Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for SanDisk SDDR-09 SmartMedia reader
4 *
5 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
6 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
7 * Developed with the assistance of:
8 * (c) 2002 Alan Stern <stern@rowland.org>
9 *
10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
11 * This chip is a programmable USB controller. In the SDDR-09, it has
12 * been programmed to obey a certain limited set of SCSI commands.
13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
14 * commands.
15 */
16
17/*
18 * Known vendor commands: 12 bytes, first byte is opcode
19 *
20 * E7: read scatter gather
21 * E8: read
22 * E9: write
23 * EA: erase
24 * EB: reset
25 * EC: read status
26 * ED: read ID
27 * EE: write CIS (?)
28 * EF: compute checksum (?)
29 */
30
31#include <linux/errno.h>
32#include <linux/module.h>
33#include <linux/slab.h>
34
35#include <scsi/scsi.h>
36#include <scsi/scsi_cmnd.h>
37#include <scsi/scsi_device.h>
38
39#include "usb.h"
40#include "transport.h"
41#include "protocol.h"
42#include "debug.h"
43#include "scsiglue.h"
44
45#define DRV_NAME "ums-sddr09"
46
47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
49MODULE_LICENSE("GPL");
50MODULE_IMPORT_NS("USB_STORAGE");
51
52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
54static int usb_stor_sddr09_init(struct us_data *us);
55
56
57/*
58 * The table of devices
59 */
60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
61 vendorName, productName, useProtocol, useTransport, \
62 initFunction, flags) \
63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
64 .driver_info = (flags) }
65
66static const struct usb_device_id sddr09_usb_ids[] = {
67# include "unusual_sddr09.h"
68 { } /* Terminating entry */
69};
70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
71
72#undef UNUSUAL_DEV
73
74/*
75 * The flags table
76 */
77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
78 vendor_name, product_name, use_protocol, use_transport, \
79 init_function, Flags) \
80{ \
81 .vendorName = vendor_name, \
82 .productName = product_name, \
83 .useProtocol = use_protocol, \
84 .useTransport = use_transport, \
85 .initFunction = init_function, \
86}
87
88static const struct us_unusual_dev sddr09_unusual_dev_list[] = {
89# include "unusual_sddr09.h"
90 { } /* Terminating entry */
91};
92
93#undef UNUSUAL_DEV
94
95
96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
97#define LSB_of(s) ((s)&0xFF)
98#define MSB_of(s) ((s)>>8)
99
100/*
101 * First some stuff that does not belong here:
102 * data on SmartMedia and other cards, completely
103 * unrelated to this driver.
104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
105 */
106
107struct nand_flash_dev {
108 int model_id;
109 int chipshift; /* 1<<cs bytes total capacity */
110 char pageshift; /* 1<<ps bytes in a page */
111 char blockshift; /* 1<<bs pages in an erase block */
112 char zoneshift; /* 1<<zs blocks in a zone */
113 /* # of logical blocks is 125/128 of this */
114 char pageadrlen; /* length of an address in bytes - 1 */
115};
116
117/*
118 * NAND Flash Manufacturer ID Codes
119 */
120#define NAND_MFR_AMD 0x01
121#define NAND_MFR_NATSEMI 0x8f
122#define NAND_MFR_TOSHIBA 0x98
123#define NAND_MFR_SAMSUNG 0xec
124
125static inline char *nand_flash_manufacturer(int manuf_id) {
126 switch(manuf_id) {
127 case NAND_MFR_AMD:
128 return "AMD";
129 case NAND_MFR_NATSEMI:
130 return "NATSEMI";
131 case NAND_MFR_TOSHIBA:
132 return "Toshiba";
133 case NAND_MFR_SAMSUNG:
134 return "Samsung";
135 default:
136 return "unknown";
137 }
138}
139
140/*
141 * It looks like it is unnecessary to attach manufacturer to the
142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
143 *
144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
145 */
146
147static struct nand_flash_dev nand_flash_ids[] = {
148 /* NAND flash */
149 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
150 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
151 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
152 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
153 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
154 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
155 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
156 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
157 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
158 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
159 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
160 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
161 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
162
163 /* MASK ROM */
164 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
165 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
167 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
168 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
169 { 0,}
170};
171
172static struct nand_flash_dev *
173nand_find_id(unsigned char id) {
174 int i;
175
176 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
177 if (nand_flash_ids[i].model_id == id)
178 return &(nand_flash_ids[i]);
179 return NULL;
180}
181
182/*
183 * ECC computation.
184 */
185static unsigned char parity[256];
186static unsigned char ecc2[256];
187
188static void nand_init_ecc(void) {
189 int i, j, a;
190
191 parity[0] = 0;
192 for (i = 1; i < 256; i++)
193 parity[i] = (parity[i&(i-1)] ^ 1);
194
195 for (i = 0; i < 256; i++) {
196 a = 0;
197 for (j = 0; j < 8; j++) {
198 if (i & (1<<j)) {
199 if ((j & 1) == 0)
200 a ^= 0x04;
201 if ((j & 2) == 0)
202 a ^= 0x10;
203 if ((j & 4) == 0)
204 a ^= 0x40;
205 }
206 }
207 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
208 }
209}
210
211/* compute 3-byte ecc on 256 bytes */
212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
213 int i, j, a;
214 unsigned char par = 0, bit, bits[8] = {0};
215
216 /* collect 16 checksum bits */
217 for (i = 0; i < 256; i++) {
218 par ^= data[i];
219 bit = parity[data[i]];
220 for (j = 0; j < 8; j++)
221 if ((i & (1<<j)) == 0)
222 bits[j] ^= bit;
223 }
224
225 /* put 4+4+4 = 12 bits in the ecc */
226 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
227 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
228
229 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
230 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
231
232 ecc[2] = ecc2[par];
233}
234
235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
236 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
237}
238
239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
240 memcpy(data, ecc, 3);
241}
242
243/*
244 * The actual driver starts here.
245 */
246
247struct sddr09_card_info {
248 unsigned long capacity; /* Size of card in bytes */
249 int pagesize; /* Size of page in bytes */
250 int pageshift; /* log2 of pagesize */
251 int blocksize; /* Size of block in pages */
252 int blockshift; /* log2 of blocksize */
253 int blockmask; /* 2^blockshift - 1 */
254 int *lba_to_pba; /* logical to physical map */
255 int *pba_to_lba; /* physical to logical map */
256 int lbact; /* number of available pages */
257 int flags;
258#define SDDR09_WP 1 /* write protected */
259};
260
261/*
262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
264 * so the reader makes up the remaining 48. Don't know whether these numbers
265 * depend on the card. For now a constant.
266 */
267#define CONTROL_SHIFT 6
268
269/*
270 * On my Combo CF/SM reader, the SM reader has LUN 1.
271 * (and things fail with LUN 0).
272 * It seems LUN is irrelevant for others.
273 */
274#define LUN 1
275#define LUNBITS (LUN << 5)
276
277/*
278 * LBA and PBA are unsigned ints. Special values.
279 */
280#define UNDEF 0xffffffff
281#define SPARE 0xfffffffe
282#define UNUSABLE 0xfffffffd
283
284static const int erase_bad_lba_entries = 0;
285
286/* send vendor interface command (0x41) */
287/* called for requests 0, 1, 8 */
288static int
289sddr09_send_command(struct us_data *us,
290 unsigned char request,
291 unsigned char direction,
292 unsigned char *xfer_data,
293 unsigned int xfer_len) {
294 unsigned int pipe;
295 unsigned char requesttype = (0x41 | direction);
296 int rc;
297
298 // Get the receive or send control pipe number
299
300 if (direction == USB_DIR_IN)
301 pipe = us->recv_ctrl_pipe;
302 else
303 pipe = us->send_ctrl_pipe;
304
305 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
306 0, 0, xfer_data, xfer_len);
307 switch (rc) {
308 case USB_STOR_XFER_GOOD: return 0;
309 case USB_STOR_XFER_STALLED: return -EPIPE;
310 default: return -EIO;
311 }
312}
313
314static int
315sddr09_send_scsi_command(struct us_data *us,
316 unsigned char *command,
317 unsigned int command_len) {
318 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
319}
320
321#if 0
322/*
323 * Test Unit Ready Command: 12 bytes.
324 * byte 0: opcode: 00
325 */
326static int
327sddr09_test_unit_ready(struct us_data *us) {
328 unsigned char *command = us->iobuf;
329 int result;
330
331 memset(command, 0, 6);
332 command[1] = LUNBITS;
333
334 result = sddr09_send_scsi_command(us, command, 6);
335
336 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
337
338 return result;
339}
340#endif
341
342/*
343 * Request Sense Command: 12 bytes.
344 * byte 0: opcode: 03
345 * byte 4: data length
346 */
347static int
348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
349 unsigned char *command = us->iobuf;
350 int result;
351
352 memset(command, 0, 12);
353 command[0] = 0x03;
354 command[1] = LUNBITS;
355 command[4] = buflen;
356
357 result = sddr09_send_scsi_command(us, command, 12);
358 if (result)
359 return result;
360
361 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
362 sensebuf, buflen, NULL);
363 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
364}
365
366/*
367 * Read Command: 12 bytes.
368 * byte 0: opcode: E8
369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
370 * 10: read both, 11: read pagewise control.
371 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
372 * bytes 2-5: address (interpretation depends on byte 1, see below)
373 * bytes 10-11: count (idem)
374 *
375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
376 * A read data command gets data in 512-byte pages.
377 * A read control command gets control in 64-byte chunks.
378 * A read both command gets data+control in 576-byte chunks.
379 *
380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
381 * next block, while read pagewise control jumps to the next page after
382 * reading a group of 64 control bytes.
383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
384 *
385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
386 */
387
388static int
389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
390 int nr_of_pages, int bulklen, unsigned char *buf,
391 int use_sg) {
392
393 unsigned char *command = us->iobuf;
394 int result;
395
396 command[0] = 0xE8;
397 command[1] = LUNBITS | x;
398 command[2] = MSB_of(fromaddress>>16);
399 command[3] = LSB_of(fromaddress>>16);
400 command[4] = MSB_of(fromaddress & 0xFFFF);
401 command[5] = LSB_of(fromaddress & 0xFFFF);
402 command[6] = 0;
403 command[7] = 0;
404 command[8] = 0;
405 command[9] = 0;
406 command[10] = MSB_of(nr_of_pages);
407 command[11] = LSB_of(nr_of_pages);
408
409 result = sddr09_send_scsi_command(us, command, 12);
410
411 if (result) {
412 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
413 x, result);
414 return result;
415 }
416
417 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
418 buf, bulklen, use_sg, NULL);
419
420 if (result != USB_STOR_XFER_GOOD) {
421 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
422 x, result);
423 return -EIO;
424 }
425 return 0;
426}
427
428/*
429 * Read Data
430 *
431 * fromaddress counts data shorts:
432 * increasing it by 256 shifts the bytestream by 512 bytes;
433 * the last 8 bits are ignored.
434 *
435 * nr_of_pages counts pages of size (1 << pageshift).
436 */
437static int
438sddr09_read20(struct us_data *us, unsigned long fromaddress,
439 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
440 int bulklen = nr_of_pages << pageshift;
441
442 /* The last 8 bits of fromaddress are ignored. */
443 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
444 buf, use_sg);
445}
446
447/*
448 * Read Blockwise Control
449 *
450 * fromaddress gives the starting position (as in read data;
451 * the last 8 bits are ignored); increasing it by 32*256 shifts
452 * the output stream by 64 bytes.
453 *
454 * count counts control groups of size (1 << controlshift).
455 * For me, controlshift = 6. Is this constant?
456 *
457 * After getting one control group, jump to the next block
458 * (fromaddress += 8192).
459 */
460static int
461sddr09_read21(struct us_data *us, unsigned long fromaddress,
462 int count, int controlshift, unsigned char *buf, int use_sg) {
463
464 int bulklen = (count << controlshift);
465 return sddr09_readX(us, 1, fromaddress, count, bulklen,
466 buf, use_sg);
467}
468
469/*
470 * Read both Data and Control
471 *
472 * fromaddress counts data shorts, ignoring control:
473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
474 * the last 8 bits are ignored.
475 *
476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
477 */
478static int
479sddr09_read22(struct us_data *us, unsigned long fromaddress,
480 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
481
482 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
483 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
484 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
485 buf, use_sg);
486}
487
488#if 0
489/*
490 * Read Pagewise Control
491 *
492 * fromaddress gives the starting position (as in read data;
493 * the last 8 bits are ignored); increasing it by 256 shifts
494 * the output stream by 64 bytes.
