Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for SanDisk SDDR-09 SmartMedia reader
   4 *
   5 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   6 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   7 * Developed with the assistance of:
   8 *   (c) 2002 Alan Stern <stern@rowland.org>
   9 *
  10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  11 * This chip is a programmable USB controller. In the SDDR-09, it has
  12 * been programmed to obey a certain limited set of SCSI commands.
  13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  14 * commands.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 */
  16
  17/*
  18 * Known vendor commands: 12 bytes, first byte is opcode
  19 *
  20 * E7: read scatter gather
  21 * E8: read
  22 * E9: write
  23 * EA: erase
  24 * EB: reset
  25 * EC: read status
  26 * ED: read ID
  27 * EE: write CIS (?)
  28 * EF: compute checksum (?)
  29 */
  30
  31#include <linux/errno.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34
  35#include <scsi/scsi.h>
  36#include <scsi/scsi_cmnd.h>
  37#include <scsi/scsi_device.h>
  38
  39#include "usb.h"
  40#include "transport.h"
  41#include "protocol.h"
  42#include "debug.h"
  43#include "scsiglue.h"
  44
  45#define DRV_NAME "ums-sddr09"
  46
  47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  49MODULE_LICENSE("GPL");
  50MODULE_IMPORT_NS("USB_STORAGE");
  51
  52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  54static int usb_stor_sddr09_init(struct us_data *us);
  55
  56
  57/*
  58 * The table of devices
  59 */
  60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  61		    vendorName, productName, useProtocol, useTransport, \
  62		    initFunction, flags) \
  63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  64  .driver_info = (flags) }
  65
  66static const struct usb_device_id sddr09_usb_ids[] = {
  67#	include "unusual_sddr09.h"
  68	{ }		/* Terminating entry */
  69};
  70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  71
  72#undef UNUSUAL_DEV
  73
  74/*
  75 * The flags table
  76 */
  77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  78		    vendor_name, product_name, use_protocol, use_transport, \
  79		    init_function, Flags) \
  80{ \
  81	.vendorName = vendor_name,	\
  82	.productName = product_name,	\
  83	.useProtocol = use_protocol,	\
  84	.useTransport = use_transport,	\
  85	.initFunction = init_function,	\
  86}
  87
  88static const struct us_unusual_dev sddr09_unusual_dev_list[] = {
  89#	include "unusual_sddr09.h"
  90	{ }		/* Terminating entry */
  91};
  92
  93#undef UNUSUAL_DEV
  94
  95
  96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
  97#define LSB_of(s) ((s)&0xFF)
  98#define MSB_of(s) ((s)>>8)
  99
 100/*
 101 * First some stuff that does not belong here:
 102 * data on SmartMedia and other cards, completely
 103 * unrelated to this driver.
 104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 105 */
 106
 107struct nand_flash_dev {
 108	int model_id;
 109	int chipshift;		/* 1<<cs bytes total capacity */
 110	char pageshift;		/* 1<<ps bytes in a page */
 111	char blockshift;	/* 1<<bs pages in an erase block */
 112	char zoneshift;		/* 1<<zs blocks in a zone */
 113				/* # of logical blocks is 125/128 of this */
 114	char pageadrlen;	/* length of an address in bytes - 1 */
 115};
 116
 117/*
 118 * NAND Flash Manufacturer ID Codes
 119 */
 120#define NAND_MFR_AMD		0x01
 121#define NAND_MFR_NATSEMI	0x8f
 122#define NAND_MFR_TOSHIBA	0x98
 123#define NAND_MFR_SAMSUNG	0xec
 124
 125static inline char *nand_flash_manufacturer(int manuf_id) {
 126	switch(manuf_id) {
 127	case NAND_MFR_AMD:
 128		return "AMD";
 129	case NAND_MFR_NATSEMI:
 130		return "NATSEMI";
 131	case NAND_MFR_TOSHIBA:
 132		return "Toshiba";
 133	case NAND_MFR_SAMSUNG:
 134		return "Samsung";
 135	default:
 136		return "unknown";
 137	}
 138}
 139
 140/*
 141 * It looks like it is unnecessary to attach manufacturer to the
 142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 143 *
 144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 145 */
 146
 147static struct nand_flash_dev nand_flash_ids[] = {
 148	/* NAND flash */
 149	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 150	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 151	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 152	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 153	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 154	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 155	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 156	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 157	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 158	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 159	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 160	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 161	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 162
 163	/* MASK ROM */
 164	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 165	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 167	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 168	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 169	{ 0,}
 170};
 171
 172static struct nand_flash_dev *
 173nand_find_id(unsigned char id) {
 174	int i;
 175
 176	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 177		if (nand_flash_ids[i].model_id == id)
 178			return &(nand_flash_ids[i]);
 179	return NULL;
 180}
 181
 182/*
 183 * ECC computation.
 184 */
 185static unsigned char parity[256];
 186static unsigned char ecc2[256];
 187
 188static void nand_init_ecc(void) {
 189	int i, j, a;
 190
 191	parity[0] = 0;
 192	for (i = 1; i < 256; i++)
 193		parity[i] = (parity[i&(i-1)] ^ 1);
 194
 195	for (i = 0; i < 256; i++) {
 196		a = 0;
 197		for (j = 0; j < 8; j++) {
 198			if (i & (1<<j)) {
 199				if ((j & 1) == 0)
 200					a ^= 0x04;
 201				if ((j & 2) == 0)
 202					a ^= 0x10;
 203				if ((j & 4) == 0)
 204					a ^= 0x40;
 205			}
 206		}
 207		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 208	}
 209}
 210
 211/* compute 3-byte ecc on 256 bytes */
 212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 213	int i, j, a;
 214	unsigned char par = 0, bit, bits[8] = {0};
 215
 216	/* collect 16 checksum bits */
 217	for (i = 0; i < 256; i++) {
 218		par ^= data[i];
 219		bit = parity[data[i]];
 220		for (j = 0; j < 8; j++)
 221			if ((i & (1<<j)) == 0)
 222				bits[j] ^= bit;
 223	}
 224
 225	/* put 4+4+4 = 12 bits in the ecc */
 226	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 227	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 228
 229	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 230	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 231
 232	ecc[2] = ecc2[par];
 233}
 234
 235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 236	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 237}
 238
 239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 240	memcpy(data, ecc, 3);
 241}
 242
 243/*
 244 * The actual driver starts here.
 245 */
 246
 247struct sddr09_card_info {
 248	unsigned long	capacity;	/* Size of card in bytes */
 249	int		pagesize;	/* Size of page in bytes */
 250	int		pageshift;	/* log2 of pagesize */
 251	int		blocksize;	/* Size of block in pages */
 252	int		blockshift;	/* log2 of blocksize */
 253	int		blockmask;	/* 2^blockshift - 1 */
 254	int		*lba_to_pba;	/* logical to physical map */
 255	int		*pba_to_lba;	/* physical to logical map */
 256	int		lbact;		/* number of available pages */
 257	int		flags;
 258#define	SDDR09_WP	1		/* write protected */
 259};
 260
 261/*
 262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 264 * so the reader makes up the remaining 48. Don't know whether these numbers
 265 * depend on the card. For now a constant.
 266 */
 267#define CONTROL_SHIFT 6
 268
 269/*
 270 * On my Combo CF/SM reader, the SM reader has LUN 1.
 271 * (and things fail with LUN 0).
 272 * It seems LUN is irrelevant for others.
 273 */
 274#define LUN	1
 275#define	LUNBITS	(LUN << 5)
 276
 277/*
 278 * LBA and PBA are unsigned ints. Special values.
 279 */
 280#define UNDEF    0xffffffff
 281#define SPARE    0xfffffffe
 282#define UNUSABLE 0xfffffffd
 283
 284static const int erase_bad_lba_entries = 0;
 285
 286/* send vendor interface command (0x41) */
 287/* called for requests 0, 1, 8 */
 288static int
 289sddr09_send_command(struct us_data *us,
 290		    unsigned char request,
 291		    unsigned char direction,
 292		    unsigned char *xfer_data,
 293		    unsigned int xfer_len) {
 294	unsigned int pipe;
 295	unsigned char requesttype = (0x41 | direction);
 296	int rc;
 297
 298	// Get the receive or send control pipe number
 299
 300	if (direction == USB_DIR_IN)
 301		pipe = us->recv_ctrl_pipe;
 302	else
 303		pipe = us->send_ctrl_pipe;
 304
 305	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 306				   0, 0, xfer_data, xfer_len);
 307	switch (rc) {
 308		case USB_STOR_XFER_GOOD:	return 0;
 309		case USB_STOR_XFER_STALLED:	return -EPIPE;
 310		default:			return -EIO;
 311	}
 312}
 313
 314static int
 315sddr09_send_scsi_command(struct us_data *us,
 316			 unsigned char *command,
 317			 unsigned int command_len) {
 318	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 319}
 320
 321#if 0
 322/*
 323 * Test Unit Ready Command: 12 bytes.
 324 * byte 0: opcode: 00
 325 */
 326static int
 327sddr09_test_unit_ready(struct us_data *us) {
 328	unsigned char *command = us->iobuf;
 329	int result;
 330
 331	memset(command, 0, 6);
 332	command[1] = LUNBITS;
 333
 334	result = sddr09_send_scsi_command(us, command, 6);
 335
 336	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 337
 338	return result;
 339}
 340#endif
 341
 342/*
 343 * Request Sense Command: 12 bytes.
 344 * byte 0: opcode: 03
 345 * byte 4: data length
 346 */
 347static int
 348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 349	unsigned char *command = us->iobuf;
 350	int result;
 351
 352	memset(command, 0, 12);
 353	command[0] = 0x03;
 354	command[1] = LUNBITS;
 355	command[4] = buflen;
 356
 357	result = sddr09_send_scsi_command(us, command, 12);
 358	if (result)
 359		return result;
 360
 361	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 362			sensebuf, buflen, NULL);
 363	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 364}
 365
 366/*
 367 * Read Command: 12 bytes.
 368 * byte 0: opcode: E8
 369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 370 *			10: read both, 11: read pagewise control.
 371 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 372 * bytes 2-5: address (interpretation depends on byte 1, see below)
 373 * bytes 10-11: count (idem)
 374 *
 375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 376 * A read data command gets data in 512-byte pages.
 377 * A read control command gets control in 64-byte chunks.
 378 * A read both command gets data+control in 576-byte chunks.
 379 *
 380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 381 * next block, while read pagewise control jumps to the next page after
 382 * reading a group of 64 control bytes.
 383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 384 *
 385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 386 */
 387
 388static int
 389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 390	     int nr_of_pages, int bulklen, unsigned char *buf,
 391	     int use_sg) {
 392
 393	unsigned char *command = us->iobuf;
 394	int result;
 395
 396	command[0] = 0xE8;
 397	command[1] = LUNBITS | x;
 398	command[2] = MSB_of(fromaddress>>16);
 399	command[3] = LSB_of(fromaddress>>16); 
 400	command[4] = MSB_of(fromaddress & 0xFFFF);
 401	command[5] = LSB_of(fromaddress & 0xFFFF); 
 402	command[6] = 0;
 403	command[7] = 0;
 404	command[8] = 0;
 405	command[9] = 0;
 406	command[10] = MSB_of(nr_of_pages);
 407	command[11] = LSB_of(nr_of_pages);
 408
 409	result = sddr09_send_scsi_command(us, command, 12);
 410
 411	if (result) {
 412		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 413			     x, result);
 414		return result;
 415	}
 416
 417	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 418				       buf, bulklen, use_sg, NULL);
 419
 420	if (result != USB_STOR_XFER_GOOD) {
 421		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 422			     x, result);
 423		return -EIO;
 424	}
 425	return 0;
 426}
 427
 428/*
 429 * Read Data
 430 *
 431 * fromaddress counts data shorts:
 432 * increasing it by 256 shifts the bytestream by 512 bytes;
 433 * the last 8 bits are ignored.
 434 *
 435 * nr_of_pages counts pages of size (1 << pageshift).
 436 */
 437static int
 438sddr09_read20(struct us_data *us, unsigned long fromaddress,
 439	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 440	int bulklen = nr_of_pages << pageshift;
 441
 442	/* The last 8 bits of fromaddress are ignored. */
 443	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 444			    buf, use_sg);
 445}
 446
 447/*
 448 * Read Blockwise Control
 449 *
 450 * fromaddress gives the starting position (as in read data;
 451 * the last 8 bits are ignored); increasing it by 32*256 shifts
 452 * the output stream by 64 bytes.
 453 *
 454 * count counts control groups of size (1 << controlshift).
 455 * For me, controlshift = 6. Is this constant?
 456 *
 457 * After getting one control group, jump to the next block
 458 * (fromaddress += 8192).
 459 */
 460static int
 461sddr09_read21(struct us_data *us, unsigned long fromaddress,
 462	      int count, int controlshift, unsigned char *buf, int use_sg) {
 463
 464	int bulklen = (count << controlshift);
 465	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 466			    buf, use_sg);
 467}
 468
 469/*
 470 * Read both Data and Control
 471 *
 472 * fromaddress counts data shorts, ignoring control:
 473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 474 * the last 8 bits are ignored.
 475 *
 476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 477 */
 478static int
 479sddr09_read22(struct us_data *us, unsigned long fromaddress,
 480	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 481
 482	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 483	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 484	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 485			    buf, use_sg);
 486}
 487
 488#if 0
 489/*
 490 * Read Pagewise Control
 491 *
 492 * fromaddress gives the starting position (as in read data;
 493 * the last 8 bits are ignored); increasing it by 256 shifts
 494 * the output stream by 64 bytes.
 495 *
 496 * count counts control groups of size (1 << controlshift).
 497 * For me, controlshift = 6. Is this constant?
 498 *
 499 * After getting one control group, jump to the next page
 500 * (fromaddress += 256).
 501 */
 502static int
 503sddr09_read23(struct us_data *us, unsigned long fromaddress,
 504	      int count, int controlshift, unsigned char *buf, int use_sg) {
 505
 506	int bulklen = (count << controlshift);
 507	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 508			    buf, use_sg);
 509}
 510#endif
 511
 512/*
 513 * Erase Command: 12 bytes.
 514 * byte 0: opcode: EA
 515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 516 * 
 517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 518 * The byte address being erased is 2*Eaddress.
 519 * The CIS cannot be erased.
 520 */
 521static int
 522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 523	unsigned char *command = us->iobuf;
 524	int result;
 525
 526	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 527
 528	memset(command, 0, 12);
 529	command[0] = 0xEA;
 530	command[1] = LUNBITS;
 531	command[6] = MSB_of(Eaddress>>16);
 532	command[7] = LSB_of(Eaddress>>16);
 533	command[8] = MSB_of(Eaddress & 0xFFFF);
 534	command[9] = LSB_of(Eaddress & 0xFFFF);
 535
 536	result = sddr09_send_scsi_command(us, command, 12);
 537
 538	if (result)
 539		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 540			     result);
 541
 542	return result;
 543}
 544
 545/*
 546 * Write CIS Command: 12 bytes.
 547 * byte 0: opcode: EE
 548 * bytes 2-5: write address in shorts
 549 * bytes 10-11: sector count
 550 *
 551 * This writes at the indicated address. Don't know how it differs
 552 * from E9. Maybe it does not erase? However, it will also write to
 553 * the CIS.
 554 *
 555 * When two such commands on the same page follow each other directly,
 556 * the second one is not done.
 557 */
 558
 559/*
 560 * Write Command: 12 bytes.
 561 * byte 0: opcode: E9
 562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 565 *
 566 * If write address equals erase address, the erase is done first,
 567 * otherwise the write is done first. When erase address equals zero
 568 * no erase is done?
 569 */
 570static int
 571sddr09_writeX(struct us_data *us,
 572	      unsigned long Waddress, unsigned long Eaddress,
 573	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 574
 575	unsigned char *command = us->iobuf;
 576	int result;
 577
 578	command[0] = 0xE9;
 579	command[1] = LUNBITS;
 580
 581	command[2] = MSB_of(Waddress>>16);
 582	command[3] = LSB_of(Waddress>>16);
 583	command[4] = MSB_of(Waddress & 0xFFFF);
 584	command[5] = LSB_of(Waddress & 0xFFFF);
 585
 586	command[6] = MSB_of(Eaddress>>16);
 587	command[7] = LSB_of(Eaddress>>16);
 588	command[8] = MSB_of(Eaddress & 0xFFFF);
 589	command[9] = LSB_of(Eaddress & 0xFFFF);
 590
 591	command[10] = MSB_of(nr_of_pages);
 592	command[11] = LSB_of(nr_of_pages);
 593
 594	result = sddr09_send_scsi_command(us, command, 12);
 595
 596	if (result) {
 597		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 598			     result);
 599		return result;
 600	}
 601
 602	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 603				       buf, bulklen, use_sg, NULL);
 604
 605	if (result != USB_STOR_XFER_GOOD) {
 606		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 607			     result);
 608		return -EIO;
 609	}
 610	return 0;
 611}
 612
 613/* erase address, write same address */
 614static int
 615sddr09_write_inplace(struct us_data *us, unsigned long address,
 616		     int nr_of_pages, int pageshift, unsigned char *buf,
 617		     int use_sg) {
 618	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 619	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 620			     buf, use_sg);
 621}
 622
 623#if 0
 624/*
 625 * Read Scatter Gather Command: 3+4n bytes.
 626 * byte 0: opcode E7
 627 * byte 2: n
 628 * bytes 4i-1,4i,4i+1: page address
 629 * byte 4i+2: page count
 630 * (i=1..n)
 631 *
 632 * This reads several pages from the card to a single memory buffer.
 633 * The last two bits of byte 1 have the same meaning as for E8.
 634 */
 635static int
 636sddr09_read_sg_test_only(struct us_data *us) {
 637	unsigned char *command = us->iobuf;
 638	int result, bulklen, nsg, ct;
 639	unsigned char *buf;
 640	unsigned long address;
 641
 642	nsg = bulklen = 0;
 643	command[0] = 0xE7;
 644	command[1] = LUNBITS;
 645	command[2] = 0;
 646	address = 040000; ct = 1;
 647	nsg++;
 648	bulklen += (ct << 9);
 649	command[4*nsg+2] = ct;
 650	command[4*nsg+1] = ((address >> 9) & 0xFF);
 651	command[4*nsg+0] = ((address >> 17) & 0xFF);
 652	command[4*nsg-1] = ((address >> 25) & 0xFF);
 653
 654	address = 0340000; ct = 1;
 655	nsg++;
 656	bulklen += (ct << 9);
 657	command[4*nsg+2] = ct;
 658	command[4*nsg+1] = ((address >> 9) & 0xFF);
 659	command[4*nsg+0] = ((address >> 17) & 0xFF);
 660	command[4*nsg-1] = ((address >> 25) & 0xFF);
 661
 662	address = 01000000; ct = 2;
 663	nsg++;
 664	bulklen += (ct << 9);
 665	command[4*nsg+2] = ct;
 666	command[4*nsg+1] = ((address >> 9) & 0xFF);
 667	command[4*nsg+0] = ((address >> 17) & 0xFF);
 668	command[4*nsg-1] = ((address >> 25) & 0xFF);
 669
 670	command[2] = nsg;
 671
 672	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 673
 674	if (result) {
 675		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 676			     result);
 677		return result;
 678	}
 679
 680	buf = kmalloc(bulklen, GFP_NOIO);
 681	if (!buf)
 682		return -ENOMEM;
 683
 684	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 685				       buf, bulklen, NULL);
 686	kfree(buf);
 687	if (result != USB_STOR_XFER_GOOD) {
 688		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 689			     result);
 690		return -EIO;
 691	}
 692
 693	return 0;
 694}
 695#endif
 696
 697/*
 698 * Read Status Command: 12 bytes.
 699 * byte 0: opcode: EC
 700 *
 701 * Returns 64 bytes, all zero except for the first.
 702 * bit 0: 1: Error
 703 * bit 5: 1: Suspended
 704 * bit 6: 1: Ready
 705 * bit 7: 1: Not write-protected
 706 */
 707
 708static int
 709sddr09_read_status(struct us_data *us, unsigned char *status) {
 710
 711	unsigned char *command = us->iobuf;
 712	unsigned char *data = us->iobuf;
 713	int result;
 714
 715	usb_stor_dbg(us, "Reading status...\n");
 716
 717	memset(command, 0, 12);
 718	command[0] = 0xEC;
 719	command[1] = LUNBITS;
 720
 721	result = sddr09_send_scsi_command(us, command, 12);
 722	if (result)
 723		return result;
 724
 725	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 726				       data, 64, NULL);
 727	*status = data[0];
 728	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 729}
 730
 731static int
 732sddr09_read_data(struct us_data *us,
 733		 unsigned long address,
 734		 unsigned int sectors) {
 735
 736	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 737	unsigned char *buffer;
 738	unsigned int lba, maxlba, pba;
 739	unsigned int page, pages;
 740	unsigned int len, offset;
 741	struct scatterlist *sg;
 742	int result;
 743
 744	// Figure out the initial LBA and page
 745	lba = address >> info->blockshift;
 746	page = (address & info->blockmask);
 747	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 748	if (lba >= maxlba)
 749		return -EIO;
 750
 751	// Since we only read in one block at a time, we have to create
 752	// a bounce buffer and move the data a piece at a time between the
 753	// bounce buffer and the actual transfer buffer.
 754
 755	len = min_t(unsigned int, sectors, info->blocksize) * info->pagesize;
 756	buffer = kmalloc(len, GFP_NOIO);
 757	if (!buffer)
 
