Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75};
76
77static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT msecs_to_jiffies(50)
173#define T_START_UP msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US 10
180#define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT 5
188#define N_FAULT 5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY msecs_to_jiffies(50)
194#define R_PHY_RETRY 25
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT 10
207#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW 12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR 22
216#define SFP_PHY_ADDR_ROLLBALL 17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE 16
223
224struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
262
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
273
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278 unsigned int phy_t_retry;
279
280 unsigned int rate_kbd;
281 unsigned int rs_threshold_kbd;
282 unsigned int rs_state_mask;
283
284 bool have_a2;
285
286 const struct sfp_quirk *quirk;
287
288#if IS_ENABLED(CONFIG_HWMON)
289 struct sfp_diag diag;
290 struct delayed_work hwmon_probe;
291 unsigned int hwmon_tries;
292 struct device *hwmon_dev;
293 char *hwmon_name;
294#endif
295
296#if IS_ENABLED(CONFIG_DEBUG_FS)
297 struct dentry *debugfs_dir;
298#endif
299};
300
301static bool sff_module_supported(const struct sfp_eeprom_id *id)
302{
303 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305}
306
307static const struct sff_data sff_data = {
308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 .module_supported = sff_module_supported,
310};
311
312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313{
314 if (id->base.phys_id == SFF8024_ID_SFP &&
315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 return true;
317
318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 * as supported based on vendor name and pn match.
321 */
322 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
326 return true;
327
328 return false;
329}
330
331static const struct sff_data sfp_data = {
332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 .module_supported = sfp_module_supported,
335};
336
337static const struct of_device_id sfp_of_match[] = {
338 { .compatible = "sff,sff", .data = &sff_data, },
339 { .compatible = "sff,sfp", .data = &sfp_data, },
340 { },
341};
342MODULE_DEVICE_TABLE(of, sfp_of_match);
343
344static void sfp_fixup_long_startup(struct sfp *sfp)
345{
346 sfp->module_t_start_up = T_START_UP_BAD_GPON;
347}
348
349static void sfp_fixup_ignore_los(struct sfp *sfp)
350{
351 /* This forces LOS to zero, so we ignore transitions */
352 sfp->state_ignore_mask |= SFP_F_LOS;
353 /* Make sure that LOS options are clear */
354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 SFP_OPTIONS_LOS_NORMAL);
356}
357
358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359{
360 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361}
362
363static void sfp_fixup_nokia(struct sfp *sfp)
364{
365 sfp_fixup_long_startup(sfp);
366 sfp_fixup_ignore_los(sfp);
367}
368
369// For 10GBASE-T short-reach modules
370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371{
372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374}
375
376static void sfp_fixup_rollball(struct sfp *sfp)
377{
378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379
380 /* RollBall modules may disallow access to PHY registers for up to 25
381 * seconds, and the reads return 0xffff before that. Increase the time
382 * between PHY probe retries from 50ms to 1s so that we will wait for
383 * the PHY for a sufficient amount of time.
384 */
385 sfp->phy_t_retry = msecs_to_jiffies(1000);
386}
387
388static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
389{
390 sfp_fixup_rollball(sfp);
391
392 /* The RollBall fixup is not enough for FS modules, the PHY chip inside
393 * them does not return 0xffff for PHY ID registers in all MMDs for the
394 * while initializing. They need a 4 second wait before accessing PHY.
395 */
396 sfp->module_t_wait = msecs_to_jiffies(4000);
397}
398
399static void sfp_fixup_fs_10gt(struct sfp *sfp)
400{
401 sfp_fixup_10gbaset_30m(sfp);
402 sfp_fixup_fs_2_5gt(sfp);
403}
404
405static void sfp_fixup_halny_gsfp(struct sfp *sfp)
406{
407 /* Ignore the TX_FAULT and LOS signals on this module.
408 * these are possibly used for other purposes on this
409 * module, e.g. a serial port.
410 */
411 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
412}
413
414static void sfp_fixup_rollball_cc(struct sfp *sfp)
415{
416 sfp_fixup_rollball(sfp);
417
418 /* Some RollBall SFPs may have wrong (zero) extended compliance code
419 * burned in EEPROM. For PHY probing we need the correct one.
420 */
421 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
422}
423
424static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427{
428 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
429 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
430}
431
432static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
433 unsigned long *modes,
434 unsigned long *interfaces)
435{
436 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
437}
438
439static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
440 unsigned long *modes,
441 unsigned long *interfaces)
442{
443 /* Copper 2.5G SFP */
444 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
445 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
446 sfp_quirk_disable_autoneg(id, modes, interfaces);
447}
448
449static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
450 unsigned long *modes,
451 unsigned long *interfaces)
452{
453 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
454 * types including 10G Ethernet which is not truth. So clear all claimed
455 * modes and set only one mode which module supports: 1000baseX_Full.
456 */
457 linkmode_zero(modes);
458 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
459}
460
461#define SFP_QUIRK(_v, _p, _m, _f) \
462 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
463#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
464#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
465
466static const struct sfp_quirk sfp_quirks[] = {
467 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
468 // report 2500MBd NRZ in their EEPROM
469 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
470 sfp_fixup_ignore_tx_fault),
471
472 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
473 // NRZ in their EEPROM
474 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
475 sfp_fixup_nokia),
476
477 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
478 // protocol to talk to the PHY and needs 4 sec wait before probing the
479 // PHY.
480 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
481
482 // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
483 // needs 4 sec wait before probing the PHY.
484 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
485
486 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
487 // NRZ in their EEPROM
488 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
489 sfp_fixup_ignore_tx_fault),
490
491 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
492
493 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
494 // 2600MBd in their EERPOM
495 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
496
497 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
498 // their EEPROM
499 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
500 sfp_fixup_ignore_tx_fault),
501
502 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
503 // 2500MBd NRZ in their EEPROM
504 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
505
506 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
507
508 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
509 // Rollball protocol to talk to the PHY.
510 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
511 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
512
513 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
514 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
515
516 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
517 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
518 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
519 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
520 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
521 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
522 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
523};
524
525static size_t sfp_strlen(const char *str, size_t maxlen)
526{
527 size_t size, i;
528
529 /* Trailing characters should be filled with space chars, but
530 * some manufacturers can't read SFF-8472 and use NUL.
531 */
532 for (i = 0, size = 0; i < maxlen; i++)
533 if (str[i] != ' ' && str[i] != '\0')
534 size = i + 1;
535
536 return size;
537}
538
539static bool sfp_match(const char *qs, const char *str, size_t len)
540{
541 if (!qs)
542 return true;
543 if (strlen(qs) != len)
544 return false;
545 return !strncmp(qs, str, len);
546}
547
548static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
549{
550 const struct sfp_quirk *q;
551 unsigned int i;
552 size_t vs, ps;
553
554 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
555 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
556
557 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
558 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
559 sfp_match(q->part, id->base.vendor_pn, ps))
560 return q;
561
562 return NULL;
563}
564
565static unsigned long poll_jiffies;
566
567static unsigned int sfp_gpio_get_state(struct sfp *sfp)
568{
569 unsigned int i, state, v;
570
571 for (i = state = 0; i < GPIO_MAX; i++) {
572 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
573 continue;
574
575 v = gpiod_get_value_cansleep(sfp->gpio[i]);
576 if (v)
577 state |= BIT(i);
578 }
579
580 return state;
581}
582
583static unsigned int sff_gpio_get_state(struct sfp *sfp)
584{
585 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
586}
587
588static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
589{
590 unsigned int drive;
591
592 if (state & SFP_F_PRESENT)
593 /* If the module is present, drive the requested signals */
594 drive = sfp->state_hw_drive;
595 else
596 /* Otherwise, let them float to the pull-ups */
597 drive = 0;
598
599 if (sfp->gpio[GPIO_TX_DISABLE]) {
600 if (drive & SFP_F_TX_DISABLE)
601 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
602 state & SFP_F_TX_DISABLE);
603 else
604 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
605 }
606
607 if (sfp->gpio[GPIO_RS0]) {
608 if (drive & SFP_F_RS0)
609 gpiod_direction_output(sfp->gpio[GPIO_RS0],
610 state & SFP_F_RS0);
611 else
612 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
613 }
614
615 if (sfp->gpio[GPIO_RS1]) {
616 if (drive & SFP_F_RS1)
617 gpiod_direction_output(sfp->gpio[GPIO_RS1],
618 state & SFP_F_RS1);
619 else
620 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
621 }
622}
623
624static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
625 size_t len)
626{
627 struct i2c_msg msgs[2];
628 u8 bus_addr = a2 ? 0x51 : 0x50;
629 size_t block_size = sfp->i2c_block_size;
630 size_t this_len;
631 int ret;
632
633 msgs[0].addr = bus_addr;
634 msgs[0].flags = 0;
635 msgs[0].len = 1;
636 msgs[0].buf = &dev_addr;
637 msgs[1].addr = bus_addr;
638 msgs[1].flags = I2C_M_RD;
639 msgs[1].len = len;
640 msgs[1].buf = buf;
641
642 while (len) {
643 this_len = len;
644 if (this_len > block_size)
645 this_len = block_size;
646
647 msgs[1].len = this_len;
648
649 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
650 if (ret < 0)
651 return ret;
652
653 if (ret != ARRAY_SIZE(msgs))
654 break;
655
656 msgs[1].buf += this_len;
657 dev_addr += this_len;
658 len -= this_len;
659 }
660
661 return msgs[1].buf - (u8 *)buf;
662}
663
664static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
665 size_t len)
666{
667 struct i2c_msg msgs[1];
668 u8 bus_addr = a2 ? 0x51 : 0x50;
669 int ret;
670
671 msgs[0].addr = bus_addr;
672 msgs[0].flags = 0;
673 msgs[0].len = 1 + len;
674 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
675 if (!msgs[0].buf)
676 return -ENOMEM;
677
678 msgs[0].buf[0] = dev_addr;
679 memcpy(&msgs[0].buf[1], buf, len);
680
681 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
682
683 kfree(msgs[0].buf);
684
685 if (ret < 0)
686 return ret;
687
688 return ret == ARRAY_SIZE(msgs) ? len : 0;
689}
690
691static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
692{
693 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
694 return -EINVAL;
695
696 sfp->i2c = i2c;
697 sfp->read = sfp_i2c_read;
698 sfp->write = sfp_i2c_write;
699
700 return 0;
701}
702
703static int sfp_i2c_mdiobus_create(struct sfp *sfp)
704{
705 struct mii_bus *i2c_mii;
706 int ret;
707
708 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
709 if (IS_ERR(i2c_mii))
710 return PTR_ERR(i2c_mii);
711
712 i2c_mii->name = "SFP I2C Bus";
713 i2c_mii->phy_mask = ~0;
714
715 ret = mdiobus_register(i2c_mii);
716 if (ret < 0) {
717 mdiobus_free(i2c_mii);
718 return ret;
719 }
720
721 sfp->i2c_mii = i2c_mii;
722
723 return 0;
724}
725
726static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
727{
728 mdiobus_unregister(sfp->i2c_mii);
729 sfp->i2c_mii = NULL;
730}
731
732/* Interface */
733static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
734{
735 return sfp->read(sfp, a2, addr, buf, len);
736}
737
738static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
739{
740 return sfp->write(sfp, a2, addr, buf, len);
741}
742
743static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
744{
745 int ret;
746 u8 old, v;
747
748 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
749 if (ret != sizeof(old))
750 return ret;
751
752 v = (old & ~mask) | (val & mask);
753 if (v == old)
754 return sizeof(v);
755
756 return sfp_write(sfp, a2, addr, &v, sizeof(v));
757}
758
759static unsigned int sfp_soft_get_state(struct sfp *sfp)
760{
761 unsigned int state = 0;
762 u8 status;
763 int ret;
764
765 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
766 if (ret == sizeof(status)) {
767 if (status & SFP_STATUS_RX_LOS)
768 state |= SFP_F_LOS;
769 if (status & SFP_STATUS_TX_FAULT)
770 state |= SFP_F_TX_FAULT;
771 } else {
772 dev_err_ratelimited(sfp->dev,
773 "failed to read SFP soft status: %pe\n",
774 ERR_PTR(ret));
775 /* Preserve the current state */
776 state = sfp->state;
777 }
778
779 return state & sfp->state_soft_mask;
780}
781
782static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
783 unsigned int soft)
784{
785 u8 mask = 0;
786 u8 val = 0;
787
788 if (soft & SFP_F_TX_DISABLE)
789 mask |= SFP_STATUS_TX_DISABLE_FORCE;
790 if (state & SFP_F_TX_DISABLE)
791 val |= SFP_STATUS_TX_DISABLE_FORCE;
792
793 if (soft & SFP_F_RS0)
794 mask |= SFP_STATUS_RS0_SELECT;
795 if (state & SFP_F_RS0)
796 val |= SFP_STATUS_RS0_SELECT;
797
798 if (mask)
799 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
800
801 val = mask = 0;
802 if (soft & SFP_F_RS1)
803 mask |= SFP_EXT_STATUS_RS1_SELECT;
804 if (state & SFP_F_RS1)
805 val |= SFP_EXT_STATUS_RS1_SELECT;
806
807 if (mask)
808 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
809}
810
811static void sfp_soft_start_poll(struct sfp *sfp)
812{
813 const struct sfp_eeprom_id *id = &sfp->id;
814 unsigned int mask = 0;
815
816 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
817 mask |= SFP_F_TX_DISABLE;
818 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
819 mask |= SFP_F_TX_FAULT;
820 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
821 mask |= SFP_F_LOS;
822 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
823 mask |= sfp->rs_state_mask;
824
825 mutex_lock(&sfp->st_mutex);
826 // Poll the soft state for hardware pins we want to ignore
827 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
828 mask;
829
830 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
831 !sfp->need_poll)
832 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
833 mutex_unlock(&sfp->st_mutex);
834}
835
836static void sfp_soft_stop_poll(struct sfp *sfp)
837{
838 mutex_lock(&sfp->st_mutex);
839 sfp->state_soft_mask = 0;
840 mutex_unlock(&sfp->st_mutex);
841}
842
843/* sfp_get_state() - must be called with st_mutex held, or in the
844 * initialisation path.
845 */
846static unsigned int sfp_get_state(struct sfp *sfp)
847{
848 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
849 unsigned int state;
850
851 state = sfp->get_state(sfp) & sfp->state_hw_mask;
852 if (state & SFP_F_PRESENT && soft)
853 state |= sfp_soft_get_state(sfp);
854
855 return state;
856}
857
858/* sfp_set_state() - must be called with st_mutex held, or in the
859 * initialisation path.
860 */
861static void sfp_set_state(struct sfp *sfp, unsigned int state)
862{
863 unsigned int soft;
864
865 sfp->set_state(sfp, state);
866
867 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
868 if (state & SFP_F_PRESENT && soft)
869 sfp_soft_set_state(sfp, state, soft);
870}
871
872static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
873{
874 mutex_lock(&sfp->st_mutex);
875 sfp->state = (sfp->state & ~mask) | set;
876 sfp_set_state(sfp, sfp->state);
877 mutex_unlock(&sfp->st_mutex);
878}
879
880static unsigned int sfp_check(void *buf, size_t len)
881{
882 u8 *p, check;
883
884 for (p = buf, check = 0; len; p++, len--)
885 check += *p;
886
887 return check;
888}
889
890/* hwmon */
891#if IS_ENABLED(CONFIG_HWMON)
892static umode_t sfp_hwmon_is_visible(const void *data,
893 enum hwmon_sensor_types type,
894 u32 attr, int channel)
895{
896 const struct sfp *sfp = data;
897
898 switch (type) {
899 case hwmon_temp:
900 switch (attr) {
901 case hwmon_temp_min_alarm:
902 case hwmon_temp_max_alarm:
903 case hwmon_temp_lcrit_alarm:
904 case hwmon_temp_crit_alarm:
905 case hwmon_temp_min:
906 case hwmon_temp_max:
907 case hwmon_temp_lcrit:
908 case hwmon_temp_crit:
909 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
910 return 0;
911 fallthrough;
912 case hwmon_temp_input:
913 case hwmon_temp_label:
914 return 0444;
915 default:
916 return 0;
917 }
918 case hwmon_in:
919 switch (attr) {
920 case hwmon_in_min_alarm:
921 case hwmon_in_max_alarm:
922 case hwmon_in_lcrit_alarm:
923 case hwmon_in_crit_alarm:
924 case hwmon_in_min:
925 case hwmon_in_max:
926 case hwmon_in_lcrit:
927 case hwmon_in_crit:
928 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
929 return 0;
930 fallthrough;
931 case hwmon_in_input:
932 case hwmon_in_label:
933 return 0444;
934 default:
935 return 0;
936 }
937 case hwmon_curr:
938 switch (attr) {
939 case hwmon_curr_min_alarm:
940 case hwmon_curr_max_alarm:
941 case hwmon_curr_lcrit_alarm:
942 case hwmon_curr_crit_alarm:
943 case hwmon_curr_min:
944 case hwmon_curr_max:
945 case hwmon_curr_lcrit:
946 case hwmon_curr_crit:
947 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
948 return 0;
949 fallthrough;
950 case hwmon_curr_input:
951 case hwmon_curr_label:
952 return 0444;
953 default:
954 return 0;
955 }
956 case hwmon_power:
957 /* External calibration of receive power requires
958 * floating point arithmetic. Doing that in the kernel
959 * is not easy, so just skip it. If the module does
960 * not require external calibration, we can however
961 * show receiver power, since FP is then not needed.
