Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
 
 
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <linux/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "bio.h"
  27#include "print-tree.h"
 
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "dev-replace.h"
  33#include "raid56.h"
  34#include "sysfs.h"
  35#include "qgroup.h"
  36#include "compression.h"
  37#include "tree-checker.h"
  38#include "ref-verify.h"
  39#include "block-group.h"
  40#include "discard.h"
  41#include "space-info.h"
  42#include "zoned.h"
  43#include "subpage.h"
  44#include "fs.h"
  45#include "accessors.h"
  46#include "extent-tree.h"
  47#include "root-tree.h"
  48#include "defrag.h"
  49#include "uuid-tree.h"
  50#include "relocation.h"
  51#include "scrub.h"
  52#include "super.h"
  53
  54#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  55				 BTRFS_HEADER_FLAG_RELOC |\
  56				 BTRFS_SUPER_FLAG_ERROR |\
  57				 BTRFS_SUPER_FLAG_SEEDING |\
  58				 BTRFS_SUPER_FLAG_METADUMP |\
  59				 BTRFS_SUPER_FLAG_METADUMP_V2)
  60
  61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  63
  64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
  65{
  66	if (fs_info->csum_shash)
  67		crypto_free_shash(fs_info->csum_shash);
  68}
  69
  70/*
  71 * Compute the csum of a btree block and store the result to provided buffer.
 
 
  72 */
  73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74{
  75	struct btrfs_fs_info *fs_info = buf->fs_info;
  76	int num_pages;
  77	u32 first_page_part;
  78	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
  79	char *kaddr;
  80	int i;
  81
  82	shash->tfm = fs_info->csum_shash;
  83	crypto_shash_init(shash);
 
  84
  85	if (buf->addr) {
  86		/* Pages are contiguous, handle them as a big one. */
  87		kaddr = buf->addr;
  88		first_page_part = fs_info->nodesize;
  89		num_pages = 1;
  90	} else {
  91		kaddr = folio_address(buf->folios[0]);
  92		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
  93		num_pages = num_extent_pages(buf);
  94	}
 
  95
  96	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
  97			    first_page_part - BTRFS_CSUM_SIZE);
 
 
  98
  99	/*
 100	 * Multiple single-page folios case would reach here.
 101	 *
 102	 * nodesize <= PAGE_SIZE and large folio all handled by above
 103	 * crypto_shash_update() already.
 104	 */
 105	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
 106		kaddr = folio_address(buf->folios[i]);
 107		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 108	}
 109	memset(result, 0, BTRFS_CSUM_SIZE);
 110	crypto_shash_final(shash, result);
 111}
 112
 
 
 113/*
 114 * we can't consider a given block up to date unless the transid of the
 115 * block matches the transid in the parent node's pointer.  This is how we
 116 * detect blocks that either didn't get written at all or got written
 117 * in the wrong place.
 118 */
 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
 120{
 121	if (!extent_buffer_uptodate(eb))
 122		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 123
 124	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 125		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127	if (atomic)
 128		return -EAGAIN;
 
 
 
 129
 130	if (!extent_buffer_uptodate(eb) ||
 131	    btrfs_header_generation(eb) != parent_transid) {
 132		btrfs_err_rl(eb->fs_info,
 133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 134			eb->start, eb->read_mirror,
 135			parent_transid, btrfs_header_generation(eb));
 136		clear_extent_buffer_uptodate(eb);
 137		return 0;
 138	}
 139	return 1;
 140}
 141
 142static bool btrfs_supported_super_csum(u16 csum_type)
 143{
 144	switch (csum_type) {
 145	case BTRFS_CSUM_TYPE_CRC32:
 146	case BTRFS_CSUM_TYPE_XXHASH:
 147	case BTRFS_CSUM_TYPE_SHA256:
 148	case BTRFS_CSUM_TYPE_BLAKE2:
 149		return true;
 150	default:
 151		return false;
 152	}
 153}
 154
 155/*
 156 * Return 0 if the superblock checksum type matches the checksum value of that
 157 * algorithm. Pass the raw disk superblock data.
 158 */
 159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 160			   const struct btrfs_super_block *disk_sb)
 161{
 162	char result[BTRFS_CSUM_SIZE];
 163	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 164
 165	shash->tfm = fs_info->csum_shash;
 166
 167	/*
 168	 * The super_block structure does not span the whole
 169	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 170	 * filled with zeros and is included in the checksum.
 171	 */
 172	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 173			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174
 175	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 176		return 1;
 177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178	return 0;
 179}
 180
 181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 182				      int mirror_num)
 
 
 
 
 
 
 
 183{
 184	struct btrfs_fs_info *fs_info = eb->fs_info;
 185	int num_folios = num_extent_folios(eb);
 186	int ret = 0;
 187
 188	if (sb_rdonly(fs_info->sb))
 189		return -EROFS;
 190
 191	for (int i = 0; i < num_folios; i++) {
 192		struct folio *folio = eb->folios[i];
 193		u64 start = max_t(u64, eb->start, folio_pos(folio));
 194		u64 end = min_t(u64, eb->start + eb->len,
 195				folio_pos(folio) + eb->folio_size);
 196		u32 len = end - start;
 197
 198		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
 199					      start, folio, offset_in_folio(folio, start),
 200					      mirror_num);
 201		if (ret)
 202			break;
 203	}
 204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205	return ret;
 206}
 207
 208/*
 209 * helper to read a given tree block, doing retries as required when
 210 * the checksums don't match and we have alternate mirrors to try.
 211 *
 212 * @check:		expected tree parentness check, see the comments of the
 213 *			structure for details.
 214 */
 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
 216			     const struct btrfs_tree_parent_check *check)
 
 217{
 218	struct btrfs_fs_info *fs_info = eb->fs_info;
 219	int failed = 0;
 220	int ret;
 221	int num_copies = 0;
 222	int mirror_num = 0;
 223	int failed_mirror = 0;
 224
 225	ASSERT(check);
 226
 227	while (1) {
 228		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 229		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
 230		if (!ret)
 
 
 
 
 
 
 
 
 
 
 231			break;
 232
 233		num_copies = btrfs_num_copies(fs_info,
 234					      eb->start, eb->len);
 235		if (num_copies == 1)
 236			break;
 237
 238		if (!failed_mirror) {
 239			failed = 1;
 240			failed_mirror = eb->read_mirror;
 241		}
 242
 243		mirror_num++;
 244		if (mirror_num == failed_mirror)
 245			mirror_num++;
 246
 247		if (mirror_num > num_copies)
 248			break;
 249	}
 250
 251	if (failed && !ret && failed_mirror)
 252		btrfs_repair_eb_io_failure(eb, failed_mirror);
 253
 254	return ret;
 255}
 256
 257/*
 258 * Checksum a dirty tree block before IO.
 
 259 */
 260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
 
 261{
 262	struct extent_buffer *eb = bbio->private;
 263	struct btrfs_fs_info *fs_info = eb->fs_info;
 264	u64 found_start = btrfs_header_bytenr(eb);
 265	u64 last_trans;
 266	u8 result[BTRFS_CSUM_SIZE];
 267	int ret;
 268
 269	/* Btree blocks are always contiguous on disk. */
 270	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
 271		return BLK_STS_IOERR;
 272	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
 273		return BLK_STS_IOERR;
 274
 275	/*
 276	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
 277	 * checksum it but zero-out its content. This is done to preserve
 278	 * ordering of I/O without unnecessarily writing out data.
 279	 */
 280	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
 281		memzero_extent_buffer(eb, 0, eb->len);
 282		return BLK_STS_OK;
 283	}
 284
 285	if (WARN_ON_ONCE(found_start != eb->start))
 286		return BLK_STS_IOERR;
 287	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
 288					       eb->start, eb->len)))
 289		return BLK_STS_IOERR;
 290
 291	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 292				    offsetof(struct btrfs_header, fsid),
 293				    BTRFS_FSID_SIZE) == 0);
 294	csum_tree_block(eb, result);
 295
 296	if (btrfs_header_level(eb))
 297		ret = btrfs_check_node(eb);
 298	else
 299		ret = btrfs_check_leaf(eb);
 300
 301	if (ret < 0)
 302		goto error;
 
 
 
 
 303
 304	/*
 305	 * Also check the generation, the eb reached here must be newer than
 306	 * last committed. Or something seriously wrong happened.
 307	 */
 308	last_trans = btrfs_get_last_trans_committed(fs_info);
 309	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
 310		ret = -EUCLEAN;
 311		btrfs_err(fs_info,
 312			"block=%llu bad generation, have %llu expect > %llu",
 313			  eb->start, btrfs_header_generation(eb), last_trans);
 314		goto error;
 315	}
 316	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 317	return BLK_STS_OK;
 318
 319error:
 320	btrfs_print_tree(eb, 0);
 321	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 322		  eb->start);
 323	/*
 324	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 325	 * a transaction in case there's a bad log tree extent buffer, we just
 326	 * fallback to a transaction commit. Still we want to know when there is
 327	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 328	 */
 329	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 330		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 331	return errno_to_blk_status(ret);
 332}
 333
 334static bool check_tree_block_fsid(struct extent_buffer *eb)
 
 
 
 
 
 
 
 335{
 336	struct btrfs_fs_info *fs_info = eb->fs_info;
 337	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 338	u8 fsid[BTRFS_FSID_SIZE];
 
 339
 340	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 341			   BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 342
 343	/*
 344	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
 345	 * This is then overwritten by metadata_uuid if it is present in the
 346	 * device_list_add(). The same true for a seed device as well. So use of
 347	 * fs_devices::metadata_uuid is appropriate here.
 348	 */
 349	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
 350		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351
 352	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 353		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 354			return false;
 
 355
 356	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357}
 358
 359/* Do basic extent buffer checks at read time */
 360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
 361				 const struct btrfs_tree_parent_check *check)
 362{
 363	struct btrfs_fs_info *fs_info = eb->fs_info;
 364	u64 found_start;
 365	const u32 csum_size = fs_info->csum_size;
 366	u8 found_level;
 367	u8 result[BTRFS_CSUM_SIZE];
 368	const u8 *header_csum;
 369	int ret = 0;
 370	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
 371
 372	ASSERT(check);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374	found_start = btrfs_header_bytenr(eb);
 375	if (found_start != eb->start) {
 376		btrfs_err_rl(fs_info,
 377			"bad tree block start, mirror %u want %llu have %llu",
 378			     eb->read_mirror, eb->start, found_start);
 
 379		ret = -EIO;
 380		goto out;
 381	}
 382	if (check_tree_block_fsid(eb)) {
 383		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 384			     eb->start, eb->read_mirror);
 385		ret = -EIO;
 386		goto out;
 387	}
 388	found_level = btrfs_header_level(eb);
 389	if (found_level >= BTRFS_MAX_LEVEL) {
 390		btrfs_err(fs_info,
 391			"bad tree block level, mirror %u level %d on logical %llu",
 392			eb->read_mirror, btrfs_header_level(eb), eb->start);
 393		ret = -EIO;
 394		goto out;
 395	}
 396
 397	csum_tree_block(eb, result);
 398	header_csum = folio_address(eb->folios[0]) +
 399		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
 400
 401	if (memcmp(result, header_csum, csum_size) != 0) {
 402		btrfs_warn_rl(fs_info,
 403"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
 404			      eb->start, eb->read_mirror,
 405			      CSUM_FMT_VALUE(csum_size, header_csum),
 406			      CSUM_FMT_VALUE(csum_size, result),
 407			      btrfs_header_level(eb),
 408			      ignore_csum ? ", ignored" : "");
 409		if (!ignore_csum) {
 410			ret = -EUCLEAN;
 411			goto out;
 412		}
 413	}
 414
 415	if (found_level != check->level) {
 416		btrfs_err(fs_info,
 417		"level verify failed on logical %llu mirror %u wanted %u found %u",
 418			  eb->start, eb->read_mirror, check->level, found_level);
 419		ret = -EIO;
 420		goto out;
 421	}
 422	if (unlikely(check->transid &&
 423		     btrfs_header_generation(eb) != check->transid)) {
 424		btrfs_err_rl(eb->fs_info,
 425"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 426				eb->start, eb->read_mirror, check->transid,
 427				btrfs_header_generation(eb));
 428		ret = -EIO;
 429		goto out;
 430	}
 431	if (check->has_first_key) {
 432		const struct btrfs_key *expect_key = &check->first_key;
 433		struct btrfs_key found_key;
 434
 435		if (found_level)
 436			btrfs_node_key_to_cpu(eb, &found_key, 0);
 437		else
 438			btrfs_item_key_to_cpu(eb, &found_key, 0);
 439		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 440			btrfs_err(fs_info,
 441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 442				  eb->start, check->transid,
 443				  expect_key->objectid,
 444				  expect_key->type, expect_key->offset,
 445				  found_key.objectid, found_key.type,
 446				  found_key.offset);
 447			ret = -EUCLEAN;
 448			goto out;
 449		}
 450	}
 451	if (check->owner_root) {
 452		ret = btrfs_check_eb_owner(eb, check->owner_root);
 453		if (ret < 0)
 454			goto out;
 455	}
 456
 457	/*
 458	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 459	 * that we don't try and read the other copies of this block, just
 460	 * return -EIO.
 461	 */
 462	if (found_level == 0 && btrfs_check_leaf(eb)) {
 463		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 464		ret = -EIO;
 465	}
 466
 467	if (found_level > 0 && btrfs_check_node(eb))
 468		ret = -EIO;
 
 
 
 
 
 469
 470	if (ret)
 471		btrfs_err(fs_info,
 472		"read time tree block corruption detected on logical %llu mirror %u",
 473			  eb->start, eb->read_mirror);
 474out:
 475	return ret;
 476}
 477
 478#ifdef CONFIG_MIGRATION
 479static int btree_migrate_folio(struct address_space *mapping,
 480		struct folio *dst, struct folio *src, enum migrate_mode mode)
 481{
 482	/*
 483	 * we can't safely write a btree page from here,
 484	 * we haven't done the locking hook
 485	 */
 486	if (folio_test_dirty(src))
 487		return -EAGAIN;
 488	/*
 489	 * Buffers may be managed in a filesystem specific way.
 490	 * We must have no buffers or drop them.
 491	 */
 492	if (folio_get_private(src) &&
 493	    !filemap_release_folio(src, GFP_KERNEL))
 494		return -EAGAIN;
 495	return migrate_folio(mapping, dst, src, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496}
 497#else
 498#define btree_migrate_folio NULL
 499#endif
 500
 501static int btree_writepages(struct address_space *mapping,
 502			    struct writeback_control *wbc)
 
 
 
 
 
 
 
 503{
 504	int ret;
 
 
 
 505
 506	if (wbc->sync_mode == WB_SYNC_NONE) {
 507		struct btrfs_fs_info *fs_info;
 
 
 
 
 508
 509		if (wbc->for_kupdate)
 510			return 0;
 
 
 511
 512		fs_info = inode_to_fs_info(mapping->host);
 513		/* this is a bit racy, but that's ok */
 514		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 515					     BTRFS_DIRTY_METADATA_THRESH,
 516					     fs_info->dirty_metadata_batch);
 517		if (ret < 0)
 518			return 0;
 519	}
 520	return btree_write_cache_pages(mapping, wbc);
 521}
 522
 523static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 524{
 525	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 526		return false;
 527
 528	return try_release_extent_buffer(folio);
 
 
 
 
 
 529}
 530
 531static void btree_invalidate_folio(struct folio *folio, size_t offset,
 532				 size_t length)
 533{
 534	struct extent_io_tree *tree;
 
 
 535
 536	tree = &folio_to_inode(folio)->io_tree;
 537	extent_invalidate_folio(tree, folio, offset);
 538	btree_release_folio(folio, GFP_NOFS);
 539	if (folio_get_private(folio)) {
 540		btrfs_warn(folio_to_fs_info(folio),
 541			   "folio private not zero on folio %llu",
 542			   (unsigned long long)folio_pos(folio));
 543		folio_detach_private(folio);
 544	}
 545}
 546
 547#ifdef DEBUG
 548static bool btree_dirty_folio(struct address_space *mapping,
 549		struct folio *folio)
 550{
 551	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 552	struct btrfs_subpage_info *spi = fs_info->subpage_info;
 553	struct btrfs_subpage *subpage;
 554	struct extent_buffer *eb;
 555	int cur_bit = 0;
 556	u64 page_start = folio_pos(folio);
 557
 558	if (fs_info->sectorsize == PAGE_SIZE) {
 559		eb = folio_get_private(folio);
 560		BUG_ON(!eb);
 561		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 562		BUG_ON(!atomic_read(&eb->refs));
 563		btrfs_assert_tree_write_locked(eb);
 564		return filemap_dirty_folio(mapping, folio);
 565	}
 566
 567	ASSERT(spi);
 568	subpage = folio_get_private(folio);
 569
 570	for (cur_bit = spi->dirty_offset;
 571	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
 572	     cur_bit++) {
 573		unsigned long flags;
 574		u64 cur;
 575
 576		spin_lock_irqsave(&subpage->lock, flags);
 577		if (!test_bit(cur_bit, subpage->bitmaps)) {
 578			spin_unlock_irqrestore(&subpage->lock, flags);
 579			continue;
 580		}
 581		spin_unlock_irqrestore(&subpage->lock, flags);
 582		cur = page_start + cur_bit * fs_info->sectorsize;
 583
 584		eb = find_extent_buffer(fs_info, cur);
 585		ASSERT(eb);
 586		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 587		ASSERT(atomic_read(&eb->refs));
 588		btrfs_assert_tree_write_locked(eb);
 589		free_extent_buffer(eb);
 590
 591		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
 
 
 
 592	}
 593	return filemap_dirty_folio(mapping, folio);
 
 
 
 594}
 595#else
 596#define btree_dirty_folio filemap_dirty_folio
 597#endif
 598
 599static const struct address_space_operations btree_aops = {
 600	.writepages	= btree_writepages,
 601	.release_folio	= btree_release_folio,
 602	.invalidate_folio = btree_invalidate_folio,
 603	.migrate_folio	= btree_migrate_folio,
 604	.dirty_folio	= btree_dirty_folio,
 605};
 606
 607struct extent_buffer *btrfs_find_create_tree_block(
 608						struct btrfs_fs_info *fs_info,
 609						u64 bytenr, u64 owner_root,
 610						int level)
 611{
 612	if (btrfs_is_testing(fs_info))
 613		return alloc_test_extent_buffer(fs_info, bytenr);
 614	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 615}
 616
 617/*
 618 * Read tree block at logical address @bytenr and do variant basic but critical
 619 * verification.
 620 *
 621 * @check:		expected tree parentness check, see comments of the
 622 *			structure for details.
 623 */
 624struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 625				      struct btrfs_tree_parent_check *check)
 626{
 627	struct extent_buffer *buf = NULL;
 628	int ret;
 629
 630	ASSERT(check);
 631
 632	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
 633					   check->level);
 634	if (IS_ERR(buf))
 635		return buf;
 636
 637	ret = btrfs_read_extent_buffer(buf, check);
 638	if (ret) {
 639		free_extent_buffer_stale(buf);
 640		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641	}
 642	return buf;
 643
 
 644}
 645
 646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 647			 u64 objectid)
 648{
 649	bool dummy = btrfs_is_testing(fs_info);
 650
 651	memset(&root->root_key, 0, sizeof(root->root_key));
 652	memset(&root->root_item, 0, sizeof(root->root_item));
 653	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 654	root->fs_info = fs_info;
 655	root->root_key.objectid = objectid;
 656	root->node = NULL;
 657	root->commit_root = NULL;
 658	root->state = 0;
 659	RB_CLEAR_NODE(&root->rb_node);
 660
 661	btrfs_set_root_last_trans(root, 0);
 662	root->free_objectid = 0;
 663	root->nr_delalloc_inodes = 0;
 664	root->nr_ordered_extents = 0;
 665	xa_init(&root->inodes);
 666	xa_init(&root->delayed_nodes);
 667
 668	btrfs_init_root_block_rsv(root);
 669
 670	INIT_LIST_HEAD(&root->dirty_list);
 671	INIT_LIST_HEAD(&root->root_list);
 672	INIT_LIST_HEAD(&root->delalloc_inodes);
 673	INIT_LIST_HEAD(&root->delalloc_root);
 674	INIT_LIST_HEAD(&root->ordered_extents);
 675	INIT_LIST_HEAD(&root->ordered_root);
 676	INIT_LIST_HEAD(&root->reloc_dirty_list);
 677	spin_lock_init(&root->delalloc_lock);
 678	spin_lock_init(&root->ordered_extent_lock);
 679	spin_lock_init(&root->accounting_lock);
 680	spin_lock_init(&root->qgroup_meta_rsv_lock);
 681	mutex_init(&root->objectid_mutex);
 682	mutex_init(&root->log_mutex);
 683	mutex_init(&root->ordered_extent_mutex);
 684	mutex_init(&root->delalloc_mutex);
 685	init_waitqueue_head(&root->qgroup_flush_wait);
 686	init_waitqueue_head(&root->log_writer_wait);
 687	init_waitqueue_head(&root->log_commit_wait[0]);
 688	init_waitqueue_head(&root->log_commit_wait[1]);
 689	INIT_LIST_HEAD(&root->log_ctxs[0]);
 690	INIT_LIST_HEAD(&root->log_ctxs[1]);
 691	atomic_set(&root->log_commit[0], 0);
 692	atomic_set(&root->log_commit[1], 0);
 693	atomic_set(&root->log_writers, 0);
 694	atomic_set(&root->log_batch, 0);
 695	refcount_set(&root->refs, 1);
 696	atomic_set(&root->snapshot_force_cow, 0);
 697	atomic_set(&root->nr_swapfiles, 0);
 698	btrfs_set_root_log_transid(root, 0);
 699	root->log_transid_committed = -1;
 700	btrfs_set_root_last_log_commit(root, 0);
 701	root->anon_dev = 0;
 702	if (!dummy) {
 703		extent_io_tree_init(fs_info, &root->dirty_log_pages,
 704				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
 705		extent_io_tree_init(fs_info, &root->log_csum_range,
 706				    IO_TREE_LOG_CSUM_RANGE);
 707	}
 
 
 708
 709	spin_lock_init(&root->root_item_lock);
 710	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 711#ifdef CONFIG_BTRFS_DEBUG
 712	INIT_LIST_HEAD(&root->leak_list);
 713	spin_lock(&fs_info->fs_roots_radix_lock);
 714	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
 715	spin_unlock(&fs_info->fs_roots_radix_lock);
 716#endif
 
 
 717}
 718
 719static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
 720					   u64 objectid, gfp_t flags)
 
 721{
 722	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
 723	if (root)
 724		__setup_root(root, fs_info, objectid);
 725	return root;
 
 726}
 727
 728#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 729/* Should only be used by the testing infrastructure */
 730struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
 731{
 732	struct btrfs_root *root;
 733
 734	if (!fs_info)
 735		return ERR_PTR(-EINVAL);
 736
 737	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
 738	if (!root)
 739		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 740
 741	/* We don't use the stripesize in selftest, set it as sectorsize */
 742	root->alloc_bytenr = 0;
 
 
 
 
 
 
 
 
 743
 744	return root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745}
 746#endif
 747
 748static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
 
 
 749{
 750	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
 751	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
 
 
 
 
 
 
 
 752
 753	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
 
 
 
 
 
 754}
 755
 756static int global_root_key_cmp(const void *k, const struct rb_node *node)
 757{
 758	const struct btrfs_key *key = k;
 759	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
 760
 761	return btrfs_comp_cpu_keys(key, &root->root_key);
 762}
 763
 764int btrfs_global_root_insert(struct btrfs_root *root)
 765{
 766	struct btrfs_fs_info *fs_info = root->fs_info;
 767	struct rb_node *tmp;
 768	int ret = 0;
 
 
 
 
 
 
 
 
 769
 770	write_lock(&fs_info->global_root_lock);
 771	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
 772	write_unlock(&fs_info->global_root_lock);
 773
 774	if (tmp) {
 775		ret = -EEXIST;
 776		btrfs_warn(fs_info, "global root %llu %llu already exists",
 777			   btrfs_root_id(root), root->root_key.offset);
 
 
 
 
 778	}
 779	return ret;
 780}
 781
 782void btrfs_global_root_delete(struct btrfs_root *root)
 783{
 784	struct btrfs_fs_info *fs_info = root->fs_info;
 785
 786	write_lock(&fs_info->global_root_lock);
 787	rb_erase(&root->rb_node, &fs_info->global_root_tree);
 788	write_unlock(&fs_info->global_root_lock);
 
 
 
 
 789}
 790
 791struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
 792				     struct btrfs_key *key)
 793{
 794	struct rb_node *node;
 795	struct btrfs_root *root = NULL;
 
 
 
 
 
 796
 797	read_lock(&fs_info->global_root_lock);
 798	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
 799	if (node)
 800		root = container_of(node, struct btrfs_root, rb_node);
 801	read_unlock(&fs_info->global_root_lock);
 
 802
 803	return root;
 
 
 
 
 
 
 804}
 805
 806static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 807{
 808	struct btrfs_block_group *block_group;
 809	u64 ret;
 
 
 810
 811	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
 
 812		return 0;
 813
 814	if (bytenr)
 815		block_group = btrfs_lookup_block_group(fs_info, bytenr);
 816	else
 817		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
 818	ASSERT(block_group);
 819	if (!block_group)
 820		return 0;
 821	ret = block_group->global_root_id;
 822	btrfs_put_block_group(block_group);
 823
 824	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825}
 826
 827struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 828{
 829	struct btrfs_key key = {
 830		.objectid = BTRFS_CSUM_TREE_OBJECTID,
 831		.type = BTRFS_ROOT_ITEM_KEY,
 832		.offset = btrfs_global_root_id(fs_info, bytenr),
 833	};
 
 834
 835	return btrfs_global_root(fs_info, &key);
 
 
 
 
 
 
 
 
 836}
 837
 838struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 839{
 840	struct btrfs_key key = {
 841		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
 842		.type = BTRFS_ROOT_ITEM_KEY,
 843		.offset = btrfs_global_root_id(fs_info, bytenr),
 844	};
 845
 846	return btrfs_global_root(fs_info, &key);
 
 
 
 847}
 848
 849struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 850				     u64 objectid)
 851{
 852	struct btrfs_fs_info *fs_info = trans->fs_info;
 853	struct extent_buffer *leaf;
 854	struct btrfs_root *tree_root = fs_info->tree_root;
 855	struct btrfs_root *root;
 856	struct btrfs_key key;
 857	unsigned int nofs_flag;
 858	int ret = 0;
 859
 860	/*
 861	 * We're holding a transaction handle, so use a NOFS memory allocation
 862	 * context to avoid deadlock if reclaim happens.
 863	 */
 864	nofs_flag = memalloc_nofs_save();
 865	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
 866	memalloc_nofs_restore(nofs_flag);
 867	if (!root)
 868		return ERR_PTR(-ENOMEM);
 869
 870	root->root_key.objectid = objectid;
 871	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 872	root->root_key.offset = 0;
 873
 874	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 875				      0, BTRFS_NESTING_NORMAL);
 876	if (IS_ERR(leaf)) {
 877		ret = PTR_ERR(leaf);
 878		leaf = NULL;
 879		goto fail;
 880	}
 881
 882	root->node = leaf;
 883	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885	root->commit_root = btrfs_root_node(root);
 886	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 
 
 
 887
 888	btrfs_set_root_flags(&root->root_item, 0);
 889	btrfs_set_root_limit(&root->root_item, 0);
 890	btrfs_set_root_bytenr(&root->root_item, leaf->start);
 891	btrfs_set_root_generation(&root->root_item, trans->transid);
 892	btrfs_set_root_level(&root->root_item, 0);
 893	btrfs_set_root_refs(&root->root_item, 1);
 894	btrfs_set_root_used(&root->root_item, leaf->len);
 895	btrfs_set_root_last_snapshot(&root->root_item, 0);
 896	btrfs_set_root_dirid(&root->root_item, 0);
 897	if (is_fstree(objectid))
 898		generate_random_guid(root->root_item.uuid);
 899	else
 900		export_guid(root->root_item.uuid, &guid_null);
 901	btrfs_set_root_drop_level(&root->root_item, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903	btrfs_tree_unlock(leaf);
 
 
 
 
 
 
 
 
 
 904
 905	key.objectid = objectid;
 906	key.type = BTRFS_ROOT_ITEM_KEY;
 907	key.offset = 0;
 908	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
 909	if (ret)
 910		goto fail;
 
 
 911
 912	return root;
 
 
 
 
 
 
 
 
 913
 914fail:
 915	btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 916
 917	return ERR_PTR(ret);
 
 
 
 
 
 918}
 919
 920static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
 
 921{
 922	struct btrfs_root *root;
 
 
 923
 924	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
 925	if (!root)
 926		return ERR_PTR(-ENOMEM);
 927
 
 
 
 
 928	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
 929	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 930	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 931
 932	return root;
 933}
 934
 935int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
 936			      struct btrfs_root *root)
 937{
 938	struct extent_buffer *leaf;
 939
 940	/*
 941	 * DON'T set SHAREABLE bit for log trees.
 942	 *
 943	 * Log trees are not exposed to user space thus can't be snapshotted,
 944	 * and they go away before a real commit is actually done.
 945	 *
 946	 * They do store pointers to file data extents, and those reference
 947	 * counts still get updated (along with back refs to the log tree).
 948	 */
 949
 950	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
 951			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
 952	if (IS_ERR(leaf))
 953		return PTR_ERR(leaf);
 
 954
 
 
 
 
 
 955	root->node = leaf;
 956
 957	btrfs_mark_buffer_dirty(trans, root->node);
 
 
 
 958	btrfs_tree_unlock(root->node);
 959
 960	return 0;
 961}
 962
 963int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
 964			     struct btrfs_fs_info *fs_info)
 965{
 966	struct btrfs_root *log_root;
 967
 968	log_root = alloc_log_tree(fs_info);
 969	if (IS_ERR(log_root))
 970		return PTR_ERR(log_root);
 971
 972	if (!btrfs_is_zoned(fs_info)) {
 973		int ret = btrfs_alloc_log_tree_node(trans, log_root);
 974
 975		if (ret) {
 976			btrfs_put_root(log_root);
 977			return ret;
 978		}
 979	}
 980
 981	WARN_ON(fs_info->log_root_tree);
 982	fs_info->log_root_tree = log_root;
 983	return 0;
 984}
 985
 986int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 987		       struct btrfs_root *root)
 988{
 989	struct btrfs_fs_info *fs_info = root->fs_info;
 990	struct btrfs_root *log_root;
 991	struct btrfs_inode_item *inode_item;
 992	int ret;
 993
 994	log_root = alloc_log_tree(fs_info);
 995	if (IS_ERR(log_root))
 996		return PTR_ERR(log_root);
 997
 998	ret = btrfs_alloc_log_tree_node(trans, log_root);
 999	if (ret) {
1000		btrfs_put_root(log_root);
1001		return ret;
1002	}
1003
1004	btrfs_set_root_last_trans(log_root, trans->transid);
1005	log_root->root_key.offset = btrfs_root_id(root);
1006
1007	inode_item = &log_root->root_item.inode;
1008	btrfs_set_stack_inode_generation(inode_item, 1);
1009	btrfs_set_stack_inode_size(inode_item, 3);
1010	btrfs_set_stack_inode_nlink(inode_item, 1);
1011	btrfs_set_stack_inode_nbytes(inode_item,
1012				     fs_info->nodesize);
1013	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1014
1015	btrfs_set_root_node(&log_root->root_item, log_root->node);
1016
1017	WARN_ON(root->log_root);
1018	root->log_root = log_root;
1019	btrfs_set_root_log_transid(root, 0);
1020	root->log_transid_committed = -1;
1021	btrfs_set_root_last_log_commit(root, 0);
1022	return 0;
1023}
1024
1025static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1026					      struct btrfs_path *path,
1027					      const struct btrfs_key *key)
1028{
1029	struct btrfs_root *root;
1030	struct btrfs_tree_parent_check check = { 0 };
1031	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
 