 758		return -ENOMEM;
 
 759
 760	// This could be made much more efficient by checking for
 761	// contiguous LBA's. Another exercise left to the student.
 762
 763	result = 0;
 764	offset = 0;
 765	sg = NULL;
 766
 767	while (sectors > 0) {
 768
 769		/* Find number of pages we can read in this block */
 770		pages = min(sectors, info->blocksize - page);
 771		len = pages << info->pageshift;
 772
 773		/* Not overflowing capacity? */
 774		if (lba >= maxlba) {
 775			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 776				     lba, maxlba);
 777			result = -EIO;
 778			break;
 779		}
 780
 781		/* Find where this lba lives on disk */
 782		pba = info->lba_to_pba[lba];
 783
 784		if (pba == UNDEF) {	/* this lba was never written */
 785
 786			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 787				     pages, lba, page);
 788
 789			/*
 790			 * This is not really an error. It just means
 791			 * that the block has never been written.
 792			 * Instead of returning an error
 793			 * it is better to return all zero data.
 794			 */
 795
 796			memset(buffer, 0, len);
 797
 798		} else {
 799			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 800				     pages, pba, lba, page);
 801
 802			address = ((pba << info->blockshift) + page) << 
 803				info->pageshift;
 804
 805			result = sddr09_read20(us, address>>1,
 806					pages, info->pageshift, buffer, 0);
 807			if (result)
 808				break;
 809		}
 810
 811		// Store the data in the transfer buffer
 812		usb_stor_access_xfer_buf(buffer, len, us->srb,
 813				&sg, &offset, TO_XFER_BUF);
 814
 815		page = 0;
 816		lba++;
 817		sectors -= pages;
 818	}
 819
 820	kfree(buffer);
 821	return result;
 822}
 823
 824static unsigned int
 825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 826	static unsigned int lastpba = 1;
 827	int zonestart, end, i;
 828
 829	zonestart = (lba/1000) << 10;
 830	end = info->capacity >> (info->blockshift + info->pageshift);
 831	end -= zonestart;
 832	if (end > 1024)
 833		end = 1024;
 834
 835	for (i = lastpba+1; i < end; i++) {
 836		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 837			lastpba = i;
 838			return zonestart+i;
 839		}
 840	}
 841	for (i = 0; i <= lastpba; i++) {
 842		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 843			lastpba = i;
 844			return zonestart+i;
 845		}
 846	}
 847	return 0;
 848}
 849
 850static int
 851sddr09_write_lba(struct us_data *us, unsigned int lba,
 852		 unsigned int page, unsigned int pages,
 853		 unsigned char *ptr, unsigned char *blockbuffer) {
 854
 855	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 856	unsigned long address;
 857	unsigned int pba, lbap;
 858	unsigned int pagelen;
 859	unsigned char *bptr, *cptr, *xptr;
 860	unsigned char ecc[3];
 861	int i, result;
 862
 863	lbap = ((lba % 1000) << 1) | 0x1000;
 864	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 865		lbap ^= 1;
 866	pba = info->lba_to_pba[lba];
 
 867
 868	if (pba == UNDEF) {
 869		pba = sddr09_find_unused_pba(info, lba);
 870		if (!pba) {
 871			printk(KERN_WARNING
 872			       "sddr09_write_lba: Out of unused blocks\n");
 873			return -ENOSPC;
 874		}
 875		info->pba_to_lba[pba] = lba;
 876		info->lba_to_pba[lba] = pba;
 