962 */
963 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
964 channel == 1)
965 return 0;
966 switch (attr) {
967 case hwmon_power_min_alarm:
968 case hwmon_power_max_alarm:
969 case hwmon_power_lcrit_alarm:
970 case hwmon_power_crit_alarm:
971 case hwmon_power_min:
972 case hwmon_power_max:
973 case hwmon_power_lcrit:
974 case hwmon_power_crit:
975 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
976 return 0;
977 fallthrough;
978 case hwmon_power_input:
979 case hwmon_power_label:
980 return 0444;
981 default:
982 return 0;
983 }
984 default:
985 return 0;
986 }
987}
988
989static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
990{
991 __be16 val;
992 int err;
993
994 err = sfp_read(sfp, true, reg, &val, sizeof(val));
995 if (err < 0)
996 return err;
997
998 *value = be16_to_cpu(val);
999
1000 return 0;
1001}
1002
1003static void sfp_hwmon_to_rx_power(long *value)
1004{
1005 *value = DIV_ROUND_CLOSEST(*value, 10);
1006}
1007
1008static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1009 long *value)
1010{
1011 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1012 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1013}
1014
1015static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1016{
1017 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1018 be16_to_cpu(sfp->diag.cal_t_offset), value);
1019
1020 if (*value >= 0x8000)
1021 *value -= 0x10000;
1022
1023 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1024}
1025
1026static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1027{
1028 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1029 be16_to_cpu(sfp->diag.cal_v_offset), value);
1030
1031 *value = DIV_ROUND_CLOSEST(*value, 10);
1032}
1033
1034static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1035{
1036 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1037 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1038
1039 *value = DIV_ROUND_CLOSEST(*value, 500);
1040}
1041
1042static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1043{
1044 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1045 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1046
1047 *value = DIV_ROUND_CLOSEST(*value, 10);
1048}
1049
1050static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1051{
1052 int err;
1053
1054 err = sfp_hwmon_read_sensor(sfp, reg, value);
1055 if (err < 0)
1056 return err;
1057
1058 sfp_hwmon_calibrate_temp(sfp, value);
1059
1060 return 0;
1061}
1062
1063static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1064{
1065 int err;
1066
1067 err = sfp_hwmon_read_sensor(sfp, reg, value);
1068 if (err < 0)
1069 return err;
1070
1071 sfp_hwmon_calibrate_vcc(sfp, value);
1072
1073 return 0;
1074}
1075
1076static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1077{
1078 int err;
1079
1080 err = sfp_hwmon_read_sensor(sfp, reg, value);
1081 if (err < 0)
1082 return err;
1083
1084 sfp_hwmon_calibrate_bias(sfp, value);
1085
1086 return 0;
1087}
1088
1089static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1090{
1091 int err;
1092
1093 err = sfp_hwmon_read_sensor(sfp, reg, value);
1094 if (err < 0)
1095 return err;
1096
1097 sfp_hwmon_calibrate_tx_power(sfp, value);
1098
1099 return 0;
1100}
1101
1102static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1103{
1104 int err;
1105
1106 err = sfp_hwmon_read_sensor(sfp, reg, value);
1107 if (err < 0)
1108 return err;
1109
1110 sfp_hwmon_to_rx_power(value);
1111
1112 return 0;
1113}
1114
1115static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1116{
1117 u8 status;
1118 int err;
1119
1120 switch (attr) {
1121 case hwmon_temp_input:
1122 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1123
1124 case hwmon_temp_lcrit:
1125 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1126 sfp_hwmon_calibrate_temp(sfp, value);
1127 return 0;
1128
1129 case hwmon_temp_min:
1130 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1131 sfp_hwmon_calibrate_temp(sfp, value);
1132 return 0;
1133 case hwmon_temp_max:
1134 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1135 sfp_hwmon_calibrate_temp(sfp, value);
1136 return 0;
1137
1138 case hwmon_temp_crit:
1139 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1140 sfp_hwmon_calibrate_temp(sfp, value);
1141 return 0;
1142
1143 case hwmon_temp_lcrit_alarm:
1144 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1145 if (err < 0)
1146 return err;
1147
1148 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1149 return 0;
1150
1151 case hwmon_temp_min_alarm:
1152 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1153 if (err < 0)
1154 return err;
1155
1156 *value = !!(status & SFP_WARN0_TEMP_LOW);
1157 return 0;
1158
1159 case hwmon_temp_max_alarm:
1160 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1161 if (err < 0)
1162 return err;
1163
1164 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1165 return 0;
1166
1167 case hwmon_temp_crit_alarm:
1168 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1169 if (err < 0)
1170 return err;
1171
1172 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1173 return 0;
1174 default:
1175 return -EOPNOTSUPP;
1176 }
1177
1178 return -EOPNOTSUPP;
1179}
1180
1181static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1182{
1183 u8 status;
1184 int err;
1185
1186 switch (attr) {
1187 case hwmon_in_input:
1188 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1189
1190 case hwmon_in_lcrit:
1191 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1192 sfp_hwmon_calibrate_vcc(sfp, value);
1193 return 0;
1194
1195 case hwmon_in_min:
1196 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1197 sfp_hwmon_calibrate_vcc(sfp, value);
1198 return 0;
1199
1200 case hwmon_in_max:
1201 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1202 sfp_hwmon_calibrate_vcc(sfp, value);
1203 return 0;
1204
1205 case hwmon_in_crit:
1206 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1207 sfp_hwmon_calibrate_vcc(sfp, value);
1208 return 0;
1209
1210 case hwmon_in_lcrit_alarm:
1211 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1212 if (err < 0)
1213 return err;
1214
1215 *value = !!(status & SFP_ALARM0_VCC_LOW);
1216 return 0;
1217
1218 case hwmon_in_min_alarm:
1219 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1220 if (err < 0)
1221 return err;
1222
1223 *value = !!(status & SFP_WARN0_VCC_LOW);
1224 return 0;
1225
1226 case hwmon_in_max_alarm:
1227 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1228 if (err < 0)
1229 return err;
1230
1231 *value = !!(status & SFP_WARN0_VCC_HIGH);
1232 return 0;
1233
1234 case hwmon_in_crit_alarm:
1235 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1236 if (err < 0)
1237 return err;
1238
1239 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1240 return 0;
1241 default:
1242 return -EOPNOTSUPP;
1243 }
1244
1245 return -EOPNOTSUPP;
1246}
1247
1248static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1249{
1250 u8 status;
1251 int err;
1252
1253 switch (attr) {
1254 case hwmon_curr_input:
1255 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1256
1257 case hwmon_curr_lcrit:
1258 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1259 sfp_hwmon_calibrate_bias(sfp, value);
1260 return 0;
1261
1262 case hwmon_curr_min:
1263 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1264 sfp_hwmon_calibrate_bias(sfp, value);
1265 return 0;
1266
1267 case hwmon_curr_max:
1268 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1269 sfp_hwmon_calibrate_bias(sfp, value);
1270 return 0;
1271
1272 case hwmon_curr_crit:
1273 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1274 sfp_hwmon_calibrate_bias(sfp, value);
1275 return 0;
1276
1277 case hwmon_curr_lcrit_alarm:
1278 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1279 if (err < 0)
1280 return err;
1281
1282 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1283 return 0;
1284
1285 case hwmon_curr_min_alarm:
1286 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1287 if (err < 0)
1288 return err;
1289
1290 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1291 return 0;
1292
1293 case hwmon_curr_max_alarm:
1294 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1295 if (err < 0)
1296 return err;
1297
1298 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1299 return 0;
1300
1301 case hwmon_curr_crit_alarm:
1302 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1303 if (err < 0)
1304 return err;
1305
1306 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1307 return 0;
1308 default:
1309 return -EOPNOTSUPP;
1310 }
1311
1312 return -EOPNOTSUPP;
1313}
1314
1315static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1316{
1317 u8 status;
1318 int err;
1319
1320 switch (attr) {
1321 case hwmon_power_input:
1322 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1323
1324 case hwmon_power_lcrit:
1325 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1326 sfp_hwmon_calibrate_tx_power(sfp, value);
1327 return 0;
1328
1329 case hwmon_power_min:
1330 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1331 sfp_hwmon_calibrate_tx_power(sfp, value);
1332 return 0;
1333
1334 case hwmon_power_max:
1335 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1336 sfp_hwmon_calibrate_tx_power(sfp, value);
1337 return 0;
1338
1339 case hwmon_power_crit:
1340 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1341 sfp_hwmon_calibrate_tx_power(sfp, value);
1342 return 0;
1343
1344 case hwmon_power_lcrit_alarm:
1345 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1346 if (err < 0)
1347 return err;
1348
1349 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1350 return 0;
1351
1352 case hwmon_power_min_alarm:
1353 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1354 if (err < 0)
1355 return err;
1356
1357 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1358 return 0;
1359
1360 case hwmon_power_max_alarm:
1361 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1362 if (err < 0)
1363 return err;
1364
1365 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1366 return 0;
1367
1368 case hwmon_power_crit_alarm:
1369 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1370 if (err < 0)
1371 return err;
1372
1373 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1374 return 0;
1375 default:
1376 return -EOPNOTSUPP;
1377 }
1378
1379 return -EOPNOTSUPP;
1380}
1381
1382static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1383{
1384 u8 status;
1385 int err;
1386
1387 switch (attr) {
1388 case hwmon_power_input:
1389 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1390
1391 case hwmon_power_lcrit:
1392 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1393 sfp_hwmon_to_rx_power(value);
1394 return 0;
1395
1396 case hwmon_power_min:
1397 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1398 sfp_hwmon_to_rx_power(value);
1399 return 0;
1400
1401 case hwmon_power_max:
1402 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1403 sfp_hwmon_to_rx_power(value);
1404 return 0;
1405
1406 case hwmon_power_crit:
1407 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1408 sfp_hwmon_to_rx_power(value);
1409 return 0;
1410
1411 case hwmon_power_lcrit_alarm:
1412 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1413 if (err < 0)
1414 return err;
1415
1416 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1417 return 0;
1418
1419 case hwmon_power_min_alarm:
1420 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1421 if (err < 0)
1422 return err;
1423
1424 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1425 return 0;
1426
1427 case hwmon_power_max_alarm:
1428 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1429 if (err < 0)
1430 return err;
1431
1432 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1433 return 0;
1434
1435 case hwmon_power_crit_alarm:
1436 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1437 if (err < 0)
1438 return err;
1439
1440 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1441 return 0;
1442 default:
1443 return -EOPNOTSUPP;
1444 }
1445
1446 return -EOPNOTSUPP;
1447}
1448
1449static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1450 u32 attr, int channel, long *value)
1451{
1452 struct sfp *sfp = dev_get_drvdata(dev);
1453
1454 switch (type) {
1455 case hwmon_temp:
1456 return sfp_hwmon_temp(sfp, attr, value);
1457 case hwmon_in:
1458 return sfp_hwmon_vcc(sfp, attr, value);
1459 case hwmon_curr:
1460 return sfp_hwmon_bias(sfp, attr, value);
1461 case hwmon_power:
1462 switch (channel) {
1463 case 0:
1464 return sfp_hwmon_tx_power(sfp, attr, value);
1465 case 1:
1466 return sfp_hwmon_rx_power(sfp, attr, value);
1467 default:
1468 return -EOPNOTSUPP;
1469 }
1470 default:
1471 return -EOPNOTSUPP;
1472 }
1473}
1474
1475static const char *const sfp_hwmon_power_labels[] = {
1476 "TX_power",
1477 "RX_power",
1478};
1479
1480static int sfp_hwmon_read_string(struct device *dev,
1481 enum hwmon_sensor_types type,
1482 u32 attr, int channel, const char **str)
1483{
1484 switch (type) {
1485 case hwmon_curr:
1486 switch (attr) {
1487 case hwmon_curr_label:
1488 *str = "bias";
1489 return 0;
1490 default:
1491 return -EOPNOTSUPP;
1492 }
1493 break;
1494 case hwmon_temp:
1495 switch (attr) {
1496 case hwmon_temp_label:
1497 *str = "temperature";
1498 return 0;
1499 default:
1500 return -EOPNOTSUPP;
1501 }
1502 break;
1503 case hwmon_in:
1504 switch (attr) {
1505 case hwmon_in_label:
1506 *str = "VCC";
1507 return 0;
1508 default:
1509 return -EOPNOTSUPP;
1510 }
1511 break;
1512 case hwmon_power:
1513 switch (attr) {
1514 case hwmon_power_label:
1515 *str = sfp_hwmon_power_labels[channel];
1516 return 0;
1517 default:
1518 return -EOPNOTSUPP;
1519 }
1520 break;
1521 default:
1522 return -EOPNOTSUPP;
1523 }
1524
1525 return -EOPNOTSUPP;
1526}
1527
1528static const struct hwmon_ops sfp_hwmon_ops = {
1529 .is_visible = sfp_hwmon_is_visible,
1530 .read = sfp_hwmon_read,
1531 .read_string = sfp_hwmon_read_string,
1532};
1533
1534static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1535 HWMON_CHANNEL_INFO(chip,
1536 HWMON_C_REGISTER_TZ),
1537 HWMON_CHANNEL_INFO(in,
1538 HWMON_I_INPUT |
1539 HWMON_I_MAX | HWMON_I_MIN |
1540 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1541 HWMON_I_CRIT | HWMON_I_LCRIT |
1542 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1543 HWMON_I_LABEL),
1544 HWMON_CHANNEL_INFO(temp,
1545 HWMON_T_INPUT |
1546 HWMON_T_MAX | HWMON_T_MIN |
1547 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1548 HWMON_T_CRIT | HWMON_T_LCRIT |
1549 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1550 HWMON_T_LABEL),
1551 HWMON_CHANNEL_INFO(curr,
1552 HWMON_C_INPUT |
1553 HWMON_C_MAX | HWMON_C_MIN |
1554 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1555 HWMON_C_CRIT | HWMON_C_LCRIT |
1556 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1557 HWMON_C_LABEL),
1558 HWMON_CHANNEL_INFO(power,
1559 /* Transmit power */
1560 HWMON_P_INPUT |
1561 HWMON_P_MAX | HWMON_P_MIN |
1562 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1563 HWMON_P_CRIT | HWMON_P_LCRIT |
1564 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1565 HWMON_P_LABEL,
1566 /* Receive power */
1567 HWMON_P_INPUT |
1568 HWMON_P_MAX | HWMON_P_MIN |
1569 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1570 HWMON_P_CRIT | HWMON_P_LCRIT |
1571 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1572 HWMON_P_LABEL),
1573 NULL,
1574};
1575
1576static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1577 .ops = &sfp_hwmon_ops,
1578 .info = sfp_hwmon_info,
1579};
1580
1581static void sfp_hwmon_probe(struct work_struct *work)
1582{
1583 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1584 int err;
1585
1586 /* hwmon interface needs to access 16bit registers in atomic way to
1587 * guarantee coherency of the diagnostic monitoring data. If it is not
1588 * possible to guarantee coherency because EEPROM is broken in such way
1589 * that does not support atomic 16bit read operation then we have to
1590 * skip registration of hwmon device.
