Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/dma.h>
32#include <linux/aer.h>
33#include <linux/bitfield.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43#ifdef CONFIG_X86_32
44int isa_dma_bridge_buggy;
45EXPORT_SYMBOL(isa_dma_bridge_buggy);
46#endif
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3hot_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66/*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71#define PCI_RESET_WAIT 1000 /* msec */
72
73/*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
81static void pci_dev_d3_sleep(struct pci_dev *dev)
82{
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92}
93
94bool pci_reset_supported(struct pci_dev *dev)
95{
96 return dev->reset_methods[0] != 0;
97}
98
99#ifdef CONFIG_PCI_DOMAINS
100int pci_domains_supported = 1;
101#endif
102
103#define DEFAULT_CARDBUS_IO_SIZE (256)
104#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109#define DEFAULT_HOTPLUG_IO_SIZE (256)
110#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112/* hpiosize=nn can override this */
113unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114/*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122#define DEFAULT_HOTPLUG_BUS_SIZE 1
123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129#elif defined CONFIG_PCIE_BUS_SAFE
130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133#elif defined CONFIG_PCIE_BUS_PEER2PEER
134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135#else
136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137#endif
138
139/*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146u8 pci_cache_line_size __ro_after_init ;
147
148/*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152unsigned int pcibios_max_latency = 255;
153
154/* If set, the PCIe ARI capability will not be used. */
155static bool pcie_ari_disabled;
156
157/* If set, the PCIe ATS capability will not be used. */
158static bool pcie_ats_disabled;
159
160/* If set, the PCI config space of each device is printed during boot. */
161bool pci_early_dump;
162
163bool pci_ats_disabled(void)
164{
165 return pcie_ats_disabled;
166}
167EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169/* Disable bridge_d3 for all PCIe ports */
170static bool pci_bridge_d3_disable;
171/* Force bridge_d3 for all PCIe ports */
172static bool pci_bridge_d3_force;
173
174static int __init pcie_port_pm_setup(char *str)
175{
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181}
182__setup("pcie_port_pm=", pcie_port_pm_setup);
183
184/**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192{
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203}
204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206/**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213{
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226}
227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229#ifdef CONFIG_HAS_IOMEM
230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232{
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249}
250
251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252{
253 return __pci_ioremap_resource(pdev, bar, false);
254}
255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258{
259 return __pci_ioremap_resource(pdev, bar, true);
260}
261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262#endif
263
264/**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285{
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342free_and_exit:
343 kfree(wpath);
344 return ret;
345}
346
347/**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379{
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422found:
423 *endptr = p;
424 return 1;
425}
426
427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429{
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449}
450
451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453{
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457}
458
459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460{
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463}
464EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468{
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484}
485
486/**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
505u8 pci_find_capability(struct pci_dev *dev, int cap)
506{
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_find_capability);
516
517/**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531{
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541}
542EXPORT_SYMBOL(pci_bus_find_capability);
543
544/**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556{
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593}
594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596/**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611{
612 return pci_find_next_ext_capability(dev, 0, cap);
613}
614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616/**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
625u64 pci_get_dsn(struct pci_dev *dev)
626{
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647}
648EXPORT_SYMBOL_GPL(pci_get_dsn);
649
650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651{
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676}
677
678/**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692{
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694}
695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697/**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709{
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717}
718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720/**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731{
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750}
751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753/**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763{
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782}
783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785/**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796{
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825}
826EXPORT_SYMBOL(pci_find_parent_resource);
827
828/**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838{
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849}
850EXPORT_SYMBOL(pci_find_resource);
851
852/**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860{
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869#ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876#endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888#ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895#endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910}
911
912/**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921{
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936}
937
938static int pci_acs_enable;
939
940/**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
943void pci_request_acs(void)
944{
945 pci_acs_enable = 1;
946}
947
948static const char *disable_acs_redir_param;
949static const char *config_acs_param;
950
951struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955};
956
957static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
959{
960 char *delimit;
961 int ret = 0;
962
963 if (!p)
964 return;
965
966 while (*p) {
967 if (!mask) {
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
970 if (delimit) {
971 int end;
972 u32 shift = 0;
973
974 end = delimit - p - 1;
975
976 while (end > -1) {
977 if (*(p + end) == '0') {
978 mask |= 1 << shift;
979 shift++;
980 end--;
981 } else if (*(p + end) == '1') {
982 mask |= 1 << shift;
983 flags |= 1 << shift;
984 shift++;
985 end--;
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 shift++;
988 end--;
989 } else {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 return;
992 }
993 }
994 p = delimit + 1;
995 } else {
996 pci_err(dev, "ACS Flags missing\n");
997 return;
998 }
999 }
1000
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1004 return;
1005 }
1006
1007 ret = pci_dev_str_match(dev, p, &p);
1008 if (ret < 0) {
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 break;
1011 } else if (ret == 1) {
1012 /* Found a match */
1013 break;
1014 }
1015
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1018 break;
1019 }
1020 p++;
1021 }
1022
1023 if (ret != 1)
1024 return;
1025
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1027 return;
1028
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1035
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037}
1038
1039/**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
1044static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045{
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061}
1062
1063/**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
1067static void pci_enable_acs(struct pci_dev *dev)
1068{
1069 struct pci_acs caps;
1070 bool enable_acs = false;
1071 int pos;
1072
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable) {
1075 if (pci_dev_specific_enable_acs(dev))
1076 enable_acs = true;
1077 }
1078
1079 pos = dev->acs_cap;
1080 if (!pos)
1081 return;
1082
1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 caps.fw_ctrl = caps.ctrl;
1086
1087 if (enable_acs)
1088 pci_std_enable_acs(dev, &caps);
1089
1090 /*
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1093 */
1094 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100}
1101
1102/**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
1112int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 struct pcie_tlp_log *tlp_log)
1114{
1115 int i, ret;
1116
1117 memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119 for (i = 0; i < 4; i++) {
1120 ret = pci_read_config_dword(dev, where + i * 4,
1121 &tlp_log->dw[i]);
1122 if (ret)
1123 return pcibios_err_to_errno(ret);
1124 }
1125
1126 return 0;
1127}
1128EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130/**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
1137static void pci_restore_bars(struct pci_dev *dev)
1138{
1139 int i;
1140
1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 pci_update_resource(dev, i);
1143}
1144
1145static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146{
1147 if (pci_use_mid_pm())
1148 return true;
1149
1150 return acpi_pci_power_manageable(dev);
1151}
1152
1153static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 pci_power_t t)
1155{
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev, t);
1158
1159 return acpi_pci_set_power_state(dev, t);
1160}
1161
1162static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163{
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev);
1166
1167 return acpi_pci_get_power_state(dev);
1168}
1169
1170static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171{
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev);
1174}
1175
1176static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177{
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR;
1180
1181 return acpi_pci_choose_state(dev);
1182}
1183
1184static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185{
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_wakeup(dev, enable);
1190}
1191
1192static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193{
1194 if (pci_use_mid_pm())
1195 return false;
1196
1197 return acpi_pci_need_resume(dev);
1198}
1199
1200static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201{
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_bridge_d3(dev);
1206}
1207
1208/**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
1220void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221{
1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 dev->current_state = PCI_D3cold;
1224 } else if (dev->pm_cap) {
1225 u16 pmcsr;
1226
1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 dev->current_state = PCI_D3cold;
1230 return;
1231 }
1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 } else {
1234 dev->current_state = state;
1235 }
1236}
1237
1238/**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
1245void pci_refresh_power_state(struct pci_dev *dev)
1246{
1247 platform_pci_refresh_power_state(dev);
1248 pci_update_current_state(dev, dev->current_state);
1249}
1250
1251/**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
1256int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257{
1258 int error;
1259
1260 error = platform_pci_set_power_state(dev, state);
1261 if (!error)
1262 pci_update_current_state(dev, state);
1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 dev->current_state = PCI_D0;
1265
1266 return error;
1267}
1268EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
1270static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271{
1272 pm_request_resume(&pci_dev->dev);
1273 return 0;
1274}
1275
1276/**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
1280void pci_resume_bus(struct pci_bus *bus)
1281{
1282 if (bus)
1283 pci_walk_bus(bus, pci_resume_one, NULL);
1284}
1285
1286static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287{
1288 int delay = 1;
1289 bool retrain = false;
1290 struct pci_dev *root, *bridge;
1291
1292 root = pcie_find_root_port(dev);
1293
1294 if (pci_is_pcie(dev)) {
1295 bridge = pci_upstream_bridge(dev);
1296 if (bridge)
1297 retrain = true;
1298 }
1299
1300 /*
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1304 * initialize.
1305 *
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1310 *
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1318 */
1319 for (;;) {
1320 u32 id;
1321
1322 if (pci_dev_is_disconnected(dev)) {
1323 pci_dbg(dev, "disconnected; not waiting\n");
1324 return -ENOTTY;
1325 }
1326
1327 if (root && root->config_rrs_sv) {
1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 if (!pci_bus_rrs_vendor_id(id))
1330 break;
1331 } else {
1332 pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 if (!PCI_POSSIBLE_ERROR(id))
1334 break;
1335 }
1336
1337 if (delay > timeout) {
1338 pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 delay - 1, reset_type);
1340 return -ENOTTY;
1341 }
1342
1343 if (delay > PCI_RESET_WAIT) {
1344 if (retrain) {
1345 retrain = false;
1346 if (pcie_failed_link_retrain(bridge) == 0) {
1347 delay = 1;
1348 continue;
1349 }
1350 }
1351 pci_info(dev, "not ready %dms after %s; waiting\n",
1352 delay - 1, reset_type);
1353 }
1354
1355 msleep(delay);
1356 delay *= 2;
1357 }
1358
1359 if (delay > PCI_RESET_WAIT)
1360 pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 reset_type);
1362 else
1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 reset_type);
1365
1366 return 0;
1367}
1368
1369/**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
1380int pci_power_up(struct pci_dev *dev)
1381{
1382 bool need_restore;
1383 pci_power_t state;
1384 u16 pmcsr;
1385
1386 platform_pci_set_power_state(dev, PCI_D0);
1387
1388 if (!dev->pm_cap) {
1389 state = platform_pci_get_power_state(dev);
1390 if (state == PCI_UNKNOWN)
1391 dev->current_state = PCI_D0;
1392 else
1393 dev->current_state = state;
1394
1395 return -EIO;
1396 }
1397
1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev->current_state));
1402 dev->current_state = PCI_D3cold;
1403 return -EIO;
1404 }
1405
1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411 if (state == PCI_D0)
1412 goto end;
1413
1414 /*
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1417 */
1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state == PCI_D3hot)
1422 pci_dev_d3_sleep(dev);
1423 else if (state == PCI_D2)
1424 udelay(PCI_PM_D2_DELAY);
1425
1426end:
1427 dev->current_state = PCI_D0;
1428 if (need_restore)
1429 return 1;
1430
1431 return 0;
1432}
1433
1434/**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
1447static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448{
1449 u16 pmcsr;
1450 int ret;
1451
1452 ret = pci_power_up(dev);
1453 if (ret < 0) {
1454 if (dev->current_state == PCI_D0)
1455 return 0;
1456
1457 return ret;
1458 }
1459
1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 if (dev->current_state != PCI_D0) {
1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev->current_state));
1465 } else if (ret > 0) {
1466 /*
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1473 *
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1478 */
1479 pci_restore_bars(dev);
1480 }
1481
1482 if (dev->bus->self)
1483 pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485 return 0;
1486}
1487
1488/**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
1493static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494{
1495 pci_power_t state = *(pci_power_t *)data;
1496
1497 dev->current_state = state;
1498 return 0;
1499}
1500
1501/**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
1506void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507{
1508 if (bus)
1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510}
1511
1512static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513{
1514 if (!bus)
1515 return;
1516
1517 if (locked)
1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 else
1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521}
1522
1523/**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
1538static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539{
1540 u16 pmcsr;
1541
1542 if (!dev->pm_cap)
1543 return -EIO;
1544
1545 /*
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1550 */
1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev->current_state),
1554 pci_power_name(state));
1555 return -EINVAL;
1556 }
1557
1558 /* Check if this device supports the desired state */
1559 if ((state == PCI_D1 && !dev->d1_support)
1560 || (state == PCI_D2 && !dev->d2_support))
1561 return -EIO;
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev->current_state),
1567 pci_power_name(state));
1568 dev->current_state = PCI_D3cold;
1569 return -EIO;
1570 }
1571
1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 pmcsr |= state;
1574
1575 /* Enter specified state */
1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state == PCI_D3hot)
1580 pci_dev_d3_sleep(dev);
1581 else if (state == PCI_D2)
1582 udelay(PCI_PM_D2_DELAY);
1583
1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 if (dev->current_state != state)
1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev->current_state),
1589 pci_power_name(state));
1590
1591 if (dev->bus->self)
1592 pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594 return 0;
1595}
1596
1597static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598{
1599 int error;
1600
1601 /* Bound the state we're entering */
1602 if (state > PCI_D3cold)
1603 state = PCI_D3cold;
1604 else if (state < PCI_D0)
1605 state = PCI_D0;
1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608 /*
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1612 * boot).
1613 */
1614 return 0;
1615
1616 /* Check if we're already there */
1617 if (dev->current_state == state)
1618 return 0;
1619
1620 if (state == PCI_D0)
1621 return pci_set_full_power_state(dev, locked);
1622
1623 /*
1624 * This device is quirked not to be put into D3, so don't put it in
1625 * D3
1626 */
1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 return 0;
1629
1630 if (state == PCI_D3cold) {
1631 /*
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1634 */
1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637 if (pci_platform_power_transition(dev, PCI_D3cold))
1638 return error;
1639
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev->current_state == PCI_D3cold)
1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 } else {
1644 error = pci_set_low_power_state(dev, state, locked);
1645
1646 if (pci_platform_power_transition(dev, state))
1647 return error;
1648 }
1649
1650 return 0;
1651}
1652
1653/**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
1670int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671{
1672 return __pci_set_power_state(dev, state, false);
1673}
1674EXPORT_SYMBOL(pci_set_power_state);
1675
1676int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677{
1678 lockdep_assert_held(&pci_bus_sem);
1679
1680 return __pci_set_power_state(dev, state, true);
1681}
1682EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684#define PCI_EXP_SAVE_REGS 7
1685
1686static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 u16 cap, bool extended)
1688{
1689 struct pci_cap_saved_state *tmp;
1690
1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 return tmp;
1694 }
1695 return NULL;
1696}
1697
1698struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699{
1700 return _pci_find_saved_cap(dev, cap, false);
1701}
1702
1703struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704{
1705 return _pci_find_saved_cap(dev, cap, true);
1706}
1707
1708static int pci_save_pcie_state(struct pci_dev *dev)
1709{
1710 int i = 0;
1711 struct pci_cap_saved_state *save_state;
1712 u16 *cap;
1713
1714 if (!pci_is_pcie(dev))
1715 return 0;
1716
1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 if (!save_state) {
1719 pci_err(dev, "buffer not found in %s\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 cap = (u16 *)&save_state->cap.data[0];
1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732 pci_save_aspm_l1ss_state(dev);
1733 pci_save_ltr_state(dev);
1734
1735 return 0;
1736}
1737
1738static void pci_restore_pcie_state(struct pci_dev *dev)
1739{
1740 int i = 0;
1741 struct pci_cap_saved_state *save_state;
1742 u16 *cap;
1743
1744 /*
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1747 */
1748 pci_restore_ltr_state(dev);
1749 pci_restore_aspm_l1ss_state(dev);
1750
1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 if (!save_state)
1753 return;
1754
1755 /*
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1759 */
1760 pci_bridge_reconfigure_ltr(dev);
1761
1762 cap = (u16 *)&save_state->cap.data[0];
1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770}
1771
1772static int pci_save_pcix_state(struct pci_dev *dev)
1773{
1774 int pos;
1775 struct pci_cap_saved_state *save_state;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 if (!pos)
1779 return 0;
1780
1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state) {
1783 pci_err(dev, "buffer not found in %s\n", __func__);
1784 return -ENOMEM;
1785 }
1786
1787 pci_read_config_word(dev, pos + PCI_X_CMD,
1788 (u16 *)save_state->cap.data);
1789
1790 return 0;
1791}
1792
1793static void pci_restore_pcix_state(struct pci_dev *dev)
1794{
1795 int i = 0, pos;
1796 struct pci_cap_saved_state *save_state;
1797 u16 *cap;
1798
1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 if (!save_state || !pos)
1802 return;
1803 cap = (u16 *)&save_state->cap.data[0];
1804
1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806}
1807
1808/**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 * suspending
1811 * @dev: PCI device that we're dealing with
1812 */
1813int pci_save_state(struct pci_dev *dev)
1814{
1815 int i;
1816 /* XXX: 100% dword access ok here? */
1817 for (i = 0; i < 16; i++) {
1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 pci_dbg(dev, "save config %#04x: %#010x\n",
1820 i * 4, dev->saved_config_space[i]);
1821 }
1822 dev->state_saved = true;
1823
1824 i = pci_save_pcie_state(dev);
1825 if (i != 0)
1826 return i;
1827
1828 i = pci_save_pcix_state(dev);
1829 if (i != 0)
1830 return i;
1831
1832 pci_save_dpc_state(dev);
1833 pci_save_aer_state(dev);
1834 pci_save_ptm_state(dev);
1835 pci_save_tph_state(dev);
1836 return pci_save_vc_state(dev);
1837}
1838EXPORT_SYMBOL(pci_save_state);
1839
1840static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841 u32 saved_val, int retry, bool force)
1842{
1843 u32 val;
1844
1845 pci_read_config_dword(pdev, offset, &val);
1846 if (!force && val == saved_val)
1847 return;
1848
1849 for (;;) {
1850 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851 offset, val, saved_val);
1852 pci_write_config_dword(pdev, offset, saved_val);
1853 if (retry-- <= 0)
1854 return;
1855
1856 pci_read_config_dword(pdev, offset, &val);
1857 if (val == saved_val)
1858 return;
1859
1860 mdelay(1);
1861 }
1862}
1863
1864static void pci_restore_config_space_range(struct pci_dev *pdev,
1865 int start, int end, int retry,
1866 bool force)
1867{
1868 int index;
1869
1870 for (index = end; index >= start; index--)
1871 pci_restore_config_dword(pdev, 4 * index,
1872 pdev->saved_config_space[index],
1873 retry, force);
1874}
1875
1876static void pci_restore_config_space(struct pci_dev *pdev)
1877{
1878 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880 /* Restore BARs before the command register. */
1881 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886 /*
1887 * Force rewriting of prefetch registers to avoid S3 resume
1888 * issues on Intel PCI bridges that occur when these
1889 * registers are not explicitly written.
1890 */
1891 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893 } else {
1894 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895 }
1896}
1897
1898static void pci_restore_rebar_state(struct pci_dev *pdev)
1899{
1900 unsigned int pos, nbars, i;
1901 u32 ctrl;
1902
1903 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904 if (!pos)
1905 return;
1906
1907 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909
1910 for (i = 0; i < nbars; i++, pos += 8) {
1911 struct resource *res;
1912 int bar_idx, size;
1913
1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916 res = pdev->resource + bar_idx;
1917 size = pci_rebar_bytes_to_size(resource_size(res));
1918 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921 }
1922}
1923
1924/**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
1928void pci_restore_state(struct pci_dev *dev)
1929{
1930 if (!dev->state_saved)
1931 return;
1932
1933 pci_restore_pcie_state(dev);
1934 pci_restore_pasid_state(dev);
1935 pci_restore_pri_state(dev);
1936 pci_restore_ats_state(dev);
1937 pci_restore_vc_state(dev);
1938 pci_restore_rebar_state(dev);
1939 pci_restore_dpc_state(dev);
1940 pci_restore_ptm_state(dev);
1941 pci_restore_tph_state(dev);
1942
1943 pci_aer_clear_status(dev);
1944 pci_restore_aer_state(dev);
1945
1946 pci_restore_config_space(dev);
1947
1948 pci_restore_pcix_state(dev);
1949 pci_restore_msi_state(dev);
1950
1951 /* Restore ACS and IOV configuration state */
1952 pci_enable_acs(dev);
1953 pci_restore_iov_state(dev);
1954
1955 dev->state_saved = false;
1956}
1957EXPORT_SYMBOL(pci_restore_state);
1958
1959struct pci_saved_state {
1960 u32 config_space[16];
1961 struct pci_cap_saved_data cap[];
1962};
1963
1964/**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 * the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
1971struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972{
1973 struct pci_saved_state *state;
1974 struct pci_cap_saved_state *tmp;
1975 struct pci_cap_saved_data *cap;
1976 size_t size;
1977
1978 if (!dev->state_saved)
1979 return NULL;
1980
1981 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986 state = kzalloc(size, GFP_KERNEL);
1987 if (!state)
1988 return NULL;
1989
1990 memcpy(state->config_space, dev->saved_config_space,
1991 sizeof(state->config_space));
1992
1993 cap = state->cap;
1994 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996 memcpy(cap, &tmp->cap, len);
1997 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998 }
1999 /* Empty cap_save terminates list */
2000
2001 return state;
2002}
2003EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005/**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
2010int pci_load_saved_state(struct pci_dev *dev,
2011 struct pci_saved_state *state)
2012{
2013 struct pci_cap_saved_data *cap;
2014
2015 dev->state_saved = false;
2016
2017 if (!state)
2018 return 0;
2019
2020 memcpy(dev->saved_config_space, state->config_space,
2021 sizeof(state->config_space));
2022
2023 cap = state->cap;
2024 while (cap->size) {
2025 struct pci_cap_saved_state *tmp;
2026
2027 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028 if (!tmp || tmp->cap.size != cap->size)
2029 return -EINVAL;
2030
2031 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033 sizeof(struct pci_cap_saved_data) + cap->size);
2034 }
2035
2036 dev->state_saved = true;
2037 return 0;
2038}
2039EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041/**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 * and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
2047int pci_load_and_free_saved_state(struct pci_dev *dev,
2048 struct pci_saved_state **state)
2049{
2050 int ret = pci_load_saved_state(dev, *state);
2051 kfree(*state);
2052 *state = NULL;
2053 return ret;
2054}
2055EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
2057int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058{
2059 return pci_enable_resources(dev, bars);
2060}
2061
2062static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063{
2064 int err;
2065 struct pci_dev *bridge;
2066 u16 cmd;
2067 u8 pin;
2068
2069 err = pci_set_power_state(dev, PCI_D0);
2070 if (err < 0 && err != -EIO)
2071 return err;
2072
2073 bridge = pci_upstream_bridge(dev);
2074 if (bridge)
2075 pcie_aspm_powersave_config_link(bridge);
2076
2077 err = pcibios_enable_device(dev, bars);
2078 if (err < 0)
2079 return err;
2080 pci_fixup_device(pci_fixup_enable, dev);
2081
2082 if (dev->msi_enabled || dev->msix_enabled)
2083 return 0;
2084
2085 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086 if (pin) {
2087 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088 if (cmd & PCI_COMMAND_INTX_DISABLE)
2089 pci_write_config_word(dev, PCI_COMMAND,
2090 cmd & ~PCI_COMMAND_INTX_DISABLE);
2091 }
2092
2093 return 0;
2094}
2095
2096/**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
2103int pci_reenable_device(struct pci_dev *dev)
2104{
2105 if (pci_is_enabled(dev))
2106 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107 return 0;
2108}
2109EXPORT_SYMBOL(pci_reenable_device);
2110
2111static void pci_enable_bridge(struct pci_dev *dev)
2112{
2113 struct pci_dev *bridge;
2114 int retval;
2115
2116 bridge = pci_upstream_bridge(dev);
2117 if (bridge)
2118 pci_enable_bridge(bridge);
2119
2120 if (pci_is_enabled(dev)) {
2121 if (!dev->is_busmaster)
2122 pci_set_master(dev);
2123 return;
2124 }
2125
2126 retval = pci_enable_device(dev);
2127 if (retval)
2128 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129 retval);
2130 pci_set_master(dev);
2131}
2132
2133static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134{
2135 struct pci_dev *bridge;
2136 int err;
2137 int i, bars = 0;
2138
2139 /*
2140 * Power state could be unknown at this point, either due to a fresh
2141 * boot or a device removal call. So get the current power state
2142 * so that things like MSI message writing will behave as expected
2143 * (e.g. if the device really is in D0 at enable time).
2144 */
2145 pci_update_current_state(dev, dev->current_state);
2146
2147 if (atomic_inc_return(&dev->enable_cnt) > 1)
2148 return 0; /* already enabled */
2149
2150 bridge = pci_upstream_bridge(dev);
2151 if (bridge)
2152 pci_enable_bridge(bridge);
2153
2154 /* only skip sriov related */
2155 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156 if (dev->resource[i].flags & flags)
2157 bars |= (1 << i);
2158 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159 if (dev->resource[i].flags & flags)
2160 bars |= (1 << i);
2161
2162 err = do_pci_enable_device(dev, bars);
2163 if (err < 0)
2164 atomic_dec(&dev->enable_cnt);
2165 return err;
2166}
2167
2168/**
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
2176int pci_enable_device_mem(struct pci_dev *dev)
2177{
2178 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179}
2180EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182/**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
2193int pci_enable_device(struct pci_dev *dev)
2194{
2195 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196}
2197EXPORT_SYMBOL(pci_enable_device);
2198
2199/*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209 return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 * device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
2233static void do_pci_disable_device(struct pci_dev *dev)
2234{
2235 u16 pci_command;
2236
2237 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238 if (pci_command & PCI_COMMAND_MASTER) {
2239 pci_command &= ~PCI_COMMAND_MASTER;
2240 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241 }
2242
2243 pcibios_disable_device(dev);
2244}
2245
2246/**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
2253void pci_disable_enabled_device(struct pci_dev *dev)
2254{
2255 if (pci_is_enabled(dev))
2256 do_pci_disable_device(dev);
2257}
2258
2259/**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore. This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
2269void pci_disable_device(struct pci_dev *dev)
2270{
2271 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272 "disabling already-disabled device");
2273
2274 if (atomic_dec_return(&dev->enable_cnt) != 0)
2275 return;
2276
2277 do_pci_disable_device(dev);
2278
2279 dev->is_busmaster = 0;
2280}
2281EXPORT_SYMBOL(pci_disable_device);
2282
2283/**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
2291int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292 enum pcie_reset_state state)
2293{
2294 return -EINVAL;
2295}
2296
2297/**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
2304int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305{
2306 return pcibios_set_pcie_reset_state(dev, state);
2307}
2308EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310#ifdef CONFIG_PCIEAER
2311void pcie_clear_device_status(struct pci_dev *dev)
2312{
2313 u16 sta;
2314
2315 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317}
2318#endif
2319
2320/**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
2324void pcie_clear_root_pme_status(struct pci_dev *dev)
2325{
2326 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327}
2328
2329/**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set). Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
2337bool pci_check_pme_status(struct pci_dev *dev)
2338{
2339 int pmcsr_pos;
2340 u16 pmcsr;
2341 bool ret = false;
2342
2343 if (!dev->pm_cap)
2344 return false;
2345
2346 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349 return false;
2350
2351 /* Clear PME status. */
2352 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354 /* Disable PME to avoid interrupt flood. */
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 ret = true;
2357 }
2358
2359 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361 return ret;
2362}
2363
2364/**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
2372static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373{
2374 if (pme_poll_reset && dev->pme_poll)
2375 dev->pme_poll = false;
2376
2377 if (pci_check_pme_status(dev)) {
2378 pci_wakeup_event(dev);
2379 pm_request_resume(&dev->dev);
2380 }
2381 return 0;
2382}
2383
2384/**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
2388void pci_pme_wakeup_bus(struct pci_bus *bus)
2389{
2390 if (bus)
2391 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392}
2393
2394
2395/**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
2400bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401{
2402 if (!dev->pm_cap)
2403 return false;
2404
2405 return !!(dev->pme_support & (1 << state));
2406}
2407EXPORT_SYMBOL(pci_pme_capable);
2408
2409static void pci_pme_list_scan(struct work_struct *work)
2410{
2411 struct pci_pme_device *pme_dev, *n;
2412
2413 mutex_lock(&pci_pme_list_mutex);
2414 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415 struct pci_dev *pdev = pme_dev->dev;
2416
2417 if (pdev->pme_poll) {
2418 struct pci_dev *bridge = pdev->bus->self;
2419 struct device *dev = &pdev->dev;
2420 struct device *bdev = bridge ? &bridge->dev : NULL;
2421 int bref = 0;
2422
2423 /*
2424 * If we have a bridge, it should be in an active/D0
2425 * state or the configuration space of subordinate
2426 * devices may not be accessible or stable over the
2427 * course of the call.
2428 */
2429 if (bdev) {
2430 bref = pm_runtime_get_if_active(bdev);
2431 if (!bref)
2432 continue;
2433
2434 if (bridge->current_state != PCI_D0)
2435 goto put_bridge;
2436 }
2437
2438 /*
2439 * The device itself should be suspended but config
2440 * space must be accessible, therefore it cannot be in
2441 * D3cold.
2442 */
2443 if (pm_runtime_suspended(dev) &&
2444 pdev->current_state != PCI_D3cold)
2445 pci_pme_wakeup(pdev, NULL);
2446
2447put_bridge:
2448 if (bref > 0)
2449 pm_runtime_put(bdev);
2450 } else {
2451 list_del(&pme_dev->list);
2452 kfree(pme_dev);
2453 }
2454 }
2455 if (!list_empty(&pci_pme_list))
2456 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457 msecs_to_jiffies(PME_TIMEOUT));
2458 mutex_unlock(&pci_pme_list_mutex);
2459}
2460
2461static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462{
2463 u16 pmcsr;
2464
2465 if (!dev->pme_support)
2466 return;
2467
2468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469 /* Clear PME_Status by writing 1 to it and enable PME# */
2470 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471 if (!enable)
2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475}
2476
2477/**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
2481void pci_pme_restore(struct pci_dev *dev)
2482{
2483 u16 pmcsr;
2484
2485 if (!dev->pme_support)
2486 return;
2487
2488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489 if (dev->wakeup_prepared) {
2490 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492 } else {
2493 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495 }
2496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497}
2498
2499/**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
2507void pci_pme_active(struct pci_dev *dev, bool enable)
2508{
2509 __pci_pme_active(dev, enable);
2510
2511 /*
2512 * PCI (as opposed to PCIe) PME requires that the device have
2513 * its PME# line hooked up correctly. Not all hardware vendors
2514 * do this, so the PME never gets delivered and the device
2515 * remains asleep. The easiest way around this is to
2516 * periodically walk the list of suspended devices and check
2517 * whether any have their PME flag set. The assumption is that
2518 * we'll wake up often enough anyway that this won't be a huge
2519 * hit, and the power savings from the devices will still be a
2520 * win.
2521 *
2522 * Although PCIe uses in-band PME message instead of PME# line
2523 * to report PME, PME does not work for some PCIe devices in
2524 * reality. For example, there are devices that set their PME
2525 * status bits, but don't really bother to send a PME message;
2526 * there are PCI Express Root Ports that don't bother to
2527 * trigger interrupts when they receive PME messages from the
2528 * devices below. So PME poll is used for PCIe devices too.
