Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/**************************************************************************
3 *
4 * Copyright (c) 2009-2024 Broadcom. All Rights Reserved. The term
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29#include <drm/ttm/ttm_placement.h>
30
31#include "vmwgfx_binding.h"
32#include "vmwgfx_bo.h"
33#include "vmwgfx_drv.h"
34#include "vmwgfx_resource_priv.h"
35
36#define VMW_RES_EVICT_ERR_COUNT 10
37
38/**
39 * vmw_resource_mob_attach - Mark a resource as attached to its backing mob
40 * @res: The resource
41 */
42void vmw_resource_mob_attach(struct vmw_resource *res)
43{
44 struct vmw_bo *gbo = res->guest_memory_bo;
45 struct rb_node **new = &gbo->res_tree.rb_node, *parent = NULL;
46
47 dma_resv_assert_held(gbo->tbo.base.resv);
48 res->used_prio = (res->res_dirty) ? res->func->dirty_prio :
49 res->func->prio;
50
51 while (*new) {
52 struct vmw_resource *this =
53 container_of(*new, struct vmw_resource, mob_node);
54
55 parent = *new;
56 new = (res->guest_memory_offset < this->guest_memory_offset) ?
57 &((*new)->rb_left) : &((*new)->rb_right);
58 }
59
60 rb_link_node(&res->mob_node, parent, new);
61 rb_insert_color(&res->mob_node, &gbo->res_tree);
62 vmw_bo_del_detached_resource(gbo, res);
63
64 vmw_bo_prio_add(gbo, res->used_prio);
65}
66
67/**
68 * vmw_resource_mob_detach - Mark a resource as detached from its backing mob
69 * @res: The resource
70 */
71void vmw_resource_mob_detach(struct vmw_resource *res)
72{
73 struct vmw_bo *gbo = res->guest_memory_bo;
74
75 dma_resv_assert_held(gbo->tbo.base.resv);
76 if (vmw_resource_mob_attached(res)) {
77 rb_erase(&res->mob_node, &gbo->res_tree);
78 RB_CLEAR_NODE(&res->mob_node);
79 vmw_bo_prio_del(gbo, res->used_prio);
80 }
81}
82
83struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
84{
85 kref_get(&res->kref);
86 return res;
87}
88
89struct vmw_resource *
90vmw_resource_reference_unless_doomed(struct vmw_resource *res)
91{
92 return kref_get_unless_zero(&res->kref) ? res : NULL;
93}
94
95/**
96 * vmw_resource_release_id - release a resource id to the id manager.
97 *
98 * @res: Pointer to the resource.
99 *
100 * Release the resource id to the resource id manager and set it to -1
101 */
102void vmw_resource_release_id(struct vmw_resource *res)
103{
104 struct vmw_private *dev_priv = res->dev_priv;
105 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
106
107 spin_lock(&dev_priv->resource_lock);
108 if (res->id != -1)
109 idr_remove(idr, res->id);
110 res->id = -1;
111 spin_unlock(&dev_priv->resource_lock);
112}
113
114static void vmw_resource_release(struct kref *kref)
115{
116 struct vmw_resource *res =
117 container_of(kref, struct vmw_resource, kref);
118 struct vmw_private *dev_priv = res->dev_priv;
119 int id;
120 int ret;
121 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
122
123 spin_lock(&dev_priv->resource_lock);
124 list_del_init(&res->lru_head);
125 spin_unlock(&dev_priv->resource_lock);
126 if (res->guest_memory_bo) {
127 struct ttm_buffer_object *bo = &res->guest_memory_bo->tbo;
128
129 ret = ttm_bo_reserve(bo, false, false, NULL);
130 BUG_ON(ret);
131 if (vmw_resource_mob_attached(res) &&
132 res->func->unbind != NULL) {
133 struct ttm_validate_buffer val_buf;
134
135 val_buf.bo = bo;
136 val_buf.num_shared = 0;
137 res->func->unbind(res, false, &val_buf);
138 }
139 res->guest_memory_size = false;
140 vmw_resource_mob_detach(res);
141 if (res->dirty)
142 res->func->dirty_free(res);
143 if (res->coherent)
144 vmw_bo_dirty_release(res->guest_memory_bo);
145 ttm_bo_unreserve(bo);
146 vmw_user_bo_unref(&res->guest_memory_bo);
147 }
148
149 if (likely(res->hw_destroy != NULL)) {
150 mutex_lock(&dev_priv->binding_mutex);
151 vmw_binding_res_list_kill(&res->binding_head);
152 mutex_unlock(&dev_priv->binding_mutex);
153 res->hw_destroy(res);
154 }
155
156 id = res->id;
157 if (res->res_free != NULL)
158 res->res_free(res);
159 else
160 kfree(res);
161
162 spin_lock(&dev_priv->resource_lock);
163 if (id != -1)
164 idr_remove(idr, id);
165 spin_unlock(&dev_priv->resource_lock);
166}
167
168void vmw_resource_unreference(struct vmw_resource **p_res)
169{
170 struct vmw_resource *res = *p_res;
171
172 *p_res = NULL;
173 kref_put(&res->kref, vmw_resource_release);
174}
175
176
177/**
178 * vmw_resource_alloc_id - release a resource id to the id manager.
179 *
180 * @res: Pointer to the resource.
181 *
182 * Allocate the lowest free resource from the resource manager, and set
183 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
184 */
185int vmw_resource_alloc_id(struct vmw_resource *res)
186{
187 struct vmw_private *dev_priv = res->dev_priv;
188 int ret;
189 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
190
191 BUG_ON(res->id != -1);
192
193 idr_preload(GFP_KERNEL);
194 spin_lock(&dev_priv->resource_lock);
195
196 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
197 if (ret >= 0)
198 res->id = ret;
199
200 spin_unlock(&dev_priv->resource_lock);
201 idr_preload_end();
202 return ret < 0 ? ret : 0;
203}
204
205/**
206 * vmw_resource_init - initialize a struct vmw_resource
207 *
208 * @dev_priv: Pointer to a device private struct.
209 * @res: The struct vmw_resource to initialize.
210 * @delay_id: Boolean whether to defer device id allocation until
211 * the first validation.
212 * @res_free: Resource destructor.
213 * @func: Resource function table.
214 */
215int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
216 bool delay_id,
217 void (*res_free) (struct vmw_resource *res),
218 const struct vmw_res_func *func)
219{
220 kref_init(&res->kref);
221 res->hw_destroy = NULL;
222 res->res_free = res_free;
223 res->dev_priv = dev_priv;
224 res->func = func;
225 RB_CLEAR_NODE(&res->mob_node);
226 INIT_LIST_HEAD(&res->lru_head);
227 INIT_LIST_HEAD(&res->binding_head);
228 res->id = -1;
229 res->guest_memory_bo = NULL;
230 res->guest_memory_offset = 0;
231 res->guest_memory_dirty = false;
232 res->res_dirty = false;
233 res->coherent = false;
234 res->used_prio = 3;
235 res->dirty = NULL;
236 if (delay_id)
237 return 0;
238 else
239 return vmw_resource_alloc_id(res);
240}
241
242
243/**
244 * vmw_user_resource_lookup_handle - lookup a struct resource from a
245 * TTM user-space handle and perform basic type checks
246 *
247 * @dev_priv: Pointer to a device private struct
248 * @tfile: Pointer to a struct ttm_object_file identifying the caller
249 * @handle: The TTM user-space handle
250 * @converter: Pointer to an object describing the resource type
251 * @p_res: On successful return the location pointed to will contain
252 * a pointer to a refcounted struct vmw_resource.
253 *
254 * If the handle can't be found or is associated with an incorrect resource
255 * type, -EINVAL will be returned.
256 */
257int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
258 struct ttm_object_file *tfile,
259 uint32_t handle,
260 const struct vmw_user_resource_conv
261 *converter,
262 struct vmw_resource **p_res)
263{
264 struct ttm_base_object *base;
265 struct vmw_resource *res;
266 int ret = -EINVAL;
267
268 base = ttm_base_object_lookup(tfile, handle);
269 if (unlikely(!base))
270 return -EINVAL;
271
272 if (unlikely(ttm_base_object_type(base) != converter->object_type))
273 goto out_bad_resource;
274
275 res = converter->base_obj_to_res(base);
276 kref_get(&res->kref);
277
278 *p_res = res;
279 ret = 0;
280
281out_bad_resource:
282 ttm_base_object_unref(&base);
283
284 return ret;
285}
286
287/*
288 * Helper function that looks either a surface or bo.
289 *
290 * The pointer this pointed at by out_surf and out_buf needs to be null.
291 */
292int vmw_user_object_lookup(struct vmw_private *dev_priv,
293 struct drm_file *filp,
294 u32 handle,
295 struct vmw_user_object *uo)
296{
297 struct ttm_object_file *tfile = vmw_fpriv(filp)->tfile;
298 struct vmw_resource *res;
299 int ret;
300
301 WARN_ON(uo->surface || uo->buffer);
302
303 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
304 user_surface_converter,
305 &res);
306 if (!ret) {
307 uo->surface = vmw_res_to_srf(res);
308 return 0;
309 }
310
311 uo->surface = NULL;
312 ret = vmw_user_bo_lookup(filp, handle, &uo->buffer);
313 if (!ret && !uo->buffer->is_dumb) {
314 uo->surface = vmw_lookup_surface_for_buffer(dev_priv,
315 uo->buffer,
316 handle);
317 if (uo->surface)
318 vmw_user_bo_unref(&uo->buffer);
319 }
320
321 return ret;
322}
323
324/**
325 * vmw_resource_buf_alloc - Allocate a guest memory buffer for a resource.
326 *
327 * @res: The resource for which to allocate a gbo buffer.
328 * @interruptible: Whether any sleeps during allocation should be
329 * performed while interruptible.
330 */
331static int vmw_resource_buf_alloc(struct vmw_resource *res,
332 bool interruptible)
333{
334 unsigned long size = PFN_ALIGN(res->guest_memory_size);
335 struct vmw_bo *gbo;
336 struct vmw_bo_params bo_params = {
337 .domain = res->func->domain,
338 .busy_domain = res->func->busy_domain,
339 .bo_type = ttm_bo_type_device,
340 .size = res->guest_memory_size,
341 .pin = false
342 };
343 int ret;
344
345 if (likely(res->guest_memory_bo)) {
346 BUG_ON(res->guest_memory_bo->tbo.base.size < size);
347 return 0;
348 }
349
350 ret = vmw_gem_object_create(res->dev_priv, &bo_params, &gbo);
351 if (unlikely(ret != 0))
352 goto out_no_bo;
353
354 res->guest_memory_bo = gbo;
355
356out_no_bo:
357 return ret;
358}
359
360/**
361 * vmw_resource_do_validate - Make a resource up-to-date and visible
362 * to the device.
