Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2009-2024 Broadcom. All Rights Reserved. The term
   5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28
  29#include <drm/ttm/ttm_placement.h>
  30
  31#include "vmwgfx_binding.h"
  32#include "vmwgfx_bo.h"
  33#include "vmwgfx_drv.h"
  34#include "vmwgfx_resource_priv.h"
  35
  36#define VMW_RES_EVICT_ERR_COUNT 10
  37
  38/**
  39 * vmw_resource_mob_attach - Mark a resource as attached to its backing mob
  40 * @res: The resource
  41 */
  42void vmw_resource_mob_attach(struct vmw_resource *res)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43{
  44	struct vmw_bo *gbo = res->guest_memory_bo;
  45	struct rb_node **new = &gbo->res_tree.rb_node, *parent = NULL;
  46
  47	dma_resv_assert_held(gbo->tbo.base.resv);
  48	res->used_prio = (res->res_dirty) ? res->func->dirty_prio :
  49		res->func->prio;
  50
  51	while (*new) {
  52		struct vmw_resource *this =
  53			container_of(*new, struct vmw_resource, mob_node);
  54
  55		parent = *new;
  56		new = (res->guest_memory_offset < this->guest_memory_offset) ?
  57			&((*new)->rb_left) : &((*new)->rb_right);
  58	}
  59
  60	rb_link_node(&res->mob_node, parent, new);
  61	rb_insert_color(&res->mob_node, &gbo->res_tree);
  62	vmw_bo_del_detached_resource(gbo, res);
  63
  64	vmw_bo_prio_add(gbo, res->used_prio);
  65}
  66
  67/**
  68 * vmw_resource_mob_detach - Mark a resource as detached from its backing mob
  69 * @res: The resource
  70 */
  71void vmw_resource_mob_detach(struct vmw_resource *res)
  72{
  73	struct vmw_bo *gbo = res->guest_memory_bo;
  74
  75	dma_resv_assert_held(gbo->tbo.base.resv);
  76	if (vmw_resource_mob_attached(res)) {
  77		rb_erase(&res->mob_node, &gbo->res_tree);
  78		RB_CLEAR_NODE(&res->mob_node);
  79		vmw_bo_prio_del(gbo, res->used_prio);
  80	}
  81}
  82
  83struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
  84{
  85	kref_get(&res->kref);
  86	return res;
  87}
  88
  89struct vmw_resource *
  90vmw_resource_reference_unless_doomed(struct vmw_resource *res)
  91{
  92	return kref_get_unless_zero(&res->kref) ? res : NULL;
  93}
  94
  95/**
  96 * vmw_resource_release_id - release a resource id to the id manager.
  97 *
  98 * @res: Pointer to the resource.
  99 *
 100 * Release the resource id to the resource id manager and set it to -1
 101 */
 102void vmw_resource_release_id(struct vmw_resource *res)
 103{
 104	struct vmw_private *dev_priv = res->dev_priv;
 105	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 106
 107	spin_lock(&dev_priv->resource_lock);
 108	if (res->id != -1)
 109		idr_remove(idr, res->id);
 110	res->id = -1;
 111	spin_unlock(&dev_priv->resource_lock);
 112}
 113
 114static void vmw_resource_release(struct kref *kref)
 115{
 116	struct vmw_resource *res =
 117	    container_of(kref, struct vmw_resource, kref);
 118	struct vmw_private *dev_priv = res->dev_priv;
 119	int id;
 120	int ret;
 121	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 122
 123	spin_lock(&dev_priv->resource_lock);
 124	list_del_init(&res->lru_head);
 125	spin_unlock(&dev_priv->resource_lock);
 126	if (res->guest_memory_bo) {
 127		struct ttm_buffer_object *bo = &res->guest_memory_bo->tbo;
 128
 129		ret = ttm_bo_reserve(bo, false, false, NULL);
 130		BUG_ON(ret);
 131		if (vmw_resource_mob_attached(res) &&
 132		    res->func->unbind != NULL) {
 133			struct ttm_validate_buffer val_buf;
 134
 135			val_buf.bo = bo;
 136			val_buf.num_shared = 0;
 137			res->func->unbind(res, false, &val_buf);
 138		}
 139		res->guest_memory_size = false;
 140		vmw_resource_mob_detach(res);
 141		if (res->dirty)
 142			res->func->dirty_free(res);
 143		if (res->coherent)
 144			vmw_bo_dirty_release(res->guest_memory_bo);
 145		ttm_bo_unreserve(bo);
 146		vmw_user_bo_unref(&res->guest_memory_bo);
 147	}
 148
 149	if (likely(res->hw_destroy != NULL)) {
 150		mutex_lock(&dev_priv->binding_mutex);
 151		vmw_binding_res_list_kill(&res->binding_head);
 152		mutex_unlock(&dev_priv->binding_mutex);
 153		res->hw_destroy(res);
 154	}
 155
 156	id = res->id;
 157	if (res->res_free != NULL)
 158		res->res_free(res);
 159	else
 160		kfree(res);
 161
 162	spin_lock(&dev_priv->resource_lock);
 
 163	if (id != -1)
 164		idr_remove(idr, id);
 165	spin_unlock(&dev_priv->resource_lock);
 166}
 167
 168void vmw_resource_unreference(struct vmw_resource **p_res)
 169{
 170	struct vmw_resource *res = *p_res;
 
 171
 172	*p_res = NULL;
 
 173	kref_put(&res->kref, vmw_resource_release);
 
 174}
 175
 176
 177/**
 178 * vmw_resource_alloc_id - release a resource id to the id manager.
 179 *
 
 180 * @res: Pointer to the resource.
 181 *
 182 * Allocate the lowest free resource from the resource manager, and set
 183 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
 184 */
 185int vmw_resource_alloc_id(struct vmw_resource *res)
 
 186{
 187	struct vmw_private *dev_priv = res->dev_priv;
 188	int ret;
 189	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 190
 191	BUG_ON(res->id != -1);
 192
 193	idr_preload(GFP_KERNEL);
 194	spin_lock(&dev_priv->resource_lock);
 
 
 
 
 
 195
 196	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
 197	if (ret >= 0)
 198		res->id = ret;
 199
 200	spin_unlock(&dev_priv->resource_lock);
 201	idr_preload_end();
 202	return ret < 0 ? ret : 0;
 203}
 204
 205/**
 206 * vmw_resource_init - initialize a struct vmw_resource
 207 *
 208 * @dev_priv:       Pointer to a device private struct.
 209 * @res:            The struct vmw_resource to initialize.
 210 * @delay_id:       Boolean whether to defer device id allocation until
 211 *                  the first validation.
 212 * @res_free:       Resource destructor.
 213 * @func:           Resource function table.
 214 */
 215int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
 216		      bool delay_id,
 217		      void (*res_free) (struct vmw_resource *res),
 218		      const struct vmw_res_func *func)
 219{
 220	kref_init(&res->kref);
 221	res->hw_destroy = NULL;
 222	res->res_free = res_free;
 
 
 
 
 223	res->dev_priv = dev_priv;
 224	res->func = func;
 225	RB_CLEAR_NODE(&res->mob_node);
 226	INIT_LIST_HEAD(&res->lru_head);
 227	INIT_LIST_HEAD(&res->binding_head);
 228	res->id = -1;
 229	res->guest_memory_bo = NULL;
 230	res->guest_memory_offset = 0;
 231	res->guest_memory_dirty = false;
 232	res->res_dirty = false;
 233	res->coherent = false;
 234	res->used_prio = 3;
 235	res->dirty = NULL;
 236	if (delay_id)
 237		return 0;
 238	else
 239		return vmw_resource_alloc_id(res);
 240}
 241
 242
 243/**
 244 * vmw_user_resource_lookup_handle - lookup a struct resource from a
 245 * TTM user-space handle and perform basic type checks
 246 *
 247 * @dev_priv:     Pointer to a device private struct
 248 * @tfile:        Pointer to a struct ttm_object_file identifying the caller
 249 * @handle:       The TTM user-space handle
 250 * @converter:    Pointer to an object describing the resource type
 251 * @p_res:        On successful return the location pointed to will contain
 252 *                a pointer to a refcounted struct vmw_resource.
 253 *
 254 * If the handle can't be found or is associated with an incorrect resource
 255 * type, -EINVAL will be returned.
 
 
 
 256 */
 257int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
 258				    struct ttm_object_file *tfile,
 259				    uint32_t handle,
 260				    const struct vmw_user_resource_conv
 261				    *converter,
 262				    struct vmw_resource **p_res)
 
 
 
 
 
 
 
 
 263{
 264	struct ttm_base_object *base;
 265	struct vmw_resource *res;
 266	int ret = -EINVAL;
 267
 268	base = ttm_base_object_lookup(tfile, handle);
 269	if (unlikely(!base))
 270		return -EINVAL;
 
 
 
 
 271
 272	if (unlikely(ttm_base_object_type(base) != converter->object_type))
 273		goto out_bad_resource;
 274
 275	res = converter->base_obj_to_res(base);
 276	kref_get(&res->kref);
 277
 278	*p_res = res;
 279	ret = 0;
 
 280
 281out_bad_resource:
 282	ttm_base_object_unref(&base);
 283
 284	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285}
 286
 287/*
 288 * Helper function that looks either a surface or bo.
 289 *
 290 * The pointer this pointed at by out_surf and out_buf needs to be null.
 291 */
 292int vmw_user_object_lookup(struct vmw_private *dev_priv,
 293			   struct drm_file *filp,
 294			   u32 handle,
 295			   struct vmw_user_object *uo)
 296{
 297	struct ttm_object_file *tfile = vmw_fpriv(filp)->tfile;
 298	struct vmw_resource *res;
 299	int ret;
 300
 301	WARN_ON(uo->surface || uo->buffer);
 
 
 
 302
 303	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
 304					      user_surface_converter,
 305					      &res);
 306	if (!ret) {
 307		uo->surface = vmw_res_to_srf(res);
 308		return 0;
 309	}
 310
 311	uo->surface = NULL;
 312	ret = vmw_user_bo_lookup(filp, handle, &uo->buffer);
 313	if (!ret && !uo->buffer->is_dumb) {
 314		uo->surface = vmw_lookup_surface_for_buffer(dev_priv,
 315							    uo->buffer,
 316							    handle);
 317		if (uo->surface)
 318			vmw_user_bo_unref(&uo->buffer);
 
 
 
 319	}
 320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321	return ret;
 322}
 323
 324/**
 325 * vmw_resource_buf_alloc - Allocate a guest memory buffer for a resource.
 326 *
 327 * @res:            The resource for which to allocate a gbo buffer.
 328 * @interruptible:  Whether any sleeps during allocation should be
 329 *                  performed while interruptible.
 330 */
 331static int vmw_resource_buf_alloc(struct vmw_resource *res,
 332				  bool interruptible)
 333{
 334	unsigned long size = PFN_ALIGN(res->guest_memory_size);
 335	struct vmw_bo *gbo;
 336	struct vmw_bo_params bo_params = {
 337		.domain = res->func->domain,
 338		.busy_domain = res->func->busy_domain,
 339		.bo_type = ttm_bo_type_device,
 340		.size = res->guest_memory_size,
 341		.pin = false
 342	};
 343	int ret;
 344
 345	if (likely(res->guest_memory_bo)) {
 346		BUG_ON(res->guest_memory_bo->tbo.base.size < size);
 347		return 0;
 348	}
 349
 350	ret = vmw_gem_object_create(res->dev_priv, &bo_params, &gbo);
 351	if (unlikely(ret != 0))
 352		goto out_no_bo;
 353
 354	res->guest_memory_bo = gbo;
 
 
 355
 356out_no_bo:
 357	return ret;
 
 
 
 
 
 
 
 358}
 359
 360/**
 361 * vmw_resource_do_validate - Make a resource up-to-date and visible
 362 *                            to the device.
 363 *
 364 * @res:            The resource to make visible to the device.
 365 * @val_buf:        Information about a buffer possibly
 366 *                  containing backup data if a bind operation is needed.
 367 * @dirtying:       Transfer dirty regions.
 368 *
 369 * On hardware resource shortage, this function returns -EBUSY and
 370 * should be retried once resources have been freed up.
 371 */
 372static int vmw_resource_do_validate(struct vmw_resource *res,
 373				    struct ttm_validate_buffer *val_buf,
 374				    bool dirtying)
 
 
 
 375{
 
 
 
 
 
 376	int ret = 0;
 377	const struct vmw_res_func *func = res->func;
 378
 379	if (unlikely(res->id == -1)) {
 380		ret = func->create(res);
 381		if (unlikely(ret != 0))
 382			return ret;
 
 
 
 383	}
 384
 385	if (func->bind &&
 386	    ((func->needs_guest_memory && !vmw_resource_mob_attached(res) &&
 387	      val_buf->bo) ||
 388	     (!func->needs_guest_memory && val_buf->bo))) {
 389		ret = func->bind(res, val_buf);
 390		if (unlikely(ret != 0))
 391			goto out_bind_failed;
 392		if (func->needs_guest_memory)
 393			vmw_resource_mob_attach(res);
 394	}
 395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396	/*
 397	 * Handle the case where the backup mob is marked coherent but
 398	 * the resource isn't.
 399	 */
 400	if (func->dirty_alloc && vmw_resource_mob_attached(res) &&
 401	    !res->coherent) {
 402		if (res->guest_memory_bo->dirty && !res->dirty) {
 403			ret = func->dirty_alloc(res);
 404			if (ret)
 405				return ret;
 406		} else if (!res->guest_memory_bo->dirty && res->dirty) {
 407			func->dirty_free(res);
 408		}
 409	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	/*
 412	 * Transfer the dirty regions to the resource and update
 413	 * the resource.
 414	 */
 415	if (res->dirty) {
 416		if (dirtying && !res->res_dirty) {
 417			pgoff_t start = res->guest_memory_offset >> PAGE_SHIFT;
 418			pgoff_t end = __KERNEL_DIV_ROUND_UP
 419				(res->guest_memory_offset + res->guest_memory_size,
 420				 PAGE_SIZE);
 421
 422			vmw_bo_dirty_unmap(res->guest_memory_bo, start, end);
 423		}
 