2529 */
2530
2531 if (dev->pme_poll) {
2532 struct pci_pme_device *pme_dev;
2533 if (enable) {
2534 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535 GFP_KERNEL);
2536 if (!pme_dev) {
2537 pci_warn(dev, "can't enable PME#\n");
2538 return;
2539 }
2540 pme_dev->dev = dev;
2541 mutex_lock(&pci_pme_list_mutex);
2542 list_add(&pme_dev->list, &pci_pme_list);
2543 if (list_is_singular(&pci_pme_list))
2544 queue_delayed_work(system_freezable_wq,
2545 &pci_pme_work,
2546 msecs_to_jiffies(PME_TIMEOUT));
2547 mutex_unlock(&pci_pme_list_mutex);
2548 } else {
2549 mutex_lock(&pci_pme_list_mutex);
2550 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551 if (pme_dev->dev == dev) {
2552 list_del(&pme_dev->list);
2553 kfree(pme_dev);
2554 break;
2555 }
2556 }
2557 mutex_unlock(&pci_pme_list_mutex);
2558 }
2559 }
2560
2561 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562}
2563EXPORT_SYMBOL(pci_pme_active);
2564
2565/**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
2584static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585{
2586 int ret = 0;
2587
2588 /*
2589 * Bridges that are not power-manageable directly only signal
2590 * wakeup on behalf of subordinate devices which is set up
2591 * elsewhere, so skip them. However, bridges that are
2592 * power-manageable may signal wakeup for themselves (for example,
2593 * on a hotplug event) and they need to be covered here.
2594 */
2595 if (!pci_power_manageable(dev))
2596 return 0;
2597
2598 /* Don't do the same thing twice in a row for one device. */
2599 if (!!enable == !!dev->wakeup_prepared)
2600 return 0;
2601
2602 /*
2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 * enable. To disable wake-up we call the platform first, for symmetry.
2606 */
2607
2608 if (enable) {
2609 int error;
2610
2611 /*
2612 * Enable PME signaling if the device can signal PME from
2613 * D3cold regardless of whether or not it can signal PME from
2614 * the current target state, because that will allow it to
2615 * signal PME when the hierarchy above it goes into D3cold and
2616 * the device itself ends up in D3cold as a result of that.
2617 */
2618 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619 pci_pme_active(dev, true);
2620 else
2621 ret = 1;
2622 error = platform_pci_set_wakeup(dev, true);
2623 if (ret)
2624 ret = error;
2625 if (!ret)
2626 dev->wakeup_prepared = true;
2627 } else {
2628 platform_pci_set_wakeup(dev, false);
2629 pci_pme_active(dev, false);
2630 dev->wakeup_prepared = false;
2631 }
2632
2633 return ret;
2634}
2635
2636/**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
2645int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646{
2647 if (enable && !device_may_wakeup(&pci_dev->dev))
2648 return -EINVAL;
2649
2650 return __pci_enable_wake(pci_dev, state, enable);
2651}
2652EXPORT_SYMBOL(pci_enable_wake);
2653
2654/**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
2668int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669{
2670 return pci_pme_capable(dev, PCI_D3cold) ?
2671 pci_enable_wake(dev, PCI_D3cold, enable) :
2672 pci_enable_wake(dev, PCI_D3hot, enable);
2673}
2674EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676/**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
2685static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686{
2687 if (platform_pci_power_manageable(dev)) {
2688 /*
2689 * Call the platform to find the target state for the device.
2690 */
2691 pci_power_t state = platform_pci_choose_state(dev);
2692
2693 switch (state) {
2694 case PCI_POWER_ERROR:
2695 case PCI_UNKNOWN:
2696 return PCI_D3hot;
2697
2698 case PCI_D1:
2699 case PCI_D2:
2700 if (pci_no_d1d2(dev))
2701 return PCI_D3hot;
2702 }
2703
2704 return state;
2705 }
2706
2707 /*
2708 * If the device is in D3cold even though it's not power-manageable by
2709 * the platform, it may have been powered down by non-standard means.
2710 * Best to let it slumber.
2711 */
2712 if (dev->current_state == PCI_D3cold)
2713 return PCI_D3cold;
2714 else if (!dev->pm_cap)
2715 return PCI_D0;
2716
2717 if (wakeup && dev->pme_support) {
2718 pci_power_t state = PCI_D3hot;
2719
2720 /*
2721 * Find the deepest state from which the device can generate
2722 * PME#.
2723 */
2724 while (state && !(dev->pme_support & (1 << state)))
2725 state--;
2726
2727 if (state)
2728 return state;
2729 else if (dev->pme_support & 1)
2730 return PCI_D0;
2731 }
2732
2733 return PCI_D3hot;
2734}
2735
2736/**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 * into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
2745int pci_prepare_to_sleep(struct pci_dev *dev)
2746{
2747 bool wakeup = device_may_wakeup(&dev->dev);
2748 pci_power_t target_state = pci_target_state(dev, wakeup);
2749 int error;
2750
2751 if (target_state == PCI_POWER_ERROR)
2752 return -EIO;
2753
2754 pci_enable_wake(dev, target_state, wakeup);
2755
2756 error = pci_set_power_state(dev, target_state);
2757
2758 if (error)
2759 pci_enable_wake(dev, target_state, false);
2760
2761 return error;
2762}
2763EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765/**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 * into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
2772int pci_back_from_sleep(struct pci_dev *dev)
2773{
2774 int ret = pci_set_power_state(dev, PCI_D0);
2775
2776 if (ret)
2777 return ret;
2778
2779 pci_enable_wake(dev, PCI_D0, false);
2780 return 0;
2781}
2782EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784/**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
2791int pci_finish_runtime_suspend(struct pci_dev *dev)
2792{
2793 pci_power_t target_state;
2794 int error;
2795
2796 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797 if (target_state == PCI_POWER_ERROR)
2798 return -EIO;
2799
2800 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802 error = pci_set_power_state(dev, target_state);
2803
2804 if (error)
2805 pci_enable_wake(dev, target_state, false);
2806
2807 return error;
2808}
2809
2810/**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
2818bool pci_dev_run_wake(struct pci_dev *dev)
2819{
2820 struct pci_bus *bus = dev->bus;
2821
2822 if (!dev->pme_support)
2823 return false;
2824
2825 /* PME-capable in principle, but not from the target power state */
2826 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827 return false;
2828
2829 if (device_can_wakeup(&dev->dev))
2830 return true;
2831
2832 while (bus->parent) {
2833 struct pci_dev *bridge = bus->self;
2834
2835 if (device_can_wakeup(&bridge->dev))
2836 return true;
2837
2838 bus = bus->parent;
2839 }
2840
2841 /* We have reached the root bus. */
2842 if (bus->bridge)
2843 return device_can_wakeup(bus->bridge);
2844
2845 return false;
2846}
2847EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849/**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
2858bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859{
2860 struct device *dev = &pci_dev->dev;
2861 pci_power_t target_state;
2862
2863 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864 return true;
2865
2866 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868 /*
2869 * If the earlier platform check has not triggered, D3cold is just power
2870 * removal on top of D3hot, so no need to resume the device in that
2871 * case.
2872 */
2873 return target_state != pci_dev->current_state &&
2874 target_state != PCI_D3cold &&
2875 pci_dev->current_state != PCI_D3hot;
2876}
2877
2878/**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
2889void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890{
2891 struct device *dev = &pci_dev->dev;
2892
2893 spin_lock_irq(&dev->power.lock);
2894
2895 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896 pci_dev->current_state < PCI_D3cold)
2897 __pci_pme_active(pci_dev, false);
2898
2899 spin_unlock_irq(&dev->power.lock);
2900}
2901
2902/**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
2910void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911{
2912 struct device *dev = &pci_dev->dev;
2913
2914 if (!pci_dev_run_wake(pci_dev))
2915 return;
2916
2917 spin_lock_irq(&dev->power.lock);
2918
2919 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920 __pci_pme_active(pci_dev, true);
2921
2922 spin_unlock_irq(&dev->power.lock);
2923}
2924
2925/**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
2932pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933{
2934 if (state.event == PM_EVENT_ON)
2935 return PCI_D0;
2936
2937 return pci_target_state(dev, false);
2938}
2939EXPORT_SYMBOL(pci_choose_state);
2940
2941void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942{
2943 struct device *dev = &pdev->dev;
2944 struct device *parent = dev->parent;
2945
2946 if (parent)
2947 pm_runtime_get_sync(parent);
2948 pm_runtime_get_noresume(dev);
2949 /*
2950 * pdev->current_state is set to PCI_D3cold during suspending,
2951 * so wait until suspending completes
2952 */
2953 pm_runtime_barrier(dev);
2954 /*
2955 * Only need to resume devices in D3cold, because config
2956 * registers are still accessible for devices suspended but
2957 * not in D3cold.
2958 */
2959 if (pdev->current_state == PCI_D3cold)
2960 pm_runtime_resume(dev);
2961}
2962
2963void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964{
2965 struct device *dev = &pdev->dev;
2966 struct device *parent = dev->parent;
2967
2968 pm_runtime_put(dev);
2969 if (parent)
2970 pm_runtime_put_sync(parent);
2971}
2972
2973static const struct dmi_system_id bridge_d3_blacklist[] = {
2974#ifdef CONFIG_X86
2975 {
2976 /*
2977 * Gigabyte X299 root port is not marked as hotplug capable
2978 * which allows Linux to power manage it. However, this
2979 * confuses the BIOS SMI handler so don't power manage root
2980 * ports on that system.
2981 */
2982 .ident = "X299 DESIGNARE EX-CF",
2983 .matches = {
2984 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986 },
2987 },
2988 {
2989 /*
2990 * Downstream device is not accessible after putting a root port
2991 * into D3cold and back into D0 on Elo Continental Z2 board
2992 */
2993 .ident = "Elo Continental Z2",
2994 .matches = {
2995 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998 },
2999 },
3000 {
3001 /*
3002 * Changing power state of root port dGPU is connected fails
3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004 */
3005 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006 .matches = {
3007 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010 },
3011 },
3012#endif
3013 { }
3014};
3015
3016/**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
3023bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024{
3025 if (!pci_is_pcie(bridge))
3026 return false;
3027
3028 switch (pci_pcie_type(bridge)) {
3029 case PCI_EXP_TYPE_ROOT_PORT:
3030 case PCI_EXP_TYPE_UPSTREAM:
3031 case PCI_EXP_TYPE_DOWNSTREAM:
3032 if (pci_bridge_d3_disable)
3033 return false;
3034
3035 /*
3036 * Hotplug ports handled by firmware in System Management Mode
3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038 */
3039 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040 return false;
3041
3042 if (pci_bridge_d3_force)
3043 return true;
3044
3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 if (bridge->is_thunderbolt)
3047 return true;
3048
3049 /* Platform might know better if the bridge supports D3 */
3050 if (platform_pci_bridge_d3(bridge))
3051 return true;
3052
3053 /*
3054 * Hotplug ports handled natively by the OS were not validated
3055 * by vendors for runtime D3 at least until 2018 because there
3056 * was no OS support.
3057 */
3058 if (bridge->is_hotplug_bridge)
3059 return false;
3060
3061 if (dmi_check_system(bridge_d3_blacklist))
3062 return false;
3063
3064 /*
3065 * It should be safe to put PCIe ports from 2015 or newer
3066 * to D3.
3067 */
3068 if (dmi_get_bios_year() >= 2015)
3069 return true;
3070 break;
3071 }
3072
3073 return false;
3074}
3075
3076static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077{
3078 bool *d3cold_ok = data;
3079
3080 if (/* The device needs to be allowed to go D3cold ... */
3081 dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083 /* ... and if it is wakeup capable to do so from D3cold. */
3084 (device_may_wakeup(&dev->dev) &&
3085 !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087 /* If it is a bridge it must be allowed to go to D3. */
3088 !pci_power_manageable(dev))
3089
3090 *d3cold_ok = false;
3091
3092 return !*d3cold_ok;
3093}
3094
3095/*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed. The
3101 * change is also propagated upstream.
3102 */
3103void pci_bridge_d3_update(struct pci_dev *dev)
3104{
3105 bool remove = !device_is_registered(&dev->dev);
3106 struct pci_dev *bridge;
3107 bool d3cold_ok = true;
3108
3109 bridge = pci_upstream_bridge(dev);
3110 if (!bridge || !pci_bridge_d3_possible(bridge))
3111 return;
3112
3113 /*
3114 * If D3 is currently allowed for the bridge, removing one of its
3115 * children won't change that.
3116 */
3117 if (remove && bridge->bridge_d3)
3118 return;
3119
3120 /*
3121 * If D3 is currently allowed for the bridge and a child is added or
3122 * changed, disallowance of D3 can only be caused by that child, so
3123 * we only need to check that single device, not any of its siblings.
3124 *
3125 * If D3 is currently not allowed for the bridge, checking the device
3126 * first may allow us to skip checking its siblings.
3127 */
3128 if (!remove)
3129 pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131 /*
3132 * If D3 is currently not allowed for the bridge, this may be caused
3133 * either by the device being changed/removed or any of its siblings,
3134 * so we need to go through all children to find out if one of them
3135 * continues to block D3.
3136 */
3137 if (d3cold_ok && !bridge->bridge_d3)
3138 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139 &d3cold_ok);
3140
3141 if (bridge->bridge_d3 != d3cold_ok) {
3142 bridge->bridge_d3 = d3cold_ok;
3143 /* Propagate change to upstream bridges */
3144 pci_bridge_d3_update(bridge);
3145 }
3146}
3147
3148/**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle. It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
3156void pci_d3cold_enable(struct pci_dev *dev)
3157{
3158 if (dev->no_d3cold) {
3159 dev->no_d3cold = false;
3160 pci_bridge_d3_update(dev);
3161 }
3162}
3163EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165/**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle. It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
3173void pci_d3cold_disable(struct pci_dev *dev)
3174{
3175 if (!dev->no_d3cold) {
3176 dev->no_d3cold = true;
3177 pci_bridge_d3_update(dev);
3178 }
3179}
3180EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182/**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
3186void pci_pm_init(struct pci_dev *dev)
3187{
3188 int pm;
3189 u16 status;
3190 u16 pmc;
3191
3192 pm_runtime_forbid(&dev->dev);
3193 pm_runtime_set_active(&dev->dev);
3194 pm_runtime_enable(&dev->dev);
3195 device_enable_async_suspend(&dev->dev);
3196 dev->wakeup_prepared = false;
3197
3198 dev->pm_cap = 0;
3199 dev->pme_support = 0;
3200
3201 /* find PCI PM capability in list */
3202 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203 if (!pm)
3204 return;
3205 /* Check device's ability to generate PME# */
3206 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210 pmc & PCI_PM_CAP_VER_MASK);
3211 return;
3212 }
3213
3214 dev->pm_cap = pm;
3215 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218 dev->d3cold_allowed = true;
3219
3220 dev->d1_support = false;
3221 dev->d2_support = false;
3222 if (!pci_no_d1d2(dev)) {
3223 if (pmc & PCI_PM_CAP_D1)
3224 dev->d1_support = true;
3225 if (pmc & PCI_PM_CAP_D2)
3226 dev->d2_support = true;
3227
3228 if (dev->d1_support || dev->d2_support)
3229 pci_info(dev, "supports%s%s\n",
3230 dev->d1_support ? " D1" : "",
3231 dev->d2_support ? " D2" : "");
3232 }
3233
3234 pmc &= PCI_PM_CAP_PME_MASK;
3235 if (pmc) {
3236 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243 dev->pme_poll = true;
3244 /*
3245 * Make device's PM flags reflect the wake-up capability, but
3246 * let the user space enable it to wake up the system as needed.
3247 */
3248 device_set_wakeup_capable(&dev->dev, true);
3249 /* Disable the PME# generation functionality */
3250 pci_pme_active(dev, false);
3251 }
3252
3253 pci_read_config_word(dev, PCI_STATUS, &status);
3254 if (status & PCI_STATUS_IMM_READY)
3255 dev->imm_ready = 1;
3256}
3257
3258static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259{
3260 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262 switch (prop) {
3263 case PCI_EA_P_MEM:
3264 case PCI_EA_P_VF_MEM:
3265 flags |= IORESOURCE_MEM;
3266 break;
3267 case PCI_EA_P_MEM_PREFETCH:
3268 case PCI_EA_P_VF_MEM_PREFETCH:
3269 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270 break;
3271 case PCI_EA_P_IO:
3272 flags |= IORESOURCE_IO;
3273 break;
3274 default:
3275 return 0;
3276 }
3277
3278 return flags;
3279}
3280
3281static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282 u8 prop)
3283{
3284 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285 return &dev->resource[bei];
3286#ifdef CONFIG_PCI_IOV
3287 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289 return &dev->resource[PCI_IOV_RESOURCES +
3290 bei - PCI_EA_BEI_VF_BAR0];
3291#endif
3292 else if (bei == PCI_EA_BEI_ROM)
3293 return &dev->resource[PCI_ROM_RESOURCE];
3294 else
3295 return NULL;
3296}
3297
3298/* Read an Enhanced Allocation (EA) entry */
3299static int pci_ea_read(struct pci_dev *dev, int offset)
3300{
3301 struct resource *res;
3302 const char *res_name;
3303 int ent_size, ent_offset = offset;
3304 resource_size_t start, end;
3305 unsigned long flags;
3306 u32 dw0, bei, base, max_offset;
3307 u8 prop;
3308 bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310 pci_read_config_dword(dev, ent_offset, &dw0);
3311 ent_offset += 4;
3312
3313 /* Entry size field indicates DWORDs after 1st */
3314 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317 goto out;
3318
3319 bei = FIELD_GET(PCI_EA_BEI, dw0);
3320 prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322 /*
3323 * If the Property is in the reserved range, try the Secondary
3324 * Property instead.
3325 */
3326 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327 prop = FIELD_GET(PCI_EA_SP, dw0);
3328 if (prop > PCI_EA_P_BRIDGE_IO)
3329 goto out;
3330
3331 res = pci_ea_get_resource(dev, bei, prop);
3332 res_name = pci_resource_name(dev, bei);
3333 if (!res) {
3334 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335 goto out;
3336 }
3337
3338 flags = pci_ea_flags(dev, prop);
3339 if (!flags) {
3340 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341 goto out;
3342 }
3343
3344 /* Read Base */
3345 pci_read_config_dword(dev, ent_offset, &base);
3346 start = (base & PCI_EA_FIELD_MASK);
3347 ent_offset += 4;
3348
3349 /* Read MaxOffset */
3350 pci_read_config_dword(dev, ent_offset, &max_offset);
3351 ent_offset += 4;
3352
3353 /* Read Base MSBs (if 64-bit entry) */
3354 if (base & PCI_EA_IS_64) {
3355 u32 base_upper;
3356
3357 pci_read_config_dword(dev, ent_offset, &base_upper);
3358 ent_offset += 4;
3359
3360 flags |= IORESOURCE_MEM_64;
3361
3362 /* entry starts above 32-bit boundary, can't use */
3363 if (!support_64 && base_upper)
3364 goto out;
3365
3366 if (support_64)
3367 start |= ((u64)base_upper << 32);
3368 }
3369
3370 end = start + (max_offset | 0x03);
3371
3372 /* Read MaxOffset MSBs (if 64-bit entry) */
3373 if (max_offset & PCI_EA_IS_64) {
3374 u32 max_offset_upper;
3375
3376 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377 ent_offset += 4;
3378
3379 flags |= IORESOURCE_MEM_64;
3380
3381 /* entry too big, can't use */
3382 if (!support_64 && max_offset_upper)
3383 goto out;
3384
3385 if (support_64)
3386 end += ((u64)max_offset_upper << 32);
3387 }
3388
3389 if (end < start) {
3390 pci_err(dev, "EA Entry crosses address boundary\n");
3391 goto out;
3392 }
3393
3394 if (ent_size != ent_offset - offset) {
3395 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396 ent_size, ent_offset - offset);
3397 goto out;
3398 }
3399
3400 res->name = pci_name(dev);
3401 res->start = start;
3402 res->end = end;
3403 res->flags = flags;
3404
3405 if (bei <= PCI_EA_BEI_BAR5)
3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 res_name, res, prop);
3408 else if (bei == PCI_EA_BEI_ROM)
3409 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 res_name, res, prop);
3411 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name, res, prop);
3414 else
3415 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416 bei, res, prop);
3417
3418out:
3419 return offset + ent_size;
3420}
3421
3422/* Enhanced Allocation Initialization */
3423void pci_ea_init(struct pci_dev *dev)
3424{
3425 int ea;
3426 u8 num_ent;
3427 int offset;
3428 int i;
3429
3430 /* find PCI EA capability in list */
3431 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432 if (!ea)
3433 return;
3434
3435 /* determine the number of entries */
3436 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437 &num_ent);
3438 num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440 offset = ea + PCI_EA_FIRST_ENT;
3441
3442 /* Skip DWORD 2 for type 1 functions */
3443 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444 offset += 4;
3445
3446 /* parse each EA entry */
3447 for (i = 0; i < num_ent; ++i)
3448 offset = pci_ea_read(dev, offset);
3449}
3450
3451static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452 struct pci_cap_saved_state *new_cap)
3453{
3454 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455}
3456
3457/**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 * capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
3465static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466 bool extended, unsigned int size)
3467{
3468 int pos;
3469 struct pci_cap_saved_state *save_state;
3470
3471 if (extended)
3472 pos = pci_find_ext_capability(dev, cap);
3473 else
3474 pos = pci_find_capability(dev, cap);
3475
3476 if (!pos)
3477 return 0;
3478
3479 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480 if (!save_state)
3481 return -ENOMEM;
3482
3483 save_state->cap.cap_nr = cap;
3484 save_state->cap.cap_extended = extended;
3485 save_state->cap.size = size;
3486 pci_add_saved_cap(dev, save_state);
3487
3488 return 0;
3489}
3490
3491int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492{
3493 return _pci_add_cap_save_buffer(dev, cap, false, size);
3494}
3495
3496int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497{
3498 return _pci_add_cap_save_buffer(dev, cap, true, size);
3499}
3500
3501/**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
3505void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506{
3507 int error;
3508
3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510 PCI_EXP_SAVE_REGS * sizeof(u16));
3511 if (error)
3512 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515 if (error)
3516 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519 2 * sizeof(u16));
3520 if (error)
3521 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523 pci_allocate_vc_save_buffers(dev);
3524}
3525
3526void pci_free_cap_save_buffers(struct pci_dev *dev)
3527{
3528 struct pci_cap_saved_state *tmp;
3529 struct hlist_node *n;
3530
3531 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532 kfree(tmp);
3533}
3534
3535/**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge. Otherwise, disable ARI in the bridge.
3541 */
3542void pci_configure_ari(struct pci_dev *dev)
3543{
3544 u32 cap;
3545 struct pci_dev *bridge;
3546
3547 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548 return;
3549
3550 bridge = dev->bus->self;
3551 if (!bridge)
3552 return;
3553
3554 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556 return;
3557
3558 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560 PCI_EXP_DEVCTL2_ARI);
3561 bridge->ari_enabled = 1;
3562 } else {
3563 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564 PCI_EXP_DEVCTL2_ARI);
3565 bridge->ari_enabled = 0;
3566 }
3567}
3568
3569static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570{
3571 int pos;
3572 u16 cap, ctrl;
3573
3574 pos = pdev->acs_cap;
3575 if (!pos)
3576 return false;
3577
3578 /*
3579 * Except for egress control, capabilities are either required
3580 * or only required if controllable. Features missing from the
3581 * capability field can therefore be assumed as hard-wired enabled.
3582 */
3583 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584 acs_flags &= (cap | PCI_ACS_EC);
3585
3586 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587 return (ctrl & acs_flags) == acs_flags;
3588}
3589
3590/**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags. Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities. For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access. We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability. This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
3606bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607{
3608 int ret;
3609
3610 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611 if (ret >= 0)
3612 return ret > 0;
3613
3614 /*
3615 * Conventional PCI and PCI-X devices never support ACS, either
3616 * effectively or actually. The shared bus topology implies that
3617 * any device on the bus can receive or snoop DMA.
3618 */
3619 if (!pci_is_pcie(pdev))
3620 return false;
3621
3622 switch (pci_pcie_type(pdev)) {
3623 /*
3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 * but since their primary interface is PCI/X, we conservatively
3626 * handle them as we would a non-PCIe device.
3627 */
3628 case PCI_EXP_TYPE_PCIE_BRIDGE:
3629 /*
3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3631 * applicable... must never implement an ACS Extended Capability...".
3632 * This seems arbitrary, but we take a conservative interpretation
3633 * of this statement.
3634 */
3635 case PCI_EXP_TYPE_PCI_BRIDGE:
3636 case PCI_EXP_TYPE_RC_EC:
3637 return false;
3638 /*
3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 * regardless of whether they are single- or multi-function devices.
3642 */
3643 case PCI_EXP_TYPE_DOWNSTREAM:
3644 case PCI_EXP_TYPE_ROOT_PORT:
3645 return pci_acs_flags_enabled(pdev, acs_flags);
3646 /*
3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 * capabilities, but only when they are part of a multifunction
3650 * device. The footnote for section 6.12 indicates the specific
3651 * PCIe types included here.
3652 */
3653 case PCI_EXP_TYPE_ENDPOINT:
3654 case PCI_EXP_TYPE_UPSTREAM:
3655 case PCI_EXP_TYPE_LEG_END:
3656 case PCI_EXP_TYPE_RC_END:
3657 if (!pdev->multifunction)
3658 break;
3659
3660 return pci_acs_flags_enabled(pdev, acs_flags);
3661 }
3662
3663 /*
3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 * to single function devices with the exception of downstream ports.
3666 */
3667 return true;
3668}
3669
3670/**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support. If
3677 * any step along the way does not support the required flags, return false.
3678 */
3679bool pci_acs_path_enabled(struct pci_dev *start,
3680 struct pci_dev *end, u16 acs_flags)
3681{
3682 struct pci_dev *pdev, *parent = start;
3683
3684 do {
3685 pdev = parent;
3686
3687 if (!pci_acs_enabled(pdev, acs_flags))
3688 return false;
3689
3690 if (pci_is_root_bus(pdev->bus))
3691 return (end == NULL);
3692
3693 parent = pdev->bus->self;
3694 } while (pdev != end);
3695
3696 return true;
3697}
3698
3699/**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
3703void pci_acs_init(struct pci_dev *dev)
3704{
3705 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707 /*
3708 * Attempt to enable ACS regardless of capability because some Root
3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 * the standard ACS capability but still support ACS via those
3711 * quirks.
3712 */
3713 pci_enable_acs(dev);
3714}
3715
3716/**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
3725static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726{
3727 unsigned int pos, nbars, i;
3728 u32 ctrl;
3729
3730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731 if (!pos)
3732 return -ENOTSUPP;
3733
3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736
3737 for (i = 0; i < nbars; i++, pos += 8) {
3738 int bar_idx;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 if (bar_idx == bar)
3743 return pos;
3744 }
3745
3746 return -ENOENT;
3747}
3748
3749/**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
3757u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758{
3759 int pos;
3760 u32 cap;
3761
3762 pos = pci_rebar_find_pos(pdev, bar);
3763 if (pos < 0)
3764 return 0;
3765
3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771 bar == 0 && cap == 0x700)
3772 return 0x3f00;
3773
3774 return cap;
3775}
3776EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778/**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
3786int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787{
3788 int pos;
3789 u32 ctrl;
3790
3791 pos = pci_rebar_find_pos(pdev, bar);
3792 if (pos < 0)
3793 return pos;
3794
3795 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797}
3798
3799/**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
3808int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809{
3810 int pos;
3811 u32 ctrl;
3812
3813 pos = pci_rebar_find_pos(pdev, bar);
3814 if (pos < 0)
3815 return pos;
3816
3817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821 return 0;
3822}
3823
3824/**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
3837int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838{
3839 struct pci_bus *bus = dev->bus;
3840 struct pci_dev *bridge;
3841 u32 cap, ctl2;
3842
3843 /*
3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 * in Device Control 2 is reserved in VFs and the PF value applies
3846 * to all associated VFs.
3847 */
3848 if (dev->is_virtfn)
3849 return -EINVAL;
3850
3851 if (!pci_is_pcie(dev))
3852 return -EINVAL;
3853
3854 /*
3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 * AtomicOp requesters. For now, we only support endpoints as
3857 * requesters and root ports as completers. No endpoints as
3858 * completers, and no peer-to-peer.
3859 */
3860
3861 switch (pci_pcie_type(dev)) {
3862 case PCI_EXP_TYPE_ENDPOINT:
3863 case PCI_EXP_TYPE_LEG_END:
3864 case PCI_EXP_TYPE_RC_END:
3865 break;
3866 default:
3867 return -EINVAL;
3868 }
3869
3870 while (bus->parent) {
3871 bridge = bus->self;
3872
3873 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875 switch (pci_pcie_type(bridge)) {
3876 /* Ensure switch ports support AtomicOp routing */
3877 case PCI_EXP_TYPE_UPSTREAM:
3878 case PCI_EXP_TYPE_DOWNSTREAM:
3879 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880 return -EINVAL;
3881 break;
3882
3883 /* Ensure root port supports all the sizes we care about */
3884 case PCI_EXP_TYPE_ROOT_PORT:
3885 if ((cap & cap_mask) != cap_mask)
3886 return -EINVAL;
3887 break;
3888 }
3889
3890 /* Ensure upstream ports don't block AtomicOps on egress */
3891 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893 &ctl2);
3894 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895 return -EINVAL;
3896 }
3897
3898 bus = bus->parent;
3899 }
3900
3901 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903 return 0;
3904}
3905EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907/**
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 * pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region(). Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_region(struct pci_dev *pdev, int bar)
3918{
3919 /*
3920 * This is done for backwards compatibility, because the old PCI devres
3921 * API had a mode in which the function became managed if it had been
3922 * enabled with pcim_enable_device() instead of pci_enable_device().
3923 */
3924 if (pci_is_managed(pdev)) {
3925 pcim_release_region(pdev, bar);
3926 return;
3927 }
3928
3929 if (pci_resource_len(pdev, bar) == 0)
3930 return;
3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 release_region(pci_resource_start(pdev, bar),
3933 pci_resource_len(pdev, bar));
3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 release_mem_region(pci_resource_start(pdev, bar),
3936 pci_resource_len(pdev, bar));
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name. Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error. A warning
3959 * message is also printed on failure.