363 *
364 * @res: The resource to make visible to the device.
365 * @val_buf: Information about a buffer possibly
366 * containing backup data if a bind operation is needed.
367 * @dirtying: Transfer dirty regions.
368 *
369 * On hardware resource shortage, this function returns -EBUSY and
370 * should be retried once resources have been freed up.
371 */
372static int vmw_resource_do_validate(struct vmw_resource *res,
373 struct ttm_validate_buffer *val_buf,
374 bool dirtying)
375{
376 int ret = 0;
377 const struct vmw_res_func *func = res->func;
378
379 if (unlikely(res->id == -1)) {
380 ret = func->create(res);
381 if (unlikely(ret != 0))
382 return ret;
383 }
384
385 if (func->bind &&
386 ((func->needs_guest_memory && !vmw_resource_mob_attached(res) &&
387 val_buf->bo) ||
388 (!func->needs_guest_memory && val_buf->bo))) {
389 ret = func->bind(res, val_buf);
390 if (unlikely(ret != 0))
391 goto out_bind_failed;
392 if (func->needs_guest_memory)
393 vmw_resource_mob_attach(res);
394 }
395
396 /*
397 * Handle the case where the backup mob is marked coherent but
398 * the resource isn't.
399 */
400 if (func->dirty_alloc && vmw_resource_mob_attached(res) &&
401 !res->coherent) {
402 if (res->guest_memory_bo->dirty && !res->dirty) {
403 ret = func->dirty_alloc(res);
404 if (ret)
405 return ret;
406 } else if (!res->guest_memory_bo->dirty && res->dirty) {
407 func->dirty_free(res);
408 }
409 }
410
411 /*
412 * Transfer the dirty regions to the resource and update
413 * the resource.
414 */
415 if (res->dirty) {
416 if (dirtying && !res->res_dirty) {
417 pgoff_t start = res->guest_memory_offset >> PAGE_SHIFT;
418 pgoff_t end = __KERNEL_DIV_ROUND_UP
419 (res->guest_memory_offset + res->guest_memory_size,
420 PAGE_SIZE);
421
422 vmw_bo_dirty_unmap(res->guest_memory_bo, start, end);
423 }
424
425 vmw_bo_dirty_transfer_to_res(res);
426 return func->dirty_sync(res);
427 }
428
429 return 0;
430
431out_bind_failed:
432 func->destroy(res);
433
434 return ret;
435}
436
437/**
438 * vmw_resource_unreserve - Unreserve a resource previously reserved for
439 * command submission.
440 *
441 * @res: Pointer to the struct vmw_resource to unreserve.
442 * @dirty_set: Change dirty status of the resource.
443 * @dirty: When changing dirty status indicates the new status.
444 * @switch_guest_memory: Guest memory buffer has been switched.
445 * @new_guest_memory_bo: Pointer to new guest memory buffer if command submission
446 * switched. May be NULL.
447 * @new_guest_memory_offset: New gbo offset if @switch_guest_memory is true.
448 *
449 * Currently unreserving a resource means putting it back on the device's
450 * resource lru list, so that it can be evicted if necessary.
451 */
452void vmw_resource_unreserve(struct vmw_resource *res,
453 bool dirty_set,
454 bool dirty,
455 bool switch_guest_memory,
456 struct vmw_bo *new_guest_memory_bo,
457 unsigned long new_guest_memory_offset)
458{
459 struct vmw_private *dev_priv = res->dev_priv;
460
461 if (!list_empty(&res->lru_head))
462 return;
463
464 if (switch_guest_memory && new_guest_memory_bo != res->guest_memory_bo) {
465 if (res->guest_memory_bo) {
466 vmw_resource_mob_detach(res);
467 if (res->coherent)
468 vmw_bo_dirty_release(res->guest_memory_bo);
469 vmw_user_bo_unref(&res->guest_memory_bo);
470 }
471
472 if (new_guest_memory_bo) {
473 res->guest_memory_bo = vmw_user_bo_ref(new_guest_memory_bo);
474
475 /*
476 * The validation code should already have added a
477 * dirty tracker here.
478 */
479 WARN_ON(res->coherent && !new_guest_memory_bo->dirty);
480
481 vmw_resource_mob_attach(res);
482 } else {
483 res->guest_memory_bo = NULL;
484 }
485 } else if (switch_guest_memory && res->coherent) {
486 vmw_bo_dirty_release(res->guest_memory_bo);
487 }
488
489 if (switch_guest_memory)
490 res->guest_memory_offset = new_guest_memory_offset;
491
492 if (dirty_set)
493 res->res_dirty = dirty;
494
495 if (!res->func->may_evict || res->id == -1 || res->pin_count)
496 return;
497
498 spin_lock(&dev_priv->resource_lock);
499 list_add_tail(&res->lru_head,
500 &res->dev_priv->res_lru[res->func->res_type]);
501 spin_unlock(&dev_priv->resource_lock);
502}
503
504/**
505 * vmw_resource_check_buffer - Check whether a backup buffer is needed
506 * for a resource and in that case, allocate
507 * one, reserve and validate it.
508 *
509 * @ticket: The ww acquire context to use, or NULL if trylocking.
510 * @res: The resource for which to allocate a backup buffer.
511 * @interruptible: Whether any sleeps during allocation should be
512 * performed while interruptible.
513 * @val_buf: On successful return contains data about the
514 * reserved and validated backup buffer.
515 */
516static int
517vmw_resource_check_buffer(struct ww_acquire_ctx *ticket,
518 struct vmw_resource *res,
519 bool interruptible,
520 struct ttm_validate_buffer *val_buf)
521{
522 struct ttm_operation_ctx ctx = { true, false };
523 struct list_head val_list;
524 bool guest_memory_dirty = false;
525 int ret;
526
527 if (unlikely(!res->guest_memory_bo)) {
528 ret = vmw_resource_buf_alloc(res, interruptible);
529 if (unlikely(ret != 0))
530 return ret;
531 }
532
533 INIT_LIST_HEAD(&val_list);
534 ttm_bo_get(&res->guest_memory_bo->tbo);
535 val_buf->bo = &res->guest_memory_bo->tbo;
536 val_buf->num_shared = 0;
537 list_add_tail(&val_buf->head, &val_list);
538 ret = ttm_eu_reserve_buffers(ticket, &val_list, interruptible, NULL);
539 if (unlikely(ret != 0))
540 goto out_no_reserve;
541
542 if (res->func->needs_guest_memory && !vmw_resource_mob_attached(res))
543 return 0;
544
545 guest_memory_dirty = res->guest_memory_dirty;
546 vmw_bo_placement_set(res->guest_memory_bo, res->func->domain,
547 res->func->busy_domain);
548 ret = ttm_bo_validate(&res->guest_memory_bo->tbo,
549 &res->guest_memory_bo->placement,
550 &ctx);
551
552 if (unlikely(ret != 0))
553 goto out_no_validate;
554
555 return 0;
556
557out_no_validate:
558 ttm_eu_backoff_reservation(ticket, &val_list);
559out_no_reserve:
560 ttm_bo_put(val_buf->bo);
561 val_buf->bo = NULL;
562 if (guest_memory_dirty)
563 vmw_user_bo_unref(&res->guest_memory_bo);
564
565 return ret;
566}
567
568/*
569 * vmw_resource_reserve - Reserve a resource for command submission
570 *
571 * @res: The resource to reserve.
572 *
573 * This function takes the resource off the LRU list and make sure
574 * a guest memory buffer is present for guest-backed resources.
575 * However, the buffer may not be bound to the resource at this
576 * point.
577 *
578 */
579int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
580 bool no_guest_memory)
581{
582 struct vmw_private *dev_priv = res->dev_priv;
583 int ret;
584
585 spin_lock(&dev_priv->resource_lock);
586 list_del_init(&res->lru_head);
587 spin_unlock(&dev_priv->resource_lock);
588
589 if (res->func->needs_guest_memory && !res->guest_memory_bo &&
590 !no_guest_memory) {
591 ret = vmw_resource_buf_alloc(res, interruptible);
592 if (unlikely(ret != 0)) {
593 DRM_ERROR("Failed to allocate a guest memory buffer "
594 "of size %lu. bytes\n",
595 (unsigned long) res->guest_memory_size);
596 return ret;
597 }
598 }
599
600 return 0;
601}
602
603/**
604 * vmw_resource_backoff_reservation - Unreserve and unreference a
605 * guest memory buffer
606 *.
607 * @ticket: The ww acquire ctx used for reservation.
608 * @val_buf: Guest memory buffer information.
609 */
610static void
611vmw_resource_backoff_reservation(struct ww_acquire_ctx *ticket,
612 struct ttm_validate_buffer *val_buf)
613{
614 struct list_head val_list;
615
616 if (likely(val_buf->bo == NULL))
617 return;
618
619 INIT_LIST_HEAD(&val_list);
620 list_add_tail(&val_buf->head, &val_list);
621 ttm_eu_backoff_reservation(ticket, &val_list);
622 ttm_bo_put(val_buf->bo);
623 val_buf->bo = NULL;
624}
625
626/**
627 * vmw_resource_do_evict - Evict a resource, and transfer its data
628 * to a backup buffer.
629 *
630 * @ticket: The ww acquire ticket to use, or NULL if trylocking.
631 * @res: The resource to evict.
632 * @interruptible: Whether to wait interruptible.
633 */
634static int vmw_resource_do_evict(struct ww_acquire_ctx *ticket,
635 struct vmw_resource *res, bool interruptible)
636{
637 struct ttm_validate_buffer val_buf;
638 const struct vmw_res_func *func = res->func;
639 int ret;
640
641 BUG_ON(!func->may_evict);
642
643 val_buf.bo = NULL;
644 val_buf.num_shared = 0;
645 ret = vmw_resource_check_buffer(ticket, res, interruptible, &val_buf);
646 if (unlikely(ret != 0))
647 return ret;
648
649 if (unlikely(func->unbind != NULL &&
650 (!func->needs_guest_memory || vmw_resource_mob_attached(res)))) {
651 ret = func->unbind(res, res->res_dirty, &val_buf);
652 if (unlikely(ret != 0))
653 goto out_no_unbind;
654 vmw_resource_mob_detach(res);
655 }
656 ret = func->destroy(res);
657 res->guest_memory_dirty = true;
658 res->res_dirty = false;
659out_no_unbind:
660 vmw_resource_backoff_reservation(ticket, &val_buf);
661
662 return ret;
663}
664
665
666/**
667 * vmw_resource_validate - Make a resource up-to-date and visible
668 * to the device.