 424
 425		vmw_bo_dirty_transfer_to_res(res);
 426		return func->dirty_sync(res);
 
 
 
 
 
 427	}
 428
 429	return 0;
 
 
 
 
 
 430
 431out_bind_failed:
 432	func->destroy(res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434	return ret;
 435}
 436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437/**
 438 * vmw_resource_unreserve - Unreserve a resource previously reserved for
 439 * command submission.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440 *
 441 * @res:               Pointer to the struct vmw_resource to unreserve.
 442 * @dirty_set:         Change dirty status of the resource.
 443 * @dirty:             When changing dirty status indicates the new status.
 444 * @switch_guest_memory: Guest memory buffer has been switched.
 445 * @new_guest_memory_bo: Pointer to new guest memory buffer if command submission
 446 *                     switched. May be NULL.
 447 * @new_guest_memory_offset: New gbo offset if @switch_guest_memory is true.
 448 *
 449 * Currently unreserving a resource means putting it back on the device's
 450 * resource lru list, so that it can be evicted if necessary.
 451 */
 452void vmw_resource_unreserve(struct vmw_resource *res,
 453			    bool dirty_set,
 454			    bool dirty,
 455			    bool switch_guest_memory,
 456			    struct vmw_bo *new_guest_memory_bo,
 457			    unsigned long new_guest_memory_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458{
 
 459	struct vmw_private *dev_priv = res->dev_priv;
 
 
 460
 461	if (!list_empty(&res->lru_head))
 462		return;
 463
 464	if (switch_guest_memory && new_guest_memory_bo != res->guest_memory_bo) {
 465		if (res->guest_memory_bo) {
 466			vmw_resource_mob_detach(res);
 467			if (res->coherent)
 468				vmw_bo_dirty_release(res->guest_memory_bo);
 469			vmw_user_bo_unref(&res->guest_memory_bo);
 470		}
 471
 472		if (new_guest_memory_bo) {
 473			res->guest_memory_bo = vmw_user_bo_ref(new_guest_memory_bo);
 474
 475			/*
 476			 * The validation code should already have added a
 477			 * dirty tracker here.
 478			 */
 479			WARN_ON(res->coherent && !new_guest_memory_bo->dirty);
 480
 481			vmw_resource_mob_attach(res);
 482		} else {
 483			res->guest_memory_bo = NULL;
 484		}
 485	} else if (switch_guest_memory && res->coherent) {
 486		vmw_bo_dirty_release(res->guest_memory_bo);
 487	}
 488
 489	if (switch_guest_memory)
 490		res->guest_memory_offset = new_guest_memory_offset;
 
 
 491
 492	if (dirty_set)
 493		res->res_dirty = dirty;
 
 494
 495	if (!res->func->may_evict || res->id == -1 || res->pin_count)
 496		return;
 
 497
 498	spin_lock(&dev_priv->resource_lock);
 499	list_add_tail(&res->lru_head,
 500		      &res->dev_priv->res_lru[res->func->res_type]);
 501	spin_unlock(&dev_priv->resource_lock);
 
 
 502}
 503
 
 504/**
 505 * vmw_resource_check_buffer - Check whether a backup buffer is needed
 506 *                             for a resource and in that case, allocate
 507 *                             one, reserve and validate it.
 508 *
 509 * @ticket:         The ww acquire context to use, or NULL if trylocking.
 510 * @res:            The resource for which to allocate a backup buffer.
 511 * @interruptible:  Whether any sleeps during allocation should be
 512 *                  performed while interruptible.
 513 * @val_buf:        On successful return contains data about the
 514 *                  reserved and validated backup buffer.
 515 */
 516static int
 517vmw_resource_check_buffer(struct ww_acquire_ctx *ticket,
 518			  struct vmw_resource *res,
 519			  bool interruptible,
 520			  struct ttm_validate_buffer *val_buf)
 521{
 522	struct ttm_operation_ctx ctx = { true, false };
 523	struct list_head val_list;
 524	bool guest_memory_dirty = false;
 
 
 525	int ret;
 526
 527	if (unlikely(!res->guest_memory_bo)) {
 528		ret = vmw_resource_buf_alloc(res, interruptible);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529		if (unlikely(ret != 0))
 530			return ret;
 
 
 
 
 
 531	}
 532
 533	INIT_LIST_HEAD(&val_list);
 534	ttm_bo_get(&res->guest_memory_bo->tbo);
 535	val_buf->bo = &res->guest_memory_bo->tbo;
 536	val_buf->num_shared = 0;
 537	list_add_tail(&val_buf->head, &val_list);
 538	ret = ttm_eu_reserve_buffers(ticket, &val_list, interruptible, NULL);
 539	if (unlikely(ret != 0))
 540		goto out_no_reserve;
 541
 542	if (res->func->needs_guest_memory && !vmw_resource_mob_attached(res))
 543		return 0;
 
 
 
 
 
 
 
 544
 545	guest_memory_dirty = res->guest_memory_dirty;
 546	vmw_bo_placement_set(res->guest_memory_bo, res->func->domain,
 547			     res->func->busy_domain);
 548	ret = ttm_bo_validate(&res->guest_memory_bo->tbo,
 549			      &res->guest_memory_bo->placement,
 550			      &ctx);
 551
 552	if (unlikely(ret != 0))
 553		goto out_no_validate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554
 555	return 0;
 556
 
 
 
 557out_no_validate:
 558	ttm_eu_backoff_reservation(ticket, &val_list);
 
 559out_no_reserve:
 560	ttm_bo_put(val_buf->bo);
 561	val_buf->bo = NULL;
 562	if (guest_memory_dirty)
 563		vmw_user_bo_unref(&res->guest_memory_bo);
 564
 565	return ret;
 566}
 567
 568/*
 569 * vmw_resource_reserve - Reserve a resource for command submission
 570 *
 571 * @res:            The resource to reserve.
 572 *
 573 * This function takes the resource off the LRU list and make sure
 574 * a guest memory buffer is present for guest-backed resources.
 575 * However, the buffer may not be bound to the resource at this
 576 * point.
 577 *
 
 
 578 */
 579int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
 580			 bool no_guest_memory)
 581{
 582	struct vmw_private *dev_priv = res->dev_priv;
 
 
 
 
 583	int ret;
 
 
 584
 585	spin_lock(&dev_priv->resource_lock);
 586	list_del_init(&res->lru_head);
 587	spin_unlock(&dev_priv->resource_lock);
 588
 589	if (res->func->needs_guest_memory && !res->guest_memory_bo &&
 590	    !no_guest_memory) {
 591		ret = vmw_resource_buf_alloc(res, interruptible);
 592		if (unlikely(ret != 0)) {
 593			DRM_ERROR("Failed to allocate a guest memory buffer "
 594				  "of size %lu. bytes\n",
 595				  (unsigned long) res->guest_memory_size);
 596			return ret;
 597		}
 598	}
 599
 600	return 0;
 601}
 
 602
 603/**
 604 * vmw_resource_backoff_reservation - Unreserve and unreference a
 605 *                                    guest memory buffer
 606 *.
 607 * @ticket:         The ww acquire ctx used for reservation.
 608 * @val_buf:        Guest memory buffer information.
 609 */
 610static void
 611vmw_resource_backoff_reservation(struct ww_acquire_ctx *ticket,
 612				 struct ttm_validate_buffer *val_buf)
 613{
 614	struct list_head val_list;
 615
 616	if (likely(val_buf->bo == NULL))
 617		return;
 
 618
 619	INIT_LIST_HEAD(&val_list);
 620	list_add_tail(&val_buf->head, &val_list);
 621	ttm_eu_backoff_reservation(ticket, &val_list);
 622	ttm_bo_put(val_buf->bo);
 623	val_buf->bo = NULL;
 624}
 
 
 625
 626/**
 627 * vmw_resource_do_evict - Evict a resource, and transfer its data
 628 *                         to a backup buffer.
 629 *
 630 * @ticket:         The ww acquire ticket to use, or NULL if trylocking.
 631 * @res:            The resource to evict.
 632 * @interruptible:  Whether to wait interruptible.
 633 */
 634static int vmw_resource_do_evict(struct ww_acquire_ctx *ticket,
 635				 struct vmw_resource *res, bool interruptible)
 636{
 637	struct ttm_validate_buffer val_buf;
 638	const struct vmw_res_func *func = res->func;
 639	int ret;
 640
 641	BUG_ON(!func->may_evict);
 642
 643	val_buf.bo = NULL;
 644	val_buf.num_shared = 0;
 645	ret = vmw_resource_check_buffer(ticket, res, interruptible, &val_buf);
 646	if (unlikely(ret != 0))
 647		return ret;
 648
 649	if (unlikely(func->unbind != NULL &&
 650		     (!func->needs_guest_memory || vmw_resource_mob_attached(res)))) {
 651		ret = func->unbind(res, res->res_dirty, &val_buf);
 652		if (unlikely(ret != 0))
 653			goto out_no_unbind;
 654		vmw_resource_mob_detach(res);
 
 655	}
 656	ret = func->destroy(res);
 657	res->guest_memory_dirty = true;
 658	res->res_dirty = false;
 659out_no_unbind:
 660	vmw_resource_backoff_reservation(ticket, &val_buf);
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662	return ret;
 663}
 664
 665
 666/**
 667 * vmw_resource_validate - Make a resource up-to-date and visible
 668 *                         to the device.
 669 * @res: The resource to make visible to the device.
 670 * @intr: Perform waits interruptible if possible.
 671 * @dirtying: Pending GPU operation will dirty the resource
 672 *
 673 * On successful return, any backup DMA buffer pointed to by @res->backup will
 674 * be reserved and validated.
 675 * On hardware resource shortage, this function will repeatedly evict
 676 * resources of the same type until the validation succeeds.
 677 *
 678 * Return: Zero on success, -ERESTARTSYS if interrupted, negative error code
 679 * on failure.
 
 
 
 
 
 
 680 */
 681int vmw_resource_validate(struct vmw_resource *res, bool intr,
 682			  bool dirtying)
 683{
 684	int ret;
 685	struct vmw_resource *evict_res;
 686	struct vmw_private *dev_priv = res->dev_priv;
 687	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
 688	struct ttm_validate_buffer val_buf;
 689	unsigned err_count = 0;
 690
 691	if (!res->func->create)
 692		return 0;
 693
 694	val_buf.bo = NULL;
 695	val_buf.num_shared = 0;
 696	if (res->guest_memory_bo)
 697		val_buf.bo = &res->guest_memory_bo->tbo;
 698	do {
 699		ret = vmw_resource_do_validate(res, &val_buf, dirtying);
 
 
 
 
 700		if (likely(ret != -EBUSY))
 701			break;
 702
 703		spin_lock(&dev_priv->resource_lock);
 704		if (list_empty(lru_list) || !res->func->may_evict) {
 705			DRM_ERROR("Out of device device resources "
 706				  "for %s.\n", res->func->type_name);
 707			ret = -EBUSY;
 708			spin_unlock(&dev_priv->resource_lock);
 709			break;
 710		}
 711
 712		evict_res = vmw_resource_reference
 713			(list_first_entry(lru_list, struct vmw_resource,
 
 714					  lru_head));
 715		list_del_init(&evict_res->lru_head);
 716
 717		spin_unlock(&dev_priv->resource_lock);
 
 718
 719		/* Trylock backup buffers with a NULL ticket. */
 720		ret = vmw_resource_do_evict(NULL, evict_res, intr);
 721		if (unlikely(ret != 0)) {
 722			spin_lock(&dev_priv->resource_lock);
 723			list_add_tail(&evict_res->lru_head, lru_list);
 724			spin_unlock(&dev_priv->resource_lock);
 725			if (ret == -ERESTARTSYS ||
 726			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
 727				vmw_resource_unreference(&evict_res);
 728				goto out_no_validate;
 729			}
 730		}
 731
 732		vmw_resource_unreference(&evict_res);
 733	} while (1);
 734
 735	if (unlikely(ret != 0))
 736		goto out_no_validate;
 737	else if (!res->func->needs_guest_memory && res->guest_memory_bo) {
 738		WARN_ON_ONCE(vmw_resource_mob_attached(res));
 739		vmw_user_bo_unref(&res->guest_memory_bo);
 740	}
 741
 742	return 0;
 743
 744out_no_validate:
 745	return ret;
 746}
 747
 748
 749/**
 750 * vmw_resource_unbind_list
 751 *
 752 * @vbo: Pointer to the current backing MOB.
 753 *
 754 * Evicts the Guest Backed hardware resource if the backup
 755 * buffer is being moved out of MOB memory.
 756 * Note that this function will not race with the resource
 757 * validation code, since resource validation and eviction
 758 * both require the backup buffer to be reserved.
 759 */
 760void vmw_resource_unbind_list(struct vmw_bo *vbo)
 761{
 762	struct ttm_validate_buffer val_buf = {
 763		.bo = &vbo->tbo,
 764		.num_shared = 0
 765	};
 766
 767	dma_resv_assert_held(vbo->tbo.base.resv);
 768	while (!RB_EMPTY_ROOT(&vbo->res_tree)) {
 769		struct rb_node *node = vbo->res_tree.rb_node;
 770		struct vmw_resource *res =
 771			container_of(node, struct vmw_resource, mob_node);
 772
 773		if (!WARN_ON_ONCE(!res->func->unbind))
 774			(void) res->func->unbind(res, res->res_dirty, &val_buf);
 
 
 
 
 775
 776		res->guest_memory_size = true;
 777		res->res_dirty = false;
 778		vmw_resource_mob_detach(res);
 779	}
 
 
 
 
 780
 781	(void) ttm_bo_wait(&vbo->tbo, false, false);
 
 
 
 
 
 
 
 782}
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784
 785/**
 786 * vmw_query_readback_all - Read back cached query states
 
 787 *
 788 * @dx_query_mob: Buffer containing the DX query MOB
 789 *
 790 * Read back cached states from the device if they exist.  This function
 791 * assumes binding_mutex is held.
 