 877	}
 878
 879	if (pba == 1) {
 880		/*
 881		 * Maybe it is impossible to write to PBA 1.
 882		 * Fake success, but don't do anything.
 883		 */
 884		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 885		return 0;
 886	}
 887
 888	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 889
 890	/* read old contents */
 891	address = (pba << (info->pageshift + info->blockshift));
 892	result = sddr09_read22(us, address>>1, info->blocksize,
 893			       info->pageshift, blockbuffer, 0);
 894	if (result)
 895		return result;
 896
 897	/* check old contents and fill lba */
 898	for (i = 0; i < info->blocksize; i++) {
 899		bptr = blockbuffer + i*pagelen;
 900		cptr = bptr + info->pagesize;
 901		nand_compute_ecc(bptr, ecc);
 902		if (!nand_compare_ecc(cptr+13, ecc)) {
 903			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 904				     i, pba);
 905			nand_store_ecc(cptr+13, ecc);
 906		}
 907		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 908		if (!nand_compare_ecc(cptr+8, ecc)) {
 909			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 910				     i, pba);
 911			nand_store_ecc(cptr+8, ecc);
 912		}
 913		cptr[6] = cptr[11] = MSB_of(lbap);
 914		cptr[7] = cptr[12] = LSB_of(lbap);
 915	}
 916
 917	/* copy in new stuff and compute ECC */
 918	xptr = ptr;
 919	for (i = page; i < page+pages; i++) {
 920		bptr = blockbuffer + i*pagelen;
 921		cptr = bptr + info->pagesize;
 922		memcpy(bptr, xptr, info->pagesize);
 923		xptr += info->pagesize;
 924		nand_compute_ecc(bptr, ecc);
 925		nand_store_ecc(cptr+13, ecc);
 926		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 927		nand_store_ecc(cptr+8, ecc);
 928	}
 929
 930	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 931
 932	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 933				      info->pageshift, blockbuffer, 0);
 934
 935	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 936
 937#if 0
 938	{
 939		unsigned char status = 0;
 940		int result2 = sddr09_read_status(us, &status);
 941		if (result2)
 942			usb_stor_dbg(us, "cannot read status\n");
 943		else if (status != 0xc0)
 944			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 945	}
 946#endif
 947
 948#if 0
 949	{
 950		int result2 = sddr09_test_unit_ready(us);
 951	}
 952#endif
 953
 954	return result;
 955}
 956
 957static int
 958sddr09_write_data(struct us_data *us,
 959		  unsigned long address,
 960		  unsigned int sectors) {
 961
 962	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 963	unsigned int lba, maxlba, page, pages;
 964	unsigned int pagelen, blocklen;
 965	unsigned char *blockbuffer;
 966	unsigned char *buffer;
 967	unsigned int len, offset;
 968	struct scatterlist *sg;
 969	int result;
 970
 971	/* Figure out the initial LBA and page */
 972	lba = address >> info->blockshift;
 973	page = (address & info->blockmask);
 974	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 975	if (lba >= maxlba)
 976		return -EIO;
 977
 978	/*
 979	 * blockbuffer is used for reading in the old data, overwriting
 980	 * with the new data, and performing ECC calculations
 981	 */
 982
 983	/*
 984	 * TODO: instead of doing kmalloc/kfree for each write,
 985	 * add a bufferpointer to the info structure
 986	 */
 987
 988	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 989	blocklen = (pagelen << info->blockshift);
 990	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 991	if (!blockbuffer)
 
 992		return -ENOMEM;
 
 993
 994	/*
 995	 * Since we don't write the user data directly to the device,
 996	 * we have to create a bounce buffer and move the data a piece
 997	 * at a time between the bounce buffer and the actual transfer buffer.
 998	 */
 999
1000	len = min_t(unsigned int, sectors, info->blocksize) * info->pagesize;
1001	buffer = kmalloc(len, GFP_NOIO);
1002	if (!buffer) {
 
1003		kfree(blockbuffer);
1004		return -ENOMEM;
1005	}
1006
1007	result = 0;
1008	offset = 0;
1009	sg = NULL;
1010
1011	while (sectors > 0) {
1012
1013		/* Write as many sectors as possible in this block */
1014
1015		pages = min(sectors, info->blocksize - page);
1016		len = (pages << info->pageshift);
1017
1018		/* Not overflowing capacity? */
1019		if (lba >= maxlba) {
1020			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1021				     lba, maxlba);
1022			result = -EIO;
1023			break;
1024		}
1025
1026		/* Get the data from the transfer buffer */
1027		usb_stor_access_xfer_buf(buffer, len, us->srb,
1028				&sg, &offset, FROM_XFER_BUF);
1029
1030		result = sddr09_write_lba(us, lba, page, pages,
1031				buffer, blockbuffer);
1032		if (result)
1033			break;
1034
1035		page = 0;
1036		lba++;
1037		sectors -= pages;
1038	}
1039
1040	kfree(buffer);
1041	kfree(blockbuffer);
1042
1043	return result;
1044}
1045
1046static int
1047sddr09_read_control(struct us_data *us,
1048		unsigned long address,
1049		unsigned int blocks,
1050		unsigned char *content,
1051		int use_sg) {
1052
1053	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1054		     address, blocks);
1055
1056	return sddr09_read21(us, address, blocks,
1057			     CONTROL_SHIFT, content, use_sg);
1058}
1059
1060/*
1061 * Read Device ID Command: 12 bytes.
1062 * byte 0: opcode: ED
1063 *
1064 * Returns 2 bytes: Manufacturer ID and Device ID.
1065 * On more recent cards 3 bytes: the third byte is an option code A5
1066 * signifying that the secret command to read an 128-bit ID is available.
1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
1068 * a second read ID cmd is available.
1069 */
1070static int
1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1072	unsigned char *command = us->iobuf;
1073	unsigned char *content = us->iobuf;
1074	int result, i;
1075
1076	memset(command, 0, 12);
1077	command[0] = 0xED;
1078	command[1] = LUNBITS;
1079
1080	result = sddr09_send_scsi_command(us, command, 12);
1081	if (result)
1082		return result;
1083
1084	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085			content, 64, NULL);
1086
1087	for (i = 0; i < 4; i++)
1088		deviceID[i] = content[i];
1089
1090	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1091}
1092
1093static int
1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1095	int result;
1096	unsigned char status;
1097	const char *wp_fmt;
1098
1099	result = sddr09_read_status(us, &status);
1100	if (result) {
1101		usb_stor_dbg(us, "read_status fails\n");
1102		return result;
1103	}
 
1104	if ((status & 0x80) == 0) {
1105		info->flags |= SDDR09_WP;	/* write protected */
1106		wp_fmt = " WP";
1107	} else {
1108		wp_fmt = "";
1109	}
1110	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1111		     status & 0x40 ? " Ready" : "",
1112		     status & LUNBITS ? " Suspended" : "",
1113		     status & 0x01 ? " Error" : "");
1114
 
 
1115	return 0;
1116}
1117
1118#if 0
1119/*
1120 * Reset Command: 12 bytes.
1121 * byte 0: opcode: EB
1122 */
1123static int
1124sddr09_reset(struct us_data *us) {
1125
1126	unsigned char *command = us->iobuf;
1127
1128	memset(command, 0, 12);
1129	command[0] = 0xEB;
1130	command[1] = LUNBITS;
1131
1132	return sddr09_send_scsi_command(us, command, 12);
1133}
1134#endif
1135
1136static struct nand_flash_dev *
1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1138	struct nand_flash_dev *cardinfo;
1139	unsigned char deviceID[4];
1140	char blurbtxt[256];
1141	int result;
1142
1143	usb_stor_dbg(us, "Reading capacity...\n");
1144
1145	result = sddr09_read_deviceID(us, deviceID);
1146
1147	if (result) {
1148		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1149		printk(KERN_WARNING "sddr09: could not read card info\n");
1150		return NULL;
1151	}
1152
1153	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
 
1154
1155	/* Byte 0 is the manufacturer */
1156	sprintf(blurbtxt + strlen(blurbtxt),
1157		": Manuf. %s",
1158		nand_flash_manufacturer(deviceID[0]));
1159
1160	/* Byte 1 is the device type */
1161	cardinfo = nand_find_id(deviceID[1]);
1162	if (cardinfo) {
1163		/*
1164		 * MB or MiB? It is neither. A 16 MB card has
1165		 * 17301504 raw bytes, of which 16384000 are
1166		 * usable for user data.
1167		 */
1168		sprintf(blurbtxt + strlen(blurbtxt),
1169			", %d MB", 1<<(cardinfo->chipshift - 20));
1170	} else {
1171		sprintf(blurbtxt + strlen(blurbtxt),
1172			", type unrecognized");
1173	}
1174
1175	/* Byte 2 is code to signal availability of 128-bit ID */
1176	if (deviceID[2] == 0xa5) {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", 128-bit ID");
1179	}
1180
1181	/* Byte 3 announces the availability of another read ID command */
1182	if (deviceID[3] == 0xc0) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", extra cmd");
1185	}
1186
1187	if (flags & SDDR09_WP)
1188		sprintf(blurbtxt + strlen(blurbtxt),
1189			", WP");
1190
1191	printk(KERN_WARNING "%s\n", blurbtxt);
1192
1193	return cardinfo;
1194}
1195
1196static int
1197sddr09_read_map(struct us_data *us) {
1198
1199	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1200	int numblocks, alloc_len, alloc_blocks;
1201	int i, j, result;
1202	unsigned char *buffer, *buffer_end, *ptr;
1203	unsigned int lba, lbact;
1204
1205	if (!info->capacity)
1206		return -1;
1207
1208	/*
1209	 * size of a block is 1 << (blockshift + pageshift) bytes
1210	 * divide into the total capacity to get the number of blocks
1211	 */
1212
1213	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1214
1215	/*
1216	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217	 * but only use a 64 KB buffer
1218	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219	 */
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224	buffer = kmalloc(alloc_len, GFP_NOIO);
1225	if (!buffer) {
 
