Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	int status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	int status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 
 
 
 
 
 
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 
 
 
 
 
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 
 337	u16 phy_id_high = 0;
 338	u16 phy_id_low = 0;
 339	int status;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	int status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 411		return 0;
 
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474			   u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 552	u32 gssr = hw->phy.phy_semaphore_mask;
 553	int status;
 
 
 
 
 
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 575			    u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 650	u32 gssr = hw->phy.phy_semaphore_mask;
 651	int status;
 
 
 
 
 
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	int data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	int data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	int err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	int err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
 
 
 
1100	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101	ixgbe_link_speed speed;
1102	bool autoneg = false;
1103	int status = 0;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 
 
 
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 
 
 
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
 
 
 
 
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
 
 
 
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
 
 
 
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
 
 
 
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
 
 
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
 
 
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
 
 
1218{
 
1219	u16 speed_ability;
1220	int status;
 
 
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	int status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
 
 
1282	u32 max_time_out = 10;
1283	u16 phy_speed = 0;
1284	u16 phy_link = 0;
 
1285	u16 phy_data = 0;
1286	u32 time_out;
1287	int status;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
 
 
 
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396}
1397
1398/**
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	u16 list_offset, data_offset;
1406	bool end_data = false;
 
1407	u16 phy_data = 0;
1408	int ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
 
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
 
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
 
1493		}
1494	}
1495
 
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
 
 
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
 
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
 
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
 
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533	struct ixgbe_adapter *adapter = hw->back;
1534	u8 oui_bytes[3] = {0, 0, 0};
1535	u8 bitrate_nominal = 0;
1536	u8 comp_codes_10g = 0;
1537	u8 comp_codes_1g = 0;
1538	u16 enforce_sfp = 0;
1539	u32 vendor_oui = 0;
 
1540	u8 identifier = 0;
 
 
 
1541	u8 cable_tech = 0;
1542	u8 cable_spec = 0;
1543	int status;
1544
1545	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547		return -ENOENT;
 
1548	}
1549
1550	/* LAN ID is needed for sfp_type determination */
1551	hw->mac.ops.set_lan_id(hw);
1552
1553	status = hw->phy.ops.read_i2c_eeprom(hw,
1554					     IXGBE_SFF_IDENTIFIER,
1555					     &identifier);
1556
1557	if (status)
1558		goto err_read_i2c_eeprom;
1559
 
 
 
1560	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562		return -EOPNOTSUPP;
1563	}
1564	status = hw->phy.ops.read_i2c_eeprom(hw,
1565					     IXGBE_SFF_1GBE_COMP_CODES,
1566					     &comp_codes_1g);
1567
1568	if (status)
1569		goto err_read_i2c_eeprom;
1570
1571	status = hw->phy.ops.read_i2c_eeprom(hw,
1572					     IXGBE_SFF_10GBE_COMP_CODES,
1573					     &comp_codes_10g);
1574
1575	if (status)
1576		goto err_read_i2c_eeprom;
1577	status = hw->phy.ops.read_i2c_eeprom(hw,
1578					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579					     &cable_tech);
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	status = hw->phy.ops.read_i2c_eeprom(hw,
1584					     IXGBE_SFF_BITRATE_NOMINAL,
1585					     &bitrate_nominal);
1586	if (status)
1587		goto err_read_i2c_eeprom;
1588
1589	 /* ID Module
1590	  * =========
1591	  * 0   SFP_DA_CU
1592	  * 1   SFP_SR
1593	  * 2   SFP_LR
1594	  * 3   SFP_DA_CORE0 - 82599-specific
1595	  * 4   SFP_DA_CORE1 - 82599-specific
1596	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604	  */
1605	if (hw->mac.type == ixgbe_mac_82598EB) {
1606		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612		else
1613			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614	} else {
1615		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616			if (hw->bus.lan_id == 0)
1617				hw->phy.sfp_type =
1618					     ixgbe_sfp_type_da_cu_core0;
1619			else
1620				hw->phy.sfp_type =
1621					     ixgbe_sfp_type_da_cu_core1;
1622		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623			hw->phy.ops.read_i2c_eeprom(
1624					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625					&cable_spec);
1626			if (cable_spec &
1627			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628				if (hw->bus.lan_id == 0)
1629					hw->phy.sfp_type =
1630					ixgbe_sfp_type_da_act_lmt_core0;
1631				else
1632					hw->phy.sfp_type =
1633					ixgbe_sfp_type_da_act_lmt_core1;
1634			} else {
1635				hw->phy.sfp_type =
1636						ixgbe_sfp_type_unknown;
1637			}
1638		} else if (comp_codes_10g &
1639			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641			if (hw->bus.lan_id == 0)
1642				hw->phy.sfp_type =
1643					      ixgbe_sfp_type_srlr_core0;
1644			else
1645				hw->phy.sfp_type =
1646					      ixgbe_sfp_type_srlr_core1;
1647		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648			if (hw->bus.lan_id == 0)
1649				hw->phy.sfp_type =
1650					ixgbe_sfp_type_1g_cu_core0;
1651			else
1652				hw->phy.sfp_type =
1653					ixgbe_sfp_type_1g_cu_core1;
1654		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655			if (hw->bus.lan_id == 0)
1656				hw->phy.sfp_type =
1657					ixgbe_sfp_type_1g_sx_core0;
1658			else
1659				hw->phy.sfp_type =
1660					ixgbe_sfp_type_1g_sx_core1;
1661		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662			if (hw->bus.lan_id == 0)
1663				hw->phy.sfp_type =
1664					ixgbe_sfp_type_1g_lx_core0;
1665			else
1666				hw->phy.sfp_type =
1667					ixgbe_sfp_type_1g_lx_core1;
1668		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671		 */
1672		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673			   (bitrate_nominal == 0xD)) {
1674			if (hw->bus.lan_id == 0)
1675				hw->phy.sfp_type =
1676					ixgbe_sfp_type_1g_bx_core0;
1677			else
1678				hw->phy.sfp_type =
1679					ixgbe_sfp_type_1g_bx_core1;
1680		} else {
1681			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682		}
1683	}
1684
1685	if (hw->phy.sfp_type != stored_sfp_type)
1686		hw->phy.sfp_setup_needed = true;
1687
1688	/* Determine if the SFP+ PHY is dual speed or not. */
1689	hw->phy.multispeed_fiber = false;
1690	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694		hw->phy.multispeed_fiber = true;
1695
1696	/* Determine PHY vendor */
1697	if (hw->phy.type != ixgbe_phy_nl) {
1698		hw->phy.id = identifier;
1699		status = hw->phy.ops.read_i2c_eeprom(hw,
1700					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701					    &oui_bytes[0]);
1702
1703		if (status != 0)
1704			goto err_read_i2c_eeprom;
1705
1706		status = hw->phy.ops.read_i2c_eeprom(hw,
1707					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708					    &oui_bytes[1]);
1709
1710		if (status != 0)
1711			goto err_read_i2c_eeprom;
1712
1713		status = hw->phy.ops.read_i2c_eeprom(hw,
1714					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715					    &oui_bytes[2]);
1716
1717		if (status != 0)
1718			goto err_read_i2c_eeprom;
1719
1720		vendor_oui =
1721		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724
1725		switch (vendor_oui) {
1726		case IXGBE_SFF_VENDOR_OUI_TYCO:
1727			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728				hw->phy.type =
1729					    ixgbe_phy_sfp_passive_tyco;
1730			break;
1731		case IXGBE_SFF_VENDOR_OUI_FTL:
1732			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734			else
1735				hw->phy.type = ixgbe_phy_sfp_ftl;
1736			break;
1737		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738			hw->phy.type = ixgbe_phy_sfp_avago;
1739			break;
1740		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741			hw->phy.type = ixgbe_phy_sfp_intel;
1742			break;
1743		default:
1744			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745				hw->phy.type =
1746					 ixgbe_phy_sfp_passive_unknown;
1747			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748				hw->phy.type =
1749					ixgbe_phy_sfp_active_unknown;
1750			else
1751				hw->phy.type = ixgbe_phy_sfp_unknown;
1752			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753		}
1754	}
1755
1756	/* Allow any DA cable vendor */
1757	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759		return 0;
1760
1761	/* Verify supported 1G SFP modules */
1762	if (comp_codes_10g == 0 &&
1763	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772		return -EOPNOTSUPP;
1773	}
1774
1775	/* Anything else 82598-based is supported */
1776	if (hw->mac.type == ixgbe_mac_82598EB)
1777		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778
1779	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789		/* Make sure we're a supported PHY type */
1790		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791			return 0;
1792		if (hw->allow_unsupported_sfp) {
1793			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795		}
1796		hw_dbg(hw, "SFP+ module not supported\n");
1797		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798		return -EOPNOTSUPP;
1799	}
1800	return 0;
 
 
1801
1802err_read_i2c_eeprom:
1803	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804	if (hw->phy.type != ixgbe_phy_nl) {
1805		hw->phy.id = 0;
1806		hw->phy.type = ixgbe_phy_unknown;
1807	}
1808	return -ENOENT;
1809}
1810
1811/**
1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813 * @hw: pointer to hardware structure
1814 *
1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816 **/
1817static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818{
1819	struct ixgbe_adapter *adapter = hw->back;
1820	int status;
1821	u32 vendor_oui = 0;
1822	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823	u8 identifier = 0;
1824	u8 comp_codes_1g = 0;
1825	u8 comp_codes_10g = 0;
1826	u8 oui_bytes[3] = {0, 0, 0};
1827	u16 enforce_sfp = 0;
1828	u8 connector = 0;
1829	u8 cable_length = 0;
1830	u8 device_tech = 0;
1831	bool active_cable = false;
1832
1833	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835		return -ENOENT;
 
1836	}
1837
1838	/* LAN ID is needed for sfp_type determination */
1839	hw->mac.ops.set_lan_id(hw);
1840
1841	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842					     &identifier);
1843
1844	if (status != 0)
1845		goto err_read_i2c_eeprom;
1846
1847	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849		return -EOPNOTSUPP;
 
1850	}
1851
1852	hw->phy.id = identifier;
1853
 
 
 
1854	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855					     &comp_codes_10g);
1856
1857	if (status != 0)
1858		goto err_read_i2c_eeprom;
1859
1860	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861					     &comp_codes_1g);
1862
1863	if (status != 0)
1864		goto err_read_i2c_eeprom;
1865
1866	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868		if (hw->bus.lan_id == 0)
1869			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870		else
1871			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874		if (hw->bus.lan_id == 0)
1875			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876		else
1877			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878	} else {
1879		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880			active_cable = true;
1881
1882		if (!active_cable) {
1883			/* check for active DA cables that pre-date
1884			 * SFF-8436 v3.6
1885			 */
1886			hw->phy.ops.read_i2c_eeprom(hw,
1887					IXGBE_SFF_QSFP_CONNECTOR,
1888					&connector);
1889
1890			hw->phy.ops.read_i2c_eeprom(hw,
1891					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892					&cable_length);
1893
1894			hw->phy.ops.read_i2c_eeprom(hw,
1895					IXGBE_SFF_QSFP_DEVICE_TECH,
1896					&device_tech);
1897
1898			if ((connector ==
1899				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900			    (cable_length > 0) &&
1901			    ((device_tech >> 4) ==
1902				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903				active_cable = true;
1904		}
1905
1906		if (active_cable) {
1907			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908			if (hw->bus.lan_id == 0)
1909				hw->phy.sfp_type =
1910						ixgbe_sfp_type_da_act_lmt_core0;
1911			else
1912				hw->phy.sfp_type =
1913						ixgbe_sfp_type_da_act_lmt_core1;
1914		} else {
1915			/* unsupported module type */
1916			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917			return -EOPNOTSUPP;
 