 
 
 
 792 */
 793int vmw_query_readback_all(struct vmw_bo *dx_query_mob)
 794{
 795	struct vmw_resource *dx_query_ctx;
 796	struct vmw_private *dev_priv;
 797	struct {
 798		SVGA3dCmdHeader header;
 799		SVGA3dCmdDXReadbackAllQuery body;
 800	} *cmd;
 801
 
 802
 803	/* No query bound, so do nothing */
 804	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
 805		return 0;
 
 
 
 
 
 806
 807	dx_query_ctx = dx_query_mob->dx_query_ctx;
 808	dev_priv     = dx_query_ctx->dev_priv;
 
 
 809
 810	cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), dx_query_ctx->id);
 811	if (unlikely(cmd == NULL))
 812		return -ENOMEM;
 813
 814	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
 815	cmd->header.size = sizeof(cmd->body);
 816	cmd->body.cid    = dx_query_ctx->id;
 
 
 
 
 
 
 
 
 
 817
 818	vmw_cmd_commit(dev_priv, sizeof(*cmd));
 819
 820	/* Triggers a rebind the next time affected context is bound */
 821	dx_query_mob->dx_query_ctx = NULL;
 
 822
 823	return 0;
 
 824}
 825
 826
 827
 828/**
 829 * vmw_query_move_notify - Read back cached query states
 830 *
 831 * @bo: The TTM buffer object about to move.
 832 * @old_mem: The memory region @bo is moving from.
 833 * @new_mem: The memory region @bo is moving to.
 834 *
 835 * Called before the query MOB is swapped out to read back cached query
 836 * states from the device.
 837 */
 838void vmw_query_move_notify(struct ttm_buffer_object *bo,
 839			   struct ttm_resource *old_mem,
 840			   struct ttm_resource *new_mem)
 841{
 842	struct vmw_bo *dx_query_mob;
 843	struct ttm_device *bdev = bo->bdev;
 844	struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
 
 
 845
 846	mutex_lock(&dev_priv->binding_mutex);
 
 
 847
 848	/* If BO is being moved from MOB to system memory */
 849	if (old_mem &&
 850	    new_mem->mem_type == TTM_PL_SYSTEM &&
 851	    old_mem->mem_type == VMW_PL_MOB) {
 852		struct vmw_fence_obj *fence;
 853
 854		dx_query_mob = to_vmw_bo(&bo->base);
 855		if (!dx_query_mob || !dx_query_mob->dx_query_ctx) {
 856			mutex_unlock(&dev_priv->binding_mutex);
 857			return;
 858		}
 859
 860		(void) vmw_query_readback_all(dx_query_mob);
 861		mutex_unlock(&dev_priv->binding_mutex);
 862
 863		/* Create a fence and attach the BO to it */
 864		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
 865		vmw_bo_fence_single(bo, fence);
 
 866
 867		if (fence != NULL)
 868			vmw_fence_obj_unreference(&fence);
 869
 870		(void) ttm_bo_wait(bo, false, false);
 871	} else
 872		mutex_unlock(&dev_priv->binding_mutex);
 
 
 
 
 873}
 874
 875/**
 876 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
 877 *
 878 * @res:            The resource being queried.
 879 */
 880bool vmw_resource_needs_backup(const struct vmw_resource *res)
 881{
 882	return res->func->needs_guest_memory;
 
 
 
 
 
 
 883}
 884
 885/**
 886 * vmw_resource_evict_type - Evict all resources of a specific type
 887 *
 888 * @dev_priv:       Pointer to a device private struct
 889 * @type:           The resource type to evict
 890 *
 891 * To avoid thrashing starvation or as part of the hibernation sequence,
 892 * try to evict all evictable resources of a specific type.
 893 */
 894static void vmw_resource_evict_type(struct vmw_private *dev_priv,
 895				    enum vmw_res_type type)
 896{
 897	struct list_head *lru_list = &dev_priv->res_lru[type];
 898	struct vmw_resource *evict_res;
 899	unsigned err_count = 0;
 
 
 
 
 
 
 
 
 900	int ret;
 901	struct ww_acquire_ctx ticket;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903	do {
 904		spin_lock(&dev_priv->resource_lock);
 
 905
 906		if (list_empty(lru_list))
 907			goto out_unlock;
 
 908
 909		evict_res = vmw_resource_reference(
 910			list_first_entry(lru_list, struct vmw_resource,
 911					 lru_head));
 912		list_del_init(&evict_res->lru_head);
 913		spin_unlock(&dev_priv->resource_lock);
 914
 915		/* Wait lock backup buffers with a ticket. */
 916		ret = vmw_resource_do_evict(&ticket, evict_res, false);
 917		if (unlikely(ret != 0)) {
 918			spin_lock(&dev_priv->resource_lock);
 919			list_add_tail(&evict_res->lru_head, lru_list);
 920			spin_unlock(&dev_priv->resource_lock);
 921			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
 922				vmw_resource_unreference(&evict_res);
 923				return;
 924			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925		}
 
 
 926
 927		vmw_resource_unreference(&evict_res);
 928	} while (1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930out_unlock:
 931	spin_unlock(&dev_priv->resource_lock);
 
 932}
 933
 934/**
 935 * vmw_resource_evict_all - Evict all evictable resources
 936 *
 937 * @dev_priv:       Pointer to a device private struct
 938 *
 939 * To avoid thrashing starvation or as part of the hibernation sequence,
 940 * evict all evictable resources. In particular this means that all
 941 * guest-backed resources that are registered with the device are
 942 * evicted and the OTable becomes clean.
 943 */
 944void vmw_resource_evict_all(struct vmw_private *dev_priv)
 945{
 946	enum vmw_res_type type;
 
 
 
 
 
 
 
 
 
 947
 948	mutex_lock(&dev_priv->cmdbuf_mutex);
 
 
 
 
 949
 950	for (type = 0; type < vmw_res_max; ++type)
 951		vmw_resource_evict_type(dev_priv, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	mutex_unlock(&dev_priv->cmdbuf_mutex);
 954}
 955
 956/*
 957 * vmw_resource_pin - Add a pin reference on a resource
 958 *
 959 * @res: The resource to add a pin reference on
 960 *
 961 * This function adds a pin reference, and if needed validates the resource.
 962 * Having a pin reference means that the resource can never be evicted, and
 963 * its id will never change as long as there is a pin reference.
 964 * This function returns 0 on success and a negative error code on failure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965 */
 966int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
 967{
 968	struct ttm_operation_ctx ctx = { interruptible, false };
 969	struct vmw_private *dev_priv = res->dev_priv;
 
 
 
 
 
 
 
 
 
 
 
 970	int ret;
 971
 972	mutex_lock(&dev_priv->cmdbuf_mutex);
 973	ret = vmw_resource_reserve(res, interruptible, false);
 974	if (ret)
 975		goto out_no_reserve;
 976
 977	if (res->pin_count == 0) {
 978		struct vmw_bo *vbo = NULL;
 979
 980		if (res->guest_memory_bo) {
 981			vbo = res->guest_memory_bo;
 982
 983			ret = ttm_bo_reserve(&vbo->tbo, interruptible, false, NULL);
 984			if (ret)
 985				goto out_no_validate;
 986			if (!vbo->tbo.pin_count) {
 987				vmw_bo_placement_set(vbo,
 988						     res->func->domain,
 989						     res->func->busy_domain);
 990				ret = ttm_bo_validate
 991					(&vbo->tbo,
 992					 &vbo->placement,
 993					 &ctx);
 994				if (ret) {
 995					ttm_bo_unreserve(&vbo->tbo);
 996					goto out_no_validate;
 997				}
 998			}
 999
1000			/* Do we really need to pin the MOB as well? */
1001			vmw_bo_pin_reserved(vbo, true);
1002		}
1003		ret = vmw_resource_validate(res, interruptible, true);
1004		if (vbo)
1005			ttm_bo_unreserve(&vbo->tbo);
1006		if (ret)
1007			goto out_no_validate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008	}
1009	res->pin_count++;
1010
1011out_no_validate:
1012	vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
1013out_no_reserve:
1014	mutex_unlock(&dev_priv->cmdbuf_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	return ret;
1017}
1018
1019/**
1020 * vmw_resource_unpin - Remove a pin reference from a resource
1021 *
1022 * @res: The resource to remove a pin reference from
1023 *
1024 * Having a pin reference means that the resource can never be evicted, and
1025 * its id will never change as long as there is a pin reference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026 */
1027void vmw_resource_unpin(struct vmw_resource *res)
 
1028{
1029	struct vmw_private *dev_priv = res->dev_priv;
 
1030	int ret;
1031
1032	mutex_lock(&dev_priv->cmdbuf_mutex);
 
1033
1034	ret = vmw_resource_reserve(res, false, true);
1035	WARN_ON(ret);
 
1036
1037	WARN_ON(res->pin_count == 0);
1038	if (--res->pin_count == 0 && res->guest_memory_bo) {
1039		struct vmw_bo *vbo = res->guest_memory_bo;
 
 
 
 
 
 
1040
1041		(void) ttm_bo_reserve(&vbo->tbo, false, false, NULL);
1042		vmw_bo_pin_reserved(vbo, false);
1043		ttm_bo_unreserve(&vbo->tbo);
 
 
 
1044	}
1045
1046	vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
 
 
 
 
 
 
1047
1048	mutex_unlock(&dev_priv->cmdbuf_mutex);
 
1049}
1050
1051/**
1052 * vmw_res_type - Return the resource type
1053 *
1054 * @res: Pointer to the resource
1055 */
1056enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
 
1057{
1058	return res->func->res_type;
 
 
 
 
 
 
1059}
1060
1061/**
1062 * vmw_resource_dirty_update - Update a resource's dirty tracker with a
1063 * sequential range of touched backing store memory.
1064 * @res: The resource.
1065 * @start: The first page touched.
1066 * @end: The last page touched + 1.
1067 */
1068void vmw_resource_dirty_update(struct vmw_resource *res, pgoff_t start,
1069			       pgoff_t end)
1070{
1071	if (res->dirty)
1072		res->func->dirty_range_add(res, start << PAGE_SHIFT,
1073					   end << PAGE_SHIFT);
 
 
 
 
1074}
1075
1076int vmw_resource_clean(struct vmw_resource *res)
 
1077{
 
 
 
 
 
1078	int ret = 0;
1079
1080	if (res->res_dirty) {
1081		if (!res->func->clean)
1082			return -EINVAL;
1083
1084		ret = res->func->clean(res);
1085		if (ret)
1086			return ret;
1087		res->res_dirty = false;
1088	}
 
 
 
 
 
 
 
 
 
 
1089	return ret;
1090}
1091
1092/**
1093 * vmw_resources_clean - Clean resources intersecting a mob range
1094 * @vbo: The mob buffer object
1095 * @start: The mob page offset starting the range
1096 * @end: The mob page offset ending the range
1097 * @num_prefault: Returns how many pages including the first have been
1098 * cleaned and are ok to prefault
1099 */
1100int vmw_resources_clean(struct vmw_bo *vbo, pgoff_t start,
1101			pgoff_t end, pgoff_t *num_prefault)
1102{
1103	struct rb_node *cur = vbo->res_tree.rb_node;
1104	struct vmw_resource *found = NULL;
1105	unsigned long res_start = start << PAGE_SHIFT;
1106	unsigned long res_end = end << PAGE_SHIFT;
1107	unsigned long last_cleaned = 0;
1108	int ret;
1109
1110	/*
1111	 * Find the resource with lowest backup_offset that intersects the
1112	 * range.
1113	 */
1114	while (cur) {
1115		struct vmw_resource *cur_res =
1116			container_of(cur, struct vmw_resource, mob_node);
1117
1118		if (cur_res->guest_memory_offset >= res_end) {
1119			cur = cur->rb_left;
1120		} else if (cur_res->guest_memory_offset + cur_res->guest_memory_size <=
1121			   res_start) {
1122			cur = cur->rb_right;
1123		} else {
1124			found = cur_res;
1125			cur = cur->rb_left;
1126			/* Continue to look for resources with lower offsets */
1127		}
 
 
1128	}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
1130	/*
1131	 * In order of increasing guest_memory_offset, clean dirty resources
1132	 * intersecting the range.
1133	 */
1134	while (found) {
1135		ret = vmw_resource_clean(found);
1136		if (ret)
1137			return ret;
1138		last_cleaned = found->guest_memory_offset + found->guest_memory_size;
1139		cur = rb_next(&found->mob_node);
1140		if (!cur)
1141			break;
1142
1143		found = container_of(cur, struct vmw_resource, mob_node);
1144		if (found->guest_memory_offset >= res_end)
1145			break;
 
 
 
 
 
 
 
 
1146	}
1147
1148	/*
1149	 * Set number of pages allowed prefaulting and fence the buffer object
1150	 */
1151	*num_prefault = 1;
1152	if (last_cleaned > res_start) {
1153		struct ttm_buffer_object *bo = &vbo->tbo;
1154
1155		*num_prefault = __KERNEL_DIV_ROUND_UP(last_cleaned - res_start,
1156						      PAGE_SIZE);
1157		vmw_bo_fence_single(bo, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158	}
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160	return 0;
 
 
 
 
 
 
 
 
1161}
v3.5.6
 
   1/**************************************************************************
   2 *
   3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
 
 
 