3960 */
3961static int __pci_request_region(struct pci_dev *pdev, int bar,
3962 const char *res_name, int exclusive)
3963{
3964 if (pci_is_managed(pdev)) {
3965 if (exclusive == IORESOURCE_EXCLUSIVE)
3966 return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968 return pcim_request_region(pdev, bar, res_name);
3969 }
3970
3971 if (pci_resource_len(pdev, bar) == 0)
3972 return 0;
3973
3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 if (!request_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar), res_name))
3977 goto err_out;
3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 pci_resource_len(pdev, bar), res_name,
3981 exclusive))
3982 goto err_out;
3983 }
3984
3985 return 0;
3986
3987err_out:
3988 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989 &pdev->resource[bar]);
3990 return -EBUSY;
3991}
3992
3993/**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
4014int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015{
4016 return __pci_request_region(pdev, bar, res_name, 0);
4017}
4018EXPORT_SYMBOL(pci_request_region);
4019
4020/**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
4028void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029{
4030 int i;
4031
4032 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033 if (bars & (1 << i))
4034 pci_release_region(pdev, i);
4035}
4036EXPORT_SYMBOL(pci_release_selected_regions);
4037
4038static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039 const char *res_name, int excl)
4040{
4041 int i;
4042
4043 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044 if (bars & (1 << i))
4045 if (__pci_request_region(pdev, i, res_name, excl))
4046 goto err_out;
4047 return 0;
4048
4049err_out:
4050 while (--i >= 0)
4051 if (bars & (1 << i))
4052 pci_release_region(pdev, i);
4053
4054 return -EBUSY;
4055}
4056
4057
4058/**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
4071int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072 const char *res_name)
4073{
4074 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075}
4076EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078/**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
4091int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 const char *res_name)
4093{
4094 return __pci_request_selected_regions(pdev, bars, res_name,
4095 IORESOURCE_EXCLUSIVE);
4096}
4097EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099/**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
4108void pci_release_regions(struct pci_dev *pdev)
4109{
4110 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111}
4112EXPORT_SYMBOL(pci_release_regions);
4113
4114/**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name. Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error. A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
4132int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133{
4134 return pci_request_selected_regions(pdev,
4135 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136}
4137EXPORT_SYMBOL(pci_request_regions);
4138
4139/**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name. Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error. A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
4161int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162{
4163 return pci_request_selected_regions_exclusive(pdev,
4164 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165}
4166EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168/*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
4172int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173 resource_size_t size)
4174{
4175 int ret = 0;
4176#ifdef PCI_IOBASE
4177 struct logic_pio_hwaddr *range;
4178
4179 if (!size || addr + size < addr)
4180 return -EINVAL;
4181
4182 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183 if (!range)
4184 return -ENOMEM;
4185
4186 range->fwnode = fwnode;
4187 range->size = size;
4188 range->hw_start = addr;
4189 range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191 ret = logic_pio_register_range(range);
4192 if (ret)
4193 kfree(range);
4194
4195 /* Ignore duplicates due to deferred probing */
4196 if (ret == -EEXIST)
4197 ret = 0;
4198#endif
4199
4200 return ret;
4201}
4202
4203phys_addr_t pci_pio_to_address(unsigned long pio)
4204{
4205#ifdef PCI_IOBASE
4206 if (pio < MMIO_UPPER_LIMIT)
4207 return logic_pio_to_hwaddr(pio);
4208#endif
4209
4210 return (phys_addr_t) OF_BAD_ADDR;
4211}
4212EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
4214unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215{
4216#ifdef PCI_IOBASE
4217 return logic_pio_trans_cpuaddr(address);
4218#else
4219 if (address > IO_SPACE_LIMIT)
4220 return (unsigned long)-1;
4221
4222 return (unsigned long) address;
4223#endif
4224}
4225
4226/**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space. Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236#ifndef pci_remap_iospace
4237int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238{
4239#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242 if (!(res->flags & IORESOURCE_IO))
4243 return -EINVAL;
4244
4245 if (res->end > IO_SPACE_LIMIT)
4246 return -EINVAL;
4247
4248 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249 pgprot_device(PAGE_KERNEL));
4250#else
4251 /*
4252 * This architecture does not have memory mapped I/O space,
4253 * so this function should never be called
4254 */
4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256 return -ENODEV;
4257#endif
4258}
4259EXPORT_SYMBOL(pci_remap_iospace);
4260#endif
4261
4262/**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space. Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
4270void pci_unmap_iospace(struct resource *res)
4271{
4272#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275 vunmap_range(vaddr, vaddr + resource_size(res));
4276#endif
4277}
4278EXPORT_SYMBOL(pci_unmap_iospace);
4279
4280static void __pci_set_master(struct pci_dev *dev, bool enable)
4281{
4282 u16 old_cmd, cmd;
4283
4284 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 if (enable)
4286 cmd = old_cmd | PCI_COMMAND_MASTER;
4287 else
4288 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289 if (cmd != old_cmd) {
4290 pci_dbg(dev, "%s bus mastering\n",
4291 enable ? "enabling" : "disabling");
4292 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 }
4294 dev->is_busmaster = enable;
4295}
4296
4297/**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments. This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
4304char * __weak __init pcibios_setup(char *str)
4305{
4306 return str;
4307}
4308
4309/**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device. This is the default
4314 * implementation. Architecture specific implementations can override
4315 * this if necessary.
4316 */
4317void __weak pcibios_set_master(struct pci_dev *dev)
4318{
4319 u8 lat;
4320
4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 if (pci_is_pcie(dev))
4323 return;
4324
4325 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 if (lat < 16)
4327 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328 else if (lat > pcibios_max_latency)
4329 lat = pcibios_max_latency;
4330 else
4331 return;
4332
4333 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334}
4335
4336/**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
4343void pci_set_master(struct pci_dev *dev)
4344{
4345 __pci_set_master(dev, true);
4346 pcibios_set_master(dev);
4347}
4348EXPORT_SYMBOL(pci_set_master);
4349
4350/**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
4354void pci_clear_master(struct pci_dev *dev)
4355{
4356 __pci_set_master(dev, false);
4357}
4358EXPORT_SYMBOL(pci_clear_master);
4359
4360/**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_set_cacheline_size(struct pci_dev *dev)
4371{
4372 u8 cacheline_size;
4373
4374 if (!pci_cache_line_size)
4375 return -EINVAL;
4376
4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 equal to or multiple of the right value. */
4379 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380 if (cacheline_size >= pci_cache_line_size &&
4381 (cacheline_size % pci_cache_line_size) == 0)
4382 return 0;
4383
4384 /* Write the correct value. */
4385 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 /* Read it back. */
4387 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388 if (cacheline_size == pci_cache_line_size)
4389 return 0;
4390
4391 pci_dbg(dev, "cache line size of %d is not supported\n",
4392 pci_cache_line_size << 2);
4393
4394 return -EINVAL;
4395}
4396EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398/**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
4406int pci_set_mwi(struct pci_dev *dev)
4407{
4408#ifdef PCI_DISABLE_MWI
4409 return 0;
4410#else
4411 int rc;
4412 u16 cmd;
4413
4414 rc = pci_set_cacheline_size(dev);
4415 if (rc)
4416 return rc;
4417
4418 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421 cmd |= PCI_COMMAND_INVALIDATE;
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 }
4424 return 0;
4425#endif
4426}
4427EXPORT_SYMBOL(pci_set_mwi);
4428
4429/**
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
4438int pci_try_set_mwi(struct pci_dev *dev)
4439{
4440#ifdef PCI_DISABLE_MWI
4441 return 0;
4442#else
4443 return pci_set_mwi(dev);
4444#endif
4445}
4446EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448/**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
4454void pci_clear_mwi(struct pci_dev *dev)
4455{
4456#ifndef PCI_DISABLE_MWI
4457 u16 cmd;
4458
4459 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460 if (cmd & PCI_COMMAND_INVALIDATE) {
4461 cmd &= ~PCI_COMMAND_INVALIDATE;
4462 pci_write_config_word(dev, PCI_COMMAND, cmd);
4463 }
4464#endif
4465}
4466EXPORT_SYMBOL(pci_clear_mwi);
4467
4468/**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
4474void pci_disable_parity(struct pci_dev *dev)
4475{
4476 u16 cmd;
4477
4478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 if (cmd & PCI_COMMAND_PARITY) {
4480 cmd &= ~PCI_COMMAND_PARITY;
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 }
4483}
4484
4485/**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 */
4492void pci_intx(struct pci_dev *pdev, int enable)
4493{
4494 u16 pci_command, new;
4495
4496 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4497
4498 if (enable)
4499 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4500 else
4501 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4502
4503 if (new == pci_command)
4504 return;
4505
4506 pci_write_config_word(pdev, PCI_COMMAND, new);
4507}
4508EXPORT_SYMBOL_GPL(pci_intx);
4509
4510/**
4511 * pci_wait_for_pending_transaction - wait for pending transaction
4512 * @dev: the PCI device to operate on
4513 *
4514 * Return 0 if transaction is pending 1 otherwise.
4515 */
4516int pci_wait_for_pending_transaction(struct pci_dev *dev)
4517{
4518 if (!pci_is_pcie(dev))
4519 return 1;
4520
4521 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4522 PCI_EXP_DEVSTA_TRPND);
4523}
4524EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4525
4526/**
4527 * pcie_flr - initiate a PCIe function level reset
4528 * @dev: device to reset
4529 *
4530 * Initiate a function level reset unconditionally on @dev without
4531 * checking any flags and DEVCAP
4532 */
4533int pcie_flr(struct pci_dev *dev)
4534{
4535 if (!pci_wait_for_pending_transaction(dev))
4536 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4537
4538 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4539
4540 if (dev->imm_ready)
4541 return 0;
4542
4543 /*
4544 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4545 * 100ms, but may silently discard requests while the FLR is in
4546 * progress. Wait 100ms before trying to access the device.
4547 */
4548 msleep(100);
4549
4550 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552EXPORT_SYMBOL_GPL(pcie_flr);
4553
4554/**
4555 * pcie_reset_flr - initiate a PCIe function level reset
4556 * @dev: device to reset
4557 * @probe: if true, return 0 if device can be reset this way
4558 *
4559 * Initiate a function level reset on @dev.
4560 */
4561int pcie_reset_flr(struct pci_dev *dev, bool probe)
4562{
4563 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4564 return -ENOTTY;
4565
4566 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4567 return -ENOTTY;
4568
4569 if (probe)
4570 return 0;
4571
4572 return pcie_flr(dev);
4573}
4574EXPORT_SYMBOL_GPL(pcie_reset_flr);
4575
4576static int pci_af_flr(struct pci_dev *dev, bool probe)
4577{
4578 int pos;
4579 u8 cap;
4580
4581 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4582 if (!pos)
4583 return -ENOTTY;
4584
4585 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4586 return -ENOTTY;
4587
4588 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4589 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4590 return -ENOTTY;
4591
4592 if (probe)
4593 return 0;
4594
4595 /*
4596 * Wait for Transaction Pending bit to clear. A word-aligned test
4597 * is used, so we use the control offset rather than status and shift
4598 * the test bit to match.
4599 */
4600 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4601 PCI_AF_STATUS_TP << 8))
4602 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4603
4604 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4605
4606 if (dev->imm_ready)
4607 return 0;
4608
4609 /*
4610 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4611 * updated 27 July 2006; a device must complete an FLR within
4612 * 100ms, but may silently discard requests while the FLR is in
4613 * progress. Wait 100ms before trying to access the device.
4614 */
4615 msleep(100);
4616
4617 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4618}
4619
4620/**
4621 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4622 * @dev: Device to reset.
4623 * @probe: if true, return 0 if the device can be reset this way.
4624 *
4625 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4626 * unset, it will be reinitialized internally when going from PCI_D3hot to
4627 * PCI_D0. If that's the case and the device is not in a low-power state
4628 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4629 *
4630 * NOTE: This causes the caller to sleep for twice the device power transition
4631 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4632 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4633 * Moreover, only devices in D0 can be reset by this function.
4634 */
4635static int pci_pm_reset(struct pci_dev *dev, bool probe)
4636{
4637 u16 csr;
4638
4639 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4640 return -ENOTTY;
4641
4642 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4643 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4644 return -ENOTTY;
4645
4646 if (probe)
4647 return 0;
4648
4649 if (dev->current_state != PCI_D0)
4650 return -EINVAL;
4651
4652 csr &= ~PCI_PM_CTRL_STATE_MASK;
4653 csr |= PCI_D3hot;
4654 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4655 pci_dev_d3_sleep(dev);
4656
4657 csr &= ~PCI_PM_CTRL_STATE_MASK;
4658 csr |= PCI_D0;
4659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660 pci_dev_d3_sleep(dev);
4661
4662 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4663}
4664
4665/**
4666 * pcie_wait_for_link_status - Wait for link status change
4667 * @pdev: Device whose link to wait for.
4668 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4669 * @active: Waiting for active or inactive?
4670 *
4671 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4672 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4673 */
4674static int pcie_wait_for_link_status(struct pci_dev *pdev,
4675 bool use_lt, bool active)
4676{
4677 u16 lnksta_mask, lnksta_match;
4678 unsigned long end_jiffies;
4679 u16 lnksta;
4680
4681 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4682 lnksta_match = active ? lnksta_mask : 0;
4683
4684 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4685 do {
4686 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4687 if ((lnksta & lnksta_mask) == lnksta_match)
4688 return 0;
4689 msleep(1);
4690 } while (time_before(jiffies, end_jiffies));
4691
4692 return -ETIMEDOUT;
4693}
4694
4695/**
4696 * pcie_retrain_link - Request a link retrain and wait for it to complete
4697 * @pdev: Device whose link to retrain.
4698 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4699 *
4700 * Retrain completion status is retrieved from the Link Status Register
4701 * according to @use_lt. It is not verified whether the use of the DLLLA
4702 * bit is valid.
4703 *
4704 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4705 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4706 */
4707int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4708{
4709 int rc;
4710
4711 /*
4712 * Ensure the updated LNKCTL parameters are used during link
4713 * training by checking that there is no ongoing link training that
4714 * may have started before link parameters were changed, so as to
4715 * avoid LTSSM race as recommended in Implementation Note at the end
4716 * of PCIe r6.1 sec 7.5.3.7.
4717 */
4718 rc = pcie_wait_for_link_status(pdev, true, false);
4719 if (rc)
4720 return rc;
4721
4722 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4723 if (pdev->clear_retrain_link) {
4724 /*
4725 * Due to an erratum in some devices the Retrain Link bit
4726 * needs to be cleared again manually to allow the link
4727 * training to succeed.
4728 */
4729 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4730 }
4731
4732 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4733
4734 /*
4735 * Clear LBMS after a manual retrain so that the bit can be used
4736 * to track link speed or width changes made by hardware itself
4737 * in attempt to correct unreliable link operation.
4738 */
4739 pcie_reset_lbms_count(pdev);
4740 return rc;
4741}
4742
4743/**
4744 * pcie_wait_for_link_delay - Wait until link is active or inactive
4745 * @pdev: Bridge device
4746 * @active: waiting for active or inactive?
4747 * @delay: Delay to wait after link has become active (in ms)
4748 *
4749 * Use this to wait till link becomes active or inactive.
4750 */
4751static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4752 int delay)
4753{
4754 int rc;
4755
4756 /*
4757 * Some controllers might not implement link active reporting. In this
4758 * case, we wait for 1000 ms + any delay requested by the caller.
4759 */
4760 if (!pdev->link_active_reporting) {
4761 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4762 return true;
4763 }
4764
4765 /*
4766 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4767 * after which we should expect an link active if the reset was
4768 * successful. If so, software must wait a minimum 100ms before sending
4769 * configuration requests to devices downstream this port.
4770 *
4771 * If the link fails to activate, either the device was physically
4772 * removed or the link is permanently failed.
4773 */
4774 if (active)
4775 msleep(20);
4776 rc = pcie_wait_for_link_status(pdev, false, active);
4777 if (active) {
4778 if (rc)
4779 rc = pcie_failed_link_retrain(pdev);
4780 if (rc)
4781 return false;
4782
4783 msleep(delay);
4784 return true;
4785 }
4786
4787 if (rc)
4788 return false;
4789
4790 return true;
4791}
4792
4793/**
4794 * pcie_wait_for_link - Wait until link is active or inactive
4795 * @pdev: Bridge device
4796 * @active: waiting for active or inactive?
4797 *
4798 * Use this to wait till link becomes active or inactive.
4799 */
4800bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4801{
4802 return pcie_wait_for_link_delay(pdev, active, 100);
4803}
4804
4805/*
4806 * Find maximum D3cold delay required by all the devices on the bus. The
4807 * spec says 100 ms, but firmware can lower it and we allow drivers to
4808 * increase it as well.
4809 *
4810 * Called with @pci_bus_sem locked for reading.
4811 */
4812static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4813{
4814 const struct pci_dev *pdev;
4815 int min_delay = 100;
4816 int max_delay = 0;
4817
4818 list_for_each_entry(pdev, &bus->devices, bus_list) {
4819 if (pdev->d3cold_delay < min_delay)
4820 min_delay = pdev->d3cold_delay;
4821 if (pdev->d3cold_delay > max_delay)
4822 max_delay = pdev->d3cold_delay;
4823 }
4824
4825 return max(min_delay, max_delay);
4826}
4827
4828/**
4829 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4830 * @dev: PCI bridge
4831 * @reset_type: reset type in human-readable form
4832 *
4833 * Handle necessary delays before access to the devices on the secondary
4834 * side of the bridge are permitted after D3cold to D0 transition
4835 * or Conventional Reset.
4836 *
4837 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4838 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4839 * 4.3.2.
4840 *
4841 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4842 * failed to become accessible.
4843 */
4844int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4845{
4846 struct pci_dev *child __free(pci_dev_put) = NULL;
4847 int delay;
4848
4849 if (pci_dev_is_disconnected(dev))
4850 return 0;
4851
4852 if (!pci_is_bridge(dev))
4853 return 0;
4854
4855 down_read(&pci_bus_sem);
4856
4857 /*
4858 * We only deal with devices that are present currently on the bus.
4859 * For any hot-added devices the access delay is handled in pciehp
4860 * board_added(). In case of ACPI hotplug the firmware is expected
4861 * to configure the devices before OS is notified.
4862 */
4863 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4864 up_read(&pci_bus_sem);
4865 return 0;
4866 }
4867
4868 /* Take d3cold_delay requirements into account */
4869 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4870 if (!delay) {
4871 up_read(&pci_bus_sem);
4872 return 0;
4873 }
4874
4875 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4876 struct pci_dev, bus_list));
4877 up_read(&pci_bus_sem);
4878
4879 /*
4880 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4881 * accessing the device after reset (that is 1000 ms + 100 ms).
4882 */
4883 if (!pci_is_pcie(dev)) {
4884 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4885 msleep(1000 + delay);
4886 return 0;
4887 }
4888
4889 /*
4890 * For PCIe downstream and root ports that do not support speeds
4891 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4892 * speeds (gen3) we need to wait first for the data link layer to
4893 * become active.
4894 *
4895 * However, 100 ms is the minimum and the PCIe spec says the
4896 * software must allow at least 1s before it can determine that the
4897 * device that did not respond is a broken device. Also device can
4898 * take longer than that to respond if it indicates so through Request
4899 * Retry Status completions.
4900 *
4901 * Therefore we wait for 100 ms and check for the device presence
4902 * until the timeout expires.
4903 */
4904 if (!pcie_downstream_port(dev))
4905 return 0;
4906
4907 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4908 u16 status;
4909
4910 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4911 msleep(delay);
4912
4913 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4914 return 0;
4915
4916 /*
4917 * If the port supports active link reporting we now check
4918 * whether the link is active and if not bail out early with
4919 * the assumption that the device is not present anymore.
4920 */
4921 if (!dev->link_active_reporting)
4922 return -ENOTTY;
4923
4924 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4925 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4926 return -ENOTTY;
4927
4928 return pci_dev_wait(child, reset_type,
4929 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4930 }
4931
4932 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4933 delay);
4934 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935 /* Did not train, no need to wait any further */
4936 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4937 return -ENOTTY;
4938 }
4939
4940 return pci_dev_wait(child, reset_type,
4941 PCIE_RESET_READY_POLL_MS - delay);
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946 u16 ctrl;
4947
4948 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952 /*
4953 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4954 * this to 2ms to ensure that we meet the minimum requirement.
4955 */
4956 msleep(2);
4957
4958 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4960}
4961
4962void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4963{
4964 pci_reset_secondary_bus(dev);
4965}
4966
4967/**
4968 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4969 * @dev: Bridge device
4970 *
4971 * Use the bridge control register to assert reset on the secondary bus.
4972 * Devices on the secondary bus are left in power-on state.
4973 */
4974int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4975{
4976 if (!dev->block_cfg_access)
4977 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4978 __builtin_return_address(0));
4979 pcibios_reset_secondary_bus(dev);
4980
4981 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4982}
4983EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4984
4985static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4986{
4987 struct pci_dev *pdev;
4988
4989 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4990 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4991 return -ENOTTY;
4992
4993 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4994 if (pdev != dev)
4995 return -ENOTTY;
4996
4997 if (probe)
4998 return 0;
4999
5000 return pci_bridge_secondary_bus_reset(dev->bus->self);
5001}
5002
5003static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5004{
5005 int rc = -ENOTTY;
5006
5007 if (!hotplug || !try_module_get(hotplug->owner))
5008 return rc;
5009
5010 if (hotplug->ops->reset_slot)
5011 rc = hotplug->ops->reset_slot(hotplug, probe);
5012
5013 module_put(hotplug->owner);
5014
5015 return rc;
5016}
5017
5018static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5019{
5020 if (dev->multifunction || dev->subordinate || !dev->slot ||
5021 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5022 return -ENOTTY;
5023
5024 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5025}
5026
5027static u16 cxl_port_dvsec(struct pci_dev *dev)
5028{
5029 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5030 PCI_DVSEC_CXL_PORT);
5031}
5032
5033static bool cxl_sbr_masked(struct pci_dev *dev)
5034{
5035 u16 dvsec, reg;
5036 int rc;
5037
5038 dvsec = cxl_port_dvsec(dev);
5039 if (!dvsec)
5040 return false;
5041
5042 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5043 if (rc || PCI_POSSIBLE_ERROR(reg))
5044 return false;
5045
5046 /*
5047 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5048 * bit in Bridge Control has no effect. When 1, the Port generates
5049 * hot reset when the SBR bit is set to 1.
5050 */
5051 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5052 return false;
5053
5054 return true;
5055}
5056
5057static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5058{
5059 struct pci_dev *bridge = pci_upstream_bridge(dev);
5060 int rc;
5061
5062 /*
5063 * If "dev" is below a CXL port that has SBR control masked, SBR
5064 * won't do anything, so return error.
5065 */
5066 if (bridge && cxl_sbr_masked(bridge)) {
5067 if (probe)
5068 return 0;
5069
5070 return -ENOTTY;
5071 }
5072
5073 rc = pci_dev_reset_slot_function(dev, probe);
5074 if (rc != -ENOTTY)
5075 return rc;
5076 return pci_parent_bus_reset(dev, probe);
5077}
5078
5079static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5080{
5081 struct pci_dev *bridge;
5082 u16 dvsec, reg, val;
5083 int rc;
5084
5085 bridge = pci_upstream_bridge(dev);
5086 if (!bridge)
5087 return -ENOTTY;
5088
5089 dvsec = cxl_port_dvsec(bridge);
5090 if (!dvsec)
5091 return -ENOTTY;
5092
5093 if (probe)
5094 return 0;
5095
5096 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5097 if (rc)
5098 return -ENOTTY;
5099
5100 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5101 val = reg;
5102 } else {
5103 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5104 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5105 val);
5106 }
5107
5108 rc = pci_reset_bus_function(dev, probe);
5109
5110 if (reg != val)
5111 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5112 reg);
5113
5114 return rc;
5115}
5116
5117void pci_dev_lock(struct pci_dev *dev)
5118{
5119 /* block PM suspend, driver probe, etc. */
5120 device_lock(&dev->dev);
5121 pci_cfg_access_lock(dev);
5122}
5123EXPORT_SYMBOL_GPL(pci_dev_lock);
5124
5125/* Return 1 on successful lock, 0 on contention */
5126int pci_dev_trylock(struct pci_dev *dev)
5127{
5128 if (device_trylock(&dev->dev)) {
5129 if (pci_cfg_access_trylock(dev))
5130 return 1;
5131 device_unlock(&dev->dev);
5132 }
5133
5134 return 0;
5135}
5136EXPORT_SYMBOL_GPL(pci_dev_trylock);
5137
5138void pci_dev_unlock(struct pci_dev *dev)
5139{
5140 pci_cfg_access_unlock(dev);
5141 device_unlock(&dev->dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_unlock);
5144
5145static void pci_dev_save_and_disable(struct pci_dev *dev)
5146{
5147 const struct pci_error_handlers *err_handler =
5148 dev->driver ? dev->driver->err_handler : NULL;
5149
5150 /*
5151 * dev->driver->err_handler->reset_prepare() is protected against
5152 * races with ->remove() by the device lock, which must be held by
5153 * the caller.
5154 */
5155 if (err_handler && err_handler->reset_prepare)
5156 err_handler->reset_prepare(dev);
5157 else if (dev->driver)
5158 pci_warn(dev, "resetting");
5159
5160 /*
5161 * Wake-up device prior to save. PM registers default to D0 after
5162 * reset and a simple register restore doesn't reliably return
5163 * to a non-D0 state anyway.
5164 */
5165 pci_set_power_state(dev, PCI_D0);
5166
5167 pci_save_state(dev);
5168 /*
5169 * Disable the device by clearing the Command register, except for
5170 * INTx-disable which is set. This not only disables MMIO and I/O port
5171 * BARs, but also prevents the device from being Bus Master, preventing
5172 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5173 * compliant devices, INTx-disable prevents legacy interrupts.
5174 */
5175 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5176}
5177
5178static void pci_dev_restore(struct pci_dev *dev)
5179{
5180 const struct pci_error_handlers *err_handler =
5181 dev->driver ? dev->driver->err_handler : NULL;
5182
5183 pci_restore_state(dev);
5184
5185 /*
5186 * dev->driver->err_handler->reset_done() is protected against
5187 * races with ->remove() by the device lock, which must be held by
5188 * the caller.
5189 */
5190 if (err_handler && err_handler->reset_done)
5191 err_handler->reset_done(dev);
5192 else if (dev->driver)
5193 pci_warn(dev, "reset done");
5194}
5195
5196/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198 { },
5199 { pci_dev_specific_reset, .name = "device_specific" },
5200 { pci_dev_acpi_reset, .name = "acpi" },
5201 { pcie_reset_flr, .name = "flr" },
5202 { pci_af_flr, .name = "af_flr" },
5203 { pci_pm_reset, .name = "pm" },
5204 { pci_reset_bus_function, .name = "bus" },
5205 { cxl_reset_bus_function, .name = "cxl_bus" },
5206};
5207
5208static ssize_t reset_method_show(struct device *dev,
5209 struct device_attribute *attr, char *buf)
5210{
5211 struct pci_dev *pdev = to_pci_dev(dev);
5212 ssize_t len = 0;
5213 int i, m;
5214
5215 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216 m = pdev->reset_methods[i];
5217 if (!m)
5218 break;
5219
5220 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221 pci_reset_fn_methods[m].name);
5222 }
5223
5224 if (len)
5225 len += sysfs_emit_at(buf, len, "\n");
5226
5227 return len;
5228}
5229
5230static int reset_method_lookup(const char *name)
5231{
5232 int m;
5233
5234 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236 return m;
5237 }
5238
5239 return 0; /* not found */
5240}
5241
5242static ssize_t reset_method_store(struct device *dev,
5243 struct device_attribute *attr,
5244 const char *buf, size_t count)
5245{
5246 struct pci_dev *pdev = to_pci_dev(dev);
5247 char *options, *tmp_options, *name;
5248 int m, n;
5249 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250
5251 if (sysfs_streq(buf, "")) {
5252 pdev->reset_methods[0] = 0;
5253 pci_warn(pdev, "All device reset methods disabled by user");
5254 return count;
5255 }
5256
5257 if (sysfs_streq(buf, "default")) {
5258 pci_init_reset_methods(pdev);
5259 return count;
5260 }
5261
5262 options = kstrndup(buf, count, GFP_KERNEL);
5263 if (!options)
5264 return -ENOMEM;
5265
5266 n = 0;
5267 tmp_options = options;
5268 while ((name = strsep(&tmp_options, " ")) != NULL) {
5269 if (sysfs_streq(name, ""))
5270 continue;
5271
5272 name = strim(name);
5273
5274 m = reset_method_lookup(name);
5275 if (!m) {
5276 pci_err(pdev, "Invalid reset method '%s'", name);
5277 goto error;
5278 }
5279
5280 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5281 pci_err(pdev, "Unsupported reset method '%s'", name);
5282 goto error;
5283 }
5284
5285 if (n == PCI_NUM_RESET_METHODS - 1) {
5286 pci_err(pdev, "Too many reset methods\n");
5287 goto error;
5288 }
5289
5290 reset_methods[n++] = m;
5291 }
5292
5293 reset_methods[n] = 0;
5294
5295 /* Warn if dev-specific supported but not highest priority */
5296 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5297 reset_methods[0] != 1)
5298 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5299 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5300 kfree(options);
5301 return count;
5302
5303error:
5304 /* Leave previous methods unchanged */
5305 kfree(options);
5306 return -EINVAL;
5307}
5308static DEVICE_ATTR_RW(reset_method);
5309
5310static struct attribute *pci_dev_reset_method_attrs[] = {
5311 &dev_attr_reset_method.attr,
5312 NULL,
5313};
5314
5315static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5316 struct attribute *a, int n)
5317{
5318 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5319
5320 if (!pci_reset_supported(pdev))
5321 return 0;
5322
5323 return a->mode;
5324}
5325
5326const struct attribute_group pci_dev_reset_method_attr_group = {
5327 .attrs = pci_dev_reset_method_attrs,
5328 .is_visible = pci_dev_reset_method_attr_is_visible,
5329};
5330
5331/**
5332 * __pci_reset_function_locked - reset a PCI device function while holding
5333 * the @dev mutex lock.
5334 * @dev: PCI device to reset
5335 *
5336 * Some devices allow an individual function to be reset without affecting
5337 * other functions in the same device. The PCI device must be responsive
5338 * to PCI config space in order to use this function.
5339 *
5340 * The device function is presumed to be unused and the caller is holding
5341 * the device mutex lock when this function is called.
5342 *
5343 * Resetting the device will make the contents of PCI configuration space
5344 * random, so any caller of this must be prepared to reinitialise the
5345 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5346 * etc.
5347 *
5348 * Returns 0 if the device function was successfully reset or negative if the
5349 * device doesn't support resetting a single function.
5350 */
5351int __pci_reset_function_locked(struct pci_dev *dev)
5352{
5353 int i, m, rc;
5354
5355 might_sleep();
5356
5357 /*
5358 * A reset method returns -ENOTTY if it doesn't support this device and
5359 * we should try the next method.
5360 *
5361 * If it returns 0 (success), we're finished. If it returns any other
5362 * error, we're also finished: this indicates that further reset
5363 * mechanisms might be broken on the device.
5364 */
5365 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5366 m = dev->reset_methods[i];
5367 if (!m)
5368 return -ENOTTY;
5369
5370 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5371 if (!rc)
5372 return 0;
5373 if (rc != -ENOTTY)
5374 return rc;
5375 }
5376
5377 return -ENOTTY;
5378}
5379EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5380
5381/**
5382 * pci_init_reset_methods - check whether device can be safely reset
5383 * and store supported reset mechanisms.