1918		}
1919	}
1920
1921	if (hw->phy.sfp_type != stored_sfp_type)
1922		hw->phy.sfp_setup_needed = true;
1923
1924	/* Determine if the QSFP+ PHY is dual speed or not. */
1925	hw->phy.multispeed_fiber = false;
1926	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930		hw->phy.multispeed_fiber = true;
1931
1932	/* Determine PHY vendor for optical modules */
1933	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935		status = hw->phy.ops.read_i2c_eeprom(hw,
1936					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937					&oui_bytes[0]);
1938
1939		if (status != 0)
1940			goto err_read_i2c_eeprom;
1941
1942		status = hw->phy.ops.read_i2c_eeprom(hw,
1943					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944					&oui_bytes[1]);
1945
1946		if (status != 0)
1947			goto err_read_i2c_eeprom;
1948
1949		status = hw->phy.ops.read_i2c_eeprom(hw,
1950					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951					&oui_bytes[2]);
1952
1953		if (status != 0)
1954			goto err_read_i2c_eeprom;
1955
1956		vendor_oui =
1957			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960
1961		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962			hw->phy.type = ixgbe_phy_qsfp_intel;
1963		else
1964			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965
1966		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1968			/* Make sure we're a supported PHY type */
1969			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970				return 0;
1971			if (hw->allow_unsupported_sfp) {
1972				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973				return 0;
 
 
 
 
 
 
 
 
1974			}
1975			hw_dbg(hw, "QSFP module not supported\n");
1976			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977			return -EOPNOTSUPP;
1978		}
1979		return 0;
1980	}
1981	return 0;
 
 
1982
1983err_read_i2c_eeprom:
1984	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985	hw->phy.id = 0;
1986	hw->phy.type = ixgbe_phy_unknown;
1987
1988	return -ENOENT;
1989}
1990
1991/**
1992 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993 *  @hw: pointer to hardware structure
1994 *  @list_offset: offset to the SFP ID list
1995 *  @data_offset: offset to the SFP data block
1996 *
1997 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998 *  so it returns the offsets to the phy init sequence block.
1999 **/
2000int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001					u16 *list_offset,
2002					u16 *data_offset)
2003{
2004	u16 sfp_id;
2005	u16 sfp_type = hw->phy.sfp_type;
2006
2007	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008		return -EOPNOTSUPP;
2009
2010	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011		return -ENOENT;
2012
2013	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015		return -EOPNOTSUPP;
2016
2017	/*
2018	 * Limiting active cables and 1G Phys must be initialized as
2019	 * SR modules
2020	 */
2021	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026		sfp_type = ixgbe_sfp_type_srlr_core0;
2027	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032		sfp_type = ixgbe_sfp_type_srlr_core1;
2033
2034	/* Read offset to PHY init contents */
2035	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036		hw_err(hw, "eeprom read at %d failed\n",
2037		       IXGBE_PHY_INIT_OFFSET_NL);
2038		return -EIO;
2039	}
2040
2041	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042		return -EIO;
2043
2044	/* Shift offset to first ID word */
2045	(*list_offset)++;
2046
2047	/*
2048	 * Find the matching SFP ID in the EEPROM
2049	 * and program the init sequence
2050	 */
2051	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052		goto err_phy;
2053
2054	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055		if (sfp_id == sfp_type) {
2056			(*list_offset)++;
2057			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058				goto err_phy;
2059			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060				hw_dbg(hw, "SFP+ module not supported\n");
2061				return -EOPNOTSUPP;
2062			} else {
2063				break;
2064			}
2065		} else {
2066			(*list_offset) += 2;
2067			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068				goto err_phy;
2069		}
2070	}
2071
2072	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073		hw_dbg(hw, "No matching SFP+ module found\n");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	return 0;
2078
2079err_phy:
2080	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081	return -EIO;
2082}
2083
2084/**
2085 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086 *  @hw: pointer to hardware structure
2087 *  @byte_offset: EEPROM byte offset to read
2088 *  @eeprom_data: value read
2089 *
2090 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091 **/
2092int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093				  u8 *eeprom_data)
2094{
2095	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097					 eeprom_data);
2098}
2099
2100/**
2101 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102 *  @hw: pointer to hardware structure
2103 *  @byte_offset: byte offset at address 0xA2
2104 *  @sff8472_data: value read
2105 *
2106 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107 **/
2108int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109				   u8 *sff8472_data)
2110{
2111	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113					 sff8472_data);
2114}
2115
2116/**
2117 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118 *  @hw: pointer to hardware structure
2119 *  @byte_offset: EEPROM byte offset to write
2120 *  @eeprom_data: value to write
2121 *
2122 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123 **/
2124int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125				   u8 eeprom_data)
2126{
2127	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129					  eeprom_data);
2130}
2131
2132/**
2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134 * @hw: pointer to hardware structure
2135 * @offset: eeprom offset to be read
2136 * @addr: I2C address to be read
2137 */
2138static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139{
2140	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141	    offset == IXGBE_SFF_IDENTIFIER &&
2142	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143		return true;
2144	return false;
2145}
2146
2147/**
2148 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149 *  @hw: pointer to hardware structure
2150 *  @byte_offset: byte offset to read
2151 *  @dev_addr: device address
2152 *  @data: value read
2153 *  @lock: true if to take and release semaphore
2154 *
2155 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156 *  a specified device address.
2157 */
2158static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159					   u8 dev_addr, u8 *data, bool lock)
2160{
2161	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162	u32 max_retry = 10;
2163	bool nack = true;
2164	u32 retry = 0;
2165	int status;
2166
2167	if (hw->mac.type >= ixgbe_mac_X550)
2168		max_retry = 3;
2169	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171
2172	*data = 0;
2173
 
 
 
 
 
2174	do {
2175		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176			return -EBUSY;
 
 
2177
2178		ixgbe_i2c_start(hw);
2179
2180		/* Device Address and write indication */
2181		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182		if (status != 0)
2183			goto fail;
2184
2185		status = ixgbe_get_i2c_ack(hw);
2186		if (status != 0)
2187			goto fail;
2188
2189		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190		if (status != 0)
2191			goto fail;
2192
2193		status = ixgbe_get_i2c_ack(hw);
2194		if (status != 0)
2195			goto fail;
2196
2197		ixgbe_i2c_start(hw);
2198
2199		/* Device Address and read indication */
2200		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201		if (status != 0)
2202			goto fail;
2203
2204		status = ixgbe_get_i2c_ack(hw);
2205		if (status != 0)
2206			goto fail;
2207
2208		status = ixgbe_clock_in_i2c_byte(hw, data);
2209		if (status != 0)
2210			goto fail;
2211
2212		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213		if (status != 0)
2214			goto fail;
2215
2216		ixgbe_i2c_stop(hw);
2217		if (lock)
2218			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219		return 0;
2220
2221fail:
2222		ixgbe_i2c_bus_clear(hw);
2223		if (lock) {
2224			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225			msleep(100);
2226		}
2227		retry++;
2228		if (retry < max_retry)
2229			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230		else
2231			hw_dbg(hw, "I2C byte read error.\n");
2232
2233	} while (retry < max_retry);
2234
2235	return status;
2236}
2237
2238/**
2239 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240 *  @hw: pointer to hardware structure
2241 *  @byte_offset: byte offset to read
2242 *  @dev_addr: device address
2243 *  @data: value read
2244 *
2245 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246 *  a specified device address.
2247 */
2248int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249				u8 dev_addr, u8 *data)
2250{
2251	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252					       data, true);
2253}
2254
2255/**
2256 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257 *  @hw: pointer to hardware structure
2258 *  @byte_offset: byte offset to read
2259 *  @dev_addr: device address
2260 *  @data: value read
2261 *
2262 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263 *  a specified device address.
2264 */
2265int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266					 u8 dev_addr, u8 *data)
2267{
2268	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269					       data, false);
2270}
2271
2272/**
2273 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274 *  @hw: pointer to hardware structure
2275 *  @byte_offset: byte offset to write
2276 *  @dev_addr: device address
2277 *  @data: value to write
2278 *  @lock: true if to take and release semaphore
2279 *
2280 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281 *  a specified device address.
2282 */
2283static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284					    u8 dev_addr, u8 data, bool lock)
2285{
2286	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287	u32 max_retry = 1;
2288	u32 retry = 0;
2289	int status;
 
 
 
 
 
2290
2291	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292		return -EBUSY;
 
 
2293
2294	do {
2295		ixgbe_i2c_start(hw);
2296
2297		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298		if (status != 0)
2299			goto fail;
2300
2301		status = ixgbe_get_i2c_ack(hw);
2302		if (status != 0)
2303			goto fail;
2304
2305		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306		if (status != 0)
2307			goto fail;
2308
2309		status = ixgbe_get_i2c_ack(hw);
2310		if (status != 0)
2311			goto fail;
2312
2313		status = ixgbe_clock_out_i2c_byte(hw, data);
2314		if (status != 0)
2315			goto fail;
2316
2317		status = ixgbe_get_i2c_ack(hw);
2318		if (status != 0)
2319			goto fail;
2320
2321		ixgbe_i2c_stop(hw);
2322		if (lock)
2323			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324		return 0;
2325
2326fail:
2327		ixgbe_i2c_bus_clear(hw);
2328		retry++;
2329		if (retry < max_retry)
2330			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331		else
2332			hw_dbg(hw, "I2C byte write error.\n");
2333	} while (retry < max_retry);
2334
2335	if (lock)
2336		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337
 