 
  28#include "vmwgfx_drv.h"
  29#include "vmwgfx_drm.h"
  30#include "ttm/ttm_object.h"
  31#include "ttm/ttm_placement.h"
  32#include "drmP.h"
  33
  34struct vmw_user_context {
  35	struct ttm_base_object base;
  36	struct vmw_resource res;
  37};
  38
  39struct vmw_user_surface {
  40	struct ttm_base_object base;
  41	struct vmw_surface srf;
  42	uint32_t size;
  43};
  44
  45struct vmw_user_dma_buffer {
  46	struct ttm_base_object base;
  47	struct vmw_dma_buffer dma;
  48};
  49
  50struct vmw_bo_user_rep {
  51	uint32_t handle;
  52	uint64_t map_handle;
  53};
  54
  55struct vmw_stream {
  56	struct vmw_resource res;
  57	uint32_t stream_id;
  58};
  59
  60struct vmw_user_stream {
  61	struct ttm_base_object base;
  62	struct vmw_stream stream;
  63};
  64
  65struct vmw_surface_offset {
  66	uint32_t face;
  67	uint32_t mip;
  68	uint32_t bo_offset;
  69};
  70
  71
  72static uint64_t vmw_user_context_size;
  73static uint64_t vmw_user_surface_size;
  74static uint64_t vmw_user_stream_size;
  75
  76static inline struct vmw_dma_buffer *
  77vmw_dma_buffer(struct ttm_buffer_object *bo)
  78{
  79	return container_of(bo, struct vmw_dma_buffer, base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80}
  81
  82static inline struct vmw_user_dma_buffer *
  83vmw_user_dma_buffer(struct ttm_buffer_object *bo)
 
 
 
  84{
  85	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
  86	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
 
 
 
 
 
 
  87}
  88
  89struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
  90{
  91	kref_get(&res->kref);
  92	return res;
  93}
  94
 
 
 
 
 
  95
  96/**
  97 * vmw_resource_release_id - release a resource id to the id manager.
  98 *
  99 * @res: Pointer to the resource.
 100 *
 101 * Release the resource id to the resource id manager and set it to -1
 102 */
 103static void vmw_resource_release_id(struct vmw_resource *res)
 104{
 105	struct vmw_private *dev_priv = res->dev_priv;
 
 106
 107	write_lock(&dev_priv->resource_lock);
 108	if (res->id != -1)
 109		idr_remove(res->idr, res->id);
 110	res->id = -1;
 111	write_unlock(&dev_priv->resource_lock);
 112}
 113
 114static void vmw_resource_release(struct kref *kref)
 115{
 116	struct vmw_resource *res =
 117	    container_of(kref, struct vmw_resource, kref);
 118	struct vmw_private *dev_priv = res->dev_priv;
 119	int id = res->id;
 120	struct idr *idr = res->idr;
 
 121
 122	res->avail = false;
 123	if (res->remove_from_lists != NULL)
 124		res->remove_from_lists(res);
 125	write_unlock(&dev_priv->resource_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127	if (likely(res->hw_destroy != NULL))
 
 
 
 128		res->hw_destroy(res);
 
 129
 
 130	if (res->res_free != NULL)
 131		res->res_free(res);
 132	else
 133		kfree(res);
 134
 135	write_lock(&dev_priv->resource_lock);
 136
 137	if (id != -1)
 138		idr_remove(idr, id);
 
 139}
 140
 141void vmw_resource_unreference(struct vmw_resource **p_res)
 142{
 143	struct vmw_resource *res = *p_res;
 144	struct vmw_private *dev_priv = res->dev_priv;
 145
 146	*p_res = NULL;
 147	write_lock(&dev_priv->resource_lock);
 148	kref_put(&res->kref, vmw_resource_release);
 149	write_unlock(&dev_priv->resource_lock);
 150}
 151
 152
 153/**
 154 * vmw_resource_alloc_id - release a resource id to the id manager.
 155 *
 156 * @dev_priv: Pointer to the device private structure.
 157 * @res: Pointer to the resource.
 158 *
 159 * Allocate the lowest free resource from the resource manager, and set
 160 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
 161 */
 162static int vmw_resource_alloc_id(struct vmw_private *dev_priv,
 163				 struct vmw_resource *res)
 164{
 
 165	int ret;
 
 166
 167	BUG_ON(res->id != -1);
 168
 169	do {
 170		if (unlikely(idr_pre_get(res->idr, GFP_KERNEL) == 0))
 171			return -ENOMEM;
 172
 173		write_lock(&dev_priv->resource_lock);
 174		ret = idr_get_new_above(res->idr, res, 1, &res->id);
 175		write_unlock(&dev_priv->resource_lock);
 176
 177	} while (ret == -EAGAIN);
 
 
 178
 179	return ret;
 
 
 180}
 181
 182
 183static int vmw_resource_init(struct vmw_private *dev_priv,
 184			     struct vmw_resource *res,
 185			     struct idr *idr,
 186			     enum ttm_object_type obj_type,
 187			     bool delay_id,
 188			     void (*res_free) (struct vmw_resource *res),
 189			     void (*remove_from_lists)
 190			     (struct vmw_resource *res))
 
 
 
 
 
 191{
 192	kref_init(&res->kref);
 193	res->hw_destroy = NULL;
 194	res->res_free = res_free;
 195	res->remove_from_lists = remove_from_lists;
 196	res->res_type = obj_type;
 197	res->idr = idr;
 198	res->avail = false;
 199	res->dev_priv = dev_priv;
 200	INIT_LIST_HEAD(&res->query_head);
 201	INIT_LIST_HEAD(&res->validate_head);
 
 
 202	res->id = -1;
 
 
 
 
 
 
 
 203	if (delay_id)
 204		return 0;
 205	else
 206		return vmw_resource_alloc_id(dev_priv, res);
 207}
 208
 
 209/**
 210 * vmw_resource_activate
 
 211 *
 212 * @res:        Pointer to the newly created resource
 213 * @hw_destroy: Destroy function. NULL if none.
 
 
 
 
 214 *
 215 * Activate a resource after the hardware has been made aware of it.
 216 * Set tye destroy function to @destroy. Typically this frees the
 217 * resource and destroys the hardware resources associated with it.
 218 * Activate basically means that the function vmw_resource_lookup will
 219 * find it.
 220 */
 221
 222static void vmw_resource_activate(struct vmw_resource *res,
 223				  void (*hw_destroy) (struct vmw_resource *))
 224{
 225	struct vmw_private *dev_priv = res->dev_priv;
 226
 227	write_lock(&dev_priv->resource_lock);
 228	res->avail = true;
 229	res->hw_destroy = hw_destroy;
 230	write_unlock(&dev_priv->resource_lock);
 231}
 232
 233struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
 234					 struct idr *idr, int id)
 235{
 
 236	struct vmw_resource *res;
 
 237
 238	read_lock(&dev_priv->resource_lock);
 239	res = idr_find(idr, id);
 240	if (res && res->avail)
 241		kref_get(&res->kref);
 242	else
 243		res = NULL;
 244	read_unlock(&dev_priv->resource_lock);
 245
 246	if (unlikely(res == NULL))
 247		return NULL;
 248
 249	return res;
 250}
 251
 252/**
 253 * Context management:
 254 */
 255
 256static void vmw_hw_context_destroy(struct vmw_resource *res)
 257{
 258
 259	struct vmw_private *dev_priv = res->dev_priv;
 260	struct {
 261		SVGA3dCmdHeader header;
 262		SVGA3dCmdDestroyContext body;
 263	} *cmd;
 264
 265
 266	vmw_execbuf_release_pinned_bo(dev_priv, true, res->id);
 267
 268	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
 269	if (unlikely(cmd == NULL)) {
 270		DRM_ERROR("Failed reserving FIFO space for surface "
 271			  "destruction.\n");
 272		return;
 273	}
 274
 275	cmd->header.id = cpu_to_le32(SVGA_3D_CMD_CONTEXT_DESTROY);
 276	cmd->header.size = cpu_to_le32(sizeof(cmd->body));
 277	cmd->body.cid = cpu_to_le32(res->id);
 278
 279	vmw_fifo_commit(dev_priv, sizeof(*cmd));
 280	vmw_3d_resource_dec(dev_priv, false);
 281}
 282
 283static int vmw_context_init(struct vmw_private *dev_priv,
 284			    struct vmw_resource *res,
 285			    void (*res_free) (struct vmw_resource *res))
 
 
 
 
 
 
 286{
 
 
 287	int ret;
 288
 289	struct {
 290		SVGA3dCmdHeader header;
 291		SVGA3dCmdDefineContext body;
 292	} *cmd;
 293
 294	ret = vmw_resource_init(dev_priv, res, &dev_priv->context_idr,
 295				VMW_RES_CONTEXT, false, res_free, NULL);
 296
 297	if (unlikely(ret != 0)) {
 298		DRM_ERROR("Failed to allocate a resource id.\n");
 299		goto out_early;
 300	}
 301
 302	if (unlikely(res->id >= SVGA3D_MAX_CONTEXT_IDS)) {
 303		DRM_ERROR("Out of hw context ids.\n");
 304		vmw_resource_unreference(&res);
 305		return -ENOMEM;
 306	}
 307
 308	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
 309	if (unlikely(cmd == NULL)) {
 310		DRM_ERROR("Fifo reserve failed.\n");
 311		vmw_resource_unreference(&res);
 312		return -ENOMEM;
 313	}
 314
 315	cmd->header.id = cpu_to_le32(SVGA_3D_CMD_CONTEXT_DEFINE);
 316	cmd->header.size = cpu_to_le32(sizeof(cmd->body));
 317	cmd->body.cid = cpu_to_le32(res->id);
 318
 319	vmw_fifo_commit(dev_priv, sizeof(*cmd));
 320	(void) vmw_3d_resource_inc(dev_priv, false);
 321	vmw_resource_activate(res, vmw_hw_context_destroy);
 322	return 0;
 323
 324out_early:
 325	if (res_free == NULL)
 326		kfree(res);
 327	else
 328		res_free(res);
 329	return ret;
 330}
 331
 332struct vmw_resource *vmw_context_alloc(struct vmw_private *dev_priv)
 333{
 334	struct vmw_resource *res = kmalloc(sizeof(*res), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335	int ret;
 336
 337	if (unlikely(res == NULL))
 338		return NULL;
 
 
 339
 340	ret = vmw_context_init(dev_priv, res, NULL);
 341	return (ret == 0) ? res : NULL;
 342}
 343
 344/**
 345 * User-space context management:
 346 */
 347
 348static void vmw_user_context_free(struct vmw_resource *res)
 349{
 350	struct vmw_user_context *ctx =
 351	    container_of(res, struct vmw_user_context, res);
 352	struct vmw_private *dev_priv = res->dev_priv;
 353
 354	kfree(ctx);
 355	ttm_mem_global_free(vmw_mem_glob(dev_priv),
 356			    vmw_user_context_size);
 357}
 358
 359/**
 360 * This function is called when user space has no more references on the
 361 * base object. It releases the base-object's reference on the resource object.
 362 */
 363
 364static void vmw_user_context_base_release(struct ttm_base_object **p_base)
 365{
 366	struct ttm_base_object *base = *p_base;
 367	struct vmw_user_context *ctx =
 368	    container_of(base, struct vmw_user_context, base);
 369	struct vmw_resource *res = &ctx->res;
 370
 371	*p_base = NULL;
 372	vmw_resource_unreference(&res);
 373}
 374
 375int vmw_context_destroy_ioctl(struct drm_device *dev, void *data,
 376			      struct drm_file *file_priv)
 377{
 378	struct vmw_private *dev_priv = vmw_priv(dev);
 379	struct vmw_resource *res;
 380	struct vmw_user_context *ctx;
 381	struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data;
 382	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 383	int ret = 0;
 
 384
 385	res = vmw_resource_lookup(dev_priv, &dev_priv->context_idr, arg->cid);
 386	if (unlikely(res == NULL))
 387		return -EINVAL;
 388
 389	if (res->res_free != &vmw_user_context_free) {
 390		ret = -EINVAL;
 391		goto out;
 392	}
 393
 394	ctx = container_of(res, struct vmw_user_context, res);
 395	if (ctx->base.tfile != tfile && !ctx->base.shareable) {
 396		ret = -EPERM;
 397		goto out;
 
 
 
 
 
 398	}
 399
 400	ttm_ref_object_base_unref(tfile, ctx->base.hash.key, TTM_REF_USAGE);
 401out:
 402	vmw_resource_unreference(&res);
 403	return ret;
 404}
 405
 406int vmw_context_define_ioctl(struct drm_device *dev, void *data,
 407			     struct drm_file *file_priv)
 408{
 409	struct vmw_private *dev_priv = vmw_priv(dev);
 410	struct vmw_user_context *ctx;
 411	struct vmw_resource *res;
 412	struct vmw_resource *tmp;
 413	struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data;
 414	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 415	struct vmw_master *vmaster = vmw_master(file_priv->master);
 416	int ret;
 417
 418
 419	/*
 420	 * Approximate idr memory usage with 128 bytes. It will be limited
 421	 * by maximum number_of contexts anyway.
 422	 */
 423
 424	if (unlikely(vmw_user_context_size == 0))
 425		vmw_user_context_size = ttm_round_pot(sizeof(*ctx)) + 128;
 426
 427	ret = ttm_read_lock(&vmaster->lock, true);
 428	if (unlikely(ret != 0))
 429		return ret;
 430
 431	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
 432				   vmw_user_context_size,
 433				   false, true);
 434	if (unlikely(ret != 0)) {
 435		if (ret != -ERESTARTSYS)
 436			DRM_ERROR("Out of graphics memory for context"
 437				  " creation.\n");
 438		goto out_unlock;
 439	}
 440
 441	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 442	if (unlikely(ctx == NULL)) {
 443		ttm_mem_global_free(vmw_mem_glob(dev_priv),
 444				    vmw_user_context_size);
 445		ret = -ENOMEM;
 446		goto out_unlock;
 447	}
 448
 449	res = &ctx->res;
 450	ctx->base.shareable = false;
 451	ctx->base.tfile = NULL;
 452
 453	/*
 454	 * From here on, the destructor takes over resource freeing.
 