1226		result = -1;
1227		goto done;
1228	}
1229	buffer_end = buffer + alloc_len;
1230
1231#undef SDDR09_READ_MAP_BUFSZ
1232
1233	kfree(info->lba_to_pba);
1234	kfree(info->pba_to_lba);
1235	info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1236	info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1237
1238	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240		result = -1;
1241		goto done;
1242	}
1243
1244	for (i = 0; i < numblocks; i++)
1245		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246
1247	/*
1248	 * Define lba-pba translation table
1249	 */
1250
1251	ptr = buffer_end;
1252	for (i = 0; i < numblocks; i++) {
1253		ptr += (1 << CONTROL_SHIFT);
1254		if (ptr >= buffer_end) {
1255			unsigned long address;
1256
1257			address = i << (info->pageshift + info->blockshift);
1258			result = sddr09_read_control(
1259				us, address>>1,
1260				min(alloc_blocks, numblocks - i),
1261				buffer, 0);
1262			if (result) {
1263				result = -1;
1264				goto done;
1265			}
1266			ptr = buffer;
1267		}
1268
1269		if (i == 0 || i == 1) {
1270			info->pba_to_lba[i] = UNUSABLE;
1271			continue;
1272		}
1273
1274		/* special PBAs have control field 0^16 */
1275		for (j = 0; j < 16; j++)
1276			if (ptr[j] != 0)
1277				goto nonz;
1278		info->pba_to_lba[i] = UNUSABLE;
1279		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280		       i);
1281		continue;
1282
1283	nonz:
1284		/* unwritten PBAs have control field FF^16 */
1285		for (j = 0; j < 16; j++)
1286			if (ptr[j] != 0xff)
1287				goto nonff;
1288		continue;
1289
1290	nonff:
1291		/* normal PBAs start with six FFs */
1292		if (j < 6) {
1293			printk(KERN_WARNING
1294			       "sddr09: PBA %d has no logical mapping: "
1295			       "reserved area = %02X%02X%02X%02X "
1296			       "data status %02X block status %02X\n",
1297			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1298			       ptr[4], ptr[5]);
1299			info->pba_to_lba[i] = UNUSABLE;
1300			continue;
1301		}
1302
1303		if ((ptr[6] >> 4) != 0x01) {
1304			printk(KERN_WARNING
1305			       "sddr09: PBA %d has invalid address field "
1306			       "%02X%02X/%02X%02X\n",
1307			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308			info->pba_to_lba[i] = UNUSABLE;
1309			continue;
1310		}
1311
1312		/* check even parity */
1313		if (parity[ptr[6] ^ ptr[7]]) {
1314			printk(KERN_WARNING
1315			       "sddr09: Bad parity in LBA for block %d"
1316			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317			info->pba_to_lba[i] = UNUSABLE;
1318			continue;
1319		}
1320
1321		lba = short_pack(ptr[7], ptr[6]);
1322		lba = (lba & 0x07FF) >> 1;
1323
1324		/*
1325		 * Every 1024 physical blocks ("zone"), the LBA numbers
1326		 * go back to zero, but are within a higher block of LBA's.
1327		 * Also, there is a maximum of 1000 LBA's per zone.
1328		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329		 * which are really LBA 1000-1999. This allows for 24 bad
1330		 * or special physical blocks per zone.
1331		 */
1332
1333		if (lba >= 1000) {
1334			printk(KERN_WARNING
1335			       "sddr09: Bad low LBA %d for block %d\n",
1336			       lba, i);
1337			goto possibly_erase;
1338		}
1339
1340		lba += 1000*(i/0x400);
1341
1342		if (info->lba_to_pba[lba] != UNDEF) {
1343			printk(KERN_WARNING
1344			       "sddr09: LBA %d seen for PBA %d and %d\n",
1345			       lba, info->lba_to_pba[lba], i);
1346			goto possibly_erase;
1347		}
1348
1349		info->pba_to_lba[i] = lba;
1350		info->lba_to_pba[lba] = i;
1351		continue;
1352
1353	possibly_erase:
1354		if (erase_bad_lba_entries) {
1355			unsigned long address;
1356
1357			address = (i << (info->pageshift + info->blockshift));
1358			sddr09_erase(us, address>>1);
1359			info->pba_to_lba[i] = UNDEF;
1360		} else
1361			info->pba_to_lba[i] = UNUSABLE;
1362	}
1363
1364	/*
1365	 * Approximate capacity. This is not entirely correct yet,
1366	 * since a zone with less than 1000 usable pages leads to
1367	 * missing LBAs. Especially if it is the last zone, some
1368	 * LBAs can be past capacity.
1369	 */
1370	lbact = 0;
1371	for (i = 0; i < numblocks; i += 1024) {
1372		int ct = 0;
1373
1374		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375			if (info->pba_to_lba[i+j] != UNUSABLE) {
1376				if (ct >= 1000)
1377					info->pba_to_lba[i+j] = SPARE;
1378				else
1379					ct++;
1380			}
1381		}
1382		lbact += ct;
1383	}
1384	info->lbact = lbact;
1385	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386	result = 0;
1387
1388 done:
1389	if (result != 0) {
1390		kfree(info->lba_to_pba);
1391		kfree(info->pba_to_lba);
1392		info->lba_to_pba = NULL;
1393		info->pba_to_lba = NULL;
1394	}
1395	kfree(buffer);
1396	return result;
1397}
1398
1399static void
1400sddr09_card_info_destructor(void *extra) {
1401	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402
1403	if (!info)
1404		return;
1405
1406	kfree(info->lba_to_pba);
1407	kfree(info->pba_to_lba);
1408}
1409
1410static int
1411sddr09_common_init(struct us_data *us) {
1412	int result;
1413
1414	/* set the configuration -- STALL is an acceptable response here */
1415	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1418		return -EINVAL;
1419	}
1420
1421	result = usb_reset_configuration(us->pusb_dev);
1422	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423	if (result == -EPIPE) {
1424		usb_stor_dbg(us, "-- stall on control interface\n");
1425	} else if (result != 0) {
1426		/* it's not a stall, but another error -- time to bail */
1427		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1428		return -EINVAL;
1429	}
1430
1431	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432	if (!us->extra)
1433		return -ENOMEM;
1434	us->extra_destructor = sddr09_card_info_destructor;
1435
1436	nand_init_ecc();
1437	return 0;
1438}
1439
1440
1441/*
1442 * This is needed at a very early stage. If this is not listed in the
1443 * unusual devices list but called from here then LUN 0 of the combo reader
1444 * is not recognized. But I do not know what precisely these calls do.
1445 */
1446static int
1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448	int result;
1449	unsigned char *data = us->iobuf;
1450
1451	result = sddr09_common_init(us);
1452	if (result)
1453		return result;
1454
1455	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456	if (result) {
1457		usb_stor_dbg(us, "send_command fails\n");
1458		return result;
1459	}
1460
1461	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462	// get 07 02
1463
1464	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465	if (result) {
1466		usb_stor_dbg(us, "2nd send_command fails\n");
1467		return result;
1468	}
1469
1470	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471	// get 07 00
1472
1473	result = sddr09_request_sense(us, data, 18);
1474	if (result == 0 && data[2] != 0) {
1475		int j;
1476		for (j=0; j<18; j++)
1477			printk(" %02X", data[j]);
1478		printk("\n");
1479		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480		// 70: current command
1481		// sense key 0, sense code 0, extd sense code 0
1482		// additional transfer length * = sizeof(data) - 7
1483		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484		// sense key 06, sense code 28: unit attention,
1485		// not ready to ready transition
1486	}
1487
1488	// test unit ready
1489
1490	return 0;		/* not result */
1491}
1492
1493/*
1494 * Transport for the Microtech DPCM-USB
1495 */
1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497{
1498	int ret;
1499
1500	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501
1502	switch (srb->device->lun) {
1503	case 0:
1504
1505		/*
1506		 * LUN 0 corresponds to the CompactFlash card reader.
1507		 */
1508		ret = usb_stor_CB_transport(srb, us);
1509		break;
1510
1511	case 1:
1512
1513		/*
1514		 * LUN 1 corresponds to the SmartMedia card reader.
1515		 */
1516
1517		/*
1518		 * Set the LUN to 0 (just in case).
1519		 */
1520		srb->device->lun = 0;
1521		ret = sddr09_transport(srb, us);
1522		srb->device->lun = 1;
1523		break;
1524
1525	default:
1526	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1527		ret = USB_STOR_TRANSPORT_ERROR;
1528		break;
1529	}
1530	return ret;
1531}
1532
1533
1534/*
1535 * Transport for the Sandisk SDDR-09
1536 */
1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538{
1539	static unsigned char sensekey = 0, sensecode = 0;
1540	static unsigned char havefakesense = 0;
1541	int result, i;
1542	unsigned char *ptr = us->iobuf;
1543	unsigned long capacity;
1544	unsigned int page, pages;
1545
1546	struct sddr09_card_info *info;
1547
1548	static unsigned char inquiry_response[8] = {
1549		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550	};
1551
1552	/* note: no block descriptor support */
1553	static unsigned char mode_page_01[19] = {
1554		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555		0x01, 0x0A,
1556		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557	};
1558
1559	info = (struct sddr09_card_info *)us->extra;
1560
1561	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562		/* for a faked command, we have to follow with a faked sense */
1563		memset(ptr, 0, 18);
1564		ptr[0] = 0x70;
1565		ptr[2] = sensekey;
1566		ptr[7] = 11;
1567		ptr[12] = sensecode;
1568		usb_stor_set_xfer_buf(ptr, 18, srb);
1569		sensekey = sensecode = havefakesense = 0;
1570		return USB_STOR_TRANSPORT_GOOD;
1571	}
1572
1573	havefakesense = 1;
1574
1575	/*
1576	 * Dummy up a response for INQUIRY since SDDR09 doesn't
1577	 * respond to INQUIRY commands
1578	 */
1579
1580	if (srb->cmnd[0] == INQUIRY) {
1581		memcpy(ptr, inquiry_response, 8);
1582		fill_inquiry_response(us, ptr, 36);
1583		return USB_STOR_TRANSPORT_GOOD;
1584	}
1585
1586	if (srb->cmnd[0] == READ_CAPACITY) {
1587		struct nand_flash_dev *cardinfo;
1588
1589		sddr09_get_wp(us, info);	/* read WP bit */
1590
1591		cardinfo = sddr09_get_cardinfo(us, info->flags);
1592		if (!cardinfo) {
1593			/* probably no media */
1594		init_error:
1595			sensekey = 0x02;	/* not ready */
1596			sensecode = 0x3a;	/* medium not present */
1597			return USB_STOR_TRANSPORT_FAILED;
1598		}
1599
1600		info->capacity = (1 << cardinfo->chipshift);
1601		info->pageshift = cardinfo->pageshift;
1602		info->pagesize = (1 << info->pageshift);
1603		info->blockshift = cardinfo->blockshift;
1604		info->blocksize = (1 << info->blockshift);
1605		info->blockmask = info->blocksize - 1;
1606
1607		// map initialization, must follow get_cardinfo()
1608		if (sddr09_read_map(us)) {
1609			/* probably out of memory */
1610			goto init_error;
1611		}
1612
1613		// Report capacity
1614
1615		capacity = (info->lbact << info->blockshift) - 1;
1616
1617		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1618
1619		// Report page size
1620
1621		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1622		usb_stor_set_xfer_buf(ptr, 8, srb);
1623
1624		return USB_STOR_TRANSPORT_GOOD;
1625	}
1626
1627	if (srb->cmnd[0] == MODE_SENSE_10) {
1628		int modepage = (srb->cmnd[2] & 0x3F);
1629
1630		/*
1631		 * They ask for the Read/Write error recovery page,
1632		 * or for all pages.
1633		 */
1634		/* %% We should check DBD %% */
1635		if (modepage == 0x01 || modepage == 0x3F) {
1636			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1637				     modepage);
1638
1639			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1640			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1641			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1642			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1643			return USB_STOR_TRANSPORT_GOOD;
1644		}
1645
1646		sensekey = 0x05;	/* illegal request */
1647		sensecode = 0x24;	/* invalid field in CDB */
1648		return USB_STOR_TRANSPORT_FAILED;
1649	}
1650
1651	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1652		return USB_STOR_TRANSPORT_GOOD;
1653
1654	havefakesense = 0;
1655
1656	if (srb->cmnd[0] == READ_10) {
1657
1658		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1659		page <<= 16;
1660		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1661		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662
1663		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1664			     page, pages);
1665
1666		result = sddr09_read_data(us, page, pages);
1667		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1668				USB_STOR_TRANSPORT_ERROR);
1669	}
1670
1671	if (srb->cmnd[0] == WRITE_10) {
1672
1673		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1674		page <<= 16;
1675		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1676		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677
1678		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1679			     page, pages);
1680
1681		result = sddr09_write_data(us, page, pages);
1682		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1683				USB_STOR_TRANSPORT_ERROR);
1684	}
1685
1686	/*
1687	 * catch-all for all other commands, except
1688	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1689	 */
1690	if (srb->cmnd[0] != TEST_UNIT_READY &&
1691	    srb->cmnd[0] != REQUEST_SENSE) {
1692		sensekey = 0x05;	/* illegal request */
1693		sensecode = 0x20;	/* invalid command */
1694		havefakesense = 1;
1695		return USB_STOR_TRANSPORT_FAILED;
1696	}
1697
1698	for (; srb->cmd_len<12; srb->cmd_len++)
1699		srb->cmnd[srb->cmd_len] = 0;
1700
1701	srb->cmnd[1] = LUNBITS;
1702
1703	ptr[0] = 0;
1704	for (i=0; i<12; i++)
1705		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1706
1707	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1708
1709	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1710	if (result) {
1711		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1712			     result);
1713		return USB_STOR_TRANSPORT_ERROR;
1714	}
1715
1716	if (scsi_bufflen(srb) == 0)
1717		return USB_STOR_TRANSPORT_GOOD;
1718
1719	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1720	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1721		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1722				? us->send_bulk_pipe : us->recv_bulk_pipe;
1723
1724		usb_stor_dbg(us, "%s %d bytes\n",
1725			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1726			     "sending" : "receiving",
1727			     scsi_bufflen(srb));
1728
1729		result = usb_stor_bulk_srb(us, pipe, srb);
1730
1731		return (result == USB_STOR_XFER_GOOD ?
1732			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733	} 
1734
1735	return USB_STOR_TRANSPORT_GOOD;
1736}
1737
1738/*
1739 * Initialization routine for the sddr09 subdriver
1740 */
1741static int
1742usb_stor_sddr09_init(struct us_data *us) {
1743	return sddr09_common_init(us);
1744}
1745
1746static struct scsi_host_template sddr09_host_template;
1747
1748static int sddr09_probe(struct usb_interface *intf,
1749			 const struct usb_device_id *id)
1750{
1751	struct us_data *us;
1752	int result;
1753
1754	result = usb_stor_probe1(&us, intf, id,
1755			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1756			&sddr09_host_template);
1757	if (result)
1758		return result;
1759
1760	if (us->protocol == USB_PR_DPCM_USB) {
1761		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762		us->transport = dpcm_transport;
1763		us->transport_reset = usb_stor_CB_reset;
1764		us->max_lun = 1;
1765	} else {
1766		us->transport_name = "EUSB/SDDR09";
1767		us->transport = sddr09_transport;
1768		us->transport_reset = usb_stor_CB_reset;
1769		us->max_lun = 0;
1770	}
1771
1772	result = usb_stor_probe2(us);
1773	return result;
1774}
1775
1776static struct usb_driver sddr09_driver = {
1777	.name =		DRV_NAME,
1778	.probe =	sddr09_probe,
1779	.disconnect =	usb_stor_disconnect,
1780	.suspend =	usb_stor_suspend,
1781	.resume =	usb_stor_resume,
1782	.reset_resume =	usb_stor_reset_resume,
1783	.pre_reset =	usb_stor_pre_reset,
1784	.post_reset =	usb_stor_post_reset,
1785	.id_table =	sddr09_usb_ids,
1786	.soft_unbind =	1,
1787	.no_dynamic_id = 1,
1788};
1789
1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
v3.15
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
 
