Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/debugfs.h>
   3#include <linux/delay.h>
   4#include <linux/gpio/consumer.h>
   5#include <linux/hwmon.h>
   6#include <linux/i2c.h>
   7#include <linux/interrupt.h>
   8#include <linux/jiffies.h>
   9#include <linux/mdio/mdio-i2c.h>
  10#include <linux/module.h>
  11#include <linux/mutex.h>
  12#include <linux/of.h>
  13#include <linux/phy.h>
  14#include <linux/platform_device.h>
  15#include <linux/rtnetlink.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18
  19#include "sfp.h"
  20#include "swphy.h"
  21
  22enum {
  23	GPIO_MODDEF0,
  24	GPIO_LOS,
  25	GPIO_TX_FAULT,
  26	GPIO_TX_DISABLE,
  27	GPIO_RS0,
  28	GPIO_RS1,
  29	GPIO_MAX,
  30
  31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  32	SFP_F_LOS = BIT(GPIO_LOS),
  33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  35	SFP_F_RS0 = BIT(GPIO_RS0),
  36	SFP_F_RS1 = BIT(GPIO_RS1),
  37
  38	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
  39
  40	SFP_E_INSERT = 0,
  41	SFP_E_REMOVE,
  42	SFP_E_DEV_ATTACH,
  43	SFP_E_DEV_DETACH,
  44	SFP_E_DEV_DOWN,
  45	SFP_E_DEV_UP,
  46	SFP_E_TX_FAULT,
  47	SFP_E_TX_CLEAR,
  48	SFP_E_LOS_HIGH,
  49	SFP_E_LOS_LOW,
  50	SFP_E_TIMEOUT,
  51
  52	SFP_MOD_EMPTY = 0,
  53	SFP_MOD_ERROR,
  54	SFP_MOD_PROBE,
  55	SFP_MOD_WAITDEV,
  56	SFP_MOD_HPOWER,
  57	SFP_MOD_WAITPWR,
  58	SFP_MOD_PRESENT,
  59
  60	SFP_DEV_DETACHED = 0,
  61	SFP_DEV_DOWN,
  62	SFP_DEV_UP,
  63
  64	SFP_S_DOWN = 0,
  65	SFP_S_FAIL,
  66	SFP_S_WAIT,
  67	SFP_S_INIT,
  68	SFP_S_INIT_PHY,
  69	SFP_S_INIT_TX_FAULT,
  70	SFP_S_WAIT_LOS,
  71	SFP_S_LINK_UP,
  72	SFP_S_TX_FAULT,
  73	SFP_S_REINIT,
  74	SFP_S_TX_DISABLE,
  75};
  76
  77static const char  * const mod_state_strings[] = {
  78	[SFP_MOD_EMPTY] = "empty",
  79	[SFP_MOD_ERROR] = "error",
  80	[SFP_MOD_PROBE] = "probe",
  81	[SFP_MOD_WAITDEV] = "waitdev",
  82	[SFP_MOD_HPOWER] = "hpower",
  83	[SFP_MOD_WAITPWR] = "waitpwr",
  84	[SFP_MOD_PRESENT] = "present",
  85};
  86
  87static const char *mod_state_to_str(unsigned short mod_state)
  88{
  89	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  90		return "Unknown module state";
  91	return mod_state_strings[mod_state];
  92}
  93
  94static const char * const dev_state_strings[] = {
  95	[SFP_DEV_DETACHED] = "detached",
  96	[SFP_DEV_DOWN] = "down",
  97	[SFP_DEV_UP] = "up",
  98};
  99
 100static const char *dev_state_to_str(unsigned short dev_state)
 101{
 102	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 103		return "Unknown device state";
 104	return dev_state_strings[dev_state];
 105}
 106
 107static const char * const event_strings[] = {
 108	[SFP_E_INSERT] = "insert",
 109	[SFP_E_REMOVE] = "remove",
 110	[SFP_E_DEV_ATTACH] = "dev_attach",
 111	[SFP_E_DEV_DETACH] = "dev_detach",
 112	[SFP_E_DEV_DOWN] = "dev_down",
 113	[SFP_E_DEV_UP] = "dev_up",
 114	[SFP_E_TX_FAULT] = "tx_fault",
 115	[SFP_E_TX_CLEAR] = "tx_clear",
 116	[SFP_E_LOS_HIGH] = "los_high",
 117	[SFP_E_LOS_LOW] = "los_low",
 118	[SFP_E_TIMEOUT] = "timeout",
 119};
 120
 121static const char *event_to_str(unsigned short event)
 122{
 123	if (event >= ARRAY_SIZE(event_strings))
 124		return "Unknown event";
 125	return event_strings[event];
 126}
 127
 128static const char * const sm_state_strings[] = {
 129	[SFP_S_DOWN] = "down",
 130	[SFP_S_FAIL] = "fail",
 131	[SFP_S_WAIT] = "wait",
 132	[SFP_S_INIT] = "init",
 133	[SFP_S_INIT_PHY] = "init_phy",
 134	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 135	[SFP_S_WAIT_LOS] = "wait_los",
 136	[SFP_S_LINK_UP] = "link_up",
 137	[SFP_S_TX_FAULT] = "tx_fault",
 138	[SFP_S_REINIT] = "reinit",
 139	[SFP_S_TX_DISABLE] = "tx_disable",
 140};
 141
 142static const char *sm_state_to_str(unsigned short sm_state)
 143{
 144	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 145		return "Unknown state";
 146	return sm_state_strings[sm_state];
 147}
 148
 149static const char *gpio_names[] = {
 150	"mod-def0",
 151	"los",
 152	"tx-fault",
 153	"tx-disable",
 154	"rate-select0",
 155	"rate-select1",
 156};
 157
 158static const enum gpiod_flags gpio_flags[] = {
 159	GPIOD_IN,
 160	GPIOD_IN,
 161	GPIOD_IN,
 162	GPIOD_ASIS,
 163	GPIOD_ASIS,
 164	GPIOD_ASIS,
 165};
 166
 167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 168 * non-cooled module to initialise its laser safety circuitry. We wait
 169 * an initial T_WAIT period before we check the tx fault to give any PHY
 170 * on board (for a copper SFP) time to initialise.
 171 */
 172#define T_WAIT			msecs_to_jiffies(50)
 173#define T_START_UP		msecs_to_jiffies(300)
 174#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 175
 176/* t_reset is the time required to assert the TX_DISABLE signal to reset
 177 * an indicated TX_FAULT.
 178 */
 179#define T_RESET_US		10
 180#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 181
 182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 183 * time. If the TX_FAULT signal is not deasserted after this number of
 184 * attempts at clearing it, we decide that the module is faulty.
 185 * N_FAULT is the same but after the module has initialised.
 186 */
 187#define N_FAULT_INIT		5
 188#define N_FAULT			5
 189
 190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 191 * R_PHY_RETRY is the number of attempts.
 192 */
 193#define T_PHY_RETRY		msecs_to_jiffies(50)
 194#define R_PHY_RETRY		25
 195
 196/* SFP module presence detection is poor: the three MOD DEF signals are
 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 198 * connect before the I2C bus on MOD DEF 1/2.
 199 *
 200 * The SFF-8472 specifies t_serial ("Time from power on until module is
 201 * ready for data transmission over the two wire serial bus.") as 300ms.
 202 */
 203#define T_SERIAL		msecs_to_jiffies(300)
 204#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 205#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 206#define R_PROBE_RETRY_INIT	10
 207#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 208#define R_PROBE_RETRY_SLOW	12
 209
 210/* SFP modules appear to always have their PHY configured for bus address
 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
 214 */
 215#define SFP_PHY_ADDR		22
 216#define SFP_PHY_ADDR_ROLLBALL	17
 217
 218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
 220 * reads longer than 16 bytes.
 221 */
 222#define SFP_EEPROM_BLOCK_SIZE	16
 223
 224struct sff_data {
 225	unsigned int gpios;
 226	bool (*module_supported)(const struct sfp_eeprom_id *id);
 227};
 228
 229struct sfp {
 230	struct device *dev;
 231	struct i2c_adapter *i2c;
 232	struct mii_bus *i2c_mii;
 233	struct sfp_bus *sfp_bus;
 234	enum mdio_i2c_proto mdio_protocol;
 235	struct phy_device *mod_phy;
 236	const struct sff_data *type;
 237	size_t i2c_block_size;
 238	u32 max_power_mW;
 239
 240	unsigned int (*get_state)(struct sfp *);
 241	void (*set_state)(struct sfp *, unsigned int);
 242	int (*read)(struct sfp *, bool, u8, void *, size_t);
 243	int (*write)(struct sfp *, bool, u8, void *, size_t);
 244
 245	struct gpio_desc *gpio[GPIO_MAX];
 246	int gpio_irq[GPIO_MAX];
 247
 248	bool need_poll;
 249
 250	/* Access rules:
 251	 * state_hw_drive: st_mutex held
 252	 * state_hw_mask: st_mutex held
 253	 * state_soft_mask: st_mutex held
 254	 * state: st_mutex held unless reading input bits
 255	 */
 256	struct mutex st_mutex;			/* Protects state */
 257	unsigned int state_hw_drive;
 258	unsigned int state_hw_mask;
 259	unsigned int state_soft_mask;
 260	unsigned int state_ignore_mask;
 261	unsigned int state;
 262
 263	struct delayed_work poll;
 264	struct delayed_work timeout;
 265	struct mutex sm_mutex;			/* Protects state machine */
 266	unsigned char sm_mod_state;
 267	unsigned char sm_mod_tries_init;
 268	unsigned char sm_mod_tries;
 269	unsigned char sm_dev_state;
 270	unsigned short sm_state;
 271	unsigned char sm_fault_retries;
 272	unsigned char sm_phy_retries;
 273
 274	struct sfp_eeprom_id id;
 275	unsigned int module_power_mW;
 276	unsigned int module_t_start_up;
 277	unsigned int module_t_wait;
 278	unsigned int phy_t_retry;
 279
 280	unsigned int rate_kbd;
 281	unsigned int rs_threshold_kbd;
 282	unsigned int rs_state_mask;
 283
 284	bool have_a2;
 285
 286	const struct sfp_quirk *quirk;
 287
 288#if IS_ENABLED(CONFIG_HWMON)
 289	struct sfp_diag diag;
 290	struct delayed_work hwmon_probe;
 291	unsigned int hwmon_tries;
 292	struct device *hwmon_dev;
 293	char *hwmon_name;
 294#endif
 295
 296#if IS_ENABLED(CONFIG_DEBUG_FS)
 297	struct dentry *debugfs_dir;
 298#endif
 299};
 300
 301static bool sff_module_supported(const struct sfp_eeprom_id *id)
 302{
 303	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 304	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 305}
 306
 307static const struct sff_data sff_data = {
 308	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 309	.module_supported = sff_module_supported,
 310};
 311
 312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 313{
 314	if (id->base.phys_id == SFF8024_ID_SFP &&
 315	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 316		return true;
 317
 318	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 319	 * phys id SFF instead of SFP. Therefore mark this module explicitly
 320	 * as supported based on vendor name and pn match.