 455	 */
 
 
 
 
 
 
 456
 457	ret = vmw_context_init(dev_priv, res, vmw_user_context_free);
 458	if (unlikely(ret != 0))
 459		goto out_unlock;
 460
 461	tmp = vmw_resource_reference(&ctx->res);
 462	ret = ttm_base_object_init(tfile, &ctx->base, false, VMW_RES_CONTEXT,
 463				   &vmw_user_context_base_release, NULL);
 464
 465	if (unlikely(ret != 0)) {
 466		vmw_resource_unreference(&tmp);
 467		goto out_err;
 468	}
 469
 470	arg->cid = res->id;
 471out_err:
 472	vmw_resource_unreference(&res);
 473out_unlock:
 474	ttm_read_unlock(&vmaster->lock);
 475	return ret;
 476
 477}
 478
 479int vmw_context_check(struct vmw_private *dev_priv,
 480		      struct ttm_object_file *tfile,
 481		      int id,
 482		      struct vmw_resource **p_res)
 483{
 484	struct vmw_resource *res;
 485	int ret = 0;
 486
 487	read_lock(&dev_priv->resource_lock);
 488	res = idr_find(&dev_priv->context_idr, id);
 489	if (res && res->avail) {
 490		struct vmw_user_context *ctx =
 491			container_of(res, struct vmw_user_context, res);
 492		if (ctx->base.tfile != tfile && !ctx->base.shareable)
 493			ret = -EPERM;
 494		if (p_res)
 495			*p_res = vmw_resource_reference(res);
 496	} else
 497		ret = -EINVAL;
 498	read_unlock(&dev_priv->resource_lock);
 499
 500	return ret;
 501}
 502
 503struct vmw_bpp {
 504	uint8_t bpp;
 505	uint8_t s_bpp;
 506};
 507
 508/*
 509 * Size table for the supported SVGA3D surface formats. It consists of
 510 * two values. The bpp value and the s_bpp value which is short for
 511 * "stride bits per pixel" The values are given in such a way that the
 512 * minimum stride for the image is calculated using
 513 *
 514 * min_stride = w*s_bpp
 515 *
 516 * and the total memory requirement for the image is
 517 *
 518 * h*min_stride*bpp/s_bpp
 519 *
 520 */
 521static const struct vmw_bpp vmw_sf_bpp[] = {
 522	[SVGA3D_FORMAT_INVALID] = {0, 0},
 523	[SVGA3D_X8R8G8B8] = {32, 32},
 524	[SVGA3D_A8R8G8B8] = {32, 32},
 525	[SVGA3D_R5G6B5] = {16, 16},
 526	[SVGA3D_X1R5G5B5] = {16, 16},
 527	[SVGA3D_A1R5G5B5] = {16, 16},
 528	[SVGA3D_A4R4G4B4] = {16, 16},
 529	[SVGA3D_Z_D32] = {32, 32},
 530	[SVGA3D_Z_D16] = {16, 16},
 531	[SVGA3D_Z_D24S8] = {32, 32},
 532	[SVGA3D_Z_D15S1] = {16, 16},
 533	[SVGA3D_LUMINANCE8] = {8, 8},
 534	[SVGA3D_LUMINANCE4_ALPHA4] = {8, 8},
 535	[SVGA3D_LUMINANCE16] = {16, 16},
 536	[SVGA3D_LUMINANCE8_ALPHA8] = {16, 16},
 537	[SVGA3D_DXT1] = {4, 16},
 538	[SVGA3D_DXT2] = {8, 32},
 539	[SVGA3D_DXT3] = {8, 32},
 540	[SVGA3D_DXT4] = {8, 32},
 541	[SVGA3D_DXT5] = {8, 32},
 542	[SVGA3D_BUMPU8V8] = {16, 16},
 543	[SVGA3D_BUMPL6V5U5] = {16, 16},
 544	[SVGA3D_BUMPX8L8V8U8] = {32, 32},
 545	[SVGA3D_ARGB_S10E5] = {16, 16},
 546	[SVGA3D_ARGB_S23E8] = {32, 32},
 547	[SVGA3D_A2R10G10B10] = {32, 32},
 548	[SVGA3D_V8U8] = {16, 16},
 549	[SVGA3D_Q8W8V8U8] = {32, 32},
 550	[SVGA3D_CxV8U8] = {16, 16},
 551	[SVGA3D_X8L8V8U8] = {32, 32},
 552	[SVGA3D_A2W10V10U10] = {32, 32},
 553	[SVGA3D_ALPHA8] = {8, 8},
 554	[SVGA3D_R_S10E5] = {16, 16},
 555	[SVGA3D_R_S23E8] = {32, 32},
 556	[SVGA3D_RG_S10E5] = {16, 16},
 557	[SVGA3D_RG_S23E8] = {32, 32},
 558	[SVGA3D_BUFFER] = {8, 8},
 559	[SVGA3D_Z_D24X8] = {32, 32},
 560	[SVGA3D_V16U16] = {32, 32},
 561	[SVGA3D_G16R16] = {32, 32},
 562	[SVGA3D_A16B16G16R16] = {64,  64},
 563	[SVGA3D_UYVY] = {12, 12},
 564	[SVGA3D_YUY2] = {12, 12},
 565	[SVGA3D_NV12] = {12, 8},
 566	[SVGA3D_AYUV] = {32, 32},
 567	[SVGA3D_BC4_UNORM] = {4,  16},
 568	[SVGA3D_BC5_UNORM] = {8,  32},
 569	[SVGA3D_Z_DF16] = {16,  16},
 570	[SVGA3D_Z_DF24] = {24,  24},
 571	[SVGA3D_Z_D24S8_INT] = {32,  32}
 572};
 573
 574
 575/**
 576 * Surface management.
 577 */
 578
 579struct vmw_surface_dma {
 580	SVGA3dCmdHeader header;
 581	SVGA3dCmdSurfaceDMA body;
 582	SVGA3dCopyBox cb;
 583	SVGA3dCmdSurfaceDMASuffix suffix;
 584};
 585
 586struct vmw_surface_define {
 587	SVGA3dCmdHeader header;
 588	SVGA3dCmdDefineSurface body;
 589};
 590
 591struct vmw_surface_destroy {
 592	SVGA3dCmdHeader header;
 593	SVGA3dCmdDestroySurface body;
 594};
 595
 596
 597/**
 598 * vmw_surface_dma_size - Compute fifo size for a dma command.
 599 *
 600 * @srf: Pointer to a struct vmw_surface
 601 *
 602 * Computes the required size for a surface dma command for backup or
 603 * restoration of the surface represented by @srf.
 604 */
 605static inline uint32_t vmw_surface_dma_size(const struct vmw_surface *srf)
 606{
 607	return srf->num_sizes * sizeof(struct vmw_surface_dma);
 608}
 609
 610
 611/**
 612 * vmw_surface_define_size - Compute fifo size for a surface define command.
 613 *
 614 * @srf: Pointer to a struct vmw_surface
 615 *
 616 * Computes the required size for a surface define command for the definition
 617 * of the surface represented by @srf.
 618 */
 619static inline uint32_t vmw_surface_define_size(const struct vmw_surface *srf)
 620{
 621	return sizeof(struct vmw_surface_define) + srf->num_sizes *
 622		sizeof(SVGA3dSize);
 623}
 624
 625
 626/**
 627 * vmw_surface_destroy_size - Compute fifo size for a surface destroy command.
 628 *
 629 * Computes the required size for a surface destroy command for the destruction
 630 * of a hw surface.
 631 */
 632static inline uint32_t vmw_surface_destroy_size(void)
 633{
 634	return sizeof(struct vmw_surface_destroy);
 635}
 636
 637/**
 638 * vmw_surface_destroy_encode - Encode a surface_destroy command.
 639 *
 640 * @id: The surface id
 641 * @cmd_space: Pointer to memory area in which the commands should be encoded.
 642 */
 643static void vmw_surface_destroy_encode(uint32_t id,
 644				       void *cmd_space)
 645{
 646	struct vmw_surface_destroy *cmd = (struct vmw_surface_destroy *)
 647		cmd_space;
 648
 649	cmd->header.id = SVGA_3D_CMD_SURFACE_DESTROY;
 650	cmd->header.size = sizeof(cmd->body);
 651	cmd->body.sid = id;
 652}
 653
 654/**
 655 * vmw_surface_define_encode - Encode a surface_define command.
 656 *
 657 * @srf: Pointer to a struct vmw_surface object.
 658 * @cmd_space: Pointer to memory area in which the commands should be encoded.
 659 */
 660static void vmw_surface_define_encode(const struct vmw_surface *srf,
 661				      void *cmd_space)
 662{
 663	struct vmw_surface_define *cmd = (struct vmw_surface_define *)
 664		cmd_space;
 665	struct drm_vmw_size *src_size;
 666	SVGA3dSize *cmd_size;
 667	uint32_t cmd_len;
 668	int i;
 669
 670	cmd_len = sizeof(cmd->body) + srf->num_sizes * sizeof(SVGA3dSize);
 671
 672	cmd->header.id = SVGA_3D_CMD_SURFACE_DEFINE;
 673	cmd->header.size = cmd_len;
 674	cmd->body.sid = srf->res.id;
 675	cmd->body.surfaceFlags = srf->flags;
 676	cmd->body.format = cpu_to_le32(srf->format);
 677	for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i)
 678		cmd->body.face[i].numMipLevels = srf->mip_levels[i];
 679
 680	cmd += 1;
 681	cmd_size = (SVGA3dSize *) cmd;
 682	src_size = srf->sizes;
 683
 684	for (i = 0; i < srf->num_sizes; ++i, cmd_size++, src_size++) {
 685		cmd_size->width = src_size->width;
 686		cmd_size->height = src_size->height;
 687		cmd_size->depth = src_size->depth;
 688	}
 689}
 690
 691
 692/**
 693 * vmw_surface_dma_encode - Encode a surface_dma command.
 694 *
 695 * @srf: Pointer to a struct vmw_surface object.
 696 * @cmd_space: Pointer to memory area in which the commands should be encoded.
 697 * @ptr: Pointer to an SVGAGuestPtr indicating where the surface contents
 698 * should be placed or read from.
 699 * @to_surface: Boolean whether to DMA to the surface or from the surface.
 700 */
 701static void vmw_surface_dma_encode(struct vmw_surface *srf,
 702				   void *cmd_space,
 703				   const SVGAGuestPtr *ptr,
 704				   bool to_surface)
 705{
 706	uint32_t i;
 707	uint32_t bpp = vmw_sf_bpp[srf->format].bpp;
 708	uint32_t stride_bpp = vmw_sf_bpp[srf->format].s_bpp;
 709	struct vmw_surface_dma *cmd = (struct vmw_surface_dma *)cmd_space;
 710
 711	for (i = 0; i < srf->num_sizes; ++i) {
 712		SVGA3dCmdHeader *header = &cmd->header;
 713		SVGA3dCmdSurfaceDMA *body = &cmd->body;
 714		SVGA3dCopyBox *cb = &cmd->cb;
 715		SVGA3dCmdSurfaceDMASuffix *suffix = &cmd->suffix;
 716		const struct vmw_surface_offset *cur_offset = &srf->offsets[i];
 717		const struct drm_vmw_size *cur_size = &srf->sizes[i];
 718
 719		header->id = SVGA_3D_CMD_SURFACE_DMA;
 720		header->size = sizeof(*body) + sizeof(*cb) + sizeof(*suffix);
 721
 722		body->guest.ptr = *ptr;
 723		body->guest.ptr.offset += cur_offset->bo_offset;
 724		body->guest.pitch = (cur_size->width * stride_bpp + 7) >> 3;
 725		body->host.sid = srf->res.id;
 726		body->host.face = cur_offset->face;
 727		body->host.mipmap = cur_offset->mip;
 728		body->transfer = ((to_surface) ?  SVGA3D_WRITE_HOST_VRAM :
 729				  SVGA3D_READ_HOST_VRAM);
 730		cb->x = 0;
 731		cb->y = 0;
 732		cb->z = 0;
 733		cb->srcx = 0;
 734		cb->srcy = 0;
 735		cb->srcz = 0;
 736		cb->w = cur_size->width;
 737		cb->h = cur_size->height;
 738		cb->d = cur_size->depth;
 739
 740		suffix->suffixSize = sizeof(*suffix);
 741		suffix->maximumOffset = body->guest.pitch*cur_size->height*
 742			cur_size->depth*bpp / stride_bpp;
 743		suffix->flags.discard = 0;
 744		suffix->flags.unsynchronized = 0;
 745		suffix->flags.reserved = 0;
 746		++cmd;
 747	}
 748};
 749
 750
 751static void vmw_hw_surface_destroy(struct vmw_resource *res)
 752{
 753
 754	struct vmw_private *dev_priv = res->dev_priv;
 755	struct vmw_surface *srf;
 756	void *cmd;
 757
 758	if (res->id != -1) {
 
 759
 760		cmd = vmw_fifo_reserve(dev_priv, vmw_surface_destroy_size());
 761		if (unlikely(cmd == NULL)) {
 762			DRM_ERROR("Failed reserving FIFO space for surface "
 763				  "destruction.\n");
 764			return;
 
 765		}
 766
 767		vmw_surface_destroy_encode(res->id, cmd);
 768		vmw_fifo_commit(dev_priv, vmw_surface_destroy_size());
 769
 770		/*
 771		 * used_memory_size_atomic, or separate lock
 772		 * to avoid taking dev_priv::cmdbuf_mutex in
 773		 * the destroy path.
 774		 */
 
 
 
 
 
 
 
 
 775
 776		mutex_lock(&dev_priv->cmdbuf_mutex);
 777		srf = container_of(res, struct vmw_surface, res);
 778		dev_priv->used_memory_size -= srf->backup_size;
 779		mutex_unlock(&dev_priv->cmdbuf_mutex);
 780
 781	}
 782	vmw_3d_resource_dec(dev_priv, false);
 783}
 784
 785void vmw_surface_res_free(struct vmw_resource *res)
 786{
 787	struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
 788
 789	if (srf->backup)
 790		ttm_bo_unref(&srf->backup);
 791	kfree(srf->offsets);
 792	kfree(srf->sizes);
 793	kfree(srf->snooper.image);
 794	kfree(srf);
 795}
 796
 797
 798/**
 799 * vmw_surface_do_validate - make a surface available to the device.
 800 *
 801 * @dev_priv: Pointer to a device private struct.
 802 * @srf: Pointer to a struct vmw_surface.
 803 *
 804 * If the surface doesn't have a hw id, allocate one, and optionally
 805 * DMA the backed up surface contents to the device.
 806 *
 807 * Returns -EBUSY if there wasn't sufficient device resources to
 808 * complete the validation. Retry after freeing up resources.
 809 *
 810 * May return other errors if the kernel is out of guest resources.
 811 */
 812int vmw_surface_do_validate(struct vmw_private *dev_priv,
 813			    struct vmw_surface *srf)
 