669 * @res: The resource to make visible to the device.
670 * @intr: Perform waits interruptible if possible.
671 * @dirtying: Pending GPU operation will dirty the resource
672 *
673 * On successful return, any backup DMA buffer pointed to by @res->backup will
674 * be reserved and validated.
675 * On hardware resource shortage, this function will repeatedly evict
676 * resources of the same type until the validation succeeds.
677 *
678 * Return: Zero on success, -ERESTARTSYS if interrupted, negative error code
679 * on failure.
680 */
681int vmw_resource_validate(struct vmw_resource *res, bool intr,
682 bool dirtying)
683{
684 int ret;
685 struct vmw_resource *evict_res;
686 struct vmw_private *dev_priv = res->dev_priv;
687 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
688 struct ttm_validate_buffer val_buf;
689 unsigned err_count = 0;
690
691 if (!res->func->create)
692 return 0;
693
694 val_buf.bo = NULL;
695 val_buf.num_shared = 0;
696 if (res->guest_memory_bo)
697 val_buf.bo = &res->guest_memory_bo->tbo;
698 do {
699 ret = vmw_resource_do_validate(res, &val_buf, dirtying);
700 if (likely(ret != -EBUSY))
701 break;
702
703 spin_lock(&dev_priv->resource_lock);
704 if (list_empty(lru_list) || !res->func->may_evict) {
705 DRM_ERROR("Out of device device resources "
706 "for %s.\n", res->func->type_name);
707 ret = -EBUSY;
708 spin_unlock(&dev_priv->resource_lock);
709 break;
710 }
711
712 evict_res = vmw_resource_reference
713 (list_first_entry(lru_list, struct vmw_resource,
714 lru_head));
715 list_del_init(&evict_res->lru_head);
716
717 spin_unlock(&dev_priv->resource_lock);
718
719 /* Trylock backup buffers with a NULL ticket. */
720 ret = vmw_resource_do_evict(NULL, evict_res, intr);
721 if (unlikely(ret != 0)) {
722 spin_lock(&dev_priv->resource_lock);
723 list_add_tail(&evict_res->lru_head, lru_list);
724 spin_unlock(&dev_priv->resource_lock);
725 if (ret == -ERESTARTSYS ||
726 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
727 vmw_resource_unreference(&evict_res);
728 goto out_no_validate;
729 }
730 }
731
732 vmw_resource_unreference(&evict_res);
733 } while (1);
734
735 if (unlikely(ret != 0))
736 goto out_no_validate;
737 else if (!res->func->needs_guest_memory && res->guest_memory_bo) {
738 WARN_ON_ONCE(vmw_resource_mob_attached(res));
739 vmw_user_bo_unref(&res->guest_memory_bo);
740 }
741
742 return 0;
743
744out_no_validate:
745 return ret;
746}
747
748
749/**
750 * vmw_resource_unbind_list
751 *
752 * @vbo: Pointer to the current backing MOB.
753 *
754 * Evicts the Guest Backed hardware resource if the backup
755 * buffer is being moved out of MOB memory.
756 * Note that this function will not race with the resource
757 * validation code, since resource validation and eviction
758 * both require the backup buffer to be reserved.
759 */
760void vmw_resource_unbind_list(struct vmw_bo *vbo)
761{
762 struct ttm_validate_buffer val_buf = {
763 .bo = &vbo->tbo,
764 .num_shared = 0
765 };
766
767 dma_resv_assert_held(vbo->tbo.base.resv);
768 while (!RB_EMPTY_ROOT(&vbo->res_tree)) {
769 struct rb_node *node = vbo->res_tree.rb_node;
770 struct vmw_resource *res =
771 container_of(node, struct vmw_resource, mob_node);
772
773 if (!WARN_ON_ONCE(!res->func->unbind))
774 (void) res->func->unbind(res, res->res_dirty, &val_buf);
775
776 res->guest_memory_size = true;
777 res->res_dirty = false;
778 vmw_resource_mob_detach(res);
779 }
780
781 (void) ttm_bo_wait(&vbo->tbo, false, false);
782}
783
784
785/**
786 * vmw_query_readback_all - Read back cached query states
787 *
788 * @dx_query_mob: Buffer containing the DX query MOB
789 *
790 * Read back cached states from the device if they exist. This function
791 * assumes binding_mutex is held.
792 */
793int vmw_query_readback_all(struct vmw_bo *dx_query_mob)
794{
795 struct vmw_resource *dx_query_ctx;
796 struct vmw_private *dev_priv;
797 struct {
798 SVGA3dCmdHeader header;
799 SVGA3dCmdDXReadbackAllQuery body;
800 } *cmd;
801
802
803 /* No query bound, so do nothing */
804 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
805 return 0;
806
807 dx_query_ctx = dx_query_mob->dx_query_ctx;
808 dev_priv = dx_query_ctx->dev_priv;
809
810 cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), dx_query_ctx->id);
811 if (unlikely(cmd == NULL))
812 return -ENOMEM;
813
814 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
815 cmd->header.size = sizeof(cmd->body);
816 cmd->body.cid = dx_query_ctx->id;
817
818 vmw_cmd_commit(dev_priv, sizeof(*cmd));
819
820 /* Triggers a rebind the next time affected context is bound */
821 dx_query_mob->dx_query_ctx = NULL;
822
823 return 0;
824}
825
826
827
828/**
829 * vmw_query_move_notify - Read back cached query states
830 *
831 * @bo: The TTM buffer object about to move.
832 * @old_mem: The memory region @bo is moving from.
833 * @new_mem: The memory region @bo is moving to.
834 *
835 * Called before the query MOB is swapped out to read back cached query
836 * states from the device.
837 */
838void vmw_query_move_notify(struct ttm_buffer_object *bo,
839 struct ttm_resource *old_mem,
840 struct ttm_resource *new_mem)
841{
842 struct vmw_bo *dx_query_mob;
843 struct ttm_device *bdev = bo->bdev;
844 struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
845
846 mutex_lock(&dev_priv->binding_mutex);
847
848 /* If BO is being moved from MOB to system memory */
849 if (old_mem &&
850 new_mem->mem_type == TTM_PL_SYSTEM &&
851 old_mem->mem_type == VMW_PL_MOB) {
852 struct vmw_fence_obj *fence;
853
854 dx_query_mob = to_vmw_bo(&bo->base);
855 if (!dx_query_mob || !dx_query_mob->dx_query_ctx) {
856 mutex_unlock(&dev_priv->binding_mutex);
857 return;
858 }
859
860 (void) vmw_query_readback_all(dx_query_mob);
861 mutex_unlock(&dev_priv->binding_mutex);
862
863 /* Create a fence and attach the BO to it */
864 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
865 vmw_bo_fence_single(bo, fence);
866
867 if (fence != NULL)
868 vmw_fence_obj_unreference(&fence);
869
870 (void) ttm_bo_wait(bo, false, false);
871 } else
872 mutex_unlock(&dev_priv->binding_mutex);
873}
874
875/**
876 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
877 *
878 * @res: The resource being queried.
879 */
880bool vmw_resource_needs_backup(const struct vmw_resource *res)
881{
882 return res->func->needs_guest_memory;
883}
884
885/**
886 * vmw_resource_evict_type - Evict all resources of a specific type
887 *
888 * @dev_priv: Pointer to a device private struct
889 * @type: The resource type to evict
890 *
891 * To avoid thrashing starvation or as part of the hibernation sequence,
892 * try to evict all evictable resources of a specific type.
893 */
894static void vmw_resource_evict_type(struct vmw_private *dev_priv,
895 enum vmw_res_type type)
896{
897 struct list_head *lru_list = &dev_priv->res_lru[type];
898 struct vmw_resource *evict_res;
899 unsigned err_count = 0;
900 int ret;
901 struct ww_acquire_ctx ticket;
902
903 do {
904 spin_lock(&dev_priv->resource_lock);
905
906 if (list_empty(lru_list))
907 goto out_unlock;
908
909 evict_res = vmw_resource_reference(
910 list_first_entry(lru_list, struct vmw_resource,
911 lru_head));
912 list_del_init(&evict_res->lru_head);
913 spin_unlock(&dev_priv->resource_lock);
914
915 /* Wait lock backup buffers with a ticket. */
916 ret = vmw_resource_do_evict(&ticket, evict_res, false);
917 if (unlikely(ret != 0)) {
918 spin_lock(&dev_priv->resource_lock);
919 list_add_tail(&evict_res->lru_head, lru_list);
920 spin_unlock(&dev_priv->resource_lock);
921 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
922 vmw_resource_unreference(&evict_res);
923 return;
924 }
925 }
926
927 vmw_resource_unreference(&evict_res);
928 } while (1);
929
930out_unlock:
931 spin_unlock(&dev_priv->resource_lock);
932}
933
934/**
935 * vmw_resource_evict_all - Evict all evictable resources
936 *
937 * @dev_priv: Pointer to a device private struct
938 *
939 * To avoid thrashing starvation or as part of the hibernation sequence,
940 * evict all evictable resources. In particular this means that all
941 * guest-backed resources that are registered with the device are
942 * evicted and the OTable becomes clean.
943 */
944void vmw_resource_evict_all(struct vmw_private *dev_priv)
945{
946 enum vmw_res_type type;
947
948 mutex_lock(&dev_priv->cmdbuf_mutex);
949
950 for (type = 0; type < vmw_res_max; ++type)
951 vmw_resource_evict_type(dev_priv, type);
952
953 mutex_unlock(&dev_priv->cmdbuf_mutex);
954}
955
956/*
957 * vmw_resource_pin - Add a pin reference on a resource
958 *
959 * @res: The resource to add a pin reference on
960 *
961 * This function adds a pin reference, and if needed validates the resource.
962 * Having a pin reference means that the resource can never be evicted, and
963 * its id will never change as long as there is a pin reference.
964 * This function returns 0 on success and a negative error code on failure.