 321	 */
 322	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 323	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 324	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 325	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 326		return true;
 327
 328	return false;
 329}
 330
 331static const struct sff_data sfp_data = {
 332	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 333		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
 334	.module_supported = sfp_module_supported,
 335};
 336
 337static const struct of_device_id sfp_of_match[] = {
 338	{ .compatible = "sff,sff", .data = &sff_data, },
 339	{ .compatible = "sff,sfp", .data = &sfp_data, },
 340	{ },
 341};
 342MODULE_DEVICE_TABLE(of, sfp_of_match);
 343
 344static void sfp_fixup_long_startup(struct sfp *sfp)
 345{
 346	sfp->module_t_start_up = T_START_UP_BAD_GPON;
 347}
 348
 349static void sfp_fixup_ignore_los(struct sfp *sfp)
 350{
 351	/* This forces LOS to zero, so we ignore transitions */
 352	sfp->state_ignore_mask |= SFP_F_LOS;
 353	/* Make sure that LOS options are clear */
 354	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
 355					    SFP_OPTIONS_LOS_NORMAL);
 356}
 357
 358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
 359{
 360	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
 361}
 362
 363static void sfp_fixup_nokia(struct sfp *sfp)
 364{
 365	sfp_fixup_long_startup(sfp);
 366	sfp_fixup_ignore_los(sfp);
 367}
 368
 369// For 10GBASE-T short-reach modules
 370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
 371{
 372	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
 373	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
 374}
 375
 376static void sfp_fixup_rollball(struct sfp *sfp)
 377{
 378	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
 379
 380	/* RollBall modules may disallow access to PHY registers for up to 25
 381	 * seconds, and the reads return 0xffff before that. Increase the time
 382	 * between PHY probe retries from 50ms to 1s so that we will wait for
 383	 * the PHY for a sufficient amount of time.
 384	 */
 385	sfp->phy_t_retry = msecs_to_jiffies(1000);
 386}
 387
 388static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
 389{
 390	sfp_fixup_rollball(sfp);
 391
 392	/* The RollBall fixup is not enough for FS modules, the PHY chip inside
 393	 * them does not return 0xffff for PHY ID registers in all MMDs for the
 394	 * while initializing. They need a 4 second wait before accessing PHY.
 395	 */
 396	sfp->module_t_wait = msecs_to_jiffies(4000);
 397}
 398
 399static void sfp_fixup_fs_10gt(struct sfp *sfp)
 400{
 401	sfp_fixup_10gbaset_30m(sfp);
 402	sfp_fixup_fs_2_5gt(sfp);
 403}
 404
 405static void sfp_fixup_halny_gsfp(struct sfp *sfp)
 406{
 407	/* Ignore the TX_FAULT and LOS signals on this module.
 408	 * these are possibly used for other purposes on this
 409	 * module, e.g. a serial port.
 410	 */
 411	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
 412}
 413
 414static void sfp_fixup_rollball_cc(struct sfp *sfp)
 415{
 416	sfp_fixup_rollball(sfp);
 417
 418	/* Some RollBall SFPs may have wrong (zero) extended compliance code
 419	 * burned in EEPROM. For PHY probing we need the correct one.
 420	 */
 421	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
 422}
 423
 424static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
 425				unsigned long *modes,
 426				unsigned long *interfaces)
 427{
 428	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
 429	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
 430}
 431
 432static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
 433				      unsigned long *modes,
 434				      unsigned long *interfaces)
 435{
 436	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
 437}
 438
 439static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
 440			       unsigned long *modes,
 441			       unsigned long *interfaces)
 442{
 443	/* Copper 2.5G SFP */
 444	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
 445	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
 446	sfp_quirk_disable_autoneg(id, modes, interfaces);
 447}
 448
 449static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
 450				      unsigned long *modes,
 451				      unsigned long *interfaces)
 452{
 453	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
 454	 * types including 10G Ethernet which is not truth. So clear all claimed
 455	 * modes and set only one mode which module supports: 1000baseX_Full.
 456	 */
 457	linkmode_zero(modes);
 458	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
 459}
 460
 461#define SFP_QUIRK(_v, _p, _m, _f) \
 462	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
 463#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
 464#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
 465
 466static const struct sfp_quirk sfp_quirks[] = {
 467	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
 468	// report 2500MBd NRZ in their EEPROM
 469	SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
 470		  sfp_fixup_ignore_tx_fault),
 471
 472	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
 473	// NRZ in their EEPROM
 474	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
 475		  sfp_fixup_nokia),
 476
 477	// Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
 478	// protocol to talk to the PHY and needs 4 sec wait before probing the
 479	// PHY.
 480	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
 481
 482	// Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
 483	// needs 4 sec wait before probing the PHY.
 484	SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
 485
 486	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
 487	// NRZ in their EEPROM
 488	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
 489		  sfp_fixup_ignore_tx_fault),
 490
 491	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
 492
 493	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
 494	// 2600MBd in their EERPOM
 495	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
 496
 497	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
 498	// their EEPROM
 499	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
 500		  sfp_fixup_ignore_tx_fault),
 501
 502	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
 503	// 2500MBd NRZ in their EEPROM
 504	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
 505
 506	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
 507
 508	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
 509	// Rollball protocol to talk to the PHY.
 510	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
 511	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
 512
 513	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
 514	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
 515
 516	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
 517	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
 518	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
 519	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
 520	SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
 521	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
 522	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
 523};
 524
 525static size_t sfp_strlen(const char *str, size_t maxlen)
 526{
 527	size_t size, i;
 528
 529	/* Trailing characters should be filled with space chars, but
 530	 * some manufacturers can't read SFF-8472 and use NUL.
 531	 */
 532	for (i = 0, size = 0; i < maxlen; i++)
 533		if (str[i] != ' ' && str[i] != '\0')
 534			size = i + 1;
 535
 536	return size;
 537}
 538
 539static bool sfp_match(const char *qs, const char *str, size_t len)
 540{
 541	if (!qs)
 542		return true;
 543	if (strlen(qs) != len)
 544		return false;
 545	return !strncmp(qs, str, len);
 546}
 547
 548static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
 549{
 550	const struct sfp_quirk *q;
 551	unsigned int i;
 552	size_t vs, ps;
 553
 554	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
 555	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
 556
 557	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
 558		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
 559		    sfp_match(q->part, id->base.vendor_pn, ps))
 560			return q;
 561
 562	return NULL;
 563}
 564
 565static unsigned long poll_jiffies;
 566
 567static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 568{
 569	unsigned int i, state, v;
 570
 571	for (i = state = 0; i < GPIO_MAX; i++) {
 572		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 573			continue;
 574
 575		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 576		if (v)
 577			state |= BIT(i);
 578	}
 579
 580	return state;
 581}
 582
 583static unsigned int sff_gpio_get_state(struct sfp *sfp)
 584{
 585	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 586}
 587
 588static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 589{
 590	unsigned int drive;
 591
 592	if (state & SFP_F_PRESENT)
 593		/* If the module is present, drive the requested signals */
 594		drive = sfp->state_hw_drive;
 595	else
 596		/* Otherwise, let them float to the pull-ups */
 597		drive = 0;
 598
 599	if (sfp->gpio[GPIO_TX_DISABLE]) {
 600		if (drive & SFP_F_TX_DISABLE)
 601			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 602					       state & SFP_F_TX_DISABLE);
 603		else
 604			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 605	}
 606
 607	if (sfp->gpio[GPIO_RS0]) {
 608		if (drive & SFP_F_RS0)
 609			gpiod_direction_output(sfp->gpio[GPIO_RS0],
 610					       state & SFP_F_RS0);
 611		else
 612			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
 613	}
 614
 615	if (sfp->gpio[GPIO_RS1]) {
 616		if (drive & SFP_F_RS1)
 617			gpiod_direction_output(sfp->gpio[GPIO_RS1],
 618					       state & SFP_F_RS1);
 619		else
 620			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
 621	}
 622}
 623
 624static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 625			size_t len)
 626{
 627	struct i2c_msg msgs[2];
 628	u8 bus_addr = a2 ? 0x51 : 0x50;
 629	size_t block_size = sfp->i2c_block_size;
 630	size_t this_len;
 631	int ret;
 632
 633	msgs[0].addr = bus_addr;
 634	msgs[0].flags = 0;
 635	msgs[0].len = 1;
 636	msgs[0].buf = &dev_addr;
 637	msgs[1].addr = bus_addr;
 638	msgs[1].flags = I2C_M_RD;
 639	msgs[1].len = len;
 640	msgs[1].buf = buf;
 641
 642	while (len) {
 643		this_len = len;
 644		if (this_len > block_size)
 645			this_len = block_size;
 646
 647		msgs[1].len = this_len;
 648
 649		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 650		if (ret < 0)
 651			return ret;
 652
 653		if (ret != ARRAY_SIZE(msgs))
 654			break;
 655
 656		msgs[1].buf += this_len;
 657		dev_addr += this_len;
 658		len -= this_len;
 659	}
 660
 661	return msgs[1].buf - (u8 *)buf;
 662}
 663
 664static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 665	size_t len)
 666{
 667	struct i2c_msg msgs[1];
 668	u8 bus_addr = a2 ? 0x51 : 0x50;
 669	int ret;
 670
 671	msgs[0].addr = bus_addr;
 672	msgs[0].flags = 0;
 673	msgs[0].len = 1 + len;
 674	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 675	if (!msgs[0].buf)
 676		return -ENOMEM;
 677
 678	msgs[0].buf[0] = dev_addr;
 679	memcpy(&msgs[0].buf[1], buf, len);
 680
 681	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 682
 683	kfree(msgs[0].buf);
 684
 685	if (ret < 0)
 686		return ret;
 687
 688	return ret == ARRAY_SIZE(msgs) ? len : 0;
 689}
 690
 691static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 692{
 693	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 694		return -EINVAL;
 695
 696	sfp->i2c = i2c;
 697	sfp->read = sfp_i2c_read;
 698	sfp->write = sfp_i2c_write;
 699
 700	return 0;
 701}
 702
 703static int sfp_i2c_mdiobus_create(struct sfp *sfp)
 704{
 705	struct mii_bus *i2c_mii;
 706	int ret;
 707
 708	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
 709	if (IS_ERR(i2c_mii))
 710		return PTR_ERR(i2c_mii);
 711
 712	i2c_mii->name = "SFP I2C Bus";
 713	i2c_mii->phy_mask = ~0;
 714
 715	ret = mdiobus_register(i2c_mii);
 716	if (ret < 0) {
 717		mdiobus_free(i2c_mii);
 718		return ret;
 719	}
 720
 721	sfp->i2c_mii = i2c_mii;
 722
 723	return 0;
 724}
 725
 726static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
 727{
 728	mdiobus_unregister(sfp->i2c_mii);
 729	sfp->i2c_mii = NULL;
 730}
 731
 732/* Interface */
 733static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 734{
 735	return sfp->read(sfp, a2, addr, buf, len);
 736}
 737
 738static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 739{
 740	return sfp->write(sfp, a2, addr, buf, len);
 741}
 742
 743static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
 744{
 745	int ret;
 746	u8 old, v;
 747
 748	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
 749	if (ret != sizeof(old))
 750		return ret;
 751
 752	v = (old & ~mask) | (val & mask);
 753	if (v == old)
 754		return sizeof(v);
 755
 756	return sfp_write(sfp, a2, addr, &v, sizeof(v));
 757}
 758
 759static unsigned int sfp_soft_get_state(struct sfp *sfp)
 760{
 761	unsigned int state = 0;
 762	u8 status;
 763	int ret;
 764
 765	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 766	if (ret == sizeof(status)) {
 767		if (status & SFP_STATUS_RX_LOS)
 768			state |= SFP_F_LOS;
 769		if (status & SFP_STATUS_TX_FAULT)
 770			state |= SFP_F_TX_FAULT;
 771	} else {
 772		dev_err_ratelimited(sfp->dev,
 773				    "failed to read SFP soft status: %pe\n",
 774				    ERR_PTR(ret));
 775		/* Preserve the current state */
 776		state = sfp->state;
 777	}
 778
 779	return state & sfp->state_soft_mask;
 780}
 781
 782static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
 783			       unsigned int soft)
 784{
 785	u8 mask = 0;
 786	u8 val = 0;
 787
 788	if (soft & SFP_F_TX_DISABLE)
 789		mask |= SFP_STATUS_TX_DISABLE_FORCE;
 790	if (state & SFP_F_TX_DISABLE)
 791		val |= SFP_STATUS_TX_DISABLE_FORCE;
 792
 793	if (soft & SFP_F_RS0)
 794		mask |= SFP_STATUS_RS0_SELECT;
 795	if (state & SFP_F_RS0)
 796		val |= SFP_STATUS_RS0_SELECT;
 797
 798	if (mask)
 799		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
 800
 801	val = mask = 0;
 802	if (soft & SFP_F_RS1)
 803		mask |= SFP_EXT_STATUS_RS1_SELECT;
 804	if (state & SFP_F_RS1)
 805		val |= SFP_EXT_STATUS_RS1_SELECT;
 806
 807	if (mask)
 808		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
 809}
 810
 811static void sfp_soft_start_poll(struct sfp *sfp)
 812{
 813	const struct sfp_eeprom_id *id = &sfp->id;
 814	unsigned int mask = 0;
 815
 816	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
 817		mask |= SFP_F_TX_DISABLE;
 818	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
 819		mask |= SFP_F_TX_FAULT;
 820	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
 821		mask |= SFP_F_LOS;
 822	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
 823		mask |= sfp->rs_state_mask;
 824
 825	mutex_lock(&sfp->st_mutex);
 826	// Poll the soft state for hardware pins we want to ignore
 827	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
 828			       mask;
 829
 830	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 831	    !sfp->need_poll)
 832		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 833	mutex_unlock(&sfp->st_mutex);
 834}
 835
 836static void sfp_soft_stop_poll(struct sfp *sfp)
 837{
 838	mutex_lock(&sfp->st_mutex);
 839	sfp->state_soft_mask = 0;
 840	mutex_unlock(&sfp->st_mutex);
 841}
 842
 843/* sfp_get_state() - must be called with st_mutex held, or in the
 844 * initialisation path.