5384 * @dev: PCI device to check for reset mechanisms
5385 *
5386 * Some devices allow an individual function to be reset without affecting
5387 * other functions in the same device. The PCI device must be in D0-D3hot
5388 * state.
5389 *
5390 * Stores reset mechanisms supported by device in reset_methods byte array
5391 * which is a member of struct pci_dev.
5392 */
5393void pci_init_reset_methods(struct pci_dev *dev)
5394{
5395 int m, i, rc;
5396
5397 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5398
5399 might_sleep();
5400
5401 i = 0;
5402 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5403 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5404 if (!rc)
5405 dev->reset_methods[i++] = m;
5406 else if (rc != -ENOTTY)
5407 break;
5408 }
5409
5410 dev->reset_methods[i] = 0;
5411}
5412
5413/**
5414 * pci_reset_function - quiesce and reset a PCI device function
5415 * @dev: PCI device to reset
5416 *
5417 * Some devices allow an individual function to be reset without affecting
5418 * other functions in the same device. The PCI device must be responsive
5419 * to PCI config space in order to use this function.
5420 *
5421 * This function does not just reset the PCI portion of a device, but
5422 * clears all the state associated with the device. This function differs
5423 * from __pci_reset_function_locked() in that it saves and restores device state
5424 * over the reset and takes the PCI device lock.
5425 *
5426 * Returns 0 if the device function was successfully reset or negative if the
5427 * device doesn't support resetting a single function.
5428 */
5429int pci_reset_function(struct pci_dev *dev)
5430{
5431 struct pci_dev *bridge;
5432 int rc;
5433
5434 if (!pci_reset_supported(dev))
5435 return -ENOTTY;
5436
5437 /*
5438 * If there's no upstream bridge, no locking is needed since there is
5439 * no upstream bridge configuration to hold consistent.
5440 */
5441 bridge = pci_upstream_bridge(dev);
5442 if (bridge)
5443 pci_dev_lock(bridge);
5444
5445 pci_dev_lock(dev);
5446 pci_dev_save_and_disable(dev);
5447
5448 rc = __pci_reset_function_locked(dev);
5449
5450 pci_dev_restore(dev);
5451 pci_dev_unlock(dev);
5452
5453 if (bridge)
5454 pci_dev_unlock(bridge);
5455
5456 return rc;
5457}
5458EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460/**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device. The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device. This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset. It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477int pci_reset_function_locked(struct pci_dev *dev)
5478{
5479 int rc;
5480
5481 if (!pci_reset_supported(dev))
5482 return -ENOTTY;
5483
5484 pci_dev_save_and_disable(dev);
5485
5486 rc = __pci_reset_function_locked(dev);
5487
5488 pci_dev_restore(dev);
5489
5490 return rc;
5491}
5492EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494/**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500int pci_try_reset_function(struct pci_dev *dev)
5501{
5502 int rc;
5503
5504 if (!pci_reset_supported(dev))
5505 return -ENOTTY;
5506
5507 if (!pci_dev_trylock(dev))
5508 return -EAGAIN;
5509
5510 pci_dev_save_and_disable(dev);
5511 rc = __pci_reset_function_locked(dev);
5512 pci_dev_restore(dev);
5513 pci_dev_unlock(dev);
5514
5515 return rc;
5516}
5517EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519/* Do any devices on or below this bus prevent a bus reset? */
5520static bool pci_bus_resettable(struct pci_bus *bus)
5521{
5522 struct pci_dev *dev;
5523
5524
5525 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526 return false;
5527
5528 list_for_each_entry(dev, &bus->devices, bus_list) {
5529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5531 return false;
5532 }
5533
5534 return true;
5535}
5536
5537/* Lock devices from the top of the tree down */
5538static void pci_bus_lock(struct pci_bus *bus)
5539{
5540 struct pci_dev *dev;
5541
5542 pci_dev_lock(bus->self);
5543 list_for_each_entry(dev, &bus->devices, bus_list) {
5544 if (dev->subordinate)
5545 pci_bus_lock(dev->subordinate);
5546 else
5547 pci_dev_lock(dev);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 else
5560 pci_dev_unlock(dev);
5561 }
5562 pci_dev_unlock(bus->self);
5563}
5564
5565/* Return 1 on successful lock, 0 on contention */
5566static int pci_bus_trylock(struct pci_bus *bus)
5567{
5568 struct pci_dev *dev;
5569
5570 if (!pci_dev_trylock(bus->self))
5571 return 0;
5572
5573 list_for_each_entry(dev, &bus->devices, bus_list) {
5574 if (dev->subordinate) {
5575 if (!pci_bus_trylock(dev->subordinate))
5576 goto unlock;
5577 } else if (!pci_dev_trylock(dev))
5578 goto unlock;
5579 }
5580 return 1;
5581
5582unlock:
5583 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5584 if (dev->subordinate)
5585 pci_bus_unlock(dev->subordinate);
5586 else
5587 pci_dev_unlock(dev);
5588 }
5589 pci_dev_unlock(bus->self);
5590 return 0;
5591}
5592
5593/* Do any devices on or below this slot prevent a bus reset? */
5594static bool pci_slot_resettable(struct pci_slot *slot)
5595{
5596 struct pci_dev *dev;
5597
5598 if (slot->bus->self &&
5599 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5600 return false;
5601
5602 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5603 if (!dev->slot || dev->slot != slot)
5604 continue;
5605 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5606 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5607 return false;
5608 }
5609
5610 return true;
5611}
5612
5613/* Lock devices from the top of the tree down */
5614static void pci_slot_lock(struct pci_slot *slot)
5615{
5616 struct pci_dev *dev;
5617
5618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619 if (!dev->slot || dev->slot != slot)
5620 continue;
5621 if (dev->subordinate)
5622 pci_bus_lock(dev->subordinate);
5623 else
5624 pci_dev_lock(dev);
5625 }
5626}
5627
5628/* Unlock devices from the bottom of the tree up */
5629static void pci_slot_unlock(struct pci_slot *slot)
5630{
5631 struct pci_dev *dev;
5632
5633 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634 if (!dev->slot || dev->slot != slot)
5635 continue;
5636 if (dev->subordinate)
5637 pci_bus_unlock(dev->subordinate);
5638 pci_dev_unlock(dev);
5639 }
5640}
5641
5642/* Return 1 on successful lock, 0 on contention */
5643static int pci_slot_trylock(struct pci_slot *slot)
5644{
5645 struct pci_dev *dev;
5646
5647 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648 if (!dev->slot || dev->slot != slot)
5649 continue;
5650 if (dev->subordinate) {
5651 if (!pci_bus_trylock(dev->subordinate)) {
5652 pci_dev_unlock(dev);
5653 goto unlock;
5654 }
5655 } else if (!pci_dev_trylock(dev))
5656 goto unlock;
5657 }
5658 return 1;
5659
5660unlock:
5661 list_for_each_entry_continue_reverse(dev,
5662 &slot->bus->devices, bus_list) {
5663 if (!dev->slot || dev->slot != slot)
5664 continue;
5665 if (dev->subordinate)
5666 pci_bus_unlock(dev->subordinate);
5667 else
5668 pci_dev_unlock(dev);
5669 }
5670 return 0;
5671}
5672
5673/*
5674 * Save and disable devices from the top of the tree down while holding
5675 * the @dev mutex lock for the entire tree.
5676 */
5677static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5678{
5679 struct pci_dev *dev;
5680
5681 list_for_each_entry(dev, &bus->devices, bus_list) {
5682 pci_dev_save_and_disable(dev);
5683 if (dev->subordinate)
5684 pci_bus_save_and_disable_locked(dev->subordinate);
5685 }
5686}
5687
5688/*
5689 * Restore devices from top of the tree down while holding @dev mutex lock
5690 * for the entire tree. Parent bridges need to be restored before we can
5691 * get to subordinate devices.
5692 */
5693static void pci_bus_restore_locked(struct pci_bus *bus)
5694{
5695 struct pci_dev *dev;
5696
5697 list_for_each_entry(dev, &bus->devices, bus_list) {
5698 pci_dev_restore(dev);
5699 if (dev->subordinate) {
5700 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5701 pci_bus_restore_locked(dev->subordinate);
5702 }
5703 }
5704}
5705
5706/*
5707 * Save and disable devices from the top of the tree down while holding
5708 * the @dev mutex lock for the entire tree.
5709 */
5710static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711{
5712 struct pci_dev *dev;
5713
5714 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715 if (!dev->slot || dev->slot != slot)
5716 continue;
5717 pci_dev_save_and_disable(dev);
5718 if (dev->subordinate)
5719 pci_bus_save_and_disable_locked(dev->subordinate);
5720 }
5721}
5722
5723/*
5724 * Restore devices from top of the tree down while holding @dev mutex lock
5725 * for the entire tree. Parent bridges need to be restored before we can
5726 * get to subordinate devices.
5727 */
5728static void pci_slot_restore_locked(struct pci_slot *slot)
5729{
5730 struct pci_dev *dev;
5731
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5734 continue;
5735 pci_dev_restore(dev);
5736 if (dev->subordinate) {
5737 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5738 pci_bus_restore_locked(dev->subordinate);
5739 }
5740 }
5741}
5742
5743static int pci_slot_reset(struct pci_slot *slot, bool probe)
5744{
5745 int rc;
5746
5747 if (!slot || !pci_slot_resettable(slot))
5748 return -ENOTTY;
5749
5750 if (!probe)
5751 pci_slot_lock(slot);
5752
5753 might_sleep();
5754
5755 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5756
5757 if (!probe)
5758 pci_slot_unlock(slot);
5759
5760 return rc;
5761}
5762
5763/**
5764 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5765 * @slot: PCI slot to probe
5766 *
5767 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5768 */
5769int pci_probe_reset_slot(struct pci_slot *slot)
5770{
5771 return pci_slot_reset(slot, PCI_RESET_PROBE);
5772}
5773EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5774
5775/**
5776 * __pci_reset_slot - Try to reset a PCI slot
5777 * @slot: PCI slot to reset
5778 *
5779 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5780 * independent of other slots. For instance, some slots may support slot power
5781 * control. In the case of a 1:1 bus to slot architecture, this function may
5782 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5783 * Generally a slot reset should be attempted before a bus reset. All of the
5784 * function of the slot and any subordinate buses behind the slot are reset
5785 * through this function. PCI config space of all devices in the slot and
5786 * behind the slot is saved before and restored after reset.
5787 *
5788 * Same as above except return -EAGAIN if the slot cannot be locked
5789 */
5790static int __pci_reset_slot(struct pci_slot *slot)
5791{
5792 int rc;
5793
5794 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5795 if (rc)
5796 return rc;
5797
5798 if (pci_slot_trylock(slot)) {
5799 pci_slot_save_and_disable_locked(slot);
5800 might_sleep();
5801 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5802 pci_slot_restore_locked(slot);
5803 pci_slot_unlock(slot);
5804 } else
5805 rc = -EAGAIN;
5806
5807 return rc;
5808}
5809
5810static int pci_bus_reset(struct pci_bus *bus, bool probe)
5811{
5812 int ret;
5813
5814 if (!bus->self || !pci_bus_resettable(bus))
5815 return -ENOTTY;
5816
5817 if (probe)
5818 return 0;
5819
5820 pci_bus_lock(bus);
5821
5822 might_sleep();
5823
5824 ret = pci_bridge_secondary_bus_reset(bus->self);
5825
5826 pci_bus_unlock(bus);
5827
5828 return ret;
5829}
5830
5831/**
5832 * pci_bus_error_reset - reset the bridge's subordinate bus
5833 * @bridge: The parent device that connects to the bus to reset
5834 *
5835 * This function will first try to reset the slots on this bus if the method is
5836 * available. If slot reset fails or is not available, this will fall back to a
5837 * secondary bus reset.
5838 */
5839int pci_bus_error_reset(struct pci_dev *bridge)
5840{
5841 struct pci_bus *bus = bridge->subordinate;
5842 struct pci_slot *slot;
5843
5844 if (!bus)
5845 return -ENOTTY;
5846
5847 mutex_lock(&pci_slot_mutex);
5848 if (list_empty(&bus->slots))
5849 goto bus_reset;
5850
5851 list_for_each_entry(slot, &bus->slots, list)
5852 if (pci_probe_reset_slot(slot))
5853 goto bus_reset;
5854
5855 list_for_each_entry(slot, &bus->slots, list)
5856 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5857 goto bus_reset;
5858
5859 mutex_unlock(&pci_slot_mutex);
5860 return 0;
5861bus_reset:
5862 mutex_unlock(&pci_slot_mutex);
5863 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5864}
5865
5866/**
5867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5868 * @bus: PCI bus to probe
5869 *
5870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5871 */
5872int pci_probe_reset_bus(struct pci_bus *bus)
5873{
5874 return pci_bus_reset(bus, PCI_RESET_PROBE);
5875}
5876EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5877
5878/**
5879 * __pci_reset_bus - Try to reset a PCI bus
5880 * @bus: top level PCI bus to reset
5881 *
5882 * Same as above except return -EAGAIN if the bus cannot be locked
5883 */
5884int __pci_reset_bus(struct pci_bus *bus)
5885{
5886 int rc;
5887
5888 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5889 if (rc)
5890 return rc;
5891
5892 if (pci_bus_trylock(bus)) {
5893 pci_bus_save_and_disable_locked(bus);
5894 might_sleep();
5895 rc = pci_bridge_secondary_bus_reset(bus->self);
5896 pci_bus_restore_locked(bus);
5897 pci_bus_unlock(bus);
5898 } else
5899 rc = -EAGAIN;
5900
5901 return rc;
5902}
5903
5904/**
5905 * pci_reset_bus - Try to reset a PCI bus
5906 * @pdev: top level PCI device to reset via slot/bus
5907 *
5908 * Same as above except return -EAGAIN if the bus cannot be locked
5909 */
5910int pci_reset_bus(struct pci_dev *pdev)
5911{
5912 return (!pci_probe_reset_slot(pdev->slot)) ?
5913 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5914}
5915EXPORT_SYMBOL_GPL(pci_reset_bus);
5916
5917/**
5918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5919 * @dev: PCI device to query
5920 *
5921 * Returns mmrbc: maximum designed memory read count in bytes or
5922 * appropriate error value.
5923 */
5924int pcix_get_max_mmrbc(struct pci_dev *dev)
5925{
5926 int cap;
5927 u32 stat;
5928
5929 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5930 if (!cap)
5931 return -EINVAL;
5932
5933 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5934 return -EINVAL;
5935
5936 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5937}
5938EXPORT_SYMBOL(pcix_get_max_mmrbc);
5939
5940/**
5941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5942 * @dev: PCI device to query
5943 *
5944 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5945 * value.
5946 */
5947int pcix_get_mmrbc(struct pci_dev *dev)
5948{
5949 int cap;
5950 u16 cmd;
5951
5952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5953 if (!cap)
5954 return -EINVAL;
5955
5956 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957 return -EINVAL;
5958
5959 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5960}
5961EXPORT_SYMBOL(pcix_get_mmrbc);
5962
5963/**
5964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5965 * @dev: PCI device to query
5966 * @mmrbc: maximum memory read count in bytes
5967 * valid values are 512, 1024, 2048, 4096
5968 *
5969 * If possible sets maximum memory read byte count, some bridges have errata
5970 * that prevent this.
5971 */
5972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5973{
5974 int cap;
5975 u32 stat, v, o;
5976 u16 cmd;
5977
5978 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5979 return -EINVAL;
5980
5981 v = ffs(mmrbc) - 10;
5982
5983 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5984 if (!cap)
5985 return -EINVAL;
5986
5987 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5988 return -EINVAL;
5989
5990 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5991 return -E2BIG;
5992
5993 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5994 return -EINVAL;
5995
5996 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5997 if (o != v) {
5998 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5999 return -EIO;
6000
6001 cmd &= ~PCI_X_CMD_MAX_READ;
6002 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6003 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6004 return -EIO;
6005 }
6006 return 0;
6007}
6008EXPORT_SYMBOL(pcix_set_mmrbc);
6009
6010/**
6011 * pcie_get_readrq - get PCI Express read request size
6012 * @dev: PCI device to query
6013 *
6014 * Returns maximum memory read request in bytes or appropriate error value.
6015 */
6016int pcie_get_readrq(struct pci_dev *dev)
6017{
6018 u16 ctl;
6019
6020 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6021
6022 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6023}
6024EXPORT_SYMBOL(pcie_get_readrq);
6025
6026/**
6027 * pcie_set_readrq - set PCI Express maximum memory read request
6028 * @dev: PCI device to query
6029 * @rq: maximum memory read count in bytes
6030 * valid values are 128, 256, 512, 1024, 2048, 4096
6031 *
6032 * If possible sets maximum memory read request in bytes
6033 */
6034int pcie_set_readrq(struct pci_dev *dev, int rq)
6035{
6036 u16 v;
6037 int ret;
6038 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6039
6040 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6041 return -EINVAL;
6042
6043 /*
6044 * If using the "performance" PCIe config, we clamp the read rq
6045 * size to the max packet size to keep the host bridge from
6046 * generating requests larger than we can cope with.
6047 */
6048 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6049 int mps = pcie_get_mps(dev);
6050
6051 if (mps < rq)
6052 rq = mps;
6053 }
6054
6055 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6056
6057 if (bridge->no_inc_mrrs) {
6058 int max_mrrs = pcie_get_readrq(dev);
6059
6060 if (rq > max_mrrs) {
6061 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6062 return -EINVAL;
6063 }
6064 }
6065
6066 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6067 PCI_EXP_DEVCTL_READRQ, v);
6068
6069 return pcibios_err_to_errno(ret);
6070}
6071EXPORT_SYMBOL(pcie_set_readrq);
6072
6073/**
6074 * pcie_get_mps - get PCI Express maximum payload size
6075 * @dev: PCI device to query
6076 *
6077 * Returns maximum payload size in bytes
6078 */
6079int pcie_get_mps(struct pci_dev *dev)
6080{
6081 u16 ctl;
6082
6083 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6084
6085 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6086}
6087EXPORT_SYMBOL(pcie_get_mps);
6088
6089/**
6090 * pcie_set_mps - set PCI Express maximum payload size
6091 * @dev: PCI device to query
6092 * @mps: maximum payload size in bytes
6093 * valid values are 128, 256, 512, 1024, 2048, 4096
6094 *
6095 * If possible sets maximum payload size
6096 */
6097int pcie_set_mps(struct pci_dev *dev, int mps)
6098{
6099 u16 v;
6100 int ret;
6101
6102 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6103 return -EINVAL;
6104
6105 v = ffs(mps) - 8;
6106 if (v > dev->pcie_mpss)
6107 return -EINVAL;
6108 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6109
6110 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6111 PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113 return pcibios_err_to_errno(ret);
6114}
6115EXPORT_SYMBOL(pcie_set_mps);
6116
6117static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6118{
6119 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6120}
6121
6122int pcie_link_speed_mbps(struct pci_dev *pdev)
6123{
6124 u16 lnksta;
6125 int err;
6126
6127 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6128 if (err)
6129 return err;
6130
6131 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6132}
6133EXPORT_SYMBOL(pcie_link_speed_mbps);
6134
6135/**
6136 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6137 * device and its bandwidth limitation
6138 * @dev: PCI device to query
6139 * @limiting_dev: storage for device causing the bandwidth limitation
6140 * @speed: storage for speed of limiting device
6141 * @width: storage for width of limiting device
6142 *
6143 * Walk up the PCI device chain and find the point where the minimum
6144 * bandwidth is available. Return the bandwidth available there and (if
6145 * limiting_dev, speed, and width pointers are supplied) information about
6146 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6147 * raw bandwidth.
6148 */
6149u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6150 enum pci_bus_speed *speed,
6151 enum pcie_link_width *width)
6152{
6153 u16 lnksta;
6154 enum pci_bus_speed next_speed;
6155 enum pcie_link_width next_width;
6156 u32 bw, next_bw;
6157
6158 if (speed)
6159 *speed = PCI_SPEED_UNKNOWN;
6160 if (width)
6161 *width = PCIE_LNK_WIDTH_UNKNOWN;
6162
6163 bw = 0;
6164
6165 while (dev) {
6166 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6167
6168 next_speed = to_pcie_link_speed(lnksta);
6169 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6170
6171 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6172
6173 /* Check if current device limits the total bandwidth */
6174 if (!bw || next_bw <= bw) {
6175 bw = next_bw;
6176
6177 if (limiting_dev)
6178 *limiting_dev = dev;
6179 if (speed)
6180 *speed = next_speed;
6181 if (width)
6182 *width = next_width;
6183 }
6184
6185 dev = pci_upstream_bridge(dev);
6186 }
6187
6188 return bw;
6189}
6190EXPORT_SYMBOL(pcie_bandwidth_available);
6191
6192/**
6193 * pcie_get_supported_speeds - query Supported Link Speed Vector
6194 * @dev: PCI device to query
6195 *
6196 * Query @dev supported link speeds.
6197 *
6198 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6199 * supported link speeds using the Supported Link Speeds Vector in the Link
6200 * Capabilities 2 Register (when available).
6201 *
6202 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6203 *
6204 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6205 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6206 * speeds were defined.
6207 *
6208 * For @dev without Supported Link Speed Vector, the field is synthesized
6209 * from the Max Link Speed field in the Link Capabilities Register.
6210 *
6211 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6212 */
6213u8 pcie_get_supported_speeds(struct pci_dev *dev)
6214{
6215 u32 lnkcap2, lnkcap;
6216 u8 speeds;
6217
6218 /*
6219 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6220 * Speeds Vector to allow using SLS Vector bit defines directly.
6221 */
6222 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6223 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6224
6225 /* Ignore speeds higher than Max Link Speed */
6226 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6227 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6228
6229 /* PCIe r3.0-compliant */
6230 if (speeds)
6231 return speeds;
6232
6233 /* Synthesize from the Max Link Speed field */
6234 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6235 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6236 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6237 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6238
6239 return speeds;
6240}
6241
6242/**
6243 * pcie_get_speed_cap - query for the PCI device's link speed capability
6244 * @dev: PCI device to query
6245 *
6246 * Query the PCI device speed capability.
6247 *
6248 * Return: the maximum link speed supported by the device.
6249 */
6250enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6251{
6252 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6253}
6254EXPORT_SYMBOL(pcie_get_speed_cap);
6255
6256/**
6257 * pcie_get_width_cap - query for the PCI device's link width capability
6258 * @dev: PCI device to query
6259 *
6260 * Query the PCI device width capability. Return the maximum link width
6261 * supported by the device.
6262 */
6263enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6264{
6265 u32 lnkcap;
6266
6267 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6268 if (lnkcap)
6269 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6270
6271 return PCIE_LNK_WIDTH_UNKNOWN;
6272}
6273EXPORT_SYMBOL(pcie_get_width_cap);
6274
6275/**
6276 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6277 * @dev: PCI device
6278 * @speed: storage for link speed
6279 * @width: storage for link width
6280 *
6281 * Calculate a PCI device's link bandwidth by querying for its link speed
6282 * and width, multiplying them, and applying encoding overhead. The result
6283 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6284 */
6285static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6286 enum pci_bus_speed *speed,
6287 enum pcie_link_width *width)
6288{
6289 *speed = pcie_get_speed_cap(dev);
6290 *width = pcie_get_width_cap(dev);
6291
6292 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6293 return 0;
6294
6295 return *width * PCIE_SPEED2MBS_ENC(*speed);
6296}
6297
6298/**
6299 * __pcie_print_link_status - Report the PCI device's link speed and width
6300 * @dev: PCI device to query
6301 * @verbose: Print info even when enough bandwidth is available
6302 *
6303 * If the available bandwidth at the device is less than the device is
6304 * capable of, report the device's maximum possible bandwidth and the
6305 * upstream link that limits its performance. If @verbose, always print
6306 * the available bandwidth, even if the device isn't constrained.
6307 */
6308void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6309{
6310 enum pcie_link_width width, width_cap;
6311 enum pci_bus_speed speed, speed_cap;
6312 struct pci_dev *limiting_dev = NULL;
6313 u32 bw_avail, bw_cap;
6314
6315 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6316 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6317
6318 if (bw_avail >= bw_cap && verbose)
6319 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6320 bw_cap / 1000, bw_cap % 1000,
6321 pci_speed_string(speed_cap), width_cap);
6322 else if (bw_avail < bw_cap)
6323 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6324 bw_avail / 1000, bw_avail % 1000,
6325 pci_speed_string(speed), width,
6326 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6327 bw_cap / 1000, bw_cap % 1000,
6328 pci_speed_string(speed_cap), width_cap);
6329}
6330
6331/**
6332 * pcie_print_link_status - Report the PCI device's link speed and width
6333 * @dev: PCI device to query
6334 *
6335 * Report the available bandwidth at the device.
6336 */
6337void pcie_print_link_status(struct pci_dev *dev)
6338{
6339 __pcie_print_link_status(dev, true);
6340}
6341EXPORT_SYMBOL(pcie_print_link_status);
6342
6343/**
6344 * pci_select_bars - Make BAR mask from the type of resource
6345 * @dev: the PCI device for which BAR mask is made
6346 * @flags: resource type mask to be selected
6347 *
6348 * This helper routine makes bar mask from the type of resource.
6349 */
6350int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6351{
6352 int i, bars = 0;
6353 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6354 if (pci_resource_flags(dev, i) & flags)
6355 bars |= (1 << i);
6356 return bars;
6357}
6358EXPORT_SYMBOL(pci_select_bars);
6359
6360/* Some architectures require additional programming to enable VGA */
6361static arch_set_vga_state_t arch_set_vga_state;
6362
6363void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6364{
6365 arch_set_vga_state = func; /* NULL disables */
6366}
6367
6368static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6369 unsigned int command_bits, u32 flags)
6370{
6371 if (arch_set_vga_state)
6372 return arch_set_vga_state(dev, decode, command_bits,
6373 flags);
6374 return 0;
6375}
6376
6377/**
6378 * pci_set_vga_state - set VGA decode state on device and parents if requested
6379 * @dev: the PCI device
6380 * @decode: true = enable decoding, false = disable decoding
6381 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6382 * @flags: traverse ancestors and change bridges
6383 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6384 */
6385int pci_set_vga_state(struct pci_dev *dev, bool decode,
6386 unsigned int command_bits, u32 flags)
6387{
6388 struct pci_bus *bus;
6389 struct pci_dev *bridge;
6390 u16 cmd;
6391 int rc;
6392
6393 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6394
6395 /* ARCH specific VGA enables */
6396 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6397 if (rc)
6398 return rc;
6399
6400 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6401 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6402 if (decode)
6403 cmd |= command_bits;
6404 else
6405 cmd &= ~command_bits;
6406 pci_write_config_word(dev, PCI_COMMAND, cmd);
6407 }
6408
6409 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6410 return 0;
6411
6412 bus = dev->bus;
6413 while (bus) {
6414 bridge = bus->self;
6415 if (bridge) {
6416 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6417 &cmd);
6418 if (decode)
6419 cmd |= PCI_BRIDGE_CTL_VGA;
6420 else
6421 cmd &= ~PCI_BRIDGE_CTL_VGA;
6422 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6423 cmd);
6424 }
6425 bus = bus->parent;
6426 }
6427 return 0;
6428}
6429
6430#ifdef CONFIG_ACPI
6431bool pci_pr3_present(struct pci_dev *pdev)
6432{
6433 struct acpi_device *adev;
6434
6435 if (acpi_disabled)
6436 return false;
6437
6438 adev = ACPI_COMPANION(&pdev->dev);
6439 if (!adev)
6440 return false;
6441
6442 return adev->power.flags.power_resources &&
6443 acpi_has_method(adev->handle, "_PR3");
6444}
6445EXPORT_SYMBOL_GPL(pci_pr3_present);
6446#endif
6447
6448/**
6449 * pci_add_dma_alias - Add a DMA devfn alias for a device
6450 * @dev: the PCI device for which alias is added
6451 * @devfn_from: alias slot and function
6452 * @nr_devfns: number of subsequent devfns to alias
6453 *
6454 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6455 * which is used to program permissible bus-devfn source addresses for DMA
6456 * requests in an IOMMU. These aliases factor into IOMMU group creation
6457 * and are useful for devices generating DMA requests beyond or different
6458 * from their logical bus-devfn. Examples include device quirks where the
6459 * device simply uses the wrong devfn, as well as non-transparent bridges
6460 * where the alias may be a proxy for devices in another domain.
6461 *
6462 * IOMMU group creation is performed during device discovery or addition,
6463 * prior to any potential DMA mapping and therefore prior to driver probing
6464 * (especially for userspace assigned devices where IOMMU group definition
6465 * cannot be left as a userspace activity). DMA aliases should therefore
6466 * be configured via quirks, such as the PCI fixup header quirk.
6467 */
6468void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6469 unsigned int nr_devfns)
6470{
6471 int devfn_to;
6472
6473 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6474 devfn_to = devfn_from + nr_devfns - 1;
6475
6476 if (!dev->dma_alias_mask)
6477 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6478 if (!dev->dma_alias_mask) {
6479 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6480 return;
6481 }
6482
6483 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6484
6485 if (nr_devfns == 1)
6486 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6487 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6488 else if (nr_devfns > 1)
6489 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6490 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6491 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6492}
6493
6494bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6495{
6496 return (dev1->dma_alias_mask &&
6497 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6498 (dev2->dma_alias_mask &&
6499 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6500 pci_real_dma_dev(dev1) == dev2 ||
6501 pci_real_dma_dev(dev2) == dev1;
6502}
6503
6504bool pci_device_is_present(struct pci_dev *pdev)
6505{
6506 u32 v;
6507
6508 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6509 pdev = pci_physfn(pdev);
6510 if (pci_dev_is_disconnected(pdev))
6511 return false;
6512 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6513}
6514EXPORT_SYMBOL_GPL(pci_device_is_present);
6515
6516void pci_ignore_hotplug(struct pci_dev *dev)
6517{
6518 struct pci_dev *bridge = dev->bus->self;
6519
6520 dev->ignore_hotplug = 1;
6521 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6522 if (bridge)
6523 bridge->ignore_hotplug = 1;
6524}
6525EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6526
6527/**
6528 * pci_real_dma_dev - Get PCI DMA device for PCI device
6529 * @dev: the PCI device that may have a PCI DMA alias
6530 *
6531 * Permits the platform to provide architecture-specific functionality to
6532 * devices needing to alias DMA to another PCI device on another PCI bus. If
6533 * the PCI device is on the same bus, it is recommended to use
6534 * pci_add_dma_alias(). This is the default implementation. Architecture
6535 * implementations can override this.
6536 */
6537struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6538{
6539 return dev;
6540}
6541
6542resource_size_t __weak pcibios_default_alignment(void)
6543{
6544 return 0;
6545}
6546
6547/*
6548 * Arches that don't want to expose struct resource to userland as-is in
6549 * sysfs and /proc can implement their own pci_resource_to_user().
