Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20#include <linux/kasan.h>
 21
 22#include <asm/cpu_entry_area.h>
 23#include <asm/stacktrace.h>
 24#include <asm/unwind.h>
 25
 26int panic_on_unrecovered_nmi;
 27int panic_on_io_nmi;
 
 
 28static int die_counter;
 29
 30static struct pt_regs exec_summary_regs;
 31
 32bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
 33			   struct stack_info *info)
 34{
 35	unsigned long *begin = task_stack_page(task);
 36	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 37
 38	if (stack < begin || stack >= end)
 39		return false;
 40
 41	info->type	= STACK_TYPE_TASK;
 42	info->begin	= begin;
 43	info->end	= end;
 44	info->next_sp	= NULL;
 45
 46	return true;
 47}
 48
 49/* Called from get_stack_info_noinstr - so must be noinstr too */
 50bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
 
 
 
 51{
 52	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 
 
 53
 54	void *begin = ss;
 55	void *end = ss + 1;
 56
 57	if ((void *)stack < begin || (void *)stack >= end)
 58		return false;
 59
 60	info->type	= STACK_TYPE_ENTRY;
 61	info->begin	= begin;
 62	info->end	= end;
 63	info->next_sp	= NULL;
 64
 65	return true;
 66}
 67
 68static void printk_stack_address(unsigned long address, int reliable,
 69				 const char *log_lvl)
 70{
 71	touch_nmi_watchdog();
 72	printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address);
 73}
 74
 75static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
 76		     unsigned int nbytes)
 77{
 78	if (!user_mode(regs))
 79		return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
 80
 81	/* The user space code from other tasks cannot be accessed. */
 82	if (regs != task_pt_regs(current))
 83		return -EPERM;
 84
 85	/*
 86	 * Even if named copy_from_user_nmi() this can be invoked from
 87	 * other contexts and will not try to resolve a pagefault, which is
 88	 * the correct thing to do here as this code can be called from any
 89	 * context.
 90	 */
 91	return copy_from_user_nmi(buf, (void __user *)src, nbytes);
 92}
 
 
 
 
 
 
 
 93
 94/*
 95 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 96 *
 97 * In case where we don't have the exact kernel image (which, if we did, we can
 98 * simply disassemble and navigate to the RIP), the purpose of the bigger
 99 * prologue is to have more context and to be able to correlate the code from
100 * the different toolchains better.
101 *
102 * In addition, it helps in recreating the register allocation of the failing
103 * kernel and thus make sense of the register dump.
104 *
105 * What is more, the additional complication of a variable length insn arch like
106 * x86 warrants having longer byte sequence before rIP so that the disassembler
107 * can "sync" up properly and find instruction boundaries when decoding the
108 * opcode bytes.
109 *
110 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
111 * guesstimate in attempt to achieve all of the above.
112 */
113void show_opcodes(struct pt_regs *regs, const char *loglvl)
 
 
114{
115#define PROLOGUE_SIZE 42
116#define EPILOGUE_SIZE 21
117#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
118	u8 opcodes[OPCODE_BUFSIZE];
119	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
120
121	switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
122	case 0:
123		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
124		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
125		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
126		break;
127	case -EPERM:
128		/* No access to the user space stack of other tasks. Ignore. */
129		break;
130	default:
131		printk("%sCode: Unable to access opcode bytes at 0x%lx.\n",
132		       loglvl, prologue);
133		break;
134	}
 
135}
136
137void show_ip(struct pt_regs *regs, const char *loglvl)
138{
139#ifdef CONFIG_X86_32
140	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
141#else
142	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
143#endif
144	show_opcodes(regs, loglvl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145}
 
146
147void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
 
 
 