 
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
 
 
 
  55
  56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  58MODULE_LICENSE("GPL");
 
  59
  60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  62static int usb_stor_sddr09_init(struct us_data *us);
  63
  64
  65/*
  66 * The table of devices
  67 */
  68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  69		    vendorName, productName, useProtocol, useTransport, \
  70		    initFunction, flags) \
  71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  72  .driver_info = (flags) }
  73
  74static struct usb_device_id sddr09_usb_ids[] = {
  75#	include "unusual_sddr09.h"
  76	{ }		/* Terminating entry */
  77};
  78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  79
  80#undef UNUSUAL_DEV
  81
  82/*
  83 * The flags table
  84 */
  85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  86		    vendor_name, product_name, use_protocol, use_transport, \
  87		    init_function, Flags) \
  88{ \
  89	.vendorName = vendor_name,	\
  90	.productName = product_name,	\
  91	.useProtocol = use_protocol,	\
  92	.useTransport = use_transport,	\
  93	.initFunction = init_function,	\
  94}
  95
  96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  97#	include "unusual_sddr09.h"
  98	{ }		/* Terminating entry */
  99};
 100
 101#undef UNUSUAL_DEV
 102
 103
 104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 105#define LSB_of(s) ((s)&0xFF)
 106#define MSB_of(s) ((s)>>8)
 107
 108/*
 109 * First some stuff that does not belong here:
 110 * data on SmartMedia and other cards, completely
 111 * unrelated to this driver.
 112 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 113 */
 114
 115struct nand_flash_dev {
 116	int model_id;
 117	int chipshift;		/* 1<<cs bytes total capacity */
 118	char pageshift;		/* 1<<ps bytes in a page */
 119	char blockshift;	/* 1<<bs pages in an erase block */
 120	char zoneshift;		/* 1<<zs blocks in a zone */
 121				/* # of logical blocks is 125/128 of this */
 122	char pageadrlen;	/* length of an address in bytes - 1 */
 123};
 124
 125/*
 126 * NAND Flash Manufacturer ID Codes
 127 */
 128#define NAND_MFR_AMD		0x01
 129#define NAND_MFR_NATSEMI	0x8f
 130#define NAND_MFR_TOSHIBA	0x98
 131#define NAND_MFR_SAMSUNG	0xec
 132
 133static inline char *nand_flash_manufacturer(int manuf_id) {
 134	switch(manuf_id) {
 135	case NAND_MFR_AMD:
 136		return "AMD";
 137	case NAND_MFR_NATSEMI:
 138		return "NATSEMI";
 139	case NAND_MFR_TOSHIBA:
 140		return "Toshiba";
 141	case NAND_MFR_SAMSUNG:
 142		return "Samsung";
 143	default:
 144		return "unknown";
 145	}
 146}
 147
 148/*
 149 * It looks like it is unnecessary to attach manufacturer to the
 150 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 151 *
 152 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 153 */
 154
 155static struct nand_flash_dev nand_flash_ids[] = {
 156	/* NAND flash */
 157	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 158	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 159	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 160	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 161	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 162	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 163	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 164	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 165	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 166	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 167	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 168	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 169	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 170
 171	/* MASK ROM */
 172	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 173	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 174	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 175	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 176	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 177	{ 0,}
 178};
 179
 180static struct nand_flash_dev *
 181nand_find_id(unsigned char id) {
 182	int i;
 183
 184	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 185		if (nand_flash_ids[i].model_id == id)
 186			return &(nand_flash_ids[i]);
 187	return NULL;
 188}
 189
 190/*
 191 * ECC computation.
 192 */
 193static unsigned char parity[256];
 194static unsigned char ecc2[256];
 195
 196static void nand_init_ecc(void) {
 197	int i, j, a;
 198
 199	parity[0] = 0;
 200	for (i = 1; i < 256; i++)
 201		parity[i] = (parity[i&(i-1)] ^ 1);
 202
 203	for (i = 0; i < 256; i++) {
 204		a = 0;
 205		for (j = 0; j < 8; j++) {
 206			if (i & (1<<j)) {
 207				if ((j & 1) == 0)
 208					a ^= 0x04;
 209				if ((j & 2) == 0)
 210					a ^= 0x10;
 211				if ((j & 4) == 0)
 212					a ^= 0x40;
 213			}
 214		}
 215		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 216	}
 217}
 218
 219/* compute 3-byte ecc on 256 bytes */
 220static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 221	int i, j, a;
 222	unsigned char par = 0, bit, bits[8] = {0};
 223
 224	/* collect 16 checksum bits */
 225	for (i = 0; i < 256; i++) {
 226		par ^= data[i];
 227		bit = parity[data[i]];
 228		for (j = 0; j < 8; j++)
 229			if ((i & (1<<j)) == 0)
 230				bits[j] ^= bit;
 231	}
 232
 233	/* put 4+4+4 = 12 bits in the ecc */
 234	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 235	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 236
 237	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 238	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 239
 240	ecc[2] = ecc2[par];
 241}
 242
 243static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 244	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 245}
 246
 247static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 248	memcpy(data, ecc, 3);
 249}
 250
 251/*
 252 * The actual driver starts here.
 253 */
 254
 255struct sddr09_card_info {
 256	unsigned long	capacity;	/* Size of card in bytes */
 257	int		pagesize;	/* Size of page in bytes */
 258	int		pageshift;	/* log2 of pagesize */
 259	int		blocksize;	/* Size of block in pages */
 260	int		blockshift;	/* log2 of blocksize */
 261	int		blockmask;	/* 2^blockshift - 1 */
 262	int		*lba_to_pba;	/* logical to physical map */
 263	int		*pba_to_lba;	/* physical to logical map */
 264	int		lbact;		/* number of available pages */
 265	int		flags;
 266#define	SDDR09_WP	1		/* write protected */
 267};
 268
 269/*
 270 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 271 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 272 * so the reader makes up the remaining 48. Don't know whether these numbers
 273 * depend on the card. For now a constant.
 274 */
 275#define CONTROL_SHIFT 6
 276
 277/*
 278 * On my Combo CF/SM reader, the SM reader has LUN 1.
 279 * (and things fail with LUN 0).
 280 * It seems LUN is irrelevant for others.
 281 */
 282#define LUN	1
 283#define	LUNBITS	(LUN << 5)
 284
 285/*
 286 * LBA and PBA are unsigned ints. Special values.
 287 */
 288#define UNDEF    0xffffffff
 289#define SPARE    0xfffffffe
 290#define UNUSABLE 0xfffffffd
 291
 292static const int erase_bad_lba_entries = 0;
 293
 294/* send vendor interface command (0x41) */
 295/* called for requests 0, 1, 8 */
 296static int
 297sddr09_send_command(struct us_data *us,
 298		    unsigned char request,
 299		    unsigned char direction,
 300		    unsigned char *xfer_data,
 301		    unsigned int xfer_len) {
 302	unsigned int pipe;
 303	unsigned char requesttype = (0x41 | direction);
 304	int rc;
 305
 306	// Get the receive or send control pipe number
 307
 308	if (direction == USB_DIR_IN)
 309		pipe = us->recv_ctrl_pipe;
 310	else
 311		pipe = us->send_ctrl_pipe;
 312
 313	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 314				   0, 0, xfer_data, xfer_len);
 315	switch (rc) {
 316		case USB_STOR_XFER_GOOD:	return 0;
 317		case USB_STOR_XFER_STALLED:	return -EPIPE;
 318		default:			return -EIO;
 319	}
 320}
 321
 322static int
 323sddr09_send_scsi_command(struct us_data *us,
 324			 unsigned char *command,
 325			 unsigned int command_len) {
 326	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 327}
 328
 329#if 0
 330/*
 331 * Test Unit Ready Command: 12 bytes.
 332 * byte 0: opcode: 00
 333 */
 334static int
 335sddr09_test_unit_ready(struct us_data *us) {
 336	unsigned char *command = us->iobuf;
 337	int result;
 338
 339	memset(command, 0, 6);
 340	command[1] = LUNBITS;
 341
 342	result = sddr09_send_scsi_command(us, command, 6);
 343
 344	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 345
 346	return result;
 347}
 348#endif
 349
 350/*
 351 * Request Sense Command: 12 bytes.
 352 * byte 0: opcode: 03
 353 * byte 4: data length
 354 */
 355static int
 356sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 357	unsigned char *command = us->iobuf;
 358	int result;
 359
 360	memset(command, 0, 12);
 361	command[0] = 0x03;
 362	command[1] = LUNBITS;
 363	command[4] = buflen;
 364
 365	result = sddr09_send_scsi_command(us, command, 12);
 366	if (result)
 367		return result;
 368
 369	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 370			sensebuf, buflen, NULL);
 371	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 372}
 373
 374/*
 375 * Read Command: 12 bytes.
 376 * byte 0: opcode: E8
 377 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 378 *			10: read both, 11: read pagewise control.
 379 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 380 * bytes 2-5: address (interpretation depends on byte 1, see below)
 381 * bytes 10-11: count (idem)
 382 *
 383 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 384 * A read data command gets data in 512-byte pages.
 385 * A read control command gets control in 64-byte chunks.
 386 * A read both command gets data+control in 576-byte chunks.
 387 *
 388 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 389 * next block, while read pagewise control jumps to the next page after
 390 * reading a group of 64 control bytes.
 391 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 392 *
 393 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 394 */
 395
 396static int
 397sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 398	     int nr_of_pages, int bulklen, unsigned char *buf,
 399	     int use_sg) {
 400
 401	unsigned char *command = us->iobuf;
 402	int result;
 403
 404	command[0] = 0xE8;
 405	command[1] = LUNBITS | x;
 406	command[2] = MSB_of(fromaddress>>16);
 407	command[3] = LSB_of(fromaddress>>16); 
 408	command[4] = MSB_of(fromaddress & 0xFFFF);
 409	command[5] = LSB_of(fromaddress & 0xFFFF); 
 410	command[6] = 0;
 411	command[7] = 0;
 412	command[8] = 0;
 413	command[9] = 0;
 414	command[10] = MSB_of(nr_of_pages);
 415	command[11] = LSB_of(nr_of_pages);
 416
 417	result = sddr09_send_scsi_command(us, command, 12);
 418
 419	if (result) {
 420		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 421			     x, result);
 422		return result;
 423	}
 424
 425	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 426				       buf, bulklen, use_sg, NULL);
 427
 428	if (result != USB_STOR_XFER_GOOD) {
 429		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 430			     x, result);
 431		return -EIO;
 432	}
 433	return 0;
 434}
 435
 436/*
 437 * Read Data
 438 *
 439 * fromaddress counts data shorts:
 440 * increasing it by 256 shifts the bytestream by 512 bytes;
 441 * the last 8 bits are ignored.
 442 *
 443 * nr_of_pages counts pages of size (1 << pageshift).
 444 */
 445static int
 446sddr09_read20(struct us_data *us, unsigned long fromaddress,
 447	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 448	int bulklen = nr_of_pages << pageshift;
 449
 450	/* The last 8 bits of fromaddress are ignored. */
 451	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 452			    buf, use_sg);
 453}
 454
 455/*
 456 * Read Blockwise Control
 457 *
 458 * fromaddress gives the starting position (as in read data;
 459 * the last 8 bits are ignored); increasing it by 32*256 shifts
 460 * the output stream by 64 bytes.
 461 *
 462 * count counts control groups of size (1 << controlshift).
 463 * For me, controlshift = 6. Is this constant?
 464 *
 465 * After getting one control group, jump to the next block
 466 * (fromaddress += 8192).
 467 */
 468static int
 469sddr09_read21(struct us_data *us, unsigned long fromaddress,
 470	      int count, int controlshift, unsigned char *buf, int use_sg) {
 471
 472	int bulklen = (count << controlshift);
 473	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 474			    buf, use_sg);
 475}
 476
 477/*
 478 * Read both Data and Control
 479 *
 480 * fromaddress counts data shorts, ignoring control:
 481 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 482 * the last 8 bits are ignored.
 483 *
 484 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 485 */
 486static int
 487sddr09_read22(struct us_data *us, unsigned long fromaddress,
 488	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 489
 490	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 491	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 492	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 493			    buf, use_sg);
 494}
 495
 496#if 0
 497/*
 498 * Read Pagewise Control
 499 *
 500 * fromaddress gives the starting position (as in read data;
 501 * the last 8 bits are ignored); increasing it by 256 shifts
 502 * the output stream by 64 bytes.
 503 *
 504 * count counts control groups of size (1 << controlshift).
 505 * For me, controlshift = 6. Is this constant?
 506 *
 507 * After getting one control group, jump to the next page
 508 * (fromaddress += 256).
 509 */
 510static int
 511sddr09_read23(struct us_data *us, unsigned long fromaddress,
 512	      int count, int controlshift, unsigned char *buf, int use_sg) {
 513
 514	int bulklen = (count << controlshift);
 515	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 516			    buf, use_sg);
 517}
 518#endif
 519
 520/*
 521 * Erase Command: 12 bytes.
 522 * byte 0: opcode: EA
 523 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 524 * 
 525 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 526 * The byte address being erased is 2*Eaddress.
 527 * The CIS cannot be erased.
 528 */
 529static int
 530sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 531	unsigned char *command = us->iobuf;
 532	int result;
 533
 534	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 535
 536	memset(command, 0, 12);
 537	command[0] = 0xEA;
 538	command[1] = LUNBITS;
 539	command[6] = MSB_of(Eaddress>>16);
 540	command[7] = LSB_of(Eaddress>>16);
 541	command[8] = MSB_of(Eaddress & 0xFFFF);
 542	command[9] = LSB_of(Eaddress & 0xFFFF);
 543
 544	result = sddr09_send_scsi_command(us, command, 12);
 545
 546	if (result)
 547		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 548			     result);
 549
 550	return result;
 551}
 552
 553/*
 554 * Write CIS Command: 12 bytes.
 555 * byte 0: opcode: EE
 556 * bytes 2-5: write address in shorts
 557 * bytes 10-11: sector count
 558 *
 559 * This writes at the indicated address. Don't know how it differs
 560 * from E9. Maybe it does not erase? However, it will also write to
 561 * the CIS.
 562 *
 563 * When two such commands on the same page follow each other directly,
 564 * the second one is not done.
 565 */
 566
 567/*
 568 * Write Command: 12 bytes.
 569 * byte 0: opcode: E9
 570 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 571 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 572 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 573 *
 574 * If write address equals erase address, the erase is done first,
 575 * otherwise the write is done first. When erase address equals zero
 576 * no erase is done?
 577 */
 578static int
 579sddr09_writeX(struct us_data *us,
 580	      unsigned long Waddress, unsigned long Eaddress,
 581	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 582
 583	unsigned char *command = us->iobuf;
 584	int result;
 585
 586	command[0] = 0xE9;
 587	command[1] = LUNBITS;
 588
 589	command[2] = MSB_of(Waddress>>16);
 590	command[3] = LSB_of(Waddress>>16);
 591	command[4] = MSB_of(Waddress & 0xFFFF);
 592	command[5] = LSB_of(Waddress & 0xFFFF);
 593
 594	command[6] = MSB_of(Eaddress>>16);
 595	command[7] = LSB_of(Eaddress>>16);
 596	command[8] = MSB_of(Eaddress & 0xFFFF);
 597	command[9] = LSB_of(Eaddress & 0xFFFF);
 598
 599	command[10] = MSB_of(nr_of_pages);
 600	command[11] = LSB_of(nr_of_pages);
 601
 602	result = sddr09_send_scsi_command(us, command, 12);
 603
 604	if (result) {
 605		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 606			     result);
 607		return result;
 608	}
 609
 610	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 611				       buf, bulklen, use_sg, NULL);
 612
 613	if (result != USB_STOR_XFER_GOOD) {
 614		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 615			     result);
 616		return -EIO;
 617	}
 618	return 0;
 619}
 620
 621/* erase address, write same address */
 622static int
 623sddr09_write_inplace(struct us_data *us, unsigned long address,
 624		     int nr_of_pages, int pageshift, unsigned char *buf,
 625		     int use_sg) {
 626	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 627	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 628			     buf, use_sg);
 629}
 630
 631#if 0
 632/*
 633 * Read Scatter Gather Command: 3+4n bytes.
 634 * byte 0: opcode E7
 635 * byte 2: n
 636 * bytes 4i-1,4i,4i+1: page address
 637 * byte 4i+2: page count
 638 * (i=1..n)
 639 *
 640 * This reads several pages from the card to a single memory buffer.
 641 * The last two bits of byte 1 have the same meaning as for E8.
 642 */
 643static int
 644sddr09_read_sg_test_only(struct us_data *us) {
 645	unsigned char *command = us->iobuf;
 646	int result, bulklen, nsg, ct;
 647	unsigned char *buf;
 648	unsigned long address;
 649
 650	nsg = bulklen = 0;
 651	command[0] = 0xE7;
 652	command[1] = LUNBITS;
 653	command[2] = 0;
 654	address = 040000; ct = 1;
 655	nsg++;
 656	bulklen += (ct << 9);
 657	command[4*nsg+2] = ct;
 658	command[4*nsg+1] = ((address >> 9) & 0xFF);
 659	command[4*nsg+0] = ((address >> 17) & 0xFF);
 660	command[4*nsg-1] = ((address >> 25) & 0xFF);
 661
 662	address = 0340000; ct = 1;
 663	nsg++;
 664	bulklen += (ct << 9);
 665	command[4*nsg+2] = ct;
 666	command[4*nsg+1] = ((address >> 9) & 0xFF);
 667	command[4*nsg+0] = ((address >> 17) & 0xFF);
 668	command[4*nsg-1] = ((address >> 25) & 0xFF);
 669
 670	address = 01000000; ct = 2;
 671	nsg++;
 672	bulklen += (ct << 9);
 673	command[4*nsg+2] = ct;
 674	command[4*nsg+1] = ((address >> 9) & 0xFF);
 675	command[4*nsg+0] = ((address >> 17) & 0xFF);
 676	command[4*nsg-1] = ((address >> 25) & 0xFF);
 677
 678	command[2] = nsg;
 679
 680	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 681
 682	if (result) {
 683		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 684			     result);
 685		return result;
 686	}
 687
 688	buf = kmalloc(bulklen, GFP_NOIO);
 689	if (!buf)
 690		return -ENOMEM;
 691
 692	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 693				       buf, bulklen, NULL);
 694	kfree(buf);
 695	if (result != USB_STOR_XFER_GOOD) {
 696		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 697			     result);
 698		return -EIO;
 699	}
 700
 701	return 0;
 702}
 703#endif
 704
 705/*
 706 * Read Status Command: 12 bytes.
 707 * byte 0: opcode: EC
 708 *
 709 * Returns 64 bytes, all zero except for the first.
 710 * bit 0: 1: Error
 711 * bit 5: 1: Suspended
 712 * bit 6: 1: Ready
 713 * bit 7: 1: Not write-protected
 714 */
 715
 716static int
 717sddr09_read_status(struct us_data *us, unsigned char *status) {
 718
 719	unsigned char *command = us->iobuf;
 720	unsigned char *data = us->iobuf;
 721	int result;
 722
 723	usb_stor_dbg(us, "Reading status...\n");
 724
 725	memset(command, 0, 12);
 726	command[0] = 0xEC;
 727	command[1] = LUNBITS;
 728
 729	result = sddr09_send_scsi_command(us, command, 12);
 730	if (result)
 731		return result;
 732
 733	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 734				       data, 64, NULL);
 735	*status = data[0];
 736	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 737}
 738
 739static int
 740sddr09_read_data(struct us_data *us,
 741		 unsigned long address,
 742		 unsigned int sectors) {
 743
 744	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 745	unsigned char *buffer;
 746	unsigned int lba, maxlba, pba;
 747	unsigned int page, pages;
 748	unsigned int len, offset;
 749	struct scatterlist *sg;
 750	int result;
 751
 752	// Figure out the initial LBA and page
 753	lba = address >> info->blockshift;
 754	page = (address & info->blockmask);
 755	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 756	if (lba >= maxlba)
 757		return -EIO;
 758
 759	// Since we only read in one block at a time, we have to create
 760	// a bounce buffer and move the data a piece at a time between the
 761	// bounce buffer and the actual transfer buffer.
 762
 763	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 764	buffer = kmalloc(len, GFP_NOIO);
 765	if (buffer == NULL) {
 766		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 767		return -ENOMEM;
 768	}
 769
 770	// This could be made much more efficient by checking for
 771	// contiguous LBA's. Another exercise left to the student.
 772
 773	result = 0;
 774	offset = 0;
 775	sg = NULL;
 776
 777	while (sectors > 0) {
 778
 779		/* Find number of pages we can read in this block */
 780		pages = min(sectors, info->blocksize - page);
 781		len = pages << info->pageshift;
 782
 783		/* Not overflowing capacity? */
 784		if (lba >= maxlba) {
 785			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 786				     lba, maxlba);
 787			result = -EIO;
 788			break;
 789		}
 790
 791		/* Find where this lba lives on disk */
 792		pba = info->lba_to_pba[lba];
 793
 794		if (pba == UNDEF) {	/* this lba was never written */
 795
 796			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 797				     pages, lba, page);
 798
 799			/* This is not really an error. It just means
 800			   that the block has never been written.
 801			   Instead of returning an error
 802			   it is better to return all zero data. */
 