 845 */
 846static unsigned int sfp_get_state(struct sfp *sfp)
 847{
 848	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
 849	unsigned int state;
 850
 851	state = sfp->get_state(sfp) & sfp->state_hw_mask;
 852	if (state & SFP_F_PRESENT && soft)
 853		state |= sfp_soft_get_state(sfp);
 854
 855	return state;
 856}
 857
 858/* sfp_set_state() - must be called with st_mutex held, or in the
 859 * initialisation path.
 860 */
 861static void sfp_set_state(struct sfp *sfp, unsigned int state)
 862{
 863	unsigned int soft;
 864
 865	sfp->set_state(sfp, state);
 866
 867	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
 868	if (state & SFP_F_PRESENT && soft)
 869		sfp_soft_set_state(sfp, state, soft);
 870}
 871
 872static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
 873{
 874	mutex_lock(&sfp->st_mutex);
 875	sfp->state = (sfp->state & ~mask) | set;
 876	sfp_set_state(sfp, sfp->state);
 877	mutex_unlock(&sfp->st_mutex);
 878}
 879
 880static unsigned int sfp_check(void *buf, size_t len)
 881{
 882	u8 *p, check;
 883
 884	for (p = buf, check = 0; len; p++, len--)
 885		check += *p;
 886
 887	return check;
 888}
 889
 890/* hwmon */
 891#if IS_ENABLED(CONFIG_HWMON)
 892static umode_t sfp_hwmon_is_visible(const void *data,
 893				    enum hwmon_sensor_types type,
 894				    u32 attr, int channel)
 895{
 896	const struct sfp *sfp = data;
 897
 898	switch (type) {
 899	case hwmon_temp:
 900		switch (attr) {
 901		case hwmon_temp_min_alarm:
 902		case hwmon_temp_max_alarm:
 903		case hwmon_temp_lcrit_alarm:
 904		case hwmon_temp_crit_alarm:
 905		case hwmon_temp_min:
 906		case hwmon_temp_max:
 907		case hwmon_temp_lcrit:
 908		case hwmon_temp_crit:
 909			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 910				return 0;
 911			fallthrough;
 912		case hwmon_temp_input:
 913		case hwmon_temp_label:
 914			return 0444;
 915		default:
 916			return 0;
 917		}
 918	case hwmon_in:
 919		switch (attr) {
 920		case hwmon_in_min_alarm:
 921		case hwmon_in_max_alarm:
 922		case hwmon_in_lcrit_alarm:
 923		case hwmon_in_crit_alarm:
 924		case hwmon_in_min:
 925		case hwmon_in_max:
 926		case hwmon_in_lcrit:
 927		case hwmon_in_crit:
 928			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 929				return 0;
 930			fallthrough;
 931		case hwmon_in_input:
 932		case hwmon_in_label:
 933			return 0444;
 934		default:
 935			return 0;
 936		}
 937	case hwmon_curr:
 938		switch (attr) {
 939		case hwmon_curr_min_alarm:
 940		case hwmon_curr_max_alarm:
 941		case hwmon_curr_lcrit_alarm:
 942		case hwmon_curr_crit_alarm:
 943		case hwmon_curr_min:
 944		case hwmon_curr_max:
 945		case hwmon_curr_lcrit:
 946		case hwmon_curr_crit:
 947			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 948				return 0;
 949			fallthrough;
 950		case hwmon_curr_input:
 951		case hwmon_curr_label:
 952			return 0444;
 953		default:
 954			return 0;
 955		}
 956	case hwmon_power:
 957		/* External calibration of receive power requires
 958		 * floating point arithmetic. Doing that in the kernel
 959		 * is not easy, so just skip it. If the module does
 960		 * not require external calibration, we can however
 961		 * show receiver power, since FP is then not needed.
 962		 */
 963		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 964		    channel == 1)
 965			return 0;
 966		switch (attr) {
 967		case hwmon_power_min_alarm:
 968		case hwmon_power_max_alarm:
 969		case hwmon_power_lcrit_alarm:
 970		case hwmon_power_crit_alarm:
 971		case hwmon_power_min:
 972		case hwmon_power_max:
 973		case hwmon_power_lcrit:
 974		case hwmon_power_crit:
 975			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 976				return 0;
 977			fallthrough;
 978		case hwmon_power_input:
 979		case hwmon_power_label:
 980			return 0444;
 981		default:
 982			return 0;
 983		}
 984	default:
 985		return 0;
 986	}
 987}
 988
 989static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 990{
 991	__be16 val;
 992	int err;
 993
 994	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 995	if (err < 0)
 996		return err;
 997
 998	*value = be16_to_cpu(val);
 999
1000	return 0;
1001}
1002
1003static void sfp_hwmon_to_rx_power(long *value)
1004{
1005	*value = DIV_ROUND_CLOSEST(*value, 10);
1006}
1007
1008static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1009				long *value)
1010{
1011	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1012		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1013}
1014
1015static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1016{
1017	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1018			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1019
1020	if (*value >= 0x8000)
1021		*value -= 0x10000;
1022
1023	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1024}
1025
1026static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1027{
1028	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1029			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1030
1031	*value = DIV_ROUND_CLOSEST(*value, 10);
1032}
1033
1034static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1035{
1036	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1037			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1038
1039	*value = DIV_ROUND_CLOSEST(*value, 500);
1040}
1041
1042static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1043{
1044	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1045			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1046
1047	*value = DIV_ROUND_CLOSEST(*value, 10);
1048}
1049
1050static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1051{
1052	int err;
1053
1054	err = sfp_hwmon_read_sensor(sfp, reg, value);
1055	if (err < 0)
1056		return err;
1057
1058	sfp_hwmon_calibrate_temp(sfp, value);
1059
1060	return 0;
1061}
1062
1063static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1064{
1065	int err;
1066
1067	err = sfp_hwmon_read_sensor(sfp, reg, value);
1068	if (err < 0)
1069		return err;
1070
1071	sfp_hwmon_calibrate_vcc(sfp, value);
1072
1073	return 0;
1074}
1075
1076static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1077{
1078	int err;
1079
1080	err = sfp_hwmon_read_sensor(sfp, reg, value);
1081	if (err < 0)
1082		return err;
1083
1084	sfp_hwmon_calibrate_bias(sfp, value);
1085
1086	return 0;
1087}
1088
1089static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1090{
1091	int err;
1092
1093	err = sfp_hwmon_read_sensor(sfp, reg, value);
1094	if (err < 0)
1095		return err;
1096
1097	sfp_hwmon_calibrate_tx_power(sfp, value);
1098
1099	return 0;
1100}
1101
1102static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1103{
1104	int err;
1105
1106	err = sfp_hwmon_read_sensor(sfp, reg, value);
1107	if (err < 0)
1108		return err;
1109
1110	sfp_hwmon_to_rx_power(value);
1111
1112	return 0;
1113}
1114
1115static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1116{
1117	u8 status;
1118	int err;
1119
1120	switch (attr) {
1121	case hwmon_temp_input:
1122		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1123
1124	case hwmon_temp_lcrit:
1125		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1126		sfp_hwmon_calibrate_temp(sfp, value);
1127		return 0;
1128
1129	case hwmon_temp_min:
1130		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1131		sfp_hwmon_calibrate_temp(sfp, value);
1132		return 0;
1133	case hwmon_temp_max:
1134		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1135		sfp_hwmon_calibrate_temp(sfp, value);
1136		return 0;
1137
1138	case hwmon_temp_crit:
1139		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1140		sfp_hwmon_calibrate_temp(sfp, value);
1141		return 0;
1142
1143	case hwmon_temp_lcrit_alarm:
1144		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1145		if (err < 0)
1146			return err;
1147
1148		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1149		return 0;
1150
1151	case hwmon_temp_min_alarm:
1152		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1153		if (err < 0)
1154			return err;
1155
1156		*value = !!(status & SFP_WARN0_TEMP_LOW);
1157		return 0;
1158
1159	case hwmon_temp_max_alarm:
1160		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1161		if (err < 0)
1162			return err;
1163
1164		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1165		return 0;
1166
1167	case hwmon_temp_crit_alarm:
1168		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1169		if (err < 0)
1170			return err;
1171
1172		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1173		return 0;
1174	default:
1175		return -EOPNOTSUPP;
1176	}
1177
1178	return -EOPNOTSUPP;
1179}
1180
1181static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1182{
1183	u8 status;
1184	int err;
1185
1186	switch (attr) {
1187	case hwmon_in_input:
1188		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1189
1190	case hwmon_in_lcrit:
1191		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1192		sfp_hwmon_calibrate_vcc(sfp, value);
1193		return 0;
1194
1195	case hwmon_in_min:
1196		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1197		sfp_hwmon_calibrate_vcc(sfp, value);
1198		return 0;
1199
1200	case hwmon_in_max:
1201		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1202		sfp_hwmon_calibrate_vcc(sfp, value);
1203		return 0;
1204
1205	case hwmon_in_crit:
1206		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1207		sfp_hwmon_calibrate_vcc(sfp, value);
1208		return 0;
1209
1210	case hwmon_in_lcrit_alarm:
1211		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1212		if (err < 0)
1213			return err;
1214
1215		*value = !!(status & SFP_ALARM0_VCC_LOW);
1216		return 0;
1217
1218	case hwmon_in_min_alarm:
1219		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1220		if (err < 0)
1221			return err;
1222
1223		*value = !!(status & SFP_WARN0_VCC_LOW);
1224		return 0;
1225
1226	case hwmon_in_max_alarm:
1227		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1228		if (err < 0)