6550 */
6551void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6552 const struct resource *rsrc,
6553 resource_size_t *start, resource_size_t *end)
6554{
6555 *start = rsrc->start;
6556 *end = rsrc->end;
6557}
6558
6559static char *resource_alignment_param;
6560static DEFINE_SPINLOCK(resource_alignment_lock);
6561
6562/**
6563 * pci_specified_resource_alignment - get resource alignment specified by user.
6564 * @dev: the PCI device to get
6565 * @resize: whether or not to change resources' size when reassigning alignment
6566 *
6567 * RETURNS: Resource alignment if it is specified.
6568 * Zero if it is not specified.
6569 */
6570static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6571 bool *resize)
6572{
6573 int align_order, count;
6574 resource_size_t align = pcibios_default_alignment();
6575 const char *p;
6576 int ret;
6577
6578 spin_lock(&resource_alignment_lock);
6579 p = resource_alignment_param;
6580 if (!p || !*p)
6581 goto out;
6582 if (pci_has_flag(PCI_PROBE_ONLY)) {
6583 align = 0;
6584 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6585 goto out;
6586 }
6587
6588 while (*p) {
6589 count = 0;
6590 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6591 p[count] == '@') {
6592 p += count + 1;
6593 if (align_order > 63) {
6594 pr_err("PCI: Invalid requested alignment (order %d)\n",
6595 align_order);
6596 align_order = PAGE_SHIFT;
6597 }
6598 } else {
6599 align_order = PAGE_SHIFT;
6600 }
6601
6602 ret = pci_dev_str_match(dev, p, &p);
6603 if (ret == 1) {
6604 *resize = true;
6605 align = 1ULL << align_order;
6606 break;
6607 } else if (ret < 0) {
6608 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6609 p);
6610 break;
6611 }
6612
6613 if (*p != ';' && *p != ',') {
6614 /* End of param or invalid format */
6615 break;
6616 }
6617 p++;
6618 }
6619out:
6620 spin_unlock(&resource_alignment_lock);
6621 return align;
6622}
6623
6624static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6625 resource_size_t align, bool resize)
6626{
6627 struct resource *r = &dev->resource[bar];
6628 const char *r_name = pci_resource_name(dev, bar);
6629 resource_size_t size;
6630
6631 if (!(r->flags & IORESOURCE_MEM))
6632 return;
6633
6634 if (r->flags & IORESOURCE_PCI_FIXED) {
6635 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6636 r_name, r, (unsigned long long)align);
6637 return;
6638 }
6639
6640 size = resource_size(r);
6641 if (size >= align)
6642 return;
6643
6644 /*
6645 * Increase the alignment of the resource. There are two ways we
6646 * can do this:
6647 *
6648 * 1) Increase the size of the resource. BARs are aligned on their
6649 * size, so when we reallocate space for this resource, we'll
6650 * allocate it with the larger alignment. This also prevents
6651 * assignment of any other BARs inside the alignment region, so
6652 * if we're requesting page alignment, this means no other BARs
6653 * will share the page.
6654 *
6655 * The disadvantage is that this makes the resource larger than
6656 * the hardware BAR, which may break drivers that compute things
6657 * based on the resource size, e.g., to find registers at a
6658 * fixed offset before the end of the BAR.
6659 *
6660 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6661 * set r->start to the desired alignment. By itself this
6662 * doesn't prevent other BARs being put inside the alignment
6663 * region, but if we realign *every* resource of every device in
6664 * the system, none of them will share an alignment region.
6665 *
6666 * When the user has requested alignment for only some devices via
6667 * the "pci=resource_alignment" argument, "resize" is true and we
6668 * use the first method. Otherwise we assume we're aligning all
6669 * devices and we use the second.
6670 */
6671
6672 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6673 r_name, r, (unsigned long long)align);
6674
6675 if (resize) {
6676 r->start = 0;
6677 r->end = align - 1;
6678 } else {
6679 r->flags &= ~IORESOURCE_SIZEALIGN;
6680 r->flags |= IORESOURCE_STARTALIGN;
6681 resource_set_range(r, align, size);
6682 }
6683 r->flags |= IORESOURCE_UNSET;
6684}
6685
6686/*
6687 * This function disables memory decoding and releases memory resources
6688 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6689 * It also rounds up size to specified alignment.
6690 * Later on, the kernel will assign page-aligned memory resource back
6691 * to the device.
6692 */
6693void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6694{
6695 int i;
6696 struct resource *r;
6697 resource_size_t align;
6698 u16 command;
6699 bool resize = false;
6700
6701 /*
6702 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6703 * 3.4.1.11. Their resources are allocated from the space
6704 * described by the VF BARx register in the PF's SR-IOV capability.
6705 * We can't influence their alignment here.
6706 */
6707 if (dev->is_virtfn)
6708 return;
6709
6710 /* check if specified PCI is target device to reassign */
6711 align = pci_specified_resource_alignment(dev, &resize);
6712 if (!align)
6713 return;
6714
6715 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6716 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6717 pci_warn(dev, "Can't reassign resources to host bridge\n");
6718 return;
6719 }
6720
6721 pci_read_config_word(dev, PCI_COMMAND, &command);
6722 command &= ~PCI_COMMAND_MEMORY;
6723 pci_write_config_word(dev, PCI_COMMAND, command);
6724
6725 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6726 pci_request_resource_alignment(dev, i, align, resize);
6727
6728 /*
6729 * Need to disable bridge's resource window,
6730 * to enable the kernel to reassign new resource
6731 * window later on.
6732 */
6733 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6734 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6735 r = &dev->resource[i];
6736 if (!(r->flags & IORESOURCE_MEM))
6737 continue;
6738 r->flags |= IORESOURCE_UNSET;
6739 r->end = resource_size(r) - 1;
6740 r->start = 0;
6741 }
6742 pci_disable_bridge_window(dev);
6743 }
6744}
6745
6746static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6747{
6748 size_t count = 0;
6749
6750 spin_lock(&resource_alignment_lock);
6751 if (resource_alignment_param)
6752 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6753 spin_unlock(&resource_alignment_lock);
6754
6755 return count;
6756}
6757
6758static ssize_t resource_alignment_store(const struct bus_type *bus,
6759 const char *buf, size_t count)
6760{
6761 char *param, *old, *end;
6762
6763 if (count >= (PAGE_SIZE - 1))
6764 return -EINVAL;
6765
6766 param = kstrndup(buf, count, GFP_KERNEL);
6767 if (!param)
6768 return -ENOMEM;
6769
6770 end = strchr(param, '\n');
6771 if (end)
6772 *end = '\0';
6773
6774 spin_lock(&resource_alignment_lock);
6775 old = resource_alignment_param;
6776 if (strlen(param)) {
6777 resource_alignment_param = param;
6778 } else {
6779 kfree(param);
6780 resource_alignment_param = NULL;
6781 }
6782 spin_unlock(&resource_alignment_lock);
6783
6784 kfree(old);
6785
6786 return count;
6787}
6788
6789static BUS_ATTR_RW(resource_alignment);
6790
6791static int __init pci_resource_alignment_sysfs_init(void)
6792{
6793 return bus_create_file(&pci_bus_type,
6794 &bus_attr_resource_alignment);
6795}
6796late_initcall(pci_resource_alignment_sysfs_init);
6797
6798static void pci_no_domains(void)
6799{
6800#ifdef CONFIG_PCI_DOMAINS
6801 pci_domains_supported = 0;
6802#endif
6803}
6804
6805#ifdef CONFIG_PCI_DOMAINS_GENERIC
6806static DEFINE_IDA(pci_domain_nr_static_ida);
6807static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6808
6809static void of_pci_reserve_static_domain_nr(void)
6810{
6811 struct device_node *np;
6812 int domain_nr;
6813
6814 for_each_node_by_type(np, "pci") {
6815 domain_nr = of_get_pci_domain_nr(np);
6816 if (domain_nr < 0)
6817 continue;
6818 /*
6819 * Permanently allocate domain_nr in dynamic_ida
6820 * to prevent it from dynamic allocation.
6821 */
6822 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6823 domain_nr, domain_nr, GFP_KERNEL);
6824 }
6825}
6826
6827static int of_pci_bus_find_domain_nr(struct device *parent)
6828{
6829 static bool static_domains_reserved = false;
6830 int domain_nr;
6831
6832 /* On the first call scan device tree for static allocations. */
6833 if (!static_domains_reserved) {
6834 of_pci_reserve_static_domain_nr();
6835 static_domains_reserved = true;
6836 }
6837
6838 if (parent) {
6839 /*
6840 * If domain is in DT, allocate it in static IDA. This
6841 * prevents duplicate static allocations in case of errors
6842 * in DT.
6843 */
6844 domain_nr = of_get_pci_domain_nr(parent->of_node);
6845 if (domain_nr >= 0)
6846 return ida_alloc_range(&pci_domain_nr_static_ida,
6847 domain_nr, domain_nr,
6848 GFP_KERNEL);
6849 }
6850
6851 /*
6852 * If domain was not specified in DT, choose a free ID from dynamic
6853 * allocations. All domain numbers from DT are permanently in
6854 * dynamic allocations to prevent assigning them to other DT nodes
6855 * without static domain.
6856 */
6857 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6858}
6859
6860static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861{
6862 if (domain_nr < 0)
6863 return;
6864
6865 /* Release domain from IDA where it was allocated. */
6866 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6867 ida_free(&pci_domain_nr_static_ida, domain_nr);
6868 else
6869 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6870}
6871
6872int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6873{
6874 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6875 acpi_pci_bus_find_domain_nr(bus);
6876}
6877
6878void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6879{
6880 if (!acpi_disabled)
6881 return;
6882 of_pci_bus_release_domain_nr(parent, domain_nr);
6883}
6884#endif
6885
6886/**
6887 * pci_ext_cfg_avail - can we access extended PCI config space?
6888 *
6889 * Returns 1 if we can access PCI extended config space (offsets
6890 * greater than 0xff). This is the default implementation. Architecture
6891 * implementations can override this.
6892 */
6893int __weak pci_ext_cfg_avail(void)
6894{
6895 return 1;
6896}
6897
6898void __weak pci_fixup_cardbus(struct pci_bus *bus)
6899{
6900}
6901EXPORT_SYMBOL(pci_fixup_cardbus);
6902
6903static int __init pci_setup(char *str)
6904{
6905 while (str) {
6906 char *k = strchr(str, ',');
6907 if (k)
6908 *k++ = 0;
6909 if (*str && (str = pcibios_setup(str)) && *str) {
6910 if (!strcmp(str, "nomsi")) {
6911 pci_no_msi();
6912 } else if (!strncmp(str, "noats", 5)) {
6913 pr_info("PCIe: ATS is disabled\n");
6914 pcie_ats_disabled = true;
6915 } else if (!strcmp(str, "noaer")) {
6916 pci_no_aer();
6917 } else if (!strcmp(str, "earlydump")) {
6918 pci_early_dump = true;
6919 } else if (!strncmp(str, "realloc=", 8)) {
6920 pci_realloc_get_opt(str + 8);
6921 } else if (!strncmp(str, "realloc", 7)) {
6922 pci_realloc_get_opt("on");
6923 } else if (!strcmp(str, "nodomains")) {
6924 pci_no_domains();
6925 } else if (!strncmp(str, "noari", 5)) {
6926 pcie_ari_disabled = true;
6927 } else if (!strncmp(str, "notph", 5)) {
6928 pci_no_tph();
6929 } else if (!strncmp(str, "cbiosize=", 9)) {
6930 pci_cardbus_io_size = memparse(str + 9, &str);
6931 } else if (!strncmp(str, "cbmemsize=", 10)) {
6932 pci_cardbus_mem_size = memparse(str + 10, &str);
6933 } else if (!strncmp(str, "resource_alignment=", 19)) {
6934 resource_alignment_param = str + 19;
6935 } else if (!strncmp(str, "ecrc=", 5)) {
6936 pcie_ecrc_get_policy(str + 5);
6937 } else if (!strncmp(str, "hpiosize=", 9)) {
6938 pci_hotplug_io_size = memparse(str + 9, &str);
6939 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6940 pci_hotplug_mmio_size = memparse(str + 11, &str);
6941 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6942 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6943 } else if (!strncmp(str, "hpmemsize=", 10)) {
6944 pci_hotplug_mmio_size = memparse(str + 10, &str);
6945 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6946 } else if (!strncmp(str, "hpbussize=", 10)) {
6947 pci_hotplug_bus_size =
6948 simple_strtoul(str + 10, &str, 0);
6949 if (pci_hotplug_bus_size > 0xff)
6950 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6951 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6952 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6953 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6954 pcie_bus_config = PCIE_BUS_SAFE;
6955 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6956 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6957 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6958 pcie_bus_config = PCIE_BUS_PEER2PEER;
6959 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6960 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6961 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6962 disable_acs_redir_param = str + 18;
6963 } else if (!strncmp(str, "config_acs=", 11)) {
6964 config_acs_param = str + 11;
6965 } else {
6966 pr_err("PCI: Unknown option `%s'\n", str);
6967 }
6968 }
6969 str = k;
6970 }
6971 return 0;
6972}
6973early_param("pci", pci_setup);
6974
6975/*
6976 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6977 * in pci_setup(), above, to point to data in the __initdata section which
6978 * will be freed after the init sequence is complete. We can't allocate memory
6979 * in pci_setup() because some architectures do not have any memory allocation
6980 * service available during an early_param() call. So we allocate memory and
6981 * copy the variable here before the init section is freed.
6982 *
6983 */
6984static int __init pci_realloc_setup_params(void)
6985{
6986 resource_alignment_param = kstrdup(resource_alignment_param,
6987 GFP_KERNEL);
6988 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6989 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6990
6991 return 0;
6992}
6993pure_initcall(pci_realloc_setup_params);
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <linux/pci_hotplug.h>
26#include <asm-generic/pci-bridge.h>
27#include <asm/setup.h>
28#include "pci.h"
29
30const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32};
33EXPORT_SYMBOL_GPL(pci_power_names);
34
35int isa_dma_bridge_buggy;
36EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38int pci_pci_problems;
39EXPORT_SYMBOL(pci_pci_problems);
40
41unsigned int pci_pm_d3_delay;
42
43static void pci_pme_list_scan(struct work_struct *work);
44
45static LIST_HEAD(pci_pme_list);
46static DEFINE_MUTEX(pci_pme_list_mutex);
47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52};
53
54#define PME_TIMEOUT 1000 /* How long between PME checks */
55
56static void pci_dev_d3_sleep(struct pci_dev *dev)
57{
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64}
65
66#ifdef CONFIG_PCI_DOMAINS
67int pci_domains_supported = 1;
68#endif
69
70#define DEFAULT_CARDBUS_IO_SIZE (256)
71#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76#define DEFAULT_HOTPLUG_IO_SIZE (256)
77#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
79unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84/*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91u8 pci_cache_line_size;
92
93/*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97unsigned int pcibios_max_latency = 255;
98
99/* If set, the PCIe ARI capability will not be used. */
100static bool pcie_ari_disabled;
101
102/**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110{
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if(n > max)
118 max = n;
119 }
120 return max;
121}
122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124#ifdef CONFIG_HAS_IOMEM
125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126{
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136}
137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138#endif
139
140#define PCI_FIND_CAP_TTL 48
141
142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144{
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161}
162
163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165{
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169}
170
171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172{
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175}
176EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180{
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198}
199
200/**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219int pci_find_capability(struct pci_dev *dev, int cap)
220{
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228}
229
230/**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244{
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255}
256
257/**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269{
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306}
307EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309/**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323int pci_find_ext_capability(struct pci_dev *dev, int cap)
324{
325 return pci_find_next_ext_capability(dev, 0, cap);
326}
327EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330{
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355}
356/**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370{
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372}
373EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375/**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387{
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395}
396EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398/**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in.
405 */
406struct resource *
407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408{
409 const struct pci_bus *bus = dev->bus;
410 struct resource *r;
411 int i;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && resource_contains(r, res)) {
417
418 /*
419 * If the window is prefetchable but the BAR is
420 * not, the allocator made a mistake.
421 */
422 if (r->flags & IORESOURCE_PREFETCH &&
423 !(res->flags & IORESOURCE_PREFETCH))
424 return NULL;
425
426 /*
427 * If we're below a transparent bridge, there may
428 * be both a positively-decoded aperture and a
429 * subtractively-decoded region that contain the BAR.
430 * We want the positively-decoded one, so this depends
431 * on pci_bus_for_each_resource() giving us those
432 * first.
433 */
434 return r;
435 }
436 }
437 return NULL;
438}
439
440/**
441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
442 * @dev: the PCI device to operate on
443 * @pos: config space offset of status word
444 * @mask: mask of bit(s) to care about in status word
445 *
446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
447 */
448int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
449{
450 int i;
451
452 /* Wait for Transaction Pending bit clean */
453 for (i = 0; i < 4; i++) {
454 u16 status;
455 if (i)
456 msleep((1 << (i - 1)) * 100);
457
458 pci_read_config_word(dev, pos, &status);
459 if (!(status & mask))
460 return 1;
461 }
462
463 return 0;
464}
465
466/**
467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
468 * @dev: PCI device to have its BARs restored
469 *
470 * Restore the BAR values for a given device, so as to make it
471 * accessible by its driver.
472 */
473static void
474pci_restore_bars(struct pci_dev *dev)
475{
476 int i;
477
478 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
479 pci_update_resource(dev, i);
480}
481
482static struct pci_platform_pm_ops *pci_platform_pm;
483
484int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
485{
486 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
487 || !ops->sleep_wake)
488 return -EINVAL;
489 pci_platform_pm = ops;
490 return 0;
491}
492
493static inline bool platform_pci_power_manageable(struct pci_dev *dev)
494{
495 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
496}
497
498static inline int platform_pci_set_power_state(struct pci_dev *dev,
499 pci_power_t t)
500{
501 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
502}
503
504static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
505{
506 return pci_platform_pm ?
507 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
508}
509
510static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
511{
512 return pci_platform_pm ?
513 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
514}
515
516static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
517{
518 return pci_platform_pm ?
519 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
520}
521
522/**
523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
524 * given PCI device
525 * @dev: PCI device to handle.
526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
527 *
528 * RETURN VALUE:
529 * -EINVAL if the requested state is invalid.
530 * -EIO if device does not support PCI PM or its PM capabilities register has a
531 * wrong version, or device doesn't support the requested state.
532 * 0 if device already is in the requested state.
533 * 0 if device's power state has been successfully changed.
534 */
535static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
536{
537 u16 pmcsr;
538 bool need_restore = false;
539
540 /* Check if we're already there */
541 if (dev->current_state == state)
542 return 0;
543
544 if (!dev->pm_cap)
545 return -EIO;
546
547 if (state < PCI_D0 || state > PCI_D3hot)
548 return -EINVAL;
549
550 /* Validate current state:
551 * Can enter D0 from any state, but if we can only go deeper
552 * to sleep if we're already in a low power state
553 */
554 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
555 && dev->current_state > state) {
556 dev_err(&dev->dev, "invalid power transition "
557 "(from state %d to %d)\n", dev->current_state, state);
558 return -EINVAL;
559 }
560
561 /* check if this device supports the desired state */
562 if ((state == PCI_D1 && !dev->d1_support)
563 || (state == PCI_D2 && !dev->d2_support))
564 return -EIO;
565
566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
567
568 /* If we're (effectively) in D3, force entire word to 0.
569 * This doesn't affect PME_Status, disables PME_En, and
570 * sets PowerState to 0.
571 */
572 switch (dev->current_state) {
573 case PCI_D0:
574 case PCI_D1:
575 case PCI_D2:
576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
577 pmcsr |= state;
578 break;
579 case PCI_D3hot:
580 case PCI_D3cold:
581 case PCI_UNKNOWN: /* Boot-up */
582 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
583 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
584 need_restore = true;
585 /* Fall-through: force to D0 */
586 default:
587 pmcsr = 0;
588 break;
589 }
590
591 /* enter specified state */
592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
593
594 /* Mandatory power management transition delays */
595 /* see PCI PM 1.1 5.6.1 table 18 */
596 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
597 pci_dev_d3_sleep(dev);
598 else if (state == PCI_D2 || dev->current_state == PCI_D2)
599 udelay(PCI_PM_D2_DELAY);
600
601 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
602 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
603 if (dev->current_state != state && printk_ratelimit())
604 dev_info(&dev->dev, "Refused to change power state, "
605 "currently in D%d\n", dev->current_state);
606
607 /*
608 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
609 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
610 * from D3hot to D0 _may_ perform an internal reset, thereby
611 * going to "D0 Uninitialized" rather than "D0 Initialized".
612 * For example, at least some versions of the 3c905B and the
613 * 3c556B exhibit this behaviour.
614 *
615 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
616 * devices in a D3hot state at boot. Consequently, we need to
617 * restore at least the BARs so that the device will be
618 * accessible to its driver.
619 */
620 if (need_restore)
621 pci_restore_bars(dev);
622
623 if (dev->bus->self)
624 pcie_aspm_pm_state_change(dev->bus->self);
625
626 return 0;
627}
628
629/**
630 * pci_update_current_state - Read PCI power state of given device from its
631 * PCI PM registers and cache it
632 * @dev: PCI device to handle.
633 * @state: State to cache in case the device doesn't have the PM capability
634 */
635void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
636{
637 if (dev->pm_cap) {
638 u16 pmcsr;
639
640 /*
641 * Configuration space is not accessible for device in
642 * D3cold, so just keep or set D3cold for safety
643 */
644 if (dev->current_state == PCI_D3cold)
645 return;
646 if (state == PCI_D3cold) {
647 dev->current_state = PCI_D3cold;
648 return;
649 }
650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 } else {
653 dev->current_state = state;
654 }
655}
656
657/**
658 * pci_power_up - Put the given device into D0 forcibly
659 * @dev: PCI device to power up
660 */
661void pci_power_up(struct pci_dev *dev)
662{
663 if (platform_pci_power_manageable(dev))
664 platform_pci_set_power_state(dev, PCI_D0);
665
666 pci_raw_set_power_state(dev, PCI_D0);
667 pci_update_current_state(dev, PCI_D0);
668}
669
670/**
671 * pci_platform_power_transition - Use platform to change device power state
672 * @dev: PCI device to handle.
673 * @state: State to put the device into.
674 */
675static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
676{
677 int error;
678
679 if (platform_pci_power_manageable(dev)) {
680 error = platform_pci_set_power_state(dev, state);
681 if (!error)
682 pci_update_current_state(dev, state);
683 } else
684 error = -ENODEV;
685
686 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
687 dev->current_state = PCI_D0;
688
689 return error;
690}
691
692/**
693 * pci_wakeup - Wake up a PCI device
694 * @pci_dev: Device to handle.
695 * @ign: ignored parameter
696 */
697static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
698{
699 pci_wakeup_event(pci_dev);
700 pm_request_resume(&pci_dev->dev);
701 return 0;
702}
703
704/**
705 * pci_wakeup_bus - Walk given bus and wake up devices on it
706 * @bus: Top bus of the subtree to walk.
707 */
708static void pci_wakeup_bus(struct pci_bus *bus)
709{
710 if (bus)
711 pci_walk_bus(bus, pci_wakeup, NULL);
712}
713
714/**
715 * __pci_start_power_transition - Start power transition of a PCI device
716 * @dev: PCI device to handle.
717 * @state: State to put the device into.
718 */
719static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
720{
721 if (state == PCI_D0) {
722 pci_platform_power_transition(dev, PCI_D0);
723 /*
724 * Mandatory power management transition delays, see
725 * PCI Express Base Specification Revision 2.0 Section
726 * 6.6.1: Conventional Reset. Do not delay for
727 * devices powered on/off by corresponding bridge,
728 * because have already delayed for the bridge.
729 */
730 if (dev->runtime_d3cold) {
731 msleep(dev->d3cold_delay);
732 /*
733 * When powering on a bridge from D3cold, the
734 * whole hierarchy may be powered on into
735 * D0uninitialized state, resume them to give
736 * them a chance to suspend again
737 */
738 pci_wakeup_bus(dev->subordinate);
739 }
740 }
741}
742
743/**
744 * __pci_dev_set_current_state - Set current state of a PCI device
745 * @dev: Device to handle
746 * @data: pointer to state to be set
747 */
748static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
749{
750 pci_power_t state = *(pci_power_t *)data;
751
752 dev->current_state = state;
753 return 0;
754}
755
756/**
757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
758 * @bus: Top bus of the subtree to walk.
759 * @state: state to be set
760 */
761static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
762{
763 if (bus)
764 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
765}
766
767/**
768 * __pci_complete_power_transition - Complete power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
771 *
772 * This function should not be called directly by device drivers.
773 */
774int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
775{
776 int ret;
777
778 if (state <= PCI_D0)
779 return -EINVAL;
780 ret = pci_platform_power_transition(dev, state);
781 /* Power off the bridge may power off the whole hierarchy */
782 if (!ret && state == PCI_D3cold)
783 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
784 return ret;
785}
786EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
787
788/**
789 * pci_set_power_state - Set the power state of a PCI device
790 * @dev: PCI device to handle.
791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
792 *
793 * Transition a device to a new power state, using the platform firmware and/or
794 * the device's PCI PM registers.
795 *
796 * RETURN VALUE:
797 * -EINVAL if the requested state is invalid.
798 * -EIO if device does not support PCI PM or its PM capabilities register has a
799 * wrong version, or device doesn't support the requested state.
800 * 0 if device already is in the requested state.
801 * 0 if device's power state has been successfully changed.
802 */
803int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
804{
805 int error;
806
807 /* bound the state we're entering */
808 if (state > PCI_D3cold)
809 state = PCI_D3cold;
810 else if (state < PCI_D0)
811 state = PCI_D0;
812 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
813 /*
814 * If the device or the parent bridge do not support PCI PM,
815 * ignore the request if we're doing anything other than putting
816 * it into D0 (which would only happen on boot).
817 */
818 return 0;
819
820 /* Check if we're already there */
821 if (dev->current_state == state)
822 return 0;
823
824 __pci_start_power_transition(dev, state);
825
826 /* This device is quirked not to be put into D3, so
827 don't put it in D3 */
828 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
829 return 0;
830
831 /*
832 * To put device in D3cold, we put device into D3hot in native
833 * way, then put device into D3cold with platform ops
834 */
835 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
836 PCI_D3hot : state);
837
838 if (!__pci_complete_power_transition(dev, state))
839 error = 0;
840 /*
841 * When aspm_policy is "powersave" this call ensures
842 * that ASPM is configured.
843 */
844 if (!error && dev->bus->self)
845 pcie_aspm_powersave_config_link(dev->bus->self);
846
847 return error;
848}
849
850/**
851 * pci_choose_state - Choose the power state of a PCI device
852 * @dev: PCI device to be suspended
853 * @state: target sleep state for the whole system. This is the value
854 * that is passed to suspend() function.
855 *
856 * Returns PCI power state suitable for given device and given system
857 * message.
858 */
859
860pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
861{
862 pci_power_t ret;
863
864 if (!dev->pm_cap)
865 return PCI_D0;
866
867 ret = platform_pci_choose_state(dev);
868 if (ret != PCI_POWER_ERROR)
869 return ret;
870
871 switch (state.event) {
872 case PM_EVENT_ON:
873 return PCI_D0;
874 case PM_EVENT_FREEZE:
875 case PM_EVENT_PRETHAW:
876 /* REVISIT both freeze and pre-thaw "should" use D0 */
877 case PM_EVENT_SUSPEND:
878 case PM_EVENT_HIBERNATE:
879 return PCI_D3hot;
880 default:
881 dev_info(&dev->dev, "unrecognized suspend event %d\n",
882 state.event);
883 BUG();
884 }
885 return PCI_D0;
886}
887
888EXPORT_SYMBOL(pci_choose_state);
889
890#define PCI_EXP_SAVE_REGS 7
891
892
893static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 u16 cap, bool extended)
895{
896 struct pci_cap_saved_state *tmp;
897
898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
900 return tmp;
901 }
902 return NULL;
903}
904
905struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906{
907 return _pci_find_saved_cap(dev, cap, false);
908}
909
910struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911{
912 return _pci_find_saved_cap(dev, cap, true);
913}
914
915static int pci_save_pcie_state(struct pci_dev *dev)
916{
917 int i = 0;
918 struct pci_cap_saved_state *save_state;
919 u16 *cap;
920
921 if (!pci_is_pcie(dev))
922 return 0;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
928 }
929
930 cap = (u16 *)&save_state->cap.data[0];
931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
938
939 return 0;
940}
941
942static void pci_restore_pcie_state(struct pci_dev *dev)
943{
944 int i = 0;
945 struct pci_cap_saved_state *save_state;
946 u16 *cap;
947
948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
949 if (!save_state)
950 return;
951
952 cap = (u16 *)&save_state->cap.data[0];
953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
960}
961
962
963static int pci_save_pcix_state(struct pci_dev *dev)
964{
965 int pos;
966 struct pci_cap_saved_state *save_state;
967
968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 if (pos <= 0)
970 return 0;
971
972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
973 if (!save_state) {
974 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
975 return -ENOMEM;
976 }
977
978 pci_read_config_word(dev, pos + PCI_X_CMD,
979 (u16 *)save_state->cap.data);
980
981 return 0;
982}
983
984static void pci_restore_pcix_state(struct pci_dev *dev)
985{
986 int i = 0, pos;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 if (!save_state || pos <= 0)
993 return;
994 cap = (u16 *)&save_state->cap.data[0];
995
996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
997}
998
999
1000/**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1003 */
1004int
1005pci_save_state(struct pci_dev *dev)
1006{
1007 int i;
1008 /* XXX: 100% dword access ok here? */
1009 for (i = 0; i < 16; i++)
1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011 dev->state_saved = true;
1012 if ((i = pci_save_pcie_state(dev)) != 0)
1013 return i;
1014 if ((i = pci_save_pcix_state(dev)) != 0)
1015 return i;
1016 if ((i = pci_save_vc_state(dev)) != 0)
1017 return i;
1018 return 0;
1019}
1020
1021static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022 u32 saved_val, int retry)
1023{
1024 u32 val;
1025
1026 pci_read_config_dword(pdev, offset, &val);
1027 if (val == saved_val)
1028 return;
1029
1030 for (;;) {
1031 dev_dbg(&pdev->dev, "restoring config space at offset "
1032 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033 pci_write_config_dword(pdev, offset, saved_val);
1034 if (retry-- <= 0)
1035 return;
1036
1037 pci_read_config_dword(pdev, offset, &val);
1038 if (val == saved_val)
1039 return;
1040
1041 mdelay(1);
1042 }
1043}
1044
1045static void pci_restore_config_space_range(struct pci_dev *pdev,
1046 int start, int end, int retry)
1047{
1048 int index;
1049
1050 for (index = end; index >= start; index--)
1051 pci_restore_config_dword(pdev, 4 * index,
1052 pdev->saved_config_space[index],
1053 retry);
1054}
1055
1056static void pci_restore_config_space(struct pci_dev *pdev)
1057{
1058 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059 pci_restore_config_space_range(pdev, 10, 15, 0);
1060 /* Restore BARs before the command register. */
1061 pci_restore_config_space_range(pdev, 4, 9, 10);
1062 pci_restore_config_space_range(pdev, 0, 3, 0);
1063 } else {
1064 pci_restore_config_space_range(pdev, 0, 15, 0);
1065 }
1066}
1067
1068/**
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1071 */
1072void pci_restore_state(struct pci_dev *dev)
1073{
1074 if (!dev->state_saved)
1075 return;
1076
1077 /* PCI Express register must be restored first */
1078 pci_restore_pcie_state(dev);
1079 pci_restore_ats_state(dev);
1080 pci_restore_vc_state(dev);
1081
1082 pci_restore_config_space(dev);
1083
1084 pci_restore_pcix_state(dev);
1085 pci_restore_msi_state(dev);
1086 pci_restore_iov_state(dev);
1087
1088 dev->state_saved = false;
1089}
1090
1091struct pci_saved_state {
1092 u32 config_space[16];
1093 struct pci_cap_saved_data cap[0];
1094};
1095
1096/**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 * the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
1101 * Return NULL if no state or error.