1032	u64 generation;
1033	int ret;
1034	int level;
1035
1036	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1037	if (!root)
1038		return ERR_PTR(-ENOMEM);
1039
1040	ret = btrfs_find_root(tree_root, key, path,
1041			      &root->root_item, &root->root_key);
1042	if (ret) {
1043		if (ret > 0)
1044			ret = -ENOENT;
1045		goto fail;
1046	}
1047
1048	generation = btrfs_root_generation(&root->root_item);
1049	level = btrfs_root_level(&root->root_item);
1050	check.level = level;
1051	check.transid = generation;
1052	check.owner_root = key->objectid;
1053	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1054				     &check);
1055	if (IS_ERR(root->node)) {
1056		ret = PTR_ERR(root->node);
1057		root->node = NULL;
1058		goto fail;
1059	}
1060	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1061		ret = -EIO;
1062		goto fail;
1063	}
1064
1065	/*
1066	 * For real fs, and not log/reloc trees, root owner must
1067	 * match its root node owner
1068	 */
1069	if (!btrfs_is_testing(fs_info) &&
1070	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1071	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1072	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1073		btrfs_crit(fs_info,
1074"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1075			   btrfs_root_id(root), root->node->start,
1076			   btrfs_header_owner(root->node),
1077			   btrfs_root_id(root));
1078		ret = -EUCLEAN;
1079		goto fail;
1080	}
1081	root->commit_root = btrfs_root_node(root);
1082	return root;
1083fail:
1084	btrfs_put_root(root);
1085	return ERR_PTR(ret);
1086}
1087
1088struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1089					const struct btrfs_key *key)
1090{
1091	struct btrfs_root *root;
1092	struct btrfs_path *path;
1093
1094	path = btrfs_alloc_path();
1095	if (!path)
 
1096		return ERR_PTR(-ENOMEM);
1097	root = read_tree_root_path(tree_root, path, key);
1098	btrfs_free_path(path);
1099
1100	return root;
1101}
1102
1103/*
1104 * Initialize subvolume root in-memory structure
1105 *
1106 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1107 */
1108static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1109{
1110	int ret;
1111
1112	btrfs_drew_lock_init(&root->snapshot_lock);
1113
1114	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1115	    !btrfs_is_data_reloc_root(root) &&
1116	    is_fstree(btrfs_root_id(root))) {
1117		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1118		btrfs_check_and_init_root_item(&root->root_item);
1119	}
1120
1121	/*
1122	 * Don't assign anonymous block device to roots that are not exposed to
1123	 * userspace, the id pool is limited to 1M
1124	 */
1125	if (is_fstree(btrfs_root_id(root)) &&
1126	    btrfs_root_refs(&root->root_item) > 0) {
1127		if (!anon_dev) {
1128			ret = get_anon_bdev(&root->anon_dev);
1129			if (ret)
1130				goto fail;
1131		} else {
1132			root->anon_dev = anon_dev;
1133		}
1134	}
1135
1136	mutex_lock(&root->objectid_mutex);
1137	ret = btrfs_init_root_free_objectid(root);
1138	if (ret) {
1139		mutex_unlock(&root->objectid_mutex);
1140		goto fail;
 
 
1141	}
1142
1143	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1144
1145	mutex_unlock(&root->objectid_mutex);
1146
1147	return 0;
1148fail:
1149	/* The caller is responsible to call btrfs_free_fs_root */
1150	return ret;
1151}
1152
1153static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1154					       u64 root_id)
1155{
1156	struct btrfs_root *root;
1157
1158	spin_lock(&fs_info->fs_roots_radix_lock);
1159	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1160				 (unsigned long)root_id);
1161	root = btrfs_grab_root(root);
1162	spin_unlock(&fs_info->fs_roots_radix_lock);
1163	return root;
1164}
1165
1166static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1167						u64 objectid)
1168{
1169	struct btrfs_key key = {
1170		.objectid = objectid,
1171		.type = BTRFS_ROOT_ITEM_KEY,
1172		.offset = 0,
1173	};
1174
1175	switch (objectid) {
1176	case BTRFS_ROOT_TREE_OBJECTID:
1177		return btrfs_grab_root(fs_info->tree_root);
1178	case BTRFS_EXTENT_TREE_OBJECTID:
1179		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1180	case BTRFS_CHUNK_TREE_OBJECTID:
1181		return btrfs_grab_root(fs_info->chunk_root);
1182	case BTRFS_DEV_TREE_OBJECTID:
1183		return btrfs_grab_root(fs_info->dev_root);
1184	case BTRFS_CSUM_TREE_OBJECTID:
1185		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1186	case BTRFS_QUOTA_TREE_OBJECTID:
1187		return btrfs_grab_root(fs_info->quota_root);
1188	case BTRFS_UUID_TREE_OBJECTID:
1189		return btrfs_grab_root(fs_info->uuid_root);
1190	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1191		return btrfs_grab_root(fs_info->block_group_root);
1192	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1193		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1194	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1195		return btrfs_grab_root(fs_info->stripe_root);
1196	default:
1197		return NULL;
1198	}
1199}
1200
1201int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1202			 struct btrfs_root *root)
1203{
 
1204	int ret;
1205
1206	ret = radix_tree_preload(GFP_NOFS);
1207	if (ret)
1208		return ret;
1209
 
 
 
 
 
 
 
1210	spin_lock(&fs_info->fs_roots_radix_lock);
1211	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1212				(unsigned long)btrfs_root_id(root),
1213				root);
1214	if (ret == 0) {
1215		btrfs_grab_root(root);
1216		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1217	}
1218	spin_unlock(&fs_info->fs_roots_radix_lock);
1219	radix_tree_preload_end();
1220
1221	return ret;
1222}
1223
1224void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1225{
1226#ifdef CONFIG_BTRFS_DEBUG
1227	struct btrfs_root *root;
1228
1229	while (!list_empty(&fs_info->allocated_roots)) {
1230		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1231
1232		root = list_first_entry(&fs_info->allocated_roots,
1233					struct btrfs_root, leak_list);
1234		btrfs_err(fs_info, "leaked root %s refcount %d",
1235			  btrfs_root_name(&root->root_key, buf),
1236			  refcount_read(&root->refs));
1237		WARN_ON_ONCE(1);
1238		while (refcount_read(&root->refs) > 1)
1239			btrfs_put_root(root);
1240		btrfs_put_root(root);
1241	}
1242#endif
1243}
1244
1245static void free_global_roots(struct btrfs_fs_info *fs_info)
1246{
1247	struct btrfs_root *root;
1248	struct rb_node *node;
1249
1250	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1251		root = rb_entry(node, struct btrfs_root, rb_node);
1252		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1253		btrfs_put_root(root);
1254	}
1255}
1256
1257void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1258{
1259	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1260
1261	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1262	percpu_counter_destroy(&fs_info->delalloc_bytes);
1263	percpu_counter_destroy(&fs_info->ordered_bytes);
1264	if (percpu_counter_initialized(em_counter))
1265		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1266	percpu_counter_destroy(em_counter);
1267	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1268	btrfs_free_csum_hash(fs_info);
1269	btrfs_free_stripe_hash_table(fs_info);
1270	btrfs_free_ref_cache(fs_info);
1271	kfree(fs_info->balance_ctl);
1272	kfree(fs_info->delayed_root);
1273	free_global_roots(fs_info);
1274	btrfs_put_root(fs_info->tree_root);
1275	btrfs_put_root(fs_info->chunk_root);
1276	btrfs_put_root(fs_info->dev_root);
1277	btrfs_put_root(fs_info->quota_root);
1278	btrfs_put_root(fs_info->uuid_root);
1279	btrfs_put_root(fs_info->fs_root);
1280	btrfs_put_root(fs_info->data_reloc_root);
1281	btrfs_put_root(fs_info->block_group_root);
1282	btrfs_put_root(fs_info->stripe_root);
1283	btrfs_check_leaked_roots(fs_info);
1284	btrfs_extent_buffer_leak_debug_check(fs_info);
1285	kfree(fs_info->super_copy);
1286	kfree(fs_info->super_for_commit);
1287	kvfree(fs_info);
1288}
1289
1290
1291/*
1292 * Get an in-memory reference of a root structure.
1293 *
1294 * For essential trees like root/extent tree, we grab it from fs_info directly.
1295 * For subvolume trees, we check the cached filesystem roots first. If not
1296 * found, then read it from disk and add it to cached fs roots.
1297 *
1298 * Caller should release the root by calling btrfs_put_root() after the usage.
1299 *
1300 * NOTE: Reloc and log trees can't be read by this function as they share the
1301 *	 same root objectid.
1302 *
1303 * @objectid:	root id
1304 * @anon_dev:	preallocated anonymous block device number for new roots,
1305 *		pass NULL for a new allocation.
1306 * @check_ref:	whether to check root item references, If true, return -ENOENT
1307 *		for orphan roots
1308 */
1309static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1310					     u64 objectid, dev_t *anon_dev,
1311					     bool check_ref)
1312{
1313	struct btrfs_root *root;
1314	struct btrfs_path *path;
1315	struct btrfs_key key;
1316	int ret;
1317
1318	root = btrfs_get_global_root(fs_info, objectid);
1319	if (root)
1320		return root;
1321
1322	/*
1323	 * If we're called for non-subvolume trees, and above function didn't
1324	 * find one, do not try to read it from disk.
1325	 *
1326	 * This is namely for free-space-tree and quota tree, which can change
1327	 * at runtime and should only be grabbed from fs_info.
1328	 */
1329	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1330		return ERR_PTR(-ENOENT);
1331again:
1332	root = btrfs_lookup_fs_root(fs_info, objectid);
1333	if (root) {
1334		/*
1335		 * Some other caller may have read out the newly inserted
1336		 * subvolume already (for things like backref walk etc).  Not
1337		 * that common but still possible.  In that case, we just need
1338		 * to free the anon_dev.
1339		 */
1340		if (unlikely(anon_dev && *anon_dev)) {
1341			free_anon_bdev(*anon_dev);
1342			*anon_dev = 0;
1343		}
1344
1345		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1346			btrfs_put_root(root);
1347			return ERR_PTR(-ENOENT);
1348		}
1349		return root;
1350	}
1351
1352	key.objectid = objectid;
1353	key.type = BTRFS_ROOT_ITEM_KEY;
1354	key.offset = (u64)-1;
1355	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1356	if (IS_ERR(root))
1357		return root;
1358
1359	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1360		ret = -ENOENT;
 
 
 
1361		goto fail;
1362	}
1363
1364	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
 
 
 
 
 
1365	if (ret)
1366		goto fail;
1367
1368	path = btrfs_alloc_path();
1369	if (!path) {
1370		ret = -ENOMEM;
1371		goto fail;
1372	}
1373	key.objectid = BTRFS_ORPHAN_OBJECTID;
1374	key.type = BTRFS_ORPHAN_ITEM_KEY;
1375	key.offset = objectid;
1376
1377	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1378	btrfs_free_path(path);
1379	if (ret < 0)
1380		goto fail;
1381	if (ret == 0)
1382		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 
 
 
 
1383
1384	ret = btrfs_insert_fs_root(fs_info, root);
 
 
 
 
 
 
 
 
1385	if (ret) {
1386		if (ret == -EEXIST) {
1387			btrfs_put_root(root);
1388			goto again;
1389		}
1390		goto fail;
1391	}
 
 
 
 
1392	return root;
1393fail:
1394	/*
1395	 * If our caller provided us an anonymous device, then it's his
1396	 * responsibility to free it in case we fail. So we have to set our
1397	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1398	 * and once again by our caller.
1399	 */
1400	if (anon_dev && *anon_dev)
1401		root->anon_dev = 0;
1402	btrfs_put_root(root);
1403	return ERR_PTR(ret);
1404}
1405
1406/*
1407 * Get in-memory reference of a root structure
1408 *
1409 * @objectid:	tree objectid
1410 * @check_ref:	if set, verify that the tree exists and the item has at least
1411 *		one reference
1412 */
1413struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1414				     u64 objectid, bool check_ref)
1415{
1416	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417}
1418
1419/*
1420 * Get in-memory reference of a root structure, created as new, optionally pass
1421 * the anonymous block device id
1422 *
1423 * @objectid:	tree objectid
1424 * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1425 *		parameter value if not NULL
1426 */
1427struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1428					 u64 objectid, dev_t *anon_dev)
1429{
1430	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1431}
1432
1433/*
1434 * Return a root for the given objectid.
1435 *
1436 * @fs_info:	the fs_info
1437 * @objectid:	the objectid we need to lookup
1438 *
1439 * This is exclusively used for backref walking, and exists specifically because
1440 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1441 * creation time, which means we may have to read the tree_root in order to look
1442 * up a fs root that is not in memory.  If the root is not in memory we will
1443 * read the tree root commit root and look up the fs root from there.  This is a
1444 * temporary root, it will not be inserted into the radix tree as it doesn't
1445 * have the most uptodate information, it'll simply be discarded once the
1446 * backref code is finished using the root.
1447 */
1448struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1449						 struct btrfs_path *path,
1450						 u64 objectid)
1451{
1452	struct btrfs_root *root;
1453	struct btrfs_key key;
1454
1455	ASSERT(path->search_commit_root && path->skip_locking);
1456
1457	/*
1458	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1459	 * since this is called via the backref walking code we won't be looking
1460	 * up a root that doesn't exist, unless there's corruption.  So if root
1461	 * != NULL just return it.
1462	 */
1463	root = btrfs_get_global_root(fs_info, objectid);
1464	if (root)
1465		return root;
1466
1467	root = btrfs_lookup_fs_root(fs_info, objectid);
1468	if (root)
1469		return root;
1470
1471	key.objectid = objectid;
1472	key.type = BTRFS_ROOT_ITEM_KEY;
1473	key.offset = (u64)-1;
1474	root = read_tree_root_path(fs_info->tree_root, path, &key);
1475	btrfs_release_path(path);
1476
1477	return root;
1478}
1479
1480static int cleaner_kthread(void *arg)
1481{
1482	struct btrfs_fs_info *fs_info = arg;
1483	int again;
1484
1485	while (1) {
1486		again = 0;
1487
1488		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1489
1490		/* Make the cleaner go to sleep early. */
1491		if (btrfs_need_cleaner_sleep(fs_info))
1492			goto sleep;
1493
1494		/*
1495		 * Do not do anything if we might cause open_ctree() to block
1496		 * before we have finished mounting the filesystem.
1497		 */
1498		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1499			goto sleep;
1500
1501		if (!mutex_trylock(&fs_info->cleaner_mutex))
1502			goto sleep;
1503
1504		/*
1505		 * Avoid the problem that we change the status of the fs
1506		 * during the above check and trylock.
1507		 */
1508		if (btrfs_need_cleaner_sleep(fs_info)) {
1509			mutex_unlock(&fs_info->cleaner_mutex);
1510			goto sleep;
1511		}
1512
1513		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1514			btrfs_sysfs_feature_update(fs_info);
1515
1516		btrfs_run_delayed_iputs(fs_info);
1517
1518		again = btrfs_clean_one_deleted_snapshot(fs_info);
1519		mutex_unlock(&fs_info->cleaner_mutex);
1520
1521		/*
1522		 * The defragger has dealt with the R/O remount and umount,
1523		 * needn't do anything special here.
1524		 */
1525		btrfs_run_defrag_inodes(fs_info);
1526
1527		/*
1528		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1529		 * with relocation (btrfs_relocate_chunk) and relocation
1530		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1531		 * after acquiring fs_info->reclaim_bgs_lock. So we
1532		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1533		 * unused block groups.
1534		 */
1535		btrfs_delete_unused_bgs(fs_info);
1536
1537		/*
1538		 * Reclaim block groups in the reclaim_bgs list after we deleted
1539		 * all unused block_groups. This possibly gives us some more free
1540		 * space.
1541		 */
1542		btrfs_reclaim_bgs(fs_info);
1543sleep:
1544		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1545		if (kthread_should_park())
1546			kthread_parkme();
1547		if (kthread_should_stop())
1548			return 0;
1549		if (!again) {
1550			set_current_state(TASK_INTERRUPTIBLE);
1551			schedule();
 
1552			__set_current_state(TASK_RUNNING);
1553		}
1554	}
 
1555}
1556
1557static int transaction_kthread(void *arg)
1558{
1559	struct btrfs_root *root = arg;
1560	struct btrfs_fs_info *fs_info = root->fs_info;
1561	struct btrfs_trans_handle *trans;
1562	struct btrfs_transaction *cur;
1563	u64 transid;
1564	time64_t delta;
1565	unsigned long delay;
1566	bool cannot_commit;
1567
1568	do {
1569		cannot_commit = false;
1570		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1571		mutex_lock(&fs_info->transaction_kthread_mutex);
 
1572
1573		spin_lock(&fs_info->trans_lock);
1574		cur = fs_info->running_transaction;
1575		if (!cur) {
1576			spin_unlock(&fs_info->trans_lock);
1577			goto sleep;
1578		}
1579
1580		delta = ktime_get_seconds() - cur->start_time;
1581		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1582		    cur->state < TRANS_STATE_COMMIT_PREP &&
1583		    delta < fs_info->commit_interval) {
1584			spin_unlock(&fs_info->trans_lock);
1585			delay -= msecs_to_jiffies((delta - 1) * 1000);
1586			delay = min(delay,
1587				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1588			goto sleep;
1589		}
1590		transid = cur->transid;
1591		spin_unlock(&fs_info->trans_lock);
1592
1593		/* If the file system is aborted, this will always fail. */
1594		trans = btrfs_attach_transaction(root);
1595		if (IS_ERR(trans)) {
1596			if (PTR_ERR(trans) != -ENOENT)
1597				cannot_commit = true;
1598			goto sleep;
1599		}
1600		if (transid == trans->transid) {
1601			btrfs_commit_transaction(trans);
1602		} else {
1603			btrfs_end_transaction(trans);
1604		}
1605sleep:
1606		wake_up_process(fs_info->cleaner_kthread);
1607		mutex_unlock(&fs_info->transaction_kthread_mutex);
1608
1609		if (BTRFS_FS_ERROR(fs_info))
1610			btrfs_cleanup_transaction(fs_info);
1611		if (!kthread_should_stop() &&
1612				(!btrfs_transaction_blocked(fs_info) ||
1613				 cannot_commit))
1614			schedule_timeout_interruptible(delay);
 
 
1615	} while (!kthread_should_stop());
1616	return 0;
1617}
1618
1619/*
1620 * This will find the highest generation in the array of root backups.  The
1621 * index of the highest array is returned, or -EINVAL if we can't find
1622 * anything.
1623 *
1624 * We check to make sure the array is valid by comparing the
1625 * generation of the latest  root in the array with the generation
1626 * in the super block.  If they don't match we pitch it.
1627 */
1628static int find_newest_super_backup(struct btrfs_fs_info *info)
1629{
1630	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1631	u64 cur;
 
1632	struct btrfs_root_backup *root_backup;
1633	int i;
1634
1635	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1636		root_backup = info->super_copy->super_roots + i;
1637		cur = btrfs_backup_tree_root_gen(root_backup);
1638		if (cur == newest_gen)
1639			return i;
 
 
 
 
 
 
 
 
1640	}
 
 
1641
1642	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
1644
1645/*
1646 * copy all the root pointers into the super backup array.
1647 * this will bump the backup pointer by one when it is
1648 * done
1649 */
1650static void backup_super_roots(struct btrfs_fs_info *info)
1651{
1652	const int next_backup = info->backup_root_index;
1653	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655	root_backup = info->super_for_commit->super_roots + next_backup;
1656
1657	/*
1658	 * make sure all of our padding and empty slots get zero filled
1659	 * regardless of which ones we use today
1660	 */
1661	memset(root_backup, 0, sizeof(*root_backup));
1662
1663	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1664
1665	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1666	btrfs_set_backup_tree_root_gen(root_backup,
1667			       btrfs_header_generation(info->tree_root->node));
1668
1669	btrfs_set_backup_tree_root_level(root_backup,
1670			       btrfs_header_level(info->tree_root->node));
1671
1672	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1673	btrfs_set_backup_chunk_root_gen(root_backup,
1674			       btrfs_header_generation(info->chunk_root->node));
1675	btrfs_set_backup_chunk_root_level(root_backup,
1676			       btrfs_header_level(info->chunk_root->node));
1677
1678	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1679		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1680		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1681
1682		btrfs_set_backup_extent_root(root_backup,
1683					     extent_root->node->start);
1684		btrfs_set_backup_extent_root_gen(root_backup,
1685				btrfs_header_generation(extent_root->node));
1686		btrfs_set_backup_extent_root_level(root_backup,
1687					btrfs_header_level(extent_root->node));
1688
1689		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1690		btrfs_set_backup_csum_root_gen(root_backup,
1691					       btrfs_header_generation(csum_root->node));
1692		btrfs_set_backup_csum_root_level(root_backup,
1693						 btrfs_header_level(csum_root->node));
1694	}
1695
1696	/*
1697	 * we might commit during log recovery, which happens before we set
1698	 * the fs_root.  Make sure it is valid before we fill it in.
1699	 */
1700	if (info->fs_root && info->fs_root->node) {
1701		btrfs_set_backup_fs_root(root_backup,
1702					 info->fs_root->node->start);
1703		btrfs_set_backup_fs_root_gen(root_backup,
1704			       btrfs_header_generation(info->fs_root->node));
1705		btrfs_set_backup_fs_root_level(root_backup,
1706			       btrfs_header_level(info->fs_root->node));
1707	}
1708
1709	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1710	btrfs_set_backup_dev_root_gen(root_backup,
1711			       btrfs_header_generation(info->dev_root->node));
1712	btrfs_set_backup_dev_root_level(root_backup,
1713				       btrfs_header_level(info->dev_root->node));
1714
 
 
 
 
 
 
1715	btrfs_set_backup_total_bytes(root_backup,
1716			     btrfs_super_total_bytes(info->super_copy));
1717	btrfs_set_backup_bytes_used(root_backup,
1718			     btrfs_super_bytes_used(info->super_copy));
1719	btrfs_set_backup_num_devices(root_backup,
1720			     btrfs_super_num_devices(info->super_copy));
1721
1722	/*
1723	 * if we don't copy this out to the super_copy, it won't get remembered
1724	 * for the next commit
1725	 */
1726	memcpy(&info->super_copy->super_roots,
1727	       &info->super_for_commit->super_roots,
1728	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1729}
1730
1731/*
1732 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1733 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1734 *
1735 * @fs_info:  filesystem whose backup roots need to be read
1736 * @priority: priority of backup root required
1737 *
1738 * Returns backup root index on success and -EINVAL otherwise.
1739 */
1740static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
1741{
1742	int backup_index = find_newest_super_backup(fs_info);
1743	struct btrfs_super_block *super = fs_info->super_copy;
1744	struct btrfs_root_backup *root_backup;
 
1745
1746	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1747		if (priority == 0)
1748			return backup_index;
1749
1750		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1751		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1752	} else {
1753		return -EINVAL;
 
 
 
 
1754	}
1755
1756	root_backup = super->super_roots + backup_index;
1757
1758	btrfs_set_super_generation(super,
1759				   btrfs_backup_tree_root_gen(root_backup));
1760	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1761	btrfs_set_super_root_level(super,
1762				   btrfs_backup_tree_root_level(root_backup));
1763	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1764
1765	/*
1766	 * Fixme: the total bytes and num_devices need to match or we should
1767	 * need a fsck
1768	 */
1769	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1770	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1771
1772	return backup_index;
1773}
1774
1775/* helper to cleanup workers */
1776static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1777{
1778	btrfs_destroy_workqueue(fs_info->fixup_workers);
1779	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1780	btrfs_destroy_workqueue(fs_info->workers);
1781	if (fs_info->endio_workers)
1782		destroy_workqueue(fs_info->endio_workers);
1783	if (fs_info->rmw_workers)
1784		destroy_workqueue(fs_info->rmw_workers);
1785	if (fs_info->compressed_write_workers)
1786		destroy_workqueue(fs_info->compressed_write_workers);
1787	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1788	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1789	btrfs_destroy_workqueue(fs_info->delayed_workers);
1790	btrfs_destroy_workqueue(fs_info->caching_workers);
1791	btrfs_destroy_workqueue(fs_info->flush_workers);
1792	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1793	if (fs_info->discard_ctl.discard_workers)
1794		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1795	/*
1796	 * Now that all other work queues are destroyed, we can safely destroy
1797	 * the queues used for metadata I/O, since tasks from those other work
1798	 * queues can do metadata I/O operations.
1799	 */
1800	if (fs_info->endio_meta_workers)
1801		destroy_workqueue(fs_info->endio_meta_workers);
1802}
1803
1804static void free_root_extent_buffers(struct btrfs_root *root)
1805{
1806	if (root) {
1807		free_extent_buffer(root->node);
1808		free_extent_buffer(root->commit_root);
1809		root->node = NULL;
1810		root->commit_root = NULL;
1811	}
1812}
1813
1814static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1815{
1816	struct btrfs_root *root, *tmp;
1817
1818	rbtree_postorder_for_each_entry_safe(root, tmp,
1819					     &fs_info->global_root_tree,
1820					     rb_node)
1821		free_root_extent_buffers(root);
1822}
1823
1824/* helper to cleanup tree roots */
1825static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1826{
1827	free_root_extent_buffers(info->tree_root);
1828
1829	free_global_root_pointers(info);
1830	free_root_extent_buffers(info->dev_root);
1831	free_root_extent_buffers(info->quota_root);
1832	free_root_extent_buffers(info->uuid_root);
1833	free_root_extent_buffers(info->fs_root);
1834	free_root_extent_buffers(info->data_reloc_root);
1835	free_root_extent_buffers(info->block_group_root);
1836	free_root_extent_buffers(info->stripe_root);
1837	if (free_chunk_root)
1838		free_root_extent_buffers(info->chunk_root);
1839}
1840
1841void btrfs_put_root(struct btrfs_root *root)
1842{
1843	if (!root)
1844		return;
1845
1846	if (refcount_dec_and_test(&root->refs)) {
1847		if (WARN_ON(!xa_empty(&root->inodes)))
1848			xa_destroy(&root->inodes);
1849		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1850		if (root->anon_dev)
1851			free_anon_bdev(root->anon_dev);
1852		free_root_extent_buffers(root);
1853#ifdef CONFIG_BTRFS_DEBUG
1854		spin_lock(&root->fs_info->fs_roots_radix_lock);
1855		list_del_init(&root->leak_list);
1856		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1857#endif
1858		kfree(root);
1859	}
1860}
1861
1862void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1863{
1864	int ret;
1865	struct btrfs_root *gang[8];
1866	int i;
1867
1868	while (!list_empty(&fs_info->dead_roots)) {
1869		gang[0] = list_entry(fs_info->dead_roots.next,
1870				     struct btrfs_root, root_list);
1871		list_del(&gang[0]->root_list);
1872
1873		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1874			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1875		btrfs_put_root(gang[0]);
1876	}
1877
1878	while (1) {
1879		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1880					     (void **)gang, 0,
1881					     ARRAY_SIZE(gang));
1882		if (!ret)
1883			break;
1884		for (i = 0; i < ret; i++)
1885			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1886	}
1887}
1888
1889static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1890{
1891	mutex_init(&fs_info->scrub_lock);
1892	atomic_set(&fs_info->scrubs_running, 0);
1893	atomic_set(&fs_info->scrub_pause_req, 0);
1894	atomic_set(&fs_info->scrubs_paused, 0);
1895	atomic_set(&fs_info->scrub_cancel_req, 0);
1896	init_waitqueue_head(&fs_info->scrub_pause_wait);
1897	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1898}
1899
1900static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1901{
1902	spin_lock_init(&fs_info->balance_lock);
1903	mutex_init(&fs_info->balance_mutex);
1904	atomic_set(&fs_info->balance_pause_req, 0);
1905	atomic_set(&fs_info->balance_cancel_req, 0);
1906	fs_info->balance_ctl = NULL;
1907	init_waitqueue_head(&fs_info->balance_wait_q);
1908	atomic_set(&fs_info->reloc_cancel_req, 0);
1909}
1910
1911static int btrfs_init_btree_inode(struct super_block *sb)
 
 
1912{
 
 
 
 
 
 
 
 
 
