Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <linux/net/intel/libie/rx.h>
6#include <linux/prefetch.h>
7#include <linux/sctp.h>
8#include <net/mpls.h>
9#include <net/xdp.h>
10#include "i40e_txrx_common.h"
11#include "i40e_trace.h"
12#include "i40e_xsk.h"
13
14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15/**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
22static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24{
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd, vsi_id;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
38
39 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
40 fdata->flex_off);
41
42 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
43
44 /* Use LAN VSI Id if not programmed by user */
45 vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
46 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
47
48 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
49
50 dtype_cmd |= add ?
51 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
52 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
53 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
54 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
55
56 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
57
58 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
59 fdata->fd_status);
60
61 if (fdata->cnt_index) {
62 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
63 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
64 fdata->cnt_index);
65 }
66
67 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
68 fdir_desc->rsvd = cpu_to_le32(0);
69 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
70 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
71}
72
73#define I40E_FD_CLEAN_DELAY 10
74/**
75 * i40e_program_fdir_filter - Program a Flow Director filter
76 * @fdir_data: Packet data that will be filter parameters
77 * @raw_packet: the pre-allocated packet buffer for FDir
78 * @pf: The PF pointer
79 * @add: True for add/update, False for remove
80 **/
81static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
82 u8 *raw_packet, struct i40e_pf *pf,
83 bool add)
84{
85 struct i40e_tx_buffer *tx_buf, *first;
86 struct i40e_tx_desc *tx_desc;
87 struct i40e_ring *tx_ring;
88 struct i40e_vsi *vsi;
89 struct device *dev;
90 dma_addr_t dma;
91 u32 td_cmd = 0;
92 u16 i;
93
94 /* find existing FDIR VSI */
95 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
96 if (!vsi)
97 return -ENOENT;
98
99 tx_ring = vsi->tx_rings[0];
100 dev = tx_ring->dev;
101
102 /* we need two descriptors to add/del a filter and we can wait */
103 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
104 if (!i)
105 return -EAGAIN;
106 msleep_interruptible(1);
107 }
108
109 dma = dma_map_single(dev, raw_packet,
110 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
111 if (dma_mapping_error(dev, dma))
112 goto dma_fail;
113
114 /* grab the next descriptor */
115 i = tx_ring->next_to_use;
116 first = &tx_ring->tx_bi[i];
117 i40e_fdir(tx_ring, fdir_data, add);
118
119 /* Now program a dummy descriptor */
120 i = tx_ring->next_to_use;
121 tx_desc = I40E_TX_DESC(tx_ring, i);
122 tx_buf = &tx_ring->tx_bi[i];
123
124 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
125
126 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
127
128 /* record length, and DMA address */
129 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
130 dma_unmap_addr_set(tx_buf, dma, dma);
131
132 tx_desc->buffer_addr = cpu_to_le64(dma);
133 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
134
135 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
136 tx_buf->raw_buf = (void *)raw_packet;
137
138 tx_desc->cmd_type_offset_bsz =
139 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
140
141 /* Force memory writes to complete before letting h/w
142 * know there are new descriptors to fetch.
143 */
144 wmb();
145
146 /* Mark the data descriptor to be watched */
147 first->next_to_watch = tx_desc;
148
149 writel(tx_ring->next_to_use, tx_ring->tail);
150 return 0;
151
152dma_fail:
153 return -1;
154}
155
156/**
157 * i40e_create_dummy_packet - Constructs dummy packet for HW
158 * @dummy_packet: preallocated space for dummy packet
159 * @ipv4: is layer 3 packet of version 4 or 6
160 * @l4proto: next level protocol used in data portion of l3
161 * @data: filter data
162 *
163 * Returns address of layer 4 protocol dummy packet.