1591 */
1592 if (sfp->i2c_block_size < 2) {
1593 dev_info(sfp->dev,
1594 "skipping hwmon device registration due to broken EEPROM\n");
1595 dev_info(sfp->dev,
1596 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1597 return;
1598 }
1599
1600 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1601 if (err < 0) {
1602 if (sfp->hwmon_tries--) {
1603 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1604 T_PROBE_RETRY_SLOW);
1605 } else {
1606 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1607 ERR_PTR(err));
1608 }
1609 return;
1610 }
1611
1612 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1613 if (IS_ERR(sfp->hwmon_name)) {
1614 dev_err(sfp->dev, "out of memory for hwmon name\n");
1615 return;
1616 }
1617
1618 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1619 sfp->hwmon_name, sfp,
1620 &sfp_hwmon_chip_info,
1621 NULL);
1622 if (IS_ERR(sfp->hwmon_dev))
1623 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1624 PTR_ERR(sfp->hwmon_dev));
1625}
1626
1627static int sfp_hwmon_insert(struct sfp *sfp)
1628{
1629 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1630 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1631 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1632 }
1633
1634 return 0;
1635}
1636
1637static void sfp_hwmon_remove(struct sfp *sfp)
1638{
1639 cancel_delayed_work_sync(&sfp->hwmon_probe);
1640 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1641 hwmon_device_unregister(sfp->hwmon_dev);
1642 sfp->hwmon_dev = NULL;
1643 kfree(sfp->hwmon_name);
1644 }
1645}
1646
1647static int sfp_hwmon_init(struct sfp *sfp)
1648{
1649 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1650
1651 return 0;
1652}
1653
1654static void sfp_hwmon_exit(struct sfp *sfp)
1655{
1656 cancel_delayed_work_sync(&sfp->hwmon_probe);
1657}
1658#else
1659static int sfp_hwmon_insert(struct sfp *sfp)
1660{
1661 return 0;
1662}
1663
1664static void sfp_hwmon_remove(struct sfp *sfp)
1665{
1666}
1667
1668static int sfp_hwmon_init(struct sfp *sfp)
1669{
1670 return 0;
1671}
1672
1673static void sfp_hwmon_exit(struct sfp *sfp)
1674{
1675}
1676#endif
1677
1678/* Helpers */
1679static void sfp_module_tx_disable(struct sfp *sfp)
1680{
1681 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1682 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1683 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1684}
1685
1686static void sfp_module_tx_enable(struct sfp *sfp)
1687{
1688 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1689 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1690 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1691}
1692
1693#if IS_ENABLED(CONFIG_DEBUG_FS)
1694static int sfp_debug_state_show(struct seq_file *s, void *data)
1695{
1696 struct sfp *sfp = s->private;
1697
1698 seq_printf(s, "Module state: %s\n",
1699 mod_state_to_str(sfp->sm_mod_state));
1700 seq_printf(s, "Module probe attempts: %d %d\n",
1701 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1702 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1703 seq_printf(s, "Device state: %s\n",
1704 dev_state_to_str(sfp->sm_dev_state));
1705 seq_printf(s, "Main state: %s\n",
1706 sm_state_to_str(sfp->sm_state));
1707 seq_printf(s, "Fault recovery remaining retries: %d\n",
1708 sfp->sm_fault_retries);
1709 seq_printf(s, "PHY probe remaining retries: %d\n",
1710 sfp->sm_phy_retries);
1711 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1712 seq_printf(s, "Rate select threshold: %u kBd\n",
1713 sfp->rs_threshold_kbd);
1714 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1715 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1716 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1717 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1718 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1719 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1720 return 0;
1721}
1722DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1723
1724static void sfp_debugfs_init(struct sfp *sfp)
1725{
1726 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1727
1728 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1729 &sfp_debug_state_fops);
1730}
1731
1732static void sfp_debugfs_exit(struct sfp *sfp)
1733{
1734 debugfs_remove_recursive(sfp->debugfs_dir);
1735}
1736#else
1737static void sfp_debugfs_init(struct sfp *sfp)
1738{
1739}
1740
1741static void sfp_debugfs_exit(struct sfp *sfp)
1742{
1743}
1744#endif
1745
1746static void sfp_module_tx_fault_reset(struct sfp *sfp)
1747{
1748 unsigned int state;
1749
1750 mutex_lock(&sfp->st_mutex);
1751 state = sfp->state;
1752 if (!(state & SFP_F_TX_DISABLE)) {
1753 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1754
1755 udelay(T_RESET_US);
1756
1757 sfp_set_state(sfp, state);
1758 }
1759 mutex_unlock(&sfp->st_mutex);
1760}
1761
1762/* SFP state machine */
1763static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1764{
1765 if (timeout)
1766 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1767 timeout);
1768 else
1769 cancel_delayed_work(&sfp->timeout);
1770}
1771
1772static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1773 unsigned int timeout)
1774{
1775 sfp->sm_state = state;
1776 sfp_sm_set_timer(sfp, timeout);
1777}
1778
1779static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1780 unsigned int timeout)
1781{
1782 sfp->sm_mod_state = state;
1783 sfp_sm_set_timer(sfp, timeout);
1784}
1785
1786static void sfp_sm_phy_detach(struct sfp *sfp)
1787{
1788 sfp_remove_phy(sfp->sfp_bus);
1789 phy_device_remove(sfp->mod_phy);
1790 phy_device_free(sfp->mod_phy);
1791 sfp->mod_phy = NULL;
1792}
1793
1794static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1795{
1796 struct phy_device *phy;
1797 int err;
1798
1799 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1800 if (phy == ERR_PTR(-ENODEV))
1801 return PTR_ERR(phy);
1802 if (IS_ERR(phy)) {
1803 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1804 return PTR_ERR(phy);
1805 }
1806
1807 /* Mark this PHY as being on a SFP module */
1808 phy->is_on_sfp_module = true;
1809
1810 err = phy_device_register(phy);
1811 if (err) {
1812 phy_device_free(phy);
1813 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1814 ERR_PTR(err));
1815 return err;
1816 }
1817
1818 err = sfp_add_phy(sfp->sfp_bus, phy);
1819 if (err) {
1820 phy_device_remove(phy);
1821 phy_device_free(phy);
1822 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1823 return err;
1824 }
1825
1826 sfp->mod_phy = phy;
1827
1828 return 0;
1829}
1830
1831static void sfp_sm_link_up(struct sfp *sfp)
1832{
1833 sfp_link_up(sfp->sfp_bus);
1834 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1835}
1836
1837static void sfp_sm_link_down(struct sfp *sfp)
1838{
1839 sfp_link_down(sfp->sfp_bus);
1840}
1841
1842static void sfp_sm_link_check_los(struct sfp *sfp)
1843{
1844 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1845 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1846 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1847 bool los = false;
1848
1849 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1850 * are set, we assume that no LOS signal is available. If both are
1851 * set, we assume LOS is not implemented (and is meaningless.)
1852 */
1853 if (los_options == los_inverted)
1854 los = !(sfp->state & SFP_F_LOS);
1855 else if (los_options == los_normal)
1856 los = !!(sfp->state & SFP_F_LOS);
1857
1858 if (los)
1859 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1860 else
1861 sfp_sm_link_up(sfp);
1862}
1863
1864static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1865{
1866 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1867 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1868 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1869
1870 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1871 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1872}
1873
1874static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1875{
1876 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1877 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1878 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1879
1880 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1881 (los_options == los_normal && event == SFP_E_LOS_LOW);
1882}
1883
1884static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1885{
1886 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1887 dev_err(sfp->dev,
1888 "module persistently indicates fault, disabling\n");
1889 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1890 } else {
1891 if (warn)
1892 dev_err(sfp->dev, "module transmit fault indicated\n");
1893
1894 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1895 }
1896}
1897
1898static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1899{
1900 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1901 return sfp_i2c_mdiobus_create(sfp);
1902
1903 return 0;
1904}
1905
1906/* Probe a SFP for a PHY device if the module supports copper - the PHY
1907 * normally sits at I2C bus address 0x56, and may either be a clause 22
1908 * or clause 45 PHY.
1909 *
1910 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1911 * negotiation enabled, but some may be in 1000base-X - which is for the
1912 * PHY driver to determine.
1913 *
1914 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1915 * mode according to the negotiated line speed.
1916 */
1917static int sfp_sm_probe_for_phy(struct sfp *sfp)
1918{
1919 int err = 0;
1920
1921 switch (sfp->mdio_protocol) {
1922 case MDIO_I2C_NONE:
1923 break;
1924
1925 case MDIO_I2C_MARVELL_C22:
1926 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1927 break;
1928
1929 case MDIO_I2C_C45:
1930 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1931 break;
1932
1933 case MDIO_I2C_ROLLBALL:
1934 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1935 break;
1936 }
1937
1938 return err;
1939}
1940
1941static int sfp_module_parse_power(struct sfp *sfp)
1942{
1943 u32 power_mW = 1000;
1944 bool supports_a2;
1945
1946 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1947 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1948 power_mW = 1500;
1949 /* Added in Rev 11.9, but there is no compliance code for this */
1950 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1951 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1952 power_mW = 2000;
1953
1954 /* Power level 1 modules (max. 1W) are always supported. */
1955 if (power_mW <= 1000) {
1956 sfp->module_power_mW = power_mW;
1957 return 0;
1958 }
1959
1960 supports_a2 = sfp->id.ext.sff8472_compliance !=
1961 SFP_SFF8472_COMPLIANCE_NONE ||
1962 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1963
1964 if (power_mW > sfp->max_power_mW) {
1965 /* Module power specification exceeds the allowed maximum. */
1966 if (!supports_a2) {
1967 /* The module appears not to implement bus address
1968 * 0xa2, so assume that the module powers up in the
1969 * indicated mode.
1970 */
1971 dev_err(sfp->dev,
1972 "Host does not support %u.%uW modules\n",
1973 power_mW / 1000, (power_mW / 100) % 10);
1974 return -EINVAL;
1975 } else {
1976 dev_warn(sfp->dev,
1977 "Host does not support %u.%uW modules, module left in power mode 1\n",
1978 power_mW / 1000, (power_mW / 100) % 10);
1979 return 0;
1980 }
1981 }
1982
1983 if (!supports_a2) {
1984 /* The module power level is below the host maximum and the
1985 * module appears not to implement bus address 0xa2, so assume
1986 * that the module powers up in the indicated mode.
1987 */
1988 return 0;
1989 }
1990
1991 /* If the module requires a higher power mode, but also requires
1992 * an address change sequence, warn the user that the module may
1993 * not be functional.
1994 */
1995 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1996 dev_warn(sfp->dev,
1997 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1998 power_mW / 1000, (power_mW / 100) % 10);
1999 return 0;
2000 }
2001
2002 sfp->module_power_mW = power_mW;
2003
2004 return 0;
2005}
2006
2007static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2008{
2009 int err;
2010
2011 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2012 SFP_EXT_STATUS_PWRLVL_SELECT,
2013 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2014 if (err != sizeof(u8)) {
2015 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2016 enable ? "en" : "dis", ERR_PTR(err));
2017 return -EAGAIN;
2018 }
2019
2020 if (enable)
2021 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2022 sfp->module_power_mW / 1000,
2023 (sfp->module_power_mW / 100) % 10);
2024
2025 return 0;
2026}
2027
2028static void sfp_module_parse_rate_select(struct sfp *sfp)
2029{
2030 u8 rate_id;
2031
2032 sfp->rs_threshold_kbd = 0;
2033 sfp->rs_state_mask = 0;
2034
2035 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2036 /* No support for RateSelect */
2037 return;
2038
2039 /* Default to INF-8074 RateSelect operation. The signalling threshold
2040 * rate is not well specified, so always select "Full Bandwidth", but
2041 * SFF-8079 reveals that it is understood that RS0 will be low for
2042 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2043 * This method exists prior to SFF-8472.
2044 */
2045 sfp->rs_state_mask = SFP_F_RS0;
2046 sfp->rs_threshold_kbd = 1594;
2047
2048 /* Parse the rate identifier, which is complicated due to history:
2049 * SFF-8472 rev 9.5 marks this field as reserved.
2050 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2051 * compliance is not required.
2052 * SFF-8472 rev 10.2 defines this field using values 0..4
2053 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2054 * and even values.
2055 */
2056 rate_id = sfp->id.base.rate_id;
2057 if (rate_id == 0)
2058 /* Unspecified */
2059 return;
2060
2061 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2062 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2063 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2064 */
2065 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2066 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2067 rate_id == 3)
2068 rate_id = SFF_RID_8431;
2069
2070 if (rate_id & SFF_RID_8079) {
2071 /* SFF-8079 RateSelect / Application Select in conjunction with
2072 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2073 * with only bit 0 used, which takes precedence over SFF-8472.
2074 */
2075 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2076 /* SFF-8079 Part 1 - rate selection between Fibre
2077 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2078 * is high for 2125, so we have to subtract 1 to
2079 * include it.
2080 */
2081 sfp->rs_threshold_kbd = 2125 - 1;
2082 sfp->rs_state_mask = SFP_F_RS0;
2083 }
2084 return;
2085 }
2086
2087 /* SFF-8472 rev 9.5 does not define the rate identifier */
2088 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2089 return;
2090
2091 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2092 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2093 */
2094 switch (rate_id) {
2095 case SFF_RID_8431_RX_ONLY:
2096 sfp->rs_threshold_kbd = 4250;
2097 sfp->rs_state_mask = SFP_F_RS0;
2098 break;
2099
2100 case SFF_RID_8431_TX_ONLY:
2101 sfp->rs_threshold_kbd = 4250;
2102 sfp->rs_state_mask = SFP_F_RS1;
2103 break;
2104
2105 case SFF_RID_8431:
2106 sfp->rs_threshold_kbd = 4250;
2107 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2108 break;
2109
2110 case SFF_RID_10G8G:
2111 sfp->rs_threshold_kbd = 9000;
2112 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2113 break;
2114 }
2115}
2116
2117/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2118 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2119 * not support multibyte reads from the EEPROM. Each multi-byte read
2120 * operation returns just one byte of EEPROM followed by zeros. There is
2121 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2122 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2123 * name and vendor id into EEPROM, so there is even no way to detect if
2124 * module is V-SOL V2801F. Therefore check for those zeros in the read
2125 * data and then based on check switch to reading EEPROM to one byte
2126 * at a time.
2127 */
2128static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2129{
2130 size_t i, block_size = sfp->i2c_block_size;
2131
2132 /* Already using byte IO */
2133 if (block_size == 1)
2134 return false;
2135
2136 for (i = 1; i < len; i += block_size) {
2137 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2138 return false;
2139 }
2140 return true;
2141}
2142
2143static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2144{
2145 u8 check;
2146 int err;
2147
2148 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2149 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2150 id->base.connector != SFF8024_CONNECTOR_LC) {
2151 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2152 id->base.phys_id = SFF8024_ID_SFF_8472;
2153 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2154 id->base.connector = SFF8024_CONNECTOR_LC;
2155 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2156 if (err != 3) {
2157 dev_err(sfp->dev,
2158 "Failed to rewrite module EEPROM: %pe\n",
2159 ERR_PTR(err));
2160 return err;
2161 }
2162
2163 /* Cotsworks modules have been found to require a delay between write operations. */
2164 mdelay(50);
2165
2166 /* Update base structure checksum */
2167 check = sfp_check(&id->base, sizeof(id->base) - 1);
2168 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2169 if (err != 1) {
2170 dev_err(sfp->dev,
2171 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2172 ERR_PTR(err));
2173 return err;
2174 }
2175 }
2176 return 0;
2177}
2178
2179static int sfp_module_parse_sff8472(struct sfp *sfp)
2180{
2181 /* If the module requires address swap mode, warn about it */
2182 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2183 dev_warn(sfp->dev,
2184 "module address swap to access page 0xA2 is not supported.\n");
2185 else
2186 sfp->have_a2 = true;
2187
2188 return 0;
2189}
2190
2191static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2192{
2193 /* SFP module inserted - read I2C data */
2194 struct sfp_eeprom_id id;
2195 bool cotsworks_sfbg;
2196 unsigned int mask;
2197 bool cotsworks;
2198 u8 check;
2199 int ret;
2200
2201 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2202
2203 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2204 if (ret < 0) {
2205 if (report)
2206 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2207 ERR_PTR(ret));
2208 return -EAGAIN;
2209 }
2210
2211 if (ret != sizeof(id.base)) {
2212 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2213 return -EAGAIN;
2214 }
2215
2216 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2217 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2218 * that EEPROM supports atomic 16bit read operation for diagnostic
2219 * fields, so do not switch to one byte reading at a time unless it
2220 * is really required and we have no other option.
2221 */
2222 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2223 dev_info(sfp->dev,
2224 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2225 dev_info(sfp->dev,
2226 "Switching to reading EEPROM to one byte at a time\n");
2227 sfp->i2c_block_size = 1;
2228
2229 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2230 if (ret < 0) {
2231 if (report)
2232 dev_err(sfp->dev,
2233 "failed to read EEPROM: %pe\n",
2234 ERR_PTR(ret));
2235 return -EAGAIN;
2236 }
2237
2238 if (ret != sizeof(id.base)) {
2239 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2240 ERR_PTR(ret));
2241 return -EAGAIN;
2242 }
2243 }
2244
2245 /* Cotsworks do not seem to update the checksums when they
2246 * do the final programming with the final module part number,
2247 * serial number and date code.
2248 */
2249 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2250 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2251
2252 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2253 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2254 * Cotsworks PN matches and bytes are not correct.
2255 */
2256 if (cotsworks && cotsworks_sfbg) {
2257 ret = sfp_cotsworks_fixup_check(sfp, &id);
2258 if (ret < 0)
2259 return ret;
2260 }
2261
2262 /* Validate the checksum over the base structure */
2263 check = sfp_check(&id.base, sizeof(id.base) - 1);
2264 if (check != id.base.cc_base) {
2265 if (cotsworks) {
2266 dev_warn(sfp->dev,
2267 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2268 check, id.base.cc_base);
2269 } else {
2270 dev_err(sfp->dev,
2271 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2272 check, id.base.cc_base);
2273 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2274 16, 1, &id, sizeof(id), true);
2275 return -EINVAL;
2276 }
2277 }
2278
2279 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2280 if (ret < 0) {
2281 if (report)
2282 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2283 ERR_PTR(ret));
2284 return -EAGAIN;
2285 }
2286
2287 if (ret != sizeof(id.ext)) {
2288 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2289 return -EAGAIN;
2290 }
2291
2292 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2293 if (check != id.ext.cc_ext) {
2294 if (cotsworks) {
2295 dev_warn(sfp->dev,
2296 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2297 check, id.ext.cc_ext);
2298 } else {
2299 dev_err(sfp->dev,
2300 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2301 check, id.ext.cc_ext);
2302 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2303 16, 1, &id, sizeof(id), true);
2304 memset(&id.ext, 0, sizeof(id.ext));
2305 }
2306 }
2307
2308 sfp->id = id;
2309
2310 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2311 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2312 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2313 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2314 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2315 (int)sizeof(id.ext.datecode), id.ext.datecode);
2316
2317 /* Check whether we support this module */
2318 if (!sfp->type->module_supported(&id)) {
2319 dev_err(sfp->dev,
2320 "module is not supported - phys id 0x%02x 0x%02x\n",
2321 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2322 return -EINVAL;
2323 }
2324
2325 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2326 ret = sfp_module_parse_sff8472(sfp);
2327 if (ret < 0)
2328 return ret;
2329 }
2330
2331 /* Parse the module power requirement */
2332 ret = sfp_module_parse_power(sfp);
2333 if (ret < 0)
2334 return ret;
2335
2336 sfp_module_parse_rate_select(sfp);
2337
2338 mask = SFP_F_PRESENT;
2339 if (sfp->gpio[GPIO_TX_DISABLE])
2340 mask |= SFP_F_TX_DISABLE;
2341 if (sfp->gpio[GPIO_TX_FAULT])
2342 mask |= SFP_F_TX_FAULT;
2343 if (sfp->gpio[GPIO_LOS])
2344 mask |= SFP_F_LOS;
2345 if (sfp->gpio[GPIO_RS0])
2346 mask |= SFP_F_RS0;
2347 if (sfp->gpio[GPIO_RS1])
2348 mask |= SFP_F_RS1;
2349
2350 sfp->module_t_start_up = T_START_UP;
2351 sfp->module_t_wait = T_WAIT;
2352 sfp->phy_t_retry = T_PHY_RETRY;
2353
2354 sfp->state_ignore_mask = 0;
2355
2356 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2357 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2358 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2359 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2360 sfp->mdio_protocol = MDIO_I2C_C45;
2361 else if (sfp->id.base.e1000_base_t)
2362 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2363 else
2364 sfp->mdio_protocol = MDIO_I2C_NONE;
2365
2366 sfp->quirk = sfp_lookup_quirk(&id);
2367
2368 mutex_lock(&sfp->st_mutex);
2369 /* Initialise state bits to use from hardware */
2370 sfp->state_hw_mask = mask;
2371
2372 /* We want to drive the rate select pins that the module is using */
2373 sfp->state_hw_drive |= sfp->rs_state_mask;
2374
2375 if (sfp->quirk && sfp->quirk->fixup)
2376 sfp->quirk->fixup(sfp);
2377
2378 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2379 mutex_unlock(&sfp->st_mutex);
2380
2381 return 0;
2382}
2383
2384static void sfp_sm_mod_remove(struct sfp *sfp)
2385{
2386 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2387 sfp_module_remove(sfp->sfp_bus);
2388
2389 sfp_hwmon_remove(sfp);
2390
2391 memset(&sfp->id, 0, sizeof(sfp->id));
2392 sfp->module_power_mW = 0;
2393 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2394 sfp->have_a2 = false;
2395
2396 dev_info(sfp->dev, "module removed\n");
2397}
2398
2399/* This state machine tracks the upstream's state */
2400static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2401{
2402 switch (sfp->sm_dev_state) {
2403 default:
2404 if (event == SFP_E_DEV_ATTACH)
2405 sfp->sm_dev_state = SFP_DEV_DOWN;
2406 break;
2407
2408 case SFP_DEV_DOWN:
2409 if (event == SFP_E_DEV_DETACH)
2410 sfp->sm_dev_state = SFP_DEV_DETACHED;
2411 else if (event == SFP_E_DEV_UP)
2412 sfp->sm_dev_state = SFP_DEV_UP;
2413 break;
2414
2415 case SFP_DEV_UP:
2416 if (event == SFP_E_DEV_DETACH)
2417 sfp->sm_dev_state = SFP_DEV_DETACHED;
2418 else if (event == SFP_E_DEV_DOWN)
2419 sfp->sm_dev_state = SFP_DEV_DOWN;
2420 break;
2421 }
2422}
2423
2424/* This state machine tracks the insert/remove state of the module, probes
2425 * the on-board EEPROM, and sets up the power level.