 
148{
149	show_ip(regs, log_lvl);
150	printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
151		regs->sp, regs->flags);
152}
153
154static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
155				  bool partial, const char *log_lvl)
156{
157	/*
158	 * These on_stack() checks aren't strictly necessary: the unwind code
159	 * has already validated the 'regs' pointer.  The checks are done for
160	 * ordering reasons: if the registers are on the next stack, we don't
161	 * want to print them out yet.  Otherwise they'll be shown as part of
162	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
163	 * next stack, this function will be called again with the same regs so
164	 * they can be printed in the right context.
165	 */
166	if (!partial && on_stack(info, regs, sizeof(*regs))) {
167		__show_regs(regs, SHOW_REGS_SHORT, log_lvl);
168
169	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
170				       IRET_FRAME_SIZE)) {
171		/*
172		 * When an interrupt or exception occurs in entry code, the
173		 * full pt_regs might not have been saved yet.  In that case
174		 * just print the iret frame.
175		 */
176		show_iret_regs(regs, log_lvl);
177	}
178}
179
180/*
181 * This function reads pointers from the stack and dereferences them. The
182 * pointers may not have their KMSAN shadow set up properly, which may result
183 * in false positive reports. Disable instrumentation to avoid those.
184 */
185__no_kmsan_checks
186static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
187			unsigned long *stack, const char *log_lvl)
188{
189	struct unwind_state state;
190	struct stack_info stack_info = {0};
191	unsigned long visit_mask = 0;
192	int graph_idx = 0;
193	bool partial = false;
194
195	printk("%sCall Trace:\n", log_lvl);
 
196
197	unwind_start(&state, task, regs, stack);
198	regs = unwind_get_entry_regs(&state, &partial);
 
 
 
199
200	/*
201	 * Iterate through the stacks, starting with the current stack pointer.
202	 * Each stack has a pointer to the next one.
203	 *
204	 * x86-64 can have several stacks:
205	 * - task stack
206	 * - interrupt stack
207	 * - HW exception stacks (double fault, nmi, debug, mce)
208	 * - entry stack
209	 *
210	 * x86-32 can have up to four stacks:
211	 * - task stack
212	 * - softirq stack
213	 * - hardirq stack
214	 * - entry stack
215	 */
216	for (stack = stack ?: get_stack_pointer(task, regs);
217	     stack;
218	     stack = stack_info.next_sp) {
219		const char *stack_name;
220
221		stack = PTR_ALIGN(stack, sizeof(long));
222
223		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
224			/*
225			 * We weren't on a valid stack.  It's possible that
226			 * we overflowed a valid stack into a guard page.
227			 * See if the next page up is valid so that we can
228			 * generate some kind of backtrace if this happens.
229			 */
230			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
231			if (get_stack_info(stack, task, &stack_info, &visit_mask))
232				break;
233		}
234
235		stack_name = stack_type_name(stack_info.type);
236		if (stack_name)
237			printk("%s <%s>\n", log_lvl, stack_name);
238
239		if (regs)
240			show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
241
242		/*
243		 * Scan the stack, printing any text addresses we find.  At the
244		 * same time, follow proper stack frames with the unwinder.
245		 *
246		 * Addresses found during the scan which are not reported by
247		 * the unwinder are considered to be additional clues which are
248		 * sometimes useful for debugging and are prefixed with '?'.
249		 * This also serves as a failsafe option in case the unwinder
250		 * goes off in the weeds.
251		 */
252		for (; stack < stack_info.end; stack++) {
253			unsigned long real_addr;
254			int reliable = 0;
255			unsigned long addr = READ_ONCE_NOCHECK(*stack);
256			unsigned long *ret_addr_p =
257				unwind_get_return_address_ptr(&state);
258
259			if (!__kernel_text_address(addr))
260				continue;
261
262			/*
263			 * Don't print regs->ip again if it was already printed
264			 * by show_regs_if_on_stack().
265			 */
266			if (regs && stack == &regs->ip)
267				goto next;
268
269			if (stack == ret_addr_p)
270				reliable = 1;
271
272			/*
273			 * When function graph tracing is enabled for a
274			 * function, its return address on the stack is
275			 * replaced with the address of an ftrace handler
276			 * (return_to_handler).  In that case, before printing
277			 * the "real" address, we want to print the handler
278			 * address as an "unreliable" hint that function graph
279			 * tracing was involved.
280			 */
281			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
282							  addr, stack);
283			if (real_addr != addr)
284				printk_stack_address(addr, 0, log_lvl);
285			printk_stack_address(real_addr, reliable, log_lvl);
286
287			if (!reliable)
288				continue;
289
290next:
291			/*
292			 * Get the next frame from the unwinder.  No need to
293			 * check for an error: if anything goes wrong, the rest
294			 * of the addresses will just be printed as unreliable.
295			 */
296			unwind_next_frame(&state);
297
298			/* if the frame has entry regs, print them */
299			regs = unwind_get_entry_regs(&state, &partial);
300			if (regs)
301				show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
302		}
303
304		if (stack_name)
305			printk("%s </%s>\n", log_lvl, stack_name);
306	}
 