495 *
496 * count counts control groups of size (1 << controlshift).
497 * For me, controlshift = 6. Is this constant?
498 *
499 * After getting one control group, jump to the next page
500 * (fromaddress += 256).
501 */
502static int
503sddr09_read23(struct us_data *us, unsigned long fromaddress,
504 int count, int controlshift, unsigned char *buf, int use_sg) {
505
506 int bulklen = (count << controlshift);
507 return sddr09_readX(us, 3, fromaddress, count, bulklen,
508 buf, use_sg);
509}
510#endif
511
512/*
513 * Erase Command: 12 bytes.
514 * byte 0: opcode: EA
515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
516 *
517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
518 * The byte address being erased is 2*Eaddress.
519 * The CIS cannot be erased.
520 */
521static int
522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
523 unsigned char *command = us->iobuf;
524 int result;
525
526 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
527
528 memset(command, 0, 12);
529 command[0] = 0xEA;
530 command[1] = LUNBITS;
531 command[6] = MSB_of(Eaddress>>16);
532 command[7] = LSB_of(Eaddress>>16);
533 command[8] = MSB_of(Eaddress & 0xFFFF);
534 command[9] = LSB_of(Eaddress & 0xFFFF);
535
536 result = sddr09_send_scsi_command(us, command, 12);
537
538 if (result)
539 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
540 result);
541
542 return result;
543}
544
545/*
546 * Write CIS Command: 12 bytes.
547 * byte 0: opcode: EE
548 * bytes 2-5: write address in shorts
549 * bytes 10-11: sector count
550 *
551 * This writes at the indicated address. Don't know how it differs
552 * from E9. Maybe it does not erase? However, it will also write to
553 * the CIS.
554 *
555 * When two such commands on the same page follow each other directly,
556 * the second one is not done.
557 */
558
559/*
560 * Write Command: 12 bytes.
561 * byte 0: opcode: E9
562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
565 *
566 * If write address equals erase address, the erase is done first,
567 * otherwise the write is done first. When erase address equals zero
568 * no erase is done?
569 */
570static int
571sddr09_writeX(struct us_data *us,
572 unsigned long Waddress, unsigned long Eaddress,
573 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
574
575 unsigned char *command = us->iobuf;
576 int result;
577
578 command[0] = 0xE9;
579 command[1] = LUNBITS;
580
581 command[2] = MSB_of(Waddress>>16);
582 command[3] = LSB_of(Waddress>>16);
583 command[4] = MSB_of(Waddress & 0xFFFF);
584 command[5] = LSB_of(Waddress & 0xFFFF);
585
586 command[6] = MSB_of(Eaddress>>16);
587 command[7] = LSB_of(Eaddress>>16);
588 command[8] = MSB_of(Eaddress & 0xFFFF);
589 command[9] = LSB_of(Eaddress & 0xFFFF);
590
591 command[10] = MSB_of(nr_of_pages);
592 command[11] = LSB_of(nr_of_pages);
593
594 result = sddr09_send_scsi_command(us, command, 12);
595
596 if (result) {
597 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
598 result);
599 return result;
600 }
601
602 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
603 buf, bulklen, use_sg, NULL);
604
605 if (result != USB_STOR_XFER_GOOD) {
606 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
607 result);
608 return -EIO;
609 }
610 return 0;
611}
612
613/* erase address, write same address */
614static int
615sddr09_write_inplace(struct us_data *us, unsigned long address,
616 int nr_of_pages, int pageshift, unsigned char *buf,
617 int use_sg) {
618 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
619 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
620 buf, use_sg);
621}
622
623#if 0
624/*
625 * Read Scatter Gather Command: 3+4n bytes.
626 * byte 0: opcode E7
627 * byte 2: n
628 * bytes 4i-1,4i,4i+1: page address
629 * byte 4i+2: page count
630 * (i=1..n)
631 *
632 * This reads several pages from the card to a single memory buffer.
633 * The last two bits of byte 1 have the same meaning as for E8.
634 */
635static int
636sddr09_read_sg_test_only(struct us_data *us) {
637 unsigned char *command = us->iobuf;
638 int result, bulklen, nsg, ct;
639 unsigned char *buf;
640 unsigned long address;
641
642 nsg = bulklen = 0;
643 command[0] = 0xE7;
644 command[1] = LUNBITS;
645 command[2] = 0;
646 address = 040000; ct = 1;
647 nsg++;
648 bulklen += (ct << 9);
649 command[4*nsg+2] = ct;
650 command[4*nsg+1] = ((address >> 9) & 0xFF);
651 command[4*nsg+0] = ((address >> 17) & 0xFF);
652 command[4*nsg-1] = ((address >> 25) & 0xFF);
653
654 address = 0340000; ct = 1;
655 nsg++;
656 bulklen += (ct << 9);
657 command[4*nsg+2] = ct;
658 command[4*nsg+1] = ((address >> 9) & 0xFF);
659 command[4*nsg+0] = ((address >> 17) & 0xFF);
660 command[4*nsg-1] = ((address >> 25) & 0xFF);
661
662 address = 01000000; ct = 2;
663 nsg++;
664 bulklen += (ct << 9);
665 command[4*nsg+2] = ct;
666 command[4*nsg+1] = ((address >> 9) & 0xFF);
667 command[4*nsg+0] = ((address >> 17) & 0xFF);
668 command[4*nsg-1] = ((address >> 25) & 0xFF);
669
670 command[2] = nsg;
671
672 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
673
674 if (result) {
675 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
676 result);
677 return result;
678 }
679
680 buf = kmalloc(bulklen, GFP_NOIO);
681 if (!buf)
682 return -ENOMEM;
683
684 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
685 buf, bulklen, NULL);
686 kfree(buf);
687 if (result != USB_STOR_XFER_GOOD) {
688 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
689 result);
690 return -EIO;
691 }
692
693 return 0;
694}
695#endif
696
697/*
698 * Read Status Command: 12 bytes.
699 * byte 0: opcode: EC
700 *
701 * Returns 64 bytes, all zero except for the first.
702 * bit 0: 1: Error
703 * bit 5: 1: Suspended
704 * bit 6: 1: Ready
705 * bit 7: 1: Not write-protected
706 */
707
708static int
709sddr09_read_status(struct us_data *us, unsigned char *status) {
710
711 unsigned char *command = us->iobuf;
712 unsigned char *data = us->iobuf;
713 int result;
714
715 usb_stor_dbg(us, "Reading status...\n");
716
717 memset(command, 0, 12);
718 command[0] = 0xEC;
719 command[1] = LUNBITS;
720
721 result = sddr09_send_scsi_command(us, command, 12);
722 if (result)
723 return result;
724
725 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
726 data, 64, NULL);
727 *status = data[0];
728 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
729}
730
731static int
732sddr09_read_data(struct us_data *us,
733 unsigned long address,
734 unsigned int sectors) {
735
736 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
737 unsigned char *buffer;
738 unsigned int lba, maxlba, pba;
739 unsigned int page, pages;
740 unsigned int len, offset;
741 struct scatterlist *sg;
742 int result;
743
744 // Figure out the initial LBA and page
745 lba = address >> info->blockshift;
746 page = (address & info->blockmask);
747 maxlba = info->capacity >> (info->pageshift + info->blockshift);
748 if (lba >= maxlba)
749 return -EIO;
750
751 // Since we only read in one block at a time, we have to create
752 // a bounce buffer and move the data a piece at a time between the
753 // bounce buffer and the actual transfer buffer.
754
755 len = min_t(unsigned int, sectors, info->blocksize) * info->pagesize;
756 buffer = kmalloc(len, GFP_NOIO);
757 if (!buffer)
758 return -ENOMEM;
759
760 // This could be made much more efficient by checking for
761 // contiguous LBA's. Another exercise left to the student.
762
763 result = 0;
764 offset = 0;
765 sg = NULL;
766
767 while (sectors > 0) {
768
769 /* Find number of pages we can read in this block */
770 pages = min(sectors, info->blocksize - page);
771 len = pages << info->pageshift;
772
773 /* Not overflowing capacity? */
774 if (lba >= maxlba) {
775 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
776 lba, maxlba);
777 result = -EIO;
778 break;
779 }
780
781 /* Find where this lba lives on disk */
782 pba = info->lba_to_pba[lba];
783
784 if (pba == UNDEF) { /* this lba was never written */
785
786 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
787 pages, lba, page);
788
789 /*
790 * This is not really an error. It just means
791 * that the block has never been written.
792 * Instead of returning an error
793 * it is better to return all zero data.
794 */
795
796 memset(buffer, 0, len);
797
798 } else {
799 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
800 pages, pba, lba, page);
801
802 address = ((pba << info->blockshift) + page) <<
803 info->pageshift;
804
805 result = sddr09_read20(us, address>>1,
806 pages, info->pageshift, buffer, 0);
807 if (result)
808 break;
809 }
810
811 // Store the data in the transfer buffer
812 usb_stor_access_xfer_buf(buffer, len, us->srb,
813 &sg, &offset, TO_XFER_BUF);
814
815 page = 0;
816 lba++;
817 sectors -= pages;
818 }
819
820 kfree(buffer);
821 return result;
822}
823
824static unsigned int
825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
826 static unsigned int lastpba = 1;
827 int zonestart, end, i;
828
829 zonestart = (lba/1000) << 10;
830 end = info->capacity >> (info->blockshift + info->pageshift);
831 end -= zonestart;
832 if (end > 1024)
833 end = 1024;
834
835 for (i = lastpba+1; i < end; i++) {
836 if (info->pba_to_lba[zonestart+i] == UNDEF) {
837 lastpba = i;
838 return zonestart+i;
839 }
840 }
841 for (i = 0; i <= lastpba; i++) {
842 if (info->pba_to_lba[zonestart+i] == UNDEF) {
843 lastpba = i;
844 return zonestart+i;
845 }
846 }
847 return 0;
848}
849
850static int
851sddr09_write_lba(struct us_data *us, unsigned int lba,
852 unsigned int page, unsigned int pages,
853 unsigned char *ptr, unsigned char *blockbuffer) {
854
855 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
856 unsigned long address;
857 unsigned int pba, lbap;
858 unsigned int pagelen;
859 unsigned char *bptr, *cptr, *xptr;
860 unsigned char ecc[3];
861 int i, result;
862
863 lbap = ((lba % 1000) << 1) | 0x1000;
864 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
865 lbap ^= 1;
866 pba = info->lba_to_pba[lba];
867
868 if (pba == UNDEF) {
869 pba = sddr09_find_unused_pba(info, lba);
870 if (!pba) {
871 printk(KERN_WARNING
872 "sddr09_write_lba: Out of unused blocks\n");
873 return -ENOSPC;
874 }
875 info->pba_to_lba[pba] = lba;
876 info->lba_to_pba[lba] = pba;
877 }
878
879 if (pba == 1) {
880 /*
881 * Maybe it is impossible to write to PBA 1.
882 * Fake success, but don't do anything.