 
1913	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1914	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1915					      fs_info->tree_root);
1916	struct inode *inode;
1917
1918	inode = new_inode(sb);
1919	if (!inode)
1920		return -ENOMEM;
1921
1922	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1923	set_nlink(inode, 1);
1924	/*
1925	 * we set the i_size on the btree inode to the max possible int.
1926	 * the real end of the address space is determined by all of
1927	 * the devices in the system
1928	 */
1929	inode->i_size = OFFSET_MAX;
1930	inode->i_mapping->a_ops = &btree_aops;
1931	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1932
1933	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1934			    IO_TREE_BTREE_INODE_IO);
1935	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1936
1937	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1938	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1939	__insert_inode_hash(inode, hash);
1940	fs_info->btree_inode = inode;
1941
1942	return 0;
1943}
1944
1945static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1946{
1947	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1948	init_rwsem(&fs_info->dev_replace.rwsem);
1949	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1950}
1951
1952static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1953{
1954	spin_lock_init(&fs_info->qgroup_lock);
1955	mutex_init(&fs_info->qgroup_ioctl_lock);
1956	fs_info->qgroup_tree = RB_ROOT;
1957	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1958	fs_info->qgroup_seq = 1;
1959	fs_info->qgroup_ulist = NULL;
1960	fs_info->qgroup_rescan_running = false;
1961	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1962	mutex_init(&fs_info->qgroup_rescan_lock);
1963}
1964
1965static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1966{
1967	u32 max_active = fs_info->thread_pool_size;
1968	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1969	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1970
1971	fs_info->workers =
1972		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1973
1974	fs_info->delalloc_workers =
1975		btrfs_alloc_workqueue(fs_info, "delalloc",
1976				      flags, max_active, 2);
1977
1978	fs_info->flush_workers =
1979		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1980				      flags, max_active, 0);
1981
1982	fs_info->caching_workers =
1983		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1984
1985	fs_info->fixup_workers =
1986		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1987
1988	fs_info->endio_workers =
1989		alloc_workqueue("btrfs-endio", flags, max_active);
1990	fs_info->endio_meta_workers =
1991		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1992	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1993	fs_info->endio_write_workers =
1994		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1995				      max_active, 2);
1996	fs_info->compressed_write_workers =
1997		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1998	fs_info->endio_freespace_worker =
1999		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2000				      max_active, 0);
2001	fs_info->delayed_workers =
2002		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2003				      max_active, 0);
2004	fs_info->qgroup_rescan_workers =
2005		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2006					      ordered_flags);
2007	fs_info->discard_ctl.discard_workers =
2008		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2009
2010	if (!(fs_info->workers &&
2011	      fs_info->delalloc_workers && fs_info->flush_workers &&
2012	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2013	      fs_info->compressed_write_workers &&
2014	      fs_info->endio_write_workers &&
2015	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2016	      fs_info->caching_workers && fs_info->fixup_workers &&
2017	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2018	      fs_info->discard_ctl.discard_workers)) {
2019		return -ENOMEM;
2020	}
2021
2022	return 0;
2023}
2024
2025static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2026{
2027	struct crypto_shash *csum_shash;
2028	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2029
2030	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2031
2032	if (IS_ERR(csum_shash)) {
2033		btrfs_err(fs_info, "error allocating %s hash for checksum",
2034			  csum_driver);
2035		return PTR_ERR(csum_shash);
2036	}
2037
2038	fs_info->csum_shash = csum_shash;
2039
2040	/*
2041	 * Check if the checksum implementation is a fast accelerated one.
2042	 * As-is this is a bit of a hack and should be replaced once the csum
2043	 * implementations provide that information themselves.
2044	 */
2045	switch (csum_type) {
2046	case BTRFS_CSUM_TYPE_CRC32:
2047		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2048			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2049		break;
2050	case BTRFS_CSUM_TYPE_XXHASH:
2051		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2052		break;
2053	default:
2054		break;
2055	}
2056
2057	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2058			btrfs_super_csum_name(csum_type),
2059			crypto_shash_driver_name(csum_shash));
2060	return 0;
2061}
2062
2063static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2064			    struct btrfs_fs_devices *fs_devices)
2065{
2066	int ret;
2067	struct btrfs_tree_parent_check check = { 0 };
2068	struct btrfs_root *log_tree_root;
2069	struct btrfs_super_block *disk_super = fs_info->super_copy;
2070	u64 bytenr = btrfs_super_log_root(disk_super);
2071	int level = btrfs_super_log_root_level(disk_super);
2072
2073	if (fs_devices->rw_devices == 0) {
2074		btrfs_warn(fs_info, "log replay required on RO media");
2075		return -EIO;
2076	}
2077
2078	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2079					 GFP_KERNEL);
2080	if (!log_tree_root)
2081		return -ENOMEM;
2082
2083	check.level = level;
2084	check.transid = fs_info->generation + 1;
2085	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2086	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2087	if (IS_ERR(log_tree_root->node)) {
2088		btrfs_warn(fs_info, "failed to read log tree");
2089		ret = PTR_ERR(log_tree_root->node);
2090		log_tree_root->node = NULL;
2091		btrfs_put_root(log_tree_root);
2092		return ret;
2093	}
2094	if (!extent_buffer_uptodate(log_tree_root->node)) {
2095		btrfs_err(fs_info, "failed to read log tree");
2096		btrfs_put_root(log_tree_root);
2097		return -EIO;
2098	}
2099
2100	/* returns with log_tree_root freed on success */
2101	ret = btrfs_recover_log_trees(log_tree_root);
2102	if (ret) {
2103		btrfs_handle_fs_error(fs_info, ret,
2104				      "Failed to recover log tree");
2105		btrfs_put_root(log_tree_root);
2106		return ret;
2107	}
2108
2109	if (sb_rdonly(fs_info->sb)) {
2110		ret = btrfs_commit_super(fs_info);
2111		if (ret)
2112			return ret;
2113	}
2114
2115	return 0;
2116}
2117
2118static int load_global_roots_objectid(struct btrfs_root *tree_root,
2119				      struct btrfs_path *path, u64 objectid,
2120				      const char *name)
2121{
2122	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2123	struct btrfs_root *root;
2124	u64 max_global_id = 0;
2125	int ret;
2126	struct btrfs_key key = {
2127		.objectid = objectid,
2128		.type = BTRFS_ROOT_ITEM_KEY,
2129		.offset = 0,
2130	};
2131	bool found = false;
2132
2133	/* If we have IGNOREDATACSUMS skip loading these roots. */
2134	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2135	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2136		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2137		return 0;
2138	}
2139
2140	while (1) {
2141		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2142		if (ret < 0)
2143			break;
2144
2145		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2146			ret = btrfs_next_leaf(tree_root, path);
2147			if (ret) {
2148				if (ret > 0)
2149					ret = 0;
2150				break;
2151			}
2152		}
2153		ret = 0;
2154
2155		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2156		if (key.objectid != objectid)
2157			break;
2158		btrfs_release_path(path);
2159
2160		/*
2161		 * Just worry about this for extent tree, it'll be the same for
2162		 * everybody.
2163		 */
2164		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2165			max_global_id = max(max_global_id, key.offset);
2166
2167		found = true;
2168		root = read_tree_root_path(tree_root, path, &key);
2169		if (IS_ERR(root)) {
2170			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2171				ret = PTR_ERR(root);
2172			break;
2173		}
2174		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2175		ret = btrfs_global_root_insert(root);
2176		if (ret) {
2177			btrfs_put_root(root);
2178			break;
2179		}
2180		key.offset++;
2181	}
2182	btrfs_release_path(path);
2183
2184	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2185		fs_info->nr_global_roots = max_global_id + 1;
2186
2187	if (!found || ret) {
2188		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2189			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2190
2191		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2192			ret = ret ? ret : -ENOENT;
2193		else
2194			ret = 0;
2195		btrfs_err(fs_info, "failed to load root %s", name);
2196	}
2197	return ret;
2198}
2199
2200static int load_global_roots(struct btrfs_root *tree_root)
2201{
2202	struct btrfs_path *path;
2203	int ret = 0;
2204
2205	path = btrfs_alloc_path();
2206	if (!path)
2207		return -ENOMEM;
2208
2209	ret = load_global_roots_objectid(tree_root, path,
2210					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2211	if (ret)
2212		goto out;
2213	ret = load_global_roots_objectid(tree_root, path,
2214					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2215	if (ret)
2216		goto out;
2217	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2218		goto out;
2219	ret = load_global_roots_objectid(tree_root, path,
2220					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2221					 "free space");
2222out:
2223	btrfs_free_path(path);
2224	return ret;
2225}
2226
2227static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2228{
2229	struct btrfs_root *tree_root = fs_info->tree_root;
2230	struct btrfs_root *root;
2231	struct btrfs_key location;
2232	int ret;
2233
2234	ASSERT(fs_info->tree_root);
2235
2236	ret = load_global_roots(tree_root);
2237	if (ret)
2238		return ret;
2239
2240	location.type = BTRFS_ROOT_ITEM_KEY;
2241	location.offset = 0;
2242
2243	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2244		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2245		root = btrfs_read_tree_root(tree_root, &location);
2246		if (IS_ERR(root)) {
2247			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2248				ret = PTR_ERR(root);
2249				goto out;
2250			}
2251		} else {
2252			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2253			fs_info->block_group_root = root;
2254		}
2255	}
2256
2257	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2258	root = btrfs_read_tree_root(tree_root, &location);
2259	if (IS_ERR(root)) {
2260		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261			ret = PTR_ERR(root);
2262			goto out;
2263		}
2264	} else {
2265		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266		fs_info->dev_root = root;
2267	}
2268	/* Initialize fs_info for all devices in any case */
2269	ret = btrfs_init_devices_late(fs_info);
2270	if (ret)
2271		goto out;
2272
2273	/*
2274	 * This tree can share blocks with some other fs tree during relocation
2275	 * and we need a proper setup by btrfs_get_fs_root
2276	 */
2277	root = btrfs_get_fs_root(tree_root->fs_info,
2278				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2279	if (IS_ERR(root)) {
2280		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2281			ret = PTR_ERR(root);
2282			goto out;
2283		}
2284	} else {
2285		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286		fs_info->data_reloc_root = root;
2287	}
2288
2289	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2290	root = btrfs_read_tree_root(tree_root, &location);
2291	if (!IS_ERR(root)) {
2292		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293		fs_info->quota_root = root;
2294	}
2295
2296	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297	root = btrfs_read_tree_root(tree_root, &location);
2298	if (IS_ERR(root)) {
2299		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2300			ret = PTR_ERR(root);
2301			if (ret != -ENOENT)
2302				goto out;
2303		}
2304	} else {
2305		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306		fs_info->uuid_root = root;
2307	}
2308
2309	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2310		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2311		root = btrfs_read_tree_root(tree_root, &location);
2312		if (IS_ERR(root)) {
2313			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2314				ret = PTR_ERR(root);
2315				goto out;
2316			}
2317		} else {
2318			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319			fs_info->stripe_root = root;
2320		}
2321	}
2322
2323	return 0;
2324out:
2325	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2326		   location.objectid, ret);
2327	return ret;
2328}
2329
2330/*
2331 * Real super block validation
2332 * NOTE: super csum type and incompat features will not be checked here.
2333 *
2334 * @sb:		super block to check
2335 * @mirror_num:	the super block number to check its bytenr:
2336 * 		0	the primary (1st) sb
2337 * 		1, 2	2nd and 3rd backup copy
2338 * 	       -1	skip bytenr check
2339 */
2340int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2341			 const struct btrfs_super_block *sb, int mirror_num)
2342{
2343	u64 nodesize = btrfs_super_nodesize(sb);
2344	u64 sectorsize = btrfs_super_sectorsize(sb);
2345	int ret = 0;
2346	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2347
2348	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2349		btrfs_err(fs_info, "no valid FS found");
2350		ret = -EINVAL;
2351	}
2352	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2353		if (!ignore_flags) {
2354			btrfs_err(fs_info,
2355			"unrecognized or unsupported super flag 0x%llx",
2356				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2357			ret = -EINVAL;
2358		} else {
2359			btrfs_info(fs_info,
2360			"unrecognized or unsupported super flags: 0x%llx, ignored",
2361				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362		}
2363	}
2364	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367		ret = -EINVAL;
2368	}
2369	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372		ret = -EINVAL;
2373	}
2374	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377		ret = -EINVAL;
2378	}
2379
2380	/*
2381	 * Check sectorsize and nodesize first, other check will need it.
2382	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383	 */
2384	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387		ret = -EINVAL;
2388	}
2389
2390	/*
2391	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392	 *
2393	 * We can support 16K sectorsize with 64K page size without problem,
2394	 * but such sectorsize/pagesize combination doesn't make much sense.
2395	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2396	 * beginning.
2397	 */
2398	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399		btrfs_err(fs_info,
2400			"sectorsize %llu not yet supported for page size %lu",
2401			sectorsize, PAGE_SIZE);
2402		ret = -EINVAL;
2403	}
2404
2405	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408		ret = -EINVAL;
2409	}
2410	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2413		ret = -EINVAL;
2414	}
2415
2416	/* Root alignment check */
2417	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419			   btrfs_super_root(sb));
2420		ret = -EINVAL;
2421	}
2422	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424			   btrfs_super_chunk_root(sb));
2425		ret = -EINVAL;
2426	}
2427	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429			   btrfs_super_log_root(sb));
2430		ret = -EINVAL;
2431	}
2432
2433	if (!fs_info->fs_devices->temp_fsid &&
2434	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435		btrfs_err(fs_info,
2436		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437			  sb->fsid, fs_info->fs_devices->fsid);
2438		ret = -EINVAL;
2439	}
2440
2441	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442		   BTRFS_FSID_SIZE) != 0) {
2443		btrfs_err(fs_info,
2444"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446		ret = -EINVAL;
2447	}
2448
2449	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450		   BTRFS_FSID_SIZE) != 0) {
2451		btrfs_err(fs_info,
2452			"dev_item UUID does not match metadata fsid: %pU != %pU",
2453			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454		ret = -EINVAL;
2455	}
2456
2457	/*
2458	 * Artificial requirement for block-group-tree to force newer features
2459	 * (free-space-tree, no-holes) so the test matrix is smaller.
2460	 */
2461	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464		btrfs_err(fs_info,
2465		"block-group-tree feature requires free-space-tree and no-holes");
2466		ret = -EINVAL;
2467	}
2468
2469	/*
2470	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471	 * done later
2472	 */
2473	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474		btrfs_err(fs_info, "bytes_used is too small %llu",
2475			  btrfs_super_bytes_used(sb));
2476		ret = -EINVAL;
2477	}
2478	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479		btrfs_err(fs_info, "invalid stripesize %u",
2480			  btrfs_super_stripesize(sb));
2481		ret = -EINVAL;
2482	}
2483	if (btrfs_super_num_devices(sb) > (1UL << 31))
2484		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485			   btrfs_super_num_devices(sb));
2486	if (btrfs_super_num_devices(sb) == 0) {
2487		btrfs_err(fs_info, "number of devices is 0");
2488		ret = -EINVAL;
2489	}
2490
2491	if (mirror_num >= 0 &&
2492	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495		ret = -EINVAL;
2496	}
2497
2498	/*
2499	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2500	 * and one chunk
2501	 */
2502	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503		btrfs_err(fs_info, "system chunk array too big %u > %u",
2504			  btrfs_super_sys_array_size(sb),
2505			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506		ret = -EINVAL;
2507	}
2508	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509			+ sizeof(struct btrfs_chunk)) {
2510		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511			  btrfs_super_sys_array_size(sb),
2512			  sizeof(struct btrfs_disk_key)
2513			  + sizeof(struct btrfs_chunk));
2514		ret = -EINVAL;
2515	}
2516
2517	/*
2518	 * The generation is a global counter, we'll trust it more than the others
2519	 * but it's still possible that it's the one that's wrong.
2520	 */
2521	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522		btrfs_warn(fs_info,
2523			"suspicious: generation < chunk_root_generation: %llu < %llu",
2524			btrfs_super_generation(sb),
2525			btrfs_super_chunk_root_generation(sb));
2526	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527	    && btrfs_super_cache_generation(sb) != (u64)-1)
2528		btrfs_warn(fs_info,
2529			"suspicious: generation < cache_generation: %llu < %llu",
2530			btrfs_super_generation(sb),
2531			btrfs_super_cache_generation(sb));
2532
2533	return ret;
2534}
2535
2536/*
2537 * Validation of super block at mount time.
2538 * Some checks already done early at mount time, like csum type and incompat
2539 * flags will be skipped.
2540 */
2541static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542{
2543	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544}
2545
2546/*
2547 * Validation of super block at write time.
2548 * Some checks like bytenr check will be skipped as their values will be
2549 * overwritten soon.
2550 * Extra checks like csum type and incompat flags will be done here.
2551 */
2552static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553				      struct btrfs_super_block *sb)
2554{
2555	int ret;
2556
2557	ret = btrfs_validate_super(fs_info, sb, -1);
2558	if (ret < 0)
2559		goto out;
2560	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561		ret = -EUCLEAN;
2562		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564		goto out;
2565	}
2566	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567		ret = -EUCLEAN;
2568		btrfs_err(fs_info,
2569		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570			  btrfs_super_incompat_flags(sb),
2571			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572		goto out;
2573	}
2574out:
2575	if (ret < 0)
2576		btrfs_err(fs_info,
2577		"super block corruption detected before writing it to disk");
2578	return ret;
2579}
2580
2581static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582{
2583	struct btrfs_tree_parent_check check = {
2584		.level = level,
2585		.transid = gen,
2586		.owner_root = btrfs_root_id(root)
2587	};
2588	int ret = 0;
2589
2590	root->node = read_tree_block(root->fs_info, bytenr, &check);
2591	if (IS_ERR(root->node)) {
2592		ret = PTR_ERR(root->node);
2593		root->node = NULL;
2594		return ret;
2595	}
2596	if (!extent_buffer_uptodate(root->node)) {
2597		free_extent_buffer(root->node);
2598		root->node = NULL;
2599		return -EIO;
2600	}
2601
2602	btrfs_set_root_node(&root->root_item, root->node);
2603	root->commit_root = btrfs_root_node(root);
2604	btrfs_set_root_refs(&root->root_item, 1);
2605	return ret;
2606}
2607
2608static int load_important_roots(struct btrfs_fs_info *fs_info)
2609{
2610	struct btrfs_super_block *sb = fs_info->super_copy;
2611	u64 gen, bytenr;
2612	int level, ret;
2613
2614	bytenr = btrfs_super_root(sb);
2615	gen = btrfs_super_generation(sb);
2616	level = btrfs_super_root_level(sb);
2617	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618	if (ret) {
2619		btrfs_warn(fs_info, "couldn't read tree root");
2620		return ret;
2621	}
2622	return 0;
2623}
2624
2625static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626{
2627	int backup_index = find_newest_super_backup(fs_info);
2628	struct btrfs_super_block *sb = fs_info->super_copy;
2629	struct btrfs_root *tree_root = fs_info->tree_root;
2630	bool handle_error = false;
2631	int ret = 0;
2632	int i;
2633
2634	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635		if (handle_error) {
2636			if (!IS_ERR(tree_root->node))
2637				free_extent_buffer(tree_root->node);
2638			tree_root->node = NULL;
2639
2640			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641				break;
2642
2643			free_root_pointers(fs_info, 0);
2644
2645			/*
2646			 * Don't use the log in recovery mode, it won't be
2647			 * valid
2648			 */
2649			btrfs_set_super_log_root(sb, 0);
2650
2651			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652			ret = read_backup_root(fs_info, i);
2653			backup_index = ret;
2654			if (ret < 0)
2655				return ret;
2656		}
2657
2658		ret = load_important_roots(fs_info);
2659		if (ret) {
2660			handle_error = true;
2661			continue;
2662		}
2663
2664		/*
2665		 * No need to hold btrfs_root::objectid_mutex since the fs
2666		 * hasn't been fully initialised and we are the only user
2667		 */
2668		ret = btrfs_init_root_free_objectid(tree_root);
2669		if (ret < 0) {
2670			handle_error = true;
2671			continue;
2672		}
2673
2674		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675
2676		ret = btrfs_read_roots(fs_info);
2677		if (ret < 0) {
2678			handle_error = true;
2679			continue;
2680		}
2681
2682		/* All successful */
2683		fs_info->generation = btrfs_header_generation(tree_root->node);
2684		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685		fs_info->last_reloc_trans = 0;
2686
2687		/* Always begin writing backup roots after the one being used */
2688		if (backup_index < 0) {
2689			fs_info->backup_root_index = 0;
2690		} else {
2691			fs_info->backup_root_index = backup_index + 1;
2692			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693		}
2694		break;
2695	}
2696
2697	return ret;
2698}
2699
2700void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701{
2702	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704	INIT_LIST_HEAD(&fs_info->trans_list);
2705	INIT_LIST_HEAD(&fs_info->dead_roots);
2706	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 
 
2708	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709	spin_lock_init(&fs_info->delalloc_root_lock);
2710	spin_lock_init(&fs_info->trans_lock);
 
2711	spin_lock_init(&fs_info->fs_roots_radix_lock);
2712	spin_lock_init(&fs_info->delayed_iput_lock);
2713	spin_lock_init(&fs_info->defrag_inodes_lock);
2714	spin_lock_init(&fs_info->super_lock);
2715	spin_lock_init(&fs_info->buffer_lock);
2716	spin_lock_init(&fs_info->unused_bgs_lock);
2717	spin_lock_init(&fs_info->treelog_bg_lock);
2718	spin_lock_init(&fs_info->zone_active_bgs_lock);
2719	spin_lock_init(&fs_info->relocation_bg_lock);
2720	rwlock_init(&fs_info->tree_mod_log_lock);
2721	rwlock_init(&fs_info->global_root_lock);
2722	mutex_init(&fs_info->unused_bg_unpin_mutex);
2723	mutex_init(&fs_info->reclaim_bgs_lock);
2724	mutex_init(&fs_info->reloc_mutex);
2725	mutex_init(&fs_info->delalloc_root_mutex);
2726	mutex_init(&fs_info->zoned_meta_io_lock);
2727	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728	seqlock_init(&fs_info->profiles_lock);
2729
2730	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2742
 
2743	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744	INIT_LIST_HEAD(&fs_info->space_info);
2745	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746	INIT_LIST_HEAD(&fs_info->unused_bgs);
2747	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749#ifdef CONFIG_BTRFS_DEBUG
2750	INIT_LIST_HEAD(&fs_info->allocated_roots);
2751	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752	spin_lock_init(&fs_info->eb_leak_lock);
2753#endif
2754	fs_info->mapping_tree = RB_ROOT_CACHED;
2755	rwlock_init(&fs_info->mapping_tree_lock);
2756	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757			     BTRFS_BLOCK_RSV_GLOBAL);
2758	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762			     BTRFS_BLOCK_RSV_DELOPS);
2763	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764			     BTRFS_BLOCK_RSV_DELREFS);
2765
2766	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2767	atomic_set(&fs_info->defrag_running, 0);
2768	atomic_set(&fs_info->nr_delayed_iputs, 0);
2769	atomic64_set(&fs_info->tree_mod_seq, 0);
2770	fs_info->global_root_tree = RB_ROOT;
2771	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772	fs_info->metadata_ratio = 0;
2773	fs_info->defrag_inodes = RB_ROOT;
2774	atomic64_set(&fs_info->free_chunk_space, 0);
 
2775	fs_info->tree_mod_log = RB_ROOT;
2776	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2777	btrfs_init_ref_verify(fs_info);
 
 
2778
2779	fs_info->thread_pool_size = min_t(unsigned long,
2780					  num_online_cpus() + 2, 8);
2781
2782	INIT_LIST_HEAD(&fs_info->ordered_roots);
2783	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784
2785	btrfs_init_scrub(fs_info);
2786	btrfs_init_balance(fs_info);
2787	btrfs_init_async_reclaim_work(fs_info);
2788	btrfs_init_extent_map_shrinker_work(fs_info);
2789
2790	rwlock_init(&fs_info->block_group_cache_lock);
2791	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792
2793	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794			    IO_TREE_FS_EXCLUDED_EXTENTS);
2795
2796	mutex_init(&fs_info->ordered_operations_mutex);
2797	mutex_init(&fs_info->tree_log_mutex);
2798	mutex_init(&fs_info->chunk_mutex);
2799	mutex_init(&fs_info->transaction_kthread_mutex);
2800	mutex_init(&fs_info->cleaner_mutex);
2801	mutex_init(&fs_info->ro_block_group_mutex);
2802	init_rwsem(&fs_info->commit_root_sem);
2803	init_rwsem(&fs_info->cleanup_work_sem);
2804	init_rwsem(&fs_info->subvol_sem);
2805	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806
2807	btrfs_init_dev_replace_locks(fs_info);
2808	btrfs_init_qgroup(fs_info);
2809	btrfs_discard_init(fs_info);
2810
2811	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814	init_waitqueue_head(&fs_info->transaction_throttle);
2815	init_waitqueue_head(&fs_info->transaction_wait);
2816	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817	init_waitqueue_head(&fs_info->async_submit_wait);
2818	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820	/* Usable values until the real ones are cached from the superblock */
2821	fs_info->nodesize = 4096;
2822	fs_info->sectorsize = 4096;
2823	fs_info->sectorsize_bits = ilog2(4096);
2824	fs_info->stripesize = 4096;
2825
2826	/* Default compress algorithm when user does -o compress */
2827	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831	spin_lock_init(&fs_info->swapfile_pins_lock);
2832	fs_info->swapfile_pins = RB_ROOT;
2833
2834	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836}
2837
2838static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839{
2840	int ret;
2841
2842	fs_info->sb = sb;
2843	/* Temporary fixed values for block size until we read the superblock. */
2844	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848	if (ret)
2849		return ret;
2850
2851	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2852	if (ret)
2853		return ret;
2854
2855	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2856	if (ret)
2857		return ret;
2858
2859	fs_info->dirty_metadata_batch = PAGE_SIZE *
2860					(1 + ilog2(nr_cpu_ids));
2861
2862	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2863	if (ret)
2864		return ret;
2865
2866	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2867			GFP_KERNEL);
2868	if (ret)
2869		return ret;
2870
2871	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2872					GFP_KERNEL);
2873	if (!fs_info->delayed_root)
2874		return -ENOMEM;
2875	btrfs_init_delayed_root(fs_info->delayed_root);
2876
2877	if (sb_rdonly(sb))
2878		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2879	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2880		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2881
2882	return btrfs_alloc_stripe_hash_table(fs_info);
2883}
2884
2885static int btrfs_uuid_rescan_kthread(void *data)
2886{
2887	struct btrfs_fs_info *fs_info = data;
2888	int ret;
2889
2890	/*
2891	 * 1st step is to iterate through the existing UUID tree and
2892	 * to delete all entries that contain outdated data.
2893	 * 2nd step is to add all missing entries to the UUID tree.
2894	 */
2895	ret = btrfs_uuid_tree_iterate(fs_info);
2896	if (ret < 0) {
2897		if (ret != -EINTR)
2898			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2899				   ret);
2900		up(&fs_info->uuid_tree_rescan_sem);
2901		return ret;
2902	}
2903	return btrfs_uuid_scan_kthread(data);
2904}
2905
2906static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2907{
2908	struct task_struct *task;
2909
2910	down(&fs_info->uuid_tree_rescan_sem);
2911	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2912	if (IS_ERR(task)) {
2913		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2914		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2915		up(&fs_info->uuid_tree_rescan_sem);
2916		return PTR_ERR(task);
2917	}
2918
2919	return 0;
2920}
2921
2922static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2923{
2924	u64 root_objectid = 0;
2925	struct btrfs_root *gang[8];
2926	int ret = 0;
2927
2928	while (1) {
2929		unsigned int found;
2930
2931		spin_lock(&fs_info->fs_roots_radix_lock);
2932		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2933					     (void **)gang, root_objectid,
2934					     ARRAY_SIZE(gang));
2935		if (!found) {
2936			spin_unlock(&fs_info->fs_roots_radix_lock);
2937			break;
2938		}
2939		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2940
2941		for (int i = 0; i < found; i++) {
2942			/* Avoid to grab roots in dead_roots. */
2943			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2944				gang[i] = NULL;
2945				continue;
2946			}
2947			/* Grab all the search result for later use. */
2948			gang[i] = btrfs_grab_root(gang[i]);
2949		}
2950		spin_unlock(&fs_info->fs_roots_radix_lock);
2951
2952		for (int i = 0; i < found; i++) {
2953			if (!gang[i])
2954				continue;
2955			root_objectid = btrfs_root_id(gang[i]);
2956			/*
2957			 * Continue to release the remaining roots after the first
2958			 * error without cleanup and preserve the first error
2959			 * for the return.
2960			 */
2961			if (!ret)
2962				ret = btrfs_orphan_cleanup(gang[i]);
2963			btrfs_put_root(gang[i]);
2964		}
2965		if (ret)
2966			break;
2967
2968		root_objectid++;
2969	}
2970	return ret;
2971}
2972
2973/*
2974 * Mounting logic specific to read-write file systems. Shared by open_ctree
2975 * and btrfs_remount when remounting from read-only to read-write.
2976 */
2977int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2978{
2979	int ret;
2980	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2981	bool rebuild_free_space_tree = false;
2982
2983	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2984	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2985		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2986			btrfs_warn(fs_info,
2987				   "'clear_cache' option is ignored with extent tree v2");
2988		else
2989			rebuild_free_space_tree = true;
2990	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2991		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2992		btrfs_warn(fs_info, "free space tree is invalid");
2993		rebuild_free_space_tree = true;
2994	}
2995
2996	if (rebuild_free_space_tree) {
2997		btrfs_info(fs_info, "rebuilding free space tree");
2998		ret = btrfs_rebuild_free_space_tree(fs_info);
2999		if (ret) {
3000			btrfs_warn(fs_info,
3001				   "failed to rebuild free space tree: %d", ret);
3002			goto out;
3003		}
3004	}
3005
3006	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3007	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3008		btrfs_info(fs_info, "disabling free space tree");
3009		ret = btrfs_delete_free_space_tree(fs_info);
3010		if (ret) {
3011			btrfs_warn(fs_info,
3012				   "failed to disable free space tree: %d", ret);
3013			goto out;
3014		}
3015	}
3016
3017	/*
3018	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3019	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3020	 * them into the fs_info->fs_roots_radix tree. This must be done before
3021	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3022	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3023	 * item before the root's tree is deleted - this means that if we unmount
3024	 * or crash before the deletion completes, on the next mount we will not
3025	 * delete what remains of the tree because the orphan item does not
3026	 * exists anymore, which is what tells us we have a pending deletion.
3027	 */
3028	ret = btrfs_find_orphan_roots(fs_info);
3029	if (ret)
3030		goto out;
3031
3032	ret = btrfs_cleanup_fs_roots(fs_info);
3033	if (ret)
3034		goto out;
3035
3036	down_read(&fs_info->cleanup_work_sem);
3037	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3038	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3039		up_read(&fs_info->cleanup_work_sem);
3040		goto out;
3041	}
3042	up_read(&fs_info->cleanup_work_sem);
3043
3044	mutex_lock(&fs_info->cleaner_mutex);
3045	ret = btrfs_recover_relocation(fs_info);
3046	mutex_unlock(&fs_info->cleaner_mutex);
3047	if (ret < 0) {
3048		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3049		goto out;
3050	}
3051
3052	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3053	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3054		btrfs_info(fs_info, "creating free space tree");
3055		ret = btrfs_create_free_space_tree(fs_info);
3056		if (ret) {
3057			btrfs_warn(fs_info,
3058				"failed to create free space tree: %d", ret);
3059			goto out;
3060		}
3061	}
3062
3063	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3064		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3065		if (ret)
3066			goto out;
3067	}
3068
3069	ret = btrfs_resume_balance_async(fs_info);
3070	if (ret)
3071		goto out;
3072
3073	ret = btrfs_resume_dev_replace_async(fs_info);
3074	if (ret) {
3075		btrfs_warn(fs_info, "failed to resume dev_replace");
3076		goto out;
3077	}
3078
3079	btrfs_qgroup_rescan_resume(fs_info);
3080
3081	if (!fs_info->uuid_root) {
3082		btrfs_info(fs_info, "creating UUID tree");
3083		ret = btrfs_create_uuid_tree(fs_info);
3084		if (ret) {
3085			btrfs_warn(fs_info,
3086				   "failed to create the UUID tree %d", ret);
3087			goto out;
3088		}
3089	}
3090
3091out:
3092	return ret;
3093}
3094
3095/*
3096 * Do various sanity and dependency checks of different features.
3097 *
3098 * @is_rw_mount:	If the mount is read-write.
3099 *
3100 * This is the place for less strict checks (like for subpage or artificial
3101 * feature dependencies).
3102 *
3103 * For strict checks or possible corruption detection, see
3104 * btrfs_validate_super().
3105 *
3106 * This should be called after btrfs_parse_options(), as some mount options
3107 * (space cache related) can modify on-disk format like free space tree and
3108 * screw up certain feature dependencies.
3109 */
3110int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3111{
3112	struct btrfs_super_block *disk_super = fs_info->super_copy;
3113	u64 incompat = btrfs_super_incompat_flags(disk_super);
3114	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3115	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3116
3117	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3118		btrfs_err(fs_info,
3119		"cannot mount because of unknown incompat features (0x%llx)",
3120		    incompat);
3121		return -EINVAL;
3122	}
3123
3124	/* Runtime limitation for mixed block groups. */
3125	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3126	    (fs_info->sectorsize != fs_info->nodesize)) {
3127		btrfs_err(fs_info,
3128"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3129			fs_info->nodesize, fs_info->sectorsize);
3130		return -EINVAL;
3131	}
3132
3133	/* Mixed backref is an always-enabled feature. */
3134	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3135
3136	/* Set compression related flags just in case. */
3137	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3138		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3139	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3140		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3141
3142	/*
3143	 * An ancient flag, which should really be marked deprecated.
3144	 * Such runtime limitation doesn't really need a incompat flag.
3145	 */
3146	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3147		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3148
3149	if (compat_ro_unsupp && is_rw_mount) {
3150		btrfs_err(fs_info,
3151	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3152		       compat_ro);
3153		return -EINVAL;
3154	}
3155
3156	/*
3157	 * We have unsupported RO compat features, although RO mounted, we
3158	 * should not cause any metadata writes, including log replay.
3159	 * Or we could screw up whatever the new feature requires.
3160	 */
3161	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3162	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3163		btrfs_err(fs_info,
3164"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3165			  compat_ro);
3166		return -EINVAL;
3167	}
3168
3169	/*
3170	 * Artificial limitations for block group tree, to force
3171	 * block-group-tree to rely on no-holes and free-space-tree.
3172	 */
3173	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3174	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3175	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3176		btrfs_err(fs_info,
3177"block-group-tree feature requires no-holes and free-space-tree features");
3178		return -EINVAL;
3179	}
3180
3181	/*
3182	 * Subpage runtime limitation on v1 cache.
3183	 *
3184	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3185	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3186	 * going to be deprecated anyway.
3187	 */
3188	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3189		btrfs_warn(fs_info,
3190	"v1 space cache is not supported for page size %lu with sectorsize %u",
3191			   PAGE_SIZE, fs_info->sectorsize);
3192		return -EINVAL;
3193	}
3194
3195	/* This can be called by remount, we need to protect the super block. */
3196	spin_lock(&fs_info->super_lock);
3197	btrfs_set_super_incompat_flags(disk_super, incompat);
3198	spin_unlock(&fs_info->super_lock);
3199
3200	return 0;
3201}
3202
3203int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3204{
3205	u32 sectorsize;
3206	u32 nodesize;
3207	u32 stripesize;
3208	u64 generation;
3209	u16 csum_type;
3210	struct btrfs_super_block *disk_super;
3211	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3212	struct btrfs_root *tree_root;
3213	struct btrfs_root *chunk_root;
3214	int ret;
3215	int level;
3216
3217	ret = init_mount_fs_info(fs_info, sb);
3218	if (ret)
3219		goto fail;
3220
3221	/* These need to be init'ed before we start creating inodes and such. */
3222	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3223				     GFP_KERNEL);
3224	fs_info->tree_root = tree_root;
3225	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3226				      GFP_KERNEL);
3227	fs_info->chunk_root = chunk_root;
3228	if (!tree_root || !chunk_root) {
3229		ret = -ENOMEM;
3230		goto fail;
3231	}
3232
3233	ret = btrfs_init_btree_inode(sb);
3234	if (ret)
3235		goto fail;
3236
3237	invalidate_bdev(fs_devices->latest_dev->bdev);
3238
3239	/*
3240	 * Read super block and check the signature bytes only
3241	 */
3242	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3243	if (IS_ERR(disk_super)) {
3244		ret = PTR_ERR(disk_super);
3245		goto fail_alloc;
3246	}
3247
3248	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3249	/*
3250	 * Verify the type first, if that or the checksum value are
3251	 * corrupted, we'll find out
3252	 */
3253	csum_type = btrfs_super_csum_type(disk_super);
3254	if (!btrfs_supported_super_csum(csum_type)) {
3255		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3256			  csum_type);
3257		ret = -EINVAL;
3258		btrfs_release_disk_super(disk_super);
3259		goto fail_alloc;
3260	}
3261
3262	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3263
3264	ret = btrfs_init_csum_hash(fs_info, csum_type);
3265	if (ret) {
3266		btrfs_release_disk_super(disk_super);
 