 
 803
 804			memset(buffer, 0, len);
 805
 806		} else {
 807			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 808				     pages, pba, lba, page);
 809
 810			address = ((pba << info->blockshift) + page) << 
 811				info->pageshift;
 812
 813			result = sddr09_read20(us, address>>1,
 814					pages, info->pageshift, buffer, 0);
 815			if (result)
 816				break;
 817		}
 818
 819		// Store the data in the transfer buffer
 820		usb_stor_access_xfer_buf(buffer, len, us->srb,
 821				&sg, &offset, TO_XFER_BUF);
 822
 823		page = 0;
 824		lba++;
 825		sectors -= pages;
 826	}
 827
 828	kfree(buffer);
 829	return result;
 830}
 831
 832static unsigned int
 833sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 834	static unsigned int lastpba = 1;
 835	int zonestart, end, i;
 836
 837	zonestart = (lba/1000) << 10;
 838	end = info->capacity >> (info->blockshift + info->pageshift);
 839	end -= zonestart;
 840	if (end > 1024)
 841		end = 1024;
 842
 843	for (i = lastpba+1; i < end; i++) {
 844		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 845			lastpba = i;
 846			return zonestart+i;
 847		}
 848	}
 849	for (i = 0; i <= lastpba; i++) {
 850		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 851			lastpba = i;
 852			return zonestart+i;
 853		}
 854	}
 855	return 0;
 856}
 857
 858static int
 859sddr09_write_lba(struct us_data *us, unsigned int lba,
 860		 unsigned int page, unsigned int pages,
 861		 unsigned char *ptr, unsigned char *blockbuffer) {
 862
 863	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 864	unsigned long address;
 865	unsigned int pba, lbap;
 866	unsigned int pagelen;
 867	unsigned char *bptr, *cptr, *xptr;
 868	unsigned char ecc[3];
 869	int i, result, isnew;
 870
 871	lbap = ((lba % 1000) << 1) | 0x1000;
 872	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 873		lbap ^= 1;
 874	pba = info->lba_to_pba[lba];
 875	isnew = 0;
 876
 877	if (pba == UNDEF) {
 878		pba = sddr09_find_unused_pba(info, lba);
 879		if (!pba) {
 880			printk(KERN_WARNING
 881			       "sddr09_write_lba: Out of unused blocks\n");
 882			return -ENOSPC;
 883		}
 884		info->pba_to_lba[pba] = lba;
 885		info->lba_to_pba[lba] = pba;
 886		isnew = 1;
 887	}
 888
 889	if (pba == 1) {
 890		/* Maybe it is impossible to write to PBA 1.
 891		   Fake success, but don't do anything. */
 
