Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20#include <linux/kasan.h>
 21
 22#include <asm/cpu_entry_area.h>
 23#include <asm/stacktrace.h>
 24#include <asm/unwind.h>
 25
 26int panic_on_unrecovered_nmi;
 27int panic_on_io_nmi;
 28static int die_counter;
 29
 30static struct pt_regs exec_summary_regs;
 31
 32bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
 33			   struct stack_info *info)
 34{
 35	unsigned long *begin = task_stack_page(task);
 36	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 37
 38	if (stack < begin || stack >= end)
 39		return false;
 40
 41	info->type	= STACK_TYPE_TASK;
 42	info->begin	= begin;
 43	info->end	= end;
 44	info->next_sp	= NULL;
 45
 46	return true;
 47}
 48
 49/* Called from get_stack_info_noinstr - so must be noinstr too */
 50bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
 51{
 52	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 53
 54	void *begin = ss;
 55	void *end = ss + 1;
 56
 57	if ((void *)stack < begin || (void *)stack >= end)
 58		return false;
 59
 60	info->type	= STACK_TYPE_ENTRY;
 61	info->begin	= begin;
 62	info->end	= end;
 63	info->next_sp	= NULL;
 64
 65	return true;
 66}
 67
 68static void printk_stack_address(unsigned long address, int reliable,
 69				 const char *log_lvl)
 70{
 71	touch_nmi_watchdog();
 72	printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address);
 73}
 74
 75static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
 76		     unsigned int nbytes)
 77{
 78	if (!user_mode(regs))
 79		return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
 80
 81	/* The user space code from other tasks cannot be accessed. */
 82	if (regs != task_pt_regs(current))
 83		return -EPERM;
 84
 85	/*
 86	 * Even if named copy_from_user_nmi() this can be invoked from
 87	 * other contexts and will not try to resolve a pagefault, which is
 88	 * the correct thing to do here as this code can be called from any
 89	 * context.
 90	 */
 91	return copy_from_user_nmi(buf, (void __user *)src, nbytes);
 92}
 93
 94/*
 95 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 96 *
 97 * In case where we don't have the exact kernel image (which, if we did, we can
 98 * simply disassemble and navigate to the RIP), the purpose of the bigger
 99 * prologue is to have more context and to be able to correlate the code from
100 * the different toolchains better.
101 *
102 * In addition, it helps in recreating the register allocation of the failing
103 * kernel and thus make sense of the register dump.
104 *
105 * What is more, the additional complication of a variable length insn arch like
106 * x86 warrants having longer byte sequence before rIP so that the disassembler
107 * can "sync" up properly and find instruction boundaries when decoding the
108 * opcode bytes.
109 *
110 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
111 * guesstimate in attempt to achieve all of the above.
112 */
113void show_opcodes(struct pt_regs *regs, const char *loglvl)
114{
115#define PROLOGUE_SIZE 42
116#define EPILOGUE_SIZE 21
117#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
118	u8 opcodes[OPCODE_BUFSIZE];
119	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
 
120
121	switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
122	case 0:
 
 
 
 
 
 
 
 
 
123		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
124		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
125		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
126		break;
127	case -EPERM:
128		/* No access to the user space stack of other tasks. Ignore. */
129		break;
130	default:
131		printk("%sCode: Unable to access opcode bytes at 0x%lx.\n",
132		       loglvl, prologue);
133		break;
134	}
135}
136
137void show_ip(struct pt_regs *regs, const char *loglvl)
138{
139#ifdef CONFIG_X86_32
140	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
141#else
142	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
143#endif
144	show_opcodes(regs, loglvl);
145}
146
147void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
148{
149	show_ip(regs, log_lvl);
150	printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
151		regs->sp, regs->flags);
152}
153
154static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
155				  bool partial, const char *log_lvl)
156{
157	/*
158	 * These on_stack() checks aren't strictly necessary: the unwind code
159	 * has already validated the 'regs' pointer.  The checks are done for
160	 * ordering reasons: if the registers are on the next stack, we don't
161	 * want to print them out yet.  Otherwise they'll be shown as part of
162	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
163	 * next stack, this function will be called again with the same regs so
164	 * they can be printed in the right context.
165	 */
166	if (!partial && on_stack(info, regs, sizeof(*regs))) {
167		__show_regs(regs, SHOW_REGS_SHORT, log_lvl);
168
169	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
170				       IRET_FRAME_SIZE)) {
171		/*
172		 * When an interrupt or exception occurs in entry code, the
173		 * full pt_regs might not have been saved yet.  In that case
174		 * just print the iret frame.
175		 */
176		show_iret_regs(regs, log_lvl);
177	}
178}
179
180/*
181 * This function reads pointers from the stack and dereferences them. The
182 * pointers may not have their KMSAN shadow set up properly, which may result
183 * in false positive reports. Disable instrumentation to avoid those.
184 */
185__no_kmsan_checks
186static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
187			unsigned long *stack, const char *log_lvl)
188{
189	struct unwind_state state;
190	struct stack_info stack_info = {0};
191	unsigned long visit_mask = 0;
192	int graph_idx = 0;
193	bool partial = false;
194
195	printk("%sCall Trace:\n", log_lvl);
196
197	unwind_start(&state, task, regs, stack);
 