 
3267		goto fail_alloc;
3268	}
3269
3270	/*
3271	 * We want to check superblock checksum, the type is stored inside.
3272	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3273	 */
3274	if (btrfs_check_super_csum(fs_info, disk_super)) {
3275		btrfs_err(fs_info, "superblock checksum mismatch");
3276		ret = -EINVAL;
3277		btrfs_release_disk_super(disk_super);
3278		goto fail_alloc;
3279	}
3280
3281	/*
3282	 * super_copy is zeroed at allocation time and we never touch the
3283	 * following bytes up to INFO_SIZE, the checksum is calculated from
3284	 * the whole block of INFO_SIZE
3285	 */
3286	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3287	btrfs_release_disk_super(disk_super);
3288
3289	disk_super = fs_info->super_copy;
3290
3291	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3292	       sizeof(*fs_info->super_for_commit));
3293
3294	ret = btrfs_validate_mount_super(fs_info);
3295	if (ret) {
3296		btrfs_err(fs_info, "superblock contains fatal errors");
3297		ret = -EINVAL;
3298		goto fail_alloc;
3299	}
3300
3301	if (!btrfs_super_root(disk_super)) {
3302		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3303		ret = -EINVAL;
3304		goto fail_alloc;
3305	}
3306
3307	/* check FS state, whether FS is broken. */
3308	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3309		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3310
3311	/* Set up fs_info before parsing mount options */
3312	nodesize = btrfs_super_nodesize(disk_super);
 
3313	sectorsize = btrfs_super_sectorsize(disk_super);
3314	stripesize = sectorsize;
3315	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3316	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3317
3318	fs_info->nodesize = nodesize;
3319	fs_info->sectorsize = sectorsize;
3320	fs_info->sectorsize_bits = ilog2(sectorsize);
3321	fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits);
3322	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3323	fs_info->stripesize = stripesize;
3324
3325	/*
3326	 * Handle the space caching options appropriately now that we have the
3327	 * super block loaded and validated.
3328	 */
3329	btrfs_set_free_space_cache_settings(fs_info);
3330
3331	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3332		ret = -EINVAL;
 
3333		goto fail_alloc;
3334	}
3335
3336	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3337	if (ret < 0)
3338		goto fail_alloc;
3339
3340	/*
3341	 * At this point our mount options are validated, if we set ->max_inline
3342	 * to something non-standard make sure we truncate it to sectorsize.
3343	 */
3344	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
 
 
 
 
3345
3346	if (sectorsize < PAGE_SIZE)
3347		btrfs_warn(fs_info,
3348		"read-write for sector size %u with page size %lu is experimental",
3349			   sectorsize, PAGE_SIZE);
3350
3351	ret = btrfs_init_workqueues(fs_info);
3352	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353		goto fail_sb_buffer;
 
3354
3355	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3356	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
 
 
 
 
 
3357
3358	/* Update the values for the current filesystem. */
3359	sb->s_blocksize = sectorsize;
3360	sb->s_blocksize_bits = blksize_bits(sectorsize);
3361	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
 
 
3362
3363	mutex_lock(&fs_info->chunk_mutex);
3364	ret = btrfs_read_sys_array(fs_info);
3365	mutex_unlock(&fs_info->chunk_mutex);
3366	if (ret) {
3367		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 
3368		goto fail_sb_buffer;
3369	}
3370
 
 
3371	generation = btrfs_super_chunk_root_generation(disk_super);
3372	level = btrfs_super_chunk_root_level(disk_super);
3373	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3374			      generation, level);
3375	if (ret) {
3376		btrfs_err(fs_info, "failed to read chunk root");
 
 
 
 
 
 
3377		goto fail_tree_roots;
3378	}
 
 
3379
3380	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3381			   offsetof(struct btrfs_header, chunk_tree_uuid),
3382			   BTRFS_UUID_SIZE);
3383
3384	ret = btrfs_read_chunk_tree(fs_info);
3385	if (ret) {
3386		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 
3387		goto fail_tree_roots;
3388	}
3389
3390	/*
3391	 * At this point we know all the devices that make this filesystem,
3392	 * including the seed devices but we don't know yet if the replace
3393	 * target is required. So free devices that are not part of this
3394	 * filesystem but skip the replace target device which is checked
3395	 * below in btrfs_init_dev_replace().
3396	 */
3397	btrfs_free_extra_devids(fs_devices);
3398	if (!fs_devices->latest_dev->bdev) {
3399		btrfs_err(fs_info, "failed to read devices");
3400		ret = -EIO;
3401		goto fail_tree_roots;
3402	}
3403
3404	ret = init_tree_roots(fs_info);
3405	if (ret)
3406		goto fail_tree_roots;
 
3407
3408	/*
3409	 * Get zone type information of zoned block devices. This will also
3410	 * handle emulation of a zoned filesystem if a regular device has the
3411	 * zoned incompat feature flag set.
3412	 */
3413	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3414	if (ret) {
3415		btrfs_err(fs_info,
3416			  "zoned: failed to read device zone info: %d", ret);
3417		goto fail_block_groups;
3418	}
3419
3420	/*
3421	 * If we have a uuid root and we're not being told to rescan we need to
3422	 * check the generation here so we can set the
3423	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3424	 * transaction during a balance or the log replay without updating the
3425	 * uuid generation, and then if we crash we would rescan the uuid tree,
3426	 * even though it was perfectly fine.
3427	 */
3428	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3429	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3430		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
 
 
 
 
 
 
 
 
 
 
 
 
3431
3432	ret = btrfs_verify_dev_extents(fs_info);
3433	if (ret) {
3434		btrfs_err(fs_info,
3435			  "failed to verify dev extents against chunks: %d",
3436			  ret);
3437		goto fail_block_groups;
3438	}
3439	ret = btrfs_recover_balance(fs_info);
3440	if (ret) {
3441		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3442		goto fail_block_groups;
3443	}
3444
3445	ret = btrfs_init_dev_stats(fs_info);
3446	if (ret) {
3447		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 
3448		goto fail_block_groups;
3449	}
3450
3451	ret = btrfs_init_dev_replace(fs_info);
3452	if (ret) {
3453		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3454		goto fail_block_groups;
3455	}
3456
3457	ret = btrfs_check_zoned_mode(fs_info);
3458	if (ret) {
3459		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3460			  ret);
3461		goto fail_block_groups;
3462	}
3463
3464	ret = btrfs_sysfs_add_fsid(fs_devices);
3465	if (ret) {
3466		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3467				ret);
3468		goto fail_block_groups;
3469	}
3470
3471	ret = btrfs_sysfs_add_mounted(fs_info);
3472	if (ret) {
3473		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3474		goto fail_fsdev_sysfs;
3475	}
3476
3477	ret = btrfs_init_space_info(fs_info);
3478	if (ret) {
3479		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3480		goto fail_sysfs;
 
 
3481	}
3482
3483	ret = btrfs_read_block_groups(fs_info);
3484	if (ret) {
3485		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3486		goto fail_sysfs;
 
 
 
 
 
 
3487	}
 
3488
3489	btrfs_free_zone_cache(fs_info);
3490
3491	btrfs_check_active_zone_reservation(fs_info);
3492
3493	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3494	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3495		btrfs_warn(fs_info,
3496		"writable mount is not allowed due to too many missing devices");
3497		ret = -EINVAL;
3498		goto fail_sysfs;
3499	}
3500
3501	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3502					       "btrfs-cleaner");
3503	if (IS_ERR(fs_info->cleaner_kthread)) {
3504		ret = PTR_ERR(fs_info->cleaner_kthread);
3505		goto fail_sysfs;
3506	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3507
3508	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3509						   tree_root,
3510						   "btrfs-transaction");
3511	if (IS_ERR(fs_info->transaction_kthread)) {
3512		ret = PTR_ERR(fs_info->transaction_kthread);
3513		goto fail_cleaner;
3514	}
3515
3516	ret = btrfs_read_qgroup_config(fs_info);
3517	if (ret)
3518		goto fail_trans_kthread;
3519
3520	if (btrfs_build_ref_tree(fs_info))
3521		btrfs_err(fs_info, "couldn't build ref tree");
 
 
3522
3523	/* do not make disk changes in broken FS or nologreplay is given */
3524	if (btrfs_super_log_root(disk_super) != 0 &&
3525	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3526		btrfs_info(fs_info, "start tree-log replay");
3527		ret = btrfs_replay_log(fs_info, fs_devices);
3528		if (ret)
3529			goto fail_qgroup;
3530	}
3531
3532	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
 
 
3533	if (IS_ERR(fs_info->fs_root)) {
3534		ret = PTR_ERR(fs_info->fs_root);
3535		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3536		fs_info->fs_root = NULL;
3537		goto fail_qgroup;
3538	}
3539
3540	if (sb_rdonly(sb))
3541		return 0;
3542
3543	ret = btrfs_start_pre_rw_mount(fs_info);
3544	if (ret) {
3545		close_ctree(fs_info);
 
 
3546		return ret;
3547	}
3548	btrfs_discard_resume(fs_info);
3549
3550	if (fs_info->uuid_root &&
3551	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3552	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3553		btrfs_info(fs_info, "checking UUID tree");
3554		ret = btrfs_check_uuid_tree(fs_info);
3555		if (ret) {
3556			btrfs_warn(fs_info,
3557				"failed to check the UUID tree: %d", ret);
3558			close_ctree(fs_info);
3559			return ret;
3560		}
3561	}
3562
3563	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3564
3565	/* Kick the cleaner thread so it'll start deleting snapshots. */
3566	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3567		wake_up_process(fs_info->cleaner_kthread);
3568
3569	return 0;
3570
3571fail_qgroup:
3572	btrfs_free_qgroup_config(fs_info);
3573fail_trans_kthread:
3574	kthread_stop(fs_info->transaction_kthread);
3575	btrfs_cleanup_transaction(fs_info);
3576	btrfs_free_fs_roots(fs_info);
3577fail_cleaner:
3578	kthread_stop(fs_info->cleaner_kthread);
3579
3580	/*
3581	 * make sure we're done with the btree inode before we stop our
3582	 * kthreads
3583	 */
3584	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3585
3586fail_sysfs:
3587	btrfs_sysfs_remove_mounted(fs_info);
3588
3589fail_fsdev_sysfs:
3590	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3591
3592fail_block_groups:
3593	btrfs_put_block_group_cache(fs_info);
3594
3595fail_tree_roots:
3596	if (fs_info->data_reloc_root)
3597		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3598	free_root_pointers(fs_info, true);
3599	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3600
3601fail_sb_buffer:
3602	btrfs_stop_all_workers(fs_info);
3603	btrfs_free_block_groups(fs_info);
 
 
 
 
 
 
 
 
 
 
 
3604fail_alloc:
3605	btrfs_mapping_tree_free(fs_info);
 
3606
 
3607	iput(fs_info->btree_inode);
 
 
 
 
3608fail:
3609	btrfs_close_devices(fs_info->fs_devices);
3610	ASSERT(ret < 0);
3611	return ret;
3612}
3613ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3614
3615static void btrfs_end_super_write(struct bio *bio)
3616{
3617	struct btrfs_device *device = bio->bi_private;
3618	struct folio_iter fi;
3619
3620	bio_for_each_folio_all(fi, bio) {
3621		if (bio->bi_status) {
3622			btrfs_warn_rl_in_rcu(device->fs_info,
3623				"lost super block write due to IO error on %s (%d)",
3624				btrfs_dev_name(device),
3625				blk_status_to_errno(bio->bi_status));
3626			btrfs_dev_stat_inc_and_print(device,
3627						     BTRFS_DEV_STAT_WRITE_ERRS);
3628			/* Ensure failure if the primary sb fails. */
3629			if (bio->bi_opf & REQ_FUA)
3630				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3631					   &device->sb_write_errors);
3632			else
3633				atomic_inc(&device->sb_write_errors);
3634		}
3635		folio_unlock(fi.folio);
3636		folio_put(fi.folio);
3637	}
3638
3639	bio_put(bio);
3640}
3641
3642struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3643						   int copy_num, bool drop_cache)
3644{
3645	struct btrfs_super_block *super;
3646	struct page *page;
3647	u64 bytenr, bytenr_orig;
3648	struct address_space *mapping = bdev->bd_mapping;
3649	int ret;
3650
3651	bytenr_orig = btrfs_sb_offset(copy_num);
3652	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3653	if (ret == -ENOENT)
3654		return ERR_PTR(-EINVAL);
3655	else if (ret)
3656		return ERR_PTR(ret);
3657
3658	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3659		return ERR_PTR(-EINVAL);
 
 
 
 
3660
3661	if (drop_cache) {
3662		/* This should only be called with the primary sb. */
3663		ASSERT(copy_num == 0);
 
 
 
 
3664
3665		/*
3666		 * Drop the page of the primary superblock, so later read will
3667		 * always read from the device.
 
 
3668		 */
3669		invalidate_inode_pages2_range(mapping,
3670				bytenr >> PAGE_SHIFT,
3671				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3672	}
3673
3674	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3675	if (IS_ERR(page))
3676		return ERR_CAST(page);
3677
3678	super = page_address(page);
3679	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3680		btrfs_release_disk_super(super);
3681		return ERR_PTR(-ENODATA);
3682	}
3683
3684	if (btrfs_super_bytenr(super) != bytenr_orig) {
3685		btrfs_release_disk_super(super);
3686		return ERR_PTR(-EINVAL);
3687	}
3688
3689	return super;
3690}
3691
3692
3693struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3694{
3695	struct btrfs_super_block *super, *latest = NULL;
 
 
3696	int i;
3697	u64 transid = 0;
 
3698
3699	/* we would like to check all the supers, but that would make
3700	 * a btrfs mount succeed after a mkfs from a different FS.
3701	 * So, we need to add a special mount option to scan for
3702	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3703	 */
3704	for (i = 0; i < 1; i++) {
3705		super = btrfs_read_dev_one_super(bdev, i, false);
3706		if (IS_ERR(super))
 
 
 
3707			continue;
3708
3709		if (!latest || btrfs_super_generation(super) > transid) {
3710			if (latest)
3711				btrfs_release_disk_super(super);
 
 
 
 
3712
3713			latest = super;
 
 
3714			transid = btrfs_super_generation(super);
 
 
3715		}
3716	}
3717
3718	return super;
3719}
3720
3721/*
3722 * Write superblock @sb to the @device. Do not wait for completion, all the
3723 * folios we use for writing are locked.
 
3724 *
3725 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3726 * the expected device size at commit time. Note that max_mirrors must be
3727 * same for write and wait phases.
3728 *
3729 * Return number of errors when folio is not found or submission fails.
3730 */
3731static int write_dev_supers(struct btrfs_device *device,
3732			    struct btrfs_super_block *sb, int max_mirrors)
 
3733{
3734	struct btrfs_fs_info *fs_info = device->fs_info;
3735	struct address_space *mapping = device->bdev->bd_mapping;
3736	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3737	int i;
3738	int ret;
3739	u64 bytenr, bytenr_orig;
3740
3741	atomic_set(&device->sb_write_errors, 0);
3742
3743	if (max_mirrors == 0)
3744		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3745
3746	shash->tfm = fs_info->csum_shash;
3747
3748	for (i = 0; i < max_mirrors; i++) {
3749		struct folio *folio;
3750		struct bio *bio;
3751		struct btrfs_super_block *disk_super;
3752		size_t offset;
3753
3754		bytenr_orig = btrfs_sb_offset(i);
3755		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3756		if (ret == -ENOENT) {
3757			continue;
3758		} else if (ret < 0) {
3759			btrfs_err(device->fs_info,
3760				"couldn't get super block location for mirror %d",
3761				i);
3762			atomic_inc(&device->sb_write_errors);
3763			continue;
3764		}
3765		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3766		    device->commit_total_bytes)
3767			break;
3768
3769		btrfs_set_super_bytenr(sb, bytenr_orig);
 
 
 
 
 
 
3770
3771		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3772				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3773				    sb->csum);
3774
3775		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3776					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3777					    GFP_NOFS);
3778		if (IS_ERR(folio)) {
3779			btrfs_err(device->fs_info,
3780			    "couldn't get super block page for bytenr %llu",
3781			    bytenr);
3782			atomic_inc(&device->sb_write_errors);
3783			continue;
3784		}
3785		ASSERT(folio_order(folio) == 0);
3786
3787		offset = offset_in_folio(folio, bytenr);
3788		disk_super = folio_address(folio) + offset;
3789		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
 
 
 
3790
3791		/*
3792		 * Directly use bios here instead of relying on the page cache
3793		 * to do I/O, so we don't lose the ability to do integrity
3794		 * checking.
3795		 */
3796		bio = bio_alloc(device->bdev, 1,
3797				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3798				GFP_NOFS);
3799		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3800		bio->bi_private = device;
3801		bio->bi_end_io = btrfs_end_super_write;
3802		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
 
 
 
 
3803
3804		/*
3805		 * We FUA only the first super block.  The others we allow to
3806		 * go down lazy and there's a short window where the on-disk
3807		 * copies might still contain the older version.
3808		 */
3809		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3810			bio->bi_opf |= REQ_FUA;
3811		submit_bio(bio);
3812
3813		if (btrfs_advance_sb_log(device, i))
3814			atomic_inc(&device->sb_write_errors);
3815	}
3816	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3817}
3818
3819/*
3820 * Wait for write completion of superblocks done by write_dev_supers,
3821 * @max_mirrors same for write and wait phases.
3822 *
3823 * Return -1 if primary super block write failed or when there were no super block
3824 * copies written. Otherwise 0.
3825 */
3826static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3827{
3828	int i;
3829	int errors = 0;
3830	bool primary_failed = false;
3831	int ret;
3832	u64 bytenr;
3833
3834	if (max_mirrors == 0)
3835		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3836
3837	for (i = 0; i < max_mirrors; i++) {
3838		struct folio *folio;
3839
3840		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3841		if (ret == -ENOENT) {
3842			break;
3843		} else if (ret < 0) {
3844			errors++;
3845			if (i == 0)
3846				primary_failed = true;
3847			continue;
3848		}
3849		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3850		    device->commit_total_bytes)
3851			break;
3852
3853		folio = filemap_get_folio(device->bdev->bd_mapping,
3854					  bytenr >> PAGE_SHIFT);
3855		/* If the folio has been removed, then we know it completed. */
3856		if (IS_ERR(folio))
3857			continue;
3858		ASSERT(folio_order(folio) == 0);
3859
3860		/* Folio will be unlocked once the write completes. */
3861		folio_wait_locked(folio);
3862		folio_put(folio);
3863	}
3864
3865	errors += atomic_read(&device->sb_write_errors);
3866	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3867		primary_failed = true;
3868	if (primary_failed) {
3869		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3870			  device->devid);
3871		return -1;
3872	}
3873
3874	return errors < i ? 0 : -1;
3875}
3876
3877/*
3878 * endio for the write_dev_flush, this will wake anyone waiting
3879 * for the barrier when it is done
3880 */
3881static void btrfs_end_empty_barrier(struct bio *bio)
3882{
3883	bio_uninit(bio);
3884	complete(bio->bi_private);
 
 
 
 
 
 
3885}
3886
3887/*
3888 * Submit a flush request to the device if it supports it. Error handling is
3889 * done in the waiting counterpart.
 
 
 
3890 */
3891static void write_dev_flush(struct btrfs_device *device)
3892{
3893	struct bio *bio = &device->flush_bio;
3894
3895	device->last_flush_error = BLK_STS_OK;
3896
3897	bio_init(bio, device->bdev, NULL, 0,
3898		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3899	bio->bi_end_io = btrfs_end_empty_barrier;
3900	init_completion(&device->flush_wait);
3901	bio->bi_private = &device->flush_wait;
3902	submit_bio(bio);
3903	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3904}
3905
3906/*
3907 * If the flush bio has been submitted by write_dev_flush, wait for it.
3908 * Return true for any error, and false otherwise.
3909 */
3910static bool wait_dev_flush(struct btrfs_device *device)
3911{
3912	struct bio *bio = &device->flush_bio;
3913
3914	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3915		return false;
3916
3917	wait_for_completion_io(&device->flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918
3919	if (bio->bi_status) {
3920		device->last_flush_error = bio->bi_status;
3921		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3922		return true;
3923	}
3924
3925	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926}
3927
3928/*
3929 * send an empty flush down to each device in parallel,
3930 * then wait for them
3931 */
3932static int barrier_all_devices(struct btrfs_fs_info *info)
3933{
3934	struct list_head *head;
3935	struct btrfs_device *dev;
3936	int errors_wait = 0;
 
3937
3938	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3939	/* send down all the barriers */
3940	head = &info->fs_devices->devices;
3941	list_for_each_entry(dev, head, dev_list) {
3942		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3943			continue;
3944		if (!dev->bdev)
3945			continue;
3946		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3947		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3948			continue;
3949
3950		write_dev_flush(dev);
 
 
3951	}
3952
3953	/* wait for all the barriers */
3954	list_for_each_entry(dev, head, dev_list) {
3955		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3956			continue;
3957		if (!dev->bdev) {
3958			errors_wait++;
3959			continue;
3960		}
3961		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3962		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3963			continue;
3964
3965		if (wait_dev_flush(dev))
3966			errors_wait++;
 
3967	}
3968
3969	/*
3970	 * Checks last_flush_error of disks in order to determine the device
3971	 * state.
3972	 */
3973	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3974		return -EIO;
3975
3976	return 0;
3977}
3978
3979int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3980{
3981	int raid_type;
3982	int min_tolerated = INT_MAX;
3983
3984	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3985	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3986		min_tolerated = min_t(int, min_tolerated,
3987				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3988				    tolerated_failures);
3989
3990	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3991		if (raid_type == BTRFS_RAID_SINGLE)
3992			continue;
3993		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3994			continue;
3995		min_tolerated = min_t(int, min_tolerated,
3996				    btrfs_raid_array[raid_type].
3997				    tolerated_failures);
3998	}
3999
4000	if (min_tolerated == INT_MAX) {
4001		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4002		min_tolerated = 0;
4003	}
4004
4005	return min_tolerated;
4006}
4007
4008int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4009{
4010	struct list_head *head;
4011	struct btrfs_device *dev;
4012	struct btrfs_super_block *sb;
4013	struct btrfs_dev_item *dev_item;
4014	int ret;
4015	int do_barriers;
4016	int max_errors;
4017	int total_errors = 0;
4018	u64 flags;
4019
4020	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4021
4022	/*
4023	 * max_mirrors == 0 indicates we're from commit_transaction,
4024	 * not from fsync where the tree roots in fs_info have not
4025	 * been consistent on disk.
4026	 */
4027	if (max_mirrors == 0)
4028		backup_super_roots(fs_info);
4029
4030	sb = fs_info->super_for_commit;
4031	dev_item = &sb->dev_item;
4032
4033	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4034	head = &fs_info->fs_devices->devices;
4035	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4036
4037	if (do_barriers) {
4038		ret = barrier_all_devices(fs_info);
4039		if (ret) {
4040			mutex_unlock(
4041				&fs_info->fs_devices->device_list_mutex);
4042			btrfs_handle_fs_error(fs_info, ret,
4043					      "errors while submitting device barriers.");
4044			return ret;
4045		}
4046	}
4047
4048	list_for_each_entry(dev, head, dev_list) {
4049		if (!dev->bdev) {
4050			total_errors++;
4051			continue;
4052		}
4053		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4054		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4055			continue;
4056
4057		btrfs_set_stack_device_generation(dev_item, 0);
4058		btrfs_set_stack_device_type(dev_item, dev->type);
4059		btrfs_set_stack_device_id(dev_item, dev->devid);
4060		btrfs_set_stack_device_total_bytes(dev_item,
4061						   dev->commit_total_bytes);
4062		btrfs_set_stack_device_bytes_used(dev_item,
4063						  dev->commit_bytes_used);
4064		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4065		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4066		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4067		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4068		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4069		       BTRFS_FSID_SIZE);
4070
4071		flags = btrfs_super_flags(sb);
4072		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4073
4074		ret = btrfs_validate_write_super(fs_info, sb);
4075		if (ret < 0) {
4076			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4077			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4078				"unexpected superblock corruption detected");
4079			return -EUCLEAN;
4080		}
4081
4082		ret = write_dev_supers(dev, sb, max_mirrors);
4083		if (ret)
4084			total_errors++;
4085	}
4086	if (total_errors > max_errors) {
4087		btrfs_err(fs_info, "%d errors while writing supers",
4088			  total_errors);
4089		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090
4091		/* FUA is masked off if unsupported and can't be the reason */
4092		btrfs_handle_fs_error(fs_info, -EIO,
4093				      "%d errors while writing supers",
4094				      total_errors);
4095		return -EIO;
4096	}
4097
4098	total_errors = 0;
4099	list_for_each_entry(dev, head, dev_list) {
4100		if (!dev->bdev)
4101			continue;
4102		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4103		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4104			continue;
4105
4106		ret = wait_dev_supers(dev, max_mirrors);
4107		if (ret)
4108			total_errors++;
4109	}
4110	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4111	if (total_errors > max_errors) {
4112		btrfs_handle_fs_error(fs_info, -EIO,
4113				      "%d errors while writing supers",
4114				      total_errors);
4115		return -EIO;
4116	}
4117	return 0;
4118}
4119
4120/* Drop a fs root from the radix tree and free it. */
4121void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4122				  struct btrfs_root *root)
4123{
4124	bool drop_ref = false;
4125
 
 
 
 
 
 
4126	spin_lock(&fs_info->fs_roots_radix_lock);
4127	radix_tree_delete(&fs_info->fs_roots_radix,
4128			  (unsigned long)btrfs_root_id(root));
4129	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4130		drop_ref = true;
4131	spin_unlock(&fs_info->fs_roots_radix_lock);
4132
4133	if (BTRFS_FS_ERROR(fs_info)) {
4134		ASSERT(root->log_root == NULL);
4135		if (root->reloc_root) {
4136			btrfs_put_root(root->reloc_root);
4137			root->reloc_root = NULL;
4138		}
4139	}
4140
4141	if (drop_ref)
4142		btrfs_put_root(root);
 
4143}
4144
4145int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4146{
4147	mutex_lock(&fs_info->cleaner_mutex);
4148	btrfs_run_delayed_iputs(fs_info);
4149	mutex_unlock(&fs_info->cleaner_mutex);
4150	wake_up_process(fs_info->cleaner_kthread);
 
 
 
 
 
 
 
4151
4152	/* wait until ongoing cleanup work done */
4153	down_write(&fs_info->cleanup_work_sem);
4154	up_write(&fs_info->cleanup_work_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4155
4156	return btrfs_commit_current_transaction(fs_info->tree_root);
 
 
 
 
 
 
 
 
4157}
4158
4159static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4160{
4161	struct btrfs_transaction *trans;
4162	struct btrfs_transaction *tmp;
4163	bool found = false;
 
4164
4165	/*
4166	 * This function is only called at the very end of close_ctree(),
4167	 * thus no other running transaction, no need to take trans_lock.
4168	 */
4169	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4170	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4171		struct extent_state *cached = NULL;
4172		u64 dirty_bytes = 0;
4173		u64 cur = 0;
4174		u64 found_start;
4175		u64 found_end;
4176
4177		found = true;
4178		while (find_first_extent_bit(&trans->dirty_pages, cur,
4179			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4180			dirty_bytes += found_end + 1 - found_start;
4181			cur = found_end + 1;
4182		}
4183		btrfs_warn(fs_info,
4184	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4185			   trans->transid, dirty_bytes);
4186		btrfs_cleanup_one_transaction(trans);
4187
4188		if (trans == fs_info->running_transaction)
4189			fs_info->running_transaction = NULL;
4190		list_del_init(&trans->list);
4191
4192		btrfs_put_transaction(trans);
4193		trace_btrfs_transaction_commit(fs_info);
 
 
 
 
4194	}
4195	ASSERT(!found);
4196}
4197
4198void __cold close_ctree(struct btrfs_fs_info *fs_info)
4199{
 
4200	int ret;
4201
4202	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
 
4203
4204	/*
4205	 * If we had UNFINISHED_DROPS we could still be processing them, so
4206	 * clear that bit and wake up relocation so it can stop.
4207	 * We must do this before stopping the block group reclaim task, because
4208	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4209	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4210	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4211	 * return 1.
4212	 */
4213	btrfs_wake_unfinished_drop(fs_info);
4214
4215	/*
4216	 * We may have the reclaim task running and relocating a data block group,
4217	 * in which case it may create delayed iputs. So stop it before we park
4218	 * the cleaner kthread otherwise we can get new delayed iputs after
4219	 * parking the cleaner, and that can make the async reclaim task to hang
4220	 * if it's waiting for delayed iputs to complete, since the cleaner is
4221	 * parked and can not run delayed iputs - this will make us hang when
4222	 * trying to stop the async reclaim task.
4223	 */
4224	cancel_work_sync(&fs_info->reclaim_bgs_work);
4225	/*
4226	 * We don't want the cleaner to start new transactions, add more delayed
4227	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4228	 * because that frees the task_struct, and the transaction kthread might
4229	 * still try to wake up the cleaner.
4230	 */
4231	kthread_park(fs_info->cleaner_kthread);
 