965 */
966int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
967{
968 struct ttm_operation_ctx ctx = { interruptible, false };
969 struct vmw_private *dev_priv = res->dev_priv;
970 int ret;
971
972 mutex_lock(&dev_priv->cmdbuf_mutex);
973 ret = vmw_resource_reserve(res, interruptible, false);
974 if (ret)
975 goto out_no_reserve;
976
977 if (res->pin_count == 0) {
978 struct vmw_bo *vbo = NULL;
979
980 if (res->guest_memory_bo) {
981 vbo = res->guest_memory_bo;
982
983 ret = ttm_bo_reserve(&vbo->tbo, interruptible, false, NULL);
984 if (ret)
985 goto out_no_validate;
986 if (!vbo->tbo.pin_count) {
987 vmw_bo_placement_set(vbo,
988 res->func->domain,
989 res->func->busy_domain);
990 ret = ttm_bo_validate
991 (&vbo->tbo,
992 &vbo->placement,
993 &ctx);
994 if (ret) {
995 ttm_bo_unreserve(&vbo->tbo);
996 goto out_no_validate;
997 }
998 }
999
1000 /* Do we really need to pin the MOB as well? */
1001 vmw_bo_pin_reserved(vbo, true);
1002 }
1003 ret = vmw_resource_validate(res, interruptible, true);
1004 if (vbo)
1005 ttm_bo_unreserve(&vbo->tbo);
1006 if (ret)
1007 goto out_no_validate;
1008 }
1009 res->pin_count++;
1010
1011out_no_validate:
1012 vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
1013out_no_reserve:
1014 mutex_unlock(&dev_priv->cmdbuf_mutex);
1015
1016 return ret;
1017}
1018
1019/**
1020 * vmw_resource_unpin - Remove a pin reference from a resource
1021 *
1022 * @res: The resource to remove a pin reference from
1023 *
1024 * Having a pin reference means that the resource can never be evicted, and
1025 * its id will never change as long as there is a pin reference.
1026 */
1027void vmw_resource_unpin(struct vmw_resource *res)
1028{
1029 struct vmw_private *dev_priv = res->dev_priv;
1030 int ret;
1031
1032 mutex_lock(&dev_priv->cmdbuf_mutex);
1033
1034 ret = vmw_resource_reserve(res, false, true);
1035 WARN_ON(ret);
1036
1037 WARN_ON(res->pin_count == 0);
1038 if (--res->pin_count == 0 && res->guest_memory_bo) {
1039 struct vmw_bo *vbo = res->guest_memory_bo;
1040
1041 (void) ttm_bo_reserve(&vbo->tbo, false, false, NULL);
1042 vmw_bo_pin_reserved(vbo, false);
1043 ttm_bo_unreserve(&vbo->tbo);
1044 }
1045
1046 vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
1047
1048 mutex_unlock(&dev_priv->cmdbuf_mutex);
1049}
1050
1051/**
1052 * vmw_res_type - Return the resource type
1053 *
1054 * @res: Pointer to the resource
1055 */
1056enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1057{
1058 return res->func->res_type;
1059}
1060
1061/**
1062 * vmw_resource_dirty_update - Update a resource's dirty tracker with a
1063 * sequential range of touched backing store memory.
1064 * @res: The resource.
1065 * @start: The first page touched.
1066 * @end: The last page touched + 1.
1067 */
1068void vmw_resource_dirty_update(struct vmw_resource *res, pgoff_t start,
1069 pgoff_t end)
1070{
1071 if (res->dirty)
1072 res->func->dirty_range_add(res, start << PAGE_SHIFT,
1073 end << PAGE_SHIFT);
1074}
1075
1076int vmw_resource_clean(struct vmw_resource *res)
1077{
1078 int ret = 0;
1079
1080 if (res->res_dirty) {
1081 if (!res->func->clean)
1082 return -EINVAL;
1083
1084 ret = res->func->clean(res);
1085 if (ret)
1086 return ret;
1087 res->res_dirty = false;
1088 }
1089 return ret;
1090}
1091
1092/**
1093 * vmw_resources_clean - Clean resources intersecting a mob range
1094 * @vbo: The mob buffer object
1095 * @start: The mob page offset starting the range
1096 * @end: The mob page offset ending the range
1097 * @num_prefault: Returns how many pages including the first have been
1098 * cleaned and are ok to prefault
1099 */
1100int vmw_resources_clean(struct vmw_bo *vbo, pgoff_t start,
1101 pgoff_t end, pgoff_t *num_prefault)
1102{
1103 struct rb_node *cur = vbo->res_tree.rb_node;
1104 struct vmw_resource *found = NULL;
1105 unsigned long res_start = start << PAGE_SHIFT;
1106 unsigned long res_end = end << PAGE_SHIFT;
1107 unsigned long last_cleaned = 0;
1108 int ret;
1109
1110 /*
1111 * Find the resource with lowest backup_offset that intersects the
1112 * range.
1113 */
1114 while (cur) {
1115 struct vmw_resource *cur_res =
1116 container_of(cur, struct vmw_resource, mob_node);
1117
1118 if (cur_res->guest_memory_offset >= res_end) {
1119 cur = cur->rb_left;
1120 } else if (cur_res->guest_memory_offset + cur_res->guest_memory_size <=
1121 res_start) {
1122 cur = cur->rb_right;
1123 } else {
1124 found = cur_res;
1125 cur = cur->rb_left;
1126 /* Continue to look for resources with lower offsets */
1127 }
1128 }
1129
1130 /*
1131 * In order of increasing guest_memory_offset, clean dirty resources
1132 * intersecting the range.
1133 */
1134 while (found) {
1135 ret = vmw_resource_clean(found);
1136 if (ret)
1137 return ret;
1138 last_cleaned = found->guest_memory_offset + found->guest_memory_size;
1139 cur = rb_next(&found->mob_node);
1140 if (!cur)
1141 break;
1142
1143 found = container_of(cur, struct vmw_resource, mob_node);
1144 if (found->guest_memory_offset >= res_end)
1145 break;
1146 }
1147
1148 /*
1149 * Set number of pages allowed prefaulting and fence the buffer object
1150 */
1151 *num_prefault = 1;
1152 if (last_cleaned > res_start) {
1153 struct ttm_buffer_object *bo = &vbo->tbo;
1154
1155 *num_prefault = __KERNEL_DIV_ROUND_UP(last_cleaned - res_start,
1156 PAGE_SIZE);
1157 vmw_bo_fence_single(bo, NULL);
1158 }
1159
1160 return 0;
1161}
1/**************************************************************************
2 *
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include "vmwgfx_drv.h"
29#include <drm/vmwgfx_drm.h>
30#include <drm/ttm/ttm_object.h>
31#include <drm/ttm/ttm_placement.h>
32#include <drm/drmP.h>
33#include "vmwgfx_resource_priv.h"
34
35#define VMW_RES_EVICT_ERR_COUNT 10
36
37struct vmw_user_dma_buffer {
38 struct ttm_prime_object prime;
39 struct vmw_dma_buffer dma;
40};
41
42struct vmw_bo_user_rep {
43 uint32_t handle;
44 uint64_t map_handle;
45};
46
47struct vmw_stream {
48 struct vmw_resource res;
49 uint32_t stream_id;
50};
51
52struct vmw_user_stream {
53 struct ttm_base_object base;
54 struct vmw_stream stream;
55};
56
57
58static uint64_t vmw_user_stream_size;
59
60static const struct vmw_res_func vmw_stream_func = {
61 .res_type = vmw_res_stream,
62 .needs_backup = false,
63 .may_evict = false,
64 .type_name = "video streams",
65 .backup_placement = NULL,
66 .create = NULL,
67 .destroy = NULL,
68 .bind = NULL,
69 .unbind = NULL
70};
71
72static inline struct vmw_dma_buffer *
73vmw_dma_buffer(struct ttm_buffer_object *bo)
74{
75 return container_of(bo, struct vmw_dma_buffer, base);
76}
77
78static inline struct vmw_user_dma_buffer *
79vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80{
81 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83}
84
85struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86{
87 kref_get(&res->kref);
88 return res;
89}
90
91struct vmw_resource *
92vmw_resource_reference_unless_doomed(struct vmw_resource *res)
93{
94 return kref_get_unless_zero(&res->kref) ? res : NULL;
95}
96
97/**
98 * vmw_resource_release_id - release a resource id to the id manager.
99 *
100 * @res: Pointer to the resource.
101 *
102 * Release the resource id to the resource id manager and set it to -1
103 */
104void vmw_resource_release_id(struct vmw_resource *res)
105{
106 struct vmw_private *dev_priv = res->dev_priv;
107 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
108
109 write_lock(&dev_priv->resource_lock);
110 if (res->id != -1)
111 idr_remove(idr, res->id);
112 res->id = -1;
113 write_unlock(&dev_priv->resource_lock);
114}
115
116static void vmw_resource_release(struct kref *kref)
117{
118 struct vmw_resource *res =
119 container_of(kref, struct vmw_resource, kref);
120 struct vmw_private *dev_priv = res->dev_priv;
121 int id;
122 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
123
124 res->avail = false;
125 list_del_init(&res->lru_head);
126 write_unlock(&dev_priv->resource_lock);
127 if (res->backup) {
128 struct ttm_buffer_object *bo = &res->backup->base;
129
130 ttm_bo_reserve(bo, false, false, false, 0);
131 if (!list_empty(&res->mob_head) &&
132 res->func->unbind != NULL) {
133 struct ttm_validate_buffer val_buf;
134
135 val_buf.bo = bo;
136 res->func->unbind(res, false, &val_buf);
137 }
138 res->backup_dirty = false;
139 list_del_init(&res->mob_head);
140 ttm_bo_unreserve(bo);
141 vmw_dmabuf_unreference(&res->backup);
142 }
143
144 if (likely(res->hw_destroy != NULL)) {
145 res->hw_destroy(res);
146 mutex_lock(&dev_priv->binding_mutex);
147 vmw_context_binding_res_list_kill(&res->binding_head);
148 mutex_unlock(&dev_priv->binding_mutex);
149 }
150
151 id = res->id;
152 if (res->res_free != NULL)
153 res->res_free(res);
154 else
155 kfree(res);
156
157 write_lock(&dev_priv->resource_lock);
158
159 if (id != -1)
160 idr_remove(idr, id);
161}
162
163void vmw_resource_unreference(struct vmw_resource **p_res)
164{
165 struct vmw_resource *res = *p_res;
166 struct vmw_private *dev_priv = res->dev_priv;
167
168 *p_res = NULL;
169 write_lock(&dev_priv->resource_lock);
170 kref_put(&res->kref, vmw_resource_release);
171 write_unlock(&dev_priv->resource_lock);
172}
173
174
175/**
176 * vmw_resource_alloc_id - release a resource id to the id manager.