1229			return err;
1230
1231		*value = !!(status & SFP_WARN0_VCC_HIGH);
1232		return 0;
1233
1234	case hwmon_in_crit_alarm:
1235		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1236		if (err < 0)
1237			return err;
1238
1239		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1240		return 0;
1241	default:
1242		return -EOPNOTSUPP;
1243	}
1244
1245	return -EOPNOTSUPP;
1246}
1247
1248static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1249{
1250	u8 status;
1251	int err;
1252
1253	switch (attr) {
1254	case hwmon_curr_input:
1255		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1256
1257	case hwmon_curr_lcrit:
1258		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1259		sfp_hwmon_calibrate_bias(sfp, value);
1260		return 0;
1261
1262	case hwmon_curr_min:
1263		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1264		sfp_hwmon_calibrate_bias(sfp, value);
1265		return 0;
1266
1267	case hwmon_curr_max:
1268		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1269		sfp_hwmon_calibrate_bias(sfp, value);
1270		return 0;
1271
1272	case hwmon_curr_crit:
1273		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1274		sfp_hwmon_calibrate_bias(sfp, value);
1275		return 0;
1276
1277	case hwmon_curr_lcrit_alarm:
1278		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1279		if (err < 0)
1280			return err;
1281
1282		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1283		return 0;
1284
1285	case hwmon_curr_min_alarm:
1286		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1287		if (err < 0)
1288			return err;
1289
1290		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1291		return 0;
1292
1293	case hwmon_curr_max_alarm:
1294		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1295		if (err < 0)
1296			return err;
1297
1298		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1299		return 0;
1300
1301	case hwmon_curr_crit_alarm:
1302		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1303		if (err < 0)
1304			return err;
1305
1306		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1307		return 0;
1308	default:
1309		return -EOPNOTSUPP;
1310	}
1311
1312	return -EOPNOTSUPP;
1313}
1314
1315static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1316{
1317	u8 status;
1318	int err;
1319
1320	switch (attr) {
1321	case hwmon_power_input:
1322		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1323
1324	case hwmon_power_lcrit:
1325		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1326		sfp_hwmon_calibrate_tx_power(sfp, value);
1327		return 0;
1328
1329	case hwmon_power_min:
1330		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1331		sfp_hwmon_calibrate_tx_power(sfp, value);
1332		return 0;
1333
1334	case hwmon_power_max:
1335		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1336		sfp_hwmon_calibrate_tx_power(sfp, value);
1337		return 0;
1338
1339	case hwmon_power_crit:
1340		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1341		sfp_hwmon_calibrate_tx_power(sfp, value);
1342		return 0;
1343
1344	case hwmon_power_lcrit_alarm:
1345		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1346		if (err < 0)
1347			return err;
1348
1349		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1350		return 0;
1351
1352	case hwmon_power_min_alarm:
1353		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1354		if (err < 0)
1355			return err;
1356
1357		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1358		return 0;
1359
1360	case hwmon_power_max_alarm:
1361		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1362		if (err < 0)
1363			return err;
1364
1365		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1366		return 0;
1367
1368	case hwmon_power_crit_alarm:
1369		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1370		if (err < 0)
1371			return err;
1372
1373		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1374		return 0;
1375	default:
1376		return -EOPNOTSUPP;
1377	}
1378
1379	return -EOPNOTSUPP;
1380}
1381
1382static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1383{
1384	u8 status;
1385	int err;
1386
1387	switch (attr) {
1388	case hwmon_power_input:
1389		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1390
1391	case hwmon_power_lcrit:
1392		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1393		sfp_hwmon_to_rx_power(value);
1394		return 0;
1395
1396	case hwmon_power_min:
1397		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1398		sfp_hwmon_to_rx_power(value);
1399		return 0;
1400
1401	case hwmon_power_max:
1402		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1403		sfp_hwmon_to_rx_power(value);
1404		return 0;
1405
1406	case hwmon_power_crit:
1407		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1408		sfp_hwmon_to_rx_power(value);
1409		return 0;
1410
1411	case hwmon_power_lcrit_alarm:
1412		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1413		if (err < 0)
1414			return err;
1415
1416		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1417		return 0;
1418
1419	case hwmon_power_min_alarm:
1420		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1421		if (err < 0)
1422			return err;
1423
1424		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1425		return 0;
1426
1427	case hwmon_power_max_alarm:
1428		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1429		if (err < 0)
1430			return err;
1431
1432		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1433		return 0;
1434
1435	case hwmon_power_crit_alarm:
1436		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1437		if (err < 0)
1438			return err;
1439
1440		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1441		return 0;
1442	default:
1443		return -EOPNOTSUPP;
1444	}
1445
1446	return -EOPNOTSUPP;
1447}
1448
1449static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1450			  u32 attr, int channel, long *value)
1451{
1452	struct sfp *sfp = dev_get_drvdata(dev);
1453
1454	switch (type) {
1455	case hwmon_temp:
1456		return sfp_hwmon_temp(sfp, attr, value);
1457	case hwmon_in:
1458		return sfp_hwmon_vcc(sfp, attr, value);
1459	case hwmon_curr:
1460		return sfp_hwmon_bias(sfp, attr, value);
1461	case hwmon_power:
1462		switch (channel) {
1463		case 0:
1464			return sfp_hwmon_tx_power(sfp, attr, value);
1465		case 1:
1466			return sfp_hwmon_rx_power(sfp, attr, value);
1467		default:
1468			return -EOPNOTSUPP;
1469		}
1470	default:
1471		return -EOPNOTSUPP;
1472	}
1473}
1474
1475static const char *const sfp_hwmon_power_labels[] = {
1476	"TX_power",
1477	"RX_power",
1478};
1479
1480static int sfp_hwmon_read_string(struct device *dev,
1481				 enum hwmon_sensor_types type,
1482				 u32 attr, int channel, const char **str)
1483{
1484	switch (type) {
1485	case hwmon_curr:
1486		switch (attr) {
1487		case hwmon_curr_label:
1488			*str = "bias";
1489			return 0;
1490		default:
1491			return -EOPNOTSUPP;
1492		}
1493		break;
1494	case hwmon_temp:
1495		switch (attr) {
1496		case hwmon_temp_label:
1497			*str = "temperature";
1498			return 0;
1499		default:
1500			return -EOPNOTSUPP;
1501		}
1502		break;
1503	case hwmon_in:
1504		switch (attr) {
1505		case hwmon_in_label:
1506			*str = "VCC";
1507			return 0;
1508		default:
1509			return -EOPNOTSUPP;
1510		}
1511		break;
1512	case hwmon_power:
1513		switch (attr) {
1514		case hwmon_power_label:
1515			*str = sfp_hwmon_power_labels[channel];
1516			return 0;
1517		default:
1518			return -EOPNOTSUPP;
1519		}
1520		break;
1521	default:
1522		return -EOPNOTSUPP;
1523	}
1524
1525	return -EOPNOTSUPP;
1526}
1527
1528static const struct hwmon_ops sfp_hwmon_ops = {
1529	.is_visible = sfp_hwmon_is_visible,
1530	.read = sfp_hwmon_read,
1531	.read_string = sfp_hwmon_read_string,
1532};
1533
1534static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1535	HWMON_CHANNEL_INFO(chip,
1536			   HWMON_C_REGISTER_TZ),
1537	HWMON_CHANNEL_INFO(in,
1538			   HWMON_I_INPUT |
1539			   HWMON_I_MAX | HWMON_I_MIN |
1540			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1541			   HWMON_I_CRIT | HWMON_I_LCRIT |
1542			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1543			   HWMON_I_LABEL),
1544	HWMON_CHANNEL_INFO(temp,
1545			   HWMON_T_INPUT |
1546			   HWMON_T_MAX | HWMON_T_MIN |
1547			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1548			   HWMON_T_CRIT | HWMON_T_LCRIT |
1549			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1550			   HWMON_T_LABEL),
1551	HWMON_CHANNEL_INFO(curr,
1552			   HWMON_C_INPUT |
1553			   HWMON_C_MAX | HWMON_C_MIN |
1554			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1555			   HWMON_C_CRIT | HWMON_C_LCRIT |
1556			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1557			   HWMON_C_LABEL),
1558	HWMON_CHANNEL_INFO(power,
1559			   /* Transmit power */
1560			   HWMON_P_INPUT |
1561			   HWMON_P_MAX | HWMON_P_MIN |
1562			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1563			   HWMON_P_CRIT | HWMON_P_LCRIT |
1564			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1565			   HWMON_P_LABEL,
1566			   /* Receive power */
1567			   HWMON_P_INPUT |
1568			   HWMON_P_MAX | HWMON_P_MIN |
1569			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1570			   HWMON_P_CRIT | HWMON_P_LCRIT |
1571			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1572			   HWMON_P_LABEL),
1573	NULL,
1574};
1575
1576static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1577	.ops = &sfp_hwmon_ops,
1578	.info = sfp_hwmon_info,
1579};
1580
1581static void sfp_hwmon_probe(struct work_struct *work)
1582{
1583	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1584	int err;
1585
1586	/* hwmon interface needs to access 16bit registers in atomic way to
1587	 * guarantee coherency of the diagnostic monitoring data. If it is not
1588	 * possible to guarantee coherency because EEPROM is broken in such way
1589	 * that does not support atomic 16bit read operation then we have to
1590	 * skip registration of hwmon device.