 
4232
4233	/* wait for the qgroup rescan worker to stop */
4234	btrfs_qgroup_wait_for_completion(fs_info, false);
 
4235
4236	/* wait for the uuid_scan task to finish */
4237	down(&fs_info->uuid_tree_rescan_sem);
4238	/* avoid complains from lockdep et al., set sem back to initial state */
4239	up(&fs_info->uuid_tree_rescan_sem);
4240
4241	/* pause restriper - we want to resume on mount */
4242	btrfs_pause_balance(fs_info);
4243
4244	btrfs_dev_replace_suspend_for_unmount(fs_info);
 
4245
4246	btrfs_scrub_cancel(fs_info);
4247
4248	/* wait for any defraggers to finish */
4249	wait_event(fs_info->transaction_wait,
4250		   (atomic_read(&fs_info->defrag_running) == 0));
4251
4252	/* clear out the rbtree of defraggable inodes */
4253	btrfs_cleanup_defrag_inodes(fs_info);
4254
4255	/*
4256	 * Wait for any fixup workers to complete.
4257	 * If we don't wait for them here and they are still running by the time
4258	 * we call kthread_stop() against the cleaner kthread further below, we
4259	 * get an use-after-free on the cleaner because the fixup worker adds an
4260	 * inode to the list of delayed iputs and then attempts to wakeup the
4261	 * cleaner kthread, which was already stopped and destroyed. We parked
4262	 * already the cleaner, but below we run all pending delayed iputs.
4263	 */
4264	btrfs_flush_workqueue(fs_info->fixup_workers);
4265	/*
4266	 * Similar case here, we have to wait for delalloc workers before we
4267	 * proceed below and stop the cleaner kthread, otherwise we trigger a
4268	 * use-after-tree on the cleaner kthread task_struct when a delalloc
4269	 * worker running submit_compressed_extents() adds a delayed iput, which
4270	 * does a wake up on the cleaner kthread, which was already freed below
4271	 * when we call kthread_stop().
4272	 */
4273	btrfs_flush_workqueue(fs_info->delalloc_workers);
4274
4275	/*
4276	 * After we parked the cleaner kthread, ordered extents may have
4277	 * completed and created new delayed iputs. If one of the async reclaim
4278	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279	 * can hang forever trying to stop it, because if a delayed iput is
4280	 * added after it ran btrfs_run_delayed_iputs() and before it called
4281	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282	 * no one else to run iputs.
4283	 *
4284	 * So wait for all ongoing ordered extents to complete and then run
4285	 * delayed iputs. This works because once we reach this point no one
4286	 * can either create new ordered extents nor create delayed iputs
4287	 * through some other means.
4288	 *
4289	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291	 * but the delayed iput for the respective inode is made only when doing
4292	 * the final btrfs_put_ordered_extent() (which must happen at
4293	 * btrfs_finish_ordered_io() when we are unmounting).
4294	 */
4295	btrfs_flush_workqueue(fs_info->endio_write_workers);
4296	/* Ordered extents for free space inodes. */
4297	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4298	btrfs_run_delayed_iputs(fs_info);
4299
4300	cancel_work_sync(&fs_info->async_reclaim_work);
4301	cancel_work_sync(&fs_info->async_data_reclaim_work);
4302	cancel_work_sync(&fs_info->preempt_reclaim_work);
4303	cancel_work_sync(&fs_info->em_shrinker_work);
4304
4305	/* Cancel or finish ongoing discard work */
4306	btrfs_discard_cleanup(fs_info);
4307
4308	if (!sb_rdonly(fs_info->sb)) {
4309		/*
4310		 * The cleaner kthread is stopped, so do one final pass over
4311		 * unused block groups.
4312		 */
4313		btrfs_delete_unused_bgs(fs_info);
4314
4315		/*
4316		 * There might be existing delayed inode workers still running
4317		 * and holding an empty delayed inode item. We must wait for
4318		 * them to complete first because they can create a transaction.
4319		 * This happens when someone calls btrfs_balance_delayed_items()
4320		 * and then a transaction commit runs the same delayed nodes
4321		 * before any delayed worker has done something with the nodes.
4322		 * We must wait for any worker here and not at transaction
4323		 * commit time since that could cause a deadlock.
4324		 * This is a very rare case.
4325		 */
4326		btrfs_flush_workqueue(fs_info->delayed_workers);
4327
4328		ret = btrfs_commit_super(fs_info);
 
4329		if (ret)
4330			btrfs_err(fs_info, "commit super ret %d", ret);
4331	}
4332
4333	if (BTRFS_FS_ERROR(fs_info))
4334		btrfs_error_commit_super(fs_info);
4335
4336	kthread_stop(fs_info->transaction_kthread);
4337	kthread_stop(fs_info->cleaner_kthread);
4338
4339	ASSERT(list_empty(&fs_info->delayed_iputs));
4340	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4341
4342	if (btrfs_check_quota_leak(fs_info)) {
4343		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4344		btrfs_err(fs_info, "qgroup reserved space leaked");
4345	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4346
4347	btrfs_free_qgroup_config(fs_info);
4348	ASSERT(list_empty(&fs_info->delalloc_roots));
4349
4350	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4351		btrfs_info(fs_info, "at unmount delalloc count %lld",
4352		       percpu_counter_sum(&fs_info->delalloc_bytes));
4353	}
4354
4355	if (percpu_counter_sum(&fs_info->ordered_bytes))
4356		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4357			   percpu_counter_sum(&fs_info->ordered_bytes));
4358
4359	btrfs_sysfs_remove_mounted(fs_info);
4360	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4361
4362	btrfs_put_block_group_cache(fs_info);
 
4363
4364	/*
4365	 * we must make sure there is not any read request to
4366	 * submit after we stopping all workers.
4367	 */
4368	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4369	btrfs_stop_all_workers(fs_info);
4370
4371	/* We shouldn't have any transaction open at this point */
4372	warn_about_uncommitted_trans(fs_info);
4373
4374	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4375	free_root_pointers(fs_info, true);
4376	btrfs_free_fs_roots(fs_info);
 
 
4377
4378	/*
4379	 * We must free the block groups after dropping the fs_roots as we could
4380	 * have had an IO error and have left over tree log blocks that aren't
4381	 * cleaned up until the fs roots are freed.  This makes the block group
4382	 * accounting appear to be wrong because there's pending reserved bytes,
4383	 * so make sure we do the block group cleanup afterwards.
4384	 */
4385	btrfs_free_block_groups(fs_info);
4386
4387	iput(fs_info->btree_inode);
 
 
 
 
 
4388
4389	btrfs_mapping_tree_free(fs_info);
4390	btrfs_close_devices(fs_info->fs_devices);
 
4391}
4392
4393void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4394			     struct extent_buffer *buf)
4395{
4396	struct btrfs_fs_info *fs_info = buf->fs_info;
4397	u64 transid = btrfs_header_generation(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4398
4399#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 
4400	/*
4401	 * This is a fast path so only do this check if we have sanity tests
4402	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4403	 * outside of the sanity tests.
4404	 */
4405	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
 
 
 
4406		return;
4407#endif
4408	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4409	ASSERT(trans->transid == fs_info->generation);
4410	btrfs_assert_tree_write_locked(buf);
4411	if (unlikely(transid != fs_info->generation)) {
4412		btrfs_abort_transaction(trans, -EUCLEAN);
4413		btrfs_crit(fs_info,
4414"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4415			   buf->start, transid, fs_info->generation);
4416	}
4417	set_extent_buffer_dirty(buf);
4418}
4419
4420static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4421					int flush_delayed)
4422{
4423	/*
4424	 * looks as though older kernels can get into trouble with
4425	 * this code, they end up stuck in balance_dirty_pages forever
4426	 */
4427	int ret;
 
4428
4429	if (current->flags & PF_MEMALLOC)
4430		return;
4431
4432	if (flush_delayed)
4433		btrfs_balance_delayed_items(fs_info);
4434
4435	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4436				     BTRFS_DIRTY_METADATA_THRESH,
4437				     fs_info->dirty_metadata_batch);
4438	if (ret > 0) {
4439		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4440	}
 
4441}
4442
4443void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4444{
4445	__btrfs_btree_balance_dirty(fs_info, 1);
 
4446}
4447
4448void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
 
4449{
4450	__btrfs_btree_balance_dirty(fs_info, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4451}
4452
4453static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4454{
4455	/* cleanup FS via transaction */
4456	btrfs_cleanup_transaction(fs_info);
 
 
4457
4458	mutex_lock(&fs_info->cleaner_mutex);
4459	btrfs_run_delayed_iputs(fs_info);
4460	mutex_unlock(&fs_info->cleaner_mutex);
4461
4462	down_write(&fs_info->cleanup_work_sem);
4463	up_write(&fs_info->cleanup_work_sem);
 
 
 
 
4464}
4465
4466static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4467{
4468	struct btrfs_root *gang[8];
4469	u64 root_objectid = 0;
4470	int ret;
4471
4472	spin_lock(&fs_info->fs_roots_radix_lock);
4473	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4474					     (void **)gang, root_objectid,
4475					     ARRAY_SIZE(gang))) != 0) {
4476		int i;
4477
4478		for (i = 0; i < ret; i++)
4479			gang[i] = btrfs_grab_root(gang[i]);
4480		spin_unlock(&fs_info->fs_roots_radix_lock);
4481
4482		for (i = 0; i < ret; i++) {
4483			if (!gang[i])
4484				continue;
4485			root_objectid = btrfs_root_id(gang[i]);
4486			btrfs_free_log(NULL, gang[i]);
4487			btrfs_put_root(gang[i]);
4488		}
4489		root_objectid++;
4490		spin_lock(&fs_info->fs_roots_radix_lock);
4491	}
4492	spin_unlock(&fs_info->fs_roots_radix_lock);
4493	btrfs_free_log_root_tree(NULL, fs_info);
4494}
4495
4496static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4497{
4498	struct btrfs_ordered_extent *ordered;
4499
4500	spin_lock(&root->ordered_extent_lock);
4501	/*
4502	 * This will just short circuit the ordered completion stuff which will
4503	 * make sure the ordered extent gets properly cleaned up.
4504	 */
4505	list_for_each_entry(ordered, &root->ordered_extents,
4506			    root_extent_list)
4507		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4508	spin_unlock(&root->ordered_extent_lock);
4509}
4510
4511static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4512{
4513	struct btrfs_root *root;
4514	LIST_HEAD(splice);
 
 
 
 
 
4515
4516	spin_lock(&fs_info->ordered_root_lock);
4517	list_splice_init(&fs_info->ordered_roots, &splice);
4518	while (!list_empty(&splice)) {
4519		root = list_first_entry(&splice, struct btrfs_root,
4520					ordered_root);
4521		list_move_tail(&root->ordered_root,
4522			       &fs_info->ordered_roots);
4523
4524		spin_unlock(&fs_info->ordered_root_lock);
4525		btrfs_destroy_ordered_extents(root);
4526
4527		cond_resched();
4528		spin_lock(&fs_info->ordered_root_lock);
4529	}
4530	spin_unlock(&fs_info->ordered_root_lock);
4531
4532	/*
4533	 * We need this here because if we've been flipped read-only we won't
4534	 * get sync() from the umount, so we need to make sure any ordered
4535	 * extents that haven't had their dirty pages IO start writeout yet
4536	 * actually get run and error out properly.
4537	 */
4538	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4539}
4540
4541static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4542{
4543	struct btrfs_inode *btrfs_inode;
4544	LIST_HEAD(splice);
 
 
 
4545
4546	spin_lock(&root->delalloc_lock);
4547	list_splice_init(&root->delalloc_inodes, &splice);
4548
 
4549	while (!list_empty(&splice)) {
4550		struct inode *inode = NULL;
4551		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4552					       delalloc_inodes);
4553		btrfs_del_delalloc_inode(btrfs_inode);
4554		spin_unlock(&root->delalloc_lock);
4555
4556		/*
4557		 * Make sure we get a live inode and that it'll not disappear
4558		 * meanwhile.
4559		 */
4560		inode = igrab(&btrfs_inode->vfs_inode);
4561		if (inode) {
4562			unsigned int nofs_flag;
4563
4564			nofs_flag = memalloc_nofs_save();
4565			invalidate_inode_pages2(inode->i_mapping);
4566			memalloc_nofs_restore(nofs_flag);
4567			iput(inode);
4568		}
4569		spin_lock(&root->delalloc_lock);
 
 
 
4570	}
4571	spin_unlock(&root->delalloc_lock);
 
4572}
4573
4574static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
 
4575{
4576	struct btrfs_root *root;
4577	LIST_HEAD(splice);
4578
4579	spin_lock(&fs_info->delalloc_root_lock);
4580	list_splice_init(&fs_info->delalloc_roots, &splice);
4581	while (!list_empty(&splice)) {
4582		root = list_first_entry(&splice, struct btrfs_root,
4583					 delalloc_root);
4584		root = btrfs_grab_root(root);
4585		BUG_ON(!root);
4586		spin_unlock(&fs_info->delalloc_root_lock);
4587
4588		btrfs_destroy_delalloc_inodes(root);
4589		btrfs_put_root(root);
4590
4591		spin_lock(&fs_info->delalloc_root_lock);
 
 
 
 
4592	}
4593	spin_unlock(&fs_info->delalloc_root_lock);
4594}
4595
4596static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4597					 struct extent_io_tree *dirty_pages,
4598					 int mark)
4599{
4600	struct extent_buffer *eb;
4601	u64 start = 0;
4602	u64 end;
4603
4604	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4605				     mark, NULL)) {
4606		clear_extent_bits(dirty_pages, start, end, mark);
4607		while (start <= end) {
4608			eb = find_extent_buffer(fs_info, start);
4609			start += fs_info->nodesize;
4610			if (!eb)
 
 
 
 
 
 
 
 
4611				continue;
 
4612
4613			btrfs_tree_lock(eb);
4614			wait_on_extent_buffer_writeback(eb);
4615			btrfs_clear_buffer_dirty(NULL, eb);
4616			btrfs_tree_unlock(eb);
 
 
 
 
 
4617
4618			free_extent_buffer_stale(eb);
4619		}
 
 
 
4620	}
 
 
 
 
4621}
4622
4623static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4624					struct extent_io_tree *unpin)
4625{
4626	u64 start;
4627	u64 end;
4628
4629	while (1) {
4630		struct extent_state *cached_state = NULL;
4631
4632		/*
4633		 * The btrfs_finish_extent_commit() may get the same range as
4634		 * ours between find_first_extent_bit and clear_extent_dirty.
4635		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4636		 * the same extent range.
4637		 */
4638		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4639		if (!find_first_extent_bit(unpin, 0, &start, &end,
4640					   EXTENT_DIRTY, &cached_state)) {
4641			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4642			break;
4643		}
4644
4645		clear_extent_dirty(unpin, start, end, &cached_state);
4646		free_extent_state(cached_state);
4647		btrfs_error_unpin_extent_range(fs_info, start, end);
4648		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4649		cond_resched();
 
 
 
4650	}
4651}
4652
4653static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4654{
4655	struct inode *inode;
 
 
 
4656
4657	inode = cache->io_ctl.inode;
4658	if (inode) {
4659		unsigned int nofs_flag;
4660
4661		nofs_flag = memalloc_nofs_save();
4662		invalidate_inode_pages2(inode->i_mapping);
4663		memalloc_nofs_restore(nofs_flag);
 
 
4664
4665		BTRFS_I(inode)->generation = 0;
4666		cache->io_ctl.inode = NULL;
4667		iput(inode);
4668	}
4669	ASSERT(cache->io_ctl.pages == NULL);
4670	btrfs_put_block_group(cache);
4671}
4672
4673void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4674			     struct btrfs_fs_info *fs_info)
 
4675{
4676	struct btrfs_block_group *cache;
 
 
 
 
 
 
 
4677
4678	spin_lock(&cur_trans->dirty_bgs_lock);
4679	while (!list_empty(&cur_trans->dirty_bgs)) {
4680		cache = list_first_entry(&cur_trans->dirty_bgs,
4681					 struct btrfs_block_group,
4682					 dirty_list);
4683
4684		if (!list_empty(&cache->io_list)) {
4685			spin_unlock(&cur_trans->dirty_bgs_lock);
4686			list_del_init(&cache->io_list);
4687			btrfs_cleanup_bg_io(cache);
4688			spin_lock(&cur_trans->dirty_bgs_lock);
4689		}
4690
4691		list_del_init(&cache->dirty_list);
4692		spin_lock(&cache->lock);
4693		cache->disk_cache_state = BTRFS_DC_ERROR;
4694		spin_unlock(&cache->lock);
4695
4696		spin_unlock(&cur_trans->dirty_bgs_lock);
4697		btrfs_put_block_group(cache);
4698		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4699		spin_lock(&cur_trans->dirty_bgs_lock);
4700	}
4701	spin_unlock(&cur_trans->dirty_bgs_lock);
4702
4703	/*
4704	 * Refer to the definition of io_bgs member for details why it's safe
4705	 * to use it without any locking
4706	 */
4707	while (!list_empty(&cur_trans->io_bgs)) {
4708		cache = list_first_entry(&cur_trans->io_bgs,
4709					 struct btrfs_block_group,
4710					 io_list);
 
 
 
 
 
 
 
 
 
 
 
 
4711
4712		list_del_init(&cache->io_list);
4713		spin_lock(&cache->lock);
4714		cache->disk_cache_state = BTRFS_DC_ERROR;
4715		spin_unlock(&cache->lock);
4716		btrfs_cleanup_bg_io(cache);
4717	}
 
 
4718}
4719
4720static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
 
4721{
4722	struct btrfs_root *gang[8];
4723	int i;
 
4724	int ret;
 
4725
4726	spin_lock(&fs_info->fs_roots_radix_lock);
 
4727	while (1) {
4728		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4729						 (void **)gang, 0,
4730						 ARRAY_SIZE(gang),
4731						 BTRFS_ROOT_TRANS_TAG);
4732		if (ret == 0)
4733			break;
4734		for (i = 0; i < ret; i++) {
4735			struct btrfs_root *root = gang[i];
4736
4737			btrfs_qgroup_free_meta_all_pertrans(root);
4738			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4739					(unsigned long)btrfs_root_id(root),
4740					BTRFS_ROOT_TRANS_TAG);
4741		}
 
 
 
 
4742	}
4743	spin_unlock(&fs_info->fs_roots_radix_lock);
 
 
 
 
 
 
 
 
 
 
4744}
4745
4746void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
 
4747{
4748	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4749	struct btrfs_device *dev, *tmp;
 
 
 
 
 
 
4750
4751	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4752	ASSERT(list_empty(&cur_trans->dirty_bgs));
4753	ASSERT(list_empty(&cur_trans->io_bgs));
4754
4755	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4756				 post_commit_list) {
4757		list_del_init(&dev->post_commit_list);
4758	}
4759
4760	btrfs_destroy_delayed_refs(cur_trans);
 
4761
4762	cur_trans->state = TRANS_STATE_COMMIT_START;
4763	wake_up(&fs_info->transaction_blocked_wait);
4764
4765	cur_trans->state = TRANS_STATE_UNBLOCKED;
4766	wake_up(&fs_info->transaction_wait);
4767
4768	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4769				     EXTENT_DIRTY);
4770	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
 
4771
4772	cur_trans->state =TRANS_STATE_COMPLETED;
4773	wake_up(&cur_trans->commit_wait);
 
 
4774}
4775
4776static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4777{
4778	struct btrfs_transaction *t;
 
4779
4780	mutex_lock(&fs_info->transaction_kthread_mutex);
4781
4782	spin_lock(&fs_info->trans_lock);
4783	while (!list_empty(&fs_info->trans_list)) {
4784		t = list_first_entry(&fs_info->trans_list,
4785				     struct btrfs_transaction, list);
4786		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4787			refcount_inc(&t->use_count);
4788			spin_unlock(&fs_info->trans_lock);
4789			btrfs_wait_for_commit(fs_info, t->transid);
4790			btrfs_put_transaction(t);
4791			spin_lock(&fs_info->trans_lock);
4792			continue;
4793		}
4794		if (t == fs_info->running_transaction) {
4795			t->state = TRANS_STATE_COMMIT_DOING;
4796			spin_unlock(&fs_info->trans_lock);
4797			/*
4798			 * We wait for 0 num_writers since we don't hold a trans
4799			 * handle open currently for this transaction.
4800			 */
4801			wait_event(t->writer_wait,
4802				   atomic_read(&t->num_writers) == 0);
4803		} else {
4804			spin_unlock(&fs_info->trans_lock);
4805		}
4806		btrfs_cleanup_one_transaction(t);
4807
4808		spin_lock(&fs_info->trans_lock);
4809		if (t == fs_info->running_transaction)
4810			fs_info->running_transaction = NULL;
4811		list_del_init(&t->list);
4812		spin_unlock(&fs_info->trans_lock);
4813
4814		btrfs_put_transaction(t);
4815		trace_btrfs_transaction_commit(fs_info);
4816		spin_lock(&fs_info->trans_lock);
4817	}
4818	spin_unlock(&fs_info->trans_lock);
4819	btrfs_destroy_all_ordered_extents(fs_info);
4820	btrfs_destroy_delayed_inodes(fs_info);
4821	btrfs_assert_delayed_root_empty(fs_info);
4822	btrfs_destroy_all_delalloc_inodes(fs_info);
4823	btrfs_drop_all_logs(fs_info);
4824	btrfs_free_all_qgroup_pertrans(fs_info);
4825	mutex_unlock(&fs_info->transaction_kthread_mutex);
4826
4827	return 0;
4828}
4829
4830int btrfs_init_root_free_objectid(struct btrfs_root *root)
4831{
4832	struct btrfs_path *path;
4833	int ret;
4834	struct extent_buffer *l;
4835	struct btrfs_key search_key;
4836	struct btrfs_key found_key;
4837	int slot;
 
 
 
 
 
 
 
 
 
4838
4839	path = btrfs_alloc_path();
4840	if (!path)
4841		return -ENOMEM;
4842
4843	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4844	search_key.type = -1;
4845	search_key.offset = (u64)-1;
4846	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4847	if (ret < 0)
4848		goto error;
4849	if (ret == 0) {
4850		/*
4851		 * Key with offset -1 found, there would have to exist a root
4852		 * with such id, but this is out of valid range.
4853		 */
4854		ret = -EUCLEAN;
4855		goto error;
4856	}
4857	if (path->slots[0] > 0) {
4858		slot = path->slots[0] - 1;
4859		l = path->nodes[0];
4860		btrfs_item_key_to_cpu(l, &found_key, slot);
4861		root->free_objectid = max_t(u64, found_key.objectid + 1,
4862					    BTRFS_FIRST_FREE_OBJECTID);
4863	} else {
4864		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4865	}
4866	ret = 0;
4867error:
4868	btrfs_free_path(path);
4869	return ret;
4870}
4871
4872int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4873{
4874	int ret;
4875	mutex_lock(&root->objectid_mutex);
4876
4877	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4878		btrfs_warn(root->fs_info,
4879			   "the objectid of root %llu reaches its highest value",
4880			   btrfs_root_id(root));
4881		ret = -ENOSPC;
4882		goto out;
 
 
 
 
 
 
 
 
4883	}
4884
4885	*objectid = root->free_objectid++;
4886	ret = 0;
4887out:
4888	mutex_unlock(&root->objectid_mutex);
4889	return ret;
 
4890}
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
  33#include <asm/unaligned.h>
  34#include "compat.h"
 
 
 
 
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48
  49static struct extent_io_ops btree_extent_io_ops;
  50static void end_workqueue_fn(struct btrfs_work *work);
  51static void free_fs_root(struct btrfs_root *root);
  52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  53				    int read_only);
  54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_root *root);
  58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  61					struct extent_io_tree *dirty_pages,
  62					int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  64				       struct extent_io_tree *pinned_extents);
  65
  66/*
  67 * end_io_wq structs are used to do processing in task context when an IO is
  68 * complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	int error;
  77	int metadata;
  78	struct list_head list;
  79	struct btrfs_work work;
  80};
 
 
  81
  82/*
  83 * async submit bios are used to offload expensive checksumming
  84 * onto the worker threads.  They checksum file and metadata bios
  85 * just before they are sent down the IO stack.
  86 */
  87struct async_submit_bio {
  88	struct inode *inode;
  89	struct bio *bio;
  90	struct list_head list;
  91	extent_submit_bio_hook_t *submit_bio_start;
  92	extent_submit_bio_hook_t *submit_bio_done;
  93	int rw;
  94	int mirror_num;
  95	unsigned long bio_flags;
  96	/*
  97	 * bio_offset is optional, can be used if the pages in the bio
  98	 * can't tell us where in the file the bio should go
  99	 */
 100	u64 bio_offset;
 101	struct btrfs_work work;
 102	int error;
 103};
 104
 105/*
 106 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 108 * the level the eb occupies in the tree.
 109 *
 110 * Different roots are used for different purposes and may nest inside each
 111 * other and they require separate keysets.  As lockdep keys should be
 112 * static, assign keysets according to the purpose of the root as indicated
 113 * by btrfs_root->objectid.  This ensures that all special purpose roots
 114 * have separate keysets.
 115 *
 116 * Lock-nesting across peer nodes is always done with the immediate parent
 117 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 118 * subclass to avoid triggering lockdep warning in such cases.
 119 *
 120 * The key is set by the readpage_end_io_hook after the buffer has passed
 121 * csum validation but before the pages are unlocked.  It is also set by
 122 * btrfs_init_new_buffer on freshly allocated blocks.
 123 *
 124 * We also add a check to make sure the highest level of the tree is the
 125 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 126 * needs update as well.
 127 */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129# if BTRFS_MAX_LEVEL != 8
 130#  error
 131# endif
 132
 133static struct btrfs_lockdep_keyset {
 134	u64			id;		/* root objectid */
 135	const char		*name_stem;	/* lock name stem */
 136	char			names[BTRFS_MAX_LEVEL + 1][20];
 137	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 138} btrfs_lockdep_keysets[] = {
 139	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 140	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 141	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 142	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 143	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 144	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 145	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
 146	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 147	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 148	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 149	{ .id = 0,				.name_stem = "tree"	},
 150};
 151
 152void __init btrfs_init_lockdep(void)
 153{
 154	int i, j;
 
 
 
 
 
 155
 156	/* initialize lockdep class names */
 157	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 158		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 159
 160		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 161			snprintf(ks->names[j], sizeof(ks->names[j]),
 162				 "btrfs-%s-%02d", ks->name_stem, j);
 
 
 
 
 
 
 163	}
 164}
 165
 166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 167				    int level)
 168{
 169	struct btrfs_lockdep_keyset *ks;
 170
 171	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 172
 173	/* find the matching keyset, id 0 is the default entry */
 174	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 175		if (ks->id == objectid)
 176			break;
 177
 178	lockdep_set_class_and_name(&eb->lock,
 179				   &ks->keys[level], ks->names[level]);
 
 
 
 180}
 181
 182#endif
 183
 184/*
 185 * extents on the btree inode are pretty simple, there's one extent
 186 * that covers the entire device
 
 
 187 */
 188static struct extent_map *btree_get_extent(struct inode *inode,
 189		struct page *page, size_t pg_offset, u64 start, u64 len,
 190		int create)
 191{
 192	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 193	struct extent_map *em;
 194	int ret;
 195
 196	read_lock(&em_tree->lock);
 197	em = lookup_extent_mapping(em_tree, start, len);
 198	if (em) {
 199		em->bdev =
 200			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 201		read_unlock(&em_tree->lock);
 202		goto out;
 203	}
 204	read_unlock(&em_tree->lock);
 205
 206	em = alloc_extent_map();
 207	if (!em) {
 208		em = ERR_PTR(-ENOMEM);
 209		goto out;
 210	}
 211	em->start = 0;
 212	em->len = (u64)-1;
 213	em->block_len = (u64)-1;
 214	em->block_start = 0;
 215	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 216
 217	write_lock(&em_tree->lock);
 218	ret = add_extent_mapping(em_tree, em);
 219	if (ret == -EEXIST) {
 220		u64 failed_start = em->start;
 221		u64 failed_len = em->len;
 222
 223		free_extent_map(em);
 224		em = lookup_extent_mapping(em_tree, start, len);
 225		if (em) {
 226			ret = 0;
 227		} else {
 228			em = lookup_extent_mapping(em_tree, failed_start,
 229						   failed_len);
 230			ret = -EIO;
 231		}
 232	} else if (ret) {
 233		free_extent_map(em);
 234		em = NULL;
 235	}
 236	write_unlock(&em_tree->lock);
 237
 238	if (ret)
 239		em = ERR_PTR(ret);
 240out:
 241	return em;
 242}
 243
 244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 245{
 246	return crc32c(seed, data, len);
 
 
 
 
 
 
 
 247}
 248
 249void btrfs_csum_final(u32 crc, char *result)
 250{
 251	put_unaligned_le32(~crc, result);
 
 
 
 
 
 
 
 
 252}
 253
 254/*
 255 * compute the csum for a btree block, and either verify it or write it
 256 * into the csum field of the block.
 257 */
 258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 259			   int verify)
 260{
 261	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 262	char *result = NULL;
 263	unsigned long len;
 264	unsigned long cur_len;
 265	unsigned long offset = BTRFS_CSUM_SIZE;
 266	char *kaddr;
 267	unsigned long map_start;
 268	unsigned long map_len;
 269	int err;
 270	u32 crc = ~(u32)0;
 271	unsigned long inline_result;
 272
 273	len = buf->len - offset;
 274	while (len > 0) {
 275		err = map_private_extent_buffer(buf, offset, 32,
 276					&kaddr, &map_start, &map_len);
 277		if (err)
 278			return 1;
 279		cur_len = min(len, map_len - (offset - map_start));
 280		crc = btrfs_csum_data(root, kaddr + offset - map_start,
 281				      crc, cur_len);
 282		len -= cur_len;
 283		offset += cur_len;
 284	}
 285	if (csum_size > sizeof(inline_result)) {
 286		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 287		if (!result)
 288			return 1;
 289	} else {
 290		result = (char *)&inline_result;
 291	}
 292
 293	btrfs_csum_final(crc, result);
 
 294
 295	if (verify) {
 296		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 297			u32 val;
 298			u32 found = 0;
 299			memcpy(&found, result, csum_size);
 300
 301			read_extent_buffer(buf, &val, 0, csum_size);
 302			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 303				       "failed on %llu wanted %X found %X "
 304				       "level %d\n",
 305				       root->fs_info->sb->s_id,
 306				       (unsigned long long)buf->start, val, found,
 307				       btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 
 332
 333	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 334		return 0;
 335
 336	if (atomic)
 337		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 338
 339	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 340			 0, &cached_state);
 341	if (extent_buffer_uptodate(eb) &&
 342	    btrfs_header_generation(eb) == parent_transid) {
 343		ret = 0;
 344		goto out;
 345	}
 346	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 347		       "found %llu\n",
 348		       (unsigned long long)eb->start,
 349		       (unsigned long long)parent_transid,
 350		       (unsigned long long)btrfs_header_generation(eb));
 351	ret = 1;
 352	clear_extent_buffer_uptodate(eb);
 353out:
 354	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 355			     &cached_state, GFP_NOFS);
 356	return ret;
 357}
 358
 359/*
 360 * helper to read a given tree block, doing retries as required when
 361 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 362 */
 363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 364					  struct extent_buffer *eb,
 365					  u64 start, u64 parent_transid)
 366{
 367	struct extent_io_tree *io_tree;
 368	int failed = 0;
 369	int ret;
 370	int num_copies = 0;
 371	int mirror_num = 0;
 372	int failed_mirror = 0;
 373
 374	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 375	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 376	while (1) {
 377		ret = read_extent_buffer_pages(io_tree, eb, start,
 378					       WAIT_COMPLETE,
 379					       btree_get_extent, mirror_num);
 380		if (!ret && !verify_parent_transid(io_tree, eb,
 381						   parent_transid, 0))
 382			break;
 383
 384		/*
 385		 * This buffer's crc is fine, but its contents are corrupted, so
 386		 * there is no reason to read the other copies, they won't be
 387		 * any less wrong.
 388		 */
 389		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 390			break;
 391
 392		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 393					      eb->start, eb->len);
 394		if (num_copies == 1)
 395			break;
 396
 397		if (!failed_mirror) {
 398			failed = 1;
 399			failed_mirror = eb->read_mirror;
 400		}
 401
 402		mirror_num++;
 403		if (mirror_num == failed_mirror)
 404			mirror_num++;
 405
 406		if (mirror_num > num_copies)
 407			break;
 408	}
 409
 410	if (failed && !ret)
 411		repair_eb_io_failure(root, eb, failed_mirror);
 412
 413	return ret;
 414}
 415
 416/*
 417 * checksum a dirty tree block before IO.  This has extra checks to make sure
 418 * we only fill in the checksum field in the first page of a multi-page block
 419 */
 420
 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 422{
 423	struct extent_io_tree *tree;
 424	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 425	u64 found_start;
 426	struct extent_buffer *eb;
 