198	regs = unwind_get_entry_regs(&state, &partial);
199
200	/*
201	 * Iterate through the stacks, starting with the current stack pointer.
202	 * Each stack has a pointer to the next one.
203	 *
204	 * x86-64 can have several stacks:
205	 * - task stack
206	 * - interrupt stack
207	 * - HW exception stacks (double fault, nmi, debug, mce)
208	 * - entry stack
209	 *
210	 * x86-32 can have up to four stacks:
211	 * - task stack
212	 * - softirq stack
213	 * - hardirq stack
214	 * - entry stack
215	 */
216	for (stack = stack ?: get_stack_pointer(task, regs);
217	     stack;
218	     stack = stack_info.next_sp) {
219		const char *stack_name;
220
221		stack = PTR_ALIGN(stack, sizeof(long));
222
223		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
224			/*
225			 * We weren't on a valid stack.  It's possible that
226			 * we overflowed a valid stack into a guard page.
227			 * See if the next page up is valid so that we can
228			 * generate some kind of backtrace if this happens.
229			 */
230			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
231			if (get_stack_info(stack, task, &stack_info, &visit_mask))
232				break;
233		}
234
235		stack_name = stack_type_name(stack_info.type);
236		if (stack_name)
237			printk("%s <%s>\n", log_lvl, stack_name);
238
239		if (regs)
240			show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
241
242		/*
243		 * Scan the stack, printing any text addresses we find.  At the
244		 * same time, follow proper stack frames with the unwinder.
245		 *
246		 * Addresses found during the scan which are not reported by
247		 * the unwinder are considered to be additional clues which are
248		 * sometimes useful for debugging and are prefixed with '?'.
249		 * This also serves as a failsafe option in case the unwinder
250		 * goes off in the weeds.
251		 */
252		for (; stack < stack_info.end; stack++) {
253			unsigned long real_addr;
254			int reliable = 0;
255			unsigned long addr = READ_ONCE_NOCHECK(*stack);
256			unsigned long *ret_addr_p =
257				unwind_get_return_address_ptr(&state);
258
259			if (!__kernel_text_address(addr))
260				continue;
261
262			/*
263			 * Don't print regs->ip again if it was already printed
264			 * by show_regs_if_on_stack().
265			 */
266			if (regs && stack == &regs->ip)
267				goto next;
268
269			if (stack == ret_addr_p)
270				reliable = 1;
271
272			/*
273			 * When function graph tracing is enabled for a
274			 * function, its return address on the stack is
275			 * replaced with the address of an ftrace handler
276			 * (return_to_handler).  In that case, before printing
277			 * the "real" address, we want to print the handler
278			 * address as an "unreliable" hint that function graph
279			 * tracing was involved.
280			 */
281			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
282							  addr, stack);
283			if (real_addr != addr)
284				printk_stack_address(addr, 0, log_lvl);
285			printk_stack_address(real_addr, reliable, log_lvl);
286
287			if (!reliable)
288				continue;
289
290next:
291			/*
292			 * Get the next frame from the unwinder.  No need to
293			 * check for an error: if anything goes wrong, the rest
294			 * of the addresses will just be printed as unreliable.
295			 */
296			unwind_next_frame(&state);
297
298			/* if the frame has entry regs, print them */
299			regs = unwind_get_entry_regs(&state, &partial);
300			if (regs)
301				show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
302		}
303
304		if (stack_name)
305			printk("%s </%s>\n", log_lvl, stack_name);
306	}
307}
308
309void show_stack(struct task_struct *task, unsigned long *sp,
310		       const char *loglvl)
311{
312	task = task ? : current;
313
314	/*
315	 * Stack frames below this one aren't interesting.  Don't show them
316	 * if we're printing for %current.