1102 */
1103struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104{
1105 struct pci_saved_state *state;
1106 struct pci_cap_saved_state *tmp;
1107 struct pci_cap_saved_data *cap;
1108 size_t size;
1109
1110 if (!dev->state_saved)
1111 return NULL;
1112
1113 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
1115 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1116 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118 state = kzalloc(size, GFP_KERNEL);
1119 if (!state)
1120 return NULL;
1121
1122 memcpy(state->config_space, dev->saved_config_space,
1123 sizeof(state->config_space));
1124
1125 cap = state->cap;
1126 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1127 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128 memcpy(cap, &tmp->cap, len);
1129 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130 }
1131 /* Empty cap_save terminates list */
1132
1133 return state;
1134}
1135EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137/**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
1142static int pci_load_saved_state(struct pci_dev *dev,
1143 struct pci_saved_state *state)
1144{
1145 struct pci_cap_saved_data *cap;
1146
1147 dev->state_saved = false;
1148
1149 if (!state)
1150 return 0;
1151
1152 memcpy(dev->saved_config_space, state->config_space,
1153 sizeof(state->config_space));
1154
1155 cap = state->cap;
1156 while (cap->size) {
1157 struct pci_cap_saved_state *tmp;
1158
1159 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1160 if (!tmp || tmp->cap.size != cap->size)
1161 return -EINVAL;
1162
1163 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165 sizeof(struct pci_cap_saved_data) + cap->size);
1166 }
1167
1168 dev->state_saved = true;
1169 return 0;
1170}
1171
1172/**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 struct pci_saved_state **state)
1180{
1181 int ret = pci_load_saved_state(dev, *state);
1182 kfree(*state);
1183 *state = NULL;
1184 return ret;
1185}
1186EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
1188int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189{
1190 return pci_enable_resources(dev, bars);
1191}
1192
1193static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194{
1195 int err;
1196 u16 cmd;
1197 u8 pin;
1198
1199 err = pci_set_power_state(dev, PCI_D0);
1200 if (err < 0 && err != -EIO)
1201 return err;
1202 err = pcibios_enable_device(dev, bars);
1203 if (err < 0)
1204 return err;
1205 pci_fixup_device(pci_fixup_enable, dev);
1206
1207 if (dev->msi_enabled || dev->msix_enabled)
1208 return 0;
1209
1210 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211 if (pin) {
1212 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213 if (cmd & PCI_COMMAND_INTX_DISABLE)
1214 pci_write_config_word(dev, PCI_COMMAND,
1215 cmd & ~PCI_COMMAND_INTX_DISABLE);
1216 }
1217
1218 return 0;
1219}
1220
1221/**
1222 * pci_reenable_device - Resume abandoned device
1223 * @dev: PCI device to be resumed
1224 *
1225 * Note this function is a backend of pci_default_resume and is not supposed
1226 * to be called by normal code, write proper resume handler and use it instead.
1227 */
1228int pci_reenable_device(struct pci_dev *dev)
1229{
1230 if (pci_is_enabled(dev))
1231 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232 return 0;
1233}
1234
1235static void pci_enable_bridge(struct pci_dev *dev)
1236{
1237 struct pci_dev *bridge;
1238 int retval;
1239
1240 bridge = pci_upstream_bridge(dev);
1241 if (bridge)
1242 pci_enable_bridge(bridge);
1243
1244 if (pci_is_enabled(dev)) {
1245 if (!dev->is_busmaster)
1246 pci_set_master(dev);
1247 return;
1248 }
1249
1250 retval = pci_enable_device(dev);
1251 if (retval)
1252 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253 retval);
1254 pci_set_master(dev);
1255}
1256
1257static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1258{
1259 struct pci_dev *bridge;
1260 int err;
1261 int i, bars = 0;
1262
1263 /*
1264 * Power state could be unknown at this point, either due to a fresh
1265 * boot or a device removal call. So get the current power state
1266 * so that things like MSI message writing will behave as expected
1267 * (e.g. if the device really is in D0 at enable time).
1268 */
1269 if (dev->pm_cap) {
1270 u16 pmcsr;
1271 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273 }
1274
1275 if (atomic_inc_return(&dev->enable_cnt) > 1)
1276 return 0; /* already enabled */
1277
1278 bridge = pci_upstream_bridge(dev);
1279 if (bridge)
1280 pci_enable_bridge(bridge);
1281
1282 /* only skip sriov related */
1283 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284 if (dev->resource[i].flags & flags)
1285 bars |= (1 << i);
1286 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1287 if (dev->resource[i].flags & flags)
1288 bars |= (1 << i);
1289
1290 err = do_pci_enable_device(dev, bars);
1291 if (err < 0)
1292 atomic_dec(&dev->enable_cnt);
1293 return err;
1294}
1295
1296/**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 * Initialize device before it's used by a driver. Ask low-level code
1301 * to enable I/O resources. Wake up the device if it was suspended.
1302 * Beware, this function can fail.
1303 */
1304int pci_enable_device_io(struct pci_dev *dev)
1305{
1306 return pci_enable_device_flags(dev, IORESOURCE_IO);
1307}
1308
1309/**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 * Initialize device before it's used by a driver. Ask low-level code
1314 * to enable Memory resources. Wake up the device if it was suspended.
1315 * Beware, this function can fail.
1316 */
1317int pci_enable_device_mem(struct pci_dev *dev)
1318{
1319 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1320}
1321
1322/**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable I/O and memory. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 *
1330 * Note we don't actually enable the device many times if we call
1331 * this function repeatedly (we just increment the count).
1332 */
1333int pci_enable_device(struct pci_dev *dev)
1334{
1335 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1336}
1337
1338/*
1339 * Managed PCI resources. This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately. pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344struct pci_devres {
1345 unsigned int enabled:1;
1346 unsigned int pinned:1;
1347 unsigned int orig_intx:1;
1348 unsigned int restore_intx:1;
1349 u32 region_mask;
1350};
1351
1352static void pcim_release(struct device *gendev, void *res)
1353{
1354 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355 struct pci_devres *this = res;
1356 int i;
1357
1358 if (dev->msi_enabled)
1359 pci_disable_msi(dev);
1360 if (dev->msix_enabled)
1361 pci_disable_msix(dev);
1362
1363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364 if (this->region_mask & (1 << i))
1365 pci_release_region(dev, i);
1366
1367 if (this->restore_intx)
1368 pci_intx(dev, this->orig_intx);
1369
1370 if (this->enabled && !this->pinned)
1371 pci_disable_device(dev);
1372}
1373
1374static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375{
1376 struct pci_devres *dr, *new_dr;
1377
1378 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379 if (dr)
1380 return dr;
1381
1382 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383 if (!new_dr)
1384 return NULL;
1385 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386}
1387
1388static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389{
1390 if (pci_is_managed(pdev))
1391 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 return NULL;
1393}
1394
1395/**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401int pcim_enable_device(struct pci_dev *pdev)
1402{
1403 struct pci_devres *dr;
1404 int rc;
1405
1406 dr = get_pci_dr(pdev);
1407 if (unlikely(!dr))
1408 return -ENOMEM;
1409 if (dr->enabled)
1410 return 0;
1411
1412 rc = pci_enable_device(pdev);
1413 if (!rc) {
1414 pdev->is_managed = 1;
1415 dr->enabled = 1;
1416 }
1417 return rc;
1418}
1419
1420/**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1425 * driver detach. @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428void pcim_pin_device(struct pci_dev *pdev)
1429{
1430 struct pci_devres *dr;
1431
1432 dr = find_pci_dr(pdev);
1433 WARN_ON(!dr || !dr->enabled);
1434 if (dr)
1435 dr->pinned = 1;
1436}
1437
1438/*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446int __weak pcibios_add_device (struct pci_dev *dev)
1447{
1448 return 0;
1449}
1450
1451/**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1461/**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
1469void __weak pcibios_disable_device (struct pci_dev *dev) {}
1470
1471static void do_pci_disable_device(struct pci_dev *dev)
1472{
1473 u16 pci_command;
1474
1475 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476 if (pci_command & PCI_COMMAND_MASTER) {
1477 pci_command &= ~PCI_COMMAND_MASTER;
1478 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479 }
1480
1481 pcibios_disable_device(dev);
1482}
1483
1484/**
1485 * pci_disable_enabled_device - Disable device without updating enable_cnt
1486 * @dev: PCI device to disable
1487 *
1488 * NOTE: This function is a backend of PCI power management routines and is
1489 * not supposed to be called drivers.
1490 */
1491void pci_disable_enabled_device(struct pci_dev *dev)
1492{
1493 if (pci_is_enabled(dev))
1494 do_pci_disable_device(dev);
1495}
1496
1497/**
1498 * pci_disable_device - Disable PCI device after use
1499 * @dev: PCI device to be disabled
1500 *
1501 * Signal to the system that the PCI device is not in use by the system
1502 * anymore. This only involves disabling PCI bus-mastering, if active.
1503 *
1504 * Note we don't actually disable the device until all callers of
1505 * pci_enable_device() have called pci_disable_device().
1506 */
1507void
1508pci_disable_device(struct pci_dev *dev)
1509{
1510 struct pci_devres *dr;
1511
1512 dr = find_pci_dr(dev);
1513 if (dr)
1514 dr->enabled = 0;
1515
1516 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517 "disabling already-disabled device");
1518
1519 if (atomic_dec_return(&dev->enable_cnt) != 0)
1520 return;
1521
1522 do_pci_disable_device(dev);
1523
1524 dev->is_busmaster = 0;
1525}
1526
1527/**
1528 * pcibios_set_pcie_reset_state - set reset state for device dev
1529 * @dev: the PCIe device reset
1530 * @state: Reset state to enter into
1531 *
1532 *
1533 * Sets the PCIe reset state for the device. This is the default
1534 * implementation. Architecture implementations can override this.
1535 */
1536int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537 enum pcie_reset_state state)
1538{
1539 return -EINVAL;
1540}
1541
1542/**
1543 * pci_set_pcie_reset_state - set reset state for device dev
1544 * @dev: the PCIe device reset
1545 * @state: Reset state to enter into
1546 *
1547 *
1548 * Sets the PCI reset state for the device.
1549 */
1550int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551{
1552 return pcibios_set_pcie_reset_state(dev, state);
1553}
1554
1555/**
1556 * pci_check_pme_status - Check if given device has generated PME.
1557 * @dev: Device to check.
1558 *
1559 * Check the PME status of the device and if set, clear it and clear PME enable
1560 * (if set). Return 'true' if PME status and PME enable were both set or
1561 * 'false' otherwise.
1562 */
1563bool pci_check_pme_status(struct pci_dev *dev)
1564{
1565 int pmcsr_pos;
1566 u16 pmcsr;
1567 bool ret = false;
1568
1569 if (!dev->pm_cap)
1570 return false;
1571
1572 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575 return false;
1576
1577 /* Clear PME status. */
1578 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580 /* Disable PME to avoid interrupt flood. */
1581 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582 ret = true;
1583 }
1584
1585 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586
1587 return ret;
1588}
1589
1590/**
1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592 * @dev: Device to handle.
1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1594 *
1595 * Check if @dev has generated PME and queue a resume request for it in that
1596 * case.
1597 */
1598static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1599{
1600 if (pme_poll_reset && dev->pme_poll)
1601 dev->pme_poll = false;
1602
1603 if (pci_check_pme_status(dev)) {
1604 pci_wakeup_event(dev);
1605 pm_request_resume(&dev->dev);
1606 }
1607 return 0;
1608}
1609
1610/**
1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612 * @bus: Top bus of the subtree to walk.
1613 */
1614void pci_pme_wakeup_bus(struct pci_bus *bus)
1615{
1616 if (bus)
1617 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1618}
1619
1620
1621/**
1622 * pci_pme_capable - check the capability of PCI device to generate PME#
1623 * @dev: PCI device to handle.
1624 * @state: PCI state from which device will issue PME#.
1625 */
1626bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1627{
1628 if (!dev->pm_cap)
1629 return false;
1630
1631 return !!(dev->pme_support & (1 << state));
1632}
1633
1634static void pci_pme_list_scan(struct work_struct *work)
1635{
1636 struct pci_pme_device *pme_dev, *n;
1637
1638 mutex_lock(&pci_pme_list_mutex);
1639 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640 if (pme_dev->dev->pme_poll) {
1641 struct pci_dev *bridge;
1642
1643 bridge = pme_dev->dev->bus->self;
1644 /*
1645 * If bridge is in low power state, the
1646 * configuration space of subordinate devices
1647 * may be not accessible
1648 */
1649 if (bridge && bridge->current_state != PCI_D0)
1650 continue;
1651 pci_pme_wakeup(pme_dev->dev, NULL);
1652 } else {
1653 list_del(&pme_dev->list);
1654 kfree(pme_dev);
1655 }
1656 }
1657 if (!list_empty(&pci_pme_list))
1658 schedule_delayed_work(&pci_pme_work,
1659 msecs_to_jiffies(PME_TIMEOUT));
1660 mutex_unlock(&pci_pme_list_mutex);
1661}
1662
1663/**
1664 * pci_pme_active - enable or disable PCI device's PME# function
1665 * @dev: PCI device to handle.
1666 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667 *
1668 * The caller must verify that the device is capable of generating PME# before
1669 * calling this function with @enable equal to 'true'.
1670 */
1671void pci_pme_active(struct pci_dev *dev, bool enable)
1672{
1673 u16 pmcsr;
1674
1675 if (!dev->pme_support)
1676 return;
1677
1678 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1679 /* Clear PME_Status by writing 1 to it and enable PME# */
1680 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681 if (!enable)
1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683
1684 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1685
1686 /*
1687 * PCI (as opposed to PCIe) PME requires that the device have
1688 * its PME# line hooked up correctly. Not all hardware vendors
1689 * do this, so the PME never gets delivered and the device
1690 * remains asleep. The easiest way around this is to
1691 * periodically walk the list of suspended devices and check
1692 * whether any have their PME flag set. The assumption is that
1693 * we'll wake up often enough anyway that this won't be a huge
1694 * hit, and the power savings from the devices will still be a
1695 * win.
1696 *
1697 * Although PCIe uses in-band PME message instead of PME# line
1698 * to report PME, PME does not work for some PCIe devices in
1699 * reality. For example, there are devices that set their PME
1700 * status bits, but don't really bother to send a PME message;
1701 * there are PCI Express Root Ports that don't bother to
1702 * trigger interrupts when they receive PME messages from the
1703 * devices below. So PME poll is used for PCIe devices too.
1704 */
1705
1706 if (dev->pme_poll) {
1707 struct pci_pme_device *pme_dev;
1708 if (enable) {
1709 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710 GFP_KERNEL);
1711 if (!pme_dev) {
1712 dev_warn(&dev->dev, "can't enable PME#\n");
1713 return;
1714 }
1715 pme_dev->dev = dev;
1716 mutex_lock(&pci_pme_list_mutex);
1717 list_add(&pme_dev->list, &pci_pme_list);
1718 if (list_is_singular(&pci_pme_list))
1719 schedule_delayed_work(&pci_pme_work,
1720 msecs_to_jiffies(PME_TIMEOUT));
1721 mutex_unlock(&pci_pme_list_mutex);
1722 } else {
1723 mutex_lock(&pci_pme_list_mutex);
1724 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725 if (pme_dev->dev == dev) {
1726 list_del(&pme_dev->list);
1727 kfree(pme_dev);
1728 break;
1729 }
1730 }
1731 mutex_unlock(&pci_pme_list_mutex);
1732 }
1733 }
1734
1735 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1736}
1737
1738/**
1739 * __pci_enable_wake - enable PCI device as wakeup event source
1740 * @dev: PCI device affected
1741 * @state: PCI state from which device will issue wakeup events
1742 * @runtime: True if the events are to be generated at run time
1743 * @enable: True to enable event generation; false to disable
1744 *
1745 * This enables the device as a wakeup event source, or disables it.
1746 * When such events involves platform-specific hooks, those hooks are
1747 * called automatically by this routine.
1748 *
1749 * Devices with legacy power management (no standard PCI PM capabilities)
1750 * always require such platform hooks.
1751 *
1752 * RETURN VALUE:
1753 * 0 is returned on success
1754 * -EINVAL is returned if device is not supposed to wake up the system
1755 * Error code depending on the platform is returned if both the platform and
1756 * the native mechanism fail to enable the generation of wake-up events
1757 */
1758int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759 bool runtime, bool enable)
1760{
1761 int ret = 0;
1762
1763 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1764 return -EINVAL;
1765
1766 /* Don't do the same thing twice in a row for one device. */
1767 if (!!enable == !!dev->wakeup_prepared)
1768 return 0;
1769
1770 /*
1771 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773 * enable. To disable wake-up we call the platform first, for symmetry.
1774 */
1775
1776 if (enable) {
1777 int error;
1778
1779 if (pci_pme_capable(dev, state))
1780 pci_pme_active(dev, true);
1781 else
1782 ret = 1;
1783 error = runtime ? platform_pci_run_wake(dev, true) :
1784 platform_pci_sleep_wake(dev, true);
1785 if (ret)
1786 ret = error;
1787 if (!ret)
1788 dev->wakeup_prepared = true;
1789 } else {
1790 if (runtime)
1791 platform_pci_run_wake(dev, false);
1792 else
1793 platform_pci_sleep_wake(dev, false);
1794 pci_pme_active(dev, false);
1795 dev->wakeup_prepared = false;
1796 }
1797
1798 return ret;
1799}
1800EXPORT_SYMBOL(__pci_enable_wake);
1801
1802/**
1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804 * @dev: PCI device to prepare
1805 * @enable: True to enable wake-up event generation; false to disable
1806 *
1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808 * and this function allows them to set that up cleanly - pci_enable_wake()
1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810 * ordering constraints.
1811 *
1812 * This function only returns error code if the device is not capable of
1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814 * enable wake-up power for it.
1815 */
1816int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817{
1818 return pci_pme_capable(dev, PCI_D3cold) ?
1819 pci_enable_wake(dev, PCI_D3cold, enable) :
1820 pci_enable_wake(dev, PCI_D3hot, enable);
1821}
1822
1823/**
1824 * pci_target_state - find an appropriate low power state for a given PCI dev
1825 * @dev: PCI device
1826 *
1827 * Use underlying platform code to find a supported low power state for @dev.
1828 * If the platform can't manage @dev, return the deepest state from which it
1829 * can generate wake events, based on any available PME info.
1830 */
1831static pci_power_t pci_target_state(struct pci_dev *dev)
1832{
1833 pci_power_t target_state = PCI_D3hot;
1834
1835 if (platform_pci_power_manageable(dev)) {
1836 /*
1837 * Call the platform to choose the target state of the device
1838 * and enable wake-up from this state if supported.
1839 */
1840 pci_power_t state = platform_pci_choose_state(dev);
1841
1842 switch (state) {
1843 case PCI_POWER_ERROR:
1844 case PCI_UNKNOWN:
1845 break;
1846 case PCI_D1:
1847 case PCI_D2:
1848 if (pci_no_d1d2(dev))
1849 break;
1850 default:
1851 target_state = state;
1852 }
1853 } else if (!dev->pm_cap) {
1854 target_state = PCI_D0;
1855 } else if (device_may_wakeup(&dev->dev)) {
1856 /*
1857 * Find the deepest state from which the device can generate
1858 * wake-up events, make it the target state and enable device
1859 * to generate PME#.
1860 */
1861 if (dev->pme_support) {
1862 while (target_state
1863 && !(dev->pme_support & (1 << target_state)))
1864 target_state--;
1865 }
1866 }
1867
1868 return target_state;
1869}
1870
1871/**
1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873 * @dev: Device to handle.
1874 *
1875 * Choose the power state appropriate for the device depending on whether
1876 * it can wake up the system and/or is power manageable by the platform
1877 * (PCI_D3hot is the default) and put the device into that state.
1878 */
1879int pci_prepare_to_sleep(struct pci_dev *dev)
1880{
1881 pci_power_t target_state = pci_target_state(dev);
1882 int error;
1883
1884 if (target_state == PCI_POWER_ERROR)
1885 return -EIO;
1886
1887 /* D3cold during system suspend/hibernate is not supported */
1888 if (target_state > PCI_D3hot)
1889 target_state = PCI_D3hot;
1890
1891 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1892
1893 error = pci_set_power_state(dev, target_state);
1894
1895 if (error)
1896 pci_enable_wake(dev, target_state, false);
1897
1898 return error;
1899}
1900
1901/**
1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1903 * @dev: Device to handle.
1904 *
1905 * Disable device's system wake-up capability and put it into D0.
1906 */
1907int pci_back_from_sleep(struct pci_dev *dev)
1908{
1909 pci_enable_wake(dev, PCI_D0, false);
1910 return pci_set_power_state(dev, PCI_D0);
1911}
1912
1913/**
1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915 * @dev: PCI device being suspended.
1916 *
1917 * Prepare @dev to generate wake-up events at run time and put it into a low
1918 * power state.
1919 */
1920int pci_finish_runtime_suspend(struct pci_dev *dev)
1921{
1922 pci_power_t target_state = pci_target_state(dev);
1923 int error;
1924
1925 if (target_state == PCI_POWER_ERROR)
1926 return -EIO;
1927
1928 dev->runtime_d3cold = target_state == PCI_D3cold;
1929
1930 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931
1932 error = pci_set_power_state(dev, target_state);
1933
1934 if (error) {
1935 __pci_enable_wake(dev, target_state, true, false);
1936 dev->runtime_d3cold = false;
1937 }
1938
1939 return error;
1940}
1941
1942/**
1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944 * @dev: Device to check.
1945 *
1946 * Return true if the device itself is capable of generating wake-up events
1947 * (through the platform or using the native PCIe PME) or if the device supports
1948 * PME and one of its upstream bridges can generate wake-up events.
1949 */
1950bool pci_dev_run_wake(struct pci_dev *dev)
1951{
1952 struct pci_bus *bus = dev->bus;
1953
1954 if (device_run_wake(&dev->dev))
1955 return true;
1956
1957 if (!dev->pme_support)
1958 return false;
1959
1960 while (bus->parent) {
1961 struct pci_dev *bridge = bus->self;
1962
1963 if (device_run_wake(&bridge->dev))
1964 return true;
1965
1966 bus = bus->parent;
1967 }
1968
1969 /* We have reached the root bus. */
1970 if (bus->bridge)
1971 return device_run_wake(bus->bridge);
1972
1973 return false;
1974}
1975EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976
1977void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978{
1979 struct device *dev = &pdev->dev;
1980 struct device *parent = dev->parent;
1981
1982 if (parent)
1983 pm_runtime_get_sync(parent);
1984 pm_runtime_get_noresume(dev);
1985 /*
1986 * pdev->current_state is set to PCI_D3cold during suspending,
1987 * so wait until suspending completes
1988 */
1989 pm_runtime_barrier(dev);
1990 /*
1991 * Only need to resume devices in D3cold, because config
1992 * registers are still accessible for devices suspended but
1993 * not in D3cold.
1994 */
1995 if (pdev->current_state == PCI_D3cold)
1996 pm_runtime_resume(dev);
1997}
1998
1999void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000{
2001 struct device *dev = &pdev->dev;
2002 struct device *parent = dev->parent;
2003
2004 pm_runtime_put(dev);
2005 if (parent)
2006 pm_runtime_put_sync(parent);
2007}
2008
2009/**
2010 * pci_pm_init - Initialize PM functions of given PCI device
2011 * @dev: PCI device to handle.
2012 */
2013void pci_pm_init(struct pci_dev *dev)
2014{
2015 int pm;
2016 u16 pmc;
2017
2018 pm_runtime_forbid(&dev->dev);
2019 pm_runtime_set_active(&dev->dev);
2020 pm_runtime_enable(&dev->dev);
2021 device_enable_async_suspend(&dev->dev);
2022 dev->wakeup_prepared = false;
2023
2024 dev->pm_cap = 0;
2025 dev->pme_support = 0;
2026
2027 /* find PCI PM capability in list */
2028 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029 if (!pm)
2030 return;
2031 /* Check device's ability to generate PME# */
2032 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2033
2034 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036 pmc & PCI_PM_CAP_VER_MASK);
2037 return;
2038 }
2039
2040 dev->pm_cap = pm;
2041 dev->d3_delay = PCI_PM_D3_WAIT;
2042 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2043 dev->d3cold_allowed = true;
2044
2045 dev->d1_support = false;
2046 dev->d2_support = false;
2047 if (!pci_no_d1d2(dev)) {
2048 if (pmc & PCI_PM_CAP_D1)
2049 dev->d1_support = true;
2050 if (pmc & PCI_PM_CAP_D2)
2051 dev->d2_support = true;
2052
2053 if (dev->d1_support || dev->d2_support)
2054 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2055 dev->d1_support ? " D1" : "",
2056 dev->d2_support ? " D2" : "");
2057 }
2058
2059 pmc &= PCI_PM_CAP_PME_MASK;
2060 if (pmc) {
2061 dev_printk(KERN_DEBUG, &dev->dev,
2062 "PME# supported from%s%s%s%s%s\n",
2063 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2068 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2069 dev->pme_poll = true;
2070 /*
2071 * Make device's PM flags reflect the wake-up capability, but
2072 * let the user space enable it to wake up the system as needed.
2073 */
2074 device_set_wakeup_capable(&dev->dev, true);
2075 /* Disable the PME# generation functionality */
2076 pci_pme_active(dev, false);
2077 }
2078}
2079
2080static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081 struct pci_cap_saved_state *new_cap)
2082{
2083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084}
2085
2086/**
2087 * _pci_add_cap_save_buffer - allocate buffer for saving given
2088 * capability registers
2089 * @dev: the PCI device
2090 * @cap: the capability to allocate the buffer for
2091 * @extended: Standard or Extended capability ID
2092 * @size: requested size of the buffer
2093 */
2094static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095 bool extended, unsigned int size)
2096{
2097 int pos;
2098 struct pci_cap_saved_state *save_state;
2099
2100 if (extended)
2101 pos = pci_find_ext_capability(dev, cap);
2102 else
2103 pos = pci_find_capability(dev, cap);
2104
2105 if (pos <= 0)
2106 return 0;
2107
2108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109 if (!save_state)
2110 return -ENOMEM;
2111
2112 save_state->cap.cap_nr = cap;
2113 save_state->cap.cap_extended = extended;
2114 save_state->cap.size = size;
2115 pci_add_saved_cap(dev, save_state);
2116
2117 return 0;
2118}
2119
2120int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121{
2122 return _pci_add_cap_save_buffer(dev, cap, false, size);
2123}
2124
2125int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126{
2127 return _pci_add_cap_save_buffer(dev, cap, true, size);
2128}
2129
2130/**
2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132 * @dev: the PCI device
2133 */
2134void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135{
2136 int error;
2137
2138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139 PCI_EXP_SAVE_REGS * sizeof(u16));
2140 if (error)
2141 dev_err(&dev->dev,
2142 "unable to preallocate PCI Express save buffer\n");
2143
2144 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145 if (error)
2146 dev_err(&dev->dev,
2147 "unable to preallocate PCI-X save buffer\n");
2148
2149 pci_allocate_vc_save_buffers(dev);
2150}
2151
2152void pci_free_cap_save_buffers(struct pci_dev *dev)
2153{
2154 struct pci_cap_saved_state *tmp;
2155 struct hlist_node *n;
2156
2157 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2158 kfree(tmp);
2159}
2160
2161/**
2162 * pci_configure_ari - enable or disable ARI forwarding
2163 * @dev: the PCI device
2164 *
2165 * If @dev and its upstream bridge both support ARI, enable ARI in the
2166 * bridge. Otherwise, disable ARI in the bridge.
2167 */
2168void pci_configure_ari(struct pci_dev *dev)
2169{
2170 u32 cap;
2171 struct pci_dev *bridge;
2172
2173 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2174 return;
2175
2176 bridge = dev->bus->self;
2177 if (!bridge)
2178 return;
2179
2180 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2181 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182 return;
2183
2184 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186 PCI_EXP_DEVCTL2_ARI);
2187 bridge->ari_enabled = 1;
2188 } else {
2189 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190 PCI_EXP_DEVCTL2_ARI);
2191 bridge->ari_enabled = 0;
2192 }
2193}
2194
2195static int pci_acs_enable;
2196
2197/**
2198 * pci_request_acs - ask for ACS to be enabled if supported
2199 */
2200void pci_request_acs(void)
2201{
2202 pci_acs_enable = 1;
2203}
2204
2205/**
2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2207 * @dev: the PCI device
2208 */
2209static int pci_std_enable_acs(struct pci_dev *dev)
2210{
2211 int pos;
2212 u16 cap;
2213 u16 ctrl;
2214
2215 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2216 if (!pos)
2217 return -ENODEV;
2218
2219 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2221
2222 /* Source Validation */
2223 ctrl |= (cap & PCI_ACS_SV);
2224
2225 /* P2P Request Redirect */
2226 ctrl |= (cap & PCI_ACS_RR);
2227
2228 /* P2P Completion Redirect */
2229 ctrl |= (cap & PCI_ACS_CR);
2230
2231 /* Upstream Forwarding */
2232 ctrl |= (cap & PCI_ACS_UF);
2233
2234 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2235
2236 return 0;
2237}
2238
2239/**
2240 * pci_enable_acs - enable ACS if hardware support it
2241 * @dev: the PCI device
2242 */
2243void pci_enable_acs(struct pci_dev *dev)
2244{
2245 if (!pci_acs_enable)
2246 return;
2247
2248 if (!pci_std_enable_acs(dev))
2249 return;
2250
2251 pci_dev_specific_enable_acs(dev);
2252}
2253
2254static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2255{
2256 int pos;
2257 u16 cap, ctrl;
2258
2259 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260 if (!pos)
2261 return false;
2262
2263 /*
2264 * Except for egress control, capabilities are either required
2265 * or only required if controllable. Features missing from the
2266 * capability field can therefore be assumed as hard-wired enabled.