 
 
 
 
307}
308
309void show_stack(struct task_struct *task, unsigned long *sp,
310		       const char *loglvl)
 
 
 
 
 
 
 
311{
312	task = task ? : current;
 
 
313
314	/*
315	 * Stack frames below this one aren't interesting.  Don't show them
316	 * if we're printing for %current.
317	 */
318	if (!sp && task == current)
319		sp = get_stack_pointer(current, NULL);
320
321	show_trace_log_lvl(task, NULL, sp, loglvl);
 
 
322}
323
324void show_stack_regs(struct pt_regs *regs)
 
 
 
325{
326	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
 
 
 
327}
 
328
329static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
330static int die_owner = -1;
331static unsigned int die_nest_count;
332
333unsigned long oops_begin(void)
334{
335	int cpu;
336	unsigned long flags;
337
338	oops_enter();
339
340	/* racy, but better than risking deadlock. */
341	raw_local_irq_save(flags);
342	cpu = smp_processor_id();
343	if (!arch_spin_trylock(&die_lock)) {
344		if (cpu == die_owner)
345			/* nested oops. should stop eventually */;
346		else
347			arch_spin_lock(&die_lock);
348	}
349	die_nest_count++;
350	die_owner = cpu;
351	console_verbose();
352	bust_spinlocks(1);
353	return flags;
354}
355NOKPROBE_SYMBOL(oops_begin);
356
357void __noreturn rewind_stack_and_make_dead(int signr);
358
359void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
360{
361	if (regs && kexec_should_crash(current))
362		crash_kexec(regs);
363
364	bust_spinlocks(0);
365	die_owner = -1;
366	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
367	die_nest_count--;
368	if (!die_nest_count)
369		/* Nest count reaches zero, release the lock. */
370		arch_spin_unlock(&die_lock);
371	raw_local_irq_restore(flags);
372	oops_exit();
373
374	/* Executive summary in case the oops scrolled away */
375	__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
376
377	if (!signr)
378		return;
379	if (in_interrupt())
380		panic("Fatal exception in interrupt");
381	if (panic_on_oops)
382		panic("Fatal exception");
383
384	/*
385	 * We're not going to return, but we might be on an IST stack or
386	 * have very little stack space left.  Rewind the stack and kill
387	 * the task.
388	 * Before we rewind the stack, we have to tell KASAN that we're going to
389	 * reuse the task stack and that existing poisons are invalid.
390	 */
391	kasan_unpoison_task_stack(current);
392	rewind_stack_and_make_dead(signr);
393}
394NOKPROBE_SYMBOL(oops_end);
395
396static void __die_header(const char *str, struct pt_regs *regs, long err)
397{
398	const char *pr = "";
399
400	/* Save the regs of the first oops for the executive summary later. */
401	if (!die_counter)
402		exec_summary_regs = *regs;
403
404	if (IS_ENABLED(CONFIG_PREEMPTION))
405		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
406
407	printk(KERN_DEFAULT
408	       "Oops: %s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff,
409	       ++die_counter, pr,
410	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
411	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
412	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
413	       IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) ?
414	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
415}
416NOKPROBE_SYMBOL(__die_header);
417
418static int __die_body(const char *str, struct pt_regs *regs, long err)
419{
420	show_regs(regs);
421	print_modules();
422
 