1591	 */
1592	if (sfp->i2c_block_size < 2) {
1593		dev_info(sfp->dev,
1594			 "skipping hwmon device registration due to broken EEPROM\n");
1595		dev_info(sfp->dev,
1596			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1597		return;
1598	}
1599
1600	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1601	if (err < 0) {
1602		if (sfp->hwmon_tries--) {
1603			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1604					 T_PROBE_RETRY_SLOW);
1605		} else {
1606			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1607				 ERR_PTR(err));
1608		}
1609		return;
1610	}
1611
1612	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1613	if (IS_ERR(sfp->hwmon_name)) {
1614		dev_err(sfp->dev, "out of memory for hwmon name\n");
1615		return;
1616	}
1617
1618	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1619							 sfp->hwmon_name, sfp,
1620							 &sfp_hwmon_chip_info,
1621							 NULL);
1622	if (IS_ERR(sfp->hwmon_dev))
1623		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1624			PTR_ERR(sfp->hwmon_dev));
1625}
1626
1627static int sfp_hwmon_insert(struct sfp *sfp)
1628{
1629	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1630		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1631		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1632	}
1633
1634	return 0;
1635}
1636
1637static void sfp_hwmon_remove(struct sfp *sfp)
1638{
1639	cancel_delayed_work_sync(&sfp->hwmon_probe);
1640	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1641		hwmon_device_unregister(sfp->hwmon_dev);
1642		sfp->hwmon_dev = NULL;
1643		kfree(sfp->hwmon_name);
1644	}
1645}
1646
1647static int sfp_hwmon_init(struct sfp *sfp)
1648{
1649	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1650
1651	return 0;
1652}
1653
1654static void sfp_hwmon_exit(struct sfp *sfp)
1655{
1656	cancel_delayed_work_sync(&sfp->hwmon_probe);
1657}
1658#else
1659static int sfp_hwmon_insert(struct sfp *sfp)
1660{
1661	return 0;
1662}
1663
1664static void sfp_hwmon_remove(struct sfp *sfp)
1665{
1666}
1667
1668static int sfp_hwmon_init(struct sfp *sfp)
1669{
1670	return 0;
1671}
1672
1673static void sfp_hwmon_exit(struct sfp *sfp)
1674{
1675}
1676#endif
1677
1678/* Helpers */
1679static void sfp_module_tx_disable(struct sfp *sfp)
1680{
1681	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1682		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1683	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1684}
1685
1686static void sfp_module_tx_enable(struct sfp *sfp)
1687{
1688	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1689		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1690	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1691}
1692
1693#if IS_ENABLED(CONFIG_DEBUG_FS)
1694static int sfp_debug_state_show(struct seq_file *s, void *data)
1695{
1696	struct sfp *sfp = s->private;
1697
1698	seq_printf(s, "Module state: %s\n",
1699		   mod_state_to_str(sfp->sm_mod_state));
1700	seq_printf(s, "Module probe attempts: %d %d\n",
1701		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1702		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1703	seq_printf(s, "Device state: %s\n",
1704		   dev_state_to_str(sfp->sm_dev_state));
1705	seq_printf(s, "Main state: %s\n",
1706		   sm_state_to_str(sfp->sm_state));
1707	seq_printf(s, "Fault recovery remaining retries: %d\n",
1708		   sfp->sm_fault_retries);
1709	seq_printf(s, "PHY probe remaining retries: %d\n",
1710		   sfp->sm_phy_retries);
1711	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1712	seq_printf(s, "Rate select threshold: %u kBd\n",
1713		   sfp->rs_threshold_kbd);
1714	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1715	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1716	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1717	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1718	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1719	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1720	return 0;
1721}
1722DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1723
1724static void sfp_debugfs_init(struct sfp *sfp)
1725{
1726	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1727
1728	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1729			    &sfp_debug_state_fops);
1730}
1731
1732static void sfp_debugfs_exit(struct sfp *sfp)
1733{
1734	debugfs_remove_recursive(sfp->debugfs_dir);
1735}
1736#else
1737static void sfp_debugfs_init(struct sfp *sfp)
1738{
1739}
1740
1741static void sfp_debugfs_exit(struct sfp *sfp)
1742{
1743}
1744#endif
1745
1746static void sfp_module_tx_fault_reset(struct sfp *sfp)
1747{
1748	unsigned int state;
1749
1750	mutex_lock(&sfp->st_mutex);
1751	state = sfp->state;
1752	if (!(state & SFP_F_TX_DISABLE)) {
1753		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1754
1755		udelay(T_RESET_US);
1756
1757		sfp_set_state(sfp, state);
1758	}
1759	mutex_unlock(&sfp->st_mutex);
1760}
1761
1762/* SFP state machine */
1763static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1764{
1765	if (timeout)
1766		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1767				 timeout);
1768	else
1769		cancel_delayed_work(&sfp->timeout);
1770}
1771
1772static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1773			unsigned int timeout)
1774{
1775	sfp->sm_state = state;
1776	sfp_sm_set_timer(sfp, timeout);
1777}
1778
1779static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1780			    unsigned int timeout)
1781{
1782	sfp->sm_mod_state = state;
1783	sfp_sm_set_timer(sfp, timeout);
1784}
1785
1786static void sfp_sm_phy_detach(struct sfp *sfp)
1787{
1788	sfp_remove_phy(sfp->sfp_bus);
1789	phy_device_remove(sfp->mod_phy);
1790	phy_device_free(sfp->mod_phy);
1791	sfp->mod_phy = NULL;
1792}
1793
1794static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1795{
1796	struct phy_device *phy;
1797	int err;
1798
1799	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1800	if (phy == ERR_PTR(-ENODEV))
1801		return PTR_ERR(phy);
1802	if (IS_ERR(phy)) {
1803		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1804		return PTR_ERR(phy);
1805	}
1806
1807	/* Mark this PHY as being on a SFP module */
1808	phy->is_on_sfp_module = true;
1809
1810	err = phy_device_register(phy);
1811	if (err) {
1812		phy_device_free(phy);
1813		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1814			ERR_PTR(err));
1815		return err;
1816	}
1817
1818	err = sfp_add_phy(sfp->sfp_bus, phy);
1819	if (err) {
1820		phy_device_remove(phy);
1821		phy_device_free(phy);
1822		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1823		return err;
1824	}
1825
1826	sfp->mod_phy = phy;
1827
1828	return 0;
1829}
1830
1831static void sfp_sm_link_up(struct sfp *sfp)
1832{
1833	sfp_link_up(sfp->sfp_bus);
1834	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1835}
1836
1837static void sfp_sm_link_down(struct sfp *sfp)
1838{
1839	sfp_link_down(sfp->sfp_bus);
1840}
1841
1842static void sfp_sm_link_check_los(struct sfp *sfp)
1843{
1844	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1845	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1846	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1847	bool los = false;
1848
1849	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1850	 * are set, we assume that no LOS signal is available. If both are
1851	 * set, we assume LOS is not implemented (and is meaningless.)
1852	 */
1853	if (los_options == los_inverted)
1854		los = !(sfp->state & SFP_F_LOS);
1855	else if (los_options == los_normal)
1856		los = !!(sfp->state & SFP_F_LOS);
1857
1858	if (los)
1859		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1860	else
1861		sfp_sm_link_up(sfp);
1862}
1863
1864static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1865{
1866	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1867	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1868	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1869
1870	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1871	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1872}
1873
1874static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1875{
1876	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1877	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1878	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1879
1880	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1881	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1882}
1883
1884static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1885{
1886	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1887		dev_err(sfp->dev,
1888			"module persistently indicates fault, disabling\n");
1889		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1890	} else {
1891		if (warn)
1892			dev_err(sfp->dev, "module transmit fault indicated\n");
1893
1894		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1895	}
1896}
1897
1898static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1899{
1900	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1901		return sfp_i2c_mdiobus_create(sfp);
1902
1903	return 0;
1904}
1905
1906/* Probe a SFP for a PHY device if the module supports copper - the PHY
1907 * normally sits at I2C bus address 0x56, and may either be a clause 22
1908 * or clause 45 PHY.
1909 *
1910 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1911 * negotiation enabled, but some may be in 1000base-X - which is for the
1912 * PHY driver to determine.
1913 *
1914 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1915 * mode according to the negotiated line speed.
1916 */
1917static int sfp_sm_probe_for_phy(struct sfp *sfp)
1918{
1919	int err = 0;
1920
1921	switch (sfp->mdio_protocol) {
1922	case MDIO_I2C_NONE:
1923		break;
1924
1925	case MDIO_I2C_MARVELL_C22:
1926		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1927		break;
1928
1929	case MDIO_I2C_C45:
1930		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1931		break;
1932
1933	case MDIO_I2C_ROLLBALL:
1934		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1935		break;
1936	}
1937
1938	return err;
1939}
1940
1941static int sfp_module_parse_power(struct sfp *sfp)
1942{
1943	u32 power_mW = 1000;
1944	bool supports_a2;
1945
1946	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1947	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1948		power_mW = 1500;
1949	/* Added in Rev 11.9, but there is no compliance code for this */
1950	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1951	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1952		power_mW = 2000;
1953
1954	/* Power level 1 modules (max. 1W) are always supported. */
1955	if (power_mW <= 1000) {
1956		sfp->module_power_mW = power_mW;
1957		return 0;
1958	}
1959
1960	supports_a2 = sfp->id.ext.sff8472_compliance !=
1961				SFP_SFF8472_COMPLIANCE_NONE ||
1962		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1963
1964	if (power_mW > sfp->max_power_mW) {
1965		/* Module power specification exceeds the allowed maximum. */
1966		if (!supports_a2) {
1967			/* The module appears not to implement bus address
1968			 * 0xa2, so assume that the module powers up in the
1969			 * indicated mode.
1970			 */
1971			dev_err(sfp->dev,
1972				"Host does not support %u.%uW modules\n",
1973				power_mW / 1000, (power_mW / 100) % 10);
1974			return -EINVAL;
1975		} else {
1976			dev_warn(sfp->dev,
1977				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1978				 power_mW / 1000, (power_mW / 100) % 10);
1979			return 0;
1980		}
1981	}
1982
1983	if (!supports_a2) {
1984		/* The module power level is below the host maximum and the
1985		 * module appears not to implement bus address 0xa2, so assume
1986		 * that the module powers up in the indicated mode.
1987		 */
1988		return 0;
1989	}
1990
1991	/* If the module requires a higher power mode, but also requires
1992	 * an address change sequence, warn the user that the module may
1993	 * not be functional.
1994	 */
1995	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1996		dev_warn(sfp->dev,
1997			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1998			 power_mW / 1000, (power_mW / 100) % 10);
1999		return 0;
2000	}
2001
2002	sfp->module_power_mW = power_mW;
2003
2004	return 0;
2005}
2006
2007static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2008{
2009	int err;
2010
2011	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2012			    SFP_EXT_STATUS_PWRLVL_SELECT,
2013			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2014	if (err != sizeof(u8)) {
2015		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2016			enable ? "en" : "dis", ERR_PTR(err));
2017		return -EAGAIN;
2018	}
2019
2020	if (enable)
2021		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2022			 sfp->module_power_mW / 1000,
2023			 (sfp->module_power_mW / 100) % 10);
2024
2025	return 0;
2026}
2027
2028static void sfp_module_parse_rate_select(struct sfp *sfp)
2029{
2030	u8 rate_id;
2031
2032	sfp->rs_threshold_kbd = 0;
2033	sfp->rs_state_mask = 0;
2034
2035	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2036		/* No support for RateSelect */
2037		return;
2038
2039	/* Default to INF-8074 RateSelect operation. The signalling threshold
2040	 * rate is not well specified, so always select "Full Bandwidth", but
2041	 * SFF-8079 reveals that it is understood that RS0 will be low for
2042	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2043	 * This method exists prior to SFF-8472.