2426 */
2427static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2428{
2429 int err;
2430
2431 /* Handle remove event globally, it resets this state machine */
2432 if (event == SFP_E_REMOVE) {
2433 sfp_sm_mod_remove(sfp);
2434 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2435 return;
2436 }
2437
2438 /* Handle device detach globally */
2439 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2440 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2441 if (sfp->module_power_mW > 1000 &&
2442 sfp->sm_mod_state > SFP_MOD_HPOWER)
2443 sfp_sm_mod_hpower(sfp, false);
2444 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2445 return;
2446 }
2447
2448 switch (sfp->sm_mod_state) {
2449 default:
2450 if (event == SFP_E_INSERT) {
2451 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2452 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2453 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2454 }
2455 break;
2456
2457 case SFP_MOD_PROBE:
2458 /* Wait for T_PROBE_INIT to time out */
2459 if (event != SFP_E_TIMEOUT)
2460 break;
2461
2462 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2463 if (err == -EAGAIN) {
2464 if (sfp->sm_mod_tries_init &&
2465 --sfp->sm_mod_tries_init) {
2466 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2467 break;
2468 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2469 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2470 dev_warn(sfp->dev,
2471 "please wait, module slow to respond\n");
2472 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2473 break;
2474 }
2475 }
2476 if (err < 0) {
2477 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2478 break;
2479 }
2480
2481 /* Force a poll to re-read the hardware signal state after
2482 * sfp_sm_mod_probe() changed state_hw_mask.
2483 */
2484 mod_delayed_work(system_wq, &sfp->poll, 1);
2485
2486 err = sfp_hwmon_insert(sfp);
2487 if (err)
2488 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2489 ERR_PTR(err));
2490
2491 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2492 fallthrough;
2493 case SFP_MOD_WAITDEV:
2494 /* Ensure that the device is attached before proceeding */
2495 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2496 break;
2497
2498 /* Report the module insertion to the upstream device */
2499 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2500 sfp->quirk);
2501 if (err < 0) {
2502 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503 break;
2504 }
2505
2506 /* If this is a power level 1 module, we are done */
2507 if (sfp->module_power_mW <= 1000)
2508 goto insert;
2509
2510 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2511 fallthrough;
2512 case SFP_MOD_HPOWER:
2513 /* Enable high power mode */
2514 err = sfp_sm_mod_hpower(sfp, true);
2515 if (err < 0) {
2516 if (err != -EAGAIN) {
2517 sfp_module_remove(sfp->sfp_bus);
2518 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2519 } else {
2520 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2521 }
2522 break;
2523 }
2524
2525 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2526 break;
2527
2528 case SFP_MOD_WAITPWR:
2529 /* Wait for T_HPOWER_LEVEL to time out */
2530 if (event != SFP_E_TIMEOUT)
2531 break;
2532
2533 insert:
2534 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2535 break;
2536
2537 case SFP_MOD_PRESENT:
2538 case SFP_MOD_ERROR:
2539 break;
2540 }
2541}
2542
2543static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2544{
2545 unsigned long timeout;
2546 int ret;
2547
2548 /* Some events are global */
2549 if (sfp->sm_state != SFP_S_DOWN &&
2550 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2551 sfp->sm_dev_state != SFP_DEV_UP)) {
2552 if (sfp->sm_state == SFP_S_LINK_UP &&
2553 sfp->sm_dev_state == SFP_DEV_UP)
2554 sfp_sm_link_down(sfp);
2555 if (sfp->sm_state > SFP_S_INIT)
2556 sfp_module_stop(sfp->sfp_bus);
2557 if (sfp->mod_phy)
2558 sfp_sm_phy_detach(sfp);
2559 if (sfp->i2c_mii)
2560 sfp_i2c_mdiobus_destroy(sfp);
2561 sfp_module_tx_disable(sfp);
2562 sfp_soft_stop_poll(sfp);
2563 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2564 return;
2565 }
2566
2567 /* The main state machine */
2568 switch (sfp->sm_state) {
2569 case SFP_S_DOWN:
2570 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2571 sfp->sm_dev_state != SFP_DEV_UP)
2572 break;
2573
2574 /* Only use the soft state bits if we have access to the A2h
2575 * memory, which implies that we have some level of SFF-8472
2576 * compliance.
2577 */
2578 if (sfp->have_a2)
2579 sfp_soft_start_poll(sfp);
2580
2581 sfp_module_tx_enable(sfp);
2582
2583 /* Initialise the fault clearance retries */
2584 sfp->sm_fault_retries = N_FAULT_INIT;
2585
2586 /* We need to check the TX_FAULT state, which is not defined
2587 * while TX_DISABLE is asserted. The earliest we want to do
2588 * anything (such as probe for a PHY) is 50ms (or more on
2589 * specific modules).
2590 */
2591 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2592 break;
2593
2594 case SFP_S_WAIT:
2595 if (event != SFP_E_TIMEOUT)
2596 break;
2597
2598 if (sfp->state & SFP_F_TX_FAULT) {
2599 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2600 * from the TX_DISABLE deassertion for the module to
2601 * initialise, which is indicated by TX_FAULT
2602 * deasserting.
2603 */
2604 timeout = sfp->module_t_start_up;
2605 if (timeout > sfp->module_t_wait)
2606 timeout -= sfp->module_t_wait;
2607 else
2608 timeout = 1;
2609
2610 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2611 } else {
2612 /* TX_FAULT is not asserted, assume the module has
2613 * finished initialising.
2614 */
2615 goto init_done;
2616 }
2617 break;
2618
2619 case SFP_S_INIT:
2620 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2621 /* TX_FAULT is still asserted after t_init
2622 * or t_start_up, so assume there is a fault.
2623 */
2624 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2625 sfp->sm_fault_retries == N_FAULT_INIT);
2626 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2627 init_done:
2628 /* Create mdiobus and start trying for PHY */
2629 ret = sfp_sm_add_mdio_bus(sfp);
2630 if (ret < 0) {
2631 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2632 break;
2633 }
2634 sfp->sm_phy_retries = R_PHY_RETRY;
2635 goto phy_probe;
2636 }
2637 break;
2638
2639 case SFP_S_INIT_PHY:
2640 if (event != SFP_E_TIMEOUT)
2641 break;
2642 phy_probe:
2643 /* TX_FAULT deasserted or we timed out with TX_FAULT
2644 * clear. Probe for the PHY and check the LOS state.
2645 */
2646 ret = sfp_sm_probe_for_phy(sfp);
2647 if (ret == -ENODEV) {
2648 if (--sfp->sm_phy_retries) {
2649 sfp_sm_next(sfp, SFP_S_INIT_PHY,
2650 sfp->phy_t_retry);
2651 dev_dbg(sfp->dev,
2652 "no PHY detected, %u tries left\n",
2653 sfp->sm_phy_retries);
2654 break;
2655 } else {
2656 dev_info(sfp->dev, "no PHY detected\n");
2657 }
2658 } else if (ret) {
2659 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2660 break;
2661 }
2662 if (sfp_module_start(sfp->sfp_bus)) {
2663 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2664 break;
2665 }
2666 sfp_sm_link_check_los(sfp);
2667
2668 /* Reset the fault retry count */
2669 sfp->sm_fault_retries = N_FAULT;
2670 break;
2671
2672 case SFP_S_INIT_TX_FAULT:
2673 if (event == SFP_E_TIMEOUT) {
2674 sfp_module_tx_fault_reset(sfp);
2675 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2676 }
2677 break;
2678
2679 case SFP_S_WAIT_LOS:
2680 if (event == SFP_E_TX_FAULT)
2681 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2682 else if (sfp_los_event_inactive(sfp, event))
2683 sfp_sm_link_up(sfp);
2684 break;
2685
2686 case SFP_S_LINK_UP:
2687 if (event == SFP_E_TX_FAULT) {
2688 sfp_sm_link_down(sfp);
2689 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2690 } else if (sfp_los_event_active(sfp, event)) {
2691 sfp_sm_link_down(sfp);
2692 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2693 }
2694 break;
2695
2696 case SFP_S_TX_FAULT:
2697 if (event == SFP_E_TIMEOUT) {
2698 sfp_module_tx_fault_reset(sfp);
2699 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2700 }
2701 break;
2702
2703 case SFP_S_REINIT:
2704 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2705 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2706 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2707 dev_info(sfp->dev, "module transmit fault recovered\n");
2708 sfp_sm_link_check_los(sfp);
2709 }
2710 break;
2711
2712 case SFP_S_TX_DISABLE:
2713 break;
2714 }
2715}
2716
2717static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2718{
2719 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2720 mod_state_to_str(sfp->sm_mod_state),
2721 dev_state_to_str(sfp->sm_dev_state),
2722 sm_state_to_str(sfp->sm_state),
2723 event_to_str(event));
2724
2725 sfp_sm_device(sfp, event);
2726 sfp_sm_module(sfp, event);
2727 sfp_sm_main(sfp, event);
2728
2729 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2730 mod_state_to_str(sfp->sm_mod_state),
2731 dev_state_to_str(sfp->sm_dev_state),
2732 sm_state_to_str(sfp->sm_state));
2733}
2734
2735static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2736{
2737 mutex_lock(&sfp->sm_mutex);
2738 __sfp_sm_event(sfp, event);
2739 mutex_unlock(&sfp->sm_mutex);
2740}
2741
2742static void sfp_attach(struct sfp *sfp)
2743{
2744 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2745}
2746
2747static void sfp_detach(struct sfp *sfp)
2748{
2749 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2750}
2751
2752static void sfp_start(struct sfp *sfp)
2753{
2754 sfp_sm_event(sfp, SFP_E_DEV_UP);
2755}
2756
2757static void sfp_stop(struct sfp *sfp)
2758{
2759 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2760}
2761
2762static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2763{
2764 unsigned int set;
2765
2766 sfp->rate_kbd = rate_kbd;
2767
2768 if (rate_kbd > sfp->rs_threshold_kbd)
2769 set = sfp->rs_state_mask;
2770 else
2771 set = 0;
2772
2773 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2774}
2775
2776static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2777{
2778 /* locking... and check module is present */
2779
2780 if (sfp->id.ext.sff8472_compliance &&
2781 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2782 modinfo->type = ETH_MODULE_SFF_8472;
2783 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2784 } else {
2785 modinfo->type = ETH_MODULE_SFF_8079;
2786 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2787 }
2788 return 0;
2789}
2790
2791static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2792 u8 *data)
2793{
2794 unsigned int first, last, len;
2795 int ret;
2796
2797 if (!(sfp->state & SFP_F_PRESENT))
2798 return -ENODEV;
2799
2800 if (ee->len == 0)
2801 return -EINVAL;
2802
2803 first = ee->offset;
2804 last = ee->offset + ee->len;
2805 if (first < ETH_MODULE_SFF_8079_LEN) {
2806 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2807 len -= first;
2808
2809 ret = sfp_read(sfp, false, first, data, len);
2810 if (ret < 0)
2811 return ret;
2812
2813 first += len;
2814 data += len;
2815 }
2816 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2817 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2818 len -= first;
2819 first -= ETH_MODULE_SFF_8079_LEN;
2820
2821 ret = sfp_read(sfp, true, first, data, len);
2822 if (ret < 0)
2823 return ret;
2824 }
2825 return 0;
2826}
2827
2828static int sfp_module_eeprom_by_page(struct sfp *sfp,
2829 const struct ethtool_module_eeprom *page,
2830 struct netlink_ext_ack *extack)
2831{
2832 if (!(sfp->state & SFP_F_PRESENT))
2833 return -ENODEV;
2834
2835 if (page->bank) {
2836 NL_SET_ERR_MSG(extack, "Banks not supported");
2837 return -EOPNOTSUPP;
2838 }
2839
2840 if (page->page) {
2841 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2842 return -EOPNOTSUPP;
2843 }
2844
2845 if (page->i2c_address != 0x50 &&
2846 page->i2c_address != 0x51) {
2847 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2848 return -EOPNOTSUPP;
2849 }
2850
2851 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2852 page->data, page->length);
2853};
2854
2855static const struct sfp_socket_ops sfp_module_ops = {
2856 .attach = sfp_attach,
2857 .detach = sfp_detach,
2858 .start = sfp_start,
2859 .stop = sfp_stop,
2860 .set_signal_rate = sfp_set_signal_rate,
2861 .module_info = sfp_module_info,
2862 .module_eeprom = sfp_module_eeprom,
2863 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2864};
2865
2866static void sfp_timeout(struct work_struct *work)
2867{
2868 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2869
2870 rtnl_lock();
2871 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2872 rtnl_unlock();
2873}
2874
2875static void sfp_check_state(struct sfp *sfp)
2876{
2877 unsigned int state, i, changed;
2878
2879 rtnl_lock();
2880 mutex_lock(&sfp->st_mutex);
2881 state = sfp_get_state(sfp);
2882 changed = state ^ sfp->state;
2883 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2884
2885 for (i = 0; i < GPIO_MAX; i++)
2886 if (changed & BIT(i))
2887 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2888 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2889
2890 state |= sfp->state & SFP_F_OUTPUTS;
2891 sfp->state = state;
2892 mutex_unlock(&sfp->st_mutex);
2893
2894 mutex_lock(&sfp->sm_mutex);
2895 if (changed & SFP_F_PRESENT)
2896 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2897 SFP_E_INSERT : SFP_E_REMOVE);
2898
2899 if (changed & SFP_F_TX_FAULT)
2900 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2901 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2902
2903 if (changed & SFP_F_LOS)
2904 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2905 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2906 mutex_unlock(&sfp->sm_mutex);
2907 rtnl_unlock();
2908}
2909
2910static irqreturn_t sfp_irq(int irq, void *data)
2911{
2912 struct sfp *sfp = data;
2913
2914 sfp_check_state(sfp);
2915
2916 return IRQ_HANDLED;
2917}
2918
2919static void sfp_poll(struct work_struct *work)
2920{
2921 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2922
2923 sfp_check_state(sfp);
2924
2925 // st_mutex doesn't need to be held here for state_soft_mask,
2926 // it's unimportant if we race while reading this.