177 *
178 * @res: Pointer to the resource.
179 *
180 * Allocate the lowest free resource from the resource manager, and set
181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182 */
183int vmw_resource_alloc_id(struct vmw_resource *res)
184{
185 struct vmw_private *dev_priv = res->dev_priv;
186 int ret;
187 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189 BUG_ON(res->id != -1);
190
191 idr_preload(GFP_KERNEL);
192 write_lock(&dev_priv->resource_lock);
193
194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 if (ret >= 0)
196 res->id = ret;
197
198 write_unlock(&dev_priv->resource_lock);
199 idr_preload_end();
200 return ret < 0 ? ret : 0;
201}
202
203/**
204 * vmw_resource_init - initialize a struct vmw_resource
205 *
206 * @dev_priv: Pointer to a device private struct.
207 * @res: The struct vmw_resource to initialize.
208 * @obj_type: Resource object type.
209 * @delay_id: Boolean whether to defer device id allocation until
210 * the first validation.
211 * @res_free: Resource destructor.
212 * @func: Resource function table.
213 */
214int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215 bool delay_id,
216 void (*res_free) (struct vmw_resource *res),
217 const struct vmw_res_func *func)
218{
219 kref_init(&res->kref);
220 res->hw_destroy = NULL;
221 res->res_free = res_free;
222 res->avail = false;
223 res->dev_priv = dev_priv;
224 res->func = func;
225 INIT_LIST_HEAD(&res->lru_head);
226 INIT_LIST_HEAD(&res->mob_head);
227 INIT_LIST_HEAD(&res->binding_head);
228 res->id = -1;
229 res->backup = NULL;
230 res->backup_offset = 0;
231 res->backup_dirty = false;
232 res->res_dirty = false;
233 if (delay_id)
234 return 0;
235 else
236 return vmw_resource_alloc_id(res);
237}
238
239/**
240 * vmw_resource_activate
241 *
242 * @res: Pointer to the newly created resource
243 * @hw_destroy: Destroy function. NULL if none.
244 *
245 * Activate a resource after the hardware has been made aware of it.
246 * Set tye destroy function to @destroy. Typically this frees the
247 * resource and destroys the hardware resources associated with it.
248 * Activate basically means that the function vmw_resource_lookup will
249 * find it.
250 */
251void vmw_resource_activate(struct vmw_resource *res,
252 void (*hw_destroy) (struct vmw_resource *))
253{
254 struct vmw_private *dev_priv = res->dev_priv;
255
256 write_lock(&dev_priv->resource_lock);
257 res->avail = true;
258 res->hw_destroy = hw_destroy;
259 write_unlock(&dev_priv->resource_lock);
260}
261
262struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263 struct idr *idr, int id)
264{
265 struct vmw_resource *res;
266
267 read_lock(&dev_priv->resource_lock);
268 res = idr_find(idr, id);
269 if (res && res->avail)
270 kref_get(&res->kref);
271 else
272 res = NULL;
273 read_unlock(&dev_priv->resource_lock);
274
275 if (unlikely(res == NULL))
276 return NULL;
277
278 return res;
279}
280
281/**
282 * vmw_user_resource_lookup_handle - lookup a struct resource from a
283 * TTM user-space handle and perform basic type checks
284 *
285 * @dev_priv: Pointer to a device private struct
286 * @tfile: Pointer to a struct ttm_object_file identifying the caller
287 * @handle: The TTM user-space handle
288 * @converter: Pointer to an object describing the resource type
289 * @p_res: On successful return the location pointed to will contain
290 * a pointer to a refcounted struct vmw_resource.
291 *
292 * If the handle can't be found or is associated with an incorrect resource
293 * type, -EINVAL will be returned.
294 */
295int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
296 struct ttm_object_file *tfile,
297 uint32_t handle,
298 const struct vmw_user_resource_conv
299 *converter,
300 struct vmw_resource **p_res)
301{
302 struct ttm_base_object *base;
303 struct vmw_resource *res;
304 int ret = -EINVAL;
305
306 base = ttm_base_object_lookup(tfile, handle);
307 if (unlikely(base == NULL))
308 return -EINVAL;
309
310 if (unlikely(ttm_base_object_type(base) != converter->object_type))
311 goto out_bad_resource;
312
313 res = converter->base_obj_to_res(base);
314
315 read_lock(&dev_priv->resource_lock);
316 if (!res->avail || res->res_free != converter->res_free) {
317 read_unlock(&dev_priv->resource_lock);
318 goto out_bad_resource;
319 }
320
321 kref_get(&res->kref);
322 read_unlock(&dev_priv->resource_lock);
323
324 *p_res = res;
325 ret = 0;
326
327out_bad_resource:
328 ttm_base_object_unref(&base);
329
330 return ret;
331}
332
333/**
334 * Helper function that looks either a surface or dmabuf.
335 *
336 * The pointer this pointed at by out_surf and out_buf needs to be null.
337 */
338int vmw_user_lookup_handle(struct vmw_private *dev_priv,
339 struct ttm_object_file *tfile,
340 uint32_t handle,
341 struct vmw_surface **out_surf,
342 struct vmw_dma_buffer **out_buf)
343{
344 struct vmw_resource *res;
345 int ret;
346
347 BUG_ON(*out_surf || *out_buf);
348
349 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
350 user_surface_converter,
351 &res);
352 if (!ret) {
353 *out_surf = vmw_res_to_srf(res);
354 return 0;
355 }
356
357 *out_surf = NULL;
358 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
359 return ret;
360}
361
362/**
363 * Buffer management.
364 */
365
366/**
367 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
368 *
369 * @dev_priv: Pointer to a struct vmw_private identifying the device.
370 * @size: The requested buffer size.
371 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
372 */
373static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
374 bool user)
375{
376 static size_t struct_size, user_struct_size;
377 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
378 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
379
380 if (unlikely(struct_size == 0)) {
381 size_t backend_size = ttm_round_pot(vmw_tt_size);
382
383 struct_size = backend_size +
384 ttm_round_pot(sizeof(struct vmw_dma_buffer));
385 user_struct_size = backend_size +
386 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
387 }
388
389 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
390 page_array_size +=
391 ttm_round_pot(num_pages * sizeof(dma_addr_t));
392
393 return ((user) ? user_struct_size : struct_size) +
394 page_array_size;
395}
396
397void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
398{
399 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
400
401 kfree(vmw_bo);
402}
403
404static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
405{
406 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
407
408 ttm_prime_object_kfree(vmw_user_bo, prime);
409}
410
411int vmw_dmabuf_init(struct vmw_private *dev_priv,
412 struct vmw_dma_buffer *vmw_bo,
413 size_t size, struct ttm_placement *placement,
414 bool interruptible,
415 void (*bo_free) (struct ttm_buffer_object *bo))
416{
417 struct ttm_bo_device *bdev = &dev_priv->bdev;
418 size_t acc_size;
419 int ret;
420 bool user = (bo_free == &vmw_user_dmabuf_destroy);
421
422 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
423
424 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
425 memset(vmw_bo, 0, sizeof(*vmw_bo));
426
427 INIT_LIST_HEAD(&vmw_bo->res_list);
428
429 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
430 ttm_bo_type_device, placement,
431 0, interruptible,
432 NULL, acc_size, NULL, bo_free);
433 return ret;
434}
435
436static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
437{
438 struct vmw_user_dma_buffer *vmw_user_bo;
439 struct ttm_base_object *base = *p_base;
440 struct ttm_buffer_object *bo;
441
442 *p_base = NULL;
443
444 if (unlikely(base == NULL))
445 return;
446
447 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
448 prime.base);
449 bo = &vmw_user_bo->dma.base;
450 ttm_bo_unref(&bo);
451}
452
453static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
454 enum ttm_ref_type ref_type)
455{
456 struct vmw_user_dma_buffer *user_bo;
457 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
458
459 switch (ref_type) {
460 case TTM_REF_SYNCCPU_WRITE:
461 ttm_bo_synccpu_write_release(&user_bo->dma.base);
462 break;
463 default:
464 BUG();
465 }
466}
467
468/**
469 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
470 *
471 * @dev_priv: Pointer to a struct device private.
472 * @tfile: Pointer to a struct ttm_object_file on which to register the user
473 * object.
474 * @size: Size of the dma buffer.
475 * @shareable: Boolean whether the buffer is shareable with other open files.
476 * @handle: Pointer to where the handle value should be assigned.
477 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
478 * should be assigned.
479 */
480int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
481 struct ttm_object_file *tfile,
482 uint32_t size,
483 bool shareable,
484 uint32_t *handle,
485 struct vmw_dma_buffer **p_dma_buf)
486{
487 struct vmw_user_dma_buffer *user_bo;
488 struct ttm_buffer_object *tmp;
489 int ret;
490
491 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492 if (unlikely(user_bo == NULL)) {
493 DRM_ERROR("Failed to allocate a buffer.\n");
494 return -ENOMEM;
495 }
496
497 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498 (dev_priv->has_mob) ?
499 &vmw_sys_placement :
500 &vmw_vram_sys_placement, true,
501 &vmw_user_dmabuf_destroy);
502 if (unlikely(ret != 0))
503 return ret;
504
505 tmp = ttm_bo_reference(&user_bo->dma.base);
506 ret = ttm_prime_object_init(tfile,
507 size,
508 &user_bo->prime,
509 shareable,
510 ttm_buffer_type,
511 &vmw_user_dmabuf_release,
512 &vmw_user_dmabuf_ref_obj_release);
513 if (unlikely(ret != 0)) {
514 ttm_bo_unref(&tmp);
515 goto out_no_base_object;
516 }
517
518 *p_dma_buf = &user_bo->dma;
519 *handle = user_bo->prime.base.hash.key;
520
521out_no_base_object:
522 return ret;
523}
524
525/**
526 * vmw_user_dmabuf_verify_access - verify access permissions on this
527 * buffer object.
528 *
529 * @bo: Pointer to the buffer object being accessed
530 * @tfile: Identifying the caller.