883 */
884 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
885 return 0;
886 }
887
888 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
889
890 /* read old contents */
891 address = (pba << (info->pageshift + info->blockshift));
892 result = sddr09_read22(us, address>>1, info->blocksize,
893 info->pageshift, blockbuffer, 0);
894 if (result)
895 return result;
896
897 /* check old contents and fill lba */
898 for (i = 0; i < info->blocksize; i++) {
899 bptr = blockbuffer + i*pagelen;
900 cptr = bptr + info->pagesize;
901 nand_compute_ecc(bptr, ecc);
902 if (!nand_compare_ecc(cptr+13, ecc)) {
903 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
904 i, pba);
905 nand_store_ecc(cptr+13, ecc);
906 }
907 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
908 if (!nand_compare_ecc(cptr+8, ecc)) {
909 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
910 i, pba);
911 nand_store_ecc(cptr+8, ecc);
912 }
913 cptr[6] = cptr[11] = MSB_of(lbap);
914 cptr[7] = cptr[12] = LSB_of(lbap);
915 }
916
917 /* copy in new stuff and compute ECC */
918 xptr = ptr;
919 for (i = page; i < page+pages; i++) {
920 bptr = blockbuffer + i*pagelen;
921 cptr = bptr + info->pagesize;
922 memcpy(bptr, xptr, info->pagesize);
923 xptr += info->pagesize;
924 nand_compute_ecc(bptr, ecc);
925 nand_store_ecc(cptr+13, ecc);
926 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
927 nand_store_ecc(cptr+8, ecc);
928 }
929
930 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
931
932 result = sddr09_write_inplace(us, address>>1, info->blocksize,
933 info->pageshift, blockbuffer, 0);
934
935 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
936
937#if 0
938 {
939 unsigned char status = 0;
940 int result2 = sddr09_read_status(us, &status);
941 if (result2)
942 usb_stor_dbg(us, "cannot read status\n");
943 else if (status != 0xc0)
944 usb_stor_dbg(us, "status after write: 0x%x\n", status);
945 }
946#endif
947
948#if 0
949 {
950 int result2 = sddr09_test_unit_ready(us);
951 }
952#endif
953
954 return result;
955}
956
957static int
958sddr09_write_data(struct us_data *us,
959 unsigned long address,
960 unsigned int sectors) {
961
962 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
963 unsigned int lba, maxlba, page, pages;
964 unsigned int pagelen, blocklen;
965 unsigned char *blockbuffer;
966 unsigned char *buffer;
967 unsigned int len, offset;
968 struct scatterlist *sg;
969 int result;
970
971 /* Figure out the initial LBA and page */
972 lba = address >> info->blockshift;
973 page = (address & info->blockmask);
974 maxlba = info->capacity >> (info->pageshift + info->blockshift);
975 if (lba >= maxlba)
976 return -EIO;
977
978 /*
979 * blockbuffer is used for reading in the old data, overwriting
980 * with the new data, and performing ECC calculations
981 */
982
983 /*
984 * TODO: instead of doing kmalloc/kfree for each write,
985 * add a bufferpointer to the info structure
986 */
987
988 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
989 blocklen = (pagelen << info->blockshift);
990 blockbuffer = kmalloc(blocklen, GFP_NOIO);
991 if (!blockbuffer)
992 return -ENOMEM;
993
994 /*
995 * Since we don't write the user data directly to the device,
996 * we have to create a bounce buffer and move the data a piece
997 * at a time between the bounce buffer and the actual transfer buffer.
998 */
999
1000 len = min_t(unsigned int, sectors, info->blocksize) * info->pagesize;
1001 buffer = kmalloc(len, GFP_NOIO);
1002 if (!buffer) {
1003 kfree(blockbuffer);
1004 return -ENOMEM;
1005 }
1006
1007 result = 0;
1008 offset = 0;
1009 sg = NULL;
1010
1011 while (sectors > 0) {
1012
1013 /* Write as many sectors as possible in this block */
1014
1015 pages = min(sectors, info->blocksize - page);
1016 len = (pages << info->pageshift);
1017
1018 /* Not overflowing capacity? */
1019 if (lba >= maxlba) {
1020 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1021 lba, maxlba);
1022 result = -EIO;
1023 break;
1024 }
1025
1026 /* Get the data from the transfer buffer */
1027 usb_stor_access_xfer_buf(buffer, len, us->srb,
1028 &sg, &offset, FROM_XFER_BUF);
1029
1030 result = sddr09_write_lba(us, lba, page, pages,
1031 buffer, blockbuffer);
1032 if (result)
1033 break;
1034
1035 page = 0;
1036 lba++;
1037 sectors -= pages;
1038 }
1039
1040 kfree(buffer);
1041 kfree(blockbuffer);
1042
1043 return result;
1044}
1045
1046static int
1047sddr09_read_control(struct us_data *us,
1048 unsigned long address,
1049 unsigned int blocks,
1050 unsigned char *content,
1051 int use_sg) {
1052
1053 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1054 address, blocks);
1055
1056 return sddr09_read21(us, address, blocks,
1057 CONTROL_SHIFT, content, use_sg);
1058}
1059
1060/*
1061 * Read Device ID Command: 12 bytes.
1062 * byte 0: opcode: ED
1063 *
1064 * Returns 2 bytes: Manufacturer ID and Device ID.
1065 * On more recent cards 3 bytes: the third byte is an option code A5
1066 * signifying that the secret command to read an 128-bit ID is available.
1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
1068 * a second read ID cmd is available.
1069 */
1070static int
1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1072 unsigned char *command = us->iobuf;
1073 unsigned char *content = us->iobuf;
1074 int result, i;
1075
1076 memset(command, 0, 12);
1077 command[0] = 0xED;
1078 command[1] = LUNBITS;
1079
1080 result = sddr09_send_scsi_command(us, command, 12);
1081 if (result)
1082 return result;
1083
1084 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085 content, 64, NULL);
1086
1087 for (i = 0; i < 4; i++)
1088 deviceID[i] = content[i];
1089
1090 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1091}
1092
1093static int
1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1095 int result;
1096 unsigned char status;
1097 const char *wp_fmt;
1098
1099 result = sddr09_read_status(us, &status);
1100 if (result) {
1101 usb_stor_dbg(us, "read_status fails\n");
1102 return result;
1103 }
1104 if ((status & 0x80) == 0) {
1105 info->flags |= SDDR09_WP; /* write protected */
1106 wp_fmt = " WP";
1107 } else {
1108 wp_fmt = "";
1109 }
1110 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1111 status & 0x40 ? " Ready" : "",
1112 status & LUNBITS ? " Suspended" : "",
1113 status & 0x01 ? " Error" : "");
1114
1115 return 0;
1116}
1117
1118#if 0
1119/*
1120 * Reset Command: 12 bytes.
1121 * byte 0: opcode: EB
1122 */
1123static int
1124sddr09_reset(struct us_data *us) {
1125
1126 unsigned char *command = us->iobuf;
1127
1128 memset(command, 0, 12);
1129 command[0] = 0xEB;
1130 command[1] = LUNBITS;
1131
1132 return sddr09_send_scsi_command(us, command, 12);
1133}
1134#endif
1135
1136static struct nand_flash_dev *
1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1138 struct nand_flash_dev *cardinfo;
1139 unsigned char deviceID[4];
1140 char blurbtxt[256];
1141 int result;
1142
1143 usb_stor_dbg(us, "Reading capacity...\n");
1144
1145 result = sddr09_read_deviceID(us, deviceID);
1146
1147 if (result) {
1148 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1149 printk(KERN_WARNING "sddr09: could not read card info\n");
1150 return NULL;
1151 }
1152
1153 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1154
1155 /* Byte 0 is the manufacturer */
1156 sprintf(blurbtxt + strlen(blurbtxt),
1157 ": Manuf. %s",
1158 nand_flash_manufacturer(deviceID[0]));
1159
1160 /* Byte 1 is the device type */
1161 cardinfo = nand_find_id(deviceID[1]);
1162 if (cardinfo) {
1163 /*
1164 * MB or MiB? It is neither. A 16 MB card has
1165 * 17301504 raw bytes, of which 16384000 are
1166 * usable for user data.
1167 */
1168 sprintf(blurbtxt + strlen(blurbtxt),
1169 ", %d MB", 1<<(cardinfo->chipshift - 20));
1170 } else {
1171 sprintf(blurbtxt + strlen(blurbtxt),
1172 ", type unrecognized");
1173 }
1174
1175 /* Byte 2 is code to signal availability of 128-bit ID */
1176 if (deviceID[2] == 0xa5) {
1177 sprintf(blurbtxt + strlen(blurbtxt),
1178 ", 128-bit ID");
1179 }
1180
1181 /* Byte 3 announces the availability of another read ID command */
1182 if (deviceID[3] == 0xc0) {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", extra cmd");
1185 }
1186
1187 if (flags & SDDR09_WP)
1188 sprintf(blurbtxt + strlen(blurbtxt),
1189 ", WP");
1190
1191 printk(KERN_WARNING "%s\n", blurbtxt);
1192
1193 return cardinfo;
1194}
1195
1196static int
1197sddr09_read_map(struct us_data *us) {
1198
1199 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1200 int numblocks, alloc_len, alloc_blocks;
1201 int i, j, result;
1202 unsigned char *buffer, *buffer_end, *ptr;
1203 unsigned int lba, lbact;
1204
1205 if (!info->capacity)
1206 return -1;
1207
1208 /*
1209 * size of a block is 1 << (blockshift + pageshift) bytes
1210 * divide into the total capacity to get the number of blocks
1211 */
1212
1213 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1214
1215 /*
1216 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217 * but only use a 64 KB buffer
1218 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219 */
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224 buffer = kmalloc(alloc_len, GFP_NOIO);
1225 if (!buffer) {
1226 result = -1;
1227 goto done;
1228 }
1229 buffer_end = buffer + alloc_len;
1230
1231#undef SDDR09_READ_MAP_BUFSZ
1232
1233 kfree(info->lba_to_pba);
1234 kfree(info->pba_to_lba);
1235 info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1236 info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1237
1238 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240 result = -1;
1241 goto done;
1242 }
1243
1244 for (i = 0; i < numblocks; i++)
1245 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246
1247 /*
1248 * Define lba-pba translation table
1249 */
1250
1251 ptr = buffer_end;
1252 for (i = 0; i < numblocks; i++) {
1253 ptr += (1 << CONTROL_SHIFT);
1254 if (ptr >= buffer_end) {
1255 unsigned long address;
1256
1257 address = i << (info->pageshift + info->blockshift);
1258 result = sddr09_read_control(
1259 us, address>>1,
1260 min(alloc_blocks, numblocks - i),
1261 buffer, 0);
1262 if (result) {
1263 result = -1;
1264 goto done;
1265 }
1266 ptr = buffer;
1267 }
1268
1269 if (i == 0 || i == 1) {
1270 info->pba_to_lba[i] = UNUSABLE;
1271 continue;
1272 }
1273
1274 /* special PBAs have control field 0^16 */
1275 for (j = 0; j < 16; j++)
1276 if (ptr[j] != 0)
1277 goto nonz;
1278 info->pba_to_lba[i] = UNUSABLE;
1279 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280 i);
1281 continue;
1282
1283 nonz:
1284 /* unwritten PBAs have control field FF^16 */
1285 for (j = 0; j < 16; j++)
1286 if (ptr[j] != 0xff)
1287 goto nonff;
1288 continue;
1289
1290 nonff:
1291 /* normal PBAs start with six FFs */
1292 if (j < 6) {
1293 printk(KERN_WARNING
1294 "sddr09: PBA %d has no logical mapping: "
1295 "reserved area = %02X%02X%02X%02X "
1296 "data status %02X block status %02X\n",
1297 i, ptr[0], ptr[1], ptr[2], ptr[3],
1298 ptr[4], ptr[5]);
1299 info->pba_to_lba[i] = UNUSABLE;
1300 continue;
1301 }
1302
1303 if ((ptr[6] >> 4) != 0x01) {
1304 printk(KERN_WARNING
1305 "sddr09: PBA %d has invalid address field "
1306 "%02X%02X/%02X%02X\n",
1307 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308 info->pba_to_lba[i] = UNUSABLE;
1309 continue;
1310 }
1311
1312 /* check even parity */
1313 if (parity[ptr[6] ^ ptr[7]]) {
1314 printk(KERN_WARNING
1315 "sddr09: Bad parity in LBA for block %d"
1316 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317 info->pba_to_lba[i] = UNUSABLE;
1318 continue;
1319 }
1320
1321 lba = short_pack(ptr[7], ptr[6]);
1322 lba = (lba & 0x07FF) >> 1;
1323
1324 /*
1325 * Every 1024 physical blocks ("zone"), the LBA numbers
1326 * go back to zero, but are within a higher block of LBA's.
1327 * Also, there is a maximum of 1000 LBA's per zone.
1328 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329 * which are really LBA 1000-1999. This allows for 24 bad
1330 * or special physical blocks per zone.
1331 */
1332
1333 if (lba >= 1000) {
1334 printk(KERN_WARNING
1335 "sddr09: Bad low LBA %d for block %d\n",
1336 lba, i);
1337 goto possibly_erase;
1338 }
1339
1340 lba += 1000*(i/0x400);
1341
1342 if (info->lba_to_pba[lba] != UNDEF) {
1343 printk(KERN_WARNING
1344 "sddr09: LBA %d seen for PBA %d and %d\n",
1345 lba, info->lba_to_pba[lba], i);
1346 goto possibly_erase;
1347 }
1348
1349 info->pba_to_lba[i] = lba;
1350 info->lba_to_pba[lba] = i;
1351 continue;
1352
1353 possibly_erase:
1354 if (erase_bad_lba_entries) {
1355 unsigned long address;
1356
1357 address = (i << (info->pageshift + info->blockshift));
1358 sddr09_erase(us, address>>1);
1359 info->pba_to_lba[i] = UNDEF;
1360 } else
1361 info->pba_to_lba[i] = UNUSABLE;
1362 }
1363
1364 /*
1365 * Approximate capacity. This is not entirely correct yet,
1366 * since a zone with less than 1000 usable pages leads to
1367 * missing LBAs. Especially if it is the last zone, some
1368 * LBAs can be past capacity.