2927 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2928 sfp->need_poll)
2929 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2930}
2931
2932static struct sfp *sfp_alloc(struct device *dev)
2933{
2934 struct sfp *sfp;
2935
2936 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2937 if (!sfp)
2938 return ERR_PTR(-ENOMEM);
2939
2940 sfp->dev = dev;
2941 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2942
2943 mutex_init(&sfp->sm_mutex);
2944 mutex_init(&sfp->st_mutex);
2945 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2946 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2947
2948 sfp_hwmon_init(sfp);
2949
2950 return sfp;
2951}
2952
2953static void sfp_cleanup(void *data)
2954{
2955 struct sfp *sfp = data;
2956
2957 sfp_hwmon_exit(sfp);
2958
2959 cancel_delayed_work_sync(&sfp->poll);
2960 cancel_delayed_work_sync(&sfp->timeout);
2961 if (sfp->i2c_mii) {
2962 mdiobus_unregister(sfp->i2c_mii);
2963 mdiobus_free(sfp->i2c_mii);
2964 }
2965 if (sfp->i2c)
2966 i2c_put_adapter(sfp->i2c);
2967 kfree(sfp);
2968}
2969
2970static int sfp_i2c_get(struct sfp *sfp)
2971{
2972 struct fwnode_handle *h;
2973 struct i2c_adapter *i2c;
2974 int err;
2975
2976 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2977 if (IS_ERR(h)) {
2978 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2979 return -ENODEV;
2980 }
2981
2982 i2c = i2c_get_adapter_by_fwnode(h);
2983 if (!i2c) {
2984 err = -EPROBE_DEFER;
2985 goto put;
2986 }
2987
2988 err = sfp_i2c_configure(sfp, i2c);
2989 if (err)
2990 i2c_put_adapter(i2c);
2991put:
2992 fwnode_handle_put(h);
2993 return err;
2994}
2995
2996static int sfp_probe(struct platform_device *pdev)
2997{
2998 const struct sff_data *sff;
2999 char *sfp_irq_name;
3000 struct sfp *sfp;
3001 int err, i;
3002
3003 sfp = sfp_alloc(&pdev->dev);
3004 if (IS_ERR(sfp))
3005 return PTR_ERR(sfp);
3006
3007 platform_set_drvdata(pdev, sfp);
3008
3009 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3010 if (err < 0)
3011 return err;
3012
3013 sff = device_get_match_data(sfp->dev);
3014 if (!sff)
3015 sff = &sfp_data;
3016
3017 sfp->type = sff;
3018
3019 err = sfp_i2c_get(sfp);
3020 if (err)
3021 return err;
3022
3023 for (i = 0; i < GPIO_MAX; i++)
3024 if (sff->gpios & BIT(i)) {
3025 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3026 gpio_names[i], gpio_flags[i]);
3027 if (IS_ERR(sfp->gpio[i]))
3028 return PTR_ERR(sfp->gpio[i]);
3029 }
3030
3031 sfp->state_hw_mask = SFP_F_PRESENT;
3032 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3033
3034 sfp->get_state = sfp_gpio_get_state;
3035 sfp->set_state = sfp_gpio_set_state;
3036
3037 /* Modules that have no detect signal are always present */
3038 if (!(sfp->gpio[GPIO_MODDEF0]))
3039 sfp->get_state = sff_gpio_get_state;
3040
3041 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3042 &sfp->max_power_mW);
3043 if (sfp->max_power_mW < 1000) {
3044 if (sfp->max_power_mW)
3045 dev_warn(sfp->dev,
3046 "Firmware bug: host maximum power should be at least 1W\n");
3047 sfp->max_power_mW = 1000;
3048 }
3049
3050 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3051 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3052
3053 /* Get the initial state, and always signal TX disable,
3054 * since the network interface will not be up.
3055 */
3056 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3057
3058 if (sfp->gpio[GPIO_RS0] &&
3059 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3060 sfp->state |= SFP_F_RS0;
3061 sfp_set_state(sfp, sfp->state);
3062 sfp_module_tx_disable(sfp);
3063 if (sfp->state & SFP_F_PRESENT) {
3064 rtnl_lock();
3065 sfp_sm_event(sfp, SFP_E_INSERT);
3066 rtnl_unlock();
3067 }
3068
3069 for (i = 0; i < GPIO_MAX; i++) {
3070 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3071 continue;
3072
3073 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3074 if (sfp->gpio_irq[i] < 0) {
3075 sfp->gpio_irq[i] = 0;
3076 sfp->need_poll = true;
3077 continue;
3078 }
3079
3080 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3081 "%s-%s", dev_name(sfp->dev),
3082 gpio_names[i]);
3083
3084 if (!sfp_irq_name)
3085 return -ENOMEM;
3086
3087 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3088 NULL, sfp_irq,
3089 IRQF_ONESHOT |
3090 IRQF_TRIGGER_RISING |
3091 IRQF_TRIGGER_FALLING,
3092 sfp_irq_name, sfp);
3093 if (err) {
3094 sfp->gpio_irq[i] = 0;
3095 sfp->need_poll = true;
3096 }
3097 }
3098
3099 if (sfp->need_poll)
3100 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3101
3102 /* We could have an issue in cases no Tx disable pin is available or
3103 * wired as modules using a laser as their light source will continue to
3104 * be active when the fiber is removed. This could be a safety issue and
3105 * we should at least warn the user about that.
3106 */
3107 if (!sfp->gpio[GPIO_TX_DISABLE])
3108 dev_warn(sfp->dev,
3109 "No tx_disable pin: SFP modules will always be emitting.\n");
3110
3111 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3112 if (!sfp->sfp_bus)
3113 return -ENOMEM;
3114
3115 sfp_debugfs_init(sfp);
3116
3117 return 0;
3118}
3119
3120static void sfp_remove(struct platform_device *pdev)
3121{
3122 struct sfp *sfp = platform_get_drvdata(pdev);
3123
3124 sfp_debugfs_exit(sfp);
3125 sfp_unregister_socket(sfp->sfp_bus);
3126
3127 rtnl_lock();
3128 sfp_sm_event(sfp, SFP_E_REMOVE);
3129 rtnl_unlock();
3130}
3131
3132static void sfp_shutdown(struct platform_device *pdev)
3133{
3134 struct sfp *sfp = platform_get_drvdata(pdev);
3135 int i;
3136
3137 for (i = 0; i < GPIO_MAX; i++) {
3138 if (!sfp->gpio_irq[i])
3139 continue;
3140
3141 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3142 }
3143
3144 cancel_delayed_work_sync(&sfp->poll);
3145 cancel_delayed_work_sync(&sfp->timeout);
3146}
3147
3148static struct platform_driver sfp_driver = {
3149 .probe = sfp_probe,
3150 .remove = sfp_remove,
3151 .shutdown = sfp_shutdown,
3152 .driver = {
3153 .name = "sfp",
3154 .of_match_table = sfp_of_match,
3155 },
3156};
3157
3158static int sfp_init(void)
3159{
3160 poll_jiffies = msecs_to_jiffies(100);
3161
3162 return platform_driver_register(&sfp_driver);
3163}
3164module_init(sfp_init);
3165
3166static void sfp_exit(void)
3167{
3168 platform_driver_unregister(&sfp_driver);
3169}
3170module_exit(sfp_exit);
3171
3172MODULE_ALIAS("platform:sfp");
3173MODULE_AUTHOR("Russell King");
3174MODULE_LICENSE("GPL v2");
3175MODULE_DESCRIPTION("SFP cage support");
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "mdio-i2c.h"
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_ATTACH,
40 SFP_E_DEV_DETACH,
41 SFP_E_DEV_DOWN,
42 SFP_E_DEV_UP,
43 SFP_E_TX_FAULT,
44 SFP_E_TX_CLEAR,
45 SFP_E_LOS_HIGH,
46 SFP_E_LOS_LOW,
47 SFP_E_TIMEOUT,
48
49 SFP_MOD_EMPTY = 0,
50 SFP_MOD_ERROR,
51 SFP_MOD_PROBE,
52 SFP_MOD_WAITDEV,
53 SFP_MOD_HPOWER,
54 SFP_MOD_WAITPWR,
55 SFP_MOD_PRESENT,
56
57 SFP_DEV_DETACHED = 0,
58 SFP_DEV_DOWN,
59 SFP_DEV_UP,
60
61 SFP_S_DOWN = 0,
62 SFP_S_FAIL,
63 SFP_S_WAIT,
64 SFP_S_INIT,
65 SFP_S_INIT_PHY,
66 SFP_S_INIT_TX_FAULT,
67 SFP_S_WAIT_LOS,
68 SFP_S_LINK_UP,
69 SFP_S_TX_FAULT,
70 SFP_S_REINIT,
71 SFP_S_TX_DISABLE,
72};
73
74static const char * const mod_state_strings[] = {
75 [SFP_MOD_EMPTY] = "empty",
76 [SFP_MOD_ERROR] = "error",
77 [SFP_MOD_PROBE] = "probe",
78 [SFP_MOD_WAITDEV] = "waitdev",
79 [SFP_MOD_HPOWER] = "hpower",
80 [SFP_MOD_WAITPWR] = "waitpwr",
81 [SFP_MOD_PRESENT] = "present",
82};
83
84static const char *mod_state_to_str(unsigned short mod_state)
85{
86 if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 return "Unknown module state";
88 return mod_state_strings[mod_state];
89}
90
91static const char * const dev_state_strings[] = {
92 [SFP_DEV_DETACHED] = "detached",
93 [SFP_DEV_DOWN] = "down",
94 [SFP_DEV_UP] = "up",
95};
96
97static const char *dev_state_to_str(unsigned short dev_state)
98{
99 if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 return "Unknown device state";
101 return dev_state_strings[dev_state];
102}
103
104static const char * const event_strings[] = {
105 [SFP_E_INSERT] = "insert",
106 [SFP_E_REMOVE] = "remove",
107 [SFP_E_DEV_ATTACH] = "dev_attach",
108 [SFP_E_DEV_DETACH] = "dev_detach",
109 [SFP_E_DEV_DOWN] = "dev_down",
110 [SFP_E_DEV_UP] = "dev_up",
111 [SFP_E_TX_FAULT] = "tx_fault",
112 [SFP_E_TX_CLEAR] = "tx_clear",
113 [SFP_E_LOS_HIGH] = "los_high",
114 [SFP_E_LOS_LOW] = "los_low",
115 [SFP_E_TIMEOUT] = "timeout",
116};
117
118static const char *event_to_str(unsigned short event)
119{
120 if (event >= ARRAY_SIZE(event_strings))
121 return "Unknown event";
122 return event_strings[event];
123}
124
125static const char * const sm_state_strings[] = {
126 [SFP_S_DOWN] = "down",
127 [SFP_S_FAIL] = "fail",
128 [SFP_S_WAIT] = "wait",
129 [SFP_S_INIT] = "init",
130 [SFP_S_INIT_PHY] = "init_phy",
131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 [SFP_S_WAIT_LOS] = "wait_los",
133 [SFP_S_LINK_UP] = "link_up",
134 [SFP_S_TX_FAULT] = "tx_fault",
135 [SFP_S_REINIT] = "reinit",
136 [SFP_S_TX_DISABLE] = "rx_disable",
137};
138
139static const char *sm_state_to_str(unsigned short sm_state)
140{
141 if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 return "Unknown state";
143 return sm_state_strings[sm_state];
144}
145
146static const char *gpio_of_names[] = {
147 "mod-def0",
148 "los",
149 "tx-fault",
150 "tx-disable",
151 "rate-select0",
152};
153
154static const enum gpiod_flags gpio_flags[] = {
155 GPIOD_IN,
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_ASIS,
159 GPIOD_ASIS,
160};
161
162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163 * non-cooled module to initialise its laser safety circuitry. We wait
164 * an initial T_WAIT period before we check the tx fault to give any PHY
165 * on board (for a copper SFP) time to initialise.
166 */
167#define T_WAIT msecs_to_jiffies(50)
168#define T_START_UP msecs_to_jiffies(300)
169#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
170
171/* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
173 */
174#define T_RESET_US 10
175#define T_FAULT_RECOVER msecs_to_jiffies(1000)
176
177/* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
181 */
182#define N_FAULT_INIT 5
183#define N_FAULT 5
184
185/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
187 */
188#define T_PHY_RETRY msecs_to_jiffies(50)
189#define R_PHY_RETRY 12
190
191/* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
194 *
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
197 */
198#define T_SERIAL msecs_to_jiffies(300)
199#define T_HPOWER_LEVEL msecs_to_jiffies(300)
200#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
201#define R_PROBE_RETRY_INIT 10
202#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
203#define R_PROBE_RETRY_SLOW 12
204
205/* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 */
208#define SFP_PHY_ADDR 22
209
210struct sff_data {
211 unsigned int gpios;
212 bool (*module_supported)(const struct sfp_eeprom_id *id);
213};
214
215struct sfp {
216 struct device *dev;
217 struct i2c_adapter *i2c;
218 struct mii_bus *i2c_mii;
219 struct sfp_bus *sfp_bus;
220 struct phy_device *mod_phy;
221 const struct sff_data *type;
222 u32 max_power_mW;
223
224 unsigned int (*get_state)(struct sfp *);
225 void (*set_state)(struct sfp *, unsigned int);
226 int (*read)(struct sfp *, bool, u8, void *, size_t);
227 int (*write)(struct sfp *, bool, u8, void *, size_t);
228
229 struct gpio_desc *gpio[GPIO_MAX];
230 int gpio_irq[GPIO_MAX];
231
232 bool need_poll;
233
234 struct mutex st_mutex; /* Protects state */
235 unsigned int state_soft_mask;
236 unsigned int state;
237 struct delayed_work poll;
238 struct delayed_work timeout;
239 struct mutex sm_mutex; /* Protects state machine */
240 unsigned char sm_mod_state;
241 unsigned char sm_mod_tries_init;
242 unsigned char sm_mod_tries;
243 unsigned char sm_dev_state;
244 unsigned short sm_state;
245 unsigned char sm_fault_retries;
246 unsigned char sm_phy_retries;
247
248 struct sfp_eeprom_id id;
249 unsigned int module_power_mW;
250 unsigned int module_t_start_up;
251
252#if IS_ENABLED(CONFIG_HWMON)
253 struct sfp_diag diag;
254 struct delayed_work hwmon_probe;
255 unsigned int hwmon_tries;
256 struct device *hwmon_dev;
257 char *hwmon_name;
258#endif
259
260};
261
262static bool sff_module_supported(const struct sfp_eeprom_id *id)
263{
264 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
265 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
266}
267
268static const struct sff_data sff_data = {
269 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
270 .module_supported = sff_module_supported,
271};
272
273static bool sfp_module_supported(const struct sfp_eeprom_id *id)
274{
275 return id->base.phys_id == SFF8024_ID_SFP &&
276 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
277}
278
279static const struct sff_data sfp_data = {
280 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
281 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
282 .module_supported = sfp_module_supported,
283};
284
285static const struct of_device_id sfp_of_match[] = {
286 { .compatible = "sff,sff", .data = &sff_data, },
287 { .compatible = "sff,sfp", .data = &sfp_data, },
288 { },
289};
290MODULE_DEVICE_TABLE(of, sfp_of_match);
291
292static unsigned long poll_jiffies;
293
294static unsigned int sfp_gpio_get_state(struct sfp *sfp)
295{
296 unsigned int i, state, v;
297
298 for (i = state = 0; i < GPIO_MAX; i++) {
299 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
300 continue;
301
302 v = gpiod_get_value_cansleep(sfp->gpio[i]);
303 if (v)
304 state |= BIT(i);
305 }
306
307 return state;
308}
309
310static unsigned int sff_gpio_get_state(struct sfp *sfp)
311{
312 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
313}
314
315static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
316{
317 if (state & SFP_F_PRESENT) {
318 /* If the module is present, drive the signals */
319 if (sfp->gpio[GPIO_TX_DISABLE])
320 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
321 state & SFP_F_TX_DISABLE);
322 if (state & SFP_F_RATE_SELECT)
323 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
324 state & SFP_F_RATE_SELECT);
325 } else {
326 /* Otherwise, let them float to the pull-ups */
327 if (sfp->gpio[GPIO_TX_DISABLE])
328 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
329 if (state & SFP_F_RATE_SELECT)
330 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
331 }
332}
333
334static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
335 size_t len)
336{
337 struct i2c_msg msgs[2];
338 u8 bus_addr = a2 ? 0x51 : 0x50;
339 size_t this_len;
340 int ret;
341
342 msgs[0].addr = bus_addr;
343 msgs[0].flags = 0;
344 msgs[0].len = 1;
345 msgs[0].buf = &dev_addr;
346 msgs[1].addr = bus_addr;
347 msgs[1].flags = I2C_M_RD;
348 msgs[1].len = len;
349 msgs[1].buf = buf;
350
351 while (len) {
352 this_len = len;
353 if (this_len > 16)
354 this_len = 16;
355
356 msgs[1].len = this_len;
357
358 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
359 if (ret < 0)
360 return ret;
361
362 if (ret != ARRAY_SIZE(msgs))
363 break;
364
365 msgs[1].buf += this_len;
366 dev_addr += this_len;
367 len -= this_len;
368 }
369
370 return msgs[1].buf - (u8 *)buf;
371}
372
373static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
374 size_t len)
375{
376 struct i2c_msg msgs[1];
377 u8 bus_addr = a2 ? 0x51 : 0x50;
378 int ret;
379
380 msgs[0].addr = bus_addr;
381 msgs[0].flags = 0;
382 msgs[0].len = 1 + len;
383 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
384 if (!msgs[0].buf)
385 return -ENOMEM;
386
387 msgs[0].buf[0] = dev_addr;
388 memcpy(&msgs[0].buf[1], buf, len);
389
390 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
391
392 kfree(msgs[0].buf);
393
394 if (ret < 0)
395 return ret;
396
397 return ret == ARRAY_SIZE(msgs) ? len : 0;
398}
399
400static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
401{
402 struct mii_bus *i2c_mii;
403 int ret;
404
405 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
406 return -EINVAL;
407
408 sfp->i2c = i2c;
409 sfp->read = sfp_i2c_read;
410 sfp->write = sfp_i2c_write;
411
412 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
413 if (IS_ERR(i2c_mii))
414 return PTR_ERR(i2c_mii);
415
416 i2c_mii->name = "SFP I2C Bus";
417 i2c_mii->phy_mask = ~0;
418
419 ret = mdiobus_register(i2c_mii);
420 if (ret < 0) {
421 mdiobus_free(i2c_mii);
422 return ret;
423 }
424
425 sfp->i2c_mii = i2c_mii;
426
427 return 0;
428}
429
430/* Interface */
431static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
432{
433 return sfp->read(sfp, a2, addr, buf, len);
434}
435
436static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
437{
438 return sfp->write(sfp, a2, addr, buf, len);
439}
440
441static unsigned int sfp_soft_get_state(struct sfp *sfp)
442{
443 unsigned int state = 0;
444 u8 status;
445 int ret;
446
447 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
448 if (ret == sizeof(status)) {
449 if (status & SFP_STATUS_RX_LOS)
450 state |= SFP_F_LOS;
451 if (status & SFP_STATUS_TX_FAULT)
452 state |= SFP_F_TX_FAULT;
453 } else {
454 dev_err_ratelimited(sfp->dev,
455 "failed to read SFP soft status: %d\n",
456 ret);
457 /* Preserve the current state */
458 state = sfp->state;
459 }
460
461 return state & sfp->state_soft_mask;
462}
463
464static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
465{
466 u8 status;
467
468 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
469 sizeof(status)) {
470 if (state & SFP_F_TX_DISABLE)
471 status |= SFP_STATUS_TX_DISABLE_FORCE;
472 else
473 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
474
475 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
476 }
477}
478
479static void sfp_soft_start_poll(struct sfp *sfp)
480{
481 const struct sfp_eeprom_id *id = &sfp->id;
482
483 sfp->state_soft_mask = 0;
484 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
485 !sfp->gpio[GPIO_TX_DISABLE])
486 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
487 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
488 !sfp->gpio[GPIO_TX_FAULT])
489 sfp->state_soft_mask |= SFP_F_TX_FAULT;
490 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
491 !sfp->gpio[GPIO_LOS])
492 sfp->state_soft_mask |= SFP_F_LOS;
493
494 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
495 !sfp->need_poll)
496 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
497}
498
499static void sfp_soft_stop_poll(struct sfp *sfp)
500{
501 sfp->state_soft_mask = 0;
502}
503
504static unsigned int sfp_get_state(struct sfp *sfp)
505{
506 unsigned int state = sfp->get_state(sfp);
507
508 if (state & SFP_F_PRESENT &&
509 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
510 state |= sfp_soft_get_state(sfp);
511
512 return state;
513}
514
515static void sfp_set_state(struct sfp *sfp, unsigned int state)
516{
517 sfp->set_state(sfp, state);
518
519 if (state & SFP_F_PRESENT &&
520 sfp->state_soft_mask & SFP_F_TX_DISABLE)
521 sfp_soft_set_state(sfp, state);
522}
523
524static unsigned int sfp_check(void *buf, size_t len)
525{
526 u8 *p, check;
527
528 for (p = buf, check = 0; len; p++, len--)
529 check += *p;
530
531 return check;
532}
533
534/* hwmon */
535#if IS_ENABLED(CONFIG_HWMON)
536static umode_t sfp_hwmon_is_visible(const void *data,
537 enum hwmon_sensor_types type,
538 u32 attr, int channel)
539{
540 const struct sfp *sfp = data;
541
542 switch (type) {
543 case hwmon_temp:
544 switch (attr) {
545 case hwmon_temp_min_alarm:
546 case hwmon_temp_max_alarm:
547 case hwmon_temp_lcrit_alarm:
548 case hwmon_temp_crit_alarm:
549 case hwmon_temp_min:
550 case hwmon_temp_max:
551 case hwmon_temp_lcrit:
552 case hwmon_temp_crit:
553 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
554 return 0;
555 fallthrough;
556 case hwmon_temp_input:
557 case hwmon_temp_label:
558 return 0444;
559 default:
560 return 0;
561 }
562 case hwmon_in:
563 switch (attr) {
564 case hwmon_in_min_alarm:
565 case hwmon_in_max_alarm:
566 case hwmon_in_lcrit_alarm:
567 case hwmon_in_crit_alarm:
568 case hwmon_in_min:
569 case hwmon_in_max:
570 case hwmon_in_lcrit:
571 case hwmon_in_crit:
572 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
573 return 0;
574 fallthrough;
575 case hwmon_in_input:
576 case hwmon_in_label:
577 return 0444;
578 default:
579 return 0;
580 }
581 case hwmon_curr:
582 switch (attr) {
583 case hwmon_curr_min_alarm:
584 case hwmon_curr_max_alarm:
585 case hwmon_curr_lcrit_alarm:
586 case hwmon_curr_crit_alarm:
587 case hwmon_curr_min:
588 case hwmon_curr_max:
589 case hwmon_curr_lcrit:
590 case hwmon_curr_crit:
591 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
592 return 0;
593 fallthrough;
594 case hwmon_curr_input:
595 case hwmon_curr_label:
596 return 0444;
597 default:
598 return 0;
599 }
600 case hwmon_power:
601 /* External calibration of receive power requires
602 * floating point arithmetic. Doing that in the kernel
603 * is not easy, so just skip it. If the module does
604 * not require external calibration, we can however
605 * show receiver power, since FP is then not needed.