317	 */
318	if (!sp && task == current)
319		sp = get_stack_pointer(current, NULL);
320
321	show_trace_log_lvl(task, NULL, sp, loglvl);
322}
323
324void show_stack_regs(struct pt_regs *regs)
325{
326	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
327}
328
329static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
330static int die_owner = -1;
331static unsigned int die_nest_count;
332
333unsigned long oops_begin(void)
334{
335	int cpu;
336	unsigned long flags;
337
338	oops_enter();
339
340	/* racy, but better than risking deadlock. */
341	raw_local_irq_save(flags);
342	cpu = smp_processor_id();
343	if (!arch_spin_trylock(&die_lock)) {
344		if (cpu == die_owner)
345			/* nested oops. should stop eventually */;
346		else
347			arch_spin_lock(&die_lock);
348	}
349	die_nest_count++;
350	die_owner = cpu;
351	console_verbose();
352	bust_spinlocks(1);
353	return flags;
354}
355NOKPROBE_SYMBOL(oops_begin);
356
357void __noreturn rewind_stack_and_make_dead(int signr);
358
359void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
360{
361	if (regs && kexec_should_crash(current))
362		crash_kexec(regs);
363
364	bust_spinlocks(0);
365	die_owner = -1;
366	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
367	die_nest_count--;
368	if (!die_nest_count)
369		/* Nest count reaches zero, release the lock. */
370		arch_spin_unlock(&die_lock);
371	raw_local_irq_restore(flags);
372	oops_exit();
373
374	/* Executive summary in case the oops scrolled away */
375	__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
376
377	if (!signr)
378		return;
379	if (in_interrupt())
380		panic("Fatal exception in interrupt");
381	if (panic_on_oops)
382		panic("Fatal exception");
383
384	/*
385	 * We're not going to return, but we might be on an IST stack or
386	 * have very little stack space left.  Rewind the stack and kill
387	 * the task.
388	 * Before we rewind the stack, we have to tell KASAN that we're going to
389	 * reuse the task stack and that existing poisons are invalid.
390	 */
391	kasan_unpoison_task_stack(current);
392	rewind_stack_and_make_dead(signr);
393}
394NOKPROBE_SYMBOL(oops_end);
395
396static void __die_header(const char *str, struct pt_regs *regs, long err)
397{
398	const char *pr = "";
399
400	/* Save the regs of the first oops for the executive summary later. */
401	if (!die_counter)
402		exec_summary_regs = *regs;
403
404	if (IS_ENABLED(CONFIG_PREEMPTION))
405		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
406
407	printk(KERN_DEFAULT
408	       "Oops: %s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff,
409	       ++die_counter, pr,
410	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
411	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
412	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
413	       IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) ?
414	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
415}
416NOKPROBE_SYMBOL(__die_header);
417
418static int __die_body(const char *str, struct pt_regs *regs, long err)
419{
420	show_regs(regs);
421	print_modules();
422
423	if (notify_die(DIE_OOPS, str, regs, err,
424			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
425		return 1;
426
427	return 0;
428}
429NOKPROBE_SYMBOL(__die_body);
430
431int __die(const char *str, struct pt_regs *regs, long err)
432{
433	__die_header(str, regs, err);
434	return __die_body(str, regs, err);
435}
436NOKPROBE_SYMBOL(__die);
437
438/*
439 * This is gone through when something in the kernel has done something bad
440 * and is about to be terminated:
441 */
442void die(const char *str, struct pt_regs *regs, long err)
443{
444	unsigned long flags = oops_begin();
445	int sig = SIGSEGV;
446
447	if (__die(str, regs, err))
448		sig = 0;
449	oops_end(flags, regs, sig);
450}
451