2267 */
2268 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269 acs_flags &= (cap | PCI_ACS_EC);
2270
2271 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272 return (ctrl & acs_flags) == acs_flags;
2273}
2274
2275/**
2276 * pci_acs_enabled - test ACS against required flags for a given device
2277 * @pdev: device to test
2278 * @acs_flags: required PCI ACS flags
2279 *
2280 * Return true if the device supports the provided flags. Automatically
2281 * filters out flags that are not implemented on multifunction devices.
2282 *
2283 * Note that this interface checks the effective ACS capabilities of the
2284 * device rather than the actual capabilities. For instance, most single
2285 * function endpoints are not required to support ACS because they have no
2286 * opportunity for peer-to-peer access. We therefore return 'true'
2287 * regardless of whether the device exposes an ACS capability. This makes
2288 * it much easier for callers of this function to ignore the actual type
2289 * or topology of the device when testing ACS support.
2290 */
2291bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292{
2293 int ret;
2294
2295 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296 if (ret >= 0)
2297 return ret > 0;
2298
2299 /*
2300 * Conventional PCI and PCI-X devices never support ACS, either
2301 * effectively or actually. The shared bus topology implies that
2302 * any device on the bus can receive or snoop DMA.
2303 */
2304 if (!pci_is_pcie(pdev))
2305 return false;
2306
2307 switch (pci_pcie_type(pdev)) {
2308 /*
2309 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2310 * but since their primary interface is PCI/X, we conservatively
2311 * handle them as we would a non-PCIe device.
2312 */
2313 case PCI_EXP_TYPE_PCIE_BRIDGE:
2314 /*
2315 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2316 * applicable... must never implement an ACS Extended Capability...".
2317 * This seems arbitrary, but we take a conservative interpretation
2318 * of this statement.
2319 */
2320 case PCI_EXP_TYPE_PCI_BRIDGE:
2321 case PCI_EXP_TYPE_RC_EC:
2322 return false;
2323 /*
2324 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325 * implement ACS in order to indicate their peer-to-peer capabilities,
2326 * regardless of whether they are single- or multi-function devices.
2327 */
2328 case PCI_EXP_TYPE_DOWNSTREAM:
2329 case PCI_EXP_TYPE_ROOT_PORT:
2330 return pci_acs_flags_enabled(pdev, acs_flags);
2331 /*
2332 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333 * implemented by the remaining PCIe types to indicate peer-to-peer
2334 * capabilities, but only when they are part of a multifunction
2335 * device. The footnote for section 6.12 indicates the specific
2336 * PCIe types included here.
2337 */
2338 case PCI_EXP_TYPE_ENDPOINT:
2339 case PCI_EXP_TYPE_UPSTREAM:
2340 case PCI_EXP_TYPE_LEG_END:
2341 case PCI_EXP_TYPE_RC_END:
2342 if (!pdev->multifunction)
2343 break;
2344
2345 return pci_acs_flags_enabled(pdev, acs_flags);
2346 }
2347
2348 /*
2349 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2350 * to single function devices with the exception of downstream ports.
2351 */
2352 return true;
2353}
2354
2355/**
2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357 * @start: starting downstream device
2358 * @end: ending upstream device or NULL to search to the root bus
2359 * @acs_flags: required flags
2360 *
2361 * Walk up a device tree from start to end testing PCI ACS support. If
2362 * any step along the way does not support the required flags, return false.
2363 */
2364bool pci_acs_path_enabled(struct pci_dev *start,
2365 struct pci_dev *end, u16 acs_flags)
2366{
2367 struct pci_dev *pdev, *parent = start;
2368
2369 do {
2370 pdev = parent;
2371
2372 if (!pci_acs_enabled(pdev, acs_flags))
2373 return false;
2374
2375 if (pci_is_root_bus(pdev->bus))
2376 return (end == NULL);
2377
2378 parent = pdev->bus->self;
2379 } while (pdev != end);
2380
2381 return true;
2382}
2383
2384/**
2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386 * @dev: the PCI device
2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2388 *
2389 * Perform INTx swizzling for a device behind one level of bridge. This is
2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2391 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393 * the PCI Express Base Specification, Revision 2.1)
2394 */
2395u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2396{
2397 int slot;
2398
2399 if (pci_ari_enabled(dev->bus))
2400 slot = 0;
2401 else
2402 slot = PCI_SLOT(dev->devfn);
2403
2404 return (((pin - 1) + slot) % 4) + 1;
2405}
2406
2407int
2408pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409{
2410 u8 pin;
2411
2412 pin = dev->pin;
2413 if (!pin)
2414 return -1;
2415
2416 while (!pci_is_root_bus(dev->bus)) {
2417 pin = pci_swizzle_interrupt_pin(dev, pin);
2418 dev = dev->bus->self;
2419 }
2420 *bridge = dev;
2421 return pin;
2422}
2423
2424/**
2425 * pci_common_swizzle - swizzle INTx all the way to root bridge
2426 * @dev: the PCI device
2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428 *
2429 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2430 * bridges all the way up to a PCI root bus.
2431 */
2432u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433{
2434 u8 pin = *pinp;
2435
2436 while (!pci_is_root_bus(dev->bus)) {
2437 pin = pci_swizzle_interrupt_pin(dev, pin);
2438 dev = dev->bus->self;
2439 }
2440 *pinp = pin;
2441 return PCI_SLOT(dev->devfn);
2442}
2443
2444/**
2445 * pci_release_region - Release a PCI bar
2446 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2447 * @bar: BAR to release
2448 *
2449 * Releases the PCI I/O and memory resources previously reserved by a
2450 * successful call to pci_request_region. Call this function only
2451 * after all use of the PCI regions has ceased.
2452 */
2453void pci_release_region(struct pci_dev *pdev, int bar)
2454{
2455 struct pci_devres *dr;
2456
2457 if (pci_resource_len(pdev, bar) == 0)
2458 return;
2459 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460 release_region(pci_resource_start(pdev, bar),
2461 pci_resource_len(pdev, bar));
2462 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463 release_mem_region(pci_resource_start(pdev, bar),
2464 pci_resource_len(pdev, bar));
2465
2466 dr = find_pci_dr(pdev);
2467 if (dr)
2468 dr->region_mask &= ~(1 << bar);
2469}
2470
2471/**
2472 * __pci_request_region - Reserved PCI I/O and memory resource
2473 * @pdev: PCI device whose resources are to be reserved
2474 * @bar: BAR to be reserved
2475 * @res_name: Name to be associated with resource.
2476 * @exclusive: whether the region access is exclusive or not
2477 *
2478 * Mark the PCI region associated with PCI device @pdev BR @bar as
2479 * being reserved by owner @res_name. Do not access any
2480 * address inside the PCI regions unless this call returns
2481 * successfully.
2482 *
2483 * If @exclusive is set, then the region is marked so that userspace
2484 * is explicitly not allowed to map the resource via /dev/mem or
2485 * sysfs MMIO access.
2486 *
2487 * Returns 0 on success, or %EBUSY on error. A warning
2488 * message is also printed on failure.
2489 */
2490static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491 int exclusive)
2492{
2493 struct pci_devres *dr;
2494
2495 if (pci_resource_len(pdev, bar) == 0)
2496 return 0;
2497
2498 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499 if (!request_region(pci_resource_start(pdev, bar),
2500 pci_resource_len(pdev, bar), res_name))
2501 goto err_out;
2502 }
2503 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2504 if (!__request_mem_region(pci_resource_start(pdev, bar),
2505 pci_resource_len(pdev, bar), res_name,
2506 exclusive))
2507 goto err_out;
2508 }
2509
2510 dr = find_pci_dr(pdev);
2511 if (dr)
2512 dr->region_mask |= 1 << bar;
2513
2514 return 0;
2515
2516err_out:
2517 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2518 &pdev->resource[bar]);
2519 return -EBUSY;
2520}
2521
2522/**
2523 * pci_request_region - Reserve PCI I/O and memory resource
2524 * @pdev: PCI device whose resources are to be reserved
2525 * @bar: BAR to be reserved
2526 * @res_name: Name to be associated with resource
2527 *
2528 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2529 * being reserved by owner @res_name. Do not access any
2530 * address inside the PCI regions unless this call returns
2531 * successfully.
2532 *
2533 * Returns 0 on success, or %EBUSY on error. A warning
2534 * message is also printed on failure.
2535 */
2536int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537{
2538 return __pci_request_region(pdev, bar, res_name, 0);
2539}
2540
2541/**
2542 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543 * @pdev: PCI device whose resources are to be reserved
2544 * @bar: BAR to be reserved
2545 * @res_name: Name to be associated with resource.
2546 *
2547 * Mark the PCI region associated with PCI device @pdev BR @bar as
2548 * being reserved by owner @res_name. Do not access any
2549 * address inside the PCI regions unless this call returns
2550 * successfully.
2551 *
2552 * Returns 0 on success, or %EBUSY on error. A warning
2553 * message is also printed on failure.
2554 *
2555 * The key difference that _exclusive makes it that userspace is
2556 * explicitly not allowed to map the resource via /dev/mem or
2557 * sysfs.
2558 */
2559int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2560{
2561 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562}
2563/**
2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources were previously reserved
2566 * @bars: Bitmask of BARs to be released
2567 *
2568 * Release selected PCI I/O and memory resources previously reserved.
2569 * Call this function only after all use of the PCI regions has ceased.
2570 */
2571void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572{
2573 int i;
2574
2575 for (i = 0; i < 6; i++)
2576 if (bars & (1 << i))
2577 pci_release_region(pdev, i);
2578}
2579
2580static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2581 const char *res_name, int excl)
2582{
2583 int i;
2584
2585 for (i = 0; i < 6; i++)
2586 if (bars & (1 << i))
2587 if (__pci_request_region(pdev, i, res_name, excl))
2588 goto err_out;
2589 return 0;
2590
2591err_out:
2592 while(--i >= 0)
2593 if (bars & (1 << i))
2594 pci_release_region(pdev, i);
2595
2596 return -EBUSY;
2597}
2598
2599
2600/**
2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources are to be reserved
2603 * @bars: Bitmask of BARs to be requested
2604 * @res_name: Name to be associated with resource
2605 */
2606int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607 const char *res_name)
2608{
2609 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610}
2611
2612int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613 int bars, const char *res_name)
2614{
2615 return __pci_request_selected_regions(pdev, bars, res_name,
2616 IORESOURCE_EXCLUSIVE);
2617}
2618
2619/**
2620 * pci_release_regions - Release reserved PCI I/O and memory resources
2621 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2622 *
2623 * Releases all PCI I/O and memory resources previously reserved by a
2624 * successful call to pci_request_regions. Call this function only
2625 * after all use of the PCI regions has ceased.
2626 */
2627
2628void pci_release_regions(struct pci_dev *pdev)
2629{
2630 pci_release_selected_regions(pdev, (1 << 6) - 1);
2631}
2632
2633/**
2634 * pci_request_regions - Reserved PCI I/O and memory resources
2635 * @pdev: PCI device whose resources are to be reserved
2636 * @res_name: Name to be associated with resource.
2637 *
2638 * Mark all PCI regions associated with PCI device @pdev as
2639 * being reserved by owner @res_name. Do not access any
2640 * address inside the PCI regions unless this call returns
2641 * successfully.
2642 *
2643 * Returns 0 on success, or %EBUSY on error. A warning
2644 * message is also printed on failure.
2645 */
2646int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2647{
2648 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2649}
2650
2651/**
2652 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653 * @pdev: PCI device whose resources are to be reserved
2654 * @res_name: Name to be associated with resource.
2655 *
2656 * Mark all PCI regions associated with PCI device @pdev as
2657 * being reserved by owner @res_name. Do not access any
2658 * address inside the PCI regions unless this call returns
2659 * successfully.
2660 *
2661 * pci_request_regions_exclusive() will mark the region so that
2662 * /dev/mem and the sysfs MMIO access will not be allowed.
2663 *
2664 * Returns 0 on success, or %EBUSY on error. A warning
2665 * message is also printed on failure.
2666 */
2667int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668{
2669 return pci_request_selected_regions_exclusive(pdev,
2670 ((1 << 6) - 1), res_name);
2671}
2672
2673static void __pci_set_master(struct pci_dev *dev, bool enable)
2674{
2675 u16 old_cmd, cmd;
2676
2677 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678 if (enable)
2679 cmd = old_cmd | PCI_COMMAND_MASTER;
2680 else
2681 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682 if (cmd != old_cmd) {
2683 dev_dbg(&dev->dev, "%s bus mastering\n",
2684 enable ? "enabling" : "disabling");
2685 pci_write_config_word(dev, PCI_COMMAND, cmd);
2686 }
2687 dev->is_busmaster = enable;
2688}
2689
2690/**
2691 * pcibios_setup - process "pci=" kernel boot arguments
2692 * @str: string used to pass in "pci=" kernel boot arguments
2693 *
2694 * Process kernel boot arguments. This is the default implementation.
2695 * Architecture specific implementations can override this as necessary.
2696 */
2697char * __weak __init pcibios_setup(char *str)
2698{
2699 return str;
2700}
2701
2702/**
2703 * pcibios_set_master - enable PCI bus-mastering for device dev
2704 * @dev: the PCI device to enable
2705 *
2706 * Enables PCI bus-mastering for the device. This is the default
2707 * implementation. Architecture specific implementations can override
2708 * this if necessary.
2709 */
2710void __weak pcibios_set_master(struct pci_dev *dev)
2711{
2712 u8 lat;
2713
2714 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715 if (pci_is_pcie(dev))
2716 return;
2717
2718 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719 if (lat < 16)
2720 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721 else if (lat > pcibios_max_latency)
2722 lat = pcibios_max_latency;
2723 else
2724 return;
2725
2726 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727}
2728
2729/**
2730 * pci_set_master - enables bus-mastering for device dev
2731 * @dev: the PCI device to enable
2732 *
2733 * Enables bus-mastering on the device and calls pcibios_set_master()
2734 * to do the needed arch specific settings.
2735 */
2736void pci_set_master(struct pci_dev *dev)
2737{
2738 __pci_set_master(dev, true);
2739 pcibios_set_master(dev);
2740}
2741
2742/**
2743 * pci_clear_master - disables bus-mastering for device dev
2744 * @dev: the PCI device to disable
2745 */
2746void pci_clear_master(struct pci_dev *dev)
2747{
2748 __pci_set_master(dev, false);
2749}
2750
2751/**
2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753 * @dev: the PCI device for which MWI is to be enabled
2754 *
2755 * Helper function for pci_set_mwi.
2756 * Originally copied from drivers/net/acenic.c.
2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758 *
2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760 */
2761int pci_set_cacheline_size(struct pci_dev *dev)
2762{
2763 u8 cacheline_size;
2764
2765 if (!pci_cache_line_size)
2766 return -EINVAL;
2767
2768 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769 equal to or multiple of the right value. */
2770 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771 if (cacheline_size >= pci_cache_line_size &&
2772 (cacheline_size % pci_cache_line_size) == 0)
2773 return 0;
2774
2775 /* Write the correct value. */
2776 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777 /* Read it back. */
2778 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779 if (cacheline_size == pci_cache_line_size)
2780 return 0;
2781
2782 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783 "supported\n", pci_cache_line_size << 2);
2784
2785 return -EINVAL;
2786}
2787EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788
2789#ifdef PCI_DISABLE_MWI
2790int pci_set_mwi(struct pci_dev *dev)
2791{
2792 return 0;
2793}
2794
2795int pci_try_set_mwi(struct pci_dev *dev)
2796{
2797 return 0;
2798}
2799
2800void pci_clear_mwi(struct pci_dev *dev)
2801{
2802}
2803
2804#else
2805
2806/**
2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808 * @dev: the PCI device for which MWI is enabled
2809 *
2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814int
2815pci_set_mwi(struct pci_dev *dev)
2816{
2817 int rc;
2818 u16 cmd;
2819
2820 rc = pci_set_cacheline_size(dev);
2821 if (rc)
2822 return rc;
2823
2824 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2826 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2827 cmd |= PCI_COMMAND_INVALIDATE;
2828 pci_write_config_word(dev, PCI_COMMAND, cmd);
2829 }
2830
2831 return 0;
2832}
2833
2834/**
2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836 * @dev: the PCI device for which MWI is enabled
2837 *
2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839 * Callers are not required to check the return value.
2840 *
2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842 */
2843int pci_try_set_mwi(struct pci_dev *dev)
2844{
2845 int rc = pci_set_mwi(dev);
2846 return rc;
2847}
2848
2849/**
2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851 * @dev: the PCI device to disable
2852 *
2853 * Disables PCI Memory-Write-Invalidate transaction on the device
2854 */
2855void
2856pci_clear_mwi(struct pci_dev *dev)
2857{
2858 u16 cmd;
2859
2860 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861 if (cmd & PCI_COMMAND_INVALIDATE) {
2862 cmd &= ~PCI_COMMAND_INVALIDATE;
2863 pci_write_config_word(dev, PCI_COMMAND, cmd);
2864 }
2865}
2866#endif /* ! PCI_DISABLE_MWI */
2867
2868/**
2869 * pci_intx - enables/disables PCI INTx for device dev
2870 * @pdev: the PCI device to operate on
2871 * @enable: boolean: whether to enable or disable PCI INTx
2872 *
2873 * Enables/disables PCI INTx for device dev
2874 */
2875void
2876pci_intx(struct pci_dev *pdev, int enable)
2877{
2878 u16 pci_command, new;
2879
2880 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881
2882 if (enable) {
2883 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884 } else {
2885 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886 }
2887
2888 if (new != pci_command) {
2889 struct pci_devres *dr;
2890
2891 pci_write_config_word(pdev, PCI_COMMAND, new);
2892
2893 dr = find_pci_dr(pdev);
2894 if (dr && !dr->restore_intx) {
2895 dr->restore_intx = 1;
2896 dr->orig_intx = !enable;
2897 }
2898 }
2899}
2900
2901/**
2902 * pci_intx_mask_supported - probe for INTx masking support
2903 * @dev: the PCI device to operate on
2904 *
2905 * Check if the device dev support INTx masking via the config space
2906 * command word.
2907 */
2908bool pci_intx_mask_supported(struct pci_dev *dev)
2909{
2910 bool mask_supported = false;
2911 u16 orig, new;
2912
2913 if (dev->broken_intx_masking)
2914 return false;
2915
2916 pci_cfg_access_lock(dev);
2917
2918 pci_read_config_word(dev, PCI_COMMAND, &orig);
2919 pci_write_config_word(dev, PCI_COMMAND,
2920 orig ^ PCI_COMMAND_INTX_DISABLE);
2921 pci_read_config_word(dev, PCI_COMMAND, &new);
2922
2923 /*
2924 * There's no way to protect against hardware bugs or detect them
2925 * reliably, but as long as we know what the value should be, let's
2926 * go ahead and check it.
2927 */
2928 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929 dev_err(&dev->dev, "Command register changed from "
2930 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932 mask_supported = true;
2933 pci_write_config_word(dev, PCI_COMMAND, orig);
2934 }
2935
2936 pci_cfg_access_unlock(dev);
2937 return mask_supported;
2938}
2939EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940
2941static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942{
2943 struct pci_bus *bus = dev->bus;
2944 bool mask_updated = true;
2945 u32 cmd_status_dword;
2946 u16 origcmd, newcmd;
2947 unsigned long flags;
2948 bool irq_pending;
2949
2950 /*
2951 * We do a single dword read to retrieve both command and status.
2952 * Document assumptions that make this possible.
2953 */
2954 BUILD_BUG_ON(PCI_COMMAND % 4);
2955 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956
2957 raw_spin_lock_irqsave(&pci_lock, flags);
2958
2959 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960
2961 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962
2963 /*
2964 * Check interrupt status register to see whether our device
2965 * triggered the interrupt (when masking) or the next IRQ is
2966 * already pending (when unmasking).
2967 */
2968 if (mask != irq_pending) {
2969 mask_updated = false;
2970 goto done;
2971 }
2972
2973 origcmd = cmd_status_dword;
2974 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975 if (mask)
2976 newcmd |= PCI_COMMAND_INTX_DISABLE;
2977 if (newcmd != origcmd)
2978 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979
2980done:
2981 raw_spin_unlock_irqrestore(&pci_lock, flags);
2982
2983 return mask_updated;
2984}
2985
2986/**
2987 * pci_check_and_mask_intx - mask INTx on pending interrupt
2988 * @dev: the PCI device to operate on
2989 *
2990 * Check if the device dev has its INTx line asserted, mask it and
2991 * return true in that case. False is returned if not interrupt was
2992 * pending.
2993 */
2994bool pci_check_and_mask_intx(struct pci_dev *dev)
2995{
2996 return pci_check_and_set_intx_mask(dev, true);
2997}
2998EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999
3000/**
3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3002 * @dev: the PCI device to operate on
3003 *
3004 * Check if the device dev has its INTx line asserted, unmask it if not
3005 * and return true. False is returned and the mask remains active if
3006 * there was still an interrupt pending.
3007 */
3008bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009{
3010 return pci_check_and_set_intx_mask(dev, false);
3011}
3012EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013
3014/**
3015 * pci_msi_off - disables any MSI or MSI-X capabilities
3016 * @dev: the PCI device to operate on
3017 *
3018 * If you want to use MSI, see pci_enable_msi() and friends.
3019 * This is a lower-level primitive that allows us to disable
3020 * MSI operation at the device level.
3021 */
3022void pci_msi_off(struct pci_dev *dev)
3023{
3024 int pos;
3025 u16 control;
3026
3027 /*
3028 * This looks like it could go in msi.c, but we need it even when
3029 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3030 * dev->msi_cap or dev->msix_cap here.
3031 */
3032 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033 if (pos) {
3034 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035 control &= ~PCI_MSI_FLAGS_ENABLE;
3036 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037 }
3038 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039 if (pos) {
3040 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041 control &= ~PCI_MSIX_FLAGS_ENABLE;
3042 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3043 }
3044}
3045EXPORT_SYMBOL_GPL(pci_msi_off);
3046
3047int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048{
3049 return dma_set_max_seg_size(&dev->dev, size);
3050}
3051EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3052
3053int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054{
3055 return dma_set_seg_boundary(&dev->dev, mask);
3056}
3057EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3058
3059/**
3060 * pci_wait_for_pending_transaction - waits for pending transaction
3061 * @dev: the PCI device to operate on
3062 *
3063 * Return 0 if transaction is pending 1 otherwise.
3064 */
3065int pci_wait_for_pending_transaction(struct pci_dev *dev)
3066{
3067 if (!pci_is_pcie(dev))
3068 return 1;
3069
3070 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3071 PCI_EXP_DEVSTA_TRPND);
3072}
3073EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3074
3075static int pcie_flr(struct pci_dev *dev, int probe)
3076{
3077 u32 cap;
3078
3079 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3080 if (!(cap & PCI_EXP_DEVCAP_FLR))
3081 return -ENOTTY;
3082
3083 if (probe)
3084 return 0;
3085
3086 if (!pci_wait_for_pending_transaction(dev))
3087 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3088
3089 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3090
3091 msleep(100);
3092
3093 return 0;
3094}
3095
3096static int pci_af_flr(struct pci_dev *dev, int probe)
3097{
3098 int pos;
3099 u8 cap;
3100
3101 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3102 if (!pos)
3103 return -ENOTTY;
3104
3105 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3106 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3107 return -ENOTTY;
3108
3109 if (probe)
3110 return 0;
3111
3112 /* Wait for Transaction Pending bit clean */
3113 if (pci_wait_for_pending(dev, pos + PCI_AF_STATUS, PCI_AF_STATUS_TP))
3114 goto clear;
3115
3116 dev_err(&dev->dev, "transaction is not cleared; "
3117 "proceeding with reset anyway\n");
3118
3119clear:
3120 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3121 msleep(100);
3122
3123 return 0;
3124}
3125
3126/**
3127 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3128 * @dev: Device to reset.
3129 * @probe: If set, only check if the device can be reset this way.
3130 *
3131 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3132 * unset, it will be reinitialized internally when going from PCI_D3hot to
3133 * PCI_D0. If that's the case and the device is not in a low-power state
3134 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3135 *
3136 * NOTE: This causes the caller to sleep for twice the device power transition
3137 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3138 * by default (i.e. unless the @dev's d3_delay field has a different value).
3139 * Moreover, only devices in D0 can be reset by this function.
3140 */
3141static int pci_pm_reset(struct pci_dev *dev, int probe)
3142{
3143 u16 csr;
3144
3145 if (!dev->pm_cap)
3146 return -ENOTTY;
3147
3148 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3149 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3150 return -ENOTTY;
3151
3152 if (probe)
3153 return 0;
3154
3155 if (dev->current_state != PCI_D0)
3156 return -EINVAL;
3157
3158 csr &= ~PCI_PM_CTRL_STATE_MASK;
3159 csr |= PCI_D3hot;
3160 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3161 pci_dev_d3_sleep(dev);
3162
3163 csr &= ~PCI_PM_CTRL_STATE_MASK;
3164 csr |= PCI_D0;
3165 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3166 pci_dev_d3_sleep(dev);
3167
3168 return 0;
3169}
3170
3171/**
3172 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3173 * @dev: Bridge device
3174 *
3175 * Use the bridge control register to assert reset on the secondary bus.
3176 * Devices on the secondary bus are left in power-on state.
3177 */
3178void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3179{
3180 u16 ctrl;
3181
3182 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3183 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3184 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3185 /*
3186 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3187 * this to 2ms to ensure that we meet the minimum requirement.
3188 */
3189 msleep(2);
3190
3191 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3192 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3193
3194 /*
3195 * Trhfa for conventional PCI is 2^25 clock cycles.
3196 * Assuming a minimum 33MHz clock this results in a 1s
3197 * delay before we can consider subordinate devices to
3198 * be re-initialized. PCIe has some ways to shorten this,
3199 * but we don't make use of them yet.
3200 */
3201 ssleep(1);
3202}
3203EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3204
3205static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3206{
3207 struct pci_dev *pdev;
3208
3209 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3210 return -ENOTTY;
3211
3212 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3213 if (pdev != dev)
3214 return -ENOTTY;
3215
3216 if (probe)
3217 return 0;
3218
3219 pci_reset_bridge_secondary_bus(dev->bus->self);
3220
3221 return 0;
3222}
3223
3224static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3225{
3226 int rc = -ENOTTY;
3227
3228 if (!hotplug || !try_module_get(hotplug->ops->owner))
3229 return rc;
3230
3231 if (hotplug->ops->reset_slot)
3232 rc = hotplug->ops->reset_slot(hotplug, probe);
3233
3234 module_put(hotplug->ops->owner);
3235
3236 return rc;
3237}
3238
3239static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3240{
3241 struct pci_dev *pdev;
3242
3243 if (dev->subordinate || !dev->slot)
3244 return -ENOTTY;
3245
3246 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3247 if (pdev != dev && pdev->slot == dev->slot)
3248 return -ENOTTY;
3249
3250 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3251}
3252
3253static int __pci_dev_reset(struct pci_dev *dev, int probe)
3254{
3255 int rc;
3256
3257 might_sleep();
3258
3259 rc = pci_dev_specific_reset(dev, probe);
3260 if (rc != -ENOTTY)
3261 goto done;
3262
3263 rc = pcie_flr(dev, probe);
3264 if (rc != -ENOTTY)
3265 goto done;
3266
3267 rc = pci_af_flr(dev, probe);
3268 if (rc != -ENOTTY)
3269 goto done;
3270
3271 rc = pci_pm_reset(dev, probe);
3272 if (rc != -ENOTTY)
3273 goto done;
3274
3275 rc = pci_dev_reset_slot_function(dev, probe);
3276 if (rc != -ENOTTY)
3277 goto done;
3278
3279 rc = pci_parent_bus_reset(dev, probe);
3280done:
3281 return rc;
3282}
3283
3284static void pci_dev_lock(struct pci_dev *dev)
3285{
3286 pci_cfg_access_lock(dev);
3287 /* block PM suspend, driver probe, etc. */
3288 device_lock(&dev->dev);
3289}
3290
3291/* Return 1 on successful lock, 0 on contention */
3292static int pci_dev_trylock(struct pci_dev *dev)
3293{
3294 if (pci_cfg_access_trylock(dev)) {
3295 if (device_trylock(&dev->dev))
3296 return 1;
3297 pci_cfg_access_unlock(dev);
3298 }
3299
3300 return 0;
3301}
3302
3303static void pci_dev_unlock(struct pci_dev *dev)
3304{
3305 device_unlock(&dev->dev);
3306 pci_cfg_access_unlock(dev);
3307}
3308
3309static void pci_dev_save_and_disable(struct pci_dev *dev)
3310{
3311 /*
3312 * Wake-up device prior to save. PM registers default to D0 after
3313 * reset and a simple register restore doesn't reliably return
3314 * to a non-D0 state anyway.
3315 */
3316 pci_set_power_state(dev, PCI_D0);
3317
3318 pci_save_state(dev);
3319 /*
3320 * Disable the device by clearing the Command register, except for
3321 * INTx-disable which is set. This not only disables MMIO and I/O port
3322 * BARs, but also prevents the device from being Bus Master, preventing
3323 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3324 * compliant devices, INTx-disable prevents legacy interrupts.
3325 */
3326 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3327}
3328
3329static void pci_dev_restore(struct pci_dev *dev)
3330{
3331 pci_restore_state(dev);
3332}
3333
3334static int pci_dev_reset(struct pci_dev *dev, int probe)
3335{
3336 int rc;
3337
3338 if (!probe)
3339 pci_dev_lock(dev);
3340
3341 rc = __pci_dev_reset(dev, probe);
3342
3343 if (!probe)
3344 pci_dev_unlock(dev);
3345
3346 return rc;
3347}
3348/**
3349 * __pci_reset_function - reset a PCI device function
3350 * @dev: PCI device to reset
3351 *
3352 * Some devices allow an individual function to be reset without affecting
3353 * other functions in the same device. The PCI device must be responsive
3354 * to PCI config space in order to use this function.
3355 *
3356 * The device function is presumed to be unused when this function is called.
3357 * Resetting the device will make the contents of PCI configuration space
3358 * random, so any caller of this must be prepared to reinitialise the
3359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3360 * etc.
3361 *
3362 * Returns 0 if the device function was successfully reset or negative if the
3363 * device doesn't support resetting a single function.
3364 */
3365int __pci_reset_function(struct pci_dev *dev)
3366{
3367 return pci_dev_reset(dev, 0);
3368}
3369EXPORT_SYMBOL_GPL(__pci_reset_function);
3370
3371/**
3372 * __pci_reset_function_locked - reset a PCI device function while holding
3373 * the @dev mutex lock.
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device. The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * The device function is presumed to be unused and the caller is holding
3381 * the device mutex lock when this function is called.
3382 * Resetting the device will make the contents of PCI configuration space
3383 * random, so any caller of this must be prepared to reinitialise the
3384 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3385 * etc.
3386 *
3387 * Returns 0 if the device function was successfully reset or negative if the
3388 * device doesn't support resetting a single function.