 
 892		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 893		return 0;
 894	}
 895
 896	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 897
 898	/* read old contents */
 899	address = (pba << (info->pageshift + info->blockshift));
 900	result = sddr09_read22(us, address>>1, info->blocksize,
 901			       info->pageshift, blockbuffer, 0);
 902	if (result)
 903		return result;
 904
 905	/* check old contents and fill lba */
 906	for (i = 0; i < info->blocksize; i++) {
 907		bptr = blockbuffer + i*pagelen;
 908		cptr = bptr + info->pagesize;
 909		nand_compute_ecc(bptr, ecc);
 910		if (!nand_compare_ecc(cptr+13, ecc)) {
 911			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 912				     i, pba);
 913			nand_store_ecc(cptr+13, ecc);
 914		}
 915		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 916		if (!nand_compare_ecc(cptr+8, ecc)) {
 917			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 918				     i, pba);
 919			nand_store_ecc(cptr+8, ecc);
 920		}
 921		cptr[6] = cptr[11] = MSB_of(lbap);
 922		cptr[7] = cptr[12] = LSB_of(lbap);
 923	}
 924
 925	/* copy in new stuff and compute ECC */
 926	xptr = ptr;
 927	for (i = page; i < page+pages; i++) {
 928		bptr = blockbuffer + i*pagelen;
 929		cptr = bptr + info->pagesize;
 930		memcpy(bptr, xptr, info->pagesize);
 931		xptr += info->pagesize;
 932		nand_compute_ecc(bptr, ecc);
 933		nand_store_ecc(cptr+13, ecc);
 934		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 935		nand_store_ecc(cptr+8, ecc);
 936	}
 937
 938	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 939
 940	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 941				      info->pageshift, blockbuffer, 0);
 942
 943	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 944
 945#if 0
 946	{
 947		unsigned char status = 0;
 948		int result2 = sddr09_read_status(us, &status);
 949		if (result2)
 950			usb_stor_dbg(us, "cannot read status\n");
 951		else if (status != 0xc0)
 952			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 953	}
 954#endif
 955
 956#if 0
 957	{
 958		int result2 = sddr09_test_unit_ready(us);
 959	}
 960#endif
 961
 962	return result;
 963}
 964
 965static int
 966sddr09_write_data(struct us_data *us,
 967		  unsigned long address,
 968		  unsigned int sectors) {
 969
 970	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 971	unsigned int lba, maxlba, page, pages;
 972	unsigned int pagelen, blocklen;
 973	unsigned char *blockbuffer;
 974	unsigned char *buffer;
 975	unsigned int len, offset;
 976	struct scatterlist *sg;
 977	int result;
 978
 979	// Figure out the initial LBA and page
 980	lba = address >> info->blockshift;
 981	page = (address & info->blockmask);
 982	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 983	if (lba >= maxlba)
 984		return -EIO;
 985
 986	// blockbuffer is used for reading in the old data, overwriting
 987	// with the new data, and performing ECC calculations
 
 
 988
 989	/* TODO: instead of doing kmalloc/kfree for each write,
 990	   add a bufferpointer to the info structure */
 
 
 991
 992	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 993	blocklen = (pagelen << info->blockshift);
 994	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 995	if (!blockbuffer) {
 996		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
 997		return -ENOMEM;
 998	}
 999
1000	// Since we don't write the user data directly to the device,
1001	// we have to create a bounce buffer and move the data a piece
1002	// at a time between the bounce buffer and the actual transfer buffer.
 
 
1003
1004	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1005	buffer = kmalloc(len, GFP_NOIO);
1006	if (buffer == NULL) {
1007		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1008		kfree(blockbuffer);
1009		return -ENOMEM;
1010	}
1011
1012	result = 0;
1013	offset = 0;
1014	sg = NULL;
1015
1016	while (sectors > 0) {
1017
1018		// Write as many sectors as possible in this block
1019
1020		pages = min(sectors, info->blocksize - page);
1021		len = (pages << info->pageshift);
1022
1023		/* Not overflowing capacity? */
1024		if (lba >= maxlba) {
1025			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1026				     lba, maxlba);
1027			result = -EIO;
1028			break;
1029		}
1030
1031		// Get the data from the transfer buffer
1032		usb_stor_access_xfer_buf(buffer, len, us->srb,
1033				&sg, &offset, FROM_XFER_BUF);
1034
1035		result = sddr09_write_lba(us, lba, page, pages,
1036				buffer, blockbuffer);
1037		if (result)
1038			break;
1039
1040		page = 0;
1041		lba++;
1042		sectors -= pages;
1043	}
1044
1045	kfree(buffer);
1046	kfree(blockbuffer);
1047
1048	return result;
1049}
1050
1051static int
1052sddr09_read_control(struct us_data *us,
1053		unsigned long address,
1054		unsigned int blocks,
1055		unsigned char *content,
1056		int use_sg) {
1057
1058	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1059		     address, blocks);
1060
1061	return sddr09_read21(us, address, blocks,
1062			     CONTROL_SHIFT, content, use_sg);
1063}
1064
1065/*
1066 * Read Device ID Command: 12 bytes.
1067 * byte 0: opcode: ED
1068 *
1069 * Returns 2 bytes: Manufacturer ID and Device ID.
1070 * On more recent cards 3 bytes: the third byte is an option code A5
1071 * signifying that the secret command to read an 128-bit ID is available.
1072 * On still more recent cards 4 bytes: the fourth byte C0 means that
1073 * a second read ID cmd is available.
1074 */
1075static int
1076sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1077	unsigned char *command = us->iobuf;
1078	unsigned char *content = us->iobuf;
1079	int result, i;
1080
1081	memset(command, 0, 12);
1082	command[0] = 0xED;
1083	command[1] = LUNBITS;
1084
1085	result = sddr09_send_scsi_command(us, command, 12);
1086	if (result)
1087		return result;
1088
1089	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1090			content, 64, NULL);
1091
1092	for (i = 0; i < 4; i++)
1093		deviceID[i] = content[i];
1094
1095	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1096}
1097
1098static int
1099sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1100	int result;
1101	unsigned char status;
 
1102
1103	result = sddr09_read_status(us, &status);
1104	if (result) {
1105		usb_stor_dbg(us, "read_status fails\n");
1106		return result;
1107	}
1108	usb_stor_dbg(us, "status 0x%02X", status);
1109	if ((status & 0x80) == 0) {
1110		info->flags |= SDDR09_WP;	/* write protected */
1111		US_DEBUGPX(" WP");
 
 
1112	}
1113	if (status & 0x40)
1114		US_DEBUGPX(" Ready");
1115	if (status & LUNBITS)
1116		US_DEBUGPX(" Suspended");
1117	if (status & 0x1)
1118		US_DEBUGPX(" Error");
1119	US_DEBUGPX("\n");
1120	return 0;
1121}
1122
1123#if 0
1124/*
1125 * Reset Command: 12 bytes.
1126 * byte 0: opcode: EB
1127 */
1128static int
1129sddr09_reset(struct us_data *us) {
1130
1131	unsigned char *command = us->iobuf;
1132
1133	memset(command, 0, 12);
1134	command[0] = 0xEB;
1135	command[1] = LUNBITS;
1136
1137	return sddr09_send_scsi_command(us, command, 12);
1138}
1139#endif
1140
1141static struct nand_flash_dev *
1142sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1143	struct nand_flash_dev *cardinfo;
1144	unsigned char deviceID[4];
1145	char blurbtxt[256];
1146	int result;
1147
1148	usb_stor_dbg(us, "Reading capacity...\n");
1149
1150	result = sddr09_read_deviceID(us, deviceID);
1151
1152	if (result) {
1153		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1154		printk(KERN_WARNING "sddr09: could not read card info\n");
1155		return NULL;
1156	}
1157
1158	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1159		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1160
1161	/* Byte 0 is the manufacturer */
1162	sprintf(blurbtxt + strlen(blurbtxt),
1163		": Manuf. %s",
1164		nand_flash_manufacturer(deviceID[0]));
1165
1166	/* Byte 1 is the device type */
1167	cardinfo = nand_find_id(deviceID[1]);
1168	if (cardinfo) {
1169		/* MB or MiB? It is neither. A 16 MB card has
1170		   17301504 raw bytes, of which 16384000 are
1171		   usable for user data. */
 
 
1172		sprintf(blurbtxt + strlen(blurbtxt),
1173			", %d MB", 1<<(cardinfo->chipshift - 20));
1174	} else {
1175		sprintf(blurbtxt + strlen(blurbtxt),
1176			", type unrecognized");
1177	}
1178
1179	/* Byte 2 is code to signal availability of 128-bit ID */
1180	if (deviceID[2] == 0xa5) {
1181		sprintf(blurbtxt + strlen(blurbtxt),
1182			", 128-bit ID");
1183	}
1184
1185	/* Byte 3 announces the availability of another read ID command */
1186	if (deviceID[3] == 0xc0) {
1187		sprintf(blurbtxt + strlen(blurbtxt),
1188			", extra cmd");
1189	}
1190
1191	if (flags & SDDR09_WP)
1192		sprintf(blurbtxt + strlen(blurbtxt),
1193			", WP");
1194
1195	printk(KERN_WARNING "%s\n", blurbtxt);
1196
1197	return cardinfo;
1198}
1199
1200static int
1201sddr09_read_map(struct us_data *us) {
1202
1203	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1204	int numblocks, alloc_len, alloc_blocks;
1205	int i, j, result;
1206	unsigned char *buffer, *buffer_end, *ptr;
1207	unsigned int lba, lbact;
1208
1209	if (!info->capacity)
1210		return -1;
1211
1212	// size of a block is 1 << (blockshift + pageshift) bytes
1213	// divide into the total capacity to get the number of blocks
 
 
1214
1215	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1216
1217	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1218	// but only use a 64 KB buffer
1219	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
 