 814{
 815	struct vmw_resource *res = &srf->res;
 816	struct list_head val_list;
 817	struct ttm_validate_buffer val_buf;
 818	uint32_t submit_size;
 819	uint8_t *cmd;
 820	int ret;
 821
 822	if (likely(res->id != -1))
 823		return 0;
 824
 825	if (unlikely(dev_priv->used_memory_size + srf->backup_size >=
 826		     dev_priv->memory_size))
 827		return -EBUSY;
 828
 829	/*
 830	 * Reserve- and validate the backup DMA bo.
 831	 */
 832
 833	if (srf->backup) {
 834		INIT_LIST_HEAD(&val_list);
 835		val_buf.bo = ttm_bo_reference(srf->backup);
 836		val_buf.new_sync_obj_arg = (void *)((unsigned long)
 837						    DRM_VMW_FENCE_FLAG_EXEC);
 838		list_add_tail(&val_buf.head, &val_list);
 839		ret = ttm_eu_reserve_buffers(&val_list);
 840		if (unlikely(ret != 0))
 841			goto out_no_reserve;
 842
 843		ret = ttm_bo_validate(srf->backup, &vmw_srf_placement,
 844				      true, false, false);
 845		if (unlikely(ret != 0))
 846			goto out_no_validate;
 847	}
 848
 849	/*
 850	 * Alloc id for the resource.
 851	 */
 
 
 
 
 
 852
 853	ret = vmw_resource_alloc_id(dev_priv, res);
 854	if (unlikely(ret != 0)) {
 855		DRM_ERROR("Failed to allocate a surface id.\n");
 856		goto out_no_id;
 857	}
 858	if (unlikely(res->id >= SVGA3D_MAX_SURFACE_IDS)) {
 859		ret = -EBUSY;
 860		goto out_no_fifo;
 861	}
 862
 
 
 
 
 
 
 863
 864	/*
 865	 * Encode surface define- and dma commands.
 866	 */
 867
 868	submit_size = vmw_surface_define_size(srf);
 869	if (srf->backup)
 870		submit_size += vmw_surface_dma_size(srf);
 871
 872	cmd = vmw_fifo_reserve(dev_priv, submit_size);
 873	if (unlikely(cmd == NULL)) {
 874		DRM_ERROR("Failed reserving FIFO space for surface "
 875			  "validation.\n");
 876		ret = -ENOMEM;
 877		goto out_no_fifo;
 878	}
 879
 880	vmw_surface_define_encode(srf, cmd);
 881	if (srf->backup) {
 882		SVGAGuestPtr ptr;
 883
 884		cmd += vmw_surface_define_size(srf);
 885		vmw_bo_get_guest_ptr(srf->backup, &ptr);
 886		vmw_surface_dma_encode(srf, cmd, &ptr, true);
 887	}
 888
 889	vmw_fifo_commit(dev_priv, submit_size);
 890
 891	/*
 892	 * Create a fence object and fence the backup buffer.
 893	 */
 894
 895	if (srf->backup) {
 896		struct vmw_fence_obj *fence;
 897
 898		(void) vmw_execbuf_fence_commands(NULL, dev_priv,
 899						  &fence, NULL);
 900		ttm_eu_fence_buffer_objects(&val_list, fence);
 901		if (likely(fence != NULL))
 902			vmw_fence_obj_unreference(&fence);
 903		ttm_bo_unref(&val_buf.bo);
 904		ttm_bo_unref(&srf->backup);
 905	}
 906
 907	/*
 908	 * Surface memory usage accounting.
 909	 */
 910
 911	dev_priv->used_memory_size += srf->backup_size;
 912
 913	return 0;
 914
 915out_no_fifo:
 916	vmw_resource_release_id(res);
 917out_no_id:
 918out_no_validate:
 919	if (srf->backup)
 920		ttm_eu_backoff_reservation(&val_list);
 921out_no_reserve:
 922	if (srf->backup)
 923		ttm_bo_unref(&val_buf.bo);
 
 
 
 924	return ret;
 925}
 926
 927/**
 928 * vmw_surface_evict - Evict a hw surface.
 
 
 929 *
 930 * @dev_priv: Pointer to a device private struct.
 931 * @srf: Pointer to a struct vmw_surface
 
 
 932 *
 933 * DMA the contents of a hw surface to a backup guest buffer object,
 934 * and destroy the hw surface, releasing its id.
 935 */
 936int vmw_surface_evict(struct vmw_private *dev_priv,
 937		      struct vmw_surface *srf)
 938{
 939	struct vmw_resource *res = &srf->res;
 940	struct list_head val_list;
 941	struct ttm_validate_buffer val_buf;
 942	uint32_t submit_size;
 943	uint8_t *cmd;
 944	int ret;
 945	struct vmw_fence_obj *fence;
 946	SVGAGuestPtr ptr;
 947
 948	BUG_ON(res->id == -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 949
 950	/*
 951	 * Create a surface backup buffer object.
 952	 */
 953
 954	if (!srf->backup) {
 955		ret = ttm_bo_create(&dev_priv->bdev, srf->backup_size,
 956				    ttm_bo_type_device,
 957				    &vmw_srf_placement, 0, 0, true,
 958				    NULL, &srf->backup);
 959		if (unlikely(ret != 0))
 960			return ret;
 961	}
 
 
 
 
 962
 963	/*
 964	 * Reserve- and validate the backup DMA bo.
 965	 */
 966
 967	INIT_LIST_HEAD(&val_list);
 968	val_buf.bo = ttm_bo_reference(srf->backup);
 969	val_buf.new_sync_obj_arg = (void *)(unsigned long)
 970		DRM_VMW_FENCE_FLAG_EXEC;
 971	list_add_tail(&val_buf.head, &val_list);
 972	ret = ttm_eu_reserve_buffers(&val_list);
 973	if (unlikely(ret != 0))
 974		goto out_no_reserve;
 975
 976	ret = ttm_bo_validate(srf->backup, &vmw_srf_placement,
 977			      true, false, false);
 978	if (unlikely(ret != 0))
 979		goto out_no_validate;
 
 
 
 
 
 
 
 
 
 
 980
 
 981
 982	/*
 983	 * Encode the dma- and surface destroy commands.
 984	 */
 
 
 985
 986	submit_size = vmw_surface_dma_size(srf) + vmw_surface_destroy_size();
 987	cmd = vmw_fifo_reserve(dev_priv, submit_size);
 988	if (unlikely(cmd == NULL)) {
 989		DRM_ERROR("Failed reserving FIFO space for surface "
 990			  "eviction.\n");
 991		ret = -ENOMEM;
 992		goto out_no_fifo;
 993	}
 
 
 
 
 
 994
 995	vmw_bo_get_guest_ptr(srf->backup, &ptr);
 996	vmw_surface_dma_encode(srf, cmd, &ptr, false);
 997	cmd += vmw_surface_dma_size(srf);
 998	vmw_surface_destroy_encode(res->id, cmd);
 999	vmw_fifo_commit(dev_priv, submit_size);
1000
1001	/*
1002	 * Surface memory usage accounting.
1003	 */
1004
1005	dev_priv->used_memory_size -= srf->backup_size;
1006
1007	/*
1008	 * Create a fence object and fence the DMA buffer.
1009	 */
1010
1011	(void) vmw_execbuf_fence_commands(NULL, dev_priv,
1012					  &fence, NULL);
1013	ttm_eu_fence_buffer_objects(&val_list, fence);
1014	if (likely(fence != NULL))
1015		vmw_fence_obj_unreference(&fence);
1016	ttm_bo_unref(&val_buf.bo);
1017
1018	/*
1019	 * Release the surface ID.
1020	 */
1021
1022	vmw_resource_release_id(res);
1023
1024	return 0;
1025
1026out_no_fifo:
1027out_no_validate:
1028	if (srf->backup)
1029		ttm_eu_backoff_reservation(&val_list);
1030out_no_reserve:
1031	ttm_bo_unref(&val_buf.bo);
1032	ttm_bo_unref(&srf->backup);
1033	return ret;
1034}
1035
1036
1037/**
1038 * vmw_surface_validate - make a surface available to the device, evicting
1039 * other surfaces if needed.
 
 
 
 
 
 
 
 
1040 *
1041 * @dev_priv: Pointer to a device private struct.
1042 * @srf: Pointer to a struct vmw_surface.
1043 *
1044 * Try to validate a surface and if it fails due to limited device resources,
1045 * repeatedly try to evict other surfaces until the request can be
1046 * acommodated.
1047 *
1048 * May return errors if out of resources.
1049 */
1050int vmw_surface_validate(struct vmw_private *dev_priv,
1051			 struct vmw_surface *srf)
1052{
1053	int ret;
1054	struct vmw_surface *evict_srf;
 
 
 
 
1055
 
 
 
 
 
 
 
1056	do {
1057		write_lock(&dev_priv->resource_lock);
1058		list_del_init(&srf->lru_head);
1059		write_unlock(&dev_priv->resource_lock);
1060
1061		ret = vmw_surface_do_validate(dev_priv, srf);
1062		if (likely(ret != -EBUSY))
1063			break;
1064
1065		write_lock(&dev_priv->resource_lock);
1066		if (list_empty(&dev_priv->surface_lru)) {
1067			DRM_ERROR("Out of device memory for surfaces.\n");
 
1068			ret = -EBUSY;
1069			write_unlock(&dev_priv->resource_lock);
1070			break;
1071		}
1072
1073		evict_srf = vmw_surface_reference
1074			(list_first_entry(&dev_priv->surface_lru,
1075					  struct vmw_surface,
1076					  lru_head));
1077		list_del_init(&evict_srf->lru_head);
1078
1079		write_unlock(&dev_priv->resource_lock);
1080		(void) vmw_surface_evict(dev_priv, evict_srf);
1081
1082		vmw_surface_unreference(&evict_srf);
 
 
 
 
 
 
 
 
 
 
 
1083
 
1084	} while (1);
1085
1086	if (unlikely(ret != 0 && srf->res.id != -1)) {
1087		write_lock(&dev_priv->resource_lock);
1088		list_add_tail(&srf->lru_head, &dev_priv->surface_lru);
1089		write_unlock(&dev_priv->resource_lock);
 
1090	}
1091
 
 
 
1092	return ret;
1093}
1094
1095
1096/**
1097 * vmw_surface_remove_from_lists - Remove surface resources from lookup lists
1098 *
1099 * @res: Pointer to a struct vmw_resource embedded in a struct vmw_surface
1100 *
1101 * As part of the resource destruction, remove the surface from any
1102 * lookup lists.
 
 
 
1103 */
1104static void vmw_surface_remove_from_lists(struct vmw_resource *res)
1105{
1106	struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
 
 
 
1107
1108	list_del_init(&srf->lru_head);
1109}
 
 
 
1110
1111int vmw_surface_init(struct vmw_private *dev_priv,
1112		     struct vmw_surface *srf,
1113		     void (*res_free) (struct vmw_resource *res))
1114{
1115	int ret;
1116	struct vmw_resource *res = &srf->res;
1117
1118	BUG_ON(res_free == NULL);
1119	INIT_LIST_HEAD(&srf->lru_head);
1120	ret = vmw_resource_init(dev_priv, res, &dev_priv->surface_idr,
1121				VMW_RES_SURFACE, true, res_free,
1122				vmw_surface_remove_from_lists);
1123
1124	if (unlikely(ret != 0))
1125		res_free(res);
1126
1127	/*
1128	 * The surface won't be visible to hardware until a
1129	 * surface validate.
1130	 */
1131
1132	(void) vmw_3d_resource_inc(dev_priv, false);
1133	vmw_resource_activate(res, vmw_hw_surface_destroy);
1134	return ret;
1135}
1136
1137static void vmw_user_surface_free(struct vmw_resource *res)
1138{
1139	struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
1140	struct vmw_user_surface *user_srf =
1141	    container_of(srf, struct vmw_user_surface, srf);
1142	struct vmw_private *dev_priv = srf->res.dev_priv;
1143	uint32_t size = user_srf->size;
1144
1145	if (srf->backup)
1146		ttm_bo_unref(&srf->backup);
1147	kfree(srf->offsets);
1148	kfree(srf->sizes);
1149	kfree(srf->snooper.image);
1150	kfree(user_srf);
1151	ttm_mem_global_free(vmw_mem_glob(dev_priv), size);
1152}
1153
1154/**
1155 * vmw_resource_unreserve - unreserve resources previously reserved for
1156 * command submission.
1157 *
1158 * @list_head: list of resources to unreserve.
1159 *
1160 * Currently only surfaces are considered, and unreserving a surface
1161 * means putting it back on the device's surface lru list,
1162 * so that it can be evicted if necessary.
1163 * This function traverses the resource list and
1164 * checks whether resources are surfaces, and in that case puts them back
1165 * on the device's surface LRU list.
1166 */
1167void vmw_resource_unreserve(struct list_head *list)
1168{
1169	struct vmw_resource *res;
1170	struct vmw_surface *srf;
1171	rwlock_t *lock = NULL;
 
 
 