452void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
453{
454	unsigned long flags = oops_begin();
455	int sig = SIGSEGV;
456
457	__die_header(str, regs, err);
458	if (gp_addr)
459		kasan_non_canonical_hook(gp_addr);
460	if (__die_body(str, regs, err))
461		sig = 0;
462	oops_end(flags, regs, sig);
463}
464
465void show_regs(struct pt_regs *regs)
466{
467	enum show_regs_mode print_kernel_regs;
468
469	show_regs_print_info(KERN_DEFAULT);
470
471	print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
472	__show_regs(regs, print_kernel_regs, KERN_DEFAULT);
473
474	/*
475	 * When in-kernel, we also print out the stack at the time of the fault..
476	 */
477	if (!user_mode(regs))
478		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
479}
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20#include <linux/kasan.h>
 21
 22#include <asm/cpu_entry_area.h>
 23#include <asm/stacktrace.h>
 24#include <asm/unwind.h>
 25
 26int panic_on_unrecovered_nmi;
 27int panic_on_io_nmi;
 28static int die_counter;
 29
 30static struct pt_regs exec_summary_regs;
 31
 32bool in_task_stack(unsigned long *stack, struct task_struct *task,
 33		   struct stack_info *info)
 34{
 35	unsigned long *begin = task_stack_page(task);
 36	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 37
 38	if (stack < begin || stack >= end)
 39		return false;
 40
 41	info->type	= STACK_TYPE_TASK;
 42	info->begin	= begin;
 43	info->end	= end;
 44	info->next_sp	= NULL;
 45
 46	return true;
 47}
 48
 49bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 
 50{
 51	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 52
 53	void *begin = ss;
 54	void *end = ss + 1;
 55
 56	if ((void *)stack < begin || (void *)stack >= end)
 57		return false;
 58
 59	info->type	= STACK_TYPE_ENTRY;
 60	info->begin	= begin;
 61	info->end	= end;
 62	info->next_sp	= NULL;
 63
 64	return true;
 65}
 66
 67static void printk_stack_address(unsigned long address, int reliable,
 68				 char *log_lvl)
 69{
 70	touch_nmi_watchdog();
 71	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72}
 73
 74/*
 75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 76 *
 77 * In case where we don't have the exact kernel image (which, if we did, we can
 78 * simply disassemble and navigate to the RIP), the purpose of the bigger
 79 * prologue is to have more context and to be able to correlate the code from
 80 * the different toolchains better.
 81 *
 82 * In addition, it helps in recreating the register allocation of the failing
 83 * kernel and thus make sense of the register dump.
 84 *
 85 * What is more, the additional complication of a variable length insn arch like
 86 * x86 warrants having longer byte sequence before rIP so that the disassembler
 87 * can "sync" up properly and find instruction boundaries when decoding the
 88 * opcode bytes.
 89 *
 90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 91 * guesstimate in attempt to achieve all of the above.
 92 */
 93void show_opcodes(struct pt_regs *regs, const char *loglvl)
 94{
 95#define PROLOGUE_SIZE 42
 96#define EPILOGUE_SIZE 21
 97#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
 98	u8 opcodes[OPCODE_BUFSIZE];
 99	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
100	bool bad_ip;
101
102	/*
103	 * Make sure userspace isn't trying to trick us into dumping kernel
104	 * memory by pointing the userspace instruction pointer at it.
105	 */
106	bad_ip = user_mode(regs) &&
107		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
108
109	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
110					OPCODE_BUFSIZE)) {
111		printk("%sCode: Bad RIP value.\n", loglvl);
112	} else {
113		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
114		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
115		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
 