531 */
532int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
533 struct ttm_object_file *tfile)
534{
535 struct vmw_user_dma_buffer *vmw_user_bo;
536
537 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
538 return -EPERM;
539
540 vmw_user_bo = vmw_user_dma_buffer(bo);
541
542 /* Check that the caller has opened the object. */
543 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
544 return 0;
545
546 DRM_ERROR("Could not grant buffer access.\n");
547 return -EPERM;
548}
549
550/**
551 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
552 * access, idling previous GPU operations on the buffer and optionally
553 * blocking it for further command submissions.
554 *
555 * @user_bo: Pointer to the buffer object being grabbed for CPU access
556 * @tfile: Identifying the caller.
557 * @flags: Flags indicating how the grab should be performed.
558 *
559 * A blocking grab will be automatically released when @tfile is closed.
560 */
561static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
562 struct ttm_object_file *tfile,
563 uint32_t flags)
564{
565 struct ttm_buffer_object *bo = &user_bo->dma.base;
566 bool existed;
567 int ret;
568
569 if (flags & drm_vmw_synccpu_allow_cs) {
570 struct ttm_bo_device *bdev = bo->bdev;
571
572 spin_lock(&bdev->fence_lock);
573 ret = ttm_bo_wait(bo, false, true,
574 !!(flags & drm_vmw_synccpu_dontblock));
575 spin_unlock(&bdev->fence_lock);
576 return ret;
577 }
578
579 ret = ttm_bo_synccpu_write_grab
580 (bo, !!(flags & drm_vmw_synccpu_dontblock));
581 if (unlikely(ret != 0))
582 return ret;
583
584 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
585 TTM_REF_SYNCCPU_WRITE, &existed);
586 if (ret != 0 || existed)
587 ttm_bo_synccpu_write_release(&user_bo->dma.base);
588
589 return ret;
590}
591
592/**
593 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
594 * and unblock command submission on the buffer if blocked.
595 *
596 * @handle: Handle identifying the buffer object.
597 * @tfile: Identifying the caller.
598 * @flags: Flags indicating the type of release.
599 */
600static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
601 struct ttm_object_file *tfile,
602 uint32_t flags)
603{
604 if (!(flags & drm_vmw_synccpu_allow_cs))
605 return ttm_ref_object_base_unref(tfile, handle,
606 TTM_REF_SYNCCPU_WRITE);
607
608 return 0;
609}
610
611/**
612 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
613 * functionality.
614 *
615 * @dev: Identifies the drm device.
616 * @data: Pointer to the ioctl argument.
617 * @file_priv: Identifies the caller.
618 *
619 * This function checks the ioctl arguments for validity and calls the
620 * relevant synccpu functions.
621 */
622int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
623 struct drm_file *file_priv)
624{
625 struct drm_vmw_synccpu_arg *arg =
626 (struct drm_vmw_synccpu_arg *) data;
627 struct vmw_dma_buffer *dma_buf;
628 struct vmw_user_dma_buffer *user_bo;
629 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
630 int ret;
631
632 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
633 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
634 drm_vmw_synccpu_dontblock |
635 drm_vmw_synccpu_allow_cs)) != 0) {
636 DRM_ERROR("Illegal synccpu flags.\n");
637 return -EINVAL;
638 }
639
640 switch (arg->op) {
641 case drm_vmw_synccpu_grab:
642 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
643 if (unlikely(ret != 0))
644 return ret;
645
646 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
647 dma);
648 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
649 vmw_dmabuf_unreference(&dma_buf);
650 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
651 ret != -EBUSY)) {
652 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
653 (unsigned int) arg->handle);
654 return ret;
655 }
656 break;
657 case drm_vmw_synccpu_release:
658 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
659 arg->flags);
660 if (unlikely(ret != 0)) {
661 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
662 (unsigned int) arg->handle);
663 return ret;
664 }
665 break;
666 default:
667 DRM_ERROR("Invalid synccpu operation.\n");
668 return -EINVAL;
669 }
670
671 return 0;
672}
673
674int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
675 struct drm_file *file_priv)
676{
677 struct vmw_private *dev_priv = vmw_priv(dev);
678 union drm_vmw_alloc_dmabuf_arg *arg =
679 (union drm_vmw_alloc_dmabuf_arg *)data;
680 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
681 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
682 struct vmw_dma_buffer *dma_buf;
683 uint32_t handle;
684 int ret;
685
686 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
687 if (unlikely(ret != 0))
688 return ret;
689
690 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
691 req->size, false, &handle, &dma_buf);
692 if (unlikely(ret != 0))
693 goto out_no_dmabuf;
694
695 rep->handle = handle;
696 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
697 rep->cur_gmr_id = handle;
698 rep->cur_gmr_offset = 0;
699
700 vmw_dmabuf_unreference(&dma_buf);
701
702out_no_dmabuf:
703 ttm_read_unlock(&dev_priv->reservation_sem);
704
705 return ret;
706}
707
708int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
709 struct drm_file *file_priv)
710{
711 struct drm_vmw_unref_dmabuf_arg *arg =
712 (struct drm_vmw_unref_dmabuf_arg *)data;
713
714 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
715 arg->handle,
716 TTM_REF_USAGE);
717}
718
719int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
720 uint32_t handle, struct vmw_dma_buffer **out)
721{
722 struct vmw_user_dma_buffer *vmw_user_bo;
723 struct ttm_base_object *base;
724
725 base = ttm_base_object_lookup(tfile, handle);
726 if (unlikely(base == NULL)) {
727 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
728 (unsigned long)handle);
729 return -ESRCH;
730 }
731
732 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
733 ttm_base_object_unref(&base);
734 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
735 (unsigned long)handle);
736 return -EINVAL;
737 }
738
739 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
740 prime.base);
741 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
742 ttm_base_object_unref(&base);
743 *out = &vmw_user_bo->dma;
744
745 return 0;
746}
747
748int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
749 struct vmw_dma_buffer *dma_buf,
750 uint32_t *handle)
751{
752 struct vmw_user_dma_buffer *user_bo;
753
754 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
755 return -EINVAL;
756
757 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
758
759 *handle = user_bo->prime.base.hash.key;
760 return ttm_ref_object_add(tfile, &user_bo->prime.base,
761 TTM_REF_USAGE, NULL);
762}
763
764/*
765 * Stream management
766 */
767
768static void vmw_stream_destroy(struct vmw_resource *res)
769{
770 struct vmw_private *dev_priv = res->dev_priv;
771 struct vmw_stream *stream;
772 int ret;
773
774 DRM_INFO("%s: unref\n", __func__);
775 stream = container_of(res, struct vmw_stream, res);
776
777 ret = vmw_overlay_unref(dev_priv, stream->stream_id);
778 WARN_ON(ret != 0);
779}
780
781static int vmw_stream_init(struct vmw_private *dev_priv,
782 struct vmw_stream *stream,
783 void (*res_free) (struct vmw_resource *res))
784{
785 struct vmw_resource *res = &stream->res;
786 int ret;
787
788 ret = vmw_resource_init(dev_priv, res, false, res_free,
789 &vmw_stream_func);
790
791 if (unlikely(ret != 0)) {
792 if (res_free == NULL)
793 kfree(stream);
794 else
795 res_free(&stream->res);
796 return ret;
797 }
798
799 ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
800 if (ret) {
801 vmw_resource_unreference(&res);
802 return ret;
803 }
804
805 DRM_INFO("%s: claimed\n", __func__);
806
807 vmw_resource_activate(&stream->res, vmw_stream_destroy);
808 return 0;
809}
810
811static void vmw_user_stream_free(struct vmw_resource *res)
812{
813 struct vmw_user_stream *stream =
814 container_of(res, struct vmw_user_stream, stream.res);
815 struct vmw_private *dev_priv = res->dev_priv;
816
817 ttm_base_object_kfree(stream, base);
818 ttm_mem_global_free(vmw_mem_glob(dev_priv),
819 vmw_user_stream_size);
820}
821
822/**
823 * This function is called when user space has no more references on the
824 * base object. It releases the base-object's reference on the resource object.
825 */
826
827static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
828{
829 struct ttm_base_object *base = *p_base;
830 struct vmw_user_stream *stream =
831 container_of(base, struct vmw_user_stream, base);
832 struct vmw_resource *res = &stream->stream.res;
833
834 *p_base = NULL;
835 vmw_resource_unreference(&res);
836}
837
838int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
839 struct drm_file *file_priv)
840{
841 struct vmw_private *dev_priv = vmw_priv(dev);
842 struct vmw_resource *res;
843 struct vmw_user_stream *stream;
844 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
845 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
846 struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
847 int ret = 0;
848
849
850 res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
851 if (unlikely(res == NULL))
852 return -EINVAL;
853
854 if (res->res_free != &vmw_user_stream_free) {
855 ret = -EINVAL;
856 goto out;
857 }
858
859 stream = container_of(res, struct vmw_user_stream, stream.res);
860 if (stream->base.tfile != tfile) {
861 ret = -EINVAL;
862 goto out;
863 }
864
865 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
866out:
867 vmw_resource_unreference(&res);
868 return ret;
869}
870
871int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
872 struct drm_file *file_priv)
873{
874 struct vmw_private *dev_priv = vmw_priv(dev);
875 struct vmw_user_stream *stream;
876 struct vmw_resource *res;
877 struct vmw_resource *tmp;
878 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
879 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
880 int ret;
881
882 /*
883 * Approximate idr memory usage with 128 bytes. It will be limited
884 * by maximum number_of streams anyway?
885 */
886
887 if (unlikely(vmw_user_stream_size == 0))
888 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
889
890 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
891 if (unlikely(ret != 0))
892 return ret;
893
894 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
895 vmw_user_stream_size,
896 false, true);
897 if (unlikely(ret != 0)) {
898 if (ret != -ERESTARTSYS)
899 DRM_ERROR("Out of graphics memory for stream"
900 " creation.\n");
901 goto out_unlock;
902 }
903
904
905 stream = kmalloc(sizeof(*stream), GFP_KERNEL);
906 if (unlikely(stream == NULL)) {
907 ttm_mem_global_free(vmw_mem_glob(dev_priv),
908 vmw_user_stream_size);
909 ret = -ENOMEM;
910 goto out_unlock;
911 }
912
913 res = &stream->stream.res;
914 stream->base.shareable = false;
915 stream->base.tfile = NULL;
916
917 /*
918 * From here on, the destructor takes over resource freeing.