1369 */
1370 lbact = 0;
1371 for (i = 0; i < numblocks; i += 1024) {
1372 int ct = 0;
1373
1374 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375 if (info->pba_to_lba[i+j] != UNUSABLE) {
1376 if (ct >= 1000)
1377 info->pba_to_lba[i+j] = SPARE;
1378 else
1379 ct++;
1380 }
1381 }
1382 lbact += ct;
1383 }
1384 info->lbact = lbact;
1385 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386 result = 0;
1387
1388 done:
1389 if (result != 0) {
1390 kfree(info->lba_to_pba);
1391 kfree(info->pba_to_lba);
1392 info->lba_to_pba = NULL;
1393 info->pba_to_lba = NULL;
1394 }
1395 kfree(buffer);
1396 return result;
1397}
1398
1399static void
1400sddr09_card_info_destructor(void *extra) {
1401 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402
1403 if (!info)
1404 return;
1405
1406 kfree(info->lba_to_pba);
1407 kfree(info->pba_to_lba);
1408}
1409
1410static int
1411sddr09_common_init(struct us_data *us) {
1412 int result;
1413
1414 /* set the configuration -- STALL is an acceptable response here */
1415 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417 us->pusb_dev->actconfig->desc.bConfigurationValue);
1418 return -EINVAL;
1419 }
1420
1421 result = usb_reset_configuration(us->pusb_dev);
1422 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423 if (result == -EPIPE) {
1424 usb_stor_dbg(us, "-- stall on control interface\n");
1425 } else if (result != 0) {
1426 /* it's not a stall, but another error -- time to bail */
1427 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1428 return -EINVAL;
1429 }
1430
1431 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432 if (!us->extra)
1433 return -ENOMEM;
1434 us->extra_destructor = sddr09_card_info_destructor;
1435
1436 nand_init_ecc();
1437 return 0;
1438}
1439
1440
1441/*
1442 * This is needed at a very early stage. If this is not listed in the
1443 * unusual devices list but called from here then LUN 0 of the combo reader
1444 * is not recognized. But I do not know what precisely these calls do.
1445 */
1446static int
1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448 int result;
1449 unsigned char *data = us->iobuf;
1450
1451 result = sddr09_common_init(us);
1452 if (result)
1453 return result;
1454
1455 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456 if (result) {
1457 usb_stor_dbg(us, "send_command fails\n");
1458 return result;
1459 }
1460
1461 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462 // get 07 02
1463
1464 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465 if (result) {
1466 usb_stor_dbg(us, "2nd send_command fails\n");
1467 return result;
1468 }
1469
1470 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471 // get 07 00
1472
1473 result = sddr09_request_sense(us, data, 18);
1474 if (result == 0 && data[2] != 0) {
1475 int j;
1476 for (j=0; j<18; j++)
1477 printk(" %02X", data[j]);
1478 printk("\n");
1479 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480 // 70: current command
1481 // sense key 0, sense code 0, extd sense code 0
1482 // additional transfer length * = sizeof(data) - 7
1483 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484 // sense key 06, sense code 28: unit attention,
1485 // not ready to ready transition
1486 }
1487
1488 // test unit ready
1489
1490 return 0; /* not result */
1491}
1492
1493/*
1494 * Transport for the Microtech DPCM-USB
1495 */
1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497{
1498 int ret;
1499
1500 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501
1502 switch (srb->device->lun) {
1503 case 0:
1504
1505 /*
1506 * LUN 0 corresponds to the CompactFlash card reader.
1507 */
1508 ret = usb_stor_CB_transport(srb, us);
1509 break;
1510
1511 case 1:
1512
1513 /*
1514 * LUN 1 corresponds to the SmartMedia card reader.
1515 */
1516
1517 /*
1518 * Set the LUN to 0 (just in case).
1519 */
1520 srb->device->lun = 0;
1521 ret = sddr09_transport(srb, us);
1522 srb->device->lun = 1;
1523 break;
1524
1525 default:
1526 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1527 ret = USB_STOR_TRANSPORT_ERROR;
1528 break;
1529 }
1530 return ret;
1531}
1532
1533
1534/*
1535 * Transport for the Sandisk SDDR-09
1536 */
1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538{
1539 static unsigned char sensekey = 0, sensecode = 0;
1540 static unsigned char havefakesense = 0;
1541 int result, i;
1542 unsigned char *ptr = us->iobuf;
1543 unsigned long capacity;
1544 unsigned int page, pages;
1545
1546 struct sddr09_card_info *info;
1547
1548 static unsigned char inquiry_response[8] = {
1549 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550 };
1551
1552 /* note: no block descriptor support */
1553 static unsigned char mode_page_01[19] = {
1554 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555 0x01, 0x0A,
1556 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557 };
1558
1559 info = (struct sddr09_card_info *)us->extra;
1560
1561 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562 /* for a faked command, we have to follow with a faked sense */
1563 memset(ptr, 0, 18);
1564 ptr[0] = 0x70;
1565 ptr[2] = sensekey;
1566 ptr[7] = 11;
1567 ptr[12] = sensecode;
1568 usb_stor_set_xfer_buf(ptr, 18, srb);
1569 sensekey = sensecode = havefakesense = 0;
1570 return USB_STOR_TRANSPORT_GOOD;
1571 }
1572
1573 havefakesense = 1;
1574
1575 /*
1576 * Dummy up a response for INQUIRY since SDDR09 doesn't
1577 * respond to INQUIRY commands
1578 */
1579
1580 if (srb->cmnd[0] == INQUIRY) {
1581 memcpy(ptr, inquiry_response, 8);
1582 fill_inquiry_response(us, ptr, 36);
1583 return USB_STOR_TRANSPORT_GOOD;
1584 }
1585
1586 if (srb->cmnd[0] == READ_CAPACITY) {
1587 struct nand_flash_dev *cardinfo;
1588
1589 sddr09_get_wp(us, info); /* read WP bit */
1590
1591 cardinfo = sddr09_get_cardinfo(us, info->flags);
1592 if (!cardinfo) {
1593 /* probably no media */
1594 init_error:
1595 sensekey = 0x02; /* not ready */
1596 sensecode = 0x3a; /* medium not present */
1597 return USB_STOR_TRANSPORT_FAILED;
1598 }
1599
1600 info->capacity = (1 << cardinfo->chipshift);
1601 info->pageshift = cardinfo->pageshift;
1602 info->pagesize = (1 << info->pageshift);
1603 info->blockshift = cardinfo->blockshift;
1604 info->blocksize = (1 << info->blockshift);
1605 info->blockmask = info->blocksize - 1;
1606
1607 // map initialization, must follow get_cardinfo()
1608 if (sddr09_read_map(us)) {
1609 /* probably out of memory */
1610 goto init_error;
1611 }
1612
1613 // Report capacity
1614
1615 capacity = (info->lbact << info->blockshift) - 1;
1616
1617 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1618
1619 // Report page size
1620
1621 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1622 usb_stor_set_xfer_buf(ptr, 8, srb);
1623
1624 return USB_STOR_TRANSPORT_GOOD;
1625 }
1626
1627 if (srb->cmnd[0] == MODE_SENSE_10) {
1628 int modepage = (srb->cmnd[2] & 0x3F);
1629
1630 /*
1631 * They ask for the Read/Write error recovery page,
1632 * or for all pages.
1633 */
1634 /* %% We should check DBD %% */
1635 if (modepage == 0x01 || modepage == 0x3F) {
1636 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1637 modepage);
1638
1639 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1640 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1641 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1642 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1643 return USB_STOR_TRANSPORT_GOOD;
1644 }
1645
1646 sensekey = 0x05; /* illegal request */
1647 sensecode = 0x24; /* invalid field in CDB */
1648 return USB_STOR_TRANSPORT_FAILED;
1649 }
1650
1651 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1652 return USB_STOR_TRANSPORT_GOOD;
1653
1654 havefakesense = 0;
1655
1656 if (srb->cmnd[0] == READ_10) {
1657
1658 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1659 page <<= 16;
1660 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1661 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662
1663 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1664 page, pages);
1665
1666 result = sddr09_read_data(us, page, pages);
1667 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1668 USB_STOR_TRANSPORT_ERROR);
1669 }
1670
1671 if (srb->cmnd[0] == WRITE_10) {
1672
1673 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1674 page <<= 16;
1675 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1676 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677
1678 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1679 page, pages);
1680
1681 result = sddr09_write_data(us, page, pages);
1682 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1683 USB_STOR_TRANSPORT_ERROR);
1684 }
1685
1686 /*
1687 * catch-all for all other commands, except
1688 * pass TEST_UNIT_READY and REQUEST_SENSE through
1689 */
1690 if (srb->cmnd[0] != TEST_UNIT_READY &&
1691 srb->cmnd[0] != REQUEST_SENSE) {
1692 sensekey = 0x05; /* illegal request */
1693 sensecode = 0x20; /* invalid command */
1694 havefakesense = 1;
1695 return USB_STOR_TRANSPORT_FAILED;
1696 }
1697
1698 for (; srb->cmd_len<12; srb->cmd_len++)
1699 srb->cmnd[srb->cmd_len] = 0;
1700
1701 srb->cmnd[1] = LUNBITS;
1702
1703 ptr[0] = 0;
1704 for (i=0; i<12; i++)
1705 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1706
1707 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1708
1709 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1710 if (result) {
1711 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1712 result);
1713 return USB_STOR_TRANSPORT_ERROR;
1714 }
1715
1716 if (scsi_bufflen(srb) == 0)
1717 return USB_STOR_TRANSPORT_GOOD;
1718
1719 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1720 srb->sc_data_direction == DMA_FROM_DEVICE) {
1721 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1722 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1723
1724 usb_stor_dbg(us, "%s %d bytes\n",
1725 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1726 "sending" : "receiving",
1727 scsi_bufflen(srb));
1728
1729 result = usb_stor_bulk_srb(us, pipe, srb);
1730
1731 return (result == USB_STOR_XFER_GOOD ?
1732 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733 }
1734
1735 return USB_STOR_TRANSPORT_GOOD;
1736}
1737
1738/*
1739 * Initialization routine for the sddr09 subdriver
1740 */
1741static int
1742usb_stor_sddr09_init(struct us_data *us) {
1743 return sddr09_common_init(us);
1744}
1745
1746static struct scsi_host_template sddr09_host_template;
1747
1748static int sddr09_probe(struct usb_interface *intf,
1749 const struct usb_device_id *id)
1750{
1751 struct us_data *us;
1752 int result;
1753
1754 result = usb_stor_probe1(&us, intf, id,
1755 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1756 &sddr09_host_template);
1757 if (result)
1758 return result;
1759
1760 if (us->protocol == USB_PR_DPCM_USB) {
1761 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762 us->transport = dpcm_transport;
1763 us->transport_reset = usb_stor_CB_reset;
1764 us->max_lun = 1;
1765 } else {
1766 us->transport_name = "EUSB/SDDR09";
1767 us->transport = sddr09_transport;
1768 us->transport_reset = usb_stor_CB_reset;
1769 us->max_lun = 0;
1770 }
1771
1772 result = usb_stor_probe2(us);
1773 return result;
1774}
1775
1776static struct usb_driver sddr09_driver = {
1777 .name = DRV_NAME,
1778 .probe = sddr09_probe,
1779 .disconnect = usb_stor_disconnect,
1780 .suspend = usb_stor_suspend,
1781 .resume = usb_stor_resume,
1782 .reset_resume = usb_stor_reset_resume,
1783 .pre_reset = usb_stor_pre_reset,
1784 .post_reset = usb_stor_post_reset,
1785 .id_table = sddr09_usb_ids,
1786 .soft_unbind = 1,
1787 .no_dynamic_id = 1,
1788};
1789
1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1/* Driver for SanDisk SDDR-09 SmartMedia reader
2 *
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
7 *
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12 * commands.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 */
28
29/*
30 * Known vendor commands: 12 bytes, first byte is opcode
31 *
32 * E7: read scatter gather
33 * E8: read
34 * E9: write
35 * EA: erase
36 * EB: reset
37 * EC: read status
38 * ED: read ID
39 * EE: write CIS (?)