1172
1173	list_for_each_entry(res, list, validate_head) {
1174
1175		if (res->res_free != &vmw_surface_res_free &&
1176		    res->res_free != &vmw_user_surface_free)
1177			continue;
1178
1179		if (unlikely(lock == NULL)) {
1180			lock = &res->dev_priv->resource_lock;
1181			write_lock(lock);
1182		}
1183
1184		srf = container_of(res, struct vmw_surface, res);
1185		list_del_init(&srf->lru_head);
1186		list_add_tail(&srf->lru_head, &res->dev_priv->surface_lru);
1187	}
1188
1189	if (lock != NULL)
1190		write_unlock(lock);
1191}
1192
1193/**
1194 * Helper function that looks either a surface or dmabuf.
1195 *
1196 * The pointer this pointed at by out_surf and out_buf needs to be null.
1197 */
1198int vmw_user_lookup_handle(struct vmw_private *dev_priv,
1199			   struct ttm_object_file *tfile,
1200			   uint32_t handle,
1201			   struct vmw_surface **out_surf,
1202			   struct vmw_dma_buffer **out_buf)
1203{
1204	int ret;
1205
1206	BUG_ON(*out_surf || *out_buf);
1207
1208	ret = vmw_user_surface_lookup_handle(dev_priv, tfile, handle, out_surf);
1209	if (!ret)
1210		return 0;
1211
1212	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
1213	return ret;
1214}
1215
1216
1217int vmw_user_surface_lookup_handle(struct vmw_private *dev_priv,
1218				   struct ttm_object_file *tfile,
1219				   uint32_t handle, struct vmw_surface **out)
 
 
 
 
 
 
 
 
 
 
 
1220{
1221	struct vmw_resource *res;
1222	struct vmw_surface *srf;
1223	struct vmw_user_surface *user_srf;
1224	struct ttm_base_object *base;
1225	int ret = -EINVAL;
1226
1227	base = ttm_base_object_lookup(tfile, handle);
1228	if (unlikely(base == NULL))
1229		return -EINVAL;
1230
1231	if (unlikely(base->object_type != VMW_RES_SURFACE))
1232		goto out_bad_resource;
 
 
 
1233
1234	user_srf = container_of(base, struct vmw_user_surface, base);
1235	srf = &user_srf->srf;
1236	res = &srf->res;
 
 
1237
1238	read_lock(&dev_priv->resource_lock);
 
1239
1240	if (!res->avail || res->res_free != &vmw_user_surface_free) {
1241		read_unlock(&dev_priv->resource_lock);
1242		goto out_bad_resource;
1243	}
1244
1245	kref_get(&res->kref);
1246	read_unlock(&dev_priv->resource_lock);
1247
1248	*out = srf;
1249	ret = 0;
1250
1251out_bad_resource:
1252	ttm_base_object_unref(&base);
1253
1254	return ret;
1255}
1256
1257static void vmw_user_surface_base_release(struct ttm_base_object **p_base)
 
 
 
 
 
1258{
1259	struct ttm_base_object *base = *p_base;
1260	struct vmw_user_surface *user_srf =
1261	    container_of(base, struct vmw_user_surface, base);
1262	struct vmw_resource *res = &user_srf->srf.res;
1263
1264	*p_base = NULL;
1265	vmw_resource_unreference(&res);
1266}
1267
1268int vmw_surface_destroy_ioctl(struct drm_device *dev, void *data,
1269			      struct drm_file *file_priv)
1270{
1271	struct drm_vmw_surface_arg *arg = (struct drm_vmw_surface_arg *)data;
1272	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1273
1274	return ttm_ref_object_base_unref(tfile, arg->sid, TTM_REF_USAGE);
1275}
1276
1277int vmw_surface_define_ioctl(struct drm_device *dev, void *data,
1278			     struct drm_file *file_priv)
1279{
1280	struct vmw_private *dev_priv = vmw_priv(dev);
1281	struct vmw_user_surface *user_srf;
1282	struct vmw_surface *srf;
1283	struct vmw_resource *res;
1284	struct vmw_resource *tmp;
1285	union drm_vmw_surface_create_arg *arg =
1286	    (union drm_vmw_surface_create_arg *)data;
1287	struct drm_vmw_surface_create_req *req = &arg->req;
1288	struct drm_vmw_surface_arg *rep = &arg->rep;
1289	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1290	struct drm_vmw_size __user *user_sizes;
1291	int ret;
1292	int i, j;
1293	uint32_t cur_bo_offset;
1294	struct drm_vmw_size *cur_size;
1295	struct vmw_surface_offset *cur_offset;
1296	uint32_t stride_bpp;
1297	uint32_t bpp;
1298	uint32_t num_sizes;
1299	uint32_t size;
1300	struct vmw_master *vmaster = vmw_master(file_priv->master);
1301
1302	if (unlikely(vmw_user_surface_size == 0))
1303		vmw_user_surface_size = ttm_round_pot(sizeof(*user_srf)) +
1304			128;
1305
1306	num_sizes = 0;
1307	for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i)
1308		num_sizes += req->mip_levels[i];
1309
1310	if (num_sizes > DRM_VMW_MAX_SURFACE_FACES *
1311	    DRM_VMW_MAX_MIP_LEVELS)
1312		return -EINVAL;
1313
1314	size = vmw_user_surface_size + 128 +
1315		ttm_round_pot(num_sizes * sizeof(struct drm_vmw_size)) +
1316		ttm_round_pot(num_sizes * sizeof(struct vmw_surface_offset));
1317
1318
1319	ret = ttm_read_lock(&vmaster->lock, true);
1320	if (unlikely(ret != 0))
1321		return ret;
1322
1323	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
1324				   size, false, true);
1325	if (unlikely(ret != 0)) {
1326		if (ret != -ERESTARTSYS)
1327			DRM_ERROR("Out of graphics memory for surface"
1328				  " creation.\n");
1329		goto out_unlock;
1330	}
1331
1332	user_srf = kmalloc(sizeof(*user_srf), GFP_KERNEL);
1333	if (unlikely(user_srf == NULL)) {
1334		ret = -ENOMEM;
1335		goto out_no_user_srf;
1336	}
1337
1338	srf = &user_srf->srf;
1339	res = &srf->res;
1340
1341	srf->flags = req->flags;
1342	srf->format = req->format;
1343	srf->scanout = req->scanout;
1344	srf->backup = NULL;
1345
1346	memcpy(srf->mip_levels, req->mip_levels, sizeof(srf->mip_levels));
1347	srf->num_sizes = num_sizes;
1348	user_srf->size = size;
1349
1350	srf->sizes = kmalloc(srf->num_sizes * sizeof(*srf->sizes), GFP_KERNEL);
1351	if (unlikely(srf->sizes == NULL)) {
1352		ret = -ENOMEM;
1353		goto out_no_sizes;
1354	}
1355	srf->offsets = kmalloc(srf->num_sizes * sizeof(*srf->offsets),
1356			       GFP_KERNEL);
1357	if (unlikely(srf->sizes == NULL)) {
1358		ret = -ENOMEM;
1359		goto out_no_offsets;
1360	}
1361
1362	user_sizes = (struct drm_vmw_size __user *)(unsigned long)
1363	    req->size_addr;
1364
1365	ret = copy_from_user(srf->sizes, user_sizes,
1366			     srf->num_sizes * sizeof(*srf->sizes));
1367	if (unlikely(ret != 0)) {
1368		ret = -EFAULT;
1369		goto out_no_copy;
1370	}
1371
1372	cur_bo_offset = 0;
1373	cur_offset = srf->offsets;
1374	cur_size = srf->sizes;
1375
1376	bpp = vmw_sf_bpp[srf->format].bpp;
1377	stride_bpp = vmw_sf_bpp[srf->format].s_bpp;
1378
1379	for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i) {
1380		for (j = 0; j < srf->mip_levels[i]; ++j) {
1381			uint32_t stride =
1382				(cur_size->width * stride_bpp + 7) >> 3;
1383
1384			cur_offset->face = i;
1385			cur_offset->mip = j;
1386			cur_offset->bo_offset = cur_bo_offset;
1387			cur_bo_offset += stride * cur_size->height *
1388				cur_size->depth * bpp / stride_bpp;
1389			++cur_offset;
1390			++cur_size;
1391		}
1392	}
1393	srf->backup_size = cur_bo_offset;
1394
1395	if (srf->scanout &&
1396	    srf->num_sizes == 1 &&
1397	    srf->sizes[0].width == 64 &&
1398	    srf->sizes[0].height == 64 &&
1399	    srf->format == SVGA3D_A8R8G8B8) {
1400
1401		/* allocate image area and clear it */
1402		srf->snooper.image = kzalloc(64 * 64 * 4, GFP_KERNEL);
1403		if (!srf->snooper.image) {
1404			DRM_ERROR("Failed to allocate cursor_image\n");
1405			ret = -ENOMEM;
1406			goto out_no_copy;
1407		}
1408	} else {
1409		srf->snooper.image = NULL;
1410	}
1411	srf->snooper.crtc = NULL;
1412
1413	user_srf->base.shareable = false;
1414	user_srf->base.tfile = NULL;
1415
1416	/**
1417	 * From this point, the generic resource management functions
1418	 * destroy the object on failure.
1419	 */
1420
1421	ret = vmw_surface_init(dev_priv, srf, vmw_user_surface_free);
1422	if (unlikely(ret != 0))
1423		goto out_unlock;
1424
1425	tmp = vmw_resource_reference(&srf->res);
1426	ret = ttm_base_object_init(tfile, &user_srf->base,
1427				   req->shareable, VMW_RES_SURFACE,
1428				   &vmw_user_surface_base_release, NULL);
1429
1430	if (unlikely(ret != 0)) {
1431		vmw_resource_unreference(&tmp);
1432		vmw_resource_unreference(&res);
1433		goto out_unlock;
1434	}
1435
1436	rep->sid = user_srf->base.hash.key;
1437	if (rep->sid == SVGA3D_INVALID_ID)
1438		DRM_ERROR("Created bad Surface ID.\n");
1439
1440	vmw_resource_unreference(&res);
1441
1442	ttm_read_unlock(&vmaster->lock);
1443	return 0;
1444out_no_copy:
1445	kfree(srf->offsets);
1446out_no_offsets:
1447	kfree(srf->sizes);
1448out_no_sizes:
1449	kfree(user_srf);
1450out_no_user_srf:
1451	ttm_mem_global_free(vmw_mem_glob(dev_priv), size);
1452out_unlock:
1453	ttm_read_unlock(&vmaster->lock);
1454	return ret;
1455}
1456
1457int vmw_surface_reference_ioctl(struct drm_device *dev, void *data,
1458				struct drm_file *file_priv)
 
 
 
 
 
 
 
 
 
1459{
1460	union drm_vmw_surface_reference_arg *arg =
1461	    (union drm_vmw_surface_reference_arg *)data;
1462	struct drm_vmw_surface_arg *req = &arg->req;
1463	struct drm_vmw_surface_create_req *rep = &arg->rep;
1464	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1465	struct vmw_surface *srf;
1466	struct vmw_user_surface *user_srf;
1467	struct drm_vmw_size __user *user_sizes;
1468	struct ttm_base_object *base;
1469	int ret = -EINVAL;
1470
1471	base = ttm_base_object_lookup(tfile, req->sid);
1472	if (unlikely(base == NULL)) {
1473		DRM_ERROR("Could not find surface to reference.\n");
1474		return -EINVAL;
1475	}
1476
1477	if (unlikely(base->object_type != VMW_RES_SURFACE))
1478		goto out_bad_resource;
1479
1480	user_srf = container_of(base, struct vmw_user_surface, base);
1481	srf = &user_srf->srf;
1482
1483	ret = ttm_ref_object_add(tfile, &user_srf->base, TTM_REF_USAGE, NULL);
1484	if (unlikely(ret != 0)) {
1485		DRM_ERROR("Could not add a reference to a surface.\n");
1486		goto out_no_reference;
1487	}
1488
1489	rep->flags = srf->flags;
1490	rep->format = srf->format;
1491	memcpy(rep->mip_levels, srf->mip_levels, sizeof(srf->mip_levels));
1492	user_sizes = (struct drm_vmw_size __user *)(unsigned long)
1493	    rep->size_addr;
1494
1495	if (user_sizes)
1496		ret = copy_to_user(user_sizes, srf->sizes,
1497				   srf->num_sizes * sizeof(*srf->sizes));
1498	if (unlikely(ret != 0)) {
1499		DRM_ERROR("copy_to_user failed %p %u\n",
1500			  user_sizes, srf->num_sizes);
1501		ret = -EFAULT;
1502	}
1503out_bad_resource:
1504out_no_reference:
1505	ttm_base_object_unref(&base);
1506
1507	return ret;
1508}
1509
1510int vmw_surface_check(struct vmw_private *dev_priv,
1511		      struct ttm_object_file *tfile,
1512		      uint32_t handle, int *id)
1513{
1514	struct ttm_base_object *base;
1515	struct vmw_user_surface *user_srf;
1516
1517	int ret = -EPERM;
1518
1519	base = ttm_base_object_lookup(tfile, handle);
1520	if (unlikely(base == NULL))
1521		return -EINVAL;
1522
1523	if (unlikely(base->object_type != VMW_RES_SURFACE))
1524		goto out_bad_surface;
1525
1526	user_srf = container_of(base, struct vmw_user_surface, base);
1527	*id = user_srf->srf.res.id;
1528	ret = 0;
1529
1530out_bad_surface:
1531	/**
1532	 * FIXME: May deadlock here when called from the
1533	 * command parsing code.
1534	 */
1535
1536	ttm_base_object_unref(&base);
1537	return ret;
1538}
1539
1540/**
1541 * Buffer management.
1542 */
1543void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
1544{
1545	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
1546
1547	kfree(vmw_bo);
1548}
1549
1550int vmw_dmabuf_init(struct vmw_private *dev_priv,
1551		    struct vmw_dma_buffer *vmw_bo,
1552		    size_t size, struct ttm_placement *placement,
1553		    bool interruptible,
1554		    void (*bo_free) (struct ttm_buffer_object *bo))
1555{
1556	struct ttm_bo_device *bdev = &dev_priv->bdev;
1557	size_t acc_size;
1558	int ret;
1559
1560	BUG_ON(!bo_free);
 