 
 427
 428	tree = &BTRFS_I(page->mapping->host)->io_tree;
 
 
 
 
 429
 430	eb = (struct extent_buffer *)page->private;
 431	if (page != eb->pages[0])
 432		return 0;
 433	found_start = btrfs_header_bytenr(eb);
 434	if (found_start != start) {
 435		WARN_ON(1);
 436		return 0;
 437	}
 438	if (eb->pages[0] != page) {
 439		WARN_ON(1);
 440		return 0;
 441	}
 442	if (!PageUptodate(page)) {
 443		WARN_ON(1);
 444		return 0;
 445	}
 446	csum_tree_block(root, eb, 0);
 447	return 0;
 448}
 
 
 
 
 
 
 449
 450static int check_tree_block_fsid(struct btrfs_root *root,
 451				 struct extent_buffer *eb)
 452{
 453	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 454	u8 fsid[BTRFS_UUID_SIZE];
 455	int ret = 1;
 456
 457	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 458			   BTRFS_FSID_SIZE);
 459	while (fs_devices) {
 460		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 461			ret = 0;
 462			break;
 463		}
 464		fs_devices = fs_devices->seed;
 465	}
 466	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469#define CORRUPT(reason, eb, root, slot)				\
 470	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
 471	       "root=%llu, slot=%d\n", reason,			\
 472	       (unsigned long long)btrfs_header_bytenr(eb),	\
 473	       (unsigned long long)root->objectid, slot)
 474
 475static noinline int check_leaf(struct btrfs_root *root,
 476			       struct extent_buffer *leaf)
 477{
 478	struct btrfs_key key;
 479	struct btrfs_key leaf_key;
 480	u32 nritems = btrfs_header_nritems(leaf);
 481	int slot;
 482
 483	if (nritems == 0)
 484		return 0;
 485
 486	/* Check the 0 item */
 487	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 488	    BTRFS_LEAF_DATA_SIZE(root)) {
 489		CORRUPT("invalid item offset size pair", leaf, root, 0);
 490		return -EIO;
 491	}
 492
 493	/*
 494	 * Check to make sure each items keys are in the correct order and their
 495	 * offsets make sense.  We only have to loop through nritems-1 because
 496	 * we check the current slot against the next slot, which verifies the
 497	 * next slot's offset+size makes sense and that the current's slot
 498	 * offset is correct.
 499	 */
 500	for (slot = 0; slot < nritems - 1; slot++) {
 501		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 502		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 503
 504		/* Make sure the keys are in the right order */
 505		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 506			CORRUPT("bad key order", leaf, root, slot);
 507			return -EIO;
 508		}
 509
 510		/*
 511		 * Make sure the offset and ends are right, remember that the
 512		 * item data starts at the end of the leaf and grows towards the
 513		 * front.
 514		 */
 515		if (btrfs_item_offset_nr(leaf, slot) !=
 516			btrfs_item_end_nr(leaf, slot + 1)) {
 517			CORRUPT("slot offset bad", leaf, root, slot);
 518			return -EIO;
 519		}
 520
 521		/*
 522		 * Check to make sure that we don't point outside of the leaf,
 523		 * just incase all the items are consistent to eachother, but
 524		 * all point outside of the leaf.
 525		 */
 526		if (btrfs_item_end_nr(leaf, slot) >
 527		    BTRFS_LEAF_DATA_SIZE(root)) {
 528			CORRUPT("slot end outside of leaf", leaf, root, slot);
 529			return -EIO;
 530		}
 531	}
 532
 533	return 0;
 534}
 535
 536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
 537				       struct page *page, int max_walk)
 538{
 539	struct extent_buffer *eb;
 540	u64 start = page_offset(page);
 541	u64 target = start;
 542	u64 min_start;
 543
 544	if (start < max_walk)
 545		min_start = 0;
 546	else
 547		min_start = start - max_walk;
 548
 549	while (start >= min_start) {
 550		eb = find_extent_buffer(tree, start, 0);
 551		if (eb) {
 552			/*
 553			 * we found an extent buffer and it contains our page
 554			 * horray!
 555			 */
 556			if (eb->start <= target &&
 557			    eb->start + eb->len > target)
 558				return eb;
 559
 560			/* we found an extent buffer that wasn't for us */
 561			free_extent_buffer(eb);
 562			return NULL;
 563		}
 564		if (start == 0)
 565			break;
 566		start -= PAGE_CACHE_SIZE;
 567	}
 568	return NULL;
 569}
 570
 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 572			       struct extent_state *state, int mirror)
 
 573{
 574	struct extent_io_tree *tree;
 575	u64 found_start;
 576	int found_level;
 577	struct extent_buffer *eb;
 578	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 579	int ret = 0;
 580	int reads_done;
 581
 582	if (!page->private)
 583		goto out;
 584
 585	tree = &BTRFS_I(page->mapping->host)->io_tree;
 586	eb = (struct extent_buffer *)page->private;
 587
 588	/* the pending IO might have been the only thing that kept this buffer
 589	 * in memory.  Make sure we have a ref for all this other checks
 590	 */
 591	extent_buffer_get(eb);
 592
 593	reads_done = atomic_dec_and_test(&eb->io_pages);
 594	if (!reads_done)
 595		goto err;
 596
 597	eb->read_mirror = mirror;
 598	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 599		ret = -EIO;
 600		goto err;
 601	}
 602
 603	found_start = btrfs_header_bytenr(eb);
 604	if (found_start != eb->start) {
 605		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 606			       "%llu %llu\n",
 607			       (unsigned long long)found_start,
 608			       (unsigned long long)eb->start);
 609		ret = -EIO;
 610		goto err;
 611	}
 612	if (check_tree_block_fsid(root, eb)) {
 613		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 614			       (unsigned long long)eb->start);
 615		ret = -EIO;
 616		goto err;
 617	}
 618	found_level = btrfs_header_level(eb);
 
 
 
 
 
 
 
 619
 620	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 621				       eb, found_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	ret = csum_tree_block(root, eb, 1);
 624	if (ret) {
 
 
 
 
 
 
 
 
 
 
 
 625		ret = -EIO;
 626		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627	}
 628
 629	/*
 630	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 631	 * that we don't try and read the other copies of this block, just
 632	 * return -EIO.
 633	 */
 634	if (found_level == 0 && check_leaf(root, eb)) {
 635		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 636		ret = -EIO;
 637	}
 638
 639	if (!ret)
 640		set_extent_buffer_uptodate(eb);
 641err:
 642	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
 643		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
 644		btree_readahead_hook(root, eb, eb->start, ret);
 645	}
 646
 647	if (ret)
 648		clear_extent_buffer_uptodate(eb);
 649	free_extent_buffer(eb);
 
 650out:
 651	return ret;
 652}
 653
 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
 
 
 655{
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 658
 659	eb = (struct extent_buffer *)page->private;
 660	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 661	eb->read_mirror = failed_mirror;
 662	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 663		btree_readahead_hook(root, eb, eb->start, -EIO);
 664	return -EIO;	/* we fixed nothing */
 665}
 666
 667static void end_workqueue_bio(struct bio *bio, int err)
 668{
 669	struct end_io_wq *end_io_wq = bio->bi_private;
 670	struct btrfs_fs_info *fs_info;
 671
 672	fs_info = end_io_wq->info;
 673	end_io_wq->error = err;
 674	end_io_wq->work.func = end_workqueue_fn;
 675	end_io_wq->work.flags = 0;
 676
 677	if (bio->bi_rw & REQ_WRITE) {
 678		if (end_io_wq->metadata == 1)
 679			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 680					   &end_io_wq->work);
 681		else if (end_io_wq->metadata == 2)
 682			btrfs_queue_worker(&fs_info->endio_freespace_worker,
 683					   &end_io_wq->work);
 684		else
 685			btrfs_queue_worker(&fs_info->endio_write_workers,
 686					   &end_io_wq->work);
 687	} else {
 688		if (end_io_wq->metadata)
 689			btrfs_queue_worker(&fs_info->endio_meta_workers,
 690					   &end_io_wq->work);
 691		else
 692			btrfs_queue_worker(&fs_info->endio_workers,
 693					   &end_io_wq->work);
 694	}
 695}
 
 
 
 696
 697/*
 698 * For the metadata arg you want
 699 *
 700 * 0 - if data
 701 * 1 - if normal metadta
 702 * 2 - if writing to the free space cache area
 703 */
 704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 705			int metadata)
 706{
 707	struct end_io_wq *end_io_wq;
 708	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 709	if (!end_io_wq)
 710		return -ENOMEM;
 711
 712	end_io_wq->private = bio->bi_private;
 713	end_io_wq->end_io = bio->bi_end_io;
 714	end_io_wq->info = info;
 715	end_io_wq->error = 0;
 716	end_io_wq->bio = bio;
 717	end_io_wq->metadata = metadata;
 718
 719	bio->bi_private = end_io_wq;
 720	bio->bi_end_io = end_workqueue_bio;
 721	return 0;
 722}
 723
 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 725{
 726	unsigned long limit = min_t(unsigned long,
 727				    info->workers.max_workers,
 728				    info->fs_devices->open_devices);
 729	return 256 * limit;
 
 
 
 730}
 731
 732static void run_one_async_start(struct btrfs_work *work)
 733{
 734	struct async_submit_bio *async;
 735	int ret;
 736
 737	async = container_of(work, struct  async_submit_bio, work);
 738	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 739				      async->mirror_num, async->bio_flags,
 740				      async->bio_offset);
 741	if (ret)
 742		async->error = ret;
 743}
 744
 745static void run_one_async_done(struct btrfs_work *work)
 
 746{
 747	struct btrfs_fs_info *fs_info;
 748	struct async_submit_bio *async;
 749	int limit;
 750
 751	async = container_of(work, struct  async_submit_bio, work);
 752	fs_info = BTRFS_I(async->inode)->root->fs_info;
 
 
 
 
 
 
 
 
 753
 754	limit = btrfs_async_submit_limit(fs_info);
 755	limit = limit * 2 / 3;
 
 
 
 
 
 
 
 
 756
 757	atomic_dec(&fs_info->nr_async_submits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758
 759	if (atomic_read(&fs_info->nr_async_submits) < limit &&
 760	    waitqueue_active(&fs_info->async_submit_wait))
 761		wake_up(&fs_info->async_submit_wait);
 
 
 
 762
 763	/* If an error occured we just want to clean up the bio and move on */
 764	if (async->error) {
 765		bio_endio(async->bio, async->error);
 766		return;
 767	}
 768
 769	async->submit_bio_done(async->inode, async->rw, async->bio,
 770			       async->mirror_num, async->bio_flags,
 771			       async->bio_offset);
 772}
 
 
 
 773
 774static void run_one_async_free(struct btrfs_work *work)
 775{
 776	struct async_submit_bio *async;
 
 
 
 
 777
 778	async = container_of(work, struct  async_submit_bio, work);
 779	kfree(async);
 
 
 
 
 
 
 780}
 781
 782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 783			int rw, struct bio *bio, int mirror_num,
 784			unsigned long bio_flags,
 785			u64 bio_offset,
 786			extent_submit_bio_hook_t *submit_bio_start,
 787			extent_submit_bio_hook_t *submit_bio_done)
 
 
 
 788{
 789	struct async_submit_bio *async;
 
 790
 791	async = kmalloc(sizeof(*async), GFP_NOFS);
 792	if (!async)
 793		return -ENOMEM;
 
 
 
 794
 795	async->inode = inode;
 796	async->rw = rw;
 797	async->bio = bio;
 798	async->mirror_num = mirror_num;
 799	async->submit_bio_start = submit_bio_start;
 800	async->submit_bio_done = submit_bio_done;
 801
 802	async->work.func = run_one_async_start;
 803	async->work.ordered_func = run_one_async_done;
 804	async->work.ordered_free = run_one_async_free;
 805
 806	async->work.flags = 0;
 807	async->bio_flags = bio_flags;
 808	async->bio_offset = bio_offset;
 809
 810	async->error = 0;
 811
 812	atomic_inc(&fs_info->nr_async_submits);
 813
 814	if (rw & REQ_SYNC)
 815		btrfs_set_work_high_prio(&async->work);
 816
 817	btrfs_queue_worker(&fs_info->workers, &async->work);
 818
 819	while (atomic_read(&fs_info->async_submit_draining) &&
 820	      atomic_read(&fs_info->nr_async_submits)) {
 821		wait_event(fs_info->async_submit_wait,
 822			   (atomic_read(&fs_info->nr_async_submits) == 0));
 823	}
 
 824
 825	return 0;
 826}
 827
 828static int btree_csum_one_bio(struct bio *bio)
 
 829{
 830	struct bio_vec *bvec = bio->bi_io_vec;
 831	int bio_index = 0;
 832	struct btrfs_root *root;
 833	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834
 835	WARN_ON(bio->bi_vcnt <= 0);
 836	while (bio_index < bio->bi_vcnt) {
 837		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 838		ret = csum_dirty_buffer(root, bvec->bv_page);
 839		if (ret)
 840			break;
 841		bio_index++;
 842		bvec++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843	}
 844	return ret;
 845}
 846
 847static int __btree_submit_bio_start(struct inode *inode, int rw,
 848				    struct bio *bio, int mirror_num,
 849				    unsigned long bio_flags,
 850				    u64 bio_offset)
 851{
 852	/*
 853	 * when we're called for a write, we're already in the async
 854	 * submission context.  Just jump into btrfs_map_bio
 855	 */
 856	return btree_csum_one_bio(bio);
 857}
 858
 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 860				 int mirror_num, unsigned long bio_flags,
 861				 u64 bio_offset)
 862{
 863	/*
 864	 * when we're called for a write, we're already in the async
 865	 * submission context.  Just jump into btrfs_map_bio
 866	 */
 867	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 868}
 869
 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 871				 int mirror_num, unsigned long bio_flags,
 872				 u64 bio_offset)
 873{
 874	int ret;
 875
 876	if (!(rw & REQ_WRITE)) {
 
 877
 878		/*
 879		 * called for a read, do the setup so that checksum validation
 880		 * can happen in the async kernel threads
 881		 */
 882		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 883					  bio, 1);
 884		if (ret)
 885			return ret;
 886		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 887				     mirror_num, 0);
 888	}
 889
 890	/*
 891	 * kthread helpers are used to submit writes so that checksumming
 892	 * can happen in parallel across all CPUs
 893	 */
 894	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 895				   inode, rw, bio, mirror_num, 0,
 896				   bio_offset,
 897				   __btree_submit_bio_start,
 898				   __btree_submit_bio_done);
 899}
 900
 901#ifdef CONFIG_MIGRATION
 902static int btree_migratepage(struct address_space *mapping,
 903			struct page *newpage, struct page *page,
 904			enum migrate_mode mode)
 905{
 906	/*
 907	 * we can't safely write a btree page from here,
 908	 * we haven't done the locking hook
 909	 */
 910	if (PageDirty(page))
 911		return -EAGAIN;
 912	/*
 913	 * Buffers may be managed in a filesystem specific way.
 914	 * We must have no buffers or drop them.
 915	 */
 916	if (page_has_private(page) &&
 917	    !try_to_release_page(page, GFP_KERNEL))
 918		return -EAGAIN;
 919	return migrate_page(mapping, newpage, page, mode);
 920}
 921#endif
 922
 923
 924static int btree_writepages(struct address_space *mapping,
 925			    struct writeback_control *wbc)
 926{
 927	struct extent_io_tree *tree;
 928	tree = &BTRFS_I(mapping->host)->io_tree;
 929	if (wbc->sync_mode == WB_SYNC_NONE) {
 930		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 931		u64 num_dirty;
 932		unsigned long thresh = 32 * 1024 * 1024;
 933
 934		if (wbc->for_kupdate)
 935			return 0;
 936
 937		/* this is a bit racy, but that's ok */
 938		num_dirty = root->fs_info->dirty_metadata_bytes;
 939		if (num_dirty < thresh)
 940			return 0;
 941	}
 942	return btree_write_cache_pages(mapping, wbc);
 943}
 944
 945static int btree_readpage(struct file *file, struct page *page)
 946{
 947	struct extent_io_tree *tree;
 948	tree = &BTRFS_I(page->mapping->host)->io_tree;
 949	return extent_read_full_page(tree, page, btree_get_extent, 0);
 
 950}
 951
 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 953{
 954	if (PageWriteback(page) || PageDirty(page))
 955		return 0;
 956	/*
 957	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
 958	 * slab allocation from alloc_extent_state down the callchain where
 959	 * it'd hit a BUG_ON as those flags are not allowed.
 960	 */
 961	gfp_flags &= ~GFP_SLAB_BUG_MASK;
 962
 963	return try_release_extent_buffer(page, gfp_flags);
 964}
 965
 966static void btree_invalidatepage(struct page *page, unsigned long offset)
 967{
 968	struct extent_io_tree *tree;
 969	tree = &BTRFS_I(page->mapping->host)->io_tree;
 970	extent_invalidatepage(tree, page, offset);
 971	btree_releasepage(page, GFP_NOFS);
 972	if (PagePrivate(page)) {
 973		printk(KERN_WARNING "btrfs warning page private not zero "
 974		       "on page %llu\n", (unsigned long long)page_offset(page));
 975		ClearPagePrivate(page);
 976		set_page_private(page, 0);
 977		page_cache_release(page);
 978	}
 
 979}
 980
 981static int btree_set_page_dirty(struct page *page)
 982{
 983	struct extent_buffer *eb;
 984
 985	BUG_ON(!PagePrivate(page));
 986	eb = (struct extent_buffer *)page->private;
 987	BUG_ON(!eb);
 988	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 989	BUG_ON(!atomic_read(&eb->refs));
 990	btrfs_assert_tree_locked(eb);
 991	return __set_page_dirty_nobuffers(page);
 992}
 993
 994static const struct address_space_operations btree_aops = {
 995	.readpage	= btree_readpage,
 996	.writepages	= btree_writepages,
 997	.releasepage	= btree_releasepage,
 998	.invalidatepage = btree_invalidatepage,
 999#ifdef CONFIG_MIGRATION
1000	.migratepage	= btree_migratepage,
1001#endif
1002	.set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006			 u64 parent_transid)
1007{
1008	struct extent_buffer *buf = NULL;
1009	struct inode *btree_inode = root->fs_info->btree_inode;
1010	int ret = 0;
1011
1012	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013	if (!buf)
1014		return 0;
1015	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017	free_extent_buffer(buf);
1018	return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022			 int mirror_num, struct extent_buffer **eb)
1023{
1024	struct extent_buffer *buf = NULL;
1025	struct inode *btree_inode = root->fs_info->btree_inode;
1026	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027	int ret;
1028
1029	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030	if (!buf)
1031		return 0;
1032
1033	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 
 
 
 
 
 
 
 
1034
1035	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036				       btree_get_extent, mirror_num);
1037	if (ret) {
1038		free_extent_buffer(buf);
1039		return ret;
1040	}
1041
1042	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043		free_extent_buffer(buf);
1044		return -EIO;
1045	} else if (extent_buffer_uptodate(buf)) {
1046		*eb = buf;
1047	} else {
1048		free_extent_buffer(buf);
1049	}
1050	return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054					    u64 bytenr, u32 blocksize)
1055{
1056	struct inode *btree_inode = root->fs_info->btree_inode;
1057	struct extent_buffer *eb;
1058	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059				bytenr, blocksize);
1060	return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064						 u64 bytenr, u32 blocksize)
1065{
1066	struct inode *btree_inode = root->fs_info->btree_inode;
1067	struct extent_buffer *eb;
1068
1069	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070				 bytenr, blocksize);
1071	return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078					buf->start + buf->len - 1);
1079}
 
 
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084				       buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088				      u32 blocksize, u64 parent_transid)
1089{
1090	struct extent_buffer *buf = NULL;
1091	int ret;
 
 
 
 
 
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094	if (!buf)
1095		return NULL;
 
 
 
 
 
 
1096
1097	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098	return buf;
 
1099
1100}
 
 
 
 
 
 
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103		      struct extent_buffer *buf)
1104{
1105	if (btrfs_header_generation(buf) ==
1106	    root->fs_info->running_transaction->transid) {
1107		btrfs_assert_tree_locked(buf);
1108
1109		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110			spin_lock(&root->fs_info->delalloc_lock);
1111			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112				root->fs_info->dirty_metadata_bytes -= buf->len;
1113			else {
1114				spin_unlock(&root->fs_info->delalloc_lock);
1115				btrfs_panic(root->fs_info, -EOVERFLOW,
1116					  "Can't clear %lu bytes from "
1117					  " dirty_mdatadata_bytes (%lu)",
1118					  buf->len,
1119					  root->fs_info->dirty_metadata_bytes);
1120			}
1121			spin_unlock(&root->fs_info->delalloc_lock);
1122		}
1123
1124		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125		btrfs_set_lock_blocking(buf);
1126		clear_extent_buffer_dirty(buf);
1127	}
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131			 u32 stripesize, struct btrfs_root *root,
1132			 struct btrfs_fs_info *fs_info,
1133			 u64 objectid)
1134{
1135	root->node = NULL;
1136	root->commit_root = NULL;
1137	root->sectorsize = sectorsize;
1138	root->nodesize = nodesize;
1139	root->leafsize = leafsize;
1140	root->stripesize = stripesize;
1141	root->ref_cows = 0;
1142	root->track_dirty = 0;
1143	root->in_radix = 0;
1144	root->orphan_item_inserted = 0;
1145	root->orphan_cleanup_state = 0;
1146
1147	root->objectid = objectid;
1148	root->last_trans = 0;
1149	root->highest_objectid = 0;
1150	root->name = NULL;
1151	root->inode_tree = RB_ROOT;
1152	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153	root->block_rsv = NULL;
1154	root->orphan_block_rsv = NULL;
1155
1156	INIT_LIST_HEAD(&root->dirty_list);
1157	INIT_LIST_HEAD(&root->root_list);
1158	spin_lock_init(&root->orphan_lock);
1159	spin_lock_init(&root->inode_lock);
1160	spin_lock_init(&root->accounting_lock);
1161	mutex_init(&root->objectid_mutex);
1162	mutex_init(&root->log_mutex);
1163	init_waitqueue_head(&root->log_writer_wait);
1164	init_waitqueue_head(&root->log_commit_wait[0]);
1165	init_waitqueue_head(&root->log_commit_wait[1]);
1166	atomic_set(&root->log_commit[0], 0);
1167	atomic_set(&root->log_commit[1], 0);
1168	atomic_set(&root->log_writers, 0);
1169	atomic_set(&root->orphan_inodes, 0);
1170	root->log_batch = 0;
1171	root->log_transid = 0;
1172	root->last_log_commit = 0;
1173	extent_io_tree_init(&root->dirty_log_pages,
1174			     fs_info->btree_inode->i_mapping);
1175
1176	memset(&root->root_key, 0, sizeof(root->root_key));
1177	memset(&root->root_item, 0, sizeof(root->root_item));
1178	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180	root->defrag_trans_start = fs_info->generation;
1181	init_completion(&root->kobj_unregister);
1182	root->defrag_running = 0;
1183	root->root_key.objectid = objectid;
1184	root->anon_dev = 0;
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188					    struct btrfs_fs_info *fs_info,
1189					    u64 objectid,
1190					    struct btrfs_root *root)
1191{
1192	int ret;
1193	u32 blocksize;
1194	u64 generation;
1195
1196	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197		     tree_root->sectorsize, tree_root->stripesize,
1198		     root, fs_info, objectid);
1199	ret = btrfs_find_last_root(tree_root, objectid,
1200				   &root->root_item, &root->root_key);
1201	if (ret > 0)
1202		return -ENOENT;
1203	else if (ret < 0)
1204		return ret;
1205
1206	generation = btrfs_root_generation(&root->root_item);
1207	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208	root->commit_root = NULL;
1209	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210				     blocksize, generation);
1211	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212		free_extent_buffer(root->node);
1213		root->node = NULL;
1214		return -EIO;
1215	}
1216	root->commit_root = btrfs_root_node(root);
1217	return 0;
1218}
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223	if (root)
1224		root->fs_info = fs_info;
1225	return root;
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229					 struct btrfs_fs_info *fs_info)
1230{
1231	struct btrfs_root *root;
1232	struct btrfs_root *tree_root = fs_info->tree_root;
1233	struct extent_buffer *leaf;
1234
1235	root = btrfs_alloc_root(fs_info);
1236	if (!root)
1237		return ERR_PTR(-ENOMEM);
1238
1239	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240		     tree_root->sectorsize, tree_root->stripesize,
1241		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 
 
 
 
 
 
 
 
 
1246	/*
1247	 * log trees do not get reference counted because they go away
1248	 * before a real commit is actually done.  They do store pointers
1249	 * to file data extents, and those reference counts still get
1250	 * updated (along with back refs to the log tree).
1251	 */
1252	root->ref_cows = 0;
1253
1254	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256				      0, 0, 0);
1257	if (IS_ERR(leaf)) {
1258		kfree(root);
1259		return ERR_CAST(leaf);
1260	}
1261
1262	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263	btrfs_set_header_bytenr(leaf, leaf->start);
1264	btrfs_set_header_generation(leaf, trans->transid);
1265	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267	root->node = leaf;
1268
1269	write_extent_buffer(root->node, root->fs_info->fsid,
1270			    (unsigned long)btrfs_header_fsid(root->node),
1271			    BTRFS_FSID_SIZE);
1272	btrfs_mark_buffer_dirty(root->node);
1273	btrfs_tree_unlock(root->node);
1274	return root;
 
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278			     struct btrfs_fs_info *fs_info)
1279{
1280	struct btrfs_root *log_root;
1281
1282	log_root = alloc_log_tree(trans, fs_info);
1283	if (IS_ERR(log_root))
1284		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1285	WARN_ON(fs_info->log_root_tree);
1286	fs_info->log_root_tree = log_root;
1287	return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291		       struct btrfs_root *root)
1292{
 
1293	struct btrfs_root *log_root;
1294	struct btrfs_inode_item *inode_item;
 
1295
1296	log_root = alloc_log_tree(trans, root->fs_info);
1297	if (IS_ERR(log_root))
1298		return PTR_ERR(log_root);
1299
1300	log_root->last_trans = trans->transid;
1301	log_root->root_key.offset = root->root_key.objectid;
 
 
 
 
 
 
1302
1303	inode_item = &log_root->root_item.inode;
1304	inode_item->generation = cpu_to_le64(1);
1305	inode_item->size = cpu_to_le64(3);
1306	inode_item->nlink = cpu_to_le32(1);
1307	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 
1309
1310	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312	WARN_ON(root->log_root);
1313	root->log_root = log_root;
1314	root->log_transid = 0;
1315	root->last_log_commit = 0;
 
1316	return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320					       struct btrfs_key *location)
 
1321{
1322	struct btrfs_root *root;
 
1323	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324	struct btrfs_path *path;
1325	struct extent_buffer *l;
1326	u64 generation;
1327	u32 blocksize;
1328	int ret = 0;
1329
1330	root = btrfs_alloc_root(fs_info);
1331	if (!root)
1332		return ERR_PTR(-ENOMEM);
1333	if (location->offset == (u64)-1) {
1334		ret = find_and_setup_root(tree_root, fs_info,
1335					  location->objectid, root);
1336		if (ret) {
1337			kfree(root);
1338			return ERR_PTR(ret);
1339		}
1340		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
 
 
 
 
 
 
1342
1343	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344		     tree_root->sectorsize, tree_root->stripesize,
1345		     root, fs_info, location->objectid);
 
 
1346
1347	path = btrfs_alloc_path();
1348	if (!path) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351	}
1352	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353	if (ret == 0) {
1354		l = path->nodes[0];
1355		read_extent_buffer(l, &root->root_item,
1356				btrfs_item_ptr_offset(l, path->slots[0]),
1357				sizeof(root->root_item));
1358		memcpy(&root->root_key, location, sizeof(*location));
 
 
 
 
 
 
 
1359	}
1360	btrfs_free_path(path);
 
 
1361	if (ret) {
1362		kfree(root);
1363		if (ret > 0)
1364			ret = -ENOENT;
1365		return ERR_PTR(ret);
1366	}
1367
1368	generation = btrfs_root_generation(&root->root_item);
1369	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371				     blocksize, generation);
1372	root->commit_root = btrfs_root_node(root);
1373	BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376		root->ref_cows = 1;
1377		btrfs_check_and_init_root_item(&root->root_item);
1378	}
 
 
 
1379
 
 
 
 
 
1380	return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384					      struct btrfs_key *location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
1386	struct btrfs_root *root;
1387	int ret;
1388
1389	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390		return fs_info->tree_root;
1391	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392		return fs_info->extent_root;
1393	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394		return fs_info->chunk_root;
1395	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396		return fs_info->dev_root;
1397	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398		return fs_info->csum_root;
1399again:
1400	spin_lock(&fs_info->fs_roots_radix_lock);
1401	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402				 (unsigned long)location->objectid);
 
 
 
 
 
1403	spin_unlock(&fs_info->fs_roots_radix_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404	if (root)
1405		return root;
1406
1407	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408	if (IS_ERR(root))
1409		return root;
1410
1411	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413					GFP_NOFS);
1414	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415		ret = -ENOMEM;
1416		goto fail;
1417	}
1418
1419	btrfs_init_free_ino_ctl(root);
1420	mutex_init(&root->fs_commit_mutex);
1421	spin_lock_init(&root->cache_lock);
1422	init_waitqueue_head(&root->cache_wait);
1423
1424	ret = get_anon_bdev(&root->anon_dev);
1425	if (ret)
1426		goto fail;
1427
1428	if (btrfs_root_refs(&root->root_item) == 0) {
1429		ret = -ENOENT;
 
1430		goto fail;
1431	}
 
 
 
1432
1433	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
 
1434	if (ret < 0)
1435		goto fail;
1436	if (ret == 0)
1437		root->orphan_item_inserted = 1;
1438
1439	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440	if (ret)
1441		goto fail;
1442
1443	spin_lock(&fs_info->fs_roots_radix_lock);
1444	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445				(unsigned long)root->root_key.objectid,
1446				root);
1447	if (ret == 0)
1448		root->in_radix = 1;
1449
1450	spin_unlock(&fs_info->fs_roots_radix_lock);
1451	radix_tree_preload_end();
1452	if (ret) {
1453		if (ret == -EEXIST) {
1454			free_fs_root(root);
1455			goto again;
1456		}
1457		goto fail;
1458	}
1459
1460	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461				    root->root_key.objectid);
1462	WARN_ON(ret);
1463	return root;
1464fail:
1465	free_fs_root(root);
 