 
 
 
 
 
 
 
 
 
 
 
 
423	if (notify_die(DIE_OOPS, str, regs, err,
424			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
425		return 1;
426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427	return 0;
428}
429NOKPROBE_SYMBOL(__die_body);
430
431int __die(const char *str, struct pt_regs *regs, long err)
432{
433	__die_header(str, regs, err);
434	return __die_body(str, regs, err);
435}
436NOKPROBE_SYMBOL(__die);
437
438/*
439 * This is gone through when something in the kernel has done something bad
440 * and is about to be terminated:
441 */
442void die(const char *str, struct pt_regs *regs, long err)
443{
444	unsigned long flags = oops_begin();
445	int sig = SIGSEGV;
446
 
 
 
447	if (__die(str, regs, err))
448		sig = 0;
449	oops_end(flags, regs, sig);
450}
451
452void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
453{
454	unsigned long flags = oops_begin();
455	int sig = SIGSEGV;
456
457	__die_header(str, regs, err);
458	if (gp_addr)
459		kasan_non_canonical_hook(gp_addr);
460	if (__die_body(str, regs, err))
461		sig = 0;
462	oops_end(flags, regs, sig);
 
 
463}
 
464
465void show_regs(struct pt_regs *regs)
466{
467	enum show_regs_mode print_kernel_regs;
 
 
 
 
468
469	show_regs_print_info(KERN_DEFAULT);
 
 
470
471	print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
472	__show_regs(regs, print_kernel_regs, KERN_DEFAULT);
 
473
474	/*
475	 * When in-kernel, we also print out the stack at the time of the fault..
476	 */
477	if (!user_mode(regs))
478		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
479}
v3.5.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 
 
 13#include <linux/ftrace.h>
 14#include <linux/kexec.h>
 15#include <linux/bug.h>
 16#include <linux/nmi.h>
 17#include <linux/sysfs.h>
 
 18
 
 19#include <asm/stacktrace.h>
 20
 21
 22int panic_on_unrecovered_nmi;
 23int panic_on_io_nmi;
 24unsigned int code_bytes = 64;
 25int kstack_depth_to_print = 3 * STACKSLOTS_PER_LINE;
 26static int die_counter;
 27
 28void printk_address(unsigned long address, int reliable)
 
 
 
 29{
 30	printk(" [<%p>] %s%pB\n", (void *) address,
 31			reliable ? "" : "? ", (void *) address);
 
 
 
 
 
 
 
 
 
 
 32}
 33
 34#ifdef CONFIG_FUNCTION_GRAPH_TRACER
 35static void
 36print_ftrace_graph_addr(unsigned long addr, void *data,
 37			const struct stacktrace_ops *ops,
 38			struct thread_info *tinfo, int *graph)
 39{
 40	struct task_struct *task;
 41	unsigned long ret_addr;
 42	int index;
 43
 44	if (addr != (unsigned long)return_to_handler)
 45		return;
 
 
 
 46
 47	task = tinfo->task;
 48	index = task->curr_ret_stack;
 
 
 49
 50	if (!task->ret_stack || index < *graph)
 51		return;
 52
 53	index -= *graph;
 54	ret_addr = task->ret_stack[index].ret;
 
 
 
 
 55
 56	ops->address(data, ret_addr, 1);
 
 
 
 
 57
 58	(*graph)++;
 
 
 
 
 
 
 
 
 
 
 59}
 60#else
 61static inline void
 62print_ftrace_graph_addr(unsigned long addr, void *data,
 63			const struct stacktrace_ops *ops,
 64			struct thread_info *tinfo, int *graph)
 65{ }
 66#endif
 67
 68/*
 69 * x86-64 can have up to three kernel stacks:
 70 * process stack
 71 * interrupt stack
 72 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
 
 
 
 
 
 
 