2044	 */
2045	sfp->rs_state_mask = SFP_F_RS0;
2046	sfp->rs_threshold_kbd = 1594;
2047
2048	/* Parse the rate identifier, which is complicated due to history:
2049	 * SFF-8472 rev 9.5 marks this field as reserved.
2050	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2051	 *  compliance is not required.
2052	 * SFF-8472 rev 10.2 defines this field using values 0..4
2053	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2054	 * and even values.
2055	 */
2056	rate_id = sfp->id.base.rate_id;
2057	if (rate_id == 0)
2058		/* Unspecified */
2059		return;
2060
2061	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2062	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2063	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2064	 */
2065	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2066	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2067	    rate_id == 3)
2068		rate_id = SFF_RID_8431;
2069
2070	if (rate_id & SFF_RID_8079) {
2071		/* SFF-8079 RateSelect / Application Select in conjunction with
2072		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2073		 * with only bit 0 used, which takes precedence over SFF-8472.
2074		 */
2075		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2076			/* SFF-8079 Part 1 - rate selection between Fibre
2077			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2078			 * is high for 2125, so we have to subtract 1 to
2079			 * include it.
2080			 */
2081			sfp->rs_threshold_kbd = 2125 - 1;
2082			sfp->rs_state_mask = SFP_F_RS0;
2083		}
2084		return;
2085	}
2086
2087	/* SFF-8472 rev 9.5 does not define the rate identifier */
2088	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2089		return;
2090
2091	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2092	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2093	 */
2094	switch (rate_id) {
2095	case SFF_RID_8431_RX_ONLY:
2096		sfp->rs_threshold_kbd = 4250;
2097		sfp->rs_state_mask = SFP_F_RS0;
2098		break;
2099
2100	case SFF_RID_8431_TX_ONLY:
2101		sfp->rs_threshold_kbd = 4250;
2102		sfp->rs_state_mask = SFP_F_RS1;
2103		break;
2104
2105	case SFF_RID_8431:
2106		sfp->rs_threshold_kbd = 4250;
2107		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2108		break;
2109
2110	case SFF_RID_10G8G:
2111		sfp->rs_threshold_kbd = 9000;
2112		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2113		break;
2114	}
2115}
2116
2117/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2118 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2119 * not support multibyte reads from the EEPROM. Each multi-byte read
2120 * operation returns just one byte of EEPROM followed by zeros. There is
2121 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2122 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2123 * name and vendor id into EEPROM, so there is even no way to detect if
2124 * module is V-SOL V2801F. Therefore check for those zeros in the read
2125 * data and then based on check switch to reading EEPROM to one byte
2126 * at a time.
2127 */
2128static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2129{
2130	size_t i, block_size = sfp->i2c_block_size;
2131
2132	/* Already using byte IO */
2133	if (block_size == 1)
2134		return false;
2135
2136	for (i = 1; i < len; i += block_size) {
2137		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2138			return false;
2139	}
2140	return true;
2141}
2142
2143static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2144{
2145	u8 check;
2146	int err;
2147
2148	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2149	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2150	    id->base.connector != SFF8024_CONNECTOR_LC) {
2151		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2152		id->base.phys_id = SFF8024_ID_SFF_8472;
2153		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2154		id->base.connector = SFF8024_CONNECTOR_LC;
2155		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2156		if (err != 3) {
2157			dev_err(sfp->dev,
2158				"Failed to rewrite module EEPROM: %pe\n",
2159				ERR_PTR(err));
2160			return err;
2161		}
2162
2163		/* Cotsworks modules have been found to require a delay between write operations. */
2164		mdelay(50);
2165
2166		/* Update base structure checksum */
2167		check = sfp_check(&id->base, sizeof(id->base) - 1);
2168		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2169		if (err != 1) {
2170			dev_err(sfp->dev,
2171				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2172				ERR_PTR(err));
2173			return err;
2174		}
2175	}
2176	return 0;
2177}
2178
2179static int sfp_module_parse_sff8472(struct sfp *sfp)
2180{
2181	/* If the module requires address swap mode, warn about it */
2182	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2183		dev_warn(sfp->dev,
2184			 "module address swap to access page 0xA2 is not supported.\n");
2185	else
2186		sfp->have_a2 = true;
2187
2188	return 0;
2189}
2190
2191static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2192{
2193	/* SFP module inserted - read I2C data */
2194	struct sfp_eeprom_id id;
2195	bool cotsworks_sfbg;
2196	unsigned int mask;
2197	bool cotsworks;
2198	u8 check;
2199	int ret;
2200
2201	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2202
2203	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2204	if (ret < 0) {
2205		if (report)
2206			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2207				ERR_PTR(ret));
2208		return -EAGAIN;
2209	}
2210
2211	if (ret != sizeof(id.base)) {
2212		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2213		return -EAGAIN;
2214	}
2215
2216	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2217	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2218	 * that EEPROM supports atomic 16bit read operation for diagnostic
2219	 * fields, so do not switch to one byte reading at a time unless it
2220	 * is really required and we have no other option.
2221	 */
2222	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2223		dev_info(sfp->dev,
2224			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2225		dev_info(sfp->dev,
2226			 "Switching to reading EEPROM to one byte at a time\n");
2227		sfp->i2c_block_size = 1;
2228
2229		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2230		if (ret < 0) {
2231			if (report)
2232				dev_err(sfp->dev,
2233					"failed to read EEPROM: %pe\n",
2234					ERR_PTR(ret));
2235			return -EAGAIN;
2236		}
2237
2238		if (ret != sizeof(id.base)) {
2239			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2240				ERR_PTR(ret));
2241			return -EAGAIN;
2242		}
2243	}
2244
2245	/* Cotsworks do not seem to update the checksums when they
2246	 * do the final programming with the final module part number,
2247	 * serial number and date code.
2248	 */
2249	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2250	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2251
2252	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2253	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2254	 * Cotsworks PN matches and bytes are not correct.
2255	 */
2256	if (cotsworks && cotsworks_sfbg) {
2257		ret = sfp_cotsworks_fixup_check(sfp, &id);
2258		if (ret < 0)
2259			return ret;
2260	}
2261
2262	/* Validate the checksum over the base structure */
2263	check = sfp_check(&id.base, sizeof(id.base) - 1);
2264	if (check != id.base.cc_base) {
2265		if (cotsworks) {
2266			dev_warn(sfp->dev,
2267				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2268				 check, id.base.cc_base);
2269		} else {
2270			dev_err(sfp->dev,
2271				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2272				check, id.base.cc_base);
2273			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2274				       16, 1, &id, sizeof(id), true);
2275			return -EINVAL;
2276		}
2277	}
2278
2279	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2280	if (ret < 0) {
2281		if (report)
2282			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2283				ERR_PTR(ret));
2284		return -EAGAIN;
2285	}
2286
2287	if (ret != sizeof(id.ext)) {
2288		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2289		return -EAGAIN;
2290	}
2291
2292	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2293	if (check != id.ext.cc_ext) {
2294		if (cotsworks) {
2295			dev_warn(sfp->dev,
2296				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2297				 check, id.ext.cc_ext);
2298		} else {
2299			dev_err(sfp->dev,
2300				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2301				check, id.ext.cc_ext);
2302			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2303				       16, 1, &id, sizeof(id), true);
2304			memset(&id.ext, 0, sizeof(id.ext));
2305		}
2306	}
2307
2308	sfp->id = id;
2309
2310	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2311		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2312		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2313		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2314		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2315		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2316
2317	/* Check whether we support this module */
2318	if (!sfp->type->module_supported(&id)) {
2319		dev_err(sfp->dev,
2320			"module is not supported - phys id 0x%02x 0x%02x\n",
2321			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2322		return -EINVAL;
2323	}
2324
2325	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2326		ret = sfp_module_parse_sff8472(sfp);
2327		if (ret < 0)
2328			return ret;
2329	}
2330
2331	/* Parse the module power requirement */
2332	ret = sfp_module_parse_power(sfp);
2333	if (ret < 0)
2334		return ret;
2335
2336	sfp_module_parse_rate_select(sfp);
2337
2338	mask = SFP_F_PRESENT;
2339	if (sfp->gpio[GPIO_TX_DISABLE])
2340		mask |= SFP_F_TX_DISABLE;
2341	if (sfp->gpio[GPIO_TX_FAULT])
2342		mask |= SFP_F_TX_FAULT;
2343	if (sfp->gpio[GPIO_LOS])
2344		mask |= SFP_F_LOS;
2345	if (sfp->gpio[GPIO_RS0])
2346		mask |= SFP_F_RS0;
2347	if (sfp->gpio[GPIO_RS1])
2348		mask |= SFP_F_RS1;
2349
2350	sfp->module_t_start_up = T_START_UP;
2351	sfp->module_t_wait = T_WAIT;
2352	sfp->phy_t_retry = T_PHY_RETRY;
2353
2354	sfp->state_ignore_mask = 0;
2355
2356	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2357	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2358	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2359	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2360		sfp->mdio_protocol = MDIO_I2C_C45;
2361	else if (sfp->id.base.e1000_base_t)
2362		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2363	else
2364		sfp->mdio_protocol = MDIO_I2C_NONE;
2365
2366	sfp->quirk = sfp_lookup_quirk(&id);
2367
2368	mutex_lock(&sfp->st_mutex);
2369	/* Initialise state bits to use from hardware */
2370	sfp->state_hw_mask = mask;
2371
2372	/* We want to drive the rate select pins that the module is using */
2373	sfp->state_hw_drive |= sfp->rs_state_mask;
2374
2375	if (sfp->quirk && sfp->quirk->fixup)
2376		sfp->quirk->fixup(sfp);
2377
2378	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2379	mutex_unlock(&sfp->st_mutex);
2380
2381	return 0;
2382}
2383
2384static void sfp_sm_mod_remove(struct sfp *sfp)
2385{
2386	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2387		sfp_module_remove(sfp->sfp_bus);
2388
2389	sfp_hwmon_remove(sfp);
2390
2391	memset(&sfp->id, 0, sizeof(sfp->id));
2392	sfp->module_power_mW = 0;
2393	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2394	sfp->have_a2 = false;
2395
2396	dev_info(sfp->dev, "module removed\n");
2397}
2398
2399/* This state machine tracks the upstream's state */
2400static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2401{
2402	switch (sfp->sm_dev_state) {
2403	default:
2404		if (event == SFP_E_DEV_ATTACH)
2405			sfp->sm_dev_state = SFP_DEV_DOWN;
2406		break;
2407
2408	case SFP_DEV_DOWN:
2409		if (event == SFP_E_DEV_DETACH)
2410			sfp->sm_dev_state = SFP_DEV_DETACHED;
2411		else if (event == SFP_E_DEV_UP)
2412			sfp->sm_dev_state = SFP_DEV_UP;
2413		break;
2414
2415	case SFP_DEV_UP:
2416		if (event == SFP_E_DEV_DETACH)
2417			sfp->sm_dev_state = SFP_DEV_DETACHED;
2418		else if (event == SFP_E_DEV_DOWN)
2419			sfp->sm_dev_state = SFP_DEV_DOWN;
2420		break;
2421	}
2422}
2423
2424/* This state machine tracks the insert/remove state of the module, probes
2425 * the on-board EEPROM, and sets up the power level.