606 */
607 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
608 channel == 1)
609 return 0;
610 switch (attr) {
611 case hwmon_power_min_alarm:
612 case hwmon_power_max_alarm:
613 case hwmon_power_lcrit_alarm:
614 case hwmon_power_crit_alarm:
615 case hwmon_power_min:
616 case hwmon_power_max:
617 case hwmon_power_lcrit:
618 case hwmon_power_crit:
619 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
620 return 0;
621 fallthrough;
622 case hwmon_power_input:
623 case hwmon_power_label:
624 return 0444;
625 default:
626 return 0;
627 }
628 default:
629 return 0;
630 }
631}
632
633static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
634{
635 __be16 val;
636 int err;
637
638 err = sfp_read(sfp, true, reg, &val, sizeof(val));
639 if (err < 0)
640 return err;
641
642 *value = be16_to_cpu(val);
643
644 return 0;
645}
646
647static void sfp_hwmon_to_rx_power(long *value)
648{
649 *value = DIV_ROUND_CLOSEST(*value, 10);
650}
651
652static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
653 long *value)
654{
655 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
656 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
657}
658
659static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
660{
661 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
662 be16_to_cpu(sfp->diag.cal_t_offset), value);
663
664 if (*value >= 0x8000)
665 *value -= 0x10000;
666
667 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
668}
669
670static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
671{
672 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
673 be16_to_cpu(sfp->diag.cal_v_offset), value);
674
675 *value = DIV_ROUND_CLOSEST(*value, 10);
676}
677
678static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
679{
680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
681 be16_to_cpu(sfp->diag.cal_txi_offset), value);
682
683 *value = DIV_ROUND_CLOSEST(*value, 500);
684}
685
686static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
687{
688 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
689 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
690
691 *value = DIV_ROUND_CLOSEST(*value, 10);
692}
693
694static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
695{
696 int err;
697
698 err = sfp_hwmon_read_sensor(sfp, reg, value);
699 if (err < 0)
700 return err;
701
702 sfp_hwmon_calibrate_temp(sfp, value);
703
704 return 0;
705}
706
707static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
708{
709 int err;
710
711 err = sfp_hwmon_read_sensor(sfp, reg, value);
712 if (err < 0)
713 return err;
714
715 sfp_hwmon_calibrate_vcc(sfp, value);
716
717 return 0;
718}
719
720static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
721{
722 int err;
723
724 err = sfp_hwmon_read_sensor(sfp, reg, value);
725 if (err < 0)
726 return err;
727
728 sfp_hwmon_calibrate_bias(sfp, value);
729
730 return 0;
731}
732
733static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
734{
735 int err;
736
737 err = sfp_hwmon_read_sensor(sfp, reg, value);
738 if (err < 0)
739 return err;
740
741 sfp_hwmon_calibrate_tx_power(sfp, value);
742
743 return 0;
744}
745
746static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
747{
748 int err;
749
750 err = sfp_hwmon_read_sensor(sfp, reg, value);
751 if (err < 0)
752 return err;
753
754 sfp_hwmon_to_rx_power(value);
755
756 return 0;
757}
758
759static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
760{
761 u8 status;
762 int err;
763
764 switch (attr) {
765 case hwmon_temp_input:
766 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
767
768 case hwmon_temp_lcrit:
769 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
770 sfp_hwmon_calibrate_temp(sfp, value);
771 return 0;
772
773 case hwmon_temp_min:
774 *value = be16_to_cpu(sfp->diag.temp_low_warn);
775 sfp_hwmon_calibrate_temp(sfp, value);
776 return 0;
777 case hwmon_temp_max:
778 *value = be16_to_cpu(sfp->diag.temp_high_warn);
779 sfp_hwmon_calibrate_temp(sfp, value);
780 return 0;
781
782 case hwmon_temp_crit:
783 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
784 sfp_hwmon_calibrate_temp(sfp, value);
785 return 0;
786
787 case hwmon_temp_lcrit_alarm:
788 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
789 if (err < 0)
790 return err;
791
792 *value = !!(status & SFP_ALARM0_TEMP_LOW);
793 return 0;
794
795 case hwmon_temp_min_alarm:
796 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
797 if (err < 0)
798 return err;
799
800 *value = !!(status & SFP_WARN0_TEMP_LOW);
801 return 0;
802
803 case hwmon_temp_max_alarm:
804 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
805 if (err < 0)
806 return err;
807
808 *value = !!(status & SFP_WARN0_TEMP_HIGH);
809 return 0;
810
811 case hwmon_temp_crit_alarm:
812 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
813 if (err < 0)
814 return err;
815
816 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
817 return 0;
818 default:
819 return -EOPNOTSUPP;
820 }
821
822 return -EOPNOTSUPP;
823}
824
825static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
826{
827 u8 status;
828 int err;
829
830 switch (attr) {
831 case hwmon_in_input:
832 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
833
834 case hwmon_in_lcrit:
835 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
836 sfp_hwmon_calibrate_vcc(sfp, value);
837 return 0;
838
839 case hwmon_in_min:
840 *value = be16_to_cpu(sfp->diag.volt_low_warn);
841 sfp_hwmon_calibrate_vcc(sfp, value);
842 return 0;
843
844 case hwmon_in_max:
845 *value = be16_to_cpu(sfp->diag.volt_high_warn);
846 sfp_hwmon_calibrate_vcc(sfp, value);
847 return 0;
848
849 case hwmon_in_crit:
850 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
851 sfp_hwmon_calibrate_vcc(sfp, value);
852 return 0;
853
854 case hwmon_in_lcrit_alarm:
855 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
856 if (err < 0)
857 return err;
858
859 *value = !!(status & SFP_ALARM0_VCC_LOW);
860 return 0;
861
862 case hwmon_in_min_alarm:
863 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
864 if (err < 0)
865 return err;
866
867 *value = !!(status & SFP_WARN0_VCC_LOW);
868 return 0;
869
870 case hwmon_in_max_alarm:
871 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
872 if (err < 0)
873 return err;
874
875 *value = !!(status & SFP_WARN0_VCC_HIGH);
876 return 0;
877
878 case hwmon_in_crit_alarm:
879 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
880 if (err < 0)
881 return err;
882
883 *value = !!(status & SFP_ALARM0_VCC_HIGH);
884 return 0;
885 default:
886 return -EOPNOTSUPP;
887 }
888
889 return -EOPNOTSUPP;
890}
891
892static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
893{
894 u8 status;
895 int err;
896
897 switch (attr) {
898 case hwmon_curr_input:
899 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
900
901 case hwmon_curr_lcrit:
902 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
903 sfp_hwmon_calibrate_bias(sfp, value);
904 return 0;
905
906 case hwmon_curr_min:
907 *value = be16_to_cpu(sfp->diag.bias_low_warn);
908 sfp_hwmon_calibrate_bias(sfp, value);
909 return 0;
910
911 case hwmon_curr_max:
912 *value = be16_to_cpu(sfp->diag.bias_high_warn);
913 sfp_hwmon_calibrate_bias(sfp, value);
914 return 0;
915
916 case hwmon_curr_crit:
917 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
918 sfp_hwmon_calibrate_bias(sfp, value);
919 return 0;
920
921 case hwmon_curr_lcrit_alarm:
922 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
923 if (err < 0)
924 return err;
925
926 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
927 return 0;
928
929 case hwmon_curr_min_alarm:
930 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
931 if (err < 0)
932 return err;
933
934 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
935 return 0;
936
937 case hwmon_curr_max_alarm:
938 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
939 if (err < 0)
940 return err;
941
942 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
943 return 0;
944
945 case hwmon_curr_crit_alarm:
946 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
947 if (err < 0)
948 return err;
949
950 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
951 return 0;
952 default:
953 return -EOPNOTSUPP;
954 }
955
956 return -EOPNOTSUPP;
957}
958
959static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
960{
961 u8 status;
962 int err;
963
964 switch (attr) {
965 case hwmon_power_input:
966 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
967
968 case hwmon_power_lcrit:
969 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
970 sfp_hwmon_calibrate_tx_power(sfp, value);
971 return 0;
972
973 case hwmon_power_min:
974 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
975 sfp_hwmon_calibrate_tx_power(sfp, value);
976 return 0;
977
978 case hwmon_power_max:
979 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
980 sfp_hwmon_calibrate_tx_power(sfp, value);
981 return 0;
982
983 case hwmon_power_crit:
984 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
985 sfp_hwmon_calibrate_tx_power(sfp, value);
986 return 0;
987
988 case hwmon_power_lcrit_alarm:
989 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
990 if (err < 0)
991 return err;
992
993 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
994 return 0;
995
996 case hwmon_power_min_alarm:
997 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
998 if (err < 0)
999 return err;
1000
1001 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1002 return 0;
1003
1004 case hwmon_power_max_alarm:
1005 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1006 if (err < 0)
1007 return err;
1008
1009 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1010 return 0;
1011
1012 case hwmon_power_crit_alarm:
1013 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1014 if (err < 0)
1015 return err;
1016
1017 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1018 return 0;
1019 default:
1020 return -EOPNOTSUPP;
1021 }
1022
1023 return -EOPNOTSUPP;
1024}
1025
1026static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1027{
1028 u8 status;
1029 int err;
1030
1031 switch (attr) {
1032 case hwmon_power_input:
1033 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1034
1035 case hwmon_power_lcrit:
1036 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1037 sfp_hwmon_to_rx_power(value);
1038 return 0;
1039
1040 case hwmon_power_min:
1041 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1042 sfp_hwmon_to_rx_power(value);
1043 return 0;
1044
1045 case hwmon_power_max:
1046 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1047 sfp_hwmon_to_rx_power(value);
1048 return 0;
1049
1050 case hwmon_power_crit:
1051 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1052 sfp_hwmon_to_rx_power(value);
1053 return 0;
1054
1055 case hwmon_power_lcrit_alarm:
1056 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1057 if (err < 0)
1058 return err;
1059
1060 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1061 return 0;
1062
1063 case hwmon_power_min_alarm:
1064 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1065 if (err < 0)
1066 return err;
1067
1068 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1069 return 0;
1070
1071 case hwmon_power_max_alarm:
1072 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1073 if (err < 0)
1074 return err;
1075
1076 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1077 return 0;
1078
1079 case hwmon_power_crit_alarm:
1080 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1081 if (err < 0)
1082 return err;
1083
1084 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1085 return 0;
1086 default:
1087 return -EOPNOTSUPP;
1088 }
1089
1090 return -EOPNOTSUPP;
1091}
1092
1093static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1094 u32 attr, int channel, long *value)
1095{
1096 struct sfp *sfp = dev_get_drvdata(dev);
1097
1098 switch (type) {
1099 case hwmon_temp:
1100 return sfp_hwmon_temp(sfp, attr, value);
1101 case hwmon_in:
1102 return sfp_hwmon_vcc(sfp, attr, value);
1103 case hwmon_curr:
1104 return sfp_hwmon_bias(sfp, attr, value);
1105 case hwmon_power:
1106 switch (channel) {
1107 case 0:
1108 return sfp_hwmon_tx_power(sfp, attr, value);
1109 case 1:
1110 return sfp_hwmon_rx_power(sfp, attr, value);
1111 default:
1112 return -EOPNOTSUPP;
1113 }
1114 default:
1115 return -EOPNOTSUPP;
1116 }
1117}
1118
1119static const char *const sfp_hwmon_power_labels[] = {
1120 "TX_power",
1121 "RX_power",
1122};
1123
1124static int sfp_hwmon_read_string(struct device *dev,
1125 enum hwmon_sensor_types type,
1126 u32 attr, int channel, const char **str)
1127{
1128 switch (type) {
1129 case hwmon_curr:
1130 switch (attr) {
1131 case hwmon_curr_label:
1132 *str = "bias";
1133 return 0;
1134 default:
1135 return -EOPNOTSUPP;
1136 }
1137 break;
1138 case hwmon_temp:
1139 switch (attr) {
1140 case hwmon_temp_label:
1141 *str = "temperature";
1142 return 0;
1143 default:
1144 return -EOPNOTSUPP;
1145 }
1146 break;
1147 case hwmon_in:
1148 switch (attr) {
1149 case hwmon_in_label:
1150 *str = "VCC";
1151 return 0;
1152 default:
1153 return -EOPNOTSUPP;
1154 }
1155 break;
1156 case hwmon_power:
1157 switch (attr) {
1158 case hwmon_power_label:
1159 *str = sfp_hwmon_power_labels[channel];
1160 return 0;
1161 default:
1162 return -EOPNOTSUPP;
1163 }
1164 break;
1165 default:
1166 return -EOPNOTSUPP;
1167 }
1168
1169 return -EOPNOTSUPP;
1170}
1171
1172static const struct hwmon_ops sfp_hwmon_ops = {
1173 .is_visible = sfp_hwmon_is_visible,
1174 .read = sfp_hwmon_read,
1175 .read_string = sfp_hwmon_read_string,
1176};
1177
1178static u32 sfp_hwmon_chip_config[] = {
1179 HWMON_C_REGISTER_TZ,
1180 0,
1181};
1182
1183static const struct hwmon_channel_info sfp_hwmon_chip = {
1184 .type = hwmon_chip,
1185 .config = sfp_hwmon_chip_config,
1186};
1187
1188static u32 sfp_hwmon_temp_config[] = {
1189 HWMON_T_INPUT |
1190 HWMON_T_MAX | HWMON_T_MIN |
1191 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1192 HWMON_T_CRIT | HWMON_T_LCRIT |
1193 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1194 HWMON_T_LABEL,
1195 0,
1196};
1197
1198static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1199 .type = hwmon_temp,
1200 .config = sfp_hwmon_temp_config,
1201};
1202
1203static u32 sfp_hwmon_vcc_config[] = {
1204 HWMON_I_INPUT |
1205 HWMON_I_MAX | HWMON_I_MIN |
1206 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1207 HWMON_I_CRIT | HWMON_I_LCRIT |
1208 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1209 HWMON_I_LABEL,
1210 0,
1211};
1212
1213static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1214 .type = hwmon_in,
1215 .config = sfp_hwmon_vcc_config,
1216};
1217
1218static u32 sfp_hwmon_bias_config[] = {
1219 HWMON_C_INPUT |
1220 HWMON_C_MAX | HWMON_C_MIN |
1221 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1222 HWMON_C_CRIT | HWMON_C_LCRIT |
1223 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1224 HWMON_C_LABEL,
1225 0,
1226};
1227
1228static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1229 .type = hwmon_curr,
1230 .config = sfp_hwmon_bias_config,
1231};
1232
1233static u32 sfp_hwmon_power_config[] = {
1234 /* Transmit power */
1235 HWMON_P_INPUT |
1236 HWMON_P_MAX | HWMON_P_MIN |
1237 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1238 HWMON_P_CRIT | HWMON_P_LCRIT |
1239 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1240 HWMON_P_LABEL,
1241 /* Receive power */
1242 HWMON_P_INPUT |
1243 HWMON_P_MAX | HWMON_P_MIN |
1244 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1245 HWMON_P_CRIT | HWMON_P_LCRIT |
1246 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1247 HWMON_P_LABEL,
1248 0,
1249};
1250
1251static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1252 .type = hwmon_power,
1253 .config = sfp_hwmon_power_config,
1254};
1255
1256static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1257 &sfp_hwmon_chip,
1258 &sfp_hwmon_vcc_channel_info,
1259 &sfp_hwmon_temp_channel_info,
1260 &sfp_hwmon_bias_channel_info,
1261 &sfp_hwmon_power_channel_info,
1262 NULL,
1263};
1264
1265static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1266 .ops = &sfp_hwmon_ops,
1267 .info = sfp_hwmon_info,
1268};
1269
1270static void sfp_hwmon_probe(struct work_struct *work)
1271{
1272 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1273 int err, i;
1274
1275 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1276 if (err < 0) {
1277 if (sfp->hwmon_tries--) {
1278 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1279 T_PROBE_RETRY_SLOW);
1280 } else {
1281 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1282 }
1283 return;
1284 }
1285
1286 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1287 if (!sfp->hwmon_name) {
1288 dev_err(sfp->dev, "out of memory for hwmon name\n");
1289 return;
1290 }
1291
1292 for (i = 0; sfp->hwmon_name[i]; i++)
1293 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1294 sfp->hwmon_name[i] = '_';
1295
1296 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1297 sfp->hwmon_name, sfp,
1298 &sfp_hwmon_chip_info,
1299 NULL);
1300 if (IS_ERR(sfp->hwmon_dev))
1301 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1302 PTR_ERR(sfp->hwmon_dev));
1303}
1304
1305static int sfp_hwmon_insert(struct sfp *sfp)
1306{
1307 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1308 return 0;
1309
1310 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1311 return 0;
1312
1313 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1314 /* This driver in general does not support address
1315 * change.