 
 
 
 
 
 
 73 */
 74
 75static inline int valid_stack_ptr(struct thread_info *tinfo,
 76			void *p, unsigned int size, void *end)
 77{
 78	void *t = tinfo;
 79	if (end) {
 80		if (p < end && p >= (end-THREAD_SIZE))
 81			return 1;
 82		else
 83			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 84	}
 85	return p > t && p < t + THREAD_SIZE - size;
 86}
 87
 88unsigned long
 89print_context_stack(struct thread_info *tinfo,
 90		unsigned long *stack, unsigned long bp,
 91		const struct stacktrace_ops *ops, void *data,
 92		unsigned long *end, int *graph)
 93{
 94	struct stack_frame *frame = (struct stack_frame *)bp;
 95
 96	while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
 97		unsigned long addr;
 98
 99		addr = *stack;
100		if (__kernel_text_address(addr)) {
101			if ((unsigned long) stack == bp + sizeof(long)) {
102				ops->address(data, addr, 1);
103				frame = frame->next_frame;
104				bp = (unsigned long) frame;
105			} else {
106				ops->address(data, addr, 0);
107			}
108			print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
109		}
110		stack++;
111	}
112	return bp;
113}
114EXPORT_SYMBOL_GPL(print_context_stack);
115
116unsigned long
117print_context_stack_bp(struct thread_info *tinfo,
118		       unsigned long *stack, unsigned long bp,
119		       const struct stacktrace_ops *ops, void *data,
120		       unsigned long *end, int *graph)
121{
122	struct stack_frame *frame = (struct stack_frame *)bp;
123	unsigned long *ret_addr = &frame->return_address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125	while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
126		unsigned long addr = *ret_addr;
 
 
 
 
 
 
 
 
 
 
 
 
127
128		if (!__kernel_text_address(addr))
129			break;
130
131		ops->address(data, addr, 1);
132		frame = frame->next_frame;
133		ret_addr = &frame->return_address;
134		print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
135	}
136
137	return (unsigned long)frame;
138}
139EXPORT_SYMBOL_GPL(print_context_stack_bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
141static int print_trace_stack(void *data, char *name)
142{
143	printk("%s <%s> ", (char *)data, name);
144	return 0;
145}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
147/*
148 * Print one address/symbol entries per line.
149 */
150static void print_trace_address(void *data, unsigned long addr, int reliable)
151{
152	touch_nmi_watchdog();
153	printk(data);
154	printk_address(addr, reliable);
155}
156
157static const struct stacktrace_ops print_trace_ops = {
158	.stack			= print_trace_stack,
159	.address		= print_trace_address,
160	.walk_stack		= print_context_stack,
161};
162
163void
164show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
165		unsigned long *stack, unsigned long bp, char *log_lvl)
166{
167	printk("%sCall Trace:\n", log_lvl);
168	dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
169}
170
171void show_trace(struct task_struct *task, struct pt_regs *regs,
172		unsigned long *stack, unsigned long bp)
173{
174	show_trace_log_lvl(task, regs, stack, bp, "");
175}
 
176
177void show_stack(struct task_struct *task, unsigned long *sp)
178{
179	show_stack_log_lvl(task, NULL, sp, 0, "");
180}
181
182/*
183 * The architecture-independent dump_stack generator
184 */
185void dump_stack(void)
186{
187	unsigned long bp;
188	unsigned long stack;
189
190	bp = stack_frame(current, NULL);
191	printk("Pid: %d, comm: %.20s %s %s %.*s\n",
192		current->pid, current->comm, print_tainted(),
193		init_utsname()->release,
194		(int)strcspn(init_utsname()->version, " "),
195		init_utsname()->version);
196	show_trace(NULL, NULL, &stack, bp);
197}
198EXPORT_SYMBOL(dump_stack);
199
200static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
201static int die_owner = -1;
202static unsigned int die_nest_count;
203
204unsigned __kprobes long oops_begin(void)
205{
206	int cpu;
207	unsigned long flags;
208
209	oops_enter();
210
211	/* racy, but better than risking deadlock. */
212	raw_local_irq_save(flags);
213	cpu = smp_processor_id();
214	if (!arch_spin_trylock(&die_lock)) {
215		if (cpu == die_owner)
216			/* nested oops. should stop eventually */;
217		else
218			arch_spin_lock(&die_lock);
219	}
220	die_nest_count++;
221	die_owner = cpu;
222	console_verbose();
223	bust_spinlocks(1);
224	return flags;
225}
226EXPORT_SYMBOL_GPL(oops_begin);
227
228void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
 