 
 
1561
1562	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct vmw_dma_buffer));
1563	memset(vmw_bo, 0, sizeof(*vmw_bo));
1564
1565	INIT_LIST_HEAD(&vmw_bo->validate_list);
 
1566
1567	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
1568			  ttm_bo_type_device, placement,
1569			  0, 0, interruptible,
1570			  NULL, acc_size, NULL, bo_free);
1571	return ret;
1572}
 
 
 
 
 
 
 
 
 
 
1573
1574static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
1575{
1576	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
1577
1578	kfree(vmw_user_bo);
1579}
1580
1581static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
1582{
1583	struct vmw_user_dma_buffer *vmw_user_bo;
1584	struct ttm_base_object *base = *p_base;
1585	struct ttm_buffer_object *bo;
1586
1587	*p_base = NULL;
1588
1589	if (unlikely(base == NULL))
1590		return;
1591
1592	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, base);
1593	bo = &vmw_user_bo->dma.base;
1594	ttm_bo_unref(&bo);
1595}
1596
1597int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
1598			   struct drm_file *file_priv)
1599{
1600	struct vmw_private *dev_priv = vmw_priv(dev);
1601	union drm_vmw_alloc_dmabuf_arg *arg =
1602	    (union drm_vmw_alloc_dmabuf_arg *)data;
1603	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
1604	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
1605	struct vmw_user_dma_buffer *vmw_user_bo;
1606	struct ttm_buffer_object *tmp;
1607	struct vmw_master *vmaster = vmw_master(file_priv->master);
1608	int ret;
1609
1610	vmw_user_bo = kzalloc(sizeof(*vmw_user_bo), GFP_KERNEL);
1611	if (unlikely(vmw_user_bo == NULL))
1612		return -ENOMEM;
1613
1614	ret = ttm_read_lock(&vmaster->lock, true);
1615	if (unlikely(ret != 0)) {
1616		kfree(vmw_user_bo);
1617		return ret;
1618	}
 
1619
1620	ret = vmw_dmabuf_init(dev_priv, &vmw_user_bo->dma, req->size,
1621			      &vmw_vram_sys_placement, true,
1622			      &vmw_user_dmabuf_destroy);
1623	if (unlikely(ret != 0))
1624		goto out_no_dmabuf;
1625
1626	tmp = ttm_bo_reference(&vmw_user_bo->dma.base);
1627	ret = ttm_base_object_init(vmw_fpriv(file_priv)->tfile,
1628				   &vmw_user_bo->base,
1629				   false,
1630				   ttm_buffer_type,
1631				   &vmw_user_dmabuf_release, NULL);
1632	if (unlikely(ret != 0))
1633		goto out_no_base_object;
1634	else {
1635		rep->handle = vmw_user_bo->base.hash.key;
1636		rep->map_handle = vmw_user_bo->dma.base.addr_space_offset;
1637		rep->cur_gmr_id = vmw_user_bo->base.hash.key;
1638		rep->cur_gmr_offset = 0;
1639	}
1640
1641out_no_base_object:
1642	ttm_bo_unref(&tmp);
1643out_no_dmabuf:
1644	ttm_read_unlock(&vmaster->lock);
1645
1646	return ret;
1647}
1648
1649int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
1650			   struct drm_file *file_priv)
1651{
1652	struct drm_vmw_unref_dmabuf_arg *arg =
1653	    (struct drm_vmw_unref_dmabuf_arg *)data;
1654
1655	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1656					 arg->handle,
1657					 TTM_REF_USAGE);
1658}
1659
1660uint32_t vmw_dmabuf_validate_node(struct ttm_buffer_object *bo,
1661				  uint32_t cur_validate_node)
1662{
1663	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
1664
1665	if (likely(vmw_bo->on_validate_list))
1666		return vmw_bo->cur_validate_node;
1667
1668	vmw_bo->cur_validate_node = cur_validate_node;
1669	vmw_bo->on_validate_list = true;
1670
1671	return cur_validate_node;
1672}
1673
1674void vmw_dmabuf_validate_clear(struct ttm_buffer_object *bo)
1675{
1676	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
1677
1678	vmw_bo->on_validate_list = false;
1679}
1680
1681int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
1682			   uint32_t handle, struct vmw_dma_buffer **out)
1683{
1684	struct vmw_user_dma_buffer *vmw_user_bo;
1685	struct ttm_base_object *base;
1686
1687	base = ttm_base_object_lookup(tfile, handle);
1688	if (unlikely(base == NULL)) {
1689		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
1690		       (unsigned long)handle);
1691		return -ESRCH;
1692	}
1693
1694	if (unlikely(base->object_type != ttm_buffer_type)) {
1695		ttm_base_object_unref(&base);
1696		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
1697		       (unsigned long)handle);
1698		return -EINVAL;
1699	}
1700
1701	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, base);
1702	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
1703	ttm_base_object_unref(&base);
1704	*out = &vmw_user_bo->dma;
1705
1706	return 0;
1707}
1708
1709/*
1710 * Stream management
1711 */
1712
1713static void vmw_stream_destroy(struct vmw_resource *res)
1714{
1715	struct vmw_private *dev_priv = res->dev_priv;
1716	struct vmw_stream *stream;
1717	int ret;
1718
1719	DRM_INFO("%s: unref\n", __func__);
1720	stream = container_of(res, struct vmw_stream, res);
1721
1722	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
1723	WARN_ON(ret != 0);
1724}
1725
1726static int vmw_stream_init(struct vmw_private *dev_priv,
1727			   struct vmw_stream *stream,
1728			   void (*res_free) (struct vmw_resource *res))
1729{
1730	struct vmw_resource *res = &stream->res;
1731	int ret;
1732
1733	ret = vmw_resource_init(dev_priv, res, &dev_priv->stream_idr,
1734				VMW_RES_STREAM, false, res_free, NULL);
1735
1736	if (unlikely(ret != 0)) {
1737		if (res_free == NULL)
1738			kfree(stream);
1739		else
1740			res_free(&stream->res);
1741		return ret;
1742	}
1743
1744	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
1745	if (ret) {
1746		vmw_resource_unreference(&res);
1747		return ret;
1748	}
1749
1750	DRM_INFO("%s: claimed\n", __func__);
1751
1752	vmw_resource_activate(&stream->res, vmw_stream_destroy);
1753	return 0;
1754}
1755
1756/**
1757 * User-space context management:
 
 
1758 */
1759
1760static void vmw_user_stream_free(struct vmw_resource *res)
1761{
1762	struct vmw_user_stream *stream =
1763	    container_of(res, struct vmw_user_stream, stream.res);
1764	struct vmw_private *dev_priv = res->dev_priv;
1765
1766	kfree(stream);
1767	ttm_mem_global_free(vmw_mem_glob(dev_priv),
1768			    vmw_user_stream_size);
1769}
1770
1771/**
1772 * This function is called when user space has no more references on the
1773 * base object. It releases the base-object's reference on the resource object.
 
 
 
1774 */
1775
1776static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
1777{
1778	struct ttm_base_object *base = *p_base;
1779	struct vmw_user_stream *stream =
1780	    container_of(base, struct vmw_user_stream, base);
1781	struct vmw_resource *res = &stream->stream.res;
1782
1783	*p_base = NULL;
1784	vmw_resource_unreference(&res);
1785}
1786
1787int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
1788			   struct drm_file *file_priv)
1789{
1790	struct vmw_private *dev_priv = vmw_priv(dev);
1791	struct vmw_resource *res;
1792	struct vmw_user_stream *stream;
1793	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
1794	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1795	int ret = 0;
1796
1797	res = vmw_resource_lookup(dev_priv, &dev_priv->stream_idr, arg->stream_id);
1798	if (unlikely(res == NULL))
1799		return -EINVAL;
1800
1801	if (res->res_free != &vmw_user_stream_free) {
1802		ret = -EINVAL;
1803		goto out;
 
1804	}
1805
1806	stream = container_of(res, struct vmw_user_stream, stream.res);
1807	if (stream->base.tfile != tfile) {
1808		ret = -EINVAL;
1809		goto out;
1810	}
1811
1812	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
1813out:
1814	vmw_resource_unreference(&res);
1815	return ret;
1816}
1817
1818int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
1819			   struct drm_file *file_priv)
1820{
1821	struct vmw_private *dev_priv = vmw_priv(dev);
1822	struct vmw_user_stream *stream;
1823	struct vmw_resource *res;
1824	struct vmw_resource *tmp;
1825	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
1826	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1827	struct vmw_master *vmaster = vmw_master(file_priv->master);
 
 
 
 
 
 
1828	int ret;
1829
1830	/*
1831	 * Approximate idr memory usage with 128 bytes. It will be limited
1832	 * by maximum number_of streams anyway?
1833	 */
1834
1835	if (unlikely(vmw_user_stream_size == 0))
1836		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
1837
1838	ret = ttm_read_lock(&vmaster->lock, true);
1839	if (unlikely(ret != 0))
1840		return ret;
1841
1842	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
1843				   vmw_user_stream_size,
1844				   false, true);
1845	if (unlikely(ret != 0)) {
1846		if (ret != -ERESTARTSYS)
1847			DRM_ERROR("Out of graphics memory for stream"
1848				  " creation.\n");
1849		goto out_unlock;
1850	}
1851
1852
1853	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
1854	if (unlikely(stream == NULL)) {
1855		ttm_mem_global_free(vmw_mem_glob(dev_priv),
1856				    vmw_user_stream_size);
1857		ret = -ENOMEM;
1858		goto out_unlock;
1859	}
1860
1861	res = &stream->stream.res;
1862	stream->base.shareable = false;
1863	stream->base.tfile = NULL;
1864
1865	/*
1866	 * From here on, the destructor takes over resource freeing.
 
1867	 */
 
 
 
 
 
 
 
 
1868
1869	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
1870	if (unlikely(ret != 0))
1871		goto out_unlock;
1872
1873	tmp = vmw_resource_reference(res);
1874	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
1875				   &vmw_user_stream_base_release, NULL);
1876
1877	if (unlikely(ret != 0)) {
1878		vmw_resource_unreference(&tmp);
1879		goto out_err;
1880	}
1881
1882	arg->stream_id = res->id;
1883out_err:
1884	vmw_resource_unreference(&res);
1885out_unlock:
1886	ttm_read_unlock(&vmaster->lock);
1887	return ret;
1888}
1889
1890int vmw_user_stream_lookup(struct vmw_private *dev_priv,
1891			   struct ttm_object_file *tfile,
1892			   uint32_t *inout_id, struct vmw_resource **out)
1893{
1894	struct vmw_user_stream *stream;
1895	struct vmw_resource *res;
1896	int ret;
1897
1898	res = vmw_resource_lookup(dev_priv, &dev_priv->stream_idr, *inout_id);
1899	if (unlikely(res == NULL))
1900		return -EINVAL;
1901
1902	if (res->res_free != &vmw_user_stream_free) {
1903		ret = -EINVAL;
1904		goto err_ref;
1905	}
1906
1907	stream = container_of(res, struct vmw_user_stream, stream.res);
1908	if (stream->base.tfile != tfile) {
1909		ret = -EPERM;
1910		goto err_ref;
1911	}
1912
1913	*inout_id = stream->stream.stream_id;
1914	*out = res;
1915	return 0;
1916err_ref:
1917	vmw_resource_unreference(&res);
1918	return ret;
1919}
1920
1921
1922int vmw_dumb_create(struct drm_file *file_priv,
1923		    struct drm_device *dev,
1924		    struct drm_mode_create_dumb *args)
1925{
1926	struct vmw_private *dev_priv = vmw_priv(dev);
1927	struct vmw_master *vmaster = vmw_master(file_priv->master);
1928	struct vmw_user_dma_buffer *vmw_user_bo;
1929	struct ttm_buffer_object *tmp;
1930	int ret;
1931
1932	args->pitch = args->width * ((args->bpp + 7) / 8);
1933	args->size = args->pitch * args->height;
1934
1935	vmw_user_bo = kzalloc(sizeof(*vmw_user_bo), GFP_KERNEL);
1936	if (vmw_user_bo == NULL)
1937		return -ENOMEM;
1938
1939	ret = ttm_read_lock(&vmaster->lock, true);
1940	if (ret != 0) {
1941		kfree(vmw_user_bo);
1942		return ret;
1943	}
1944
1945	ret = vmw_dmabuf_init(dev_priv, &vmw_user_bo->dma, args->size,
1946			      &vmw_vram_sys_placement, true,
1947			      &vmw_user_dmabuf_destroy);
1948	if (ret != 0)
1949		goto out_no_dmabuf;
1950
1951	tmp = ttm_bo_reference(&vmw_user_bo->dma.base);
1952	ret = ttm_base_object_init(vmw_fpriv(file_priv)->tfile,
1953				   &vmw_user_bo->base,
1954				   false,
1955				   ttm_buffer_type,
1956				   &vmw_user_dmabuf_release, NULL);
1957	if (unlikely(ret != 0))
1958		goto out_no_base_object;
1959
1960	args->handle = vmw_user_bo->base.hash.key;
1961
1962out_no_base_object:
1963	ttm_bo_unref(&tmp);
1964out_no_dmabuf:
1965	ttm_read_unlock(&vmaster->lock);
1966	return ret;
1967}
1968
1969int vmw_dumb_map_offset(struct drm_file *file_priv,
1970			struct drm_device *dev, uint32_t handle,
1971			uint64_t *offset)
1972{
1973	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1974	struct vmw_dma_buffer *out_buf;
1975	int ret;
1976
1977	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1978	if (ret != 0)
1979		return -EINVAL;
1980
1981	*offset = out_buf->base.addr_space_offset;
1982	vmw_dmabuf_unreference(&out_buf);
1983	return 0;
1984}
1985
1986int vmw_dumb_destroy(struct drm_file *file_priv,
1987		     struct drm_device *dev,
1988		     uint32_t handle)
1989{
1990	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1991					 handle, TTM_REF_USAGE);
1992}