 
 
 
 
 
 
 
1466	return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1470{
1471	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472	int ret = 0;
1473	struct btrfs_device *device;
1474	struct backing_dev_info *bdi;
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478		if (!device->bdev)
1479			continue;
1480		bdi = blk_get_backing_dev_info(device->bdev);
1481		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482			ret = 1;
1483			break;
1484		}
1485	}
1486	rcu_read_unlock();
1487	return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
 
 
 
 
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
1495{
1496	int err;
1497
1498	bdi->capabilities = BDI_CAP_MAP_COPY;
1499	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500	if (err)
1501		return err;
1502
1503	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504	bdi->congested_fn	= btrfs_congested_fn;
1505	bdi->congested_data	= info;
1506	return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions.  This is where read checksum verification actually happens
 
 
 
 
 
 
 
 
 
 
 
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
 
 
1514{
1515	struct bio *bio;
1516	struct end_io_wq *end_io_wq;
1517	struct btrfs_fs_info *fs_info;
1518	int error;
1519
1520	end_io_wq = container_of(work, struct end_io_wq, work);
1521	bio = end_io_wq->bio;
1522	fs_info = end_io_wq->info;
1523
1524	error = end_io_wq->error;
1525	bio->bi_private = end_io_wq->private;
1526	bio->bi_end_io = end_io_wq->end_io;
1527	kfree(end_io_wq);
1528	bio_endio(bio, error);
 
 
 
 
 
 
 
 
 
 
 
 
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533	struct btrfs_root *root = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	do {
1536		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537
1538		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540			btrfs_run_delayed_iputs(root);
1541			btrfs_clean_old_snapshots(root);
1542			mutex_unlock(&root->fs_info->cleaner_mutex);
1543			btrfs_run_defrag_inodes(root->fs_info);
 
1544		}
1545
1546		if (!try_to_freeze()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547			set_current_state(TASK_INTERRUPTIBLE);
1548			if (!kthread_should_stop())
1549				schedule();
1550			__set_current_state(TASK_RUNNING);
1551		}
1552	} while (!kthread_should_stop());
1553	return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558	struct btrfs_root *root = arg;
 
1559	struct btrfs_trans_handle *trans;
1560	struct btrfs_transaction *cur;
1561	u64 transid;
1562	unsigned long now;
1563	unsigned long delay;
1564	bool cannot_commit;
1565
1566	do {
1567		cannot_commit = false;
1568		delay = HZ * 30;
1569		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572		spin_lock(&root->fs_info->trans_lock);
1573		cur = root->fs_info->running_transaction;
1574		if (!cur) {
1575			spin_unlock(&root->fs_info->trans_lock);
1576			goto sleep;
1577		}
1578
1579		now = get_seconds();
1580		if (!cur->blocked &&
1581		    (now < cur->start_time || now - cur->start_time < 30)) {
1582			spin_unlock(&root->fs_info->trans_lock);
1583			delay = HZ * 5;
 
 
 
1584			goto sleep;
1585		}
1586		transid = cur->transid;
1587		spin_unlock(&root->fs_info->trans_lock);
1588
1589		/* If the file system is aborted, this will always fail. */
1590		trans = btrfs_join_transaction(root);
1591		if (IS_ERR(trans)) {
1592			cannot_commit = true;
 
1593			goto sleep;
1594		}
1595		if (transid == trans->transid) {
1596			btrfs_commit_transaction(trans, root);
1597		} else {
1598			btrfs_end_transaction(trans, root);
1599		}
1600sleep:
1601		wake_up_process(root->fs_info->cleaner_kthread);
1602		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604		if (!try_to_freeze()) {
1605			set_current_state(TASK_INTERRUPTIBLE);
1606			if (!kthread_should_stop() &&
1607			    (!btrfs_transaction_blocked(root->fs_info) ||
1608			     cannot_commit))
1609				schedule_timeout(delay);
1610			__set_current_state(TASK_RUNNING);
1611		}
1612	} while (!kthread_should_stop());
1613	return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups.  The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest  root in the array with the generation
1623 * in the super block.  If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
 
1627	u64 cur;
1628	int newest_index = -1;
1629	struct btrfs_root_backup *root_backup;
1630	int i;
1631
1632	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633		root_backup = info->super_copy->super_roots + i;
1634		cur = btrfs_backup_tree_root_gen(root_backup);
1635		if (cur == newest_gen)
1636			newest_index = i;
1637	}
1638
1639	/* check to see if we actually wrapped around */
1640	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641		root_backup = info->super_copy->super_roots;
1642		cur = btrfs_backup_tree_root_gen(root_backup);
1643		if (cur == newest_gen)
1644			newest_index = 0;
1645	}
1646	return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array.  This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656				     u64 newest_gen)
1657{
1658	int newest_index = -1;
1659
1660	newest_index = find_newest_super_backup(info, newest_gen);
1661	/* if there was garbage in there, just move along */
1662	if (newest_index == -1) {
1663		info->backup_root_index = 0;
1664	} else {
1665		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666	}
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676	int next_backup;
1677	struct btrfs_root_backup *root_backup;
1678	int last_backup;
1679
1680	next_backup = info->backup_root_index;
1681	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682		BTRFS_NUM_BACKUP_ROOTS;
1683
1684	/*
1685	 * just overwrite the last backup if we're at the same generation
1686	 * this happens only at umount
1687	 */
1688	root_backup = info->super_for_commit->super_roots + last_backup;
1689	if (btrfs_backup_tree_root_gen(root_backup) ==
1690	    btrfs_header_generation(info->tree_root->node))
1691		next_backup = last_backup;
1692
1693	root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695	/*
1696	 * make sure all of our padding and empty slots get zero filled
1697	 * regardless of which ones we use today
1698	 */
1699	memset(root_backup, 0, sizeof(*root_backup));
1700
1701	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704	btrfs_set_backup_tree_root_gen(root_backup,
1705			       btrfs_header_generation(info->tree_root->node));
1706
1707	btrfs_set_backup_tree_root_level(root_backup,
1708			       btrfs_header_level(info->tree_root->node));
1709
1710	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711	btrfs_set_backup_chunk_root_gen(root_backup,
1712			       btrfs_header_generation(info->chunk_root->node));
1713	btrfs_set_backup_chunk_root_level(root_backup,
1714			       btrfs_header_level(info->chunk_root->node));
1715
1716	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717	btrfs_set_backup_extent_root_gen(root_backup,
1718			       btrfs_header_generation(info->extent_root->node));
1719	btrfs_set_backup_extent_root_level(root_backup,
1720			       btrfs_header_level(info->extent_root->node));
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	/*
1723	 * we might commit during log recovery, which happens before we set
1724	 * the fs_root.  Make sure it is valid before we fill it in.
1725	 */
1726	if (info->fs_root && info->fs_root->node) {
1727		btrfs_set_backup_fs_root(root_backup,
1728					 info->fs_root->node->start);
1729		btrfs_set_backup_fs_root_gen(root_backup,
1730			       btrfs_header_generation(info->fs_root->node));
1731		btrfs_set_backup_fs_root_level(root_backup,
1732			       btrfs_header_level(info->fs_root->node));
1733	}
1734
1735	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736	btrfs_set_backup_dev_root_gen(root_backup,
1737			       btrfs_header_generation(info->dev_root->node));
1738	btrfs_set_backup_dev_root_level(root_backup,
1739				       btrfs_header_level(info->dev_root->node));
1740
1741	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742	btrfs_set_backup_csum_root_gen(root_backup,
1743			       btrfs_header_generation(info->csum_root->node));
1744	btrfs_set_backup_csum_root_level(root_backup,
1745			       btrfs_header_level(info->csum_root->node));
1746
1747	btrfs_set_backup_total_bytes(root_backup,
1748			     btrfs_super_total_bytes(info->super_copy));
1749	btrfs_set_backup_bytes_used(root_backup,
1750			     btrfs_super_bytes_used(info->super_copy));
1751	btrfs_set_backup_num_devices(root_backup,
1752			     btrfs_super_num_devices(info->super_copy));
1753
1754	/*
1755	 * if we don't copy this out to the super_copy, it won't get remembered
1756	 * for the next commit
1757	 */
1758	memcpy(&info->super_copy->super_roots,
1759	       &info->super_for_commit->super_roots,
1760	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block.  It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772				     struct btrfs_super_block *super,
1773				     int *num_backups_tried, int *backup_index)
1774{
 
 
1775	struct btrfs_root_backup *root_backup;
1776	int newest = *backup_index;
1777
1778	if (*num_backups_tried == 0) {
1779		u64 gen = btrfs_super_generation(super);
 
1780
1781		newest = find_newest_super_backup(info, gen);
1782		if (newest == -1)
1783			return -1;
1784
1785		*backup_index = newest;
1786		*num_backups_tried = 1;
1787	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788		/* we've tried all the backups, all done */
1789		return -1;
1790	} else {
1791		/* jump to the next oldest backup */
1792		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793			BTRFS_NUM_BACKUP_ROOTS;
1794		*backup_index = newest;
1795		*num_backups_tried += 1;
1796	}
1797	root_backup = super->super_roots + newest;
 
1798
1799	btrfs_set_super_generation(super,
1800				   btrfs_backup_tree_root_gen(root_backup));
1801	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802	btrfs_set_super_root_level(super,
1803				   btrfs_backup_tree_root_level(root_backup));
1804	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806	/*
1807	 * fixme: the total bytes and num_devices need to match or we should
1808	 * need a fsck
1809	 */
1810	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817{
1818	free_extent_buffer(info->tree_root->node);
1819	free_extent_buffer(info->tree_root->commit_root);
1820	free_extent_buffer(info->dev_root->node);
1821	free_extent_buffer(info->dev_root->commit_root);
1822	free_extent_buffer(info->extent_root->node);
1823	free_extent_buffer(info->extent_root->commit_root);
1824	free_extent_buffer(info->csum_root->node);
1825	free_extent_buffer(info->csum_root->commit_root);
1826
1827	info->tree_root->node = NULL;
1828	info->tree_root->commit_root = NULL;
1829	info->dev_root->node = NULL;
1830	info->dev_root->commit_root = NULL;
1831	info->extent_root->node = NULL;
1832	info->extent_root->commit_root = NULL;
1833	info->csum_root->node = NULL;
1834	info->csum_root->commit_root = NULL;
1835
1836	if (chunk_root) {
1837		free_extent_buffer(info->chunk_root->node);
1838		free_extent_buffer(info->chunk_root->commit_root);
1839		info->chunk_root->node = NULL;
1840		info->chunk_root->commit_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841	}
1842}
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845int open_ctree(struct super_block *sb,
1846	       struct btrfs_fs_devices *fs_devices,
1847	       char *options)
1848{
1849	u32 sectorsize;
1850	u32 nodesize;
1851	u32 leafsize;
1852	u32 blocksize;
1853	u32 stripesize;
1854	u64 generation;
1855	u64 features;
1856	struct btrfs_key location;
1857	struct buffer_head *bh;
1858	struct btrfs_super_block *disk_super;
1859	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860	struct btrfs_root *tree_root;
1861	struct btrfs_root *extent_root;
1862	struct btrfs_root *csum_root;
1863	struct btrfs_root *chunk_root;
1864	struct btrfs_root *dev_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	struct btrfs_root *log_tree_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866	int ret;
1867	int err = -EINVAL;
1868	int num_backups_tried = 0;
1869	int backup_index = 0;
1870
1871	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877	if (!tree_root || !extent_root || !csum_root ||
1878	    !chunk_root || !dev_root) {
1879		err = -ENOMEM;
1880		goto fail;
 
 
 
1881	}
 
 
 
 
 
 
1882
1883	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884	if (ret) {
1885		err = ret;
1886		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887	}
1888
1889	ret = setup_bdi(fs_info, &fs_info->bdi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890	if (ret) {
1891		err = ret;
1892		goto fail_srcu;
1893	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894
1895	fs_info->btree_inode = new_inode(sb);
1896	if (!fs_info->btree_inode) {
1897		err = -ENOMEM;
1898		goto fail_bdi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899	}
1900
1901	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
1902
 
 
1903	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 
1904	INIT_LIST_HEAD(&fs_info->trans_list);
1905	INIT_LIST_HEAD(&fs_info->dead_roots);
1906	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907	INIT_LIST_HEAD(&fs_info->hashers);
1908	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911	spin_lock_init(&fs_info->delalloc_lock);
1912	spin_lock_init(&fs_info->trans_lock);
1913	spin_lock_init(&fs_info->ref_cache_lock);
1914	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915	spin_lock_init(&fs_info->delayed_iput_lock);
1916	spin_lock_init(&fs_info->defrag_inodes_lock);
1917	spin_lock_init(&fs_info->free_chunk_lock);
1918	spin_lock_init(&fs_info->tree_mod_seq_lock);
 
 
 
 
1919	rwlock_init(&fs_info->tree_mod_log_lock);
 
 
 
1920	mutex_init(&fs_info->reloc_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
1922	init_completion(&fs_info->kobj_unregister);
1923	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924	INIT_LIST_HEAD(&fs_info->space_info);
1925	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926	btrfs_mapping_init(&fs_info->mapping_tree);
1927	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933	atomic_set(&fs_info->nr_async_submits, 0);
 
 
 
 
 
 
 
 
 
 
 
 
1934	atomic_set(&fs_info->async_delalloc_pages, 0);
1935	atomic_set(&fs_info->async_submit_draining, 0);
1936	atomic_set(&fs_info->nr_async_bios, 0);
1937	atomic_set(&fs_info->defrag_running, 0);
1938	atomic_set(&fs_info->tree_mod_seq, 0);
1939	fs_info->sb = sb;
1940	fs_info->max_inline = 8192 * 1024;
 
1941	fs_info->metadata_ratio = 0;
1942	fs_info->defrag_inodes = RB_ROOT;
1943	fs_info->trans_no_join = 0;
1944	fs_info->free_chunk_space = 0;
1945	fs_info->tree_mod_log = RB_ROOT;
1946
1947	/* readahead state */
1948	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949	spin_lock_init(&fs_info->reada_lock);
1950
1951	fs_info->thread_pool_size = min_t(unsigned long,
1952					  num_online_cpus() + 2, 8);
1953
1954	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955	spin_lock_init(&fs_info->ordered_extent_lock);
1956	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957					GFP_NOFS);
1958	if (!fs_info->delayed_root) {
1959		err = -ENOMEM;
1960		goto fail_iput;
1961	}
1962	btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964	mutex_init(&fs_info->scrub_lock);
1965	atomic_set(&fs_info->scrubs_running, 0);
1966	atomic_set(&fs_info->scrub_pause_req, 0);
1967	atomic_set(&fs_info->scrubs_paused, 0);
1968	atomic_set(&fs_info->scrub_cancel_req, 0);
1969	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970	init_rwsem(&fs_info->scrub_super_lock);
1971	fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973	fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976	spin_lock_init(&fs_info->balance_lock);
1977	mutex_init(&fs_info->balance_mutex);
1978	atomic_set(&fs_info->balance_running, 0);
1979	atomic_set(&fs_info->balance_pause_req, 0);
1980	atomic_set(&fs_info->balance_cancel_req, 0);
1981	fs_info->balance_ctl = NULL;
1982	init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984	sb->s_blocksize = 4096;
1985	sb->s_blocksize_bits = blksize_bits(4096);
1986	sb->s_bdi = &fs_info->bdi;
 
1987
1988	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989	set_nlink(fs_info->btree_inode, 1);
1990	/*
1991	 * we set the i_size on the btree inode to the max possible int.
1992	 * the real end of the address space is determined by all of
1993	 * the devices in the system
1994	 */
1995	fs_info->btree_inode->i_size = OFFSET_MAX;
1996	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001			     fs_info->btree_inode->i_mapping);
2002	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009	       sizeof(struct btrfs_key));
2010	set_bit(BTRFS_INODE_DUMMY,
2011		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012	insert_inode_hash(fs_info->btree_inode);
2013
2014	spin_lock_init(&fs_info->block_group_cache_lock);
2015	fs_info->block_group_cache_tree = RB_ROOT;
2016
2017	extent_io_tree_init(&fs_info->freed_extents[0],
2018			     fs_info->btree_inode->i_mapping);
2019	extent_io_tree_init(&fs_info->freed_extents[1],
2020			     fs_info->btree_inode->i_mapping);
2021	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022	fs_info->do_barriers = 1;
2023
 
 
2024
2025	mutex_init(&fs_info->ordered_operations_mutex);
2026	mutex_init(&fs_info->tree_log_mutex);
2027	mutex_init(&fs_info->chunk_mutex);
2028	mutex_init(&fs_info->transaction_kthread_mutex);
2029	mutex_init(&fs_info->cleaner_mutex);
2030	mutex_init(&fs_info->volume_mutex);
2031	init_rwsem(&fs_info->extent_commit_sem);
2032	init_rwsem(&fs_info->cleanup_work_sem);
2033	init_rwsem(&fs_info->subvol_sem);
 
 
 
 
 
2034
2035	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038	init_waitqueue_head(&fs_info->transaction_throttle);
2039	init_waitqueue_head(&fs_info->transaction_wait);
2040	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041	init_waitqueue_head(&fs_info->async_submit_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042
2043	__setup_root(4096, 4096, 4096, 4096, tree_root,
2044		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	invalidate_bdev(fs_devices->latest_bdev);
2047	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048	if (!bh) {
2049		err = -EINVAL;
2050		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051	}
 
2052
2053	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055	       sizeof(*fs_info->super_for_commit));
2056	brelse(bh);
 
 
 
2057
2058	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
2059
2060	disk_super = fs_info->super_copy;
2061	if (!btrfs_super_root(disk_super))
2062		goto fail_alloc;
 
 
2063
2064	/* check FS state, whether FS is broken. */
2065	fs_info->fs_state |= btrfs_super_flags(disk_super);
 
2066
2067	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068	if (ret) {
2069		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070		err = ret;
2071		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072	}
2073
2074	/*
2075	 * run through our array of backup supers and setup
2076	 * our ring pointer to the oldest one
2077	 */
2078	generation = btrfs_super_generation(disk_super);
2079	find_oldest_super_backup(fs_info, generation);
 
 
 
 
 
2080
2081	/*
2082	 * In the long term, we'll store the compression type in the super
2083	 * block, and it'll be used for per file compression control.
 
 
 
2084	 */
2085	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086
2087	ret = btrfs_parse_options(tree_root, options);
2088	if (ret) {
2089		err = ret;
 
 
 
2090		goto fail_alloc;
2091	}
2092
2093	features = btrfs_super_incompat_flags(disk_super) &
2094		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095	if (features) {
2096		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097		       "unsupported optional features (%Lx).\n",
2098		       (unsigned long long)features);
2099		err = -EINVAL;
 
 
 
 
2100		goto fail_alloc;
2101	}
2102
2103	if (btrfs_super_leafsize(disk_super) !=
2104	    btrfs_super_nodesize(disk_super)) {
2105		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106		       "blocksizes don't match.  node %d leaf %d\n",
2107		       btrfs_super_nodesize(disk_super),
2108		       btrfs_super_leafsize(disk_super));
2109		err = -EINVAL;
2110		goto fail_alloc;
2111	}
2112	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114		       "blocksize (%d) was too large\n",
2115		       btrfs_super_leafsize(disk_super));
2116		err = -EINVAL;
 
 
 
 
2117		goto fail_alloc;
2118	}
2119
2120	features = btrfs_super_incompat_flags(disk_super);
2121	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
 
 
 
 
 
 
2124
2125	/*
2126	 * flag our filesystem as having big metadata blocks if
2127	 * they are bigger than the page size
2128	 */
2129	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
 
 
 
2133	}
2134
 
 
 
 
 
2135	nodesize = btrfs_super_nodesize(disk_super);
2136	leafsize = btrfs_super_leafsize(disk_super);
2137	sectorsize = btrfs_super_sectorsize(disk_super);
2138	stripesize = btrfs_super_stripesize(disk_super);
 
 
 
 
 
 
 
 
 
2139
2140	/*
2141	 * mixed block groups end up with duplicate but slightly offset
2142	 * extent buffers for the same range.  It leads to corruptions
2143	 */
2144	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145	    (sectorsize != leafsize)) {
2146		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147				"are not allowed for mixed block groups on %s\n",
2148				sb->s_id);
2149		goto fail_alloc;
2150	}
2151
2152	btrfs_set_super_incompat_flags(disk_super, features);
 
 
2153
2154	features = btrfs_super_compat_ro_flags(disk_super) &
2155		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156	if (!(sb->s_flags & MS_RDONLY) && features) {
2157		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158		       "unsupported option features (%Lx).\n",
2159		       (unsigned long long)features);
2160		err = -EINVAL;
2161		goto fail_alloc;
2162	}
2163
2164	btrfs_init_workers(&fs_info->generic_worker,
2165			   "genwork", 1, NULL);
 
 
2166
2167	btrfs_init_workers(&fs_info->workers, "worker",
2168			   fs_info->thread_pool_size,
2169			   &fs_info->generic_worker);
2170
2171	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172			   fs_info->thread_pool_size,
2173			   &fs_info->generic_worker);
2174
2175	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176			   min_t(u64, fs_devices->num_devices,
2177			   fs_info->thread_pool_size),
2178			   &fs_info->generic_worker);
2179
2180	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181			   2, &fs_info->generic_worker);
2182
2183	/* a higher idle thresh on the submit workers makes it much more
2184	 * likely that bios will be send down in a sane order to the
2185	 * devices
2186	 */
2187	fs_info->submit_workers.idle_thresh = 64;
2188
2189	fs_info->workers.idle_thresh = 16;
2190	fs_info->workers.ordered = 1;
2191
2192	fs_info->delalloc_workers.idle_thresh = 2;
2193	fs_info->delalloc_workers.ordered = 1;
2194
2195	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196			   &fs_info->generic_worker);
2197	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198			   fs_info->thread_pool_size,
2199			   &fs_info->generic_worker);
2200	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201			   fs_info->thread_pool_size,
2202			   &fs_info->generic_worker);
2203	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204			   "endio-meta-write", fs_info->thread_pool_size,
2205			   &fs_info->generic_worker);
2206	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207			   fs_info->thread_pool_size,
2208			   &fs_info->generic_worker);
2209	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210			   1, &fs_info->generic_worker);
2211	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212			   fs_info->thread_pool_size,
2213			   &fs_info->generic_worker);
2214	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215			   fs_info->thread_pool_size,
2216			   &fs_info->generic_worker);
2217
2218	/*
2219	 * endios are largely parallel and should have a very
2220	 * low idle thresh
2221	 */
2222	fs_info->endio_workers.idle_thresh = 4;
2223	fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225	fs_info->endio_write_workers.idle_thresh = 2;
2226	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227	fs_info->readahead_workers.idle_thresh = 2;
2228
2229	/*
2230	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231	 * return -ENOMEM if any of these fail.
2232	 */
2233	ret = btrfs_start_workers(&fs_info->workers);
2234	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246	if (ret) {
2247		ret = -ENOMEM;
2248		goto fail_sb_buffer;
2249	}
2250
2251	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255	tree_root->nodesize = nodesize;
2256	tree_root->leafsize = leafsize;
2257	tree_root->sectorsize = sectorsize;
2258	tree_root->stripesize = stripesize;
2259
 
2260	sb->s_blocksize = sectorsize;
2261	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264		    sizeof(disk_super->magic))) {
2265		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266		goto fail_sb_buffer;
2267	}
2268
2269	if (sectorsize != PAGE_SIZE) {
2270		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272		goto fail_sb_buffer;
2273	}
2274
2275	mutex_lock(&fs_info->chunk_mutex);
2276	ret = btrfs_read_sys_array(tree_root);
2277	mutex_unlock(&fs_info->chunk_mutex);
2278	if (ret) {
2279		printk(KERN_WARNING "btrfs: failed to read the system "
2280		       "array on %s\n", sb->s_id);
2281		goto fail_sb_buffer;
2282	}
2283
2284	blocksize = btrfs_level_size(tree_root,
2285				     btrfs_super_chunk_root_level(disk_super));
2286	generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291	chunk_root->node = read_tree_block(chunk_root,
2292					   btrfs_super_chunk_root(disk_super),
2293					   blocksize, generation);
2294	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297		       sb->s_id);
2298		goto fail_tree_roots;
2299	}
2300	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305	   BTRFS_UUID_SIZE);
2306
2307	ret = btrfs_read_chunk_tree(chunk_root);
2308	if (ret) {
2309		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310		       sb->s_id);
2311		goto fail_tree_roots;
2312	}
2313
2314	btrfs_close_extra_devices(fs_devices);
2315
2316	if (!fs_devices->latest_bdev) {
2317		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318		       sb->s_id);
 
 
 
 
 
 
2319		goto fail_tree_roots;
2320	}
2321
2322retry_root_backup:
2323	blocksize = btrfs_level_size(tree_root,
2324				     btrfs_super_root_level(disk_super));
2325	generation = btrfs_super_generation(disk_super);
2326
2327	tree_root->node = read_tree_block(tree_root,
2328					  btrfs_super_root(disk_super),
2329					  blocksize, generation);
2330	if (!tree_root->node ||
2331	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333		       sb->s_id);
2334
2335		goto recovery_tree_root;
 
2336	}
2337
2338	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339	tree_root->commit_root = btrfs_root_node(tree_root);
2340
2341	ret = find_and_setup_root(tree_root, fs_info,
2342				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343	if (ret)
2344		goto recovery_tree_root;
2345	extent_root->track_dirty = 1;
2346
2347	ret = find_and_setup_root(tree_root, fs_info,
2348				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349	if (ret)
2350		goto recovery_tree_root;
2351	dev_root->track_dirty = 1;
2352
2353	ret = find_and_setup_root(tree_root, fs_info,
2354				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355	if (ret)
2356		goto recovery_tree_root;
2357	csum_root->track_dirty = 1;
2358
2359	fs_info->generation = generation;
2360	fs_info->last_trans_committed = generation;
2361
 
 
 
 
 
 
 
2362	ret = btrfs_recover_balance(fs_info);
2363	if (ret) {
2364		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365		goto fail_block_groups;
2366	}
2367
2368	ret = btrfs_init_dev_stats(fs_info);
2369	if (ret) {
2370		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371		       ret);
2372		goto fail_block_groups;
2373	}
2374
2375	ret = btrfs_init_space_info(fs_info);
2376	if (ret) {
2377		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378		goto fail_block_groups;
2379	}
2380
2381	ret = btrfs_read_block_groups(extent_root);
2382	if (ret) {
2383		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
 
2384		goto fail_block_groups;
2385	}
2386
2387	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388					       "btrfs-cleaner");
2389	if (IS_ERR(fs_info->cleaner_kthread))
 
2390		goto fail_block_groups;
 
2391
2392	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393						   tree_root,
2394						   "btrfs-transaction");
2395	if (IS_ERR(fs_info->transaction_kthread))
2396		goto fail_cleaner;
2397
2398	if (!btrfs_test_opt(tree_root, SSD) &&
2399	    !btrfs_test_opt(tree_root, NOSSD) &&
2400	    !fs_info->fs_devices->rotating) {
2401		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402		       "mode\n");
2403		btrfs_set_opt(fs_info->mount_opt, SSD);
2404	}
2405
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408		ret = btrfsic_mount(tree_root, fs_devices,
2409				    btrfs_test_opt(tree_root,
2410					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411				    1 : 0,
2412				    fs_info->check_integrity_print_mask);
2413		if (ret)
2414			printk(KERN_WARNING "btrfs: failed to initialize"
2415			       " integrity check module %s\n", sb->s_id);
2416	}
2417#endif
2418
2419	/* do not make disk changes in broken FS */
2420	if (btrfs_super_log_root(disk_super) != 0 &&
2421	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422		u64 bytenr = btrfs_super_log_root(disk_super);
 
 
 
 
 
 
 
2423
2424		if (fs_devices->rw_devices == 0) {
2425			printk(KERN_WARNING "Btrfs log replay required "
2426			       "on RO media\n");
2427			err = -EIO;
2428			goto fail_trans_kthread;
2429		}
2430		blocksize =
2431		     btrfs_level_size(tree_root,
2432				      btrfs_super_log_root_level(disk_super));
2433
2434		log_tree_root = btrfs_alloc_root(fs_info);
2435		if (!log_tree_root) {
2436			err = -ENOMEM;
2437			goto fail_trans_kthread;
2438		}
2439
2440		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444						      blocksize,
2445						      generation + 1);
2446		/* returns with log_tree_root freed on success */
2447		ret = btrfs_recover_log_trees(log_tree_root);
2448		if (ret) {
2449			btrfs_error(tree_root->fs_info, ret,
2450				    "Failed to recover log tree");
2451			free_extent_buffer(log_tree_root->node);
2452			kfree(log_tree_root);
2453			goto fail_trans_kthread;
2454		}
2455
2456		if (sb->s_flags & MS_RDONLY) {
2457			ret = btrfs_commit_super(tree_root);
2458			if (ret)
2459				goto fail_trans_kthread;
2460		}
 
2461	}
2462
2463	ret = btrfs_find_orphan_roots(tree_root);
2464	if (ret)
2465		goto fail_trans_kthread;
2466
2467	if (!(sb->s_flags & MS_RDONLY)) {
2468		ret = btrfs_cleanup_fs_roots(fs_info);
2469		if (ret) {
2470			}
2471
2472		ret = btrfs_recover_relocation(tree_root);
2473		if (ret < 0) {
2474			printk(KERN_WARNING
2475			       "btrfs: failed to recover relocation\n");
2476			err = -EINVAL;
2477			goto fail_trans_kthread;
2478		}
2479	}
2480
2481	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482	location.type = BTRFS_ROOT_ITEM_KEY;
2483	location.offset = (u64)-1;
2484
2485	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486	if (!fs_info->fs_root)
2487		goto fail_trans_kthread;
2488	if (IS_ERR(fs_info->fs_root)) {
2489		err = PTR_ERR(fs_info->fs_root);
2490		goto fail_trans_kthread;
 
 
2491	}
2492
2493	if (sb->s_flags & MS_RDONLY)
2494		return 0;
2495
2496	down_read(&fs_info->cleanup_work_sem);
2497	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499		up_read(&fs_info->cleanup_work_sem);
2500		close_ctree(tree_root);
2501		return ret;
2502	}
2503	up_read(&fs_info->cleanup_work_sem);
2504
2505	ret = btrfs_resume_balance_async(fs_info);
2506	if (ret) {
2507		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508		close_ctree(tree_root);
2509		return ret;
 
 
 
 
 
 
2510	}
2511
 
 
 
 
 
 
2512	return 0;
2513
 
 
2514fail_trans_kthread:
2515	kthread_stop(fs_info->transaction_kthread);
 
 
2516fail_cleaner:
2517	kthread_stop(fs_info->cleaner_kthread);
2518
2519	/*
2520	 * make sure we're done with the btree inode before we stop our
2521	 * kthreads
2522	 */
2523	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 
 
 
 
 
2525
2526fail_block_groups:
2527	btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530	free_root_pointers(fs_info, 1);
 
 
 
2531
2532fail_sb_buffer:
2533	btrfs_stop_workers(&fs_info->generic_worker);
2534	btrfs_stop_workers(&fs_info->readahead_workers);
2535	btrfs_stop_workers(&fs_info->fixup_workers);
2536	btrfs_stop_workers(&fs_info->delalloc_workers);
2537	btrfs_stop_workers(&fs_info->workers);
2538	btrfs_stop_workers(&fs_info->endio_workers);
2539	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541	btrfs_stop_workers(&fs_info->endio_write_workers);
2542	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543	btrfs_stop_workers(&fs_info->submit_workers);
2544	btrfs_stop_workers(&fs_info->delayed_workers);
2545	btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551	iput(fs_info->btree_inode);
2552fail_bdi:
2553	bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
2557	btrfs_close_devices(fs_info->fs_devices);
2558	return err;
 
 
 
 
 
 
 
 
2559
2560recovery_tree_root:
2561	if (!btrfs_test_opt(tree_root, RECOVERY))
2562		goto fail_tree_roots;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563
2564	free_root_pointers(fs_info, 0);
 
2565
2566	/* don't use the log in recovery mode, it won't be valid */
2567	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
2568
2569	/* we can't trust the free space cache either */
2570	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
 
 
 
2571
2572	ret = next_root_backup(fs_info, fs_info->super_copy,
2573			       &num_backups_tried, &backup_index);
2574	if (ret == -1)
2575		goto fail_block_groups;
2576	goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581	if (uptodate) {
2582		set_buffer_uptodate(bh);
2583	} else {
2584		struct btrfs_device *device = (struct btrfs_device *)
2585			bh->b_private;
2586
2587		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588					  "I/O error on %s\n",
2589					  rcu_str_deref(device->name));
2590		/* note, we dont' set_buffer_write_io_error because we have
2591		 * our own ways of dealing with the IO errors
2592		 */
2593		clear_buffer_uptodate(bh);
2594		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
 
 
 
 
 
 
 
 
 
 
2595	}
2596	unlock_buffer(bh);
2597	put_bh(bh);
 
 
 
 
 
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
 
2601{
2602	struct buffer_head *bh;
2603	struct buffer_head *latest = NULL;
2604	struct btrfs_super_block *super;
2605	int i;
2606	u64 transid = 0;
2607	u64 bytenr;
2608
2609	/* we would like to check all the supers, but that would make
2610	 * a btrfs mount succeed after a mkfs from a different FS.
2611	 * So, we need to add a special mount option to scan for
2612	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613	 */
2614	for (i = 0; i < 1; i++) {
2615		bytenr = btrfs_sb_offset(i);
2616		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617			break;
2618		bh = __bread(bdev, bytenr / 4096, 4096);
2619		if (!bh)
2620			continue;
2621
2622		super = (struct btrfs_super_block *)bh->b_data;
2623		if (btrfs_super_bytenr(super) != bytenr ||
2624		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625			    sizeof(super->magic))) {
2626			brelse(bh);
2627			continue;
2628		}
2629
2630		if (!latest || btrfs_super_generation(super) > transid) {
2631			brelse(latest);
2632			latest = bh;
2633			transid = btrfs_super_generation(super);
2634		} else {
2635			brelse(bh);
2636		}
2637	}
2638	return latest;
 
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653			    struct btrfs_super_block *sb,
2654			    int do_barriers, int wait, int max_mirrors)
2655{
2656	struct buffer_head *bh;
 
 
2657	int i;
2658	int ret;
2659	int errors = 0;
2660	u32 crc;
2661	u64 bytenr;
2662
2663	if (max_mirrors == 0)
2664		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
 
 
2666	for (i = 0; i < max_mirrors; i++) {
2667		bytenr = btrfs_sb_offset(i);
2668		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669			break;
2670
2671		if (wait) {
2672			bh = __find_get_block(device->bdev, bytenr / 4096,
2673					      BTRFS_SUPER_INFO_SIZE);
2674			BUG_ON(!bh);
2675			wait_on_buffer(bh);
2676			if (!buffer_uptodate(bh))
2677				errors++;
2678
2679			/* drop our reference */
2680			brelse(bh);
2681
2682			/* drop the reference from the wait == 0 run */
2683			brelse(bh);
 
 
 
 
 
 
 
2684			continue;
2685		} else {
2686			btrfs_set_super_bytenr(sb, bytenr);
2687
2688			crc = ~(u32)0;
2689			crc = btrfs_csum_data(NULL, (char *)sb +
2690					      BTRFS_CSUM_SIZE, crc,
2691					      BTRFS_SUPER_INFO_SIZE -
2692					      BTRFS_CSUM_SIZE);
2693			btrfs_csum_final(crc, sb->csum);
2694
2695			/*
2696			 * one reference for us, and we leave it for the
2697			 * caller
2698			 */
2699			bh = __getblk(device->bdev, bytenr / 4096,
2700				      BTRFS_SUPER_INFO_SIZE);
2701			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703			/* one reference for submit_bh */
2704			get_bh(bh);
2705
2706			set_buffer_uptodate(bh);
2707			lock_buffer(bh);
2708			bh->b_end_io = btrfs_end_buffer_write_sync;
2709			bh->b_private = device;
2710		}
2711
2712		/*
2713		 * we fua the first super.  The others we allow
2714		 * to go down lazy.
 
