164
2165static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2166{
2167 struct drm_info_node *node = (struct drm_info_node *)m->private;
2168 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2169 struct drm_device *dev = node->minor->dev;
2170 struct amdgpu_device *adev = dev->dev_private;
2171 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2172 struct drm_printer p = drm_seq_file_printer(m);
2173
2174 man->func->debug(man, &p);
2175 return 0;
2176}
2177
2178static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2179 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2180 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2181 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2182 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2183 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2184 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2185#ifdef CONFIG_SWIOTLB
2186 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2187#endif
2188};
2189
2190/**
2191 * amdgpu_ttm_vram_read - Linear read access to VRAM
2192 *
2193 * Accesses VRAM via MMIO for debugging purposes.
2194 */
2195static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2196 size_t size, loff_t *pos)
2197{
2198 struct amdgpu_device *adev = file_inode(f)->i_private;
2199 ssize_t result = 0;
2200 int r;
2201
2202 if (size & 0x3 || *pos & 0x3)
2203 return -EINVAL;
2204
2205 if (*pos >= adev->gmc.mc_vram_size)
2206 return -ENXIO;
2207
2208 while (size) {
2209 unsigned long flags;
2210 uint32_t value;
2211
2212 if (*pos >= adev->gmc.mc_vram_size)
2213 return result;
2214
2215 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2216 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2217 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2218 value = RREG32_NO_KIQ(mmMM_DATA);
2219 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2220
2221 r = put_user(value, (uint32_t *)buf);
2222 if (r)
2223 return r;
2224
2225 result += 4;
2226 buf += 4;
2227 *pos += 4;
2228 size -= 4;
2229 }
2230
2231 return result;
2232}
2233
2234/**
2235 * amdgpu_ttm_vram_write - Linear write access to VRAM
2236 *
2237 * Accesses VRAM via MMIO for debugging purposes.
2238 */
2239static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2240 size_t size, loff_t *pos)
2241{
2242 struct amdgpu_device *adev = file_inode(f)->i_private;
2243 ssize_t result = 0;
2244 int r;
2245
2246 if (size & 0x3 || *pos & 0x3)
2247 return -EINVAL;
2248
2249 if (*pos >= adev->gmc.mc_vram_size)
2250 return -ENXIO;
2251
2252 while (size) {
2253 unsigned long flags;
2254 uint32_t value;
2255
2256 if (*pos >= adev->gmc.mc_vram_size)
2257 return result;
2258
2259 r = get_user(value, (uint32_t *)buf);
2260 if (r)
2261 return r;
2262
2263 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2264 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2265 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2266 WREG32_NO_KIQ(mmMM_DATA, value);
2267 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2268
2269 result += 4;
2270 buf += 4;
2271 *pos += 4;
2272 size -= 4;
2273 }
2274
2275 return result;
2276}
2277
2278static const struct file_operations amdgpu_ttm_vram_fops = {
2279 .owner = THIS_MODULE,
2280 .read = amdgpu_ttm_vram_read,
2281 .write = amdgpu_ttm_vram_write,
2282 .llseek = default_llseek,
2283};
2284
2285#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2286
2287/**
2288 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2289 */
2290static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2291 size_t size, loff_t *pos)
2292{
2293 struct amdgpu_device *adev = file_inode(f)->i_private;
2294 ssize_t result = 0;
2295 int r;
2296
2297 while (size) {
2298 loff_t p = *pos / PAGE_SIZE;
2299 unsigned off = *pos & ~PAGE_MASK;
2300 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2301 struct page *page;
2302 void *ptr;
2303
2304 if (p >= adev->gart.num_cpu_pages)
2305 return result;
2306
2307 page = adev->gart.pages[p];
2308 if (page) {
2309 ptr = kmap(page);
2310 ptr += off;
2311
2312 r = copy_to_user(buf, ptr, cur_size);
2313 kunmap(adev->gart.pages[p]);
2314 } else
2315 r = clear_user(buf, cur_size);
2316
2317 if (r)
2318 return -EFAULT;
2319
2320 result += cur_size;
2321 buf += cur_size;
2322 *pos += cur_size;
2323 size -= cur_size;
2324 }
2325
2326 return result;
2327}
2328
2329static const struct file_operations amdgpu_ttm_gtt_fops = {
2330 .owner = THIS_MODULE,
2331 .read = amdgpu_ttm_gtt_read,
2332 .llseek = default_llseek
2333};
2334
2335#endif
2336
2337/**
2338 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2339 *
2340 * This function is used to read memory that has been mapped to the