1316 */
1317 return 0;
1318
1319 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1320 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1321
1322 return 0;
1323}
1324
1325static void sfp_hwmon_remove(struct sfp *sfp)
1326{
1327 cancel_delayed_work_sync(&sfp->hwmon_probe);
1328 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1329 hwmon_device_unregister(sfp->hwmon_dev);
1330 sfp->hwmon_dev = NULL;
1331 kfree(sfp->hwmon_name);
1332 }
1333}
1334
1335static int sfp_hwmon_init(struct sfp *sfp)
1336{
1337 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1338
1339 return 0;
1340}
1341
1342static void sfp_hwmon_exit(struct sfp *sfp)
1343{
1344 cancel_delayed_work_sync(&sfp->hwmon_probe);
1345}
1346#else
1347static int sfp_hwmon_insert(struct sfp *sfp)
1348{
1349 return 0;
1350}
1351
1352static void sfp_hwmon_remove(struct sfp *sfp)
1353{
1354}
1355
1356static int sfp_hwmon_init(struct sfp *sfp)
1357{
1358 return 0;
1359}
1360
1361static void sfp_hwmon_exit(struct sfp *sfp)
1362{
1363}
1364#endif
1365
1366/* Helpers */
1367static void sfp_module_tx_disable(struct sfp *sfp)
1368{
1369 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1370 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1371 sfp->state |= SFP_F_TX_DISABLE;
1372 sfp_set_state(sfp, sfp->state);
1373}
1374
1375static void sfp_module_tx_enable(struct sfp *sfp)
1376{
1377 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1378 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1379 sfp->state &= ~SFP_F_TX_DISABLE;
1380 sfp_set_state(sfp, sfp->state);
1381}
1382
1383static void sfp_module_tx_fault_reset(struct sfp *sfp)
1384{
1385 unsigned int state = sfp->state;
1386
1387 if (state & SFP_F_TX_DISABLE)
1388 return;
1389
1390 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1391
1392 udelay(T_RESET_US);
1393
1394 sfp_set_state(sfp, state);
1395}
1396
1397/* SFP state machine */
1398static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1399{
1400 if (timeout)
1401 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1402 timeout);
1403 else
1404 cancel_delayed_work(&sfp->timeout);
1405}
1406
1407static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1408 unsigned int timeout)
1409{
1410 sfp->sm_state = state;
1411 sfp_sm_set_timer(sfp, timeout);
1412}
1413
1414static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1415 unsigned int timeout)
1416{
1417 sfp->sm_mod_state = state;
1418 sfp_sm_set_timer(sfp, timeout);
1419}
1420
1421static void sfp_sm_phy_detach(struct sfp *sfp)
1422{
1423 sfp_remove_phy(sfp->sfp_bus);
1424 phy_device_remove(sfp->mod_phy);
1425 phy_device_free(sfp->mod_phy);
1426 sfp->mod_phy = NULL;
1427}
1428
1429static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1430{
1431 struct phy_device *phy;
1432 int err;
1433
1434 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1435 if (phy == ERR_PTR(-ENODEV))
1436 return PTR_ERR(phy);
1437 if (IS_ERR(phy)) {
1438 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1439 return PTR_ERR(phy);
1440 }
1441
1442 err = phy_device_register(phy);
1443 if (err) {
1444 phy_device_free(phy);
1445 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1446 return err;
1447 }
1448
1449 err = sfp_add_phy(sfp->sfp_bus, phy);
1450 if (err) {
1451 phy_device_remove(phy);
1452 phy_device_free(phy);
1453 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1454 return err;
1455 }
1456
1457 sfp->mod_phy = phy;
1458
1459 return 0;
1460}
1461
1462static void sfp_sm_link_up(struct sfp *sfp)
1463{
1464 sfp_link_up(sfp->sfp_bus);
1465 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1466}
1467
1468static void sfp_sm_link_down(struct sfp *sfp)
1469{
1470 sfp_link_down(sfp->sfp_bus);
1471}
1472
1473static void sfp_sm_link_check_los(struct sfp *sfp)
1474{
1475 unsigned int los = sfp->state & SFP_F_LOS;
1476
1477 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1478 * are set, we assume that no LOS signal is available.
1479 */
1480 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1481 los ^= SFP_F_LOS;
1482 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1483 los = 0;
1484
1485 if (los)
1486 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1487 else
1488 sfp_sm_link_up(sfp);
1489}
1490
1491static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1492{
1493 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1494 event == SFP_E_LOS_LOW) ||
1495 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1496 event == SFP_E_LOS_HIGH);
1497}
1498
1499static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1500{
1501 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1502 event == SFP_E_LOS_HIGH) ||
1503 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1504 event == SFP_E_LOS_LOW);
1505}
1506
1507static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1508{
1509 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1510 dev_err(sfp->dev,
1511 "module persistently indicates fault, disabling\n");
1512 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1513 } else {
1514 if (warn)
1515 dev_err(sfp->dev, "module transmit fault indicated\n");
1516
1517 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1518 }
1519}
1520
1521/* Probe a SFP for a PHY device if the module supports copper - the PHY
1522 * normally sits at I2C bus address 0x56, and may either be a clause 22
1523 * or clause 45 PHY.
1524 *
1525 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1526 * negotiation enabled, but some may be in 1000base-X - which is for the
1527 * PHY driver to determine.
1528 *
1529 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1530 * mode according to the negotiated line speed.
1531 */
1532static int sfp_sm_probe_for_phy(struct sfp *sfp)
1533{
1534 int err = 0;
1535
1536 switch (sfp->id.base.extended_cc) {
1537 case SFF8024_ECC_10GBASE_T_SFI:
1538 case SFF8024_ECC_10GBASE_T_SR:
1539 case SFF8024_ECC_5GBASE_T:
1540 case SFF8024_ECC_2_5GBASE_T:
1541 err = sfp_sm_probe_phy(sfp, true);
1542 break;
1543
1544 default:
1545 if (sfp->id.base.e1000_base_t)
1546 err = sfp_sm_probe_phy(sfp, false);
1547 break;
1548 }
1549 return err;
1550}
1551
1552static int sfp_module_parse_power(struct sfp *sfp)
1553{
1554 u32 power_mW = 1000;
1555
1556 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1557 power_mW = 1500;
1558 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1559 power_mW = 2000;
1560
1561 if (power_mW > sfp->max_power_mW) {
1562 /* Module power specification exceeds the allowed maximum. */
1563 if (sfp->id.ext.sff8472_compliance ==
1564 SFP_SFF8472_COMPLIANCE_NONE &&
1565 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1566 /* The module appears not to implement bus address
1567 * 0xa2, so assume that the module powers up in the
1568 * indicated mode.
1569 */
1570 dev_err(sfp->dev,
1571 "Host does not support %u.%uW modules\n",
1572 power_mW / 1000, (power_mW / 100) % 10);
1573 return -EINVAL;
1574 } else {
1575 dev_warn(sfp->dev,
1576 "Host does not support %u.%uW modules, module left in power mode 1\n",
1577 power_mW / 1000, (power_mW / 100) % 10);
1578 return 0;
1579 }
1580 }
1581
1582 /* If the module requires a higher power mode, but also requires
1583 * an address change sequence, warn the user that the module may
1584 * not be functional.
1585 */
1586 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1587 dev_warn(sfp->dev,
1588 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1589 power_mW / 1000, (power_mW / 100) % 10);
1590 return 0;
1591 }
1592
1593 sfp->module_power_mW = power_mW;
1594
1595 return 0;
1596}
1597
1598static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1599{
1600 u8 val;
1601 int err;
1602
1603 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1604 if (err != sizeof(val)) {
1605 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1606 return -EAGAIN;
1607 }
1608
1609 /* DM7052 reports as a high power module, responds to reads (with
1610 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1611 * if the bit is already set, we're already in high power mode.
1612 */
1613 if (!!(val & BIT(0)) == enable)
1614 return 0;
1615
1616 if (enable)
1617 val |= BIT(0);
1618 else
1619 val &= ~BIT(0);
1620
1621 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1622 if (err != sizeof(val)) {
1623 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1624 return -EAGAIN;
1625 }
1626
1627 if (enable)
1628 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1629 sfp->module_power_mW / 1000,
1630 (sfp->module_power_mW / 100) % 10);
1631
1632 return 0;
1633}
1634
1635static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1636{
1637 u8 check;
1638 int err;
1639
1640 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1641 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1642 id->base.connector != SFF8024_CONNECTOR_LC) {
1643 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1644 id->base.phys_id = SFF8024_ID_SFF_8472;
1645 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1646 id->base.connector = SFF8024_CONNECTOR_LC;
1647 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1648 if (err != 3) {
1649 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1650 return err;
1651 }
1652
1653 /* Cotsworks modules have been found to require a delay between write operations. */
1654 mdelay(50);
1655
1656 /* Update base structure checksum */
1657 check = sfp_check(&id->base, sizeof(id->base) - 1);
1658 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1659 if (err != 1) {
1660 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1661 return err;
1662 }
1663 }
1664 return 0;
1665}
1666
1667static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1668{
1669 /* SFP module inserted - read I2C data */
1670 struct sfp_eeprom_id id;
1671 bool cotsworks_sfbg;
1672 bool cotsworks;
1673 u8 check;
1674 int ret;
1675
1676 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1677 if (ret < 0) {
1678 if (report)
1679 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1680 return -EAGAIN;
1681 }
1682
1683 if (ret != sizeof(id)) {
1684 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1685 return -EAGAIN;
1686 }
1687
1688 /* Cotsworks do not seem to update the checksums when they
1689 * do the final programming with the final module part number,
1690 * serial number and date code.
1691 */
1692 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1693 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1694
1695 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1696 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1697 * Cotsworks PN matches and bytes are not correct.
1698 */
1699 if (cotsworks && cotsworks_sfbg) {
1700 ret = sfp_cotsworks_fixup_check(sfp, &id);
1701 if (ret < 0)
1702 return ret;
1703 }
1704
1705 /* Validate the checksum over the base structure */
1706 check = sfp_check(&id.base, sizeof(id.base) - 1);
1707 if (check != id.base.cc_base) {
1708 if (cotsworks) {
1709 dev_warn(sfp->dev,
1710 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1711 check, id.base.cc_base);
1712 } else {
1713 dev_err(sfp->dev,
1714 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1715 check, id.base.cc_base);
1716 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1717 16, 1, &id, sizeof(id), true);
1718 return -EINVAL;
1719 }
1720 }
1721
1722 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1723 if (check != id.ext.cc_ext) {
1724 if (cotsworks) {
1725 dev_warn(sfp->dev,
1726 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1727 check, id.ext.cc_ext);
1728 } else {
1729 dev_err(sfp->dev,
1730 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1731 check, id.ext.cc_ext);
1732 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1733 16, 1, &id, sizeof(id), true);
1734 memset(&id.ext, 0, sizeof(id.ext));
1735 }
1736 }
1737
1738 sfp->id = id;
1739
1740 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1741 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1742 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1743 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1744 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1745 (int)sizeof(id.ext.datecode), id.ext.datecode);
1746
1747 /* Check whether we support this module */
1748 if (!sfp->type->module_supported(&id)) {
1749 dev_err(sfp->dev,
1750 "module is not supported - phys id 0x%02x 0x%02x\n",
1751 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1752 return -EINVAL;
1753 }
1754
1755 /* If the module requires address swap mode, warn about it */
1756 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1757 dev_warn(sfp->dev,
1758 "module address swap to access page 0xA2 is not supported.\n");
1759
1760 /* Parse the module power requirement */
1761 ret = sfp_module_parse_power(sfp);
1762 if (ret < 0)
1763 return ret;
1764
1765 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1766 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1767 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1768 else
1769 sfp->module_t_start_up = T_START_UP;
1770
1771 return 0;
1772}
1773
1774static void sfp_sm_mod_remove(struct sfp *sfp)
1775{
1776 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1777 sfp_module_remove(sfp->sfp_bus);
1778
1779 sfp_hwmon_remove(sfp);
1780
1781 memset(&sfp->id, 0, sizeof(sfp->id));
1782 sfp->module_power_mW = 0;
1783
1784 dev_info(sfp->dev, "module removed\n");
1785}
1786
1787/* This state machine tracks the upstream's state */
1788static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1789{
1790 switch (sfp->sm_dev_state) {
1791 default:
1792 if (event == SFP_E_DEV_ATTACH)
1793 sfp->sm_dev_state = SFP_DEV_DOWN;
1794 break;
1795
1796 case SFP_DEV_DOWN:
1797 if (event == SFP_E_DEV_DETACH)
1798 sfp->sm_dev_state = SFP_DEV_DETACHED;
1799 else if (event == SFP_E_DEV_UP)
1800 sfp->sm_dev_state = SFP_DEV_UP;
1801 break;
1802
1803 case SFP_DEV_UP:
1804 if (event == SFP_E_DEV_DETACH)
1805 sfp->sm_dev_state = SFP_DEV_DETACHED;
1806 else if (event == SFP_E_DEV_DOWN)
1807 sfp->sm_dev_state = SFP_DEV_DOWN;
1808 break;
1809 }
1810}
1811
1812/* This state machine tracks the insert/remove state of the module, probes
1813 * the on-board EEPROM, and sets up the power level.