 
229{
230	if (regs && kexec_should_crash(current))
231		crash_kexec(regs);
232
233	bust_spinlocks(0);
234	die_owner = -1;
235	add_taint(TAINT_DIE);
236	die_nest_count--;
237	if (!die_nest_count)
238		/* Nest count reaches zero, release the lock. */
239		arch_spin_unlock(&die_lock);
240	raw_local_irq_restore(flags);
241	oops_exit();
242
 
 
 
243	if (!signr)
244		return;
245	if (in_interrupt())
246		panic("Fatal exception in interrupt");
247	if (panic_on_oops)
248		panic("Fatal exception");
249	do_exit(signr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250}
 
251
252int __kprobes __die(const char *str, struct pt_regs *regs, long err)
253{
254#ifdef CONFIG_X86_32
255	unsigned short ss;
256	unsigned long sp;
257#endif
258	printk(KERN_DEFAULT
259	       "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
260#ifdef CONFIG_PREEMPT
261	printk("PREEMPT ");
262#endif
263#ifdef CONFIG_SMP
264	printk("SMP ");
265#endif
266#ifdef CONFIG_DEBUG_PAGEALLOC
267	printk("DEBUG_PAGEALLOC");
268#endif
269	printk("\n");
270	if (notify_die(DIE_OOPS, str, regs, err,
271			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
272		return 1;
273
274	show_regs(regs);
275#ifdef CONFIG_X86_32
276	if (user_mode_vm(regs)) {
277		sp = regs->sp;
278		ss = regs->ss & 0xffff;
279	} else {
280		sp = kernel_stack_pointer(regs);
281		savesegment(ss, ss);
282	}
283	printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
284	print_symbol("%s", regs->ip);
285	printk(" SS:ESP %04x:%08lx\n", ss, sp);
286#else
287	/* Executive summary in case the oops scrolled away */
288	printk(KERN_ALERT "RIP ");
289	printk_address(regs->ip, 1);
290	printk(" RSP <%016lx>\n", regs->sp);
291#endif
292	return 0;
293}
 
 
 
 
 
 
 
 
294
295/*
296 * This is gone through when something in the kernel has done something bad
297 * and is about to be terminated:
298 */
299void die(const char *str, struct pt_regs *regs, long err)
300{
301	unsigned long flags = oops_begin();
302	int sig = SIGSEGV;
303
304	if (!user_mode_vm(regs))
305		report_bug(regs->ip, regs);
306
307	if (__die(str, regs, err))
308		sig = 0;
309	oops_end(flags, regs, sig);
310}
311
312static int __init kstack_setup(char *s)
313{
314	ssize_t ret;
315	unsigned long val;
316
317	if (!s)
318		return -EINVAL;
319
320	ret = kstrtoul(s, 0, &val);
321	if (ret)
322		return ret;
323	kstack_depth_to_print = val;
324	return 0;
325}
326early_param("kstack", kstack_setup);
327
328static int __init code_bytes_setup(char *s)
329{
330	ssize_t ret;
331	unsigned long val;
332
333	if (!s)
334		return -EINVAL;
335
336	ret = kstrtoul(s, 0, &val);
337	if (ret)
338		return ret;
339
340	code_bytes = val;
341	if (code_bytes > 8192)
342		code_bytes = 8192;
343
344	return 1;
 
 
 
 
345}
346__setup("code_bytes=", code_bytes_setup);