2426 */
2427static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2428{
2429	int err;
2430
2431	/* Handle remove event globally, it resets this state machine */
2432	if (event == SFP_E_REMOVE) {
2433		sfp_sm_mod_remove(sfp);
2434		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2435		return;
2436	}
2437
2438	/* Handle device detach globally */
2439	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2440	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2441		if (sfp->module_power_mW > 1000 &&
2442		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2443			sfp_sm_mod_hpower(sfp, false);
2444		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2445		return;
2446	}
2447
2448	switch (sfp->sm_mod_state) {
2449	default:
2450		if (event == SFP_E_INSERT) {
2451			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2452			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2453			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2454		}
2455		break;
2456
2457	case SFP_MOD_PROBE:
2458		/* Wait for T_PROBE_INIT to time out */
2459		if (event != SFP_E_TIMEOUT)
2460			break;
2461
2462		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2463		if (err == -EAGAIN) {
2464			if (sfp->sm_mod_tries_init &&
2465			   --sfp->sm_mod_tries_init) {
2466				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2467				break;
2468			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2469				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2470					dev_warn(sfp->dev,
2471						 "please wait, module slow to respond\n");
2472				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2473				break;
2474			}
2475		}
2476		if (err < 0) {
2477			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2478			break;
2479		}
2480
2481		/* Force a poll to re-read the hardware signal state after
2482		 * sfp_sm_mod_probe() changed state_hw_mask.
2483		 */
2484		mod_delayed_work(system_wq, &sfp->poll, 1);
2485
2486		err = sfp_hwmon_insert(sfp);
2487		if (err)
2488			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2489				 ERR_PTR(err));
2490
2491		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2492		fallthrough;
2493	case SFP_MOD_WAITDEV:
2494		/* Ensure that the device is attached before proceeding */
2495		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2496			break;
2497
2498		/* Report the module insertion to the upstream device */
2499		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2500					sfp->quirk);
2501		if (err < 0) {
2502			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503			break;
2504		}
2505
2506		/* If this is a power level 1 module, we are done */
2507		if (sfp->module_power_mW <= 1000)
2508			goto insert;
2509
2510		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2511		fallthrough;
2512	case SFP_MOD_HPOWER:
2513		/* Enable high power mode */
2514		err = sfp_sm_mod_hpower(sfp, true);
2515		if (err < 0) {
2516			if (err != -EAGAIN) {
2517				sfp_module_remove(sfp->sfp_bus);
2518				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2519			} else {
2520				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2521			}
2522			break;
2523		}
2524
2525		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2526		break;
2527
2528	case SFP_MOD_WAITPWR:
2529		/* Wait for T_HPOWER_LEVEL to time out */
2530		if (event != SFP_E_TIMEOUT)
2531			break;
2532
2533	insert:
2534		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2535		break;
2536
2537	case SFP_MOD_PRESENT:
2538	case SFP_MOD_ERROR:
2539		break;
2540	}
2541}
2542
2543static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2544{
2545	unsigned long timeout;
2546	int ret;
2547
2548	/* Some events are global */
2549	if (sfp->sm_state != SFP_S_DOWN &&
2550	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2551	     sfp->sm_dev_state != SFP_DEV_UP)) {
2552		if (sfp->sm_state == SFP_S_LINK_UP &&
2553		    sfp->sm_dev_state == SFP_DEV_UP)
2554			sfp_sm_link_down(sfp);
2555		if (sfp->sm_state > SFP_S_INIT)
2556			sfp_module_stop(sfp->sfp_bus);
2557		if (sfp->mod_phy)
2558			sfp_sm_phy_detach(sfp);
2559		if (sfp->i2c_mii)
2560			sfp_i2c_mdiobus_destroy(sfp);
2561		sfp_module_tx_disable(sfp);
2562		sfp_soft_stop_poll(sfp);
2563		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2564		return;
2565	}
2566
2567	/* The main state machine */
2568	switch (sfp->sm_state) {
2569	case SFP_S_DOWN:
2570		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2571		    sfp->sm_dev_state != SFP_DEV_UP)
2572			break;
2573
2574		/* Only use the soft state bits if we have access to the A2h
2575		 * memory, which implies that we have some level of SFF-8472
2576		 * compliance.
2577		 */
2578		if (sfp->have_a2)
2579			sfp_soft_start_poll(sfp);
2580
2581		sfp_module_tx_enable(sfp);
2582
2583		/* Initialise the fault clearance retries */
2584		sfp->sm_fault_retries = N_FAULT_INIT;
2585
2586		/* We need to check the TX_FAULT state, which is not defined
2587		 * while TX_DISABLE is asserted. The earliest we want to do
2588		 * anything (such as probe for a PHY) is 50ms (or more on
2589		 * specific modules).
2590		 */
2591		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2592		break;
2593
2594	case SFP_S_WAIT:
2595		if (event != SFP_E_TIMEOUT)
2596			break;
2597
2598		if (sfp->state & SFP_F_TX_FAULT) {
2599			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2600			 * from the TX_DISABLE deassertion for the module to
2601			 * initialise, which is indicated by TX_FAULT
2602			 * deasserting.
2603			 */
2604			timeout = sfp->module_t_start_up;
2605			if (timeout > sfp->module_t_wait)
2606				timeout -= sfp->module_t_wait;
2607			else
2608				timeout = 1;
2609
2610			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2611		} else {
2612			/* TX_FAULT is not asserted, assume the module has
2613			 * finished initialising.
2614			 */
2615			goto init_done;
2616		}
2617		break;
2618
2619	case SFP_S_INIT:
2620		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2621			/* TX_FAULT is still asserted after t_init
2622			 * or t_start_up, so assume there is a fault.
2623			 */
2624			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2625				     sfp->sm_fault_retries == N_FAULT_INIT);
2626		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2627	init_done:
2628			/* Create mdiobus and start trying for PHY */
2629			ret = sfp_sm_add_mdio_bus(sfp);
2630			if (ret < 0) {
2631				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2632				break;
2633			}
2634			sfp->sm_phy_retries = R_PHY_RETRY;
2635			goto phy_probe;
2636		}
2637		break;
2638
2639	case SFP_S_INIT_PHY:
2640		if (event != SFP_E_TIMEOUT)
2641			break;
2642	phy_probe:
2643		/* TX_FAULT deasserted or we timed out with TX_FAULT
2644		 * clear.  Probe for the PHY and check the LOS state.
2645		 */
2646		ret = sfp_sm_probe_for_phy(sfp);
2647		if (ret == -ENODEV) {
2648			if (--sfp->sm_phy_retries) {
2649				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2650					    sfp->phy_t_retry);
2651				dev_dbg(sfp->dev,
2652					"no PHY detected, %u tries left\n",
2653					sfp->sm_phy_retries);
2654				break;
2655			} else {
2656				dev_info(sfp->dev, "no PHY detected\n");
2657			}
2658		} else if (ret) {
2659			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2660			break;
2661		}
2662		if (sfp_module_start(sfp->sfp_bus)) {
2663			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2664			break;
2665		}
2666		sfp_sm_link_check_los(sfp);
2667
2668		/* Reset the fault retry count */
2669		sfp->sm_fault_retries = N_FAULT;
2670		break;
2671
2672	case SFP_S_INIT_TX_FAULT:
2673		if (event == SFP_E_TIMEOUT) {
2674			sfp_module_tx_fault_reset(sfp);
2675			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2676		}
2677		break;
2678
2679	case SFP_S_WAIT_LOS:
2680		if (event == SFP_E_TX_FAULT)
2681			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2682		else if (sfp_los_event_inactive(sfp, event))
2683			sfp_sm_link_up(sfp);
2684		break;
2685
2686	case SFP_S_LINK_UP:
2687		if (event == SFP_E_TX_FAULT) {
2688			sfp_sm_link_down(sfp);
2689			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2690		} else if (sfp_los_event_active(sfp, event)) {
2691			sfp_sm_link_down(sfp);
2692			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2693		}
2694		break;
2695
2696	case SFP_S_TX_FAULT:
2697		if (event == SFP_E_TIMEOUT) {
2698			sfp_module_tx_fault_reset(sfp);
2699			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2700		}
2701		break;
2702
2703	case SFP_S_REINIT:
2704		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2705			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2706		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2707			dev_info(sfp->dev, "module transmit fault recovered\n");
2708			sfp_sm_link_check_los(sfp);
2709		}
2710		break;
2711
2712	case SFP_S_TX_DISABLE:
2713		break;
2714	}
2715}
2716
2717static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2718{
2719	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2720		mod_state_to_str(sfp->sm_mod_state),
2721		dev_state_to_str(sfp->sm_dev_state),
2722		sm_state_to_str(sfp->sm_state),
2723		event_to_str(event));
2724
2725	sfp_sm_device(sfp, event);
2726	sfp_sm_module(sfp, event);
2727	sfp_sm_main(sfp, event);
2728
2729	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2730		mod_state_to_str(sfp->sm_mod_state),
2731		dev_state_to_str(sfp->sm_dev_state),
2732		sm_state_to_str(sfp->sm_state));
2733}
2734
2735static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2736{
2737	mutex_lock(&sfp->sm_mutex);
2738	__sfp_sm_event(sfp, event);
2739	mutex_unlock(&sfp->sm_mutex);
2740}
2741
2742static void sfp_attach(struct sfp *sfp)
2743{
2744	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2745}
2746
2747static void sfp_detach(struct sfp *sfp)
2748{
2749	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2750}
2751
2752static void sfp_start(struct sfp *sfp)
2753{
2754	sfp_sm_event(sfp, SFP_E_DEV_UP);
2755}
2756
2757static void sfp_stop(struct sfp *sfp)
2758{
2759	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2760}
2761
2762static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2763{
2764	unsigned int set;
2765
2766	sfp->rate_kbd = rate_kbd;
2767
2768	if (rate_kbd > sfp->rs_threshold_kbd)
2769		set = sfp->rs_state_mask;
2770	else
2771		set = 0;
2772
2773	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2774}
2775
2776static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2777{
2778	/* locking... and check module is present */
2779
2780	if (sfp->id.ext.sff8472_compliance &&
2781	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2782		modinfo->type = ETH_MODULE_SFF_8472;