2338	return status;
2339}
2340
2341/**
2342 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343 *  @hw: pointer to hardware structure
2344 *  @byte_offset: byte offset to write
2345 *  @dev_addr: device address
2346 *  @data: value to write
2347 *
2348 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349 *  a specified device address.
2350 */
2351int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352				 u8 dev_addr, u8 data)
2353{
2354	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355						data, true);
2356}
2357
2358/**
2359 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360 *  @hw: pointer to hardware structure
2361 *  @byte_offset: byte offset to write
2362 *  @dev_addr: device address
2363 *  @data: value to write
2364 *
2365 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366 *  a specified device address.
2367 */
2368int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369					  u8 dev_addr, u8 data)
2370{
2371	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372						data, false);
2373}
2374
2375/**
2376 *  ixgbe_i2c_start - Sets I2C start condition
2377 *  @hw: pointer to hardware structure
2378 *
2379 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380 *  Set bit-bang mode on X550 hardware.
2381 **/
2382static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383{
2384	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385
2386	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387
2388	/* Start condition must begin with data and clock high */
2389	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391
2392	/* Setup time for start condition (4.7us) */
2393	udelay(IXGBE_I2C_T_SU_STA);
2394
2395	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396
2397	/* Hold time for start condition (4us) */
2398	udelay(IXGBE_I2C_T_HD_STA);
2399
2400	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401
2402	/* Minimum low period of clock is 4.7 us */
2403	udelay(IXGBE_I2C_T_LOW);
2404
2405}
2406
2407/**
2408 *  ixgbe_i2c_stop - Sets I2C stop condition
2409 *  @hw: pointer to hardware structure
2410 *
2411 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412 *  Disables bit-bang mode and negates data output enable on X550
2413 *  hardware.
2414 **/
2415static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416{
2417	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421
2422	/* Stop condition must begin with data low and clock high */
2423	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425
2426	/* Setup time for stop condition (4us) */
2427	udelay(IXGBE_I2C_T_SU_STO);
2428
2429	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430
2431	/* bus free time between stop and start (4.7us)*/
2432	udelay(IXGBE_I2C_T_BUF);
2433
2434	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435		i2cctl &= ~bb_en_bit;
2436		i2cctl |= data_oe_bit | clk_oe_bit;
2437		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438		IXGBE_WRITE_FLUSH(hw);
2439	}
2440}
2441
2442/**
2443 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444 *  @hw: pointer to hardware structure
2445 *  @data: data byte to clock in
2446 *
2447 *  Clocks in one byte data via I2C data/clock
2448 **/
2449static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450{
 
2451	bool bit = false;
2452	int i;
2453
2454	*data = 0;
2455	for (i = 7; i >= 0; i--) {
2456		ixgbe_clock_in_i2c_bit(hw, &bit);
2457		*data |= bit << i;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465 *  @hw: pointer to hardware structure
2466 *  @data: data byte clocked out
2467 *
2468 *  Clocks out one byte data via I2C data/clock
2469 **/
2470static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471{
2472	bool bit = false;
2473	int status;
2474	u32 i2cctl;
2475	int i;
2476
2477	for (i = 7; i >= 0; i--) {
2478		bit = (data >> i) & 0x1;
2479		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480
2481		if (status != 0)
2482			break;
2483	}
2484
2485	/* Release SDA line (set high) */
2486	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490	IXGBE_WRITE_FLUSH(hw);
2491
2492	return status;
2493}
2494
2495/**
2496 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Clocks in/out one bit via I2C data/clock
2500 **/
2501static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502{
2503	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
 
2505	u32 timeout = 10;
2506	bool ack = true;
2507	int status = 0;
2508	u32 i = 0;
2509
2510	if (data_oe_bit) {
2511		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512		i2cctl |= data_oe_bit;
2513		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514		IXGBE_WRITE_FLUSH(hw);
2515	}
2516	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517
 
2518	/* Minimum high period of clock is 4us */
2519	udelay(IXGBE_I2C_T_HIGH);
2520
2521	/* Poll for ACK.  Note that ACK in I2C spec is
2522	 * transition from 1 to 0 */
2523	for (i = 0; i < timeout; i++) {
2524		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526
2527		udelay(1);
2528		if (ack == 0)
2529			break;
2530	}
2531
2532	if (ack == 1) {
2533		hw_dbg(hw, "I2C ack was not received.\n");
2534		status = -EIO;
2535	}
2536
2537	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538
2539	/* Minimum low period of clock is 4.7 us */
2540	udelay(IXGBE_I2C_T_LOW);
2541
2542	return status;
2543}
2544
2545/**
2546 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547 *  @hw: pointer to hardware structure
2548 *  @data: read data value
2549 *
2550 *  Clocks in one bit via I2C data/clock
2551 **/
2552static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553{
2554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556
2557	if (data_oe_bit) {
2558		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559		i2cctl |= data_oe_bit;
2560		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561		IXGBE_WRITE_FLUSH(hw);
2562	}
2563	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564
2565	/* Minimum high period of clock is 4us */
2566	udelay(IXGBE_I2C_T_HIGH);
2567
2568	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570
2571	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572
2573	/* Minimum low period of clock is 4.7 us */
2574	udelay(IXGBE_I2C_T_LOW);
2575
2576	return 0;
2577}
2578
2579/**
2580 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581 *  @hw: pointer to hardware structure
2582 *  @data: data value to write
2583 *
2584 *  Clocks out one bit via I2C data/clock
2585 **/
2586static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587{
2588	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589	int status;
2590
2591	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592	if (status == 0) {
2593		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594
2595		/* Minimum high period of clock is 4us */
2596		udelay(IXGBE_I2C_T_HIGH);
2597
2598		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599
2600		/* Minimum low period of clock is 4.7 us.
2601		 * This also takes care of the data hold time.
2602		 */
2603		udelay(IXGBE_I2C_T_LOW);
2604	} else {
 
2605		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606		return -EIO;
2607	}
2608
2609	return 0;
2610}
2611/**
2612 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613 *  @hw: pointer to hardware structure
2614 *  @i2cctl: Current value of I2CCTL register
2615 *
2616 *  Raises the I2C clock line '0'->'1'
2617 *  Negates the I2C clock output enable on X550 hardware.
2618 **/
2619static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620{
2621	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622	u32 i = 0;
2623	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624	u32 i2cctl_r = 0;
2625
2626	if (clk_oe_bit) {
2627		*i2cctl |= clk_oe_bit;
2628		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629	}
2630
2631	for (i = 0; i < timeout; i++) {
2632		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634		IXGBE_WRITE_FLUSH(hw);
2635		/* SCL rise time (1000ns) */
2636		udelay(IXGBE_I2C_T_RISE);
2637
2638		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640			break;
2641	}
2642}
2643
2644/**
2645 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646 *  @hw: pointer to hardware structure
2647 *  @i2cctl: Current value of I2CCTL register
2648 *
2649 *  Lowers the I2C clock line '1'->'0'
2650 *  Asserts the I2C clock output enable on X550 hardware.
2651 **/
2652static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653{
2654
2655	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657
2658	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659	IXGBE_WRITE_FLUSH(hw);
2660
2661	/* SCL fall time (300ns) */
2662	udelay(IXGBE_I2C_T_FALL);
2663}
2664
2665/**
2666 *  ixgbe_set_i2c_data - Sets the I2C data bit
2667 *  @hw: pointer to hardware structure
2668 *  @i2cctl: Current value of I2CCTL register
2669 *  @data: I2C data value (0 or 1) to set
2670 *
2671 *  Sets the I2C data bit
2672 *  Asserts the I2C data output enable on X550 hardware.
2673 **/
2674static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675{
2676	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677
2678	if (data)
2679		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680	else
2681		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682	*i2cctl &= ~data_oe_bit;
2683
2684	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685	IXGBE_WRITE_FLUSH(hw);
2686
2687	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689
2690	if (!data)	/* Can't verify data in this case */
2691		return 0;
2692	if (data_oe_bit) {
2693		*i2cctl |= data_oe_bit;
2694		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695		IXGBE_WRITE_FLUSH(hw);
2696	}
2697
2698	/* Verify data was set correctly */
2699	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
 
2701		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702		return -EIO;
2703	}
2704
2705	return 0;
2706}
2707
2708/**
2709 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710 *  @hw: pointer to hardware structure
2711 *  @i2cctl: Current value of I2CCTL register
2712 *
2713 *  Returns the I2C data bit value
2714 *  Negates the I2C data output enable on X550 hardware.
2715 **/
2716static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717{
2718	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719
2720	if (data_oe_bit) {
2721		*i2cctl |= data_oe_bit;
2722		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723		IXGBE_WRITE_FLUSH(hw);
2724		udelay(IXGBE_I2C_T_FALL);
2725	}
2726
2727	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728		return true;
2729	return false;
2730}
2731
2732/**
2733 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734 *  @hw: pointer to hardware structure
2735 *
2736 *  Clears the I2C bus by sending nine clock pulses.
2737 *  Used when data line is stuck low.
2738 **/
2739static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740{
2741	u32 i2cctl;
2742	u32 i;
2743
2744	ixgbe_i2c_start(hw);
2745	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746
2747	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748
2749	for (i = 0; i < 9; i++) {
2750		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751
2752		/* Min high period of clock is 4us */
2753		udelay(IXGBE_I2C_T_HIGH);
2754
2755		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756
2757		/* Min low period of clock is 4.7us*/
2758		udelay(IXGBE_I2C_T_LOW);
2759	}
2760
2761	ixgbe_i2c_start(hw);
2762
2763	/* Put the i2c bus back to default state */
2764	ixgbe_i2c_stop(hw);
2765}
2766
2767/**
2768 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Checks if the LASI temp alarm status was triggered due to overtemp
2772 *
2773 *  Return true when an overtemp event detected, otherwise false.
2774 **/
2775bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776{
 
2777	u16 phy_data = 0;
2778	u32 status;
2779
2780	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781		return false;
2782
2783	/* Check that the LASI temp alarm status was triggered */
2784	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785				      MDIO_MMD_PMAPMD, &phy_data);
2786	if (status)
2787		return false;
2788
2789	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790}
2791
2792/** ixgbe_set_copper_phy_power - Control power for copper phy
2793 *  @hw: pointer to hardware structure
2794 *  @on: true for on, false for off
2795 **/
2796int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797{
2798	u32 status;
2799	u16 reg;
2800
2801	/* Bail if we don't have copper phy */
2802	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803		return 0;
2804
2805	if (!on && ixgbe_mng_present(hw))
2806		return 0;
2807
2808	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2809	if (status)
2810		return status;
2811
2812	if (on) {
2813		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814	} else {
2815		if (ixgbe_check_reset_blocked(hw))
2816			return 0;
2817		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818	}
2819
2820	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
 
2821	return status;
2822}
v3.15
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
 
  31#include <linux/sched.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_phy.h"
  35
  36static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  37static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  38static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  39static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  40static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  41static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  42static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  43static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  44static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  45static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  46static bool ixgbe_get_i2c_data(u32 *i2cctl);
  47static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  48static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  49static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  50static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52/**
  53 *  ixgbe_identify_phy_generic - Get physical layer module
  54 *  @hw: pointer to hardware structure
  55 *
  56 *  Determines the physical layer module found on the current adapter.
  57 **/
  58s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
  59{
  60	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
  61	u32 phy_addr;
  62	u16 ext_ability = 0;
  63
  64	if (hw->phy.type == ixgbe_phy_unknown) {
  65		for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
  66			hw->phy.mdio.prtad = phy_addr;
  67			if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
  68				ixgbe_get_phy_id(hw);
  69				hw->phy.type =
  70				        ixgbe_get_phy_type_from_id(hw->phy.id);
 