 
 
 
 
 
 
 
116	}
117}
118
119void show_ip(struct pt_regs *regs, const char *loglvl)
120{
121#ifdef CONFIG_X86_32
122	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
123#else
124	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
125#endif
126	show_opcodes(regs, loglvl);
127}
128
129void show_iret_regs(struct pt_regs *regs)
130{
131	show_ip(regs, KERN_DEFAULT);
132	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
133		regs->sp, regs->flags);
134}
135
136static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
137				  bool partial)
138{
139	/*
140	 * These on_stack() checks aren't strictly necessary: the unwind code
141	 * has already validated the 'regs' pointer.  The checks are done for
142	 * ordering reasons: if the registers are on the next stack, we don't
143	 * want to print them out yet.  Otherwise they'll be shown as part of
144	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
145	 * next stack, this function will be called again with the same regs so
146	 * they can be printed in the right context.
147	 */
148	if (!partial && on_stack(info, regs, sizeof(*regs))) {
149		__show_regs(regs, SHOW_REGS_SHORT);
150
151	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
152				       IRET_FRAME_SIZE)) {
153		/*
154		 * When an interrupt or exception occurs in entry code, the
155		 * full pt_regs might not have been saved yet.  In that case
156		 * just print the iret frame.
157		 */
158		show_iret_regs(regs);
159	}
160}
161
162void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
163			unsigned long *stack, char *log_lvl)
 
 
 
 
 
 
164{
165	struct unwind_state state;
166	struct stack_info stack_info = {0};
167	unsigned long visit_mask = 0;
168	int graph_idx = 0;
169	bool partial = false;
170
171	printk("%sCall Trace:\n", log_lvl);
172
173	unwind_start(&state, task, regs, stack);
174	stack = stack ? : get_stack_pointer(task, regs);
175	regs = unwind_get_entry_regs(&state, &partial);
176
177	/*
178	 * Iterate through the stacks, starting with the current stack pointer.
179	 * Each stack has a pointer to the next one.
180	 *
181	 * x86-64 can have several stacks:
182	 * - task stack
183	 * - interrupt stack
184	 * - HW exception stacks (double fault, nmi, debug, mce)
185	 * - entry stack
186	 *
187	 * x86-32 can have up to four stacks:
188	 * - task stack
189	 * - softirq stack
190	 * - hardirq stack
191	 * - entry stack
192	 */
193	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
 
 
194		const char *stack_name;
195
 
 
196		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
197			/*
198			 * We weren't on a valid stack.  It's possible that
199			 * we overflowed a valid stack into a guard page.
200			 * See if the next page up is valid so that we can
201			 * generate some kind of backtrace if this happens.
202			 */
203			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
204			if (get_stack_info(stack, task, &stack_info, &visit_mask))
205				break;
206		}
207
208		stack_name = stack_type_name(stack_info.type);
209		if (stack_name)
210			printk("%s <%s>\n", log_lvl, stack_name);
211
212		if (regs)
213			show_regs_if_on_stack(&stack_info, regs, partial);
214
215		/*
216		 * Scan the stack, printing any text addresses we find.  At the
217		 * same time, follow proper stack frames with the unwinder.
218		 *
219		 * Addresses found during the scan which are not reported by
220		 * the unwinder are considered to be additional clues which are
221		 * sometimes useful for debugging and are prefixed with '?'.
222		 * This also serves as a failsafe option in case the unwinder
223		 * goes off in the weeds.
224		 */
225		for (; stack < stack_info.end; stack++) {
226			unsigned long real_addr;
227			int reliable = 0;
228			unsigned long addr = READ_ONCE_NOCHECK(*stack);
229			unsigned long *ret_addr_p =
230				unwind_get_return_address_ptr(&state);
231
232			if (!__kernel_text_address(addr))
233				continue;
234
235			/*
236			 * Don't print regs->ip again if it was already printed
237			 * by show_regs_if_on_stack().
238			 */
239			if (regs && stack == &regs->ip)
240				goto next;
241
242			if (stack == ret_addr_p)
243				reliable = 1;
244
245			/*
246			 * When function graph tracing is enabled for a
247			 * function, its return address on the stack is
248			 * replaced with the address of an ftrace handler
249			 * (return_to_handler).  In that case, before printing
250			 * the "real" address, we want to print the handler
251			 * address as an "unreliable" hint that function graph
252			 * tracing was involved.
253			 */
254			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
255							  addr, stack);
256			if (real_addr != addr)
257				printk_stack_address(addr, 0, log_lvl);
258			printk_stack_address(real_addr, reliable, log_lvl);
259
260			if (!reliable)
261				continue;
262
263next:
264			/*
265			 * Get the next frame from the unwinder.  No need to
266			 * check for an error: if anything goes wrong, the rest
267			 * of the addresses will just be printed as unreliable.
268			 */
269			unwind_next_frame(&state);
270
271			/* if the frame has entry regs, print them */
272			regs = unwind_get_entry_regs(&state, &partial);
273			if (regs)
274				show_regs_if_on_stack(&stack_info, regs, partial);
275		}
276
277		if (stack_name)
278			printk("%s </%s>\n", log_lvl, stack_name);
279	}
280}
281
282void show_stack(struct task_struct *task, unsigned long *sp)
 