2783		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2784	} else {
2785		modinfo->type = ETH_MODULE_SFF_8079;
2786		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2787	}
2788	return 0;
2789}
2790
2791static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2792			     u8 *data)
2793{
2794	unsigned int first, last, len;
2795	int ret;
2796
2797	if (!(sfp->state & SFP_F_PRESENT))
2798		return -ENODEV;
2799
2800	if (ee->len == 0)
2801		return -EINVAL;
2802
2803	first = ee->offset;
2804	last = ee->offset + ee->len;
2805	if (first < ETH_MODULE_SFF_8079_LEN) {
2806		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2807		len -= first;
2808
2809		ret = sfp_read(sfp, false, first, data, len);
2810		if (ret < 0)
2811			return ret;
2812
2813		first += len;
2814		data += len;
2815	}
2816	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2817		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2818		len -= first;
2819		first -= ETH_MODULE_SFF_8079_LEN;
2820
2821		ret = sfp_read(sfp, true, first, data, len);
2822		if (ret < 0)
2823			return ret;
2824	}
2825	return 0;
2826}
2827
2828static int sfp_module_eeprom_by_page(struct sfp *sfp,
2829				     const struct ethtool_module_eeprom *page,
2830				     struct netlink_ext_ack *extack)
2831{
2832	if (!(sfp->state & SFP_F_PRESENT))
2833		return -ENODEV;
2834
2835	if (page->bank) {
2836		NL_SET_ERR_MSG(extack, "Banks not supported");
2837		return -EOPNOTSUPP;
2838	}
2839
2840	if (page->page) {
2841		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2842		return -EOPNOTSUPP;
2843	}
2844
2845	if (page->i2c_address != 0x50 &&
2846	    page->i2c_address != 0x51) {
2847		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2848		return -EOPNOTSUPP;
2849	}
2850
2851	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2852			page->data, page->length);
2853};
2854
2855static const struct sfp_socket_ops sfp_module_ops = {
2856	.attach = sfp_attach,
2857	.detach = sfp_detach,
2858	.start = sfp_start,
2859	.stop = sfp_stop,
2860	.set_signal_rate = sfp_set_signal_rate,
2861	.module_info = sfp_module_info,
2862	.module_eeprom = sfp_module_eeprom,
2863	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2864};
2865
2866static void sfp_timeout(struct work_struct *work)
2867{
2868	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2869
2870	rtnl_lock();
2871	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2872	rtnl_unlock();
2873}
2874
2875static void sfp_check_state(struct sfp *sfp)
2876{
2877	unsigned int state, i, changed;
2878
2879	rtnl_lock();
2880	mutex_lock(&sfp->st_mutex);
2881	state = sfp_get_state(sfp);
2882	changed = state ^ sfp->state;
2883	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2884
2885	for (i = 0; i < GPIO_MAX; i++)
2886		if (changed & BIT(i))
2887			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2888				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2889
2890	state |= sfp->state & SFP_F_OUTPUTS;
2891	sfp->state = state;
2892	mutex_unlock(&sfp->st_mutex);
2893
2894	mutex_lock(&sfp->sm_mutex);
2895	if (changed & SFP_F_PRESENT)
2896		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2897				    SFP_E_INSERT : SFP_E_REMOVE);
2898
2899	if (changed & SFP_F_TX_FAULT)
2900		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2901				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2902
2903	if (changed & SFP_F_LOS)
2904		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2905				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2906	mutex_unlock(&sfp->sm_mutex);
2907	rtnl_unlock();
2908}
2909
2910static irqreturn_t sfp_irq(int irq, void *data)
2911{
2912	struct sfp *sfp = data;
2913
2914	sfp_check_state(sfp);
2915
2916	return IRQ_HANDLED;
2917}
2918
2919static void sfp_poll(struct work_struct *work)
2920{
2921	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2922
2923	sfp_check_state(sfp);
2924
2925	// st_mutex doesn't need to be held here for state_soft_mask,
2926	// it's unimportant if we race while reading this.
2927	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2928	    sfp->need_poll)
2929		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2930}
2931
2932static struct sfp *sfp_alloc(struct device *dev)
2933{
2934	struct sfp *sfp;
2935
2936	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2937	if (!sfp)
2938		return ERR_PTR(-ENOMEM);
2939
2940	sfp->dev = dev;
2941	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2942
2943	mutex_init(&sfp->sm_mutex);
2944	mutex_init(&sfp->st_mutex);
2945	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2946	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2947
2948	sfp_hwmon_init(sfp);
2949
2950	return sfp;
2951}
2952
2953static void sfp_cleanup(void *data)
2954{
2955	struct sfp *sfp = data;
2956
2957	sfp_hwmon_exit(sfp);
2958
2959	cancel_delayed_work_sync(&sfp->poll);
2960	cancel_delayed_work_sync(&sfp->timeout);
2961	if (sfp->i2c_mii) {
2962		mdiobus_unregister(sfp->i2c_mii);
2963		mdiobus_free(sfp->i2c_mii);
2964	}
2965	if (sfp->i2c)
2966		i2c_put_adapter(sfp->i2c);
2967	kfree(sfp);
2968}
2969
2970static int sfp_i2c_get(struct sfp *sfp)
2971{
2972	struct fwnode_handle *h;
2973	struct i2c_adapter *i2c;
2974	int err;
2975
2976	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2977	if (IS_ERR(h)) {
2978		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2979		return -ENODEV;
2980	}
2981
2982	i2c = i2c_get_adapter_by_fwnode(h);
2983	if (!i2c) {
2984		err = -EPROBE_DEFER;
2985		goto put;
2986	}
2987
2988	err = sfp_i2c_configure(sfp, i2c);
2989	if (err)
2990		i2c_put_adapter(i2c);
2991put:
2992	fwnode_handle_put(h);
2993	return err;
2994}
2995
2996static int sfp_probe(struct platform_device *pdev)
2997{
2998	const struct sff_data *sff;
2999	char *sfp_irq_name;
3000	struct sfp *sfp;
3001	int err, i;
3002
3003	sfp = sfp_alloc(&pdev->dev);
3004	if (IS_ERR(sfp))
3005		return PTR_ERR(sfp);
3006
3007	platform_set_drvdata(pdev, sfp);
3008
3009	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3010	if (err < 0)
3011		return err;
3012
3013	sff = device_get_match_data(sfp->dev);
3014	if (!sff)
3015		sff = &sfp_data;
3016
3017	sfp->type = sff;
3018
3019	err = sfp_i2c_get(sfp);
3020	if (err)
3021		return err;
3022
3023	for (i = 0; i < GPIO_MAX; i++)
3024		if (sff->gpios & BIT(i)) {
3025			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3026					   gpio_names[i], gpio_flags[i]);
3027			if (IS_ERR(sfp->gpio[i]))
3028				return PTR_ERR(sfp->gpio[i]);
3029		}
3030
3031	sfp->state_hw_mask = SFP_F_PRESENT;
3032	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3033
3034	sfp->get_state = sfp_gpio_get_state;
3035	sfp->set_state = sfp_gpio_set_state;
3036
3037	/* Modules that have no detect signal are always present */
3038	if (!(sfp->gpio[GPIO_MODDEF0]))
3039		sfp->get_state = sff_gpio_get_state;
3040
3041	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3042				 &sfp->max_power_mW);
3043	if (sfp->max_power_mW < 1000) {
3044		if (sfp->max_power_mW)
3045			dev_warn(sfp->dev,
3046				 "Firmware bug: host maximum power should be at least 1W\n");
3047		sfp->max_power_mW = 1000;
3048	}
3049
3050	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3051		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3052
3053	/* Get the initial state, and always signal TX disable,
3054	 * since the network interface will not be up.
3055	 */
3056	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3057
3058	if (sfp->gpio[GPIO_RS0] &&
3059	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3060		sfp->state |= SFP_F_RS0;
3061	sfp_set_state(sfp, sfp->state);
3062	sfp_module_tx_disable(sfp);
3063	if (sfp->state & SFP_F_PRESENT) {
3064		rtnl_lock();
3065		sfp_sm_event(sfp, SFP_E_INSERT);
3066		rtnl_unlock();
3067	}
3068
3069	for (i = 0; i < GPIO_MAX; i++) {
3070		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3071			continue;
3072
3073		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3074		if (sfp->gpio_irq[i] < 0) {
3075			sfp->gpio_irq[i] = 0;
3076			sfp->need_poll = true;
3077			continue;
3078		}
3079
3080		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3081					      "%s-%s", dev_name(sfp->dev),
3082					      gpio_names[i]);
3083
3084		if (!sfp_irq_name)
3085			return -ENOMEM;
3086
3087		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3088						NULL, sfp_irq,
3089						IRQF_ONESHOT |
3090						IRQF_TRIGGER_RISING |
3091						IRQF_TRIGGER_FALLING,
3092						sfp_irq_name, sfp);
3093		if (err) {
3094			sfp->gpio_irq[i] = 0;
3095			sfp->need_poll = true;
3096		}
3097	}
3098
3099	if (sfp->need_poll)
3100		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3101
3102	/* We could have an issue in cases no Tx disable pin is available or
3103	 * wired as modules using a laser as their light source will continue to
3104	 * be active when the fiber is removed. This could be a safety issue and
3105	 * we should at least warn the user about that.
3106	 */
3107	if (!sfp->gpio[GPIO_TX_DISABLE])
3108		dev_warn(sfp->dev,
3109			 "No tx_disable pin: SFP modules will always be emitting.\n");
3110
3111	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3112	if (!sfp->sfp_bus)
3113		return -ENOMEM;
3114
3115	sfp_debugfs_init(sfp);
3116
3117	return 0;
3118}
3119
3120static void sfp_remove(struct platform_device *pdev)
3121{
3122	struct sfp *sfp = platform_get_drvdata(pdev);
3123
3124	sfp_debugfs_exit(sfp);
3125	sfp_unregister_socket(sfp->sfp_bus);
3126
3127	rtnl_lock();
3128	sfp_sm_event(sfp, SFP_E_REMOVE);
3129	rtnl_unlock();
3130}
3131
3132static void sfp_shutdown(struct platform_device *pdev)
3133{
3134	struct sfp *sfp = platform_get_drvdata(pdev);
3135	int i;
3136
3137	for (i = 0; i < GPIO_MAX; i++) {
3138		if (!sfp->gpio_irq[i])
3139			continue;
3140
3141		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3142	}
3143
3144	cancel_delayed_work_sync(&sfp->poll);
3145	cancel_delayed_work_sync(&sfp->timeout);
3146}
3147
3148static struct platform_driver sfp_driver = {
3149	.probe = sfp_probe,
3150	.remove = sfp_remove,
3151	.shutdown = sfp_shutdown,
3152	.driver = {
3153		.name = "sfp",
3154		.of_match_table = sfp_of_match,
3155	},
3156};
3157
3158static int sfp_init(void)
3159{
3160	poll_jiffies = msecs_to_jiffies(100);
3161
3162	return platform_driver_register(&sfp_driver);
3163}
3164module_init(sfp_init);
3165
3166static void sfp_exit(void)
3167{
3168	platform_driver_unregister(&sfp_driver);
3169}
3170module_exit(sfp_exit);
3171
3172MODULE_ALIAS("platform:sfp");
3173MODULE_AUTHOR("Russell King");
3174MODULE_LICENSE("GPL v2");
3175MODULE_DESCRIPTION("SFP cage support");