 
  71
  72				if (hw->phy.type == ixgbe_phy_unknown) {
  73					hw->phy.ops.read_reg(hw,
  74							     MDIO_PMA_EXTABLE,
  75							     MDIO_MMD_PMAPMD,
  76							     &ext_ability);
  77					if (ext_ability &
  78					    (MDIO_PMA_EXTABLE_10GBT |
  79					     MDIO_PMA_EXTABLE_1000BT))
  80						hw->phy.type =
  81							 ixgbe_phy_cu_unknown;
  82					else
  83						hw->phy.type =
  84							 ixgbe_phy_generic;
  85				}
  86
  87				status = 0;
  88				break;
  89			}
 
  90		}
  91		/* clear value if nothing found */
  92		if (status != 0)
  93			hw->phy.mdio.prtad = 0;
  94	} else {
  95		status = 0;
  96	}
  97
 
 
 
 
 
 
 
  98	return status;
  99}
 100
 101/**
 102 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 103 * @hw: pointer to the hardware structure
 104 *
 105 * This function checks the MMNGC.MNG_VETO bit to see if there are
 106 * any constraints on link from manageability.  For MAC's that don't
 107 * have this bit just return false since the link can not be blocked
 108 * via this method.
 109 **/
 110bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 111{
 112	u32 mmngc;
 113
 114	/* If we don't have this bit, it can't be blocking */
 115	if (hw->mac.type == ixgbe_mac_82598EB)
 116		return false;
 117
 118	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 119	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 120		hw_dbg(hw, "MNG_VETO bit detected.\n");
 121		return true;
 122	}
 123
 124	return false;
 125}
 126
 127/**
 128 *  ixgbe_get_phy_id - Get the phy type
 129 *  @hw: pointer to hardware structure
 130 *
 131 **/
 132static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 133{
 134	u32 status;
 135	u16 phy_id_high = 0;
 136	u16 phy_id_low = 0;
 
 137
 138	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 139	                              &phy_id_high);
 140
 141	if (status == 0) {
 142		hw->phy.id = (u32)(phy_id_high << 16);
 143		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 144		                              &phy_id_low);
 145		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 146		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 147	}
 148	return status;
 149}
 150
 151/**
 152 *  ixgbe_get_phy_type_from_id - Get the phy type
 153 *  @hw: pointer to hardware structure
 154 *
 155 **/
 156static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 157{
 158	enum ixgbe_phy_type phy_type;
 159
 160	switch (phy_id) {
 161	case TN1010_PHY_ID:
 162		phy_type = ixgbe_phy_tn;
 163		break;
 
 
 164	case X540_PHY_ID:
 165		phy_type = ixgbe_phy_aq;
 166		break;
 167	case QT2022_PHY_ID:
 168		phy_type = ixgbe_phy_qt;
 169		break;
 170	case ATH_PHY_ID:
 171		phy_type = ixgbe_phy_nl;
 172		break;
 
 
 
 
 
 
 
 173	default:
 174		phy_type = ixgbe_phy_unknown;
 175		break;
 176	}
 177
 178	return phy_type;
 179}
 180
 181/**
 182 *  ixgbe_reset_phy_generic - Performs a PHY reset
 183 *  @hw: pointer to hardware structure
 184 **/
 185s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 186{
 187	u32 i;
 188	u16 ctrl = 0;
 189	s32 status = 0;
 190
 191	if (hw->phy.type == ixgbe_phy_unknown)
 192		status = ixgbe_identify_phy_generic(hw);
 193
 194	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 195		goto out;
 196
 197	/* Don't reset PHY if it's shut down due to overtemp. */
 198	if (!hw->phy.reset_if_overtemp &&
 199	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 200		goto out;
 201
 202	/* Blocked by MNG FW so bail */
 203	if (ixgbe_check_reset_blocked(hw))
 204		goto out;
 205
 206	/*
 207	 * Perform soft PHY reset to the PHY_XS.
 208	 * This will cause a soft reset to the PHY
 209	 */
 210	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 211			      MDIO_MMD_PHYXS,
 212			      MDIO_CTRL1_RESET);
 213
 214	/*
 215	 * Poll for reset bit to self-clear indicating reset is complete.
 216	 * Some PHYs could take up to 3 seconds to complete and need about
 217	 * 1.7 usec delay after the reset is complete.
 218	 */
 219	for (i = 0; i < 30; i++) {
 220		msleep(100);
 221		hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 222				     MDIO_MMD_PHYXS, &ctrl);
 223		if (!(ctrl & MDIO_CTRL1_RESET)) {
 224			udelay(2);
 225			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226		}
 227	}
 228
 229	if (ctrl & MDIO_CTRL1_RESET) {
 230		status = IXGBE_ERR_RESET_FAILED;
 231		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 
 232	}
 233
 234out:
 235	return status;
 236}
 237
 238/**
 239 *  ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
 240 *  the SWFW lock
 241 *  @hw: pointer to hardware structure
 242 *  @reg_addr: 32 bit address of PHY register to read
 
 243 *  @phy_data: Pointer to read data from PHY register
 
 
 244 **/
 245s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 246		       u16 *phy_data)
 247{
 248	u32 i, data, command;
 249
 250	/* Setup and write the address cycle command */
 251	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 252		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 253		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 254		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 255
 256	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 257
 258	/* Check every 10 usec to see if the address cycle completed.
 259	 * The MDI Command bit will clear when the operation is
 260	 * complete
 261	 */
 262	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 263		udelay(10);
 264
 265		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 266		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 267				break;
 268	}
 269
 270
 271	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 272		hw_dbg(hw, "PHY address command did not complete.\n");
 273		return IXGBE_ERR_PHY;
 274	}
 275
 276	/* Address cycle complete, setup and write the read
 277	 * command
 278	 */
 279	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 280		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 281		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 282		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 283
 284	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 285
 286	/* Check every 10 usec to see if the address cycle
 287	 * completed. The MDI Command bit will clear when the
 288	 * operation is complete
 289	 */
 290	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 291		udelay(10);
 292
 293		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 294		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 295			break;
 296	}
 297
 298	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 299		hw_dbg(hw, "PHY read command didn't complete\n");
 300		return IXGBE_ERR_PHY;
 301	}
 302
 303	/* Read operation is complete.  Get the data
 304	 * from MSRWD
 305	 */
 306	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 307	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 308	*phy_data = (u16)(data);
 309
 310	return 0;
 311}
 312
 313/**
 314 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 315 *  using the SWFW lock - this function is needed in most cases
 316 *  @hw: pointer to hardware structure
 317 *  @reg_addr: 32 bit address of PHY register to read
 
 318 *  @phy_data: Pointer to read data from PHY register
 319 **/
 320s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 321                               u32 device_type, u16 *phy_data)
 322{
 323	s32 status;
 324	u16 gssr;
 325
 326	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
 327		gssr = IXGBE_GSSR_PHY1_SM;
 328	else
 329		gssr = IXGBE_GSSR_PHY0_SM;
 330
 331	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 332		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 333						phy_data);
 334		hw->mac.ops.release_swfw_sync(hw, gssr);
 335	} else {
 336		status = IXGBE_ERR_SWFW_SYNC;
 337	}
 338
 339	return status;
 340}
 341
 342/**
 343 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 344 *  without SWFW lock
 345 *  @hw: pointer to hardware structure
 346 *  @reg_addr: 32 bit PHY register to write
 347 *  @device_type: 5 bit device type
 348 *  @phy_data: Data to write to the PHY register
 349 **/
 350s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 351				u32 device_type, u16 phy_data)
 352{
 353	u32 i, command;
 354
 355	/* Put the data in the MDI single read and write data register*/
 356	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 357
 358	/* Setup and write the address cycle command */
 359	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 360		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 361		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 362		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 363
 364	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 365
 366	/*
 367	 * Check every 10 usec to see if the address cycle completed.
 368	 * The MDI Command bit will clear when the operation is
 369	 * complete
 370	 */
 371	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 372		udelay(10);
 373
 374		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 375		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 376			break;
 377	}
 378
 379	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 380		hw_dbg(hw, "PHY address cmd didn't complete\n");
 381		return IXGBE_ERR_PHY;
 382	}
 383
 384	/*
 385	 * Address cycle complete, setup and write the write
 386	 * command
 387	 */
 388	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 389		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 390		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 391		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 392
 393	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 394
 395	/* Check every 10 usec to see if the address cycle
 396	 * completed. The MDI Command bit will clear when the
 397	 * operation is complete
 398	 */
 399	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 400		udelay(10);
 401
 402		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 403		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 404			break;
 405	}
 406
 407	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 408		hw_dbg(hw, "PHY write cmd didn't complete\n");
 409		return IXGBE_ERR_PHY;
 410	}
 411
 412	return 0;
 413}
 414
 415/**
 416 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 417 *  using SWFW lock- this function is needed in most cases
 418 *  @hw: pointer to hardware structure
 419 *  @reg_addr: 32 bit PHY register to write
 420 *  @device_type: 5 bit device type
 421 *  @phy_data: Data to write to the PHY register
 422 **/
 423s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 424                                u32 device_type, u16 phy_data)
 425{
 426	s32 status;
 427	u16 gssr;
 428
 429	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
 430		gssr = IXGBE_GSSR_PHY1_SM;
 431	else
 432		gssr = IXGBE_GSSR_PHY0_SM;
 433
 434	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 435		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 436						 phy_data);
 437		hw->mac.ops.release_swfw_sync(hw, gssr);
 438	} else {
 439		status = IXGBE_ERR_SWFW_SYNC;
 440	}
 441
 442	return status;
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445/**
 446 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 447 *  @hw: pointer to hardware structure
 448 *
 449 *  Restart autonegotiation and PHY and waits for completion.
 450 **/
 451s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 452{
 453	s32 status = 0;
 454	u32 time_out;
 455	u32 max_time_out = 10;
 456	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 
 457	bool autoneg = false;
 458	ixgbe_link_speed speed;
 459
 460	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 461
 462	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 463		/* Set or unset auto-negotiation 10G advertisement */
 464		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 465				     MDIO_MMD_AN,
 466				     &autoneg_reg);
 467
 468		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 469		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 470			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 
 471
 472		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 473				      MDIO_MMD_AN,
 474				      autoneg_reg);
 475	}
 476
 477	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 478		/* Set or unset auto-negotiation 1G advertisement */
 479		hw->phy.ops.read_reg(hw,
 480				     IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 481				     MDIO_MMD_AN,
 482				     &autoneg_reg);
 483
 484		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
 485		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 486			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488		hw->phy.ops.write_reg(hw,
 489				      IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 490				      MDIO_MMD_AN,
 491				      autoneg_reg);
 492	}
 493
 494	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 495		/* Set or unset auto-negotiation 100M advertisement */
 496		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 497				     MDIO_MMD_AN,
 498				     &autoneg_reg);
 499
 500		autoneg_reg &= ~(ADVERTISE_100FULL |
 501				 ADVERTISE_100HALF);
 502		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 503			autoneg_reg |= ADVERTISE_100FULL;
 504
 505		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 506				      MDIO_MMD_AN,
 507				      autoneg_reg);
 508	}
 509
 510	/* Blocked by MNG FW so don't reset PHY */
 511	if (ixgbe_check_reset_blocked(hw))
 512		return status;
 513
 514	/* Restart PHY autonegotiation and wait for completion */
 515	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 516			     MDIO_MMD_AN, &autoneg_reg);
 517
 518	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 519
 520	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 521			      MDIO_MMD_AN, autoneg_reg);
 522
 523	/* Wait for autonegotiation to finish */
 524	for (time_out = 0; time_out < max_time_out; time_out++) {
 525		udelay(10);
 526		/* Restart PHY autonegotiation and wait for completion */
 527		status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
 528					      MDIO_MMD_AN,
 529					      &autoneg_reg);
 530
 531		autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
 532		if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
 533			break;
 534		}
 535	}
 536
 537	if (time_out == max_time_out) {
 538		status = IXGBE_ERR_LINK_SETUP;
 539		hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out\n");
 540	}
 541
 542	return status;
 543}
 544
 545/**
 546 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
 547 *  @hw: pointer to hardware structure
 548 *  @speed: new link speed
 