919 */
920
921 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
922 if (unlikely(ret != 0))
923 goto out_unlock;
924
925 tmp = vmw_resource_reference(res);
926 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
927 &vmw_user_stream_base_release, NULL);
928
929 if (unlikely(ret != 0)) {
930 vmw_resource_unreference(&tmp);
931 goto out_err;
932 }
933
934 arg->stream_id = res->id;
935out_err:
936 vmw_resource_unreference(&res);
937out_unlock:
938 ttm_read_unlock(&dev_priv->reservation_sem);
939 return ret;
940}
941
942int vmw_user_stream_lookup(struct vmw_private *dev_priv,
943 struct ttm_object_file *tfile,
944 uint32_t *inout_id, struct vmw_resource **out)
945{
946 struct vmw_user_stream *stream;
947 struct vmw_resource *res;
948 int ret;
949
950 res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
951 *inout_id);
952 if (unlikely(res == NULL))
953 return -EINVAL;
954
955 if (res->res_free != &vmw_user_stream_free) {
956 ret = -EINVAL;
957 goto err_ref;
958 }
959
960 stream = container_of(res, struct vmw_user_stream, stream.res);
961 if (stream->base.tfile != tfile) {
962 ret = -EPERM;
963 goto err_ref;
964 }
965
966 *inout_id = stream->stream.stream_id;
967 *out = res;
968 return 0;
969err_ref:
970 vmw_resource_unreference(&res);
971 return ret;
972}
973
974
975/**
976 * vmw_dumb_create - Create a dumb kms buffer
977 *
978 * @file_priv: Pointer to a struct drm_file identifying the caller.
979 * @dev: Pointer to the drm device.
980 * @args: Pointer to a struct drm_mode_create_dumb structure
981 *
982 * This is a driver callback for the core drm create_dumb functionality.
983 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
984 * that the arguments have a different format.
985 */
986int vmw_dumb_create(struct drm_file *file_priv,
987 struct drm_device *dev,
988 struct drm_mode_create_dumb *args)
989{
990 struct vmw_private *dev_priv = vmw_priv(dev);
991 struct vmw_dma_buffer *dma_buf;
992 int ret;
993
994 args->pitch = args->width * ((args->bpp + 7) / 8);
995 args->size = args->pitch * args->height;
996
997 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
998 if (unlikely(ret != 0))
999 return ret;
1000
1001 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1002 args->size, false, &args->handle,
1003 &dma_buf);
1004 if (unlikely(ret != 0))
1005 goto out_no_dmabuf;
1006
1007 vmw_dmabuf_unreference(&dma_buf);
1008out_no_dmabuf:
1009 ttm_read_unlock(&dev_priv->reservation_sem);
1010 return ret;
1011}
1012
1013/**
1014 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1015 *
1016 * @file_priv: Pointer to a struct drm_file identifying the caller.
1017 * @dev: Pointer to the drm device.
1018 * @handle: Handle identifying the dumb buffer.
1019 * @offset: The address space offset returned.
1020 *
1021 * This is a driver callback for the core drm dumb_map_offset functionality.
1022 */
1023int vmw_dumb_map_offset(struct drm_file *file_priv,
1024 struct drm_device *dev, uint32_t handle,
1025 uint64_t *offset)
1026{
1027 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1028 struct vmw_dma_buffer *out_buf;
1029 int ret;
1030
1031 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1032 if (ret != 0)
1033 return -EINVAL;
1034
1035 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1036 vmw_dmabuf_unreference(&out_buf);
1037 return 0;
1038}
1039
1040/**
1041 * vmw_dumb_destroy - Destroy a dumb boffer
1042 *
1043 * @file_priv: Pointer to a struct drm_file identifying the caller.
1044 * @dev: Pointer to the drm device.
1045 * @handle: Handle identifying the dumb buffer.
1046 *
1047 * This is a driver callback for the core drm dumb_destroy functionality.
1048 */
1049int vmw_dumb_destroy(struct drm_file *file_priv,
1050 struct drm_device *dev,
1051 uint32_t handle)
1052{
1053 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1054 handle, TTM_REF_USAGE);
1055}
1056
1057/**
1058 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1059 *
1060 * @res: The resource for which to allocate a backup buffer.
1061 * @interruptible: Whether any sleeps during allocation should be
1062 * performed while interruptible.
1063 */
1064static int vmw_resource_buf_alloc(struct vmw_resource *res,
1065 bool interruptible)
1066{
1067 unsigned long size =
1068 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1069 struct vmw_dma_buffer *backup;
1070 int ret;
1071
1072 if (likely(res->backup)) {
1073 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1074 return 0;
1075 }
1076
1077 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1078 if (unlikely(backup == NULL))
1079 return -ENOMEM;
1080
1081 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1082 res->func->backup_placement,
1083 interruptible,
1084 &vmw_dmabuf_bo_free);
1085 if (unlikely(ret != 0))
1086 goto out_no_dmabuf;
1087
1088 res->backup = backup;
1089
1090out_no_dmabuf:
1091 return ret;
1092}
1093
1094/**
1095 * vmw_resource_do_validate - Make a resource up-to-date and visible
1096 * to the device.
1097 *
1098 * @res: The resource to make visible to the device.
1099 * @val_buf: Information about a buffer possibly
1100 * containing backup data if a bind operation is needed.
1101 *
1102 * On hardware resource shortage, this function returns -EBUSY and
1103 * should be retried once resources have been freed up.
1104 */
1105static int vmw_resource_do_validate(struct vmw_resource *res,
1106 struct ttm_validate_buffer *val_buf)
1107{
1108 int ret = 0;
1109 const struct vmw_res_func *func = res->func;
1110
1111 if (unlikely(res->id == -1)) {
1112 ret = func->create(res);
1113 if (unlikely(ret != 0))
1114 return ret;
1115 }
1116
1117 if (func->bind &&
1118 ((func->needs_backup && list_empty(&res->mob_head) &&
1119 val_buf->bo != NULL) ||
1120 (!func->needs_backup && val_buf->bo != NULL))) {
1121 ret = func->bind(res, val_buf);
1122 if (unlikely(ret != 0))
1123 goto out_bind_failed;
1124 if (func->needs_backup)
1125 list_add_tail(&res->mob_head, &res->backup->res_list);
1126 }
1127
1128 /*
1129 * Only do this on write operations, and move to
1130 * vmw_resource_unreserve if it can be called after
1131 * backup buffers have been unreserved. Otherwise
1132 * sort out locking.
1133 */
1134 res->res_dirty = true;
1135
1136 return 0;
1137
1138out_bind_failed:
1139 func->destroy(res);
1140
1141 return ret;
1142}
1143
1144/**
1145 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1146 * command submission.
1147 *
1148 * @res: Pointer to the struct vmw_resource to unreserve.
1149 * @new_backup: Pointer to new backup buffer if command submission
1150 * switched.
1151 * @new_backup_offset: New backup offset if @new_backup is !NULL.
1152 *
1153 * Currently unreserving a resource means putting it back on the device's
1154 * resource lru list, so that it can be evicted if necessary.
1155 */
1156void vmw_resource_unreserve(struct vmw_resource *res,
1157 struct vmw_dma_buffer *new_backup,
1158 unsigned long new_backup_offset)
1159{
1160 struct vmw_private *dev_priv = res->dev_priv;
1161
1162 if (!list_empty(&res->lru_head))
1163 return;
1164
1165 if (new_backup && new_backup != res->backup) {
1166
1167 if (res->backup) {
1168 lockdep_assert_held(&res->backup->base.resv->lock.base);
1169 list_del_init(&res->mob_head);
1170 vmw_dmabuf_unreference(&res->backup);
1171 }
1172
1173 res->backup = vmw_dmabuf_reference(new_backup);
1174 lockdep_assert_held(&new_backup->base.resv->lock.base);
1175 list_add_tail(&res->mob_head, &new_backup->res_list);
1176 }
1177 if (new_backup)
1178 res->backup_offset = new_backup_offset;
1179
1180 if (!res->func->may_evict || res->id == -1)
1181 return;
1182
1183 write_lock(&dev_priv->resource_lock);
1184 list_add_tail(&res->lru_head,
1185 &res->dev_priv->res_lru[res->func->res_type]);
1186 write_unlock(&dev_priv->resource_lock);
1187}
1188
1189/**
1190 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1191 * for a resource and in that case, allocate
1192 * one, reserve and validate it.
1193 *
1194 * @res: The resource for which to allocate a backup buffer.
1195 * @interruptible: Whether any sleeps during allocation should be
1196 * performed while interruptible.
1197 * @val_buf: On successful return contains data about the
1198 * reserved and validated backup buffer.
1199 */
1200static int
1201vmw_resource_check_buffer(struct vmw_resource *res,
1202 bool interruptible,
1203 struct ttm_validate_buffer *val_buf)
1204{
1205 struct list_head val_list;
1206 bool backup_dirty = false;
1207 int ret;
1208
1209 if (unlikely(res->backup == NULL)) {
1210 ret = vmw_resource_buf_alloc(res, interruptible);
1211 if (unlikely(ret != 0))
1212 return ret;
1213 }
1214
1215 INIT_LIST_HEAD(&val_list);
1216 val_buf->bo = ttm_bo_reference(&res->backup->base);
1217 list_add_tail(&val_buf->head, &val_list);
1218 ret = ttm_eu_reserve_buffers(NULL, &val_list);
1219 if (unlikely(ret != 0))
1220 goto out_no_reserve;
1221
1222 if (res->func->needs_backup && list_empty(&res->mob_head))
1223 return 0;
1224
1225 backup_dirty = res->backup_dirty;
1226 ret = ttm_bo_validate(&res->backup->base,
1227 res->func->backup_placement,
1228 true, false);
1229
1230 if (unlikely(ret != 0))
1231 goto out_no_validate;
1232
1233 return 0;
1234
1235out_no_validate:
1236 ttm_eu_backoff_reservation(NULL, &val_list);
1237out_no_reserve:
1238 ttm_bo_unref(&val_buf->bo);
1239 if (backup_dirty)
1240 vmw_dmabuf_unreference(&res->backup);
1241
1242 return ret;
1243}
1244
1245/**
1246 * vmw_resource_reserve - Reserve a resource for command submission
1247 *
1248 * @res: The resource to reserve.
1249 *
1250 * This function takes the resource off the LRU list and make sure
1251 * a backup buffer is present for guest-backed resources. However,
1252 * the buffer may not be bound to the resource at this point.