40 * EF: compute checksum (?)
41 */
42
43#include <linux/errno.h>
44#include <linux/module.h>
45#include <linux/slab.h>
46
47#include <scsi/scsi.h>
48#include <scsi/scsi_cmnd.h>
49#include <scsi/scsi_device.h>
50
51#include "usb.h"
52#include "transport.h"
53#include "protocol.h"
54#include "debug.h"
55
56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
58MODULE_LICENSE("GPL");
59
60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
62static int usb_stor_sddr09_init(struct us_data *us);
63
64
65/*
66 * The table of devices
67 */
68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
69 vendorName, productName, useProtocol, useTransport, \
70 initFunction, flags) \
71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
72 .driver_info = (flags) }
73
74static struct usb_device_id sddr09_usb_ids[] = {
75# include "unusual_sddr09.h"
76 { } /* Terminating entry */
77};
78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
79
80#undef UNUSUAL_DEV
81
82/*
83 * The flags table
84 */
85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
86 vendor_name, product_name, use_protocol, use_transport, \
87 init_function, Flags) \
88{ \
89 .vendorName = vendor_name, \
90 .productName = product_name, \
91 .useProtocol = use_protocol, \
92 .useTransport = use_transport, \
93 .initFunction = init_function, \
94}
95
96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
97# include "unusual_sddr09.h"
98 { } /* Terminating entry */
99};
100
101#undef UNUSUAL_DEV
102
103
104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
105#define LSB_of(s) ((s)&0xFF)
106#define MSB_of(s) ((s)>>8)
107
108/*
109 * First some stuff that does not belong here:
110 * data on SmartMedia and other cards, completely
111 * unrelated to this driver.
112 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
113 */
114
115struct nand_flash_dev {
116 int model_id;
117 int chipshift; /* 1<<cs bytes total capacity */
118 char pageshift; /* 1<<ps bytes in a page */
119 char blockshift; /* 1<<bs pages in an erase block */
120 char zoneshift; /* 1<<zs blocks in a zone */
121 /* # of logical blocks is 125/128 of this */
122 char pageadrlen; /* length of an address in bytes - 1 */
123};
124
125/*
126 * NAND Flash Manufacturer ID Codes
127 */
128#define NAND_MFR_AMD 0x01
129#define NAND_MFR_NATSEMI 0x8f
130#define NAND_MFR_TOSHIBA 0x98
131#define NAND_MFR_SAMSUNG 0xec
132
133static inline char *nand_flash_manufacturer(int manuf_id) {
134 switch(manuf_id) {
135 case NAND_MFR_AMD:
136 return "AMD";
137 case NAND_MFR_NATSEMI:
138 return "NATSEMI";
139 case NAND_MFR_TOSHIBA:
140 return "Toshiba";
141 case NAND_MFR_SAMSUNG:
142 return "Samsung";
143 default:
144 return "unknown";
145 }
146}
147
148/*
149 * It looks like it is unnecessary to attach manufacturer to the
150 * remaining data: SSFDC prescribes manufacturer-independent id codes.
151 *
152 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
153 */
154
155static struct nand_flash_dev nand_flash_ids[] = {
156 /* NAND flash */
157 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
158 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
159 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
160 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
161 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
162 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
163 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
164 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
165 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
166 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
167 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
168 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
169 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
170
171 /* MASK ROM */
172 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
173 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
174 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
175 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
176 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
177 { 0,}
178};
179
180static struct nand_flash_dev *
181nand_find_id(unsigned char id) {
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
185 if (nand_flash_ids[i].model_id == id)
186 return &(nand_flash_ids[i]);
187 return NULL;
188}
189
190/*
191 * ECC computation.
192 */
193static unsigned char parity[256];
194static unsigned char ecc2[256];
195
196static void nand_init_ecc(void) {
197 int i, j, a;
198
199 parity[0] = 0;
200 for (i = 1; i < 256; i++)
201 parity[i] = (parity[i&(i-1)] ^ 1);
202
203 for (i = 0; i < 256; i++) {
204 a = 0;
205 for (j = 0; j < 8; j++) {
206 if (i & (1<<j)) {
207 if ((j & 1) == 0)
208 a ^= 0x04;
209 if ((j & 2) == 0)
210 a ^= 0x10;
211 if ((j & 4) == 0)
212 a ^= 0x40;
213 }
214 }
215 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
216 }
217}
218
219/* compute 3-byte ecc on 256 bytes */
220static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
221 int i, j, a;
222 unsigned char par = 0, bit, bits[8] = {0};
223
224 /* collect 16 checksum bits */
225 for (i = 0; i < 256; i++) {
226 par ^= data[i];
227 bit = parity[data[i]];
228 for (j = 0; j < 8; j++)
229 if ((i & (1<<j)) == 0)
230 bits[j] ^= bit;
231 }
232
233 /* put 4+4+4 = 12 bits in the ecc */
234 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
235 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
236
237 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
238 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
239
240 ecc[2] = ecc2[par];
241}
242
243static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
244 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
245}
246
247static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
248 memcpy(data, ecc, 3);
249}
250
251/*
252 * The actual driver starts here.
253 */
254
255struct sddr09_card_info {
256 unsigned long capacity; /* Size of card in bytes */
257 int pagesize; /* Size of page in bytes */
258 int pageshift; /* log2 of pagesize */
259 int blocksize; /* Size of block in pages */
260 int blockshift; /* log2 of blocksize */
261 int blockmask; /* 2^blockshift - 1 */
262 int *lba_to_pba; /* logical to physical map */
263 int *pba_to_lba; /* physical to logical map */
264 int lbact; /* number of available pages */
265 int flags;
266#define SDDR09_WP 1 /* write protected */
267};
268
269/*
270 * On my 16MB card, control blocks have size 64 (16 real control bytes,
271 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
272 * so the reader makes up the remaining 48. Don't know whether these numbers
273 * depend on the card. For now a constant.
274 */
275#define CONTROL_SHIFT 6
276
277/*
278 * On my Combo CF/SM reader, the SM reader has LUN 1.
279 * (and things fail with LUN 0).
280 * It seems LUN is irrelevant for others.
281 */
282#define LUN 1
283#define LUNBITS (LUN << 5)
284
285/*
286 * LBA and PBA are unsigned ints. Special values.
287 */
288#define UNDEF 0xffffffff
289#define SPARE 0xfffffffe
290#define UNUSABLE 0xfffffffd
291
292static const int erase_bad_lba_entries = 0;
293
294/* send vendor interface command (0x41) */
295/* called for requests 0, 1, 8 */
296static int
297sddr09_send_command(struct us_data *us,
298 unsigned char request,
299 unsigned char direction,
300 unsigned char *xfer_data,
301 unsigned int xfer_len) {
302 unsigned int pipe;
303 unsigned char requesttype = (0x41 | direction);
304 int rc;
305
306 // Get the receive or send control pipe number
307
308 if (direction == USB_DIR_IN)
309 pipe = us->recv_ctrl_pipe;
310 else
311 pipe = us->send_ctrl_pipe;
312
313 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
314 0, 0, xfer_data, xfer_len);
315 switch (rc) {
316 case USB_STOR_XFER_GOOD: return 0;
317 case USB_STOR_XFER_STALLED: return -EPIPE;
318 default: return -EIO;
319 }
320}
321
322static int
323sddr09_send_scsi_command(struct us_data *us,
324 unsigned char *command,
325 unsigned int command_len) {
326 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
327}
328
329#if 0
330/*
331 * Test Unit Ready Command: 12 bytes.
332 * byte 0: opcode: 00
333 */
334static int
335sddr09_test_unit_ready(struct us_data *us) {
336 unsigned char *command = us->iobuf;
337 int result;
338
339 memset(command, 0, 6);
340 command[1] = LUNBITS;
341
342 result = sddr09_send_scsi_command(us, command, 6);
343
344 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
345
346 return result;
347}
348#endif
349
350/*
351 * Request Sense Command: 12 bytes.
352 * byte 0: opcode: 03
353 * byte 4: data length
354 */
355static int
356sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
357 unsigned char *command = us->iobuf;
358 int result;
359
360 memset(command, 0, 12);
361 command[0] = 0x03;
362 command[1] = LUNBITS;
363 command[4] = buflen;
364
365 result = sddr09_send_scsi_command(us, command, 12);
366 if (result)
367 return result;
368
369 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
370 sensebuf, buflen, NULL);
371 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
372}
373
374/*
375 * Read Command: 12 bytes.
376 * byte 0: opcode: E8
377 * byte 1: last two bits: 00: read data, 01: read blockwise control,
378 * 10: read both, 11: read pagewise control.
379 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
380 * bytes 2-5: address (interpretation depends on byte 1, see below)
381 * bytes 10-11: count (idem)
382 *
383 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
384 * A read data command gets data in 512-byte pages.
385 * A read control command gets control in 64-byte chunks.
386 * A read both command gets data+control in 576-byte chunks.
387 *
388 * Blocks are groups of 32 pages, and read blockwise control jumps to the
389 * next block, while read pagewise control jumps to the next page after
390 * reading a group of 64 control bytes.
391 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
392 *
393 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
394 */
395
396static int
397sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
398 int nr_of_pages, int bulklen, unsigned char *buf,
399 int use_sg) {
400
401 unsigned char *command = us->iobuf;
402 int result;
403
404 command[0] = 0xE8;
405 command[1] = LUNBITS | x;
406 command[2] = MSB_of(fromaddress>>16);
407 command[3] = LSB_of(fromaddress>>16);
408 command[4] = MSB_of(fromaddress & 0xFFFF);
409 command[5] = LSB_of(fromaddress & 0xFFFF);
410 command[6] = 0;
411 command[7] = 0;
412 command[8] = 0;
413 command[9] = 0;
414 command[10] = MSB_of(nr_of_pages);
415 command[11] = LSB_of(nr_of_pages);
416
417 result = sddr09_send_scsi_command(us, command, 12);
418
419 if (result) {
420 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
421 x, result);
422 return result;
423 }
424
425 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
426 buf, bulklen, use_sg, NULL);
427
428 if (result != USB_STOR_XFER_GOOD) {
429 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
430 x, result);
431 return -EIO;
432 }
433 return 0;
434}
435
436/*
437 * Read Data
438 *
439 * fromaddress counts data shorts:
440 * increasing it by 256 shifts the bytestream by 512 bytes;
441 * the last 8 bits are ignored.
442 *
443 * nr_of_pages counts pages of size (1 << pageshift).
444 */
445static int
446sddr09_read20(struct us_data *us, unsigned long fromaddress,
447 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
448 int bulklen = nr_of_pages << pageshift;
449
450 /* The last 8 bits of fromaddress are ignored. */
451 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
452 buf, use_sg);
453}
454
455/*
456 * Read Blockwise Control
457 *
458 * fromaddress gives the starting position (as in read data;
459 * the last 8 bits are ignored); increasing it by 32*256 shifts
460 * the output stream by 64 bytes.
461 *
462 * count counts control groups of size (1 << controlshift).
463 * For me, controlshift = 6. Is this constant?
464 *
465 * After getting one control group, jump to the next block
466 * (fromaddress += 8192).
467 */
468static int
469sddr09_read21(struct us_data *us, unsigned long fromaddress,
470 int count, int controlshift, unsigned char *buf, int use_sg) {
471
472 int bulklen = (count << controlshift);
473 return sddr09_readX(us, 1, fromaddress, count, bulklen,
474 buf, use_sg);
475}
476
477/*
478 * Read both Data and Control
479 *
480 * fromaddress counts data shorts, ignoring control:
481 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
482 * the last 8 bits are ignored.
483 *
484 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
485 */
486static int
487sddr09_read22(struct us_data *us, unsigned long fromaddress,
488 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
489
490 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
491 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
492 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
493 buf, use_sg);
494}
495
496#if 0
497/*
498 * Read Pagewise Control
499 *
500 * fromaddress gives the starting position (as in read data;
501 * the last 8 bits are ignored); increasing it by 256 shifts
502 * the output stream by 64 bytes.
503 *
504 * count counts control groups of size (1 << controlshift).
505 * For me, controlshift = 6. Is this constant?