 
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224	buffer = kmalloc(alloc_len, GFP_NOIO);
1225	if (buffer == NULL) {
1226		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1227		result = -1;
1228		goto done;
1229	}
1230	buffer_end = buffer + alloc_len;
1231
1232#undef SDDR09_READ_MAP_BUFSZ
1233
1234	kfree(info->lba_to_pba);
1235	kfree(info->pba_to_lba);
1236	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1237	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1238
1239	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1240		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1241		result = -1;
1242		goto done;
1243	}
1244
1245	for (i = 0; i < numblocks; i++)
1246		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1247
1248	/*
1249	 * Define lba-pba translation table
1250	 */
1251
1252	ptr = buffer_end;
1253	for (i = 0; i < numblocks; i++) {
1254		ptr += (1 << CONTROL_SHIFT);
1255		if (ptr >= buffer_end) {
1256			unsigned long address;
1257
1258			address = i << (info->pageshift + info->blockshift);
1259			result = sddr09_read_control(
1260				us, address>>1,
1261				min(alloc_blocks, numblocks - i),
1262				buffer, 0);
1263			if (result) {
1264				result = -1;
1265				goto done;
1266			}
1267			ptr = buffer;
1268		}
1269
1270		if (i == 0 || i == 1) {
1271			info->pba_to_lba[i] = UNUSABLE;
1272			continue;
1273		}
1274
1275		/* special PBAs have control field 0^16 */
1276		for (j = 0; j < 16; j++)
1277			if (ptr[j] != 0)
1278				goto nonz;
1279		info->pba_to_lba[i] = UNUSABLE;
1280		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1281		       i);
1282		continue;
1283
1284	nonz:
1285		/* unwritten PBAs have control field FF^16 */
1286		for (j = 0; j < 16; j++)
1287			if (ptr[j] != 0xff)
1288				goto nonff;
1289		continue;
1290
1291	nonff:
1292		/* normal PBAs start with six FFs */
1293		if (j < 6) {
1294			printk(KERN_WARNING
1295			       "sddr09: PBA %d has no logical mapping: "
1296			       "reserved area = %02X%02X%02X%02X "
1297			       "data status %02X block status %02X\n",
1298			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1299			       ptr[4], ptr[5]);
1300			info->pba_to_lba[i] = UNUSABLE;
1301			continue;
1302		}
1303
1304		if ((ptr[6] >> 4) != 0x01) {
1305			printk(KERN_WARNING
1306			       "sddr09: PBA %d has invalid address field "
1307			       "%02X%02X/%02X%02X\n",
1308			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1309			info->pba_to_lba[i] = UNUSABLE;
1310			continue;
1311		}
1312
1313		/* check even parity */
1314		if (parity[ptr[6] ^ ptr[7]]) {
1315			printk(KERN_WARNING
1316			       "sddr09: Bad parity in LBA for block %d"
1317			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1318			info->pba_to_lba[i] = UNUSABLE;
1319			continue;
1320		}
1321
1322		lba = short_pack(ptr[7], ptr[6]);
1323		lba = (lba & 0x07FF) >> 1;
1324
1325		/*
1326		 * Every 1024 physical blocks ("zone"), the LBA numbers
1327		 * go back to zero, but are within a higher block of LBA's.
1328		 * Also, there is a maximum of 1000 LBA's per zone.
1329		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1330		 * which are really LBA 1000-1999. This allows for 24 bad
1331		 * or special physical blocks per zone.
1332		 */
1333
1334		if (lba >= 1000) {
1335			printk(KERN_WARNING
1336			       "sddr09: Bad low LBA %d for block %d\n",
1337			       lba, i);
1338			goto possibly_erase;
1339		}
1340
1341		lba += 1000*(i/0x400);
1342
1343		if (info->lba_to_pba[lba] != UNDEF) {
1344			printk(KERN_WARNING
1345			       "sddr09: LBA %d seen for PBA %d and %d\n",
1346			       lba, info->lba_to_pba[lba], i);
1347			goto possibly_erase;
1348		}
1349
1350		info->pba_to_lba[i] = lba;
1351		info->lba_to_pba[lba] = i;
1352		continue;
1353
1354	possibly_erase:
1355		if (erase_bad_lba_entries) {
1356			unsigned long address;
1357
1358			address = (i << (info->pageshift + info->blockshift));
1359			sddr09_erase(us, address>>1);
1360			info->pba_to_lba[i] = UNDEF;
1361		} else
1362			info->pba_to_lba[i] = UNUSABLE;
1363	}
1364
1365	/*
1366	 * Approximate capacity. This is not entirely correct yet,
1367	 * since a zone with less than 1000 usable pages leads to
1368	 * missing LBAs. Especially if it is the last zone, some
1369	 * LBAs can be past capacity.
1370	 */
1371	lbact = 0;
1372	for (i = 0; i < numblocks; i += 1024) {
1373		int ct = 0;
1374
1375		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1376			if (info->pba_to_lba[i+j] != UNUSABLE) {
1377				if (ct >= 1000)
1378					info->pba_to_lba[i+j] = SPARE;
1379				else
1380					ct++;
1381			}
1382		}
1383		lbact += ct;
1384	}
1385	info->lbact = lbact;
1386	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1387	result = 0;
1388
1389 done:
1390	if (result != 0) {
1391		kfree(info->lba_to_pba);
1392		kfree(info->pba_to_lba);
1393		info->lba_to_pba = NULL;
1394		info->pba_to_lba = NULL;
1395	}
1396	kfree(buffer);
1397	return result;
1398}
1399
1400static void
1401sddr09_card_info_destructor(void *extra) {
1402	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1403
1404	if (!info)
1405		return;
1406
1407	kfree(info->lba_to_pba);
1408	kfree(info->pba_to_lba);
1409}
1410
1411static int
1412sddr09_common_init(struct us_data *us) {
1413	int result;
1414
1415	/* set the configuration -- STALL is an acceptable response here */
1416	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1417		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1418			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1419		return -EINVAL;
1420	}
1421
1422	result = usb_reset_configuration(us->pusb_dev);
1423	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1424	if (result == -EPIPE) {
1425		usb_stor_dbg(us, "-- stall on control interface\n");
1426	} else if (result != 0) {
1427		/* it's not a stall, but another error -- time to bail */
1428		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1429		return -EINVAL;
1430	}
1431
1432	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1433	if (!us->extra)
1434		return -ENOMEM;
1435	us->extra_destructor = sddr09_card_info_destructor;
1436
1437	nand_init_ecc();
1438	return 0;
1439}
1440
1441
1442/*
1443 * This is needed at a very early stage. If this is not listed in the
1444 * unusual devices list but called from here then LUN 0 of the combo reader
1445 * is not recognized. But I do not know what precisely these calls do.
1446 */
1447static int
1448usb_stor_sddr09_dpcm_init(struct us_data *us) {
1449	int result;
1450	unsigned char *data = us->iobuf;
1451
1452	result = sddr09_common_init(us);
1453	if (result)
1454		return result;
1455
1456	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1457	if (result) {
1458		usb_stor_dbg(us, "send_command fails\n");
1459		return result;
1460	}
1461
1462	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1463	// get 07 02
1464
1465	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1466	if (result) {
1467		usb_stor_dbg(us, "2nd send_command fails\n");
1468		return result;
1469	}
1470
1471	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1472	// get 07 00
1473
1474	result = sddr09_request_sense(us, data, 18);
1475	if (result == 0 && data[2] != 0) {
1476		int j;
1477		for (j=0; j<18; j++)
1478			printk(" %02X", data[j]);
1479		printk("\n");
1480		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1481		// 70: current command
1482		// sense key 0, sense code 0, extd sense code 0
1483		// additional transfer length * = sizeof(data) - 7
1484		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1485		// sense key 06, sense code 28: unit attention,
1486		// not ready to ready transition
1487	}
1488
1489	// test unit ready
1490
1491	return 0;		/* not result */
1492}
1493
1494/*
1495 * Transport for the Microtech DPCM-USB
1496 */
1497static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1498{
1499	int ret;
1500
1501	usb_stor_dbg(us, "LUN=%d\n", srb->device->lun);
1502
1503	switch (srb->device->lun) {
1504	case 0:
1505
1506		/*
1507		 * LUN 0 corresponds to the CompactFlash card reader.
1508		 */
1509		ret = usb_stor_CB_transport(srb, us);
1510		break;
1511
1512	case 1:
1513
1514		/*
1515		 * LUN 1 corresponds to the SmartMedia card reader.
1516		 */
1517
1518		/*
1519		 * Set the LUN to 0 (just in case).
1520		 */
1521		srb->device->lun = 0;
1522		ret = sddr09_transport(srb, us);
1523		srb->device->lun = 1;
1524		break;
1525
1526	default:
1527		usb_stor_dbg(us, "Invalid LUN %d\n", srb->device->lun);
1528		ret = USB_STOR_TRANSPORT_ERROR;
1529		break;
1530	}
1531	return ret;
1532}
1533
1534
1535/*
1536 * Transport for the Sandisk SDDR-09
1537 */
1538static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1539{
1540	static unsigned char sensekey = 0, sensecode = 0;
1541	static unsigned char havefakesense = 0;
1542	int result, i;
1543	unsigned char *ptr = us->iobuf;
1544	unsigned long capacity;
1545	unsigned int page, pages;
1546
1547	struct sddr09_card_info *info;
1548
1549	static unsigned char inquiry_response[8] = {
1550		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1551	};
1552
1553	/* note: no block descriptor support */
1554	static unsigned char mode_page_01[19] = {
1555		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1556		0x01, 0x0A,
1557		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1558	};
1559
1560	info = (struct sddr09_card_info *)us->extra;
1561
1562	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1563		/* for a faked command, we have to follow with a faked sense */
1564		memset(ptr, 0, 18);
1565		ptr[0] = 0x70;
1566		ptr[2] = sensekey;
1567		ptr[7] = 11;
1568		ptr[12] = sensecode;
1569		usb_stor_set_xfer_buf(ptr, 18, srb);
1570		sensekey = sensecode = havefakesense = 0;
1571		return USB_STOR_TRANSPORT_GOOD;
1572	}
1573
1574	havefakesense = 1;
1575
1576	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1577	   respond to INQUIRY commands */
 
 
1578
1579	if (srb->cmnd[0] == INQUIRY) {
1580		memcpy(ptr, inquiry_response, 8);
1581		fill_inquiry_response(us, ptr, 36);
1582		return USB_STOR_TRANSPORT_GOOD;
1583	}
1584
1585	if (srb->cmnd[0] == READ_CAPACITY) {
1586		struct nand_flash_dev *cardinfo;
1587
1588		sddr09_get_wp(us, info);	/* read WP bit */
1589
1590		cardinfo = sddr09_get_cardinfo(us, info->flags);
1591		if (!cardinfo) {
1592			/* probably no media */
1593		init_error:
1594			sensekey = 0x02;	/* not ready */
1595			sensecode = 0x3a;	/* medium not present */
1596			return USB_STOR_TRANSPORT_FAILED;
1597		}
1598
1599		info->capacity = (1 << cardinfo->chipshift);
1600		info->pageshift = cardinfo->pageshift;
1601		info->pagesize = (1 << info->pageshift);
1602		info->blockshift = cardinfo->blockshift;
1603		info->blocksize = (1 << info->blockshift);
1604		info->blockmask = info->blocksize - 1;
1605
1606		// map initialization, must follow get_cardinfo()
1607		if (sddr09_read_map(us)) {
1608			/* probably out of memory */
1609			goto init_error;
1610		}
1611
1612		// Report capacity
1613
1614		capacity = (info->lbact << info->blockshift) - 1;
1615
1616		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1617
1618		// Report page size
1619
1620		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1621		usb_stor_set_xfer_buf(ptr, 8, srb);
1622
1623		return USB_STOR_TRANSPORT_GOOD;
1624	}
1625
1626	if (srb->cmnd[0] == MODE_SENSE_10) {
1627		int modepage = (srb->cmnd[2] & 0x3F);
1628
1629		/* They ask for the Read/Write error recovery page,
1630		   or for all pages. */
 
 
1631		/* %% We should check DBD %% */
1632		if (modepage == 0x01 || modepage == 0x3F) {
1633			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1634				     modepage);
1635
1636			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1637			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1638			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1639			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1640			return USB_STOR_TRANSPORT_GOOD;
1641		}
1642
1643		sensekey = 0x05;	/* illegal request */
1644		sensecode = 0x24;	/* invalid field in CDB */
1645		return USB_STOR_TRANSPORT_FAILED;
1646	}
1647
1648	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1649		return USB_STOR_TRANSPORT_GOOD;
1650
1651	havefakesense = 0;
1652
1653	if (srb->cmnd[0] == READ_10) {
1654
1655		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1656		page <<= 16;
1657		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1658		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1659
1660		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1661			     page, pages);
1662
1663		result = sddr09_read_data(us, page, pages);
1664		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1665				USB_STOR_TRANSPORT_ERROR);
1666	}
1667
1668	if (srb->cmnd[0] == WRITE_10) {
1669
1670		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1671		page <<= 16;
1672		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1673		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1674
1675		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1676			     page, pages);
1677
1678		result = sddr09_write_data(us, page, pages);
1679		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1680				USB_STOR_TRANSPORT_ERROR);
1681	}
1682
1683	/* catch-all for all other commands, except
 
1684	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1685	 */
1686	if (srb->cmnd[0] != TEST_UNIT_READY &&
1687	    srb->cmnd[0] != REQUEST_SENSE) {
1688		sensekey = 0x05;	/* illegal request */
1689		sensecode = 0x20;	/* invalid command */
1690		havefakesense = 1;
1691		return USB_STOR_TRANSPORT_FAILED;
1692	}
1693
1694	for (; srb->cmd_len<12; srb->cmd_len++)
1695		srb->cmnd[srb->cmd_len] = 0;
1696
1697	srb->cmnd[1] = LUNBITS;
1698
1699	ptr[0] = 0;
1700	for (i=0; i<12; i++)
1701		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1702
1703	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1704
1705	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1706	if (result) {
1707		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1708			     result);
1709		return USB_STOR_TRANSPORT_ERROR;
1710	}
1711
1712	if (scsi_bufflen(srb) == 0)
1713		return USB_STOR_TRANSPORT_GOOD;
1714
1715	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1716	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1717		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1718				? us->send_bulk_pipe : us->recv_bulk_pipe;
1719
1720		usb_stor_dbg(us, "%s %d bytes\n",
1721			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1722			     "sending" : "receiving",
1723			     scsi_bufflen(srb));
1724
1725		result = usb_stor_bulk_srb(us, pipe, srb);
1726
1727		return (result == USB_STOR_XFER_GOOD ?
1728			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1729	} 
1730
1731	return USB_STOR_TRANSPORT_GOOD;
1732}
1733
1734/*
1735 * Initialization routine for the sddr09 subdriver
1736 */
1737static int
1738usb_stor_sddr09_init(struct us_data *us) {
1739	return sddr09_common_init(us);
1740}
1741
 
 
1742static int sddr09_probe(struct usb_interface *intf,
1743			 const struct usb_device_id *id)
1744{
1745	struct us_data *us;
1746	int result;
1747
1748	result = usb_stor_probe1(&us, intf, id,
1749			(id - sddr09_usb_ids) + sddr09_unusual_dev_list);
 
1750	if (result)
1751		return result;
1752
1753	if (us->protocol == USB_PR_DPCM_USB) {
1754		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1755		us->transport = dpcm_transport;
1756		us->transport_reset = usb_stor_CB_reset;
1757		us->max_lun = 1;
1758	} else {
1759		us->transport_name = "EUSB/SDDR09";
1760		us->transport = sddr09_transport;
1761		us->transport_reset = usb_stor_CB_reset;
1762		us->max_lun = 0;
1763	}
1764
1765	result = usb_stor_probe2(us);
1766	return result;
1767}
1768
1769static struct usb_driver sddr09_driver = {
1770	.name =		"ums-sddr09",
1771	.probe =	sddr09_probe,
1772	.disconnect =	usb_stor_disconnect,
1773	.suspend =	usb_stor_suspend,
1774	.resume =	usb_stor_resume,
1775	.reset_resume =	usb_stor_reset_resume,
1776	.pre_reset =	usb_stor_pre_reset,
1777	.post_reset =	usb_stor_post_reset,
1778	.id_table =	sddr09_usb_ids,
1779	.soft_unbind =	1,
1780	.no_dynamic_id = 1,
1781};
1782
1783module_usb_driver(sddr09_driver);