 549 **/
 550s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
 551                                       ixgbe_link_speed speed,
 552                                       bool autoneg_wait_to_complete)
 553{
 554
 555	/*
 556	 * Clear autoneg_advertised and set new values based on input link
 557	 * speed.
 558	 */
 559	hw->phy.autoneg_advertised = 0;
 560
 561	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
 562		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
 563
 
 
 
 
 
 
 564	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
 565		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
 566
 567	if (speed & IXGBE_LINK_SPEED_100_FULL)
 568		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
 569
 
 
 
 570	/* Setup link based on the new speed settings */
 571	hw->phy.ops.setup_link(hw);
 
 572
 573	return 0;
 574}
 575
 576/**
 577 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
 578 * @hw: pointer to hardware structure
 579 * @speed: pointer to link speed
 580 * @autoneg: boolean auto-negotiation value
 581 *
 582 * Determines the link capabilities by reading the AUTOC register.
 
 583 */
 584s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
 585                                               ixgbe_link_speed *speed,
 586                                               bool *autoneg)
 587{
 588	s32 status = IXGBE_ERR_LINK_SETUP;
 589	u16 speed_ability;
 590
 591	*speed = 0;
 592	*autoneg = true;
 593
 594	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
 595	                              &speed_ability);
 
 
 596
 597	if (status == 0) {
 598		if (speed_ability & MDIO_SPEED_10G)
 599			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
 600		if (speed_ability & MDIO_PMA_SPEED_1000)
 601			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
 602		if (speed_ability & MDIO_PMA_SPEED_100)
 603			*speed |= IXGBE_LINK_SPEED_100_FULL;
 
 
 
 
 
 
 
 
 
 
 
 604	}
 605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606	return status;
 607}
 608
 609/**
 610 *  ixgbe_check_phy_link_tnx - Determine link and speed status
 611 *  @hw: pointer to hardware structure
 
 
 612 *
 613 *  Reads the VS1 register to determine if link is up and the current speed for
 614 *  the PHY.
 615 **/
 616s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
 617			     bool *link_up)
 618{
 619	s32 status = 0;
 620	u32 time_out;
 621	u32 max_time_out = 10;
 
 622	u16 phy_link = 0;
 623	u16 phy_speed = 0;
 624	u16 phy_data = 0;
 
 
 625
 626	/* Initialize speed and link to default case */
 627	*link_up = false;
 628	*speed = IXGBE_LINK_SPEED_10GB_FULL;
 629
 630	/*
 631	 * Check current speed and link status of the PHY register.
 632	 * This is a vendor specific register and may have to
 633	 * be changed for other copper PHYs.
 634	 */
 635	for (time_out = 0; time_out < max_time_out; time_out++) {
 636		udelay(10);
 637		status = hw->phy.ops.read_reg(hw,
 638					      MDIO_STAT1,
 639					      MDIO_MMD_VEND1,
 640					      &phy_data);
 641		phy_link = phy_data &
 642			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
 643		phy_speed = phy_data &
 644			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
 645		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
 646			*link_up = true;
 647			if (phy_speed ==
 648			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
 649				*speed = IXGBE_LINK_SPEED_1GB_FULL;
 650			break;
 651		}
 652	}
 653
 654	return status;
 655}
 656
 657/**
 658 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
 659 *	@hw: pointer to hardware structure
 660 *
 661 *	Restart autonegotiation and PHY and waits for completion.
 
 
 
 662 **/
 663s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
 664{
 665	s32 status = 0;
 666	u32 time_out;
 667	u32 max_time_out = 10;
 668	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 669	bool autoneg = false;
 670	ixgbe_link_speed speed;
 671
 672	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 673
 674	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 675		/* Set or unset auto-negotiation 10G advertisement */
 676		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 677				     MDIO_MMD_AN,
 678				     &autoneg_reg);
 679
 680		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 681		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 682			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 683
 684		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 685				      MDIO_MMD_AN,
 686				      autoneg_reg);
 687	}
 688
 689	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 690		/* Set or unset auto-negotiation 1G advertisement */
 691		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 692				     MDIO_MMD_AN,
 693				     &autoneg_reg);
 694
 695		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 696		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 697			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 698
 699		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 700				      MDIO_MMD_AN,
 701				      autoneg_reg);
 702	}
 703
 704	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 705		/* Set or unset auto-negotiation 100M advertisement */
 706		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 707				     MDIO_MMD_AN,
 708				     &autoneg_reg);
 709
 710		autoneg_reg &= ~(ADVERTISE_100FULL |
 711				 ADVERTISE_100HALF);
 712		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 713			autoneg_reg |= ADVERTISE_100FULL;
 714
 715		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 716				      MDIO_MMD_AN,
 717				      autoneg_reg);
 718	}
 719
 720	/* Blocked by MNG FW so don't reset PHY */
 721	if (ixgbe_check_reset_blocked(hw))
 722		return status;
 723
 724	/* Restart PHY autonegotiation and wait for completion */
 725	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 726			     MDIO_MMD_AN, &autoneg_reg);
 727
 728	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 729
 730	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 731			      MDIO_MMD_AN, autoneg_reg);
 732
 733	/* Wait for autonegotiation to finish */
 734	for (time_out = 0; time_out < max_time_out; time_out++) {
 735		udelay(10);
 736		/* Restart PHY autonegotiation and wait for completion */
 737		status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
 738					      MDIO_MMD_AN,
 739					      &autoneg_reg);
 740
 741		autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
 742		if (autoneg_reg == MDIO_AN_STAT1_COMPLETE)
 743			break;
 744	}
 745
 746	if (time_out == max_time_out) {
 747		status = IXGBE_ERR_LINK_SETUP;
 748		hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out\n");
 749	}
 750
 751	return status;
 752}
 753
 754/**
 755 *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
 756 *  @hw: pointer to hardware structure
 757 *  @firmware_version: pointer to the PHY Firmware Version
 758 **/
 759s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
 760				       u16 *firmware_version)
 761{
 762	s32 status = 0;
 763
 764	status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
 765				      MDIO_MMD_VEND1,
 766				      firmware_version);
 767
 768	return status;
 769}
 770
 771/**
 772 *  ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
 773 *  @hw: pointer to hardware structure
 774 *  @firmware_version: pointer to the PHY Firmware Version
 775 **/
 776s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
 777					   u16 *firmware_version)
 778{
 779	s32 status = 0;
 780
 781	status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
 782				      MDIO_MMD_VEND1,
 783				      firmware_version);
 784
 785	return status;
 786}
 787
 788/**
 789 *  ixgbe_reset_phy_nl - Performs a PHY reset
 790 *  @hw: pointer to hardware structure
 791 **/
 792s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
 793{
 794	u16 phy_offset, control, eword, edata, block_crc;
 
 795	bool end_data = false;
 796	u16 list_offset, data_offset;
 797	u16 phy_data = 0;
 798	s32 ret_val = 0;
 799	u32 i;
 800
 801	/* Blocked by MNG FW so bail */
 802	if (ixgbe_check_reset_blocked(hw))
 803		goto out;
 804
 805	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
 806
 807	/* reset the PHY and poll for completion */
 808	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
 809	                      (phy_data | MDIO_CTRL1_RESET));
 810
 811	for (i = 0; i < 100; i++) {
 812		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
 813		                     &phy_data);
 814		if ((phy_data & MDIO_CTRL1_RESET) == 0)
 815			break;
 816		usleep_range(10000, 20000);
 817	}
 818
 819	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
 820		hw_dbg(hw, "PHY reset did not complete.\n");
 821		ret_val = IXGBE_ERR_PHY;
 822		goto out;
 823	}
 824
 825	/* Get init offsets */
 826	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
 827	                                              &data_offset);
 828	if (ret_val != 0)
 829		goto out;
 830
 831	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
 832	data_offset++;
 833	while (!end_data) {
 834		/*
 835		 * Read control word from PHY init contents offset
 836		 */
 837		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
 838		if (ret_val)
 839			goto err_eeprom;
 840		control = (eword & IXGBE_CONTROL_MASK_NL) >>
 841		           IXGBE_CONTROL_SHIFT_NL;
 842		edata = eword & IXGBE_DATA_MASK_NL;
 843		switch (control) {
 844		case IXGBE_DELAY_NL:
 845			data_offset++;
 846			hw_dbg(hw, "DELAY: %d MS\n", edata);
 847			usleep_range(edata * 1000, edata * 2000);
 848			break;
 849		case IXGBE_DATA_NL:
 850			hw_dbg(hw, "DATA:\n");
 851			data_offset++;
 852			ret_val = hw->eeprom.ops.read(hw, data_offset++,
 853						      &phy_offset);
 854			if (ret_val)
 855				goto err_eeprom;
 856			for (i = 0; i < edata; i++) {
 857				ret_val = hw->eeprom.ops.read(hw, data_offset,
 858							      &eword);
 859				if (ret_val)
 860					goto err_eeprom;
 861				hw->phy.ops.write_reg(hw, phy_offset,
 862				                      MDIO_MMD_PMAPMD, eword);
 863				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
 864				       phy_offset);
 865				data_offset++;
 866				phy_offset++;
 867			}
 868			break;
 869		case IXGBE_CONTROL_NL:
 870			data_offset++;
 871			hw_dbg(hw, "CONTROL:\n");
 872			if (edata == IXGBE_CONTROL_EOL_NL) {
 873				hw_dbg(hw, "EOL\n");
 874				end_data = true;
 875			} else if (edata == IXGBE_CONTROL_SOL_NL) {
 876				hw_dbg(hw, "SOL\n");
 877			} else {
 878				hw_dbg(hw, "Bad control value\n");
 879				ret_val = IXGBE_ERR_PHY;
 880				goto out;
 881			}
 882			break;
 883		default:
 884			hw_dbg(hw, "Bad control type\n");
 885			ret_val = IXGBE_ERR_PHY;
 886			goto out;
 887		}
 888	}
 889
 890out:
 891	return ret_val;
 892
 893err_eeprom:
 894	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
 895	return IXGBE_ERR_PHY;
 896}
 897
 898/**
 899 *  ixgbe_identify_module_generic - Identifies module type
 900 *  @hw: pointer to hardware structure
 901 *
 902 *  Determines HW type and calls appropriate function.
 903 **/
 904s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
 905{
 906	s32 status = IXGBE_ERR_SFP_NOT_PRESENT;
 907
 908	switch (hw->mac.ops.get_media_type(hw)) {
 909	case ixgbe_media_type_fiber:
 910		status = ixgbe_identify_sfp_module_generic(hw);
 911		break;
 912	case ixgbe_media_type_fiber_qsfp:
 913		status = ixgbe_identify_qsfp_module_generic(hw);
 914		break;
 915	default:
 916		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
 917		status = IXGBE_ERR_SFP_NOT_PRESENT;
 918		break;
 919	}
 920
 921	return status;
 922}
 923
 924/**
 925 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
 926 *  @hw: pointer to hardware structure
 927*
 928 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
 929 **/
 930s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
 931{
 