1253 *
1254 */
1255int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1256{
1257 struct vmw_private *dev_priv = res->dev_priv;
1258 int ret;
1259
1260 write_lock(&dev_priv->resource_lock);
1261 list_del_init(&res->lru_head);
1262 write_unlock(&dev_priv->resource_lock);
1263
1264 if (res->func->needs_backup && res->backup == NULL &&
1265 !no_backup) {
1266 ret = vmw_resource_buf_alloc(res, true);
1267 if (unlikely(ret != 0))
1268 return ret;
1269 }
1270
1271 return 0;
1272}
1273
1274/**
1275 * vmw_resource_backoff_reservation - Unreserve and unreference a
1276 * backup buffer
1277 *.
1278 * @val_buf: Backup buffer information.
1279 */
1280static void
1281vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1282{
1283 struct list_head val_list;
1284
1285 if (likely(val_buf->bo == NULL))
1286 return;
1287
1288 INIT_LIST_HEAD(&val_list);
1289 list_add_tail(&val_buf->head, &val_list);
1290 ttm_eu_backoff_reservation(NULL, &val_list);
1291 ttm_bo_unref(&val_buf->bo);
1292}
1293
1294/**
1295 * vmw_resource_do_evict - Evict a resource, and transfer its data
1296 * to a backup buffer.
1297 *
1298 * @res: The resource to evict.
1299 * @interruptible: Whether to wait interruptible.
1300 */
1301int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1302{
1303 struct ttm_validate_buffer val_buf;
1304 const struct vmw_res_func *func = res->func;
1305 int ret;
1306
1307 BUG_ON(!func->may_evict);
1308
1309 val_buf.bo = NULL;
1310 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1311 if (unlikely(ret != 0))
1312 return ret;
1313
1314 if (unlikely(func->unbind != NULL &&
1315 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1316 ret = func->unbind(res, res->res_dirty, &val_buf);
1317 if (unlikely(ret != 0))
1318 goto out_no_unbind;
1319 list_del_init(&res->mob_head);
1320 }
1321 ret = func->destroy(res);
1322 res->backup_dirty = true;
1323 res->res_dirty = false;
1324out_no_unbind:
1325 vmw_resource_backoff_reservation(&val_buf);
1326
1327 return ret;
1328}
1329
1330
1331/**
1332 * vmw_resource_validate - Make a resource up-to-date and visible
1333 * to the device.
1334 *
1335 * @res: The resource to make visible to the device.
1336 *
1337 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1338 * be reserved and validated.
1339 * On hardware resource shortage, this function will repeatedly evict
1340 * resources of the same type until the validation succeeds.
1341 */
1342int vmw_resource_validate(struct vmw_resource *res)
1343{
1344 int ret;
1345 struct vmw_resource *evict_res;
1346 struct vmw_private *dev_priv = res->dev_priv;
1347 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1348 struct ttm_validate_buffer val_buf;
1349 unsigned err_count = 0;
1350
1351 if (likely(!res->func->may_evict))
1352 return 0;
1353
1354 val_buf.bo = NULL;
1355 if (res->backup)
1356 val_buf.bo = &res->backup->base;
1357 do {
1358 ret = vmw_resource_do_validate(res, &val_buf);
1359 if (likely(ret != -EBUSY))
1360 break;
1361
1362 write_lock(&dev_priv->resource_lock);
1363 if (list_empty(lru_list) || !res->func->may_evict) {
1364 DRM_ERROR("Out of device device resources "
1365 "for %s.\n", res->func->type_name);
1366 ret = -EBUSY;
1367 write_unlock(&dev_priv->resource_lock);
1368 break;
1369 }
1370
1371 evict_res = vmw_resource_reference
1372 (list_first_entry(lru_list, struct vmw_resource,
1373 lru_head));
1374 list_del_init(&evict_res->lru_head);
1375
1376 write_unlock(&dev_priv->resource_lock);
1377
1378 ret = vmw_resource_do_evict(evict_res, true);
1379 if (unlikely(ret != 0)) {
1380 write_lock(&dev_priv->resource_lock);
1381 list_add_tail(&evict_res->lru_head, lru_list);
1382 write_unlock(&dev_priv->resource_lock);
1383 if (ret == -ERESTARTSYS ||
1384 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1385 vmw_resource_unreference(&evict_res);
1386 goto out_no_validate;
1387 }
1388 }
1389
1390 vmw_resource_unreference(&evict_res);
1391 } while (1);
1392
1393 if (unlikely(ret != 0))
1394 goto out_no_validate;
1395 else if (!res->func->needs_backup && res->backup) {
1396 list_del_init(&res->mob_head);
1397 vmw_dmabuf_unreference(&res->backup);
1398 }
1399
1400 return 0;
1401
1402out_no_validate:
1403 return ret;
1404}
1405
1406/**
1407 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1408 * object without unreserving it.
1409 *
1410 * @bo: Pointer to the struct ttm_buffer_object to fence.
1411 * @fence: Pointer to the fence. If NULL, this function will
1412 * insert a fence into the command stream..
1413 *
1414 * Contrary to the ttm_eu version of this function, it takes only
1415 * a single buffer object instead of a list, and it also doesn't
1416 * unreserve the buffer object, which needs to be done separately.
1417 */
1418void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1419 struct vmw_fence_obj *fence)
1420{
1421 struct ttm_bo_device *bdev = bo->bdev;
1422 struct ttm_bo_driver *driver = bdev->driver;
1423 struct vmw_fence_obj *old_fence_obj;
1424 struct vmw_private *dev_priv =
1425 container_of(bdev, struct vmw_private, bdev);
1426
1427 if (fence == NULL)
1428 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1429 else
1430 driver->sync_obj_ref(fence);
1431
1432 spin_lock(&bdev->fence_lock);
1433
1434 old_fence_obj = bo->sync_obj;
1435 bo->sync_obj = fence;
1436
1437 spin_unlock(&bdev->fence_lock);
1438
1439 if (old_fence_obj)
1440 vmw_fence_obj_unreference(&old_fence_obj);
1441}
1442
1443/**
1444 * vmw_resource_move_notify - TTM move_notify_callback
1445 *
1446 * @bo: The TTM buffer object about to move.
1447 * @mem: The truct ttm_mem_reg indicating to what memory
1448 * region the move is taking place.
1449 *
1450 * Evicts the Guest Backed hardware resource if the backup
1451 * buffer is being moved out of MOB memory.
1452 * Note that this function should not race with the resource
1453 * validation code as long as it accesses only members of struct
1454 * resource that remain static while bo::res is !NULL and
1455 * while we have @bo reserved. struct resource::backup is *not* a
1456 * static member. The resource validation code will take care
1457 * to set @bo::res to NULL, while having @bo reserved when the
1458 * buffer is no longer bound to the resource, so @bo:res can be
1459 * used to determine whether there is a need to unbind and whether
1460 * it is safe to unbind.
1461 */
1462void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1463 struct ttm_mem_reg *mem)
1464{
1465 struct vmw_dma_buffer *dma_buf;
1466
1467 if (mem == NULL)
1468 return;
1469
1470 if (bo->destroy != vmw_dmabuf_bo_free &&
1471 bo->destroy != vmw_user_dmabuf_destroy)
1472 return;
1473
1474 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1475
1476 if (mem->mem_type != VMW_PL_MOB) {
1477 struct vmw_resource *res, *n;
1478 struct ttm_bo_device *bdev = bo->bdev;
1479 struct ttm_validate_buffer val_buf;
1480
1481 val_buf.bo = bo;
1482
1483 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1484
1485 if (unlikely(res->func->unbind == NULL))
1486 continue;
1487
1488 (void) res->func->unbind(res, true, &val_buf);
1489 res->backup_dirty = true;
1490 res->res_dirty = false;
1491 list_del_init(&res->mob_head);
1492 }
1493
1494 spin_lock(&bdev->fence_lock);
1495 (void) ttm_bo_wait(bo, false, false, false);
1496 spin_unlock(&bdev->fence_lock);
1497 }
1498}
1499
1500/**
1501 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1502 *
1503 * @res: The resource being queried.
1504 */
1505bool vmw_resource_needs_backup(const struct vmw_resource *res)
1506{
1507 return res->func->needs_backup;
1508}
1509
1510/**
1511 * vmw_resource_evict_type - Evict all resources of a specific type
1512 *
1513 * @dev_priv: Pointer to a device private struct
1514 * @type: The resource type to evict
1515 *
1516 * To avoid thrashing starvation or as part of the hibernation sequence,
1517 * try to evict all evictable resources of a specific type.
1518 */
1519static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1520 enum vmw_res_type type)
1521{
1522 struct list_head *lru_list = &dev_priv->res_lru[type];
1523 struct vmw_resource *evict_res;
1524 unsigned err_count = 0;
1525 int ret;
1526
1527 do {
1528 write_lock(&dev_priv->resource_lock);
1529
1530 if (list_empty(lru_list))
1531 goto out_unlock;
1532
1533 evict_res = vmw_resource_reference(
1534 list_first_entry(lru_list, struct vmw_resource,
1535 lru_head));
1536 list_del_init(&evict_res->lru_head);
1537 write_unlock(&dev_priv->resource_lock);
1538
1539 ret = vmw_resource_do_evict(evict_res, false);
1540 if (unlikely(ret != 0)) {
1541 write_lock(&dev_priv->resource_lock);
1542 list_add_tail(&evict_res->lru_head, lru_list);
1543 write_unlock(&dev_priv->resource_lock);
1544 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1545 vmw_resource_unreference(&evict_res);
1546 return;
1547 }
1548 }
1549
1550 vmw_resource_unreference(&evict_res);
1551 } while (1);
1552
1553out_unlock:
1554 write_unlock(&dev_priv->resource_lock);
1555}
1556
1557/**
1558 * vmw_resource_evict_all - Evict all evictable resources
1559 *
1560 * @dev_priv: Pointer to a device private struct
1561 *
1562 * To avoid thrashing starvation or as part of the hibernation sequence,
1563 * evict all evictable resources. In particular this means that all
1564 * guest-backed resources that are registered with the device are
1565 * evicted and the OTable becomes clean.
1566 */
1567void vmw_resource_evict_all(struct vmw_private *dev_priv)
1568{
1569 enum vmw_res_type type;
1570
1571 mutex_lock(&dev_priv->cmdbuf_mutex);
1572
1573 for (type = 0; type < vmw_res_max; ++type)
1574 vmw_resource_evict_type(dev_priv, type);
1575
1576 mutex_unlock(&dev_priv->cmdbuf_mutex);
1577}