2715		 */
2716		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719	}
 
 
 
 
 
 
 
 
 
 
2720	return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729	if (err) {
2730		if (err == -EOPNOTSUPP)
2731			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733	}
2734	if (bio->bi_private)
2735		complete(bio->bi_private);
2736	bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741 * sent down.  With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748	struct bio *bio;
2749	int ret = 0;
 
2750
2751	if (device->nobarriers)
2752		return 0;
 
 
 
 
 
 
2753
2754	if (wait) {
2755		bio = device->flush_bio;
2756		if (!bio)
2757			return 0;
 
 
 
2758
2759		wait_for_completion(&device->flush_wait);
 
2760
2761		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763				      rcu_str_deref(device->name));
2764			device->nobarriers = 1;
2765		}
2766		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767			ret = -EIO;
2768			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769				btrfs_dev_stat_inc_and_print(device,
2770					BTRFS_DEV_STAT_FLUSH_ERRS);
2771		}
2772
2773		/* drop the reference from the wait == 0 run */
2774		bio_put(bio);
2775		device->flush_bio = NULL;
2776
2777		return ret;
 
 
 
2778	}
2779
2780	/*
2781	 * one reference for us, and we leave it for the
2782	 * caller
2783	 */
2784	device->flush_bio = NULL;
2785	bio = bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		return -ENOMEM;
2788
2789	bio->bi_end_io = btrfs_end_empty_barrier;
2790	bio->bi_bdev = device->bdev;
2791	init_completion(&device->flush_wait);
2792	bio->bi_private = &device->flush_wait;
2793	device->flush_bio = bio;
2794
2795	bio_get(bio);
2796	btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
2798	return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807	struct list_head *head;
2808	struct btrfs_device *dev;
2809	int errors = 0;
2810	int ret;
2811
 
2812	/* send down all the barriers */
2813	head = &info->fs_devices->devices;
2814	list_for_each_entry_rcu(dev, head, dev_list) {
2815		if (!dev->bdev) {
2816			errors++;
 
2817			continue;
2818		}
2819		if (!dev->in_fs_metadata || !dev->writeable)
2820			continue;
2821
2822		ret = write_dev_flush(dev, 0);
2823		if (ret)
2824			errors++;
2825	}
2826
2827	/* wait for all the barriers */
2828	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2829		if (!dev->bdev) {
2830			errors++;
2831			continue;
2832		}
2833		if (!dev->in_fs_metadata || !dev->writeable)
 
2834			continue;
2835
2836		ret = write_dev_flush(dev, 1);
2837		if (ret)
2838			errors++;
2839	}
2840	if (errors)
 
 
 
 
 
2841		return -EIO;
 
2842	return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846{
2847	struct list_head *head;
2848	struct btrfs_device *dev;
2849	struct btrfs_super_block *sb;
2850	struct btrfs_dev_item *dev_item;
2851	int ret;
2852	int do_barriers;
2853	int max_errors;
2854	int total_errors = 0;
2855	u64 flags;
2856
2857	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859	backup_super_roots(root->fs_info);
 
 
 
 
 
 
2860
2861	sb = root->fs_info->super_for_commit;
2862	dev_item = &sb->dev_item;
2863
2864	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865	head = &root->fs_info->fs_devices->devices;
 
2866
2867	if (do_barriers)
2868		barrier_all_devices(root->fs_info);
 
 
 
 
 
 
 
 
2869
2870	list_for_each_entry_rcu(dev, head, dev_list) {
2871		if (!dev->bdev) {
2872			total_errors++;
2873			continue;
2874		}
2875		if (!dev->in_fs_metadata || !dev->writeable)
 
2876			continue;
2877
2878		btrfs_set_stack_device_generation(dev_item, 0);
2879		btrfs_set_stack_device_type(dev_item, dev->type);
2880		btrfs_set_stack_device_id(dev_item, dev->devid);
2881		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
 
 
2883		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
2888
2889		flags = btrfs_super_flags(sb);
2890		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
2893		if (ret)
2894			total_errors++;
2895	}
2896	if (total_errors > max_errors) {
2897		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898		       total_errors);
2899
2900		/* This shouldn't happen. FUA is masked off if unsupported */
2901		BUG();
 
 
 
 
2902	}
2903
2904	total_errors = 0;
2905	list_for_each_entry_rcu(dev, head, dev_list) {
2906		if (!dev->bdev)
2907			continue;
2908		if (!dev->in_fs_metadata || !dev->writeable)
 
2909			continue;
2910
2911		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912		if (ret)
2913			total_errors++;
2914	}
2915	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916	if (total_errors > max_errors) {
2917		btrfs_error(root->fs_info, -EIO,
2918			    "%d errors while writing supers", total_errors);
 
2919		return -EIO;
2920	}
2921	return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925		      struct btrfs_root *root, int max_mirrors)
 
2926{
2927	int ret;
2928
2929	ret = write_all_supers(root, max_mirrors);
2930	return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935	spin_lock(&fs_info->fs_roots_radix_lock);
2936	radix_tree_delete(&fs_info->fs_roots_radix,
2937			  (unsigned long)root->root_key.objectid);
 
 
2938	spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940	if (btrfs_root_refs(&root->root_item) == 0)
2941		synchronize_srcu(&fs_info->subvol_srcu);
 
 
 
 
 
2942
2943	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2945	free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950	iput(root->cache_inode);
2951	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952	if (root->anon_dev)
2953		free_anon_bdev(root->anon_dev);
2954	free_extent_buffer(root->node);
2955	free_extent_buffer(root->commit_root);
2956	kfree(root->free_ino_ctl);
2957	kfree(root->free_ino_pinned);
2958	kfree(root->name);
2959	kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964	int ret;
2965	struct btrfs_root *gang[8];
2966	int i;
2967
2968	while (!list_empty(&fs_info->dead_roots)) {
2969		gang[0] = list_entry(fs_info->dead_roots.next,
2970				     struct btrfs_root, root_list);
2971		list_del(&gang[0]->root_list);
2972
2973		if (gang[0]->in_radix) {
2974			btrfs_free_fs_root(fs_info, gang[0]);
2975		} else {
2976			free_extent_buffer(gang[0]->node);
2977			free_extent_buffer(gang[0]->commit_root);
2978			kfree(gang[0]);
2979		}
2980	}
2981
2982	while (1) {
2983		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984					     (void **)gang, 0,
2985					     ARRAY_SIZE(gang));
2986		if (!ret)
2987			break;
2988		for (i = 0; i < ret; i++)
2989			btrfs_free_fs_root(fs_info, gang[i]);
2990	}
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995	u64 root_objectid = 0;
2996	struct btrfs_root *gang[8];
2997	int i;
2998	int ret;
2999
3000	while (1) {
3001		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002					     (void **)gang, root_objectid,
3003					     ARRAY_SIZE(gang));
3004		if (!ret)
3005			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006
3007		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008		for (i = 0; i < ret; i++) {
3009			int err;
3010
3011			root_objectid = gang[i]->root_key.objectid;
3012			err = btrfs_orphan_cleanup(gang[i]);
3013			if (err)
3014				return err;
3015		}
3016		root_objectid++;
3017	}
3018	return 0;
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023	struct btrfs_trans_handle *trans;
3024	int ret;
3025
3026	mutex_lock(&root->fs_info->cleaner_mutex);
3027	btrfs_run_delayed_iputs(root);
3028	btrfs_clean_old_snapshots(root);
3029	mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031	/* wait until ongoing cleanup work done */
3032	down_write(&root->fs_info->cleanup_work_sem);
3033	up_write(&root->fs_info->cleanup_work_sem);
 
 
 
 
 
 
 
3034
3035	trans = btrfs_join_transaction(root);
3036	if (IS_ERR(trans))
3037		return PTR_ERR(trans);
3038	ret = btrfs_commit_transaction(trans, root);
3039	if (ret)
3040		return ret;
3041	/* run commit again to drop the original snapshot */
3042	trans = btrfs_join_transaction(root);
3043	if (IS_ERR(trans))
3044		return PTR_ERR(trans);
3045	ret = btrfs_commit_transaction(trans, root);
3046	if (ret)
3047		return ret;
3048	ret = btrfs_write_and_wait_transaction(NULL, root);
3049	if (ret) {
3050		btrfs_error(root->fs_info, ret,
3051			    "Failed to sync btree inode to disk.");
3052		return ret;
3053	}
3054
3055	ret = write_ctree_super(NULL, root, 0);
3056	return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061	struct btrfs_fs_info *fs_info = root->fs_info;
3062	int ret;
3063
3064	fs_info->closing = 1;
3065	smp_mb();
3066
3067	/* pause restriper - we want to resume on mount */
3068	btrfs_pause_balance(root->fs_info);
3069
3070	btrfs_scrub_cancel(root);
3071
3072	/* wait for any defraggers to finish */
3073	wait_event(fs_info->transaction_wait,
3074		   (atomic_read(&fs_info->defrag_running) == 0));
3075
3076	/* clear out the rbtree of defraggable inodes */
3077	btrfs_run_defrag_inodes(fs_info);
3078
3079	/*
3080	 * Here come 2 situations when btrfs is broken to flip readonly:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081	 *
3082	 * 1. when btrfs flips readonly somewhere else before
3083	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084	 * and btrfs will skip to write sb directly to keep
3085	 * ERROR state on disk.
3086	 *
3087	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090	 * btrfs will cleanup all FS resources first and write sb then.
 
3091	 */
3092	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093		ret = btrfs_commit_super(root);
3094		if (ret)
3095			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097
3098	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099		ret = btrfs_error_commit_super(root);
3100		if (ret)
3101			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102	}
3103
3104	btrfs_put_block_group_cache(fs_info);
 
3105
3106	kthread_stop(fs_info->transaction_kthread);
3107	kthread_stop(fs_info->cleaner_kthread);
3108
3109	fs_info->closing = 2;
3110	smp_mb();
3111
3112	if (fs_info->delalloc_bytes) {
3113		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114		       (unsigned long long)fs_info->delalloc_bytes);
3115	}
3116	if (fs_info->total_ref_cache_size) {
3117		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118		       (unsigned long long)fs_info->total_ref_cache_size);
3119	}
3120
3121	free_extent_buffer(fs_info->extent_root->node);
3122	free_extent_buffer(fs_info->extent_root->commit_root);
3123	free_extent_buffer(fs_info->tree_root->node);
3124	free_extent_buffer(fs_info->tree_root->commit_root);
3125	free_extent_buffer(fs_info->chunk_root->node);
3126	free_extent_buffer(fs_info->chunk_root->commit_root);
3127	free_extent_buffer(fs_info->dev_root->node);
3128	free_extent_buffer(fs_info->dev_root->commit_root);
3129	free_extent_buffer(fs_info->csum_root->node);
3130	free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132	btrfs_free_block_groups(fs_info);
 
3133
3134	del_fs_roots(fs_info);
 
 
 
3135
3136	iput(fs_info->btree_inode);
 
 
3137
3138	btrfs_stop_workers(&fs_info->generic_worker);
3139	btrfs_stop_workers(&fs_info->fixup_workers);
3140	btrfs_stop_workers(&fs_info->delalloc_workers);
3141	btrfs_stop_workers(&fs_info->workers);
3142	btrfs_stop_workers(&fs_info->endio_workers);
3143	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145	btrfs_stop_workers(&fs_info->endio_write_workers);
3146	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147	btrfs_stop_workers(&fs_info->submit_workers);
3148	btrfs_stop_workers(&fs_info->delayed_workers);
3149	btrfs_stop_workers(&fs_info->caching_workers);
3150	btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154		btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157	btrfs_close_devices(fs_info->fs_devices);
3158	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160	bdi_destroy(&fs_info->bdi);
3161	cleanup_srcu_struct(&fs_info->subvol_srcu);
 
 
 
 
3162
3163	return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167			  int atomic)
3168{
3169	int ret;
3170	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172	ret = extent_buffer_uptodate(buf);
3173	if (!ret)
3174		return ret;
 
 
 
 
 
3175
3176	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177				    parent_transid, atomic);
3178	if (ret == -EAGAIN)
3179		return ret;
3180	return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185	return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
 
3189{
3190	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191	u64 transid = btrfs_header_generation(buf);
3192	int was_dirty;
3193
3194	btrfs_assert_tree_locked(buf);
3195	if (transid != root->fs_info->generation) {
3196		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197		       "found %llu running %llu\n",
3198			(unsigned long long)buf->start,
3199			(unsigned long long)transid,
3200			(unsigned long long)root->fs_info->generation);
3201		WARN_ON(1);
3202	}
3203	was_dirty = set_extent_buffer_dirty(buf);
3204	if (!was_dirty) {
3205		spin_lock(&root->fs_info->delalloc_lock);
3206		root->fs_info->dirty_metadata_bytes += buf->len;
3207		spin_unlock(&root->fs_info->delalloc_lock);
3208	}
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212{
3213	/*
3214	 * looks as though older kernels can get into trouble with
3215	 * this code, they end up stuck in balance_dirty_pages forever
 
3216	 */
3217	u64 num_dirty;
3218	unsigned long thresh = 32 * 1024 * 1024;
3219
3220	if (current->flags & PF_MEMALLOC)
3221		return;
3222
3223	btrfs_balance_delayed_items(root);
3224
3225	num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227	if (num_dirty > thresh) {
3228		balance_dirty_pages_ratelimited_nr(
3229				   root->fs_info->btree_inode->i_mapping, 1);
 
3230	}
3231	return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
 
3235{
3236	/*
3237	 * looks as though older kernels can get into trouble with
3238	 * this code, they end up stuck in balance_dirty_pages forever
3239	 */
3240	u64 num_dirty;
3241	unsigned long thresh = 32 * 1024 * 1024;
3242
3243	if (current->flags & PF_MEMALLOC)
3244		return;
3245
3246	num_dirty = root->fs_info->dirty_metadata_bytes;
 
3247
3248	if (num_dirty > thresh) {
3249		balance_dirty_pages_ratelimited_nr(
3250				   root->fs_info->btree_inode->i_mapping, 1);
 
 
3251	}
3252	return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262				void (*flush_fn)(void *))
3263{
3264	struct inode *inode = page->mapping->host;
3265	struct btrfs_root *root = BTRFS_I(inode)->root;
3266	struct extent_buffer *eb;
3267
3268	/*
3269	 * We culled this eb but the page is still hanging out on the mapping,
3270	 * carry on.
3271	 */
3272	if (!PagePrivate(page))
3273		goto out;
3274
3275	eb = (struct extent_buffer *)page->private;
3276	if (!eb) {
3277		WARN_ON(1);
3278		goto out;
3279	}
3280	if (page != eb->pages[0])
3281		goto out;
3282
3283	if (!btrfs_try_tree_write_lock(eb)) {
3284		flush_fn(data);
3285		btrfs_tree_lock(eb);
3286	}
3287	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290		spin_lock(&root->fs_info->delalloc_lock);
3291		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292			root->fs_info->dirty_metadata_bytes -= eb->len;
3293		else
3294			WARN_ON(1);
3295		spin_unlock(&root->fs_info->delalloc_lock);
3296	}
3297
3298	btrfs_tree_unlock(eb);
3299out:
3300	if (!trylock_page(page)) {
3301		flush_fn(data);
3302		lock_page(page);
3303	}
3304	return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308			      int read_only)
3309{
3310	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312		return -EINVAL;
3313	}
3314
3315	if (read_only)
3316		return 0;
 
3317
3318	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319		printk(KERN_WARNING "warning: mount fs with errors, "
3320		       "running btrfsck is recommended\n");
3321	}
3322
3323	return 0;
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
 
 
3328	int ret;
3329
3330	mutex_lock(&root->fs_info->cleaner_mutex);
3331	btrfs_run_delayed_iputs(root);
3332	mutex_unlock(&root->fs_info->cleaner_mutex);
 
 
3333
3334	down_write(&root->fs_info->cleanup_work_sem);
3335	up_write(&root->fs_info->cleanup_work_sem);
 
3336
3337	/* cleanup FS via transaction */
3338	btrfs_cleanup_transaction(root);
 
 
 
 
 
 
 
 
 
 
 
3339
3340	ret = write_ctree_super(NULL, root, 0);
 
 
3341
3342	return ret;
 
 
 
 
 
 
 
 
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347	struct btrfs_inode *btrfs_inode;
3348	struct list_head splice;
3349
3350	INIT_LIST_HEAD(&splice);
3351
3352	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353	spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355	list_splice_init(&root->fs_info->ordered_operations, &splice);
 
3356	while (!list_empty(&splice)) {
3357		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358					 ordered_operations);
 
 
3359
3360		list_del_init(&btrfs_inode->ordered_operations);
 
3361
3362		btrfs_invalidate_inodes(btrfs_inode->root);
 
3363	}
 
3364
3365	spin_unlock(&root->fs_info->ordered_extent_lock);
3366	mutex_unlock(&root->fs_info->ordered_operations_mutex);
 
 
 
 
 
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
3371	struct list_head splice;
3372	struct btrfs_ordered_extent *ordered;
3373	struct inode *inode;
3374
3375	INIT_LIST_HEAD(&splice);
3376
3377	spin_lock(&root->fs_info->ordered_extent_lock);
 
3378
3379	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380	while (!list_empty(&splice)) {
3381		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382				     root_extent_list);
 
 
 
3383
3384		list_del_init(&ordered->root_extent_list);
3385		atomic_inc(&ordered->refs);
3386
3387		/* the inode may be getting freed (in sys_unlink path). */
3388		inode = igrab(ordered->inode);
3389
3390		spin_unlock(&root->fs_info->ordered_extent_lock);
3391		if (inode)
 
 
 
3392			iput(inode);
3393
3394		atomic_set(&ordered->refs, 1);
3395		btrfs_put_ordered_extent(ordered);
3396
3397		spin_lock(&root->fs_info->ordered_extent_lock);
3398	}
3399
3400	spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404			       struct btrfs_root *root)
3405{
3406	struct rb_node *node;
3407	struct btrfs_delayed_ref_root *delayed_refs;
3408	struct btrfs_delayed_ref_node *ref;
3409	int ret = 0;
 
 
 
 
 
 
 
3410
3411	delayed_refs = &trans->delayed_refs;
 
3412
3413	spin_lock(&delayed_refs->lock);
3414	if (delayed_refs->num_entries == 0) {
3415		spin_unlock(&delayed_refs->lock);
3416		printk(KERN_INFO "delayed_refs has NO entry\n");
3417		return ret;
3418	}
 
 
3419
3420	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
 
 
 
 
 
3422
3423		atomic_set(&ref->refs, 1);
3424		if (btrfs_delayed_ref_is_head(ref)) {
3425			struct btrfs_delayed_ref_head *head;
3426
3427			head = btrfs_delayed_node_to_head(ref);
3428			if (!mutex_trylock(&head->mutex)) {
3429				atomic_inc(&ref->refs);
3430				spin_unlock(&delayed_refs->lock);
3431
3432				/* Need to wait for the delayed ref to run */
3433				mutex_lock(&head->mutex);
3434				mutex_unlock(&head->mutex);
3435				btrfs_put_delayed_ref(ref);
3436
3437				spin_lock(&delayed_refs->lock);
3438				continue;
3439			}
3440
3441			kfree(head->extent_op);
3442			delayed_refs->num_heads--;
3443			if (list_empty(&head->cluster))
3444				delayed_refs->num_heads_ready--;
3445			list_del_init(&head->cluster);
3446		}
3447		ref->in_tree = 0;
3448		rb_erase(&ref->rb_node, &delayed_refs->root);
3449		delayed_refs->num_entries--;
3450
3451		spin_unlock(&delayed_refs->lock);
3452		btrfs_put_delayed_ref(ref);
3453
3454		cond_resched();
3455		spin_lock(&delayed_refs->lock);
3456	}
3457
3458	spin_unlock(&delayed_refs->lock);
3459
3460	return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
 
3464{
3465	struct btrfs_pending_snapshot *snapshot;
3466	struct list_head splice;
3467
3468	INIT_LIST_HEAD(&splice);
 
3469
3470	list_splice_init(&t->pending_snapshots, &splice);
 
 
 
 
 
 
 
 
 
 
 
3471
3472	while (!list_empty(&splice)) {
3473		snapshot = list_entry(splice.next,
3474				      struct btrfs_pending_snapshot,
3475				      list);
3476
3477		list_del_init(&snapshot->list);
3478
3479		kfree(snapshot);
3480	}
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485	struct btrfs_inode *btrfs_inode;
3486	struct list_head splice;
3487
3488	INIT_LIST_HEAD(&splice);
3489
3490	spin_lock(&root->fs_info->delalloc_lock);
3491	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
 
3492
3493	while (!list_empty(&splice)) {
3494		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495				    delalloc_inodes);
3496
3497		list_del_init(&btrfs_inode->delalloc_inodes);
3498
3499		btrfs_invalidate_inodes(btrfs_inode->root);
 
 
3500	}
3501
3502	spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506					struct extent_io_tree *dirty_pages,
3507					int mark)
3508{
3509	int ret;
3510	struct page *page;
3511	struct inode *btree_inode = root->fs_info->btree_inode;
3512	struct extent_buffer *eb;
3513	u64 start = 0;
3514	u64 end;
3515	u64 offset;
3516	unsigned long index;
3517
3518	while (1) {
3519		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520					    mark);
3521		if (ret)
3522			break;
 
 
 
 
 
 
 
3523
3524		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525		while (start <= end) {
3526			index = start >> PAGE_CACHE_SHIFT;
3527			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528			page = find_get_page(btree_inode->i_mapping, index);
3529			if (!page)
3530				continue;
3531			offset = page_offset(page);
 
 
 
3532
3533			spin_lock(&dirty_pages->buffer_lock);
3534			eb = radix_tree_lookup(
3535			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536					       offset >> PAGE_CACHE_SHIFT);
3537			spin_unlock(&dirty_pages->buffer_lock);
3538			if (eb)
3539				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540							 &eb->bflags);
3541			if (PageWriteback(page))
3542				end_page_writeback(page);
3543
3544			lock_page(page);
3545			if (PageDirty(page)) {
3546				clear_page_dirty_for_io(page);
3547				spin_lock_irq(&page->mapping->tree_lock);
3548				radix_tree_tag_clear(&page->mapping->page_tree,
3549							page_index(page),
3550							PAGECACHE_TAG_DIRTY);
3551				spin_unlock_irq(&page->mapping->tree_lock);
3552			}
3553
3554			unlock_page(page);
3555			page_cache_release(page);
3556		}
 
 
3557	}
3558
3559	return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563				       struct extent_io_tree *pinned_extents)
3564{
3565	struct extent_io_tree *unpin;
3566	u64 start;
3567	u64 end;
3568	int ret;
3569	bool loop = true;
3570
3571	unpin = pinned_extents;
3572again:
3573	while (1) {
3574		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575					    EXTENT_DIRTY);
3576		if (ret)
 
 
3577			break;
 
 
3578
3579		/* opt_discard */
3580		if (btrfs_test_opt(root, DISCARD))
3581			ret = btrfs_error_discard_extent(root, start,
3582							 end + 1 - start,
3583							 NULL);
3584
3585		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586		btrfs_error_unpin_extent_range(root, start, end);
3587		cond_resched();
3588	}
3589
3590	if (loop) {
3591		if (unpin == &root->fs_info->freed_extents[0])
3592			unpin = &root->fs_info->freed_extents[1];
3593		else
3594			unpin = &root->fs_info->freed_extents[0];
3595		loop = false;
3596		goto again;
3597	}
3598
3599	return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603				   struct btrfs_root *root)
3604{
3605	btrfs_destroy_delayed_refs(cur_trans, root);
3606	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607				cur_trans->dirty_pages.dirty_bytes);
3608
3609	/* FIXME: cleanup wait for commit */
3610	cur_trans->in_commit = 1;
3611	cur_trans->blocked = 1;
3612	wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614	cur_trans->blocked = 0;
3615	wake_up(&root->fs_info->transaction_wait);
 
 
 
 
 
 
3616
3617	cur_trans->commit_done = 1;
3618	wake_up(&cur_trans->commit_wait);
3619
3620	btrfs_destroy_delayed_inodes(root);
3621	btrfs_assert_delayed_root_empty(root);
3622
3623	btrfs_destroy_pending_snapshots(cur_trans);
 
3624
3625	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626				     EXTENT_DIRTY);
3627	btrfs_destroy_pinned_extent(root,
3628				    root->fs_info->pinned_extents);
3629
3630	/*
3631	memset(cur_trans, 0, sizeof(*cur_trans));
3632	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633	*/
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
3637{
3638	struct btrfs_transaction *t;
3639	LIST_HEAD(list);
3640
3641	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643	spin_lock(&root->fs_info->trans_lock);
3644	list_splice_init(&root->fs_info->trans_list, &list);
3645	root->fs_info->trans_no_join = 1;
3646	spin_unlock(&root->fs_info->trans_lock);
3647
3648	while (!list_empty(&list)) {
3649		t = list_entry(list.next, struct btrfs_transaction, list);
3650		if (!t)
3651			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3652
3653		btrfs_destroy_ordered_operations(root);
 
 
 
 
3654
3655		btrfs_destroy_ordered_extents(root);
 
 
 
 
 
 
 
 
 
 
 
3656
3657		btrfs_destroy_delayed_refs(t, root);
 
3658
3659		btrfs_block_rsv_release(root,
3660					&root->fs_info->trans_block_rsv,
3661					t->dirty_pages.dirty_bytes);
3662
3663		/* FIXME: cleanup wait for commit */
3664		t->in_commit = 1;
3665		t->blocked = 1;
3666		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667			wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669		t->blocked = 0;
3670		if (waitqueue_active(&root->fs_info->transaction_wait))
3671			wake_up(&root->fs_info->transaction_wait);
3672
3673		t->commit_done = 1;
3674		if (waitqueue_active(&t->commit_wait))
3675			wake_up(&t->commit_wait);
3676
3677		btrfs_destroy_delayed_inodes(root);
3678		btrfs_assert_delayed_root_empty(root);
 
3679
3680		btrfs_destroy_pending_snapshots(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3681
3682		btrfs_destroy_delalloc_inodes(root);
 
 
 
3683
3684		spin_lock(&root->fs_info->trans_lock);
3685		root->fs_info->running_transaction = NULL;
3686		spin_unlock(&root->fs_info->trans_lock);
3687
3688		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689					     EXTENT_DIRTY);
3690
3691		btrfs_destroy_pinned_extent(root,
3692					    root->fs_info->pinned_extents);
3693
3694		atomic_set(&t->use_count, 0);
3695		list_del_init(&t->list);
3696		memset(t, 0, sizeof(*t));
3697		kmem_cache_free(btrfs_transaction_cachep, t);
3698	}
3699
3700	spin_lock(&root->fs_info->trans_lock);
3701	root->fs_info->trans_no_join = 0;
3702	spin_unlock(&root->fs_info->trans_lock);
3703	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704
3705	return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709	.write_cache_pages_lock_hook = btree_lock_page_hook,
3710	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711	.readpage_io_failed_hook = btree_io_failed_hook,
3712	.submit_bio_hook = btree_submit_bio_hook,
3713	/* note we're sharing with inode.c for the merge bio hook */
3714	.merge_bio_hook = btrfs_merge_bio_hook,
3715};