 932	struct ixgbe_adapter *adapter = hw->back;
 933	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 
 
 
 
 934	u32 vendor_oui = 0;
 935	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
 936	u8 identifier = 0;
 937	u8 comp_codes_1g = 0;
 938	u8 comp_codes_10g = 0;
 939	u8 oui_bytes[3] = {0, 0, 0};
 940	u8 cable_tech = 0;
 941	u8 cable_spec = 0;
 942	u16 enforce_sfp = 0;
 943
 944	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
 945		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
 946		status = IXGBE_ERR_SFP_NOT_PRESENT;
 947		goto out;
 948	}
 949
 
 
 
 950	status = hw->phy.ops.read_i2c_eeprom(hw,
 951					     IXGBE_SFF_IDENTIFIER,
 952					     &identifier);
 953
 954	if (status != 0)
 955		goto err_read_i2c_eeprom;
 956
 957	/* LAN ID is needed for sfp_type determination */
 958	hw->mac.ops.set_lan_id(hw);
 959
 960	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
 961		hw->phy.type = ixgbe_phy_sfp_unsupported;
 962		status = IXGBE_ERR_SFP_NOT_SUPPORTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964		status = hw->phy.ops.read_i2c_eeprom(hw,
 965						     IXGBE_SFF_1GBE_COMP_CODES,
 966						     &comp_codes_1g);
 967
 968		if (status != 0)
 969			goto err_read_i2c_eeprom;
 970
 971		status = hw->phy.ops.read_i2c_eeprom(hw,
 972						     IXGBE_SFF_10GBE_COMP_CODES,
 973						     &comp_codes_10g);
 974
 975		if (status != 0)
 976			goto err_read_i2c_eeprom;
 
 977		status = hw->phy.ops.read_i2c_eeprom(hw,
 978						     IXGBE_SFF_CABLE_TECHNOLOGY,
 979						     &cable_tech);
 980
 981		if (status != 0)
 982			goto err_read_i2c_eeprom;
 983
 984		 /* ID Module
 985		  * =========
 986		  * 0   SFP_DA_CU
 987		  * 1   SFP_SR
 988		  * 2   SFP_LR
 989		  * 3   SFP_DA_CORE0 - 82599-specific
 990		  * 4   SFP_DA_CORE1 - 82599-specific
 991		  * 5   SFP_SR/LR_CORE0 - 82599-specific
 992		  * 6   SFP_SR/LR_CORE1 - 82599-specific
 993		  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
 994		  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
 995		  * 9   SFP_1g_cu_CORE0 - 82599-specific
 996		  * 10  SFP_1g_cu_CORE1 - 82599-specific
 997		  * 11  SFP_1g_sx_CORE0 - 82599-specific
 998		  * 12  SFP_1g_sx_CORE1 - 82599-specific
 999		  */
1000		if (hw->mac.type == ixgbe_mac_82598EB) {
 
 
 
 
 
 
 
1001			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1002				hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1003			else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1004				hw->phy.sfp_type = ixgbe_sfp_type_sr;
1005			else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1006				hw->phy.sfp_type = ixgbe_sfp_type_lr;
1007			else
1008				hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1009		} else if (hw->mac.type == ixgbe_mac_82599EB) {
1010			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1011				if (hw->bus.lan_id == 0)
1012					hw->phy.sfp_type =
1013					             ixgbe_sfp_type_da_cu_core0;
1014				else
1015					hw->phy.sfp_type =
1016					             ixgbe_sfp_type_da_cu_core1;
1017			} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1018				hw->phy.ops.read_i2c_eeprom(
1019						hw, IXGBE_SFF_CABLE_SPEC_COMP,
1020						&cable_spec);
1021				if (cable_spec &
1022				    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1023					if (hw->bus.lan_id == 0)
1024						hw->phy.sfp_type =
1025						ixgbe_sfp_type_da_act_lmt_core0;
1026					else
1027						hw->phy.sfp_type =
1028						ixgbe_sfp_type_da_act_lmt_core1;
1029				} else {
1030					hw->phy.sfp_type =
1031							ixgbe_sfp_type_unknown;
1032				}
1033			} else if (comp_codes_10g &
1034				   (IXGBE_SFF_10GBASESR_CAPABLE |
1035				    IXGBE_SFF_10GBASELR_CAPABLE)) {
1036				if (hw->bus.lan_id == 0)
1037					hw->phy.sfp_type =
1038					              ixgbe_sfp_type_srlr_core0;
1039				else
1040					hw->phy.sfp_type =
1041					              ixgbe_sfp_type_srlr_core1;
1042			} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1043				if (hw->bus.lan_id == 0)
1044					hw->phy.sfp_type =
1045						ixgbe_sfp_type_1g_cu_core0;
1046				else
1047					hw->phy.sfp_type =
1048						ixgbe_sfp_type_1g_cu_core1;
1049			} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1050				if (hw->bus.lan_id == 0)
1051					hw->phy.sfp_type =
1052						ixgbe_sfp_type_1g_sx_core0;
1053				else
1054					hw->phy.sfp_type =
1055						ixgbe_sfp_type_1g_sx_core1;
1056			} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1057				if (hw->bus.lan_id == 0)
1058					hw->phy.sfp_type =
1059						ixgbe_sfp_type_1g_lx_core0;
1060				else
1061					hw->phy.sfp_type =
1062						ixgbe_sfp_type_1g_lx_core1;
1063			} else {
1064				hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1065			}
1066		}
 
1067
1068		if (hw->phy.sfp_type != stored_sfp_type)
1069			hw->phy.sfp_setup_needed = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071		/* Determine if the SFP+ PHY is dual speed or not. */
1072		hw->phy.multispeed_fiber = false;
1073		if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1074		   (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1075		   ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1076		   (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1077			hw->phy.multispeed_fiber = true;
1078
1079		/* Determine PHY vendor */
1080		if (hw->phy.type != ixgbe_phy_nl) {
1081			hw->phy.id = identifier;
1082			status = hw->phy.ops.read_i2c_eeprom(hw,
1083						    IXGBE_SFF_VENDOR_OUI_BYTE0,
1084						    &oui_bytes[0]);
1085
1086			if (status != 0)
1087				goto err_read_i2c_eeprom;
1088
1089			status = hw->phy.ops.read_i2c_eeprom(hw,
1090			                            IXGBE_SFF_VENDOR_OUI_BYTE1,
1091			                            &oui_bytes[1]);
1092
1093			if (status != 0)
1094				goto err_read_i2c_eeprom;
1095
1096			status = hw->phy.ops.read_i2c_eeprom(hw,
1097			                            IXGBE_SFF_VENDOR_OUI_BYTE2,
1098			                            &oui_bytes[2]);
1099
1100			if (status != 0)
1101				goto err_read_i2c_eeprom;
1102
1103			vendor_oui =
1104			  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1105			   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1106			   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1107
1108			switch (vendor_oui) {
1109			case IXGBE_SFF_VENDOR_OUI_TYCO:
1110				if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1111					hw->phy.type =
1112						    ixgbe_phy_sfp_passive_tyco;
1113				break;
1114			case IXGBE_SFF_VENDOR_OUI_FTL:
1115				if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1116					hw->phy.type = ixgbe_phy_sfp_ftl_active;
1117				else
1118					hw->phy.type = ixgbe_phy_sfp_ftl;
1119				break;
1120			case IXGBE_SFF_VENDOR_OUI_AVAGO:
1121				hw->phy.type = ixgbe_phy_sfp_avago;
1122				break;
1123			case IXGBE_SFF_VENDOR_OUI_INTEL:
1124				hw->phy.type = ixgbe_phy_sfp_intel;
1125				break;
1126			default:
1127				if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1128					hw->phy.type =
1129						 ixgbe_phy_sfp_passive_unknown;
1130				else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1131					hw->phy.type =
1132						ixgbe_phy_sfp_active_unknown;
1133				else
1134					hw->phy.type = ixgbe_phy_sfp_unknown;
1135				break;
1136			}
1137		}
1138
1139		/* Allow any DA cable vendor */
1140		if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1141		    IXGBE_SFF_DA_ACTIVE_CABLE)) {
1142			status = 0;
1143			goto out;
1144		}
1145
1146		/* Verify supported 1G SFP modules */
1147		if (comp_codes_10g == 0 &&
1148		    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1149		      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1150		      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1151		      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1152		      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1153		      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1154			hw->phy.type = ixgbe_phy_sfp_unsupported;
1155			status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1156			goto out;
1157		}
1158
1159		/* Anything else 82598-based is supported */
1160		if (hw->mac.type == ixgbe_mac_82598EB) {
1161			status = 0;
1162			goto out;
1163		}
1164
1165		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1166		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1167		    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1168		      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1169		      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1170		      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1171		      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1172		      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1173			/* Make sure we're a supported PHY type */
1174			if (hw->phy.type == ixgbe_phy_sfp_intel) {
1175				status = 0;
1176			} else {
1177				if (hw->allow_unsupported_sfp) {
1178					e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1179					status = 0;
1180				} else {
1181					hw_dbg(hw,
1182					       "SFP+ module not supported\n");
1183					hw->phy.type =
1184						ixgbe_phy_sfp_unsupported;
1185					status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1186				}
1187			}
1188		} else {
1189			status = 0;
1190		}
 
 
 
1191	}
1192
1193out:
1194	return status;
1195
1196err_read_i2c_eeprom:
1197	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1198	if (hw->phy.type != ixgbe_phy_nl) {
1199		hw->phy.id = 0;
1200		hw->phy.type = ixgbe_phy_unknown;
1201	}
1202	return IXGBE_ERR_SFP_NOT_PRESENT;
1203}
1204
1205/**
1206 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1207 * @hw: pointer to hardware structure
1208 *
1209 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1210 **/
1211static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1212{
1213	struct ixgbe_adapter *adapter = hw->back;
1214	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
1215	u32 vendor_oui = 0;
1216	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1217	u8 identifier = 0;
1218	u8 comp_codes_1g = 0;
1219	u8 comp_codes_10g = 0;
1220	u8 oui_bytes[3] = {0, 0, 0};
1221	u16 enforce_sfp = 0;
1222	u8 connector = 0;
1223	u8 cable_length = 0;
1224	u8 device_tech = 0;
1225	bool active_cable = false;
1226
1227	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1228		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1229		status = IXGBE_ERR_SFP_NOT_PRESENT;
1230		goto out;
1231	}
1232
 