506 *
507 * After getting one control group, jump to the next page
508 * (fromaddress += 256).
509 */
510static int
511sddr09_read23(struct us_data *us, unsigned long fromaddress,
512 int count, int controlshift, unsigned char *buf, int use_sg) {
513
514 int bulklen = (count << controlshift);
515 return sddr09_readX(us, 3, fromaddress, count, bulklen,
516 buf, use_sg);
517}
518#endif
519
520/*
521 * Erase Command: 12 bytes.
522 * byte 0: opcode: EA
523 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
524 *
525 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
526 * The byte address being erased is 2*Eaddress.
527 * The CIS cannot be erased.
528 */
529static int
530sddr09_erase(struct us_data *us, unsigned long Eaddress) {
531 unsigned char *command = us->iobuf;
532 int result;
533
534 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
535
536 memset(command, 0, 12);
537 command[0] = 0xEA;
538 command[1] = LUNBITS;
539 command[6] = MSB_of(Eaddress>>16);
540 command[7] = LSB_of(Eaddress>>16);
541 command[8] = MSB_of(Eaddress & 0xFFFF);
542 command[9] = LSB_of(Eaddress & 0xFFFF);
543
544 result = sddr09_send_scsi_command(us, command, 12);
545
546 if (result)
547 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
548 result);
549
550 return result;
551}
552
553/*
554 * Write CIS Command: 12 bytes.
555 * byte 0: opcode: EE
556 * bytes 2-5: write address in shorts
557 * bytes 10-11: sector count
558 *
559 * This writes at the indicated address. Don't know how it differs
560 * from E9. Maybe it does not erase? However, it will also write to
561 * the CIS.
562 *
563 * When two such commands on the same page follow each other directly,
564 * the second one is not done.
565 */
566
567/*
568 * Write Command: 12 bytes.
569 * byte 0: opcode: E9
570 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
571 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
572 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
573 *
574 * If write address equals erase address, the erase is done first,
575 * otherwise the write is done first. When erase address equals zero
576 * no erase is done?
577 */
578static int
579sddr09_writeX(struct us_data *us,
580 unsigned long Waddress, unsigned long Eaddress,
581 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
582
583 unsigned char *command = us->iobuf;
584 int result;
585
586 command[0] = 0xE9;
587 command[1] = LUNBITS;
588
589 command[2] = MSB_of(Waddress>>16);
590 command[3] = LSB_of(Waddress>>16);
591 command[4] = MSB_of(Waddress & 0xFFFF);
592 command[5] = LSB_of(Waddress & 0xFFFF);
593
594 command[6] = MSB_of(Eaddress>>16);
595 command[7] = LSB_of(Eaddress>>16);
596 command[8] = MSB_of(Eaddress & 0xFFFF);
597 command[9] = LSB_of(Eaddress & 0xFFFF);
598
599 command[10] = MSB_of(nr_of_pages);
600 command[11] = LSB_of(nr_of_pages);
601
602 result = sddr09_send_scsi_command(us, command, 12);
603
604 if (result) {
605 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
606 result);
607 return result;
608 }
609
610 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
611 buf, bulklen, use_sg, NULL);
612
613 if (result != USB_STOR_XFER_GOOD) {
614 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
615 result);
616 return -EIO;
617 }
618 return 0;
619}
620
621/* erase address, write same address */
622static int
623sddr09_write_inplace(struct us_data *us, unsigned long address,
624 int nr_of_pages, int pageshift, unsigned char *buf,
625 int use_sg) {
626 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
627 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
628 buf, use_sg);
629}
630
631#if 0
632/*
633 * Read Scatter Gather Command: 3+4n bytes.
634 * byte 0: opcode E7
635 * byte 2: n
636 * bytes 4i-1,4i,4i+1: page address
637 * byte 4i+2: page count
638 * (i=1..n)
639 *
640 * This reads several pages from the card to a single memory buffer.
641 * The last two bits of byte 1 have the same meaning as for E8.
642 */
643static int
644sddr09_read_sg_test_only(struct us_data *us) {
645 unsigned char *command = us->iobuf;
646 int result, bulklen, nsg, ct;
647 unsigned char *buf;
648 unsigned long address;
649
650 nsg = bulklen = 0;
651 command[0] = 0xE7;
652 command[1] = LUNBITS;
653 command[2] = 0;
654 address = 040000; ct = 1;
655 nsg++;
656 bulklen += (ct << 9);
657 command[4*nsg+2] = ct;
658 command[4*nsg+1] = ((address >> 9) & 0xFF);
659 command[4*nsg+0] = ((address >> 17) & 0xFF);
660 command[4*nsg-1] = ((address >> 25) & 0xFF);
661
662 address = 0340000; ct = 1;
663 nsg++;
664 bulklen += (ct << 9);
665 command[4*nsg+2] = ct;
666 command[4*nsg+1] = ((address >> 9) & 0xFF);
667 command[4*nsg+0] = ((address >> 17) & 0xFF);
668 command[4*nsg-1] = ((address >> 25) & 0xFF);
669
670 address = 01000000; ct = 2;
671 nsg++;
672 bulklen += (ct << 9);
673 command[4*nsg+2] = ct;
674 command[4*nsg+1] = ((address >> 9) & 0xFF);
675 command[4*nsg+0] = ((address >> 17) & 0xFF);
676 command[4*nsg-1] = ((address >> 25) & 0xFF);
677
678 command[2] = nsg;
679
680 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
681
682 if (result) {
683 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
684 result);
685 return result;
686 }
687
688 buf = kmalloc(bulklen, GFP_NOIO);
689 if (!buf)
690 return -ENOMEM;
691
692 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
693 buf, bulklen, NULL);
694 kfree(buf);
695 if (result != USB_STOR_XFER_GOOD) {
696 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
697 result);
698 return -EIO;
699 }
700
701 return 0;
702}
703#endif
704
705/*
706 * Read Status Command: 12 bytes.
707 * byte 0: opcode: EC
708 *
709 * Returns 64 bytes, all zero except for the first.
710 * bit 0: 1: Error
711 * bit 5: 1: Suspended
712 * bit 6: 1: Ready
713 * bit 7: 1: Not write-protected
714 */
715
716static int
717sddr09_read_status(struct us_data *us, unsigned char *status) {
718
719 unsigned char *command = us->iobuf;
720 unsigned char *data = us->iobuf;
721 int result;
722
723 usb_stor_dbg(us, "Reading status...\n");
724
725 memset(command, 0, 12);
726 command[0] = 0xEC;
727 command[1] = LUNBITS;
728
729 result = sddr09_send_scsi_command(us, command, 12);
730 if (result)
731 return result;
732
733 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
734 data, 64, NULL);
735 *status = data[0];
736 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
737}
738
739static int
740sddr09_read_data(struct us_data *us,
741 unsigned long address,
742 unsigned int sectors) {
743
744 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
745 unsigned char *buffer;
746 unsigned int lba, maxlba, pba;
747 unsigned int page, pages;
748 unsigned int len, offset;
749 struct scatterlist *sg;
750 int result;
751
752 // Figure out the initial LBA and page
753 lba = address >> info->blockshift;
754 page = (address & info->blockmask);
755 maxlba = info->capacity >> (info->pageshift + info->blockshift);
756 if (lba >= maxlba)
757 return -EIO;
758
759 // Since we only read in one block at a time, we have to create
760 // a bounce buffer and move the data a piece at a time between the
761 // bounce buffer and the actual transfer buffer.
762
763 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
764 buffer = kmalloc(len, GFP_NOIO);
765 if (buffer == NULL) {
766 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
767 return -ENOMEM;
768 }
769
770 // This could be made much more efficient by checking for
771 // contiguous LBA's. Another exercise left to the student.
772
773 result = 0;
774 offset = 0;
775 sg = NULL;
776
777 while (sectors > 0) {
778
779 /* Find number of pages we can read in this block */
780 pages = min(sectors, info->blocksize - page);
781 len = pages << info->pageshift;
782
783 /* Not overflowing capacity? */
784 if (lba >= maxlba) {
785 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
786 lba, maxlba);
787 result = -EIO;
788 break;
789 }
790
791 /* Find where this lba lives on disk */
792 pba = info->lba_to_pba[lba];
793
794 if (pba == UNDEF) { /* this lba was never written */
795
796 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
797 pages, lba, page);
798
799 /* This is not really an error. It just means
800 that the block has never been written.
801 Instead of returning an error
802 it is better to return all zero data. */
803
804 memset(buffer, 0, len);
805
806 } else {
807 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
808 pages, pba, lba, page);
809
810 address = ((pba << info->blockshift) + page) <<
811 info->pageshift;
812
813 result = sddr09_read20(us, address>>1,
814 pages, info->pageshift, buffer, 0);
815 if (result)
816 break;
817 }
818
819 // Store the data in the transfer buffer
820 usb_stor_access_xfer_buf(buffer, len, us->srb,
821 &sg, &offset, TO_XFER_BUF);
822
823 page = 0;
824 lba++;
825 sectors -= pages;
826 }
827
828 kfree(buffer);
829 return result;
830}
831
832static unsigned int
833sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
834 static unsigned int lastpba = 1;
835 int zonestart, end, i;
836
837 zonestart = (lba/1000) << 10;
838 end = info->capacity >> (info->blockshift + info->pageshift);
839 end -= zonestart;
840 if (end > 1024)
841 end = 1024;
842
843 for (i = lastpba+1; i < end; i++) {
844 if (info->pba_to_lba[zonestart+i] == UNDEF) {
845 lastpba = i;
846 return zonestart+i;
847 }
848 }
849 for (i = 0; i <= lastpba; i++) {
850 if (info->pba_to_lba[zonestart+i] == UNDEF) {
851 lastpba = i;
852 return zonestart+i;
853 }
854 }
855 return 0;
856}
857
858static int
859sddr09_write_lba(struct us_data *us, unsigned int lba,
860 unsigned int page, unsigned int pages,
861 unsigned char *ptr, unsigned char *blockbuffer) {
862
863 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
864 unsigned long address;
865 unsigned int pba, lbap;
866 unsigned int pagelen;
867 unsigned char *bptr, *cptr, *xptr;
868 unsigned char ecc[3];
869 int i, result, isnew;
870
871 lbap = ((lba % 1000) << 1) | 0x1000;
872 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
873 lbap ^= 1;
874 pba = info->lba_to_pba[lba];
875 isnew = 0;
876
877 if (pba == UNDEF) {
878 pba = sddr09_find_unused_pba(info, lba);
879 if (!pba) {
880 printk(KERN_WARNING
881 "sddr09_write_lba: Out of unused blocks\n");
882 return -ENOSPC;
883 }
884 info->pba_to_lba[pba] = lba;
885 info->lba_to_pba[lba] = pba;
886 isnew = 1;
887 }
888
889 if (pba == 1) {
890 /* Maybe it is impossible to write to PBA 1.