3389 */
3390int __pci_reset_function_locked(struct pci_dev *dev)
3391{
3392 return __pci_dev_reset(dev, 0);
3393}
3394EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3395
3396/**
3397 * pci_probe_reset_function - check whether the device can be safely reset
3398 * @dev: PCI device to reset
3399 *
3400 * Some devices allow an individual function to be reset without affecting
3401 * other functions in the same device. The PCI device must be responsive
3402 * to PCI config space in order to use this function.
3403 *
3404 * Returns 0 if the device function can be reset or negative if the
3405 * device doesn't support resetting a single function.
3406 */
3407int pci_probe_reset_function(struct pci_dev *dev)
3408{
3409 return pci_dev_reset(dev, 1);
3410}
3411
3412/**
3413 * pci_reset_function - quiesce and reset a PCI device function
3414 * @dev: PCI device to reset
3415 *
3416 * Some devices allow an individual function to be reset without affecting
3417 * other functions in the same device. The PCI device must be responsive
3418 * to PCI config space in order to use this function.
3419 *
3420 * This function does not just reset the PCI portion of a device, but
3421 * clears all the state associated with the device. This function differs
3422 * from __pci_reset_function in that it saves and restores device state
3423 * over the reset.
3424 *
3425 * Returns 0 if the device function was successfully reset or negative if the
3426 * device doesn't support resetting a single function.
3427 */
3428int pci_reset_function(struct pci_dev *dev)
3429{
3430 int rc;
3431
3432 rc = pci_dev_reset(dev, 1);
3433 if (rc)
3434 return rc;
3435
3436 pci_dev_save_and_disable(dev);
3437
3438 rc = pci_dev_reset(dev, 0);
3439
3440 pci_dev_restore(dev);
3441
3442 return rc;
3443}
3444EXPORT_SYMBOL_GPL(pci_reset_function);
3445
3446/**
3447 * pci_try_reset_function - quiesce and reset a PCI device function
3448 * @dev: PCI device to reset
3449 *
3450 * Same as above, except return -EAGAIN if unable to lock device.
3451 */
3452int pci_try_reset_function(struct pci_dev *dev)
3453{
3454 int rc;
3455
3456 rc = pci_dev_reset(dev, 1);
3457 if (rc)
3458 return rc;
3459
3460 pci_dev_save_and_disable(dev);
3461
3462 if (pci_dev_trylock(dev)) {
3463 rc = __pci_dev_reset(dev, 0);
3464 pci_dev_unlock(dev);
3465 } else
3466 rc = -EAGAIN;
3467
3468 pci_dev_restore(dev);
3469
3470 return rc;
3471}
3472EXPORT_SYMBOL_GPL(pci_try_reset_function);
3473
3474/* Lock devices from the top of the tree down */
3475static void pci_bus_lock(struct pci_bus *bus)
3476{
3477 struct pci_dev *dev;
3478
3479 list_for_each_entry(dev, &bus->devices, bus_list) {
3480 pci_dev_lock(dev);
3481 if (dev->subordinate)
3482 pci_bus_lock(dev->subordinate);
3483 }
3484}
3485
3486/* Unlock devices from the bottom of the tree up */
3487static void pci_bus_unlock(struct pci_bus *bus)
3488{
3489 struct pci_dev *dev;
3490
3491 list_for_each_entry(dev, &bus->devices, bus_list) {
3492 if (dev->subordinate)
3493 pci_bus_unlock(dev->subordinate);
3494 pci_dev_unlock(dev);
3495 }
3496}
3497
3498/* Return 1 on successful lock, 0 on contention */
3499static int pci_bus_trylock(struct pci_bus *bus)
3500{
3501 struct pci_dev *dev;
3502
3503 list_for_each_entry(dev, &bus->devices, bus_list) {
3504 if (!pci_dev_trylock(dev))
3505 goto unlock;
3506 if (dev->subordinate) {
3507 if (!pci_bus_trylock(dev->subordinate)) {
3508 pci_dev_unlock(dev);
3509 goto unlock;
3510 }
3511 }
3512 }
3513 return 1;
3514
3515unlock:
3516 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3517 if (dev->subordinate)
3518 pci_bus_unlock(dev->subordinate);
3519 pci_dev_unlock(dev);
3520 }
3521 return 0;
3522}
3523
3524/* Lock devices from the top of the tree down */
3525static void pci_slot_lock(struct pci_slot *slot)
3526{
3527 struct pci_dev *dev;
3528
3529 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3530 if (!dev->slot || dev->slot != slot)
3531 continue;
3532 pci_dev_lock(dev);
3533 if (dev->subordinate)
3534 pci_bus_lock(dev->subordinate);
3535 }
3536}
3537
3538/* Unlock devices from the bottom of the tree up */
3539static void pci_slot_unlock(struct pci_slot *slot)
3540{
3541 struct pci_dev *dev;
3542
3543 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3544 if (!dev->slot || dev->slot != slot)
3545 continue;
3546 if (dev->subordinate)
3547 pci_bus_unlock(dev->subordinate);
3548 pci_dev_unlock(dev);
3549 }
3550}
3551
3552/* Return 1 on successful lock, 0 on contention */
3553static int pci_slot_trylock(struct pci_slot *slot)
3554{
3555 struct pci_dev *dev;
3556
3557 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3558 if (!dev->slot || dev->slot != slot)
3559 continue;
3560 if (!pci_dev_trylock(dev))
3561 goto unlock;
3562 if (dev->subordinate) {
3563 if (!pci_bus_trylock(dev->subordinate)) {
3564 pci_dev_unlock(dev);
3565 goto unlock;
3566 }
3567 }
3568 }
3569 return 1;
3570
3571unlock:
3572 list_for_each_entry_continue_reverse(dev,
3573 &slot->bus->devices, bus_list) {
3574 if (!dev->slot || dev->slot != slot)
3575 continue;
3576 if (dev->subordinate)
3577 pci_bus_unlock(dev->subordinate);
3578 pci_dev_unlock(dev);
3579 }
3580 return 0;
3581}
3582
3583/* Save and disable devices from the top of the tree down */
3584static void pci_bus_save_and_disable(struct pci_bus *bus)
3585{
3586 struct pci_dev *dev;
3587
3588 list_for_each_entry(dev, &bus->devices, bus_list) {
3589 pci_dev_save_and_disable(dev);
3590 if (dev->subordinate)
3591 pci_bus_save_and_disable(dev->subordinate);
3592 }
3593}
3594
3595/*
3596 * Restore devices from top of the tree down - parent bridges need to be
3597 * restored before we can get to subordinate devices.
3598 */
3599static void pci_bus_restore(struct pci_bus *bus)
3600{
3601 struct pci_dev *dev;
3602
3603 list_for_each_entry(dev, &bus->devices, bus_list) {
3604 pci_dev_restore(dev);
3605 if (dev->subordinate)
3606 pci_bus_restore(dev->subordinate);
3607 }
3608}
3609
3610/* Save and disable devices from the top of the tree down */
3611static void pci_slot_save_and_disable(struct pci_slot *slot)
3612{
3613 struct pci_dev *dev;
3614
3615 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3616 if (!dev->slot || dev->slot != slot)
3617 continue;
3618 pci_dev_save_and_disable(dev);
3619 if (dev->subordinate)
3620 pci_bus_save_and_disable(dev->subordinate);
3621 }
3622}
3623
3624/*
3625 * Restore devices from top of the tree down - parent bridges need to be
3626 * restored before we can get to subordinate devices.
3627 */
3628static void pci_slot_restore(struct pci_slot *slot)
3629{
3630 struct pci_dev *dev;
3631
3632 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3633 if (!dev->slot || dev->slot != slot)
3634 continue;
3635 pci_dev_restore(dev);
3636 if (dev->subordinate)
3637 pci_bus_restore(dev->subordinate);
3638 }
3639}
3640
3641static int pci_slot_reset(struct pci_slot *slot, int probe)
3642{
3643 int rc;
3644
3645 if (!slot)
3646 return -ENOTTY;
3647
3648 if (!probe)
3649 pci_slot_lock(slot);
3650
3651 might_sleep();
3652
3653 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3654
3655 if (!probe)
3656 pci_slot_unlock(slot);
3657
3658 return rc;
3659}
3660
3661/**
3662 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3663 * @slot: PCI slot to probe
3664 *
3665 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3666 */
3667int pci_probe_reset_slot(struct pci_slot *slot)
3668{
3669 return pci_slot_reset(slot, 1);
3670}
3671EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3672
3673/**
3674 * pci_reset_slot - reset a PCI slot
3675 * @slot: PCI slot to reset
3676 *
3677 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3678 * independent of other slots. For instance, some slots may support slot power
3679 * control. In the case of a 1:1 bus to slot architecture, this function may
3680 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3681 * Generally a slot reset should be attempted before a bus reset. All of the
3682 * function of the slot and any subordinate buses behind the slot are reset
3683 * through this function. PCI config space of all devices in the slot and
3684 * behind the slot is saved before and restored after reset.
3685 *
3686 * Return 0 on success, non-zero on error.
3687 */
3688int pci_reset_slot(struct pci_slot *slot)
3689{
3690 int rc;
3691
3692 rc = pci_slot_reset(slot, 1);
3693 if (rc)
3694 return rc;
3695
3696 pci_slot_save_and_disable(slot);
3697
3698 rc = pci_slot_reset(slot, 0);
3699
3700 pci_slot_restore(slot);
3701
3702 return rc;
3703}
3704EXPORT_SYMBOL_GPL(pci_reset_slot);
3705
3706/**
3707 * pci_try_reset_slot - Try to reset a PCI slot
3708 * @slot: PCI slot to reset
3709 *
3710 * Same as above except return -EAGAIN if the slot cannot be locked
3711 */
3712int pci_try_reset_slot(struct pci_slot *slot)
3713{
3714 int rc;
3715
3716 rc = pci_slot_reset(slot, 1);
3717 if (rc)
3718 return rc;
3719
3720 pci_slot_save_and_disable(slot);
3721
3722 if (pci_slot_trylock(slot)) {
3723 might_sleep();
3724 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3725 pci_slot_unlock(slot);
3726 } else
3727 rc = -EAGAIN;
3728
3729 pci_slot_restore(slot);
3730
3731 return rc;
3732}
3733EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3734
3735static int pci_bus_reset(struct pci_bus *bus, int probe)
3736{
3737 if (!bus->self)
3738 return -ENOTTY;
3739
3740 if (probe)
3741 return 0;
3742
3743 pci_bus_lock(bus);
3744
3745 might_sleep();
3746
3747 pci_reset_bridge_secondary_bus(bus->self);
3748
3749 pci_bus_unlock(bus);
3750
3751 return 0;
3752}
3753
3754/**
3755 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3756 * @bus: PCI bus to probe
3757 *
3758 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3759 */
3760int pci_probe_reset_bus(struct pci_bus *bus)
3761{
3762 return pci_bus_reset(bus, 1);
3763}
3764EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3765
3766/**
3767 * pci_reset_bus - reset a PCI bus
3768 * @bus: top level PCI bus to reset
3769 *
3770 * Do a bus reset on the given bus and any subordinate buses, saving
3771 * and restoring state of all devices.
3772 *
3773 * Return 0 on success, non-zero on error.
3774 */
3775int pci_reset_bus(struct pci_bus *bus)
3776{
3777 int rc;
3778
3779 rc = pci_bus_reset(bus, 1);
3780 if (rc)
3781 return rc;
3782
3783 pci_bus_save_and_disable(bus);
3784
3785 rc = pci_bus_reset(bus, 0);
3786
3787 pci_bus_restore(bus);
3788
3789 return rc;
3790}
3791EXPORT_SYMBOL_GPL(pci_reset_bus);
3792
3793/**
3794 * pci_try_reset_bus - Try to reset a PCI bus
3795 * @bus: top level PCI bus to reset
3796 *
3797 * Same as above except return -EAGAIN if the bus cannot be locked
3798 */
3799int pci_try_reset_bus(struct pci_bus *bus)
3800{
3801 int rc;
3802
3803 rc = pci_bus_reset(bus, 1);
3804 if (rc)
3805 return rc;
3806
3807 pci_bus_save_and_disable(bus);
3808
3809 if (pci_bus_trylock(bus)) {
3810 might_sleep();
3811 pci_reset_bridge_secondary_bus(bus->self);
3812 pci_bus_unlock(bus);
3813 } else
3814 rc = -EAGAIN;
3815
3816 pci_bus_restore(bus);
3817
3818 return rc;
3819}
3820EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3821
3822/**
3823 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3824 * @dev: PCI device to query
3825 *
3826 * Returns mmrbc: maximum designed memory read count in bytes
3827 * or appropriate error value.
3828 */
3829int pcix_get_max_mmrbc(struct pci_dev *dev)
3830{
3831 int cap;
3832 u32 stat;
3833
3834 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3835 if (!cap)
3836 return -EINVAL;
3837
3838 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3839 return -EINVAL;
3840
3841 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3842}
3843EXPORT_SYMBOL(pcix_get_max_mmrbc);
3844
3845/**
3846 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3847 * @dev: PCI device to query
3848 *
3849 * Returns mmrbc: maximum memory read count in bytes
3850 * or appropriate error value.
3851 */
3852int pcix_get_mmrbc(struct pci_dev *dev)
3853{
3854 int cap;
3855 u16 cmd;
3856
3857 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3858 if (!cap)
3859 return -EINVAL;
3860
3861 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3862 return -EINVAL;
3863
3864 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3865}
3866EXPORT_SYMBOL(pcix_get_mmrbc);
3867
3868/**
3869 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3870 * @dev: PCI device to query
3871 * @mmrbc: maximum memory read count in bytes
3872 * valid values are 512, 1024, 2048, 4096
3873 *
3874 * If possible sets maximum memory read byte count, some bridges have erratas
3875 * that prevent this.
3876 */
3877int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3878{
3879 int cap;
3880 u32 stat, v, o;
3881 u16 cmd;
3882
3883 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3884 return -EINVAL;
3885
3886 v = ffs(mmrbc) - 10;
3887
3888 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3889 if (!cap)
3890 return -EINVAL;
3891
3892 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3893 return -EINVAL;
3894
3895 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3896 return -E2BIG;
3897
3898 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3899 return -EINVAL;
3900
3901 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3902 if (o != v) {
3903 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3904 return -EIO;
3905
3906 cmd &= ~PCI_X_CMD_MAX_READ;
3907 cmd |= v << 2;
3908 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3909 return -EIO;
3910 }
3911 return 0;
3912}
3913EXPORT_SYMBOL(pcix_set_mmrbc);
3914
3915/**
3916 * pcie_get_readrq - get PCI Express read request size
3917 * @dev: PCI device to query
3918 *
3919 * Returns maximum memory read request in bytes
3920 * or appropriate error value.
3921 */
3922int pcie_get_readrq(struct pci_dev *dev)
3923{
3924 u16 ctl;
3925
3926 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3927
3928 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3929}
3930EXPORT_SYMBOL(pcie_get_readrq);
3931
3932/**
3933 * pcie_set_readrq - set PCI Express maximum memory read request
3934 * @dev: PCI device to query
3935 * @rq: maximum memory read count in bytes
3936 * valid values are 128, 256, 512, 1024, 2048, 4096
3937 *
3938 * If possible sets maximum memory read request in bytes
3939 */
3940int pcie_set_readrq(struct pci_dev *dev, int rq)
3941{
3942 u16 v;
3943
3944 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3945 return -EINVAL;
3946
3947 /*
3948 * If using the "performance" PCIe config, we clamp the
3949 * read rq size to the max packet size to prevent the
3950 * host bridge generating requests larger than we can
3951 * cope with
3952 */
3953 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3954 int mps = pcie_get_mps(dev);
3955
3956 if (mps < rq)
3957 rq = mps;
3958 }
3959
3960 v = (ffs(rq) - 8) << 12;
3961
3962 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3963 PCI_EXP_DEVCTL_READRQ, v);
3964}
3965EXPORT_SYMBOL(pcie_set_readrq);
3966
3967/**
3968 * pcie_get_mps - get PCI Express maximum payload size
3969 * @dev: PCI device to query
3970 *
3971 * Returns maximum payload size in bytes
3972 */
3973int pcie_get_mps(struct pci_dev *dev)
3974{
3975 u16 ctl;
3976
3977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3978
3979 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3980}
3981EXPORT_SYMBOL(pcie_get_mps);
3982
3983/**
3984 * pcie_set_mps - set PCI Express maximum payload size
3985 * @dev: PCI device to query
3986 * @mps: maximum payload size in bytes
3987 * valid values are 128, 256, 512, 1024, 2048, 4096
3988 *
3989 * If possible sets maximum payload size
3990 */
3991int pcie_set_mps(struct pci_dev *dev, int mps)
3992{
3993 u16 v;
3994
3995 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3996 return -EINVAL;
3997
3998 v = ffs(mps) - 8;
3999 if (v > dev->pcie_mpss)
4000 return -EINVAL;
4001 v <<= 5;
4002
4003 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4004 PCI_EXP_DEVCTL_PAYLOAD, v);
4005}
4006EXPORT_SYMBOL(pcie_set_mps);
4007
4008/**
4009 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4010 * @dev: PCI device to query
4011 * @speed: storage for minimum speed
4012 * @width: storage for minimum width
4013 *
4014 * This function will walk up the PCI device chain and determine the minimum
4015 * link width and speed of the device.
4016 */
4017int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4018 enum pcie_link_width *width)
4019{
4020 int ret;
4021
4022 *speed = PCI_SPEED_UNKNOWN;
4023 *width = PCIE_LNK_WIDTH_UNKNOWN;
4024
4025 while (dev) {
4026 u16 lnksta;
4027 enum pci_bus_speed next_speed;
4028 enum pcie_link_width next_width;
4029
4030 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4031 if (ret)
4032 return ret;
4033
4034 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4035 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4036 PCI_EXP_LNKSTA_NLW_SHIFT;
4037
4038 if (next_speed < *speed)
4039 *speed = next_speed;
4040
4041 if (next_width < *width)
4042 *width = next_width;
4043
4044 dev = dev->bus->self;
4045 }
4046
4047 return 0;
4048}
4049EXPORT_SYMBOL(pcie_get_minimum_link);
4050
4051/**
4052 * pci_select_bars - Make BAR mask from the type of resource
4053 * @dev: the PCI device for which BAR mask is made
4054 * @flags: resource type mask to be selected
4055 *
4056 * This helper routine makes bar mask from the type of resource.
4057 */
4058int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4059{
4060 int i, bars = 0;
4061 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4062 if (pci_resource_flags(dev, i) & flags)
4063 bars |= (1 << i);
4064 return bars;
4065}
4066
4067/**
4068 * pci_resource_bar - get position of the BAR associated with a resource
4069 * @dev: the PCI device
4070 * @resno: the resource number
4071 * @type: the BAR type to be filled in
4072 *
4073 * Returns BAR position in config space, or 0 if the BAR is invalid.
4074 */
4075int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4076{
4077 int reg;
4078
4079 if (resno < PCI_ROM_RESOURCE) {
4080 *type = pci_bar_unknown;
4081 return PCI_BASE_ADDRESS_0 + 4 * resno;
4082 } else if (resno == PCI_ROM_RESOURCE) {
4083 *type = pci_bar_mem32;
4084 return dev->rom_base_reg;
4085 } else if (resno < PCI_BRIDGE_RESOURCES) {
4086 /* device specific resource */
4087 reg = pci_iov_resource_bar(dev, resno, type);
4088 if (reg)
4089 return reg;
4090 }
4091
4092 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4093 return 0;
4094}
4095
4096/* Some architectures require additional programming to enable VGA */
4097static arch_set_vga_state_t arch_set_vga_state;
4098
4099void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4100{
4101 arch_set_vga_state = func; /* NULL disables */
4102}
4103
4104static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4105 unsigned int command_bits, u32 flags)
4106{
4107 if (arch_set_vga_state)
4108 return arch_set_vga_state(dev, decode, command_bits,
4109 flags);
4110 return 0;
4111}
4112
4113/**
4114 * pci_set_vga_state - set VGA decode state on device and parents if requested
4115 * @dev: the PCI device
4116 * @decode: true = enable decoding, false = disable decoding
4117 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4118 * @flags: traverse ancestors and change bridges
4119 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4120 */
4121int pci_set_vga_state(struct pci_dev *dev, bool decode,
4122 unsigned int command_bits, u32 flags)
4123{
4124 struct pci_bus *bus;
4125 struct pci_dev *bridge;
4126 u16 cmd;
4127 int rc;
4128
4129 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4130
4131 /* ARCH specific VGA enables */
4132 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4133 if (rc)
4134 return rc;
4135
4136 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4137 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4138 if (decode == true)
4139 cmd |= command_bits;
4140 else
4141 cmd &= ~command_bits;
4142 pci_write_config_word(dev, PCI_COMMAND, cmd);
4143 }
4144
4145 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4146 return 0;
4147
4148 bus = dev->bus;
4149 while (bus) {
4150 bridge = bus->self;
4151 if (bridge) {
4152 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4153 &cmd);
4154 if (decode == true)
4155 cmd |= PCI_BRIDGE_CTL_VGA;
4156 else
4157 cmd &= ~PCI_BRIDGE_CTL_VGA;
4158 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4159 cmd);
4160 }
4161 bus = bus->parent;
4162 }
4163 return 0;
4164}
4165
4166bool pci_device_is_present(struct pci_dev *pdev)
4167{
4168 u32 v;
4169
4170 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4171}
4172EXPORT_SYMBOL_GPL(pci_device_is_present);
4173
4174#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4175static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4176static DEFINE_SPINLOCK(resource_alignment_lock);
4177
4178/**
4179 * pci_specified_resource_alignment - get resource alignment specified by user.
4180 * @dev: the PCI device to get
4181 *
4182 * RETURNS: Resource alignment if it is specified.
4183 * Zero if it is not specified.
4184 */
4185static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4186{
4187 int seg, bus, slot, func, align_order, count;
4188 resource_size_t align = 0;
4189 char *p;
4190
4191 spin_lock(&resource_alignment_lock);
4192 p = resource_alignment_param;
4193 while (*p) {
4194 count = 0;
4195 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4196 p[count] == '@') {
4197 p += count + 1;
4198 } else {
4199 align_order = -1;
4200 }
4201 if (sscanf(p, "%x:%x:%x.%x%n",
4202 &seg, &bus, &slot, &func, &count) != 4) {
4203 seg = 0;
4204 if (sscanf(p, "%x:%x.%x%n",
4205 &bus, &slot, &func, &count) != 3) {
4206 /* Invalid format */
4207 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4208 p);
4209 break;
4210 }
4211 }
4212 p += count;
4213 if (seg == pci_domain_nr(dev->bus) &&
4214 bus == dev->bus->number &&
4215 slot == PCI_SLOT(dev->devfn) &&
4216 func == PCI_FUNC(dev->devfn)) {
4217 if (align_order == -1) {
4218 align = PAGE_SIZE;
4219 } else {
4220 align = 1 << align_order;
4221 }
4222 /* Found */
4223 break;
4224 }
4225 if (*p != ';' && *p != ',') {
4226 /* End of param or invalid format */
4227 break;
4228 }
4229 p++;
4230 }
4231 spin_unlock(&resource_alignment_lock);
4232 return align;
4233}
4234
4235/*
4236 * This function disables memory decoding and releases memory resources
4237 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4238 * It also rounds up size to specified alignment.
4239 * Later on, the kernel will assign page-aligned memory resource back
4240 * to the device.
4241 */
4242void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4243{
4244 int i;
4245 struct resource *r;
4246 resource_size_t align, size;
4247 u16 command;
4248
4249 /* check if specified PCI is target device to reassign */
4250 align = pci_specified_resource_alignment(dev);
4251 if (!align)
4252 return;
4253
4254 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4255 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4256 dev_warn(&dev->dev,
4257 "Can't reassign resources to host bridge.\n");
4258 return;
4259 }
4260
4261 dev_info(&dev->dev,
4262 "Disabling memory decoding and releasing memory resources.\n");
4263 pci_read_config_word(dev, PCI_COMMAND, &command);
4264 command &= ~PCI_COMMAND_MEMORY;
4265 pci_write_config_word(dev, PCI_COMMAND, command);
4266
4267 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4268 r = &dev->resource[i];
4269 if (!(r->flags & IORESOURCE_MEM))
4270 continue;
4271 size = resource_size(r);
4272 if (size < align) {
4273 size = align;
4274 dev_info(&dev->dev,
4275 "Rounding up size of resource #%d to %#llx.\n",
4276 i, (unsigned long long)size);
4277 }
4278 r->flags |= IORESOURCE_UNSET;
4279 r->end = size - 1;
4280 r->start = 0;
4281 }
4282 /* Need to disable bridge's resource window,
4283 * to enable the kernel to reassign new resource
4284 * window later on.
4285 */
4286 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4287 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4288 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4289 r = &dev->resource[i];
4290 if (!(r->flags & IORESOURCE_MEM))
4291 continue;
4292 r->flags |= IORESOURCE_UNSET;
4293 r->end = resource_size(r) - 1;
4294 r->start = 0;
4295 }
4296 pci_disable_bridge_window(dev);
4297 }
4298}
4299
4300static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4301{
4302 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4303 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4304 spin_lock(&resource_alignment_lock);
4305 strncpy(resource_alignment_param, buf, count);
4306 resource_alignment_param[count] = '\0';
4307 spin_unlock(&resource_alignment_lock);
4308 return count;
4309}
4310
4311static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4312{
4313 size_t count;
4314 spin_lock(&resource_alignment_lock);
4315 count = snprintf(buf, size, "%s", resource_alignment_param);
4316 spin_unlock(&resource_alignment_lock);
4317 return count;
4318}
4319
4320static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4321{
4322 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4323}
4324
4325static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4326 const char *buf, size_t count)
4327{
4328 return pci_set_resource_alignment_param(buf, count);
4329}
4330
4331BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4332 pci_resource_alignment_store);
4333
4334static int __init pci_resource_alignment_sysfs_init(void)
4335{
4336 return bus_create_file(&pci_bus_type,
4337 &bus_attr_resource_alignment);
4338}
4339
4340late_initcall(pci_resource_alignment_sysfs_init);
4341
4342static void pci_no_domains(void)
4343{
4344#ifdef CONFIG_PCI_DOMAINS
4345 pci_domains_supported = 0;
4346#endif
4347}
4348
4349/**
4350 * pci_ext_cfg_avail - can we access extended PCI config space?
4351 *
4352 * Returns 1 if we can access PCI extended config space (offsets
4353 * greater than 0xff). This is the default implementation. Architecture
4354 * implementations can override this.
4355 */
4356int __weak pci_ext_cfg_avail(void)
4357{
4358 return 1;
4359}
4360
4361void __weak pci_fixup_cardbus(struct pci_bus *bus)
4362{
4363}
4364EXPORT_SYMBOL(pci_fixup_cardbus);
4365
4366static int __init pci_setup(char *str)
4367{
4368 while (str) {
4369 char *k = strchr(str, ',');
4370 if (k)
4371 *k++ = 0;
4372 if (*str && (str = pcibios_setup(str)) && *str) {
4373 if (!strcmp(str, "nomsi")) {
4374 pci_no_msi();
4375 } else if (!strcmp(str, "noaer")) {
4376 pci_no_aer();
4377 } else if (!strncmp(str, "realloc=", 8)) {
4378 pci_realloc_get_opt(str + 8);
4379 } else if (!strncmp(str, "realloc", 7)) {
4380 pci_realloc_get_opt("on");
4381 } else if (!strcmp(str, "nodomains")) {
4382 pci_no_domains();
4383 } else if (!strncmp(str, "noari", 5)) {
4384 pcie_ari_disabled = true;
4385 } else if (!strncmp(str, "cbiosize=", 9)) {
4386 pci_cardbus_io_size = memparse(str + 9, &str);
4387 } else if (!strncmp(str, "cbmemsize=", 10)) {
4388 pci_cardbus_mem_size = memparse(str + 10, &str);
4389 } else if (!strncmp(str, "resource_alignment=", 19)) {
4390 pci_set_resource_alignment_param(str + 19,
4391 strlen(str + 19));
4392 } else if (!strncmp(str, "ecrc=", 5)) {
4393 pcie_ecrc_get_policy(str + 5);
4394 } else if (!strncmp(str, "hpiosize=", 9)) {
4395 pci_hotplug_io_size = memparse(str + 9, &str);
4396 } else if (!strncmp(str, "hpmemsize=", 10)) {
4397 pci_hotplug_mem_size = memparse(str + 10, &str);
4398 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4399 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4400 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4401 pcie_bus_config = PCIE_BUS_SAFE;
4402 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4403 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4404 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4405 pcie_bus_config = PCIE_BUS_PEER2PEER;
4406 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4407 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4408 } else {
4409 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4410 str);
4411 }
4412 }
4413 str = k;
4414 }
4415 return 0;
4416}
4417early_param("pci", pci_setup);
4418
4419EXPORT_SYMBOL(pci_reenable_device);
4420EXPORT_SYMBOL(pci_enable_device_io);
4421EXPORT_SYMBOL(pci_enable_device_mem);
4422EXPORT_SYMBOL(pci_enable_device);
4423EXPORT_SYMBOL(pcim_enable_device);
4424EXPORT_SYMBOL(pcim_pin_device);
4425EXPORT_SYMBOL(pci_disable_device);
4426EXPORT_SYMBOL(pci_find_capability);
4427EXPORT_SYMBOL(pci_bus_find_capability);
4428EXPORT_SYMBOL(pci_release_regions);
4429EXPORT_SYMBOL(pci_request_regions);
4430EXPORT_SYMBOL(pci_request_regions_exclusive);
4431EXPORT_SYMBOL(pci_release_region);
4432EXPORT_SYMBOL(pci_request_region);
4433EXPORT_SYMBOL(pci_request_region_exclusive);
4434EXPORT_SYMBOL(pci_release_selected_regions);
4435EXPORT_SYMBOL(pci_request_selected_regions);
4436EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4437EXPORT_SYMBOL(pci_set_master);
4438EXPORT_SYMBOL(pci_clear_master);
4439EXPORT_SYMBOL(pci_set_mwi);
4440EXPORT_SYMBOL(pci_try_set_mwi);
4441EXPORT_SYMBOL(pci_clear_mwi);
4442EXPORT_SYMBOL_GPL(pci_intx);
4443EXPORT_SYMBOL(pci_assign_resource);
4444EXPORT_SYMBOL(pci_find_parent_resource);
4445EXPORT_SYMBOL(pci_select_bars);
4446
4447EXPORT_SYMBOL(pci_set_power_state);
4448EXPORT_SYMBOL(pci_save_state);
4449EXPORT_SYMBOL(pci_restore_state);
4450EXPORT_SYMBOL(pci_pme_capable);
4451EXPORT_SYMBOL(pci_pme_active);
4452EXPORT_SYMBOL(pci_wake_from_d3);
4453EXPORT_SYMBOL(pci_prepare_to_sleep);
4454EXPORT_SYMBOL(pci_back_from_sleep);
4455EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);