 
 
1233	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1234					     &identifier);
1235
1236	if (status != 0)
1237		goto err_read_i2c_eeprom;
1238
1239	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1240		hw->phy.type = ixgbe_phy_sfp_unsupported;
1241		status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1242		goto out;
1243	}
1244
1245	hw->phy.id = identifier;
1246
1247	/* LAN ID is needed for sfp_type determination */
1248	hw->mac.ops.set_lan_id(hw);
1249
1250	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1251					     &comp_codes_10g);
1252
1253	if (status != 0)
1254		goto err_read_i2c_eeprom;
1255
1256	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1257					     &comp_codes_1g);
1258
1259	if (status != 0)
1260		goto err_read_i2c_eeprom;
1261
1262	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1263		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1264		if (hw->bus.lan_id == 0)
1265			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1266		else
1267			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1268	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1269				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1270		if (hw->bus.lan_id == 0)
1271			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1272		else
1273			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1274	} else {
1275		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1276			active_cable = true;
1277
1278		if (!active_cable) {
1279			/* check for active DA cables that pre-date
1280			 * SFF-8436 v3.6
1281			 */
1282			hw->phy.ops.read_i2c_eeprom(hw,
1283					IXGBE_SFF_QSFP_CONNECTOR,
1284					&connector);
1285
1286			hw->phy.ops.read_i2c_eeprom(hw,
1287					IXGBE_SFF_QSFP_CABLE_LENGTH,
1288					&cable_length);
1289
1290			hw->phy.ops.read_i2c_eeprom(hw,
1291					IXGBE_SFF_QSFP_DEVICE_TECH,
1292					&device_tech);
1293
1294			if ((connector ==
1295				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1296			    (cable_length > 0) &&
1297			    ((device_tech >> 4) ==
1298				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1299				active_cable = true;
1300		}
1301
1302		if (active_cable) {
1303			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1304			if (hw->bus.lan_id == 0)
1305				hw->phy.sfp_type =
1306						ixgbe_sfp_type_da_act_lmt_core0;
1307			else
1308				hw->phy.sfp_type =
1309						ixgbe_sfp_type_da_act_lmt_core1;
1310		} else {
1311			/* unsupported module type */
1312			hw->phy.type = ixgbe_phy_sfp_unsupported;
1313			status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1314			goto out;
1315		}
1316	}
1317
1318	if (hw->phy.sfp_type != stored_sfp_type)
1319		hw->phy.sfp_setup_needed = true;
1320
1321	/* Determine if the QSFP+ PHY is dual speed or not. */
1322	hw->phy.multispeed_fiber = false;
1323	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1324	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1325	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1326	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1327		hw->phy.multispeed_fiber = true;
1328
1329	/* Determine PHY vendor for optical modules */
1330	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1331			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1332		status = hw->phy.ops.read_i2c_eeprom(hw,
1333					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1334					&oui_bytes[0]);
1335
1336		if (status != 0)
1337			goto err_read_i2c_eeprom;
1338
1339		status = hw->phy.ops.read_i2c_eeprom(hw,
1340					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1341					&oui_bytes[1]);
1342
1343		if (status != 0)
1344			goto err_read_i2c_eeprom;
1345
1346		status = hw->phy.ops.read_i2c_eeprom(hw,
1347					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1348					&oui_bytes[2]);
1349
1350		if (status != 0)
1351			goto err_read_i2c_eeprom;
1352
1353		vendor_oui =
1354			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1355			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1356			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1357
1358		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1359			hw->phy.type = ixgbe_phy_qsfp_intel;
1360		else
1361			hw->phy.type = ixgbe_phy_qsfp_unknown;
1362
1363		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1364		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1365			/* Make sure we're a supported PHY type */
1366			if (hw->phy.type == ixgbe_phy_qsfp_intel) {
1367				status = 0;
1368			} else {
1369				if (hw->allow_unsupported_sfp == true) {
1370					e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1371					status = 0;
1372				} else {
1373					hw_dbg(hw,
1374					       "QSFP module not supported\n");
1375					hw->phy.type =
1376						ixgbe_phy_sfp_unsupported;
1377					status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1378				}
1379			}
1380		} else {
1381			status = 0;
 
1382		}
 
1383	}
1384
1385out:
1386	return status;
1387
1388err_read_i2c_eeprom:
1389	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1390	hw->phy.id = 0;
1391	hw->phy.type = ixgbe_phy_unknown;
1392
1393	return IXGBE_ERR_SFP_NOT_PRESENT;
1394}
1395
1396/**
1397 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1398 *  @hw: pointer to hardware structure
1399 *  @list_offset: offset to the SFP ID list
1400 *  @data_offset: offset to the SFP data block
1401 *
1402 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1403 *  so it returns the offsets to the phy init sequence block.
1404 **/
1405s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1406                                        u16 *list_offset,
1407                                        u16 *data_offset)
1408{
1409	u16 sfp_id;
1410	u16 sfp_type = hw->phy.sfp_type;
1411
1412	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1413		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1414
1415	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1416		return IXGBE_ERR_SFP_NOT_PRESENT;
1417
1418	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1419	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1420		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1421
1422	/*
1423	 * Limiting active cables and 1G Phys must be initialized as
1424	 * SR modules
1425	 */
1426	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1427	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1428	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1429	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
 
1430		sfp_type = ixgbe_sfp_type_srlr_core0;
1431	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1432		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1433		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1434		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
 
1435		sfp_type = ixgbe_sfp_type_srlr_core1;
1436
1437	/* Read offset to PHY init contents */
1438	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1439		hw_err(hw, "eeprom read at %d failed\n",
1440		       IXGBE_PHY_INIT_OFFSET_NL);
1441		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1442	}
1443
1444	if ((!*list_offset) || (*list_offset == 0xFFFF))
1445		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1446
1447	/* Shift offset to first ID word */
1448	(*list_offset)++;
1449
1450	/*
1451	 * Find the matching SFP ID in the EEPROM
1452	 * and program the init sequence
1453	 */
1454	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1455		goto err_phy;
1456
1457	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1458		if (sfp_id == sfp_type) {
1459			(*list_offset)++;
1460			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1461				goto err_phy;
1462			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1463				hw_dbg(hw, "SFP+ module not supported\n");
1464				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1465			} else {
1466				break;
1467			}
1468		} else {
1469			(*list_offset) += 2;
1470			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1471				goto err_phy;
1472		}
1473	}
1474
1475	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1476		hw_dbg(hw, "No matching SFP+ module found\n");
1477		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1478	}
1479
1480	return 0;
1481
1482err_phy:
1483	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1484	return IXGBE_ERR_PHY;
1485}
1486
1487/**
1488 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1489 *  @hw: pointer to hardware structure
1490 *  @byte_offset: EEPROM byte offset to read
1491 *  @eeprom_data: value read
1492 *
1493 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1494 **/
1495s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1496                                  u8 *eeprom_data)
1497{
1498	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1499	                                 IXGBE_I2C_EEPROM_DEV_ADDR,
1500	                                 eeprom_data);
1501}
1502
1503/**
1504 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1505 *  @hw: pointer to hardware structure
1506 *  @byte_offset: byte offset at address 0xA2
1507 *  @eeprom_data: value read
1508 *
1509 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1510 **/
1511s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1512				   u8 *sff8472_data)
1513{
1514	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1515					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1516					 sff8472_data);
1517}
1518
1519/**
1520 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1521 *  @hw: pointer to hardware structure
1522 *  @byte_offset: EEPROM byte offset to write
1523 *  @eeprom_data: value to write
1524 *
1525 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1526 **/
1527s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1528                                   u8 eeprom_data)
1529{
1530	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1531	                                  IXGBE_I2C_EEPROM_DEV_ADDR,
1532	                                  eeprom_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533}
1534
1535/**
1536 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1537 *  @hw: pointer to hardware structure
1538 *  @byte_offset: byte offset to read
 
1539 *  @data: value read
 
1540 *
1541 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1542 *  a specified device address.
1543 **/
1544s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1545                                u8 dev_addr, u8 *data)
1546{
1547	s32 status = 0;
1548	u32 max_retry = 10;
 
1549	u32 retry = 0;
1550	u16 swfw_mask = 0;
1551	bool nack = true;
 
 
 
 
 
1552	*data = 0;
1553
1554	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1555		swfw_mask = IXGBE_GSSR_PHY1_SM;
1556	else
1557		swfw_mask = IXGBE_GSSR_PHY0_SM;
1558
1559	do {
1560		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1561			status = IXGBE_ERR_SWFW_SYNC;
1562			goto read_byte_out;
1563		}
1564
1565		ixgbe_i2c_start(hw);
1566
1567		/* Device Address and write indication */
1568		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1569		if (status != 0)
1570			goto fail;
1571
1572		status = ixgbe_get_i2c_ack(hw);
1573		if (status != 0)
1574			goto fail;
1575
1576		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1577		if (status != 0)
1578			goto fail;
1579
1580		status = ixgbe_get_i2c_ack(hw);
1581		if (status != 0)
1582			goto fail;
1583
1584		ixgbe_i2c_start(hw);
1585
1586		/* Device Address and read indication */
1587		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1588		if (status != 0)
1589			goto fail;
1590
1591		status = ixgbe_get_i2c_ack(hw);
1592		if (status != 0)
1593			goto fail;
1594
1595		status = ixgbe_clock_in_i2c_byte(hw, data);
1596		if (status != 0)
1597			goto fail;
1598
1599		status = ixgbe_clock_out_i2c_bit(hw, nack);
1600		if (status != 0)
1601			goto fail;
1602
1603		ixgbe_i2c_stop(hw);
1604		break;
 
 
1605
1606fail:
1607		ixgbe_i2c_bus_clear(hw);
1608		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1609		msleep(100);
 
 
1610		retry++;
1611		if (retry < max_retry)
1612			hw_dbg(hw, "I2C byte read error - Retrying.\n");
1613		else
1614			hw_dbg(hw, "I2C byte read error.\n");
1615
1616	} while (retry < max_retry);
1617
1618	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620read_byte_out:
1621	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
1622}
1623
1624/**
1625 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1626 *  @hw: pointer to hardware structure
1627 *  @byte_offset: byte offset to write
 
1628 *  @data: value to write
 
1629 *
1630 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1631 *  a specified device address.
1632 **/
1633s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1634                                 u8 dev_addr, u8 data)
1635{
1636	s32 status = 0;
1637	u32 max_retry = 1;
1638	u32 retry = 0;
1639	u16 swfw_mask = 0;
1640
1641	if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1642		swfw_mask = IXGBE_GSSR_PHY1_SM;
1643	else
1644		swfw_mask = IXGBE_GSSR_PHY0_SM;
1645
1646	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1647		status = IXGBE_ERR_SWFW_SYNC;
1648		goto write_byte_out;
1649	}
1650
1651	do {
1652		ixgbe_i2c_start(hw);
1653
1654		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1655		if (status != 0)
1656			goto fail;
1657
1658		status = ixgbe_get_i2c_ack(hw);
1659		if (status != 0)
1660			goto fail;
1661
1662		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1663		if (status != 0)
1664			goto fail;
1665
1666		status = ixgbe_get_i2c_ack(hw);
1667		if (status != 0)
1668			goto fail;
1669
1670		status = ixgbe_clock_out_i2c_byte(hw, data);
1671		if (status != 0)
1672			goto fail;
1673
1674		status = ixgbe_get_i2c_ack(hw);
1675		if (status != 0)
1676			goto fail;
1677
1678		ixgbe_i2c_stop(hw);
1679		break;
 