2341 * GPU and the known addresses are not physical addresses but instead
2342 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2343 */
2344static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2345 size_t size, loff_t *pos)
2346{
2347 struct amdgpu_device *adev = file_inode(f)->i_private;
2348 struct iommu_domain *dom;
2349 ssize_t result = 0;
2350 int r;
2351
2352 /* retrieve the IOMMU domain if any for this device */
2353 dom = iommu_get_domain_for_dev(adev->dev);
2354
2355 while (size) {
2356 phys_addr_t addr = *pos & PAGE_MASK;
2357 loff_t off = *pos & ~PAGE_MASK;
2358 size_t bytes = PAGE_SIZE - off;
2359 unsigned long pfn;
2360 struct page *p;
2361 void *ptr;
2362
2363 bytes = bytes < size ? bytes : size;
2364
2365 /* Translate the bus address to a physical address. If
2366 * the domain is NULL it means there is no IOMMU active
2367 * and the address translation is the identity
2368 */
2369 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2370
2371 pfn = addr >> PAGE_SHIFT;
2372 if (!pfn_valid(pfn))
2373 return -EPERM;
2374
2375 p = pfn_to_page(pfn);
2376 if (p->mapping != adev->mman.bdev.dev_mapping)
2377 return -EPERM;
2378
2379 ptr = kmap(p);
2380 r = copy_to_user(buf, ptr + off, bytes);
2381 kunmap(p);
2382 if (r)
2383 return -EFAULT;
2384
2385 size -= bytes;
2386 *pos += bytes;
2387 result += bytes;
2388 }
2389
2390 return result;
2391}
2392
2393/**
2394 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2395 *
2396 * This function is used to write memory that has been mapped to the
2397 * GPU and the known addresses are not physical addresses but instead
2398 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2399 */
2400static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2401 size_t size, loff_t *pos)
2402{
2403 struct amdgpu_device *adev = file_inode(f)->i_private;
2404 struct iommu_domain *dom;
2405 ssize_t result = 0;
2406 int r;
2407
2408 dom = iommu_get_domain_for_dev(adev->dev);
2409
2410 while (size) {
2411 phys_addr_t addr = *pos & PAGE_MASK;
2412 loff_t off = *pos & ~PAGE_MASK;
2413 size_t bytes = PAGE_SIZE - off;
2414 unsigned long pfn;
2415 struct page *p;
2416 void *ptr;
2417
2418 bytes = bytes < size ? bytes : size;
2419
2420 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2421
2422 pfn = addr >> PAGE_SHIFT;
2423 if (!pfn_valid(pfn))
2424 return -EPERM;
2425
2426 p = pfn_to_page(pfn);
2427 if (p->mapping != adev->mman.bdev.dev_mapping)
2428 return -EPERM;
2429
2430 ptr = kmap(p);
2431 r = copy_from_user(ptr + off, buf, bytes);
2432 kunmap(p);
2433 if (r)
2434 return -EFAULT;
2435
2436 size -= bytes;
2437 *pos += bytes;
2438 result += bytes;
2439 }
2440
2441 return result;
2442}
2443
2444static const struct file_operations amdgpu_ttm_iomem_fops = {
2445 .owner = THIS_MODULE,
2446 .read = amdgpu_iomem_read,
2447 .write = amdgpu_iomem_write,
2448 .llseek = default_llseek
2449};
2450
2451static const struct {
2452 char *name;
2453 const struct file_operations *fops;
2454 int domain;
2455} ttm_debugfs_entries[] = {
2456 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2457#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2458 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2459#endif
2460 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2461};
2462
2463#endif
2464
2465static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2466{
2467#if defined(CONFIG_DEBUG_FS)
2468 unsigned count;
2469
2470 struct drm_minor *minor = adev->ddev->primary;
2471 struct dentry *ent, *root = minor->debugfs_root;
2472
2473 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2474 ent = debugfs_create_file(
2475 ttm_debugfs_entries[count].name,
2476 S_IFREG | S_IRUGO, root,
2477 adev,
2478 ttm_debugfs_entries[count].fops);
2479 if (IS_ERR(ent))
2480 return PTR_ERR(ent);
2481 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2482 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2483 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2484 i_size_write(ent->d_inode, adev->gmc.gart_size);
2485 adev->mman.debugfs_entries[count] = ent;
2486 }
2487
2488 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2489
2490#ifdef CONFIG_SWIOTLB
2491 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2492 --count;
2493#endif
2494
2495 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2496#else
2497 return 0;
2498#endif
2499}
2500
2501static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2502{
2503#if defined(CONFIG_DEBUG_FS)
2504 unsigned i;
2505
2506 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2507 debugfs_remove(adev->mman.debugfs_entries[i]);
2508#endif
2509}