891 Fake success, but don't do anything. */
892 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
893 return 0;
894 }
895
896 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
897
898 /* read old contents */
899 address = (pba << (info->pageshift + info->blockshift));
900 result = sddr09_read22(us, address>>1, info->blocksize,
901 info->pageshift, blockbuffer, 0);
902 if (result)
903 return result;
904
905 /* check old contents and fill lba */
906 for (i = 0; i < info->blocksize; i++) {
907 bptr = blockbuffer + i*pagelen;
908 cptr = bptr + info->pagesize;
909 nand_compute_ecc(bptr, ecc);
910 if (!nand_compare_ecc(cptr+13, ecc)) {
911 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
912 i, pba);
913 nand_store_ecc(cptr+13, ecc);
914 }
915 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
916 if (!nand_compare_ecc(cptr+8, ecc)) {
917 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
918 i, pba);
919 nand_store_ecc(cptr+8, ecc);
920 }
921 cptr[6] = cptr[11] = MSB_of(lbap);
922 cptr[7] = cptr[12] = LSB_of(lbap);
923 }
924
925 /* copy in new stuff and compute ECC */
926 xptr = ptr;
927 for (i = page; i < page+pages; i++) {
928 bptr = blockbuffer + i*pagelen;
929 cptr = bptr + info->pagesize;
930 memcpy(bptr, xptr, info->pagesize);
931 xptr += info->pagesize;
932 nand_compute_ecc(bptr, ecc);
933 nand_store_ecc(cptr+13, ecc);
934 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
935 nand_store_ecc(cptr+8, ecc);
936 }
937
938 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
939
940 result = sddr09_write_inplace(us, address>>1, info->blocksize,
941 info->pageshift, blockbuffer, 0);
942
943 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
944
945#if 0
946 {
947 unsigned char status = 0;
948 int result2 = sddr09_read_status(us, &status);
949 if (result2)
950 usb_stor_dbg(us, "cannot read status\n");
951 else if (status != 0xc0)
952 usb_stor_dbg(us, "status after write: 0x%x\n", status);
953 }
954#endif
955
956#if 0
957 {
958 int result2 = sddr09_test_unit_ready(us);
959 }
960#endif
961
962 return result;
963}
964
965static int
966sddr09_write_data(struct us_data *us,
967 unsigned long address,
968 unsigned int sectors) {
969
970 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
971 unsigned int lba, maxlba, page, pages;
972 unsigned int pagelen, blocklen;
973 unsigned char *blockbuffer;
974 unsigned char *buffer;
975 unsigned int len, offset;
976 struct scatterlist *sg;
977 int result;
978
979 // Figure out the initial LBA and page
980 lba = address >> info->blockshift;
981 page = (address & info->blockmask);
982 maxlba = info->capacity >> (info->pageshift + info->blockshift);
983 if (lba >= maxlba)
984 return -EIO;
985
986 // blockbuffer is used for reading in the old data, overwriting
987 // with the new data, and performing ECC calculations
988
989 /* TODO: instead of doing kmalloc/kfree for each write,
990 add a bufferpointer to the info structure */
991
992 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
993 blocklen = (pagelen << info->blockshift);
994 blockbuffer = kmalloc(blocklen, GFP_NOIO);
995 if (!blockbuffer) {
996 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
997 return -ENOMEM;
998 }
999
1000 // Since we don't write the user data directly to the device,
1001 // we have to create a bounce buffer and move the data a piece
1002 // at a time between the bounce buffer and the actual transfer buffer.
1003
1004 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1005 buffer = kmalloc(len, GFP_NOIO);
1006 if (buffer == NULL) {
1007 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1008 kfree(blockbuffer);
1009 return -ENOMEM;
1010 }
1011
1012 result = 0;
1013 offset = 0;
1014 sg = NULL;
1015
1016 while (sectors > 0) {
1017
1018 // Write as many sectors as possible in this block
1019
1020 pages = min(sectors, info->blocksize - page);
1021 len = (pages << info->pageshift);
1022
1023 /* Not overflowing capacity? */
1024 if (lba >= maxlba) {
1025 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1026 lba, maxlba);
1027 result = -EIO;
1028 break;
1029 }
1030
1031 // Get the data from the transfer buffer
1032 usb_stor_access_xfer_buf(buffer, len, us->srb,
1033 &sg, &offset, FROM_XFER_BUF);
1034
1035 result = sddr09_write_lba(us, lba, page, pages,
1036 buffer, blockbuffer);
1037 if (result)
1038 break;
1039
1040 page = 0;
1041 lba++;
1042 sectors -= pages;
1043 }
1044
1045 kfree(buffer);
1046 kfree(blockbuffer);
1047
1048 return result;
1049}
1050
1051static int
1052sddr09_read_control(struct us_data *us,
1053 unsigned long address,
1054 unsigned int blocks,
1055 unsigned char *content,
1056 int use_sg) {
1057
1058 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1059 address, blocks);
1060
1061 return sddr09_read21(us, address, blocks,
1062 CONTROL_SHIFT, content, use_sg);
1063}
1064
1065/*
1066 * Read Device ID Command: 12 bytes.
1067 * byte 0: opcode: ED
1068 *
1069 * Returns 2 bytes: Manufacturer ID and Device ID.
1070 * On more recent cards 3 bytes: the third byte is an option code A5
1071 * signifying that the secret command to read an 128-bit ID is available.
1072 * On still more recent cards 4 bytes: the fourth byte C0 means that
1073 * a second read ID cmd is available.
1074 */
1075static int
1076sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1077 unsigned char *command = us->iobuf;
1078 unsigned char *content = us->iobuf;
1079 int result, i;
1080
1081 memset(command, 0, 12);
1082 command[0] = 0xED;
1083 command[1] = LUNBITS;
1084
1085 result = sddr09_send_scsi_command(us, command, 12);
1086 if (result)
1087 return result;
1088
1089 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1090 content, 64, NULL);
1091
1092 for (i = 0; i < 4; i++)
1093 deviceID[i] = content[i];
1094
1095 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1096}
1097
1098static int
1099sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1100 int result;
1101 unsigned char status;
1102
1103 result = sddr09_read_status(us, &status);
1104 if (result) {
1105 usb_stor_dbg(us, "read_status fails\n");
1106 return result;
1107 }
1108 usb_stor_dbg(us, "status 0x%02X", status);
1109 if ((status & 0x80) == 0) {
1110 info->flags |= SDDR09_WP; /* write protected */
1111 US_DEBUGPX(" WP");
1112 }
1113 if (status & 0x40)
1114 US_DEBUGPX(" Ready");
1115 if (status & LUNBITS)
1116 US_DEBUGPX(" Suspended");
1117 if (status & 0x1)
1118 US_DEBUGPX(" Error");
1119 US_DEBUGPX("\n");
1120 return 0;
1121}
1122
1123#if 0
1124/*
1125 * Reset Command: 12 bytes.
1126 * byte 0: opcode: EB
1127 */
1128static int
1129sddr09_reset(struct us_data *us) {
1130
1131 unsigned char *command = us->iobuf;
1132
1133 memset(command, 0, 12);
1134 command[0] = 0xEB;
1135 command[1] = LUNBITS;
1136
1137 return sddr09_send_scsi_command(us, command, 12);
1138}
1139#endif
1140
1141static struct nand_flash_dev *
1142sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1143 struct nand_flash_dev *cardinfo;
1144 unsigned char deviceID[4];
1145 char blurbtxt[256];
1146 int result;
1147
1148 usb_stor_dbg(us, "Reading capacity...\n");
1149
1150 result = sddr09_read_deviceID(us, deviceID);
1151
1152 if (result) {
1153 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1154 printk(KERN_WARNING "sddr09: could not read card info\n");
1155 return NULL;
1156 }
1157
1158 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1159 deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1160
1161 /* Byte 0 is the manufacturer */
1162 sprintf(blurbtxt + strlen(blurbtxt),
1163 ": Manuf. %s",
1164 nand_flash_manufacturer(deviceID[0]));
1165
1166 /* Byte 1 is the device type */
1167 cardinfo = nand_find_id(deviceID[1]);
1168 if (cardinfo) {
1169 /* MB or MiB? It is neither. A 16 MB card has
1170 17301504 raw bytes, of which 16384000 are
1171 usable for user data. */
1172 sprintf(blurbtxt + strlen(blurbtxt),
1173 ", %d MB", 1<<(cardinfo->chipshift - 20));
1174 } else {
1175 sprintf(blurbtxt + strlen(blurbtxt),
1176 ", type unrecognized");
1177 }
1178
1179 /* Byte 2 is code to signal availability of 128-bit ID */
1180 if (deviceID[2] == 0xa5) {
1181 sprintf(blurbtxt + strlen(blurbtxt),
1182 ", 128-bit ID");
1183 }
1184
1185 /* Byte 3 announces the availability of another read ID command */
1186 if (deviceID[3] == 0xc0) {
1187 sprintf(blurbtxt + strlen(blurbtxt),
1188 ", extra cmd");
1189 }
1190
1191 if (flags & SDDR09_WP)
1192 sprintf(blurbtxt + strlen(blurbtxt),
1193 ", WP");
1194
1195 printk(KERN_WARNING "%s\n", blurbtxt);
1196
1197 return cardinfo;
1198}
1199
1200static int
1201sddr09_read_map(struct us_data *us) {
1202
1203 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1204 int numblocks, alloc_len, alloc_blocks;
1205 int i, j, result;
1206 unsigned char *buffer, *buffer_end, *ptr;
1207 unsigned int lba, lbact;
1208
1209 if (!info->capacity)
1210 return -1;
1211
1212 // size of a block is 1 << (blockshift + pageshift) bytes
1213 // divide into the total capacity to get the number of blocks
1214
1215 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1216
1217 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1218 // but only use a 64 KB buffer
1219 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224 buffer = kmalloc(alloc_len, GFP_NOIO);
1225 if (buffer == NULL) {
1226 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1227 result = -1;
1228 goto done;
1229 }
1230 buffer_end = buffer + alloc_len;
1231
1232#undef SDDR09_READ_MAP_BUFSZ
1233
1234 kfree(info->lba_to_pba);
1235 kfree(info->pba_to_lba);
1236 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1237 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1238
1239 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1240 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1241 result = -1;
1242 goto done;
1243 }
1244
1245 for (i = 0; i < numblocks; i++)
1246 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1247
1248 /*
1249 * Define lba-pba translation table
1250 */
1251
1252 ptr = buffer_end;
1253 for (i = 0; i < numblocks; i++) {
1254 ptr += (1 << CONTROL_SHIFT);
1255 if (ptr >= buffer_end) {
1256 unsigned long address;
1257
1258 address = i << (info->pageshift + info->blockshift);
1259 result = sddr09_read_control(
1260 us, address>>1,
1261 min(alloc_blocks, numblocks - i),
1262 buffer, 0);
1263 if (result) {
1264 result = -1;
1265 goto done;
1266 }
1267 ptr = buffer;
1268 }
1269
1270 if (i == 0 || i == 1) {
1271 info->pba_to_lba[i] = UNUSABLE;
1272 continue;
1273 }
1274
1275 /* special PBAs have control field 0^16 */
1276 for (j = 0; j < 16; j++)
1277 if (ptr[j] != 0)
1278 goto nonz;
1279 info->pba_to_lba[i] = UNUSABLE;
1280 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1281 i);
1282 continue;
1283
1284 nonz:
1285 /* unwritten PBAs have control field FF^16 */
1286 for (j = 0; j < 16; j++)
1287 if (ptr[j] != 0xff)
1288 goto nonff;
1289 continue;
1290
1291 nonff:
1292 /* normal PBAs start with six FFs */
1293 if (j < 6) {
1294 printk(KERN_WARNING
1295 "sddr09: PBA %d has no logical mapping: "
1296 "reserved area = %02X%02X%02X%02X "
1297 "data status %02X block status %02X\n",
1298 i, ptr[0], ptr[1], ptr[2], ptr[3],
1299 ptr[4], ptr[5]);
1300 info->pba_to_lba[i] = UNUSABLE;
1301 continue;
1302 }
1303
1304 if ((ptr[6] >> 4) != 0x01) {
1305 printk(KERN_WARNING
1306 "sddr09: PBA %d has invalid address field "
1307 "%02X%02X/%02X%02X\n",
1308 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1309 info->pba_to_lba[i] = UNUSABLE;
1310 continue;
1311 }
1312
1313 /* check even parity */
1314 if (parity[ptr[6] ^ ptr[7]]) {
1315 printk(KERN_WARNING
1316 "sddr09: Bad parity in LBA for block %d"
1317 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1318 info->pba_to_lba[i] = UNUSABLE;
1319 continue;
1320 }
1321
1322 lba = short_pack(ptr[7], ptr[6]);
1323 lba = (lba & 0x07FF) >> 1;
1324
1325 /*
1326 * Every 1024 physical blocks ("zone"), the LBA numbers
1327 * go back to zero, but are within a higher block of LBA's.
1328 * Also, there is a maximum of 1000 LBA's per zone.
1329 * In other words, in PBA 1024-2047 you will find LBA 0-999
1330 * which are really LBA 1000-1999. This allows for 24 bad
1331 * or special physical blocks per zone.
1332 */
1333
1334 if (lba >= 1000) {
1335 printk(KERN_WARNING
1336 "sddr09: Bad low LBA %d for block %d\n",
1337 lba, i);
1338 goto possibly_erase;
1339 }
1340
1341 lba += 1000*(i/0x400);
1342
1343 if (info->lba_to_pba[lba] != UNDEF) {
1344 printk(KERN_WARNING
1345 "sddr09: LBA %d seen for PBA %d and %d\n",
1346 lba, info->lba_to_pba[lba], i);
1347 goto possibly_erase;
1348 }
1349
1350 info->pba_to_lba[i] = lba;
1351 info->lba_to_pba[lba] = i;
1352 continue;
1353
1354 possibly_erase:
1355 if (erase_bad_lba_entries) {
1356 unsigned long address;
1357
1358 address = (i << (info->pageshift + info->blockshift));
1359 sddr09_erase(us, address>>1);
1360 info->pba_to_lba[i] = UNDEF;
1361 } else
1362 info->pba_to_lba[i] = UNUSABLE;
1363 }
1364
1365 /*
1366 * Approximate capacity. This is not entirely correct yet,
1367 * since a zone with less than 1000 usable pages leads to
1368 * missing LBAs. Especially if it is the last zone, some
1369 * LBAs can be past capacity.