283{
284	task = task ? : current;
285
286	/*
287	 * Stack frames below this one aren't interesting.  Don't show them
288	 * if we're printing for %current.
289	 */
290	if (!sp && task == current)
291		sp = get_stack_pointer(current, NULL);
292
293	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
294}
295
296void show_stack_regs(struct pt_regs *regs)
297{
298	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
299}
300
301static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
302static int die_owner = -1;
303static unsigned int die_nest_count;
304
305unsigned long oops_begin(void)
306{
307	int cpu;
308	unsigned long flags;
309
310	oops_enter();
311
312	/* racy, but better than risking deadlock. */
313	raw_local_irq_save(flags);
314	cpu = smp_processor_id();
315	if (!arch_spin_trylock(&die_lock)) {
316		if (cpu == die_owner)
317			/* nested oops. should stop eventually */;
318		else
319			arch_spin_lock(&die_lock);
320	}
321	die_nest_count++;
322	die_owner = cpu;
323	console_verbose();
324	bust_spinlocks(1);
325	return flags;
326}
327NOKPROBE_SYMBOL(oops_begin);
328
329void __noreturn rewind_stack_do_exit(int signr);
330
331void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
332{
333	if (regs && kexec_should_crash(current))
334		crash_kexec(regs);
335
336	bust_spinlocks(0);
337	die_owner = -1;
338	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
339	die_nest_count--;
340	if (!die_nest_count)
341		/* Nest count reaches zero, release the lock. */
342		arch_spin_unlock(&die_lock);
343	raw_local_irq_restore(flags);
344	oops_exit();
345
346	/* Executive summary in case the oops scrolled away */
347	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
348
349	if (!signr)
350		return;
351	if (in_interrupt())
352		panic("Fatal exception in interrupt");
353	if (panic_on_oops)
354		panic("Fatal exception");
355
356	/*
357	 * We're not going to return, but we might be on an IST stack or
358	 * have very little stack space left.  Rewind the stack and kill
359	 * the task.
360	 * Before we rewind the stack, we have to tell KASAN that we're going to
361	 * reuse the task stack and that existing poisons are invalid.
362	 */
363	kasan_unpoison_task_stack(current);
364	rewind_stack_do_exit(signr);
365}
366NOKPROBE_SYMBOL(oops_end);
367
368int __die(const char *str, struct pt_regs *regs, long err)
369{
370	const char *pr = "";
371
372	/* Save the regs of the first oops for the executive summary later. */
373	if (!die_counter)
374		exec_summary_regs = *regs;
375
376	if (IS_ENABLED(CONFIG_PREEMPTION))
377		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
378
379	printk(KERN_DEFAULT
380	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
381	       pr,
382	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
383	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
384	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
385	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
386	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
 
 
387
 
 
388	show_regs(regs);
389	print_modules();
390
391	if (notify_die(DIE_OOPS, str, regs, err,
392			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
393		return 1;
394
395	return 0;
396}
 
 
 
 
 
 
 
397NOKPROBE_SYMBOL(__die);
398
399/*
400 * This is gone through when something in the kernel has done something bad
401 * and is about to be terminated:
402 */
403void die(const char *str, struct pt_regs *regs, long err)
404{
405	unsigned long flags = oops_begin();
406	int sig = SIGSEGV;
407
408	if (__die(str, regs, err))
409		sig = 0;
410	oops_end(flags, regs, sig);
411}
412
 
 
 
 
 
 
 
 
 
 
 
 
 
413void show_regs(struct pt_regs *regs)
414{
 
 
415	show_regs_print_info(KERN_DEFAULT);
416
417	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
 
418
419	/*
420	 * When in-kernel, we also print out the stack at the time of the fault..
421	 */
422	if (!user_mode(regs))
423		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
424}