 
1680
1681fail:
1682		ixgbe_i2c_bus_clear(hw);
1683		retry++;
1684		if (retry < max_retry)
1685			hw_dbg(hw, "I2C byte write error - Retrying.\n");
1686		else
1687			hw_dbg(hw, "I2C byte write error.\n");
1688	} while (retry < max_retry);
1689
1690	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 
1691
1692write_byte_out:
1693	return status;
1694}
1695
1696/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697 *  ixgbe_i2c_start - Sets I2C start condition
1698 *  @hw: pointer to hardware structure
1699 *
1700 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
 
1701 **/
1702static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1703{
1704	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
 
 
1705
1706	/* Start condition must begin with data and clock high */
1707	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1708	ixgbe_raise_i2c_clk(hw, &i2cctl);
1709
1710	/* Setup time for start condition (4.7us) */
1711	udelay(IXGBE_I2C_T_SU_STA);
1712
1713	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1714
1715	/* Hold time for start condition (4us) */
1716	udelay(IXGBE_I2C_T_HD_STA);
1717
1718	ixgbe_lower_i2c_clk(hw, &i2cctl);
1719
1720	/* Minimum low period of clock is 4.7 us */
1721	udelay(IXGBE_I2C_T_LOW);
1722
1723}
1724
1725/**
1726 *  ixgbe_i2c_stop - Sets I2C stop condition
1727 *  @hw: pointer to hardware structure
1728 *
1729 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
 
 
1730 **/
1731static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1732{
1733	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
 
 
 
1734
1735	/* Stop condition must begin with data low and clock high */
1736	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1737	ixgbe_raise_i2c_clk(hw, &i2cctl);
1738
1739	/* Setup time for stop condition (4us) */
1740	udelay(IXGBE_I2C_T_SU_STO);
1741
1742	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1743
1744	/* bus free time between stop and start (4.7us)*/
1745	udelay(IXGBE_I2C_T_BUF);
 
 
 
 
 
 
 
1746}
1747
1748/**
1749 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1750 *  @hw: pointer to hardware structure
1751 *  @data: data byte to clock in
1752 *
1753 *  Clocks in one byte data via I2C data/clock
1754 **/
1755static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1756{
1757	s32 i;
1758	bool bit = false;
 
1759
 
1760	for (i = 7; i >= 0; i--) {
1761		ixgbe_clock_in_i2c_bit(hw, &bit);
1762		*data |= bit << i;
1763	}
1764
1765	return 0;
1766}
1767
1768/**
1769 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1770 *  @hw: pointer to hardware structure
1771 *  @data: data byte clocked out
1772 *
1773 *  Clocks out one byte data via I2C data/clock
1774 **/
1775static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1776{
1777	s32 status = 0;
1778	s32 i;
1779	u32 i2cctl;
1780	bool bit = false;
1781
1782	for (i = 7; i >= 0; i--) {
1783		bit = (data >> i) & 0x1;
1784		status = ixgbe_clock_out_i2c_bit(hw, bit);
1785
1786		if (status != 0)
1787			break;
1788	}
1789
1790	/* Release SDA line (set high) */
1791	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1792	i2cctl |= IXGBE_I2C_DATA_OUT;
1793	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
 
1794	IXGBE_WRITE_FLUSH(hw);
1795
1796	return status;
1797}
1798
1799/**
1800 *  ixgbe_get_i2c_ack - Polls for I2C ACK
1801 *  @hw: pointer to hardware structure
1802 *
1803 *  Clocks in/out one bit via I2C data/clock
1804 **/
1805static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1806{
1807	s32 status = 0;
1808	u32 i = 0;
1809	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1810	u32 timeout = 10;
1811	bool ack = true;
 
 
1812
 
 
 
 
 
 
1813	ixgbe_raise_i2c_clk(hw, &i2cctl);
1814
1815
1816	/* Minimum high period of clock is 4us */
1817	udelay(IXGBE_I2C_T_HIGH);
1818
1819	/* Poll for ACK.  Note that ACK in I2C spec is
1820	 * transition from 1 to 0 */
1821	for (i = 0; i < timeout; i++) {
1822		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1823		ack = ixgbe_get_i2c_data(&i2cctl);
1824
1825		udelay(1);
1826		if (ack == 0)
1827			break;
1828	}
1829
1830	if (ack == 1) {
1831		hw_dbg(hw, "I2C ack was not received.\n");
1832		status = IXGBE_ERR_I2C;
1833	}
1834
1835	ixgbe_lower_i2c_clk(hw, &i2cctl);
1836
1837	/* Minimum low period of clock is 4.7 us */
1838	udelay(IXGBE_I2C_T_LOW);
1839
1840	return status;
1841}
1842
1843/**
1844 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1845 *  @hw: pointer to hardware structure
1846 *  @data: read data value
1847 *
1848 *  Clocks in one bit via I2C data/clock
1849 **/
1850static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1851{
1852	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
 
1853
 
 
 
 
 
 
1854	ixgbe_raise_i2c_clk(hw, &i2cctl);
1855
1856	/* Minimum high period of clock is 4us */
1857	udelay(IXGBE_I2C_T_HIGH);
1858
1859	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1860	*data = ixgbe_get_i2c_data(&i2cctl);
1861
1862	ixgbe_lower_i2c_clk(hw, &i2cctl);
1863
1864	/* Minimum low period of clock is 4.7 us */
1865	udelay(IXGBE_I2C_T_LOW);
1866
1867	return 0;
1868}
1869
1870/**
1871 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1872 *  @hw: pointer to hardware structure
1873 *  @data: data value to write
1874 *
1875 *  Clocks out one bit via I2C data/clock
1876 **/
1877static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1878{
1879	s32 status;
1880	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1881
1882	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1883	if (status == 0) {
1884		ixgbe_raise_i2c_clk(hw, &i2cctl);
1885
1886		/* Minimum high period of clock is 4us */
1887		udelay(IXGBE_I2C_T_HIGH);
1888
1889		ixgbe_lower_i2c_clk(hw, &i2cctl);
1890
1891		/* Minimum low period of clock is 4.7 us.
1892		 * This also takes care of the data hold time.
1893		 */
1894		udelay(IXGBE_I2C_T_LOW);
1895	} else {
1896		status = IXGBE_ERR_I2C;
1897		hw_dbg(hw, "I2C data was not set to %X\n", data);
 
1898	}
1899
1900	return status;
1901}
1902/**
1903 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1904 *  @hw: pointer to hardware structure
1905 *  @i2cctl: Current value of I2CCTL register
1906 *
1907 *  Raises the I2C clock line '0'->'1'
 
1908 **/
1909static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1910{
 
1911	u32 i = 0;
1912	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
1913	u32 i2cctl_r = 0;
1914
 
 
 
 
 
1915	for (i = 0; i < timeout; i++) {
1916		*i2cctl |= IXGBE_I2C_CLK_OUT;
1917		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1918		IXGBE_WRITE_FLUSH(hw);
1919		/* SCL rise time (1000ns) */
1920		udelay(IXGBE_I2C_T_RISE);
1921
1922		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1923		if (i2cctl_r & IXGBE_I2C_CLK_IN)
1924			break;
1925	}
1926}
1927
1928/**
1929 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1930 *  @hw: pointer to hardware structure
1931 *  @i2cctl: Current value of I2CCTL register
1932 *
1933 *  Lowers the I2C clock line '1'->'0'
 
1934 **/
1935static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1936{
1937
1938	*i2cctl &= ~IXGBE_I2C_CLK_OUT;
 
1939
1940	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1941	IXGBE_WRITE_FLUSH(hw);
1942
1943	/* SCL fall time (300ns) */
1944	udelay(IXGBE_I2C_T_FALL);
1945}
1946
1947/**
1948 *  ixgbe_set_i2c_data - Sets the I2C data bit
1949 *  @hw: pointer to hardware structure
1950 *  @i2cctl: Current value of I2CCTL register
1951 *  @data: I2C data value (0 or 1) to set
1952 *
1953 *  Sets the I2C data bit
 
1954 **/
1955static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1956{
1957	s32 status = 0;
1958
1959	if (data)
1960		*i2cctl |= IXGBE_I2C_DATA_OUT;
1961	else
1962		*i2cctl &= ~IXGBE_I2C_DATA_OUT;
 
1963
1964	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1965	IXGBE_WRITE_FLUSH(hw);
1966
1967	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1968	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1969
 
 
 
 
 
 
 
 
1970	/* Verify data was set correctly */
1971	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1972	if (data != ixgbe_get_i2c_data(i2cctl)) {
1973		status = IXGBE_ERR_I2C;
1974		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
 
1975	}
1976
1977	return status;
1978}
1979
1980/**
1981 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1982 *  @hw: pointer to hardware structure
1983 *  @i2cctl: Current value of I2CCTL register
1984 *
1985 *  Returns the I2C data bit value
 
1986 **/
1987static bool ixgbe_get_i2c_data(u32 *i2cctl)
1988{
1989	bool data;
1990
1991	if (*i2cctl & IXGBE_I2C_DATA_IN)
1992		data = true;
1993	else
1994		data = false;
 
 
1995
1996	return data;
 
 
1997}
1998
1999/**
2000 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2001 *  @hw: pointer to hardware structure
2002 *
2003 *  Clears the I2C bus by sending nine clock pulses.
2004 *  Used when data line is stuck low.
2005 **/
2006static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2007{
2008	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
2009	u32 i;
2010
2011	ixgbe_i2c_start(hw);
 
2012
2013	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2014
2015	for (i = 0; i < 9; i++) {
2016		ixgbe_raise_i2c_clk(hw, &i2cctl);
2017
2018		/* Min high period of clock is 4us */
2019		udelay(IXGBE_I2C_T_HIGH);
2020
2021		ixgbe_lower_i2c_clk(hw, &i2cctl);
2022
2023		/* Min low period of clock is 4.7us*/
2024		udelay(IXGBE_I2C_T_LOW);
2025	}
2026
2027	ixgbe_i2c_start(hw);
2028
2029	/* Put the i2c bus back to default state */
2030	ixgbe_i2c_stop(hw);
2031}
2032
2033/**
2034 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2035 *  @hw: pointer to hardware structure
2036 *
2037 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2038 **/
2039s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2040{
2041	s32 status = 0;
2042	u16 phy_data = 0;
 
2043
2044	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2045		goto out;
2046
2047	/* Check that the LASI temp alarm status was triggered */
2048	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2049	                     MDIO_MMD_PMAPMD, &phy_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050
2051	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2052		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053
2054	status = IXGBE_ERR_OVERTEMP;
2055out:
2056	return status;
2057}