1370 */
1371 lbact = 0;
1372 for (i = 0; i < numblocks; i += 1024) {
1373 int ct = 0;
1374
1375 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1376 if (info->pba_to_lba[i+j] != UNUSABLE) {
1377 if (ct >= 1000)
1378 info->pba_to_lba[i+j] = SPARE;
1379 else
1380 ct++;
1381 }
1382 }
1383 lbact += ct;
1384 }
1385 info->lbact = lbact;
1386 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1387 result = 0;
1388
1389 done:
1390 if (result != 0) {
1391 kfree(info->lba_to_pba);
1392 kfree(info->pba_to_lba);
1393 info->lba_to_pba = NULL;
1394 info->pba_to_lba = NULL;
1395 }
1396 kfree(buffer);
1397 return result;
1398}
1399
1400static void
1401sddr09_card_info_destructor(void *extra) {
1402 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1403
1404 if (!info)
1405 return;
1406
1407 kfree(info->lba_to_pba);
1408 kfree(info->pba_to_lba);
1409}
1410
1411static int
1412sddr09_common_init(struct us_data *us) {
1413 int result;
1414
1415 /* set the configuration -- STALL is an acceptable response here */
1416 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1417 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1418 us->pusb_dev->actconfig->desc.bConfigurationValue);
1419 return -EINVAL;
1420 }
1421
1422 result = usb_reset_configuration(us->pusb_dev);
1423 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1424 if (result == -EPIPE) {
1425 usb_stor_dbg(us, "-- stall on control interface\n");
1426 } else if (result != 0) {
1427 /* it's not a stall, but another error -- time to bail */
1428 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1429 return -EINVAL;
1430 }
1431
1432 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1433 if (!us->extra)
1434 return -ENOMEM;
1435 us->extra_destructor = sddr09_card_info_destructor;
1436
1437 nand_init_ecc();
1438 return 0;
1439}
1440
1441
1442/*
1443 * This is needed at a very early stage. If this is not listed in the
1444 * unusual devices list but called from here then LUN 0 of the combo reader
1445 * is not recognized. But I do not know what precisely these calls do.
1446 */
1447static int
1448usb_stor_sddr09_dpcm_init(struct us_data *us) {
1449 int result;
1450 unsigned char *data = us->iobuf;
1451
1452 result = sddr09_common_init(us);
1453 if (result)
1454 return result;
1455
1456 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1457 if (result) {
1458 usb_stor_dbg(us, "send_command fails\n");
1459 return result;
1460 }
1461
1462 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1463 // get 07 02
1464
1465 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1466 if (result) {
1467 usb_stor_dbg(us, "2nd send_command fails\n");
1468 return result;
1469 }
1470
1471 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1472 // get 07 00
1473
1474 result = sddr09_request_sense(us, data, 18);
1475 if (result == 0 && data[2] != 0) {
1476 int j;
1477 for (j=0; j<18; j++)
1478 printk(" %02X", data[j]);
1479 printk("\n");
1480 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1481 // 70: current command
1482 // sense key 0, sense code 0, extd sense code 0
1483 // additional transfer length * = sizeof(data) - 7
1484 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1485 // sense key 06, sense code 28: unit attention,
1486 // not ready to ready transition
1487 }
1488
1489 // test unit ready
1490
1491 return 0; /* not result */
1492}
1493
1494/*
1495 * Transport for the Microtech DPCM-USB
1496 */
1497static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1498{
1499 int ret;
1500
1501 usb_stor_dbg(us, "LUN=%d\n", srb->device->lun);
1502
1503 switch (srb->device->lun) {
1504 case 0:
1505
1506 /*
1507 * LUN 0 corresponds to the CompactFlash card reader.
1508 */
1509 ret = usb_stor_CB_transport(srb, us);
1510 break;
1511
1512 case 1:
1513
1514 /*
1515 * LUN 1 corresponds to the SmartMedia card reader.
1516 */
1517
1518 /*
1519 * Set the LUN to 0 (just in case).
1520 */
1521 srb->device->lun = 0;
1522 ret = sddr09_transport(srb, us);
1523 srb->device->lun = 1;
1524 break;
1525
1526 default:
1527 usb_stor_dbg(us, "Invalid LUN %d\n", srb->device->lun);
1528 ret = USB_STOR_TRANSPORT_ERROR;
1529 break;
1530 }
1531 return ret;
1532}
1533
1534
1535/*
1536 * Transport for the Sandisk SDDR-09
1537 */
1538static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1539{
1540 static unsigned char sensekey = 0, sensecode = 0;
1541 static unsigned char havefakesense = 0;
1542 int result, i;
1543 unsigned char *ptr = us->iobuf;
1544 unsigned long capacity;
1545 unsigned int page, pages;
1546
1547 struct sddr09_card_info *info;
1548
1549 static unsigned char inquiry_response[8] = {
1550 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1551 };
1552
1553 /* note: no block descriptor support */
1554 static unsigned char mode_page_01[19] = {
1555 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1556 0x01, 0x0A,
1557 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1558 };
1559
1560 info = (struct sddr09_card_info *)us->extra;
1561
1562 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1563 /* for a faked command, we have to follow with a faked sense */
1564 memset(ptr, 0, 18);
1565 ptr[0] = 0x70;
1566 ptr[2] = sensekey;
1567 ptr[7] = 11;
1568 ptr[12] = sensecode;
1569 usb_stor_set_xfer_buf(ptr, 18, srb);
1570 sensekey = sensecode = havefakesense = 0;
1571 return USB_STOR_TRANSPORT_GOOD;
1572 }
1573
1574 havefakesense = 1;
1575
1576 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1577 respond to INQUIRY commands */
1578
1579 if (srb->cmnd[0] == INQUIRY) {
1580 memcpy(ptr, inquiry_response, 8);
1581 fill_inquiry_response(us, ptr, 36);
1582 return USB_STOR_TRANSPORT_GOOD;
1583 }
1584
1585 if (srb->cmnd[0] == READ_CAPACITY) {
1586 struct nand_flash_dev *cardinfo;
1587
1588 sddr09_get_wp(us, info); /* read WP bit */
1589
1590 cardinfo = sddr09_get_cardinfo(us, info->flags);
1591 if (!cardinfo) {
1592 /* probably no media */
1593 init_error:
1594 sensekey = 0x02; /* not ready */
1595 sensecode = 0x3a; /* medium not present */
1596 return USB_STOR_TRANSPORT_FAILED;
1597 }
1598
1599 info->capacity = (1 << cardinfo->chipshift);
1600 info->pageshift = cardinfo->pageshift;
1601 info->pagesize = (1 << info->pageshift);
1602 info->blockshift = cardinfo->blockshift;
1603 info->blocksize = (1 << info->blockshift);
1604 info->blockmask = info->blocksize - 1;
1605
1606 // map initialization, must follow get_cardinfo()
1607 if (sddr09_read_map(us)) {
1608 /* probably out of memory */
1609 goto init_error;
1610 }
1611
1612 // Report capacity
1613
1614 capacity = (info->lbact << info->blockshift) - 1;
1615
1616 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1617
1618 // Report page size
1619
1620 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1621 usb_stor_set_xfer_buf(ptr, 8, srb);
1622
1623 return USB_STOR_TRANSPORT_GOOD;
1624 }
1625
1626 if (srb->cmnd[0] == MODE_SENSE_10) {
1627 int modepage = (srb->cmnd[2] & 0x3F);
1628
1629 /* They ask for the Read/Write error recovery page,
1630 or for all pages. */
1631 /* %% We should check DBD %% */
1632 if (modepage == 0x01 || modepage == 0x3F) {
1633 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1634 modepage);
1635
1636 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1637 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1638 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1639 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1640 return USB_STOR_TRANSPORT_GOOD;
1641 }
1642
1643 sensekey = 0x05; /* illegal request */
1644 sensecode = 0x24; /* invalid field in CDB */
1645 return USB_STOR_TRANSPORT_FAILED;
1646 }
1647
1648 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1649 return USB_STOR_TRANSPORT_GOOD;
1650
1651 havefakesense = 0;
1652
1653 if (srb->cmnd[0] == READ_10) {
1654
1655 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1656 page <<= 16;
1657 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1658 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1659
1660 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1661 page, pages);
1662
1663 result = sddr09_read_data(us, page, pages);
1664 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1665 USB_STOR_TRANSPORT_ERROR);
1666 }
1667
1668 if (srb->cmnd[0] == WRITE_10) {
1669
1670 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1671 page <<= 16;
1672 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1673 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1674
1675 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1676 page, pages);
1677
1678 result = sddr09_write_data(us, page, pages);
1679 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1680 USB_STOR_TRANSPORT_ERROR);
1681 }
1682
1683 /* catch-all for all other commands, except
1684 * pass TEST_UNIT_READY and REQUEST_SENSE through
1685 */
1686 if (srb->cmnd[0] != TEST_UNIT_READY &&
1687 srb->cmnd[0] != REQUEST_SENSE) {
1688 sensekey = 0x05; /* illegal request */
1689 sensecode = 0x20; /* invalid command */
1690 havefakesense = 1;
1691 return USB_STOR_TRANSPORT_FAILED;
1692 }
1693
1694 for (; srb->cmd_len<12; srb->cmd_len++)
1695 srb->cmnd[srb->cmd_len] = 0;
1696
1697 srb->cmnd[1] = LUNBITS;
1698
1699 ptr[0] = 0;
1700 for (i=0; i<12; i++)
1701 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1702
1703 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1704
1705 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1706 if (result) {
1707 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1708 result);
1709 return USB_STOR_TRANSPORT_ERROR;
1710 }
1711
1712 if (scsi_bufflen(srb) == 0)
1713 return USB_STOR_TRANSPORT_GOOD;
1714
1715 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1716 srb->sc_data_direction == DMA_FROM_DEVICE) {
1717 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1718 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1719
1720 usb_stor_dbg(us, "%s %d bytes\n",
1721 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1722 "sending" : "receiving",
1723 scsi_bufflen(srb));
1724
1725 result = usb_stor_bulk_srb(us, pipe, srb);
1726
1727 return (result == USB_STOR_XFER_GOOD ?
1728 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1729 }
1730
1731 return USB_STOR_TRANSPORT_GOOD;
1732}
1733
1734/*
1735 * Initialization routine for the sddr09 subdriver
1736 */
1737static int
1738usb_stor_sddr09_init(struct us_data *us) {
1739 return sddr09_common_init(us);
1740}
1741
1742static int sddr09_probe(struct usb_interface *intf,
1743 const struct usb_device_id *id)
1744{
1745 struct us_data *us;
1746 int result;
1747
1748 result = usb_stor_probe1(&us, intf, id,
1749 (id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1750 if (result)
1751 return result;
1752
1753 if (us->protocol == USB_PR_DPCM_USB) {
1754 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1755 us->transport = dpcm_transport;
1756 us->transport_reset = usb_stor_CB_reset;
1757 us->max_lun = 1;
1758 } else {
1759 us->transport_name = "EUSB/SDDR09";
1760 us->transport = sddr09_transport;
1761 us->transport_reset = usb_stor_CB_reset;
1762 us->max_lun = 0;
1763 }
1764
1765 result = usb_stor_probe2(us);
1766 return result;
1767}
1768
1769static struct usb_driver sddr09_driver = {
1770 .name = "ums-sddr09",
1771 .probe = sddr09_probe,
1772 .disconnect = usb_stor_disconnect,
1773 .suspend = usb_stor_suspend,
1774 .resume = usb_stor_resume,
1775 .reset_resume = usb_stor_reset_resume,
1776 .pre_reset = usb_stor_pre_reset,
1777 .post_reset = usb_stor_post_reset,
1778 .id_table = sddr09_usb_ids,
1779 .soft_unbind = 1,
1780 .no_dynamic_id = 1,
1781};
1782
1783module_usb_driver(sddr09_driver);