1814 */
1815static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1816{
1817 int err;
1818
1819 /* Handle remove event globally, it resets this state machine */
1820 if (event == SFP_E_REMOVE) {
1821 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1822 sfp_sm_mod_remove(sfp);
1823 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1824 return;
1825 }
1826
1827 /* Handle device detach globally */
1828 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1829 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1830 if (sfp->module_power_mW > 1000 &&
1831 sfp->sm_mod_state > SFP_MOD_HPOWER)
1832 sfp_sm_mod_hpower(sfp, false);
1833 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1834 return;
1835 }
1836
1837 switch (sfp->sm_mod_state) {
1838 default:
1839 if (event == SFP_E_INSERT) {
1840 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1841 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1842 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1843 }
1844 break;
1845
1846 case SFP_MOD_PROBE:
1847 /* Wait for T_PROBE_INIT to time out */
1848 if (event != SFP_E_TIMEOUT)
1849 break;
1850
1851 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1852 if (err == -EAGAIN) {
1853 if (sfp->sm_mod_tries_init &&
1854 --sfp->sm_mod_tries_init) {
1855 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1856 break;
1857 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1858 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1859 dev_warn(sfp->dev,
1860 "please wait, module slow to respond\n");
1861 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1862 break;
1863 }
1864 }
1865 if (err < 0) {
1866 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1867 break;
1868 }
1869
1870 err = sfp_hwmon_insert(sfp);
1871 if (err)
1872 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1873
1874 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1875 fallthrough;
1876 case SFP_MOD_WAITDEV:
1877 /* Ensure that the device is attached before proceeding */
1878 if (sfp->sm_dev_state < SFP_DEV_DOWN)
1879 break;
1880
1881 /* Report the module insertion to the upstream device */
1882 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1883 if (err < 0) {
1884 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1885 break;
1886 }
1887
1888 /* If this is a power level 1 module, we are done */
1889 if (sfp->module_power_mW <= 1000)
1890 goto insert;
1891
1892 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1893 fallthrough;
1894 case SFP_MOD_HPOWER:
1895 /* Enable high power mode */
1896 err = sfp_sm_mod_hpower(sfp, true);
1897 if (err < 0) {
1898 if (err != -EAGAIN) {
1899 sfp_module_remove(sfp->sfp_bus);
1900 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1901 } else {
1902 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1903 }
1904 break;
1905 }
1906
1907 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1908 break;
1909
1910 case SFP_MOD_WAITPWR:
1911 /* Wait for T_HPOWER_LEVEL to time out */
1912 if (event != SFP_E_TIMEOUT)
1913 break;
1914
1915 insert:
1916 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1917 break;
1918
1919 case SFP_MOD_PRESENT:
1920 case SFP_MOD_ERROR:
1921 break;
1922 }
1923}
1924
1925static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1926{
1927 unsigned long timeout;
1928 int ret;
1929
1930 /* Some events are global */
1931 if (sfp->sm_state != SFP_S_DOWN &&
1932 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1933 sfp->sm_dev_state != SFP_DEV_UP)) {
1934 if (sfp->sm_state == SFP_S_LINK_UP &&
1935 sfp->sm_dev_state == SFP_DEV_UP)
1936 sfp_sm_link_down(sfp);
1937 if (sfp->sm_state > SFP_S_INIT)
1938 sfp_module_stop(sfp->sfp_bus);
1939 if (sfp->mod_phy)
1940 sfp_sm_phy_detach(sfp);
1941 sfp_module_tx_disable(sfp);
1942 sfp_soft_stop_poll(sfp);
1943 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1944 return;
1945 }
1946
1947 /* The main state machine */
1948 switch (sfp->sm_state) {
1949 case SFP_S_DOWN:
1950 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1951 sfp->sm_dev_state != SFP_DEV_UP)
1952 break;
1953
1954 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
1955 sfp_soft_start_poll(sfp);
1956
1957 sfp_module_tx_enable(sfp);
1958
1959 /* Initialise the fault clearance retries */
1960 sfp->sm_fault_retries = N_FAULT_INIT;
1961
1962 /* We need to check the TX_FAULT state, which is not defined
1963 * while TX_DISABLE is asserted. The earliest we want to do
1964 * anything (such as probe for a PHY) is 50ms.
1965 */
1966 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1967 break;
1968
1969 case SFP_S_WAIT:
1970 if (event != SFP_E_TIMEOUT)
1971 break;
1972
1973 if (sfp->state & SFP_F_TX_FAULT) {
1974 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
1975 * from the TX_DISABLE deassertion for the module to
1976 * initialise, which is indicated by TX_FAULT
1977 * deasserting.
1978 */
1979 timeout = sfp->module_t_start_up;
1980 if (timeout > T_WAIT)
1981 timeout -= T_WAIT;
1982 else
1983 timeout = 1;
1984
1985 sfp_sm_next(sfp, SFP_S_INIT, timeout);
1986 } else {
1987 /* TX_FAULT is not asserted, assume the module has
1988 * finished initialising.
1989 */
1990 goto init_done;
1991 }
1992 break;
1993
1994 case SFP_S_INIT:
1995 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1996 /* TX_FAULT is still asserted after t_init or
1997 * or t_start_up, so assume there is a fault.
1998 */
1999 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2000 sfp->sm_fault_retries == N_FAULT_INIT);
2001 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2002 init_done:
2003 sfp->sm_phy_retries = R_PHY_RETRY;
2004 goto phy_probe;
2005 }
2006 break;
2007
2008 case SFP_S_INIT_PHY:
2009 if (event != SFP_E_TIMEOUT)
2010 break;
2011 phy_probe:
2012 /* TX_FAULT deasserted or we timed out with TX_FAULT
2013 * clear. Probe for the PHY and check the LOS state.
2014 */
2015 ret = sfp_sm_probe_for_phy(sfp);
2016 if (ret == -ENODEV) {
2017 if (--sfp->sm_phy_retries) {
2018 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2019 break;
2020 } else {
2021 dev_info(sfp->dev, "no PHY detected\n");
2022 }
2023 } else if (ret) {
2024 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2025 break;
2026 }
2027 if (sfp_module_start(sfp->sfp_bus)) {
2028 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2029 break;
2030 }
2031 sfp_sm_link_check_los(sfp);
2032
2033 /* Reset the fault retry count */
2034 sfp->sm_fault_retries = N_FAULT;
2035 break;
2036
2037 case SFP_S_INIT_TX_FAULT:
2038 if (event == SFP_E_TIMEOUT) {
2039 sfp_module_tx_fault_reset(sfp);
2040 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2041 }
2042 break;
2043
2044 case SFP_S_WAIT_LOS:
2045 if (event == SFP_E_TX_FAULT)
2046 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2047 else if (sfp_los_event_inactive(sfp, event))
2048 sfp_sm_link_up(sfp);
2049 break;
2050
2051 case SFP_S_LINK_UP:
2052 if (event == SFP_E_TX_FAULT) {
2053 sfp_sm_link_down(sfp);
2054 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2055 } else if (sfp_los_event_active(sfp, event)) {
2056 sfp_sm_link_down(sfp);
2057 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2058 }
2059 break;
2060
2061 case SFP_S_TX_FAULT:
2062 if (event == SFP_E_TIMEOUT) {
2063 sfp_module_tx_fault_reset(sfp);
2064 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2065 }
2066 break;
2067
2068 case SFP_S_REINIT:
2069 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2070 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2071 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2072 dev_info(sfp->dev, "module transmit fault recovered\n");
2073 sfp_sm_link_check_los(sfp);
2074 }
2075 break;
2076
2077 case SFP_S_TX_DISABLE:
2078 break;
2079 }
2080}
2081
2082static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2083{
2084 mutex_lock(&sfp->sm_mutex);
2085
2086 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2087 mod_state_to_str(sfp->sm_mod_state),
2088 dev_state_to_str(sfp->sm_dev_state),
2089 sm_state_to_str(sfp->sm_state),
2090 event_to_str(event));
2091
2092 sfp_sm_device(sfp, event);
2093 sfp_sm_module(sfp, event);
2094 sfp_sm_main(sfp, event);
2095
2096 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2097 mod_state_to_str(sfp->sm_mod_state),
2098 dev_state_to_str(sfp->sm_dev_state),
2099 sm_state_to_str(sfp->sm_state));
2100
2101 mutex_unlock(&sfp->sm_mutex);
2102}
2103
2104static void sfp_attach(struct sfp *sfp)
2105{
2106 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2107}
2108
2109static void sfp_detach(struct sfp *sfp)
2110{
2111 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2112}
2113
2114static void sfp_start(struct sfp *sfp)
2115{
2116 sfp_sm_event(sfp, SFP_E_DEV_UP);
2117}
2118
2119static void sfp_stop(struct sfp *sfp)
2120{
2121 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2122}
2123
2124static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2125{
2126 /* locking... and check module is present */
2127
2128 if (sfp->id.ext.sff8472_compliance &&
2129 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2130 modinfo->type = ETH_MODULE_SFF_8472;
2131 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2132 } else {
2133 modinfo->type = ETH_MODULE_SFF_8079;
2134 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2135 }
2136 return 0;
2137}
2138
2139static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2140 u8 *data)
2141{
2142 unsigned int first, last, len;
2143 int ret;
2144
2145 if (ee->len == 0)
2146 return -EINVAL;
2147
2148 first = ee->offset;
2149 last = ee->offset + ee->len;
2150 if (first < ETH_MODULE_SFF_8079_LEN) {
2151 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2152 len -= first;
2153
2154 ret = sfp_read(sfp, false, first, data, len);
2155 if (ret < 0)
2156 return ret;
2157
2158 first += len;
2159 data += len;
2160 }
2161 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2162 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2163 len -= first;
2164 first -= ETH_MODULE_SFF_8079_LEN;
2165
2166 ret = sfp_read(sfp, true, first, data, len);
2167 if (ret < 0)
2168 return ret;
2169 }
2170 return 0;
2171}
2172
2173static const struct sfp_socket_ops sfp_module_ops = {
2174 .attach = sfp_attach,
2175 .detach = sfp_detach,
2176 .start = sfp_start,
2177 .stop = sfp_stop,
2178 .module_info = sfp_module_info,
2179 .module_eeprom = sfp_module_eeprom,
2180};
2181
2182static void sfp_timeout(struct work_struct *work)
2183{
2184 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2185
2186 rtnl_lock();
2187 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2188 rtnl_unlock();
2189}
2190
2191static void sfp_check_state(struct sfp *sfp)
2192{
2193 unsigned int state, i, changed;
2194
2195 mutex_lock(&sfp->st_mutex);
2196 state = sfp_get_state(sfp);
2197 changed = state ^ sfp->state;
2198 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2199
2200 for (i = 0; i < GPIO_MAX; i++)
2201 if (changed & BIT(i))
2202 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2203 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2204
2205 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2206 sfp->state = state;
2207
2208 rtnl_lock();
2209 if (changed & SFP_F_PRESENT)
2210 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2211 SFP_E_INSERT : SFP_E_REMOVE);
2212
2213 if (changed & SFP_F_TX_FAULT)
2214 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2215 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2216
2217 if (changed & SFP_F_LOS)
2218 sfp_sm_event(sfp, state & SFP_F_LOS ?
2219 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2220 rtnl_unlock();
2221 mutex_unlock(&sfp->st_mutex);
2222}
2223
2224static irqreturn_t sfp_irq(int irq, void *data)
2225{
2226 struct sfp *sfp = data;
2227
2228 sfp_check_state(sfp);
2229
2230 return IRQ_HANDLED;
2231}
2232
2233static void sfp_poll(struct work_struct *work)
2234{
2235 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2236
2237 sfp_check_state(sfp);
2238
2239 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2240 sfp->need_poll)
2241 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2242}
2243
2244static struct sfp *sfp_alloc(struct device *dev)
2245{
2246 struct sfp *sfp;
2247
2248 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2249 if (!sfp)
2250 return ERR_PTR(-ENOMEM);
2251
2252 sfp->dev = dev;
2253
2254 mutex_init(&sfp->sm_mutex);
2255 mutex_init(&sfp->st_mutex);
2256 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2257 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2258
2259 sfp_hwmon_init(sfp);
2260
2261 return sfp;
2262}
2263
2264static void sfp_cleanup(void *data)
2265{
2266 struct sfp *sfp = data;
2267
2268 sfp_hwmon_exit(sfp);
2269
2270 cancel_delayed_work_sync(&sfp->poll);
2271 cancel_delayed_work_sync(&sfp->timeout);
2272 if (sfp->i2c_mii) {
2273 mdiobus_unregister(sfp->i2c_mii);
2274 mdiobus_free(sfp->i2c_mii);
2275 }
2276 if (sfp->i2c)
2277 i2c_put_adapter(sfp->i2c);
2278 kfree(sfp);
2279}
2280
2281static int sfp_probe(struct platform_device *pdev)
2282{
2283 const struct sff_data *sff;
2284 struct i2c_adapter *i2c;
2285 char *sfp_irq_name;
2286 struct sfp *sfp;
2287 int err, i;
2288
2289 sfp = sfp_alloc(&pdev->dev);
2290 if (IS_ERR(sfp))
2291 return PTR_ERR(sfp);
2292
2293 platform_set_drvdata(pdev, sfp);
2294
2295 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2296 if (err < 0)
2297 return err;
2298
2299 sff = sfp->type = &sfp_data;
2300
2301 if (pdev->dev.of_node) {
2302 struct device_node *node = pdev->dev.of_node;
2303 const struct of_device_id *id;
2304 struct device_node *np;
2305
2306 id = of_match_node(sfp_of_match, node);
2307 if (WARN_ON(!id))
2308 return -EINVAL;
2309
2310 sff = sfp->type = id->data;
2311
2312 np = of_parse_phandle(node, "i2c-bus", 0);
2313 if (!np) {
2314 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2315 return -ENODEV;
2316 }
2317
2318 i2c = of_find_i2c_adapter_by_node(np);
2319 of_node_put(np);
2320 } else if (has_acpi_companion(&pdev->dev)) {
2321 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2322 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2323 struct fwnode_reference_args args;
2324 struct acpi_handle *acpi_handle;
2325 int ret;
2326
2327 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2328 if (ret || !is_acpi_device_node(args.fwnode)) {
2329 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2330 return -ENODEV;
2331 }
2332
2333 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2334 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2335 } else {
2336 return -EINVAL;
2337 }
2338
2339 if (!i2c)
2340 return -EPROBE_DEFER;
2341
2342 err = sfp_i2c_configure(sfp, i2c);
2343 if (err < 0) {
2344 i2c_put_adapter(i2c);
2345 return err;
2346 }
2347
2348 for (i = 0; i < GPIO_MAX; i++)
2349 if (sff->gpios & BIT(i)) {
2350 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2351 gpio_of_names[i], gpio_flags[i]);
2352 if (IS_ERR(sfp->gpio[i]))
2353 return PTR_ERR(sfp->gpio[i]);
2354 }
2355
2356 sfp->get_state = sfp_gpio_get_state;
2357 sfp->set_state = sfp_gpio_set_state;
2358
2359 /* Modules that have no detect signal are always present */
2360 if (!(sfp->gpio[GPIO_MODDEF0]))
2361 sfp->get_state = sff_gpio_get_state;
2362
2363 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2364 &sfp->max_power_mW);
2365 if (!sfp->max_power_mW)
2366 sfp->max_power_mW = 1000;
2367
2368 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2369 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2370
2371 /* Get the initial state, and always signal TX disable,
2372 * since the network interface will not be up.
2373 */
2374 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2375
2376 if (sfp->gpio[GPIO_RATE_SELECT] &&
2377 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2378 sfp->state |= SFP_F_RATE_SELECT;
2379 sfp_set_state(sfp, sfp->state);
2380 sfp_module_tx_disable(sfp);
2381 if (sfp->state & SFP_F_PRESENT) {
2382 rtnl_lock();
2383 sfp_sm_event(sfp, SFP_E_INSERT);
2384 rtnl_unlock();
2385 }
2386
2387 for (i = 0; i < GPIO_MAX; i++) {
2388 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2389 continue;
2390
2391 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2392 if (!sfp->gpio_irq[i]) {
2393 sfp->need_poll = true;
2394 continue;
2395 }
2396
2397 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2398 "%s-%s", dev_name(sfp->dev),
2399 gpio_of_names[i]);
2400
2401 if (!sfp_irq_name)
2402 return -ENOMEM;
2403
2404 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2405 NULL, sfp_irq,
2406 IRQF_ONESHOT |
2407 IRQF_TRIGGER_RISING |
2408 IRQF_TRIGGER_FALLING,
2409 sfp_irq_name, sfp);
2410 if (err) {
2411 sfp->gpio_irq[i] = 0;
2412 sfp->need_poll = true;
2413 }
2414 }
2415
2416 if (sfp->need_poll)
2417 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2418
2419 /* We could have an issue in cases no Tx disable pin is available or
2420 * wired as modules using a laser as their light source will continue to
2421 * be active when the fiber is removed. This could be a safety issue and
2422 * we should at least warn the user about that.
2423 */
2424 if (!sfp->gpio[GPIO_TX_DISABLE])
2425 dev_warn(sfp->dev,
2426 "No tx_disable pin: SFP modules will always be emitting.\n");
2427
2428 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2429 if (!sfp->sfp_bus)
2430 return -ENOMEM;
2431
2432 return 0;
2433}
2434
2435static int sfp_remove(struct platform_device *pdev)
2436{
2437 struct sfp *sfp = platform_get_drvdata(pdev);
2438
2439 sfp_unregister_socket(sfp->sfp_bus);
2440
2441 rtnl_lock();
2442 sfp_sm_event(sfp, SFP_E_REMOVE);
2443 rtnl_unlock();
2444
2445 return 0;
2446}
2447
2448static void sfp_shutdown(struct platform_device *pdev)
2449{
2450 struct sfp *sfp = platform_get_drvdata(pdev);
2451 int i;
2452
2453 for (i = 0; i < GPIO_MAX; i++) {
2454 if (!sfp->gpio_irq[i])
2455 continue;
2456
2457 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2458 }
2459
2460 cancel_delayed_work_sync(&sfp->poll);
2461 cancel_delayed_work_sync(&sfp->timeout);
2462}
2463
2464static struct platform_driver sfp_driver = {
2465 .probe = sfp_probe,
2466 .remove = sfp_remove,
2467 .shutdown = sfp_shutdown,
2468 .driver = {
2469 .name = "sfp",
2470 .of_match_table = sfp_of_match,
2471 },
2472};
2473
2474static int sfp_init(void)
2475{
2476 poll_jiffies = msecs_to_jiffies(100);
2477
2478 return platform_driver_register(&sfp_driver);
2479}
2480module_init(sfp_init);
2481
2482static void sfp_exit(void)
2483{
2484 platform_driver_unregister(&sfp_driver);
2485}
2486module_exit(sfp_exit);
2487
2488MODULE_ALIAS("platform:sfp");
2489MODULE_AUTHOR("Russell King");
2490MODULE_LICENSE("GPL v2");