164 **/
165static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
166 struct i40e_fdir_filter *data)
167{
168 bool is_vlan = !!data->vlan_tag;
169 struct vlan_hdr vlan = {};
170 struct ipv6hdr ipv6 = {};
171 struct ethhdr eth = {};
172 struct iphdr ip = {};
173 u8 *tmp;
174
175 if (ipv4) {
176 eth.h_proto = cpu_to_be16(ETH_P_IP);
177 ip.protocol = l4proto;
178 ip.version = 0x4;
179 ip.ihl = 0x5;
180
181 ip.daddr = data->dst_ip;
182 ip.saddr = data->src_ip;
183 } else {
184 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
185 ipv6.nexthdr = l4proto;
186 ipv6.version = 0x6;
187
188 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
189 sizeof(__be32) * 4);
190 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
191 sizeof(__be32) * 4);
192 }
193
194 if (is_vlan) {
195 vlan.h_vlan_TCI = data->vlan_tag;
196 vlan.h_vlan_encapsulated_proto = eth.h_proto;
197 eth.h_proto = data->vlan_etype;
198 }
199
200 tmp = dummy_packet;
201 memcpy(tmp, ð, sizeof(eth));
202 tmp += sizeof(eth);
203
204 if (is_vlan) {
205 memcpy(tmp, &vlan, sizeof(vlan));
206 tmp += sizeof(vlan);
207 }
208
209 if (ipv4) {
210 memcpy(tmp, &ip, sizeof(ip));
211 tmp += sizeof(ip);
212 } else {
213 memcpy(tmp, &ipv6, sizeof(ipv6));
214 tmp += sizeof(ipv6);
215 }
216
217 return tmp;
218}
219
220/**
221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
222 * @raw_packet: preallocated space for dummy packet
223 * @ipv4: is layer 3 packet of version 4 or 6
224 * @l4proto: next level protocol used in data portion of l3
225 * @data: filter data
226 *
227 * Helper function to populate udp fields.
228 **/
229static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
230 struct i40e_fdir_filter *data)
231{
232 struct udphdr *udp;
233 u8 *tmp;
234
235 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
236 udp = (struct udphdr *)(tmp);
237 udp->dest = data->dst_port;
238 udp->source = data->src_port;
239}
240
241/**
242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
243 * @raw_packet: preallocated space for dummy packet
244 * @ipv4: is layer 3 packet of version 4 or 6
245 * @l4proto: next level protocol used in data portion of l3
246 * @data: filter data
247 *
248 * Helper function to populate tcp fields.
249 **/
250static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
251 struct i40e_fdir_filter *data)
252{
253 struct tcphdr *tcp;
254 u8 *tmp;
255 /* Dummy tcp packet */
256 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
258
259 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
260
261 tcp = (struct tcphdr *)tmp;
262 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
263 tcp->dest = data->dst_port;
264 tcp->source = data->src_port;
265}
266
267/**
268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
269 * @raw_packet: preallocated space for dummy packet
270 * @ipv4: is layer 3 packet of version 4 or 6
271 * @l4proto: next level protocol used in data portion of l3
272 * @data: filter data
273 *
274 * Helper function to populate sctp fields.
275 **/
276static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
277 u8 l4proto,
278 struct i40e_fdir_filter *data)
279{
280 struct sctphdr *sctp;
281 u8 *tmp;
282
283 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
284
285 sctp = (struct sctphdr *)tmp;
286 sctp->dest = data->dst_port;
287 sctp->source = data->src_port;
288}
289
290/**
291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
292 * @pf: physical function to attach filter to
293 * @fd_data: filter data
294 * @add: add or delete filter
295 * @packet_addr: address of dummy packet, used in filtering
296 * @payload_offset: offset from dummy packet address to user defined data
297 * @pctype: Packet type for which filter is used
298 *
299 * Helper function to offset data of dummy packet, program it and
300 * handle errors.
301 **/
302static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
303 struct i40e_fdir_filter *fd_data,
304 bool add, char *packet_addr,
305 int payload_offset, u8 pctype)
306{
307 int ret;
308
309 if (fd_data->flex_filter) {
310 u8 *payload;
311 __be16 pattern = fd_data->flex_word;
312 u16 off = fd_data->flex_offset;
313
314 payload = packet_addr + payload_offset;
315
316 /* If user provided vlan, offset payload by vlan header length */
317 if (!!fd_data->vlan_tag)
318 payload += VLAN_HLEN;
319
320 *((__force __be16 *)(payload + off)) = pattern;
321 }
322
323 fd_data->pctype = pctype;
324 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
325 if (ret) {
326 dev_info(&pf->pdev->dev,
327 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
328 fd_data->pctype, fd_data->fd_id, ret);
329 /* Free the packet buffer since it wasn't added to the ring */
330 return -EOPNOTSUPP;
331 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
332 if (add)
333 dev_info(&pf->pdev->dev,
334 "Filter OK for PCTYPE %d loc = %d\n",
335 fd_data->pctype, fd_data->fd_id);
336 else
337 dev_info(&pf->pdev->dev,
338 "Filter deleted for PCTYPE %d loc = %d\n",
339 fd_data->pctype, fd_data->fd_id);
340 }
341
342 return ret;
343}
344
345/**
346 * i40e_change_filter_num - Prepare and program fdir filter
347 * @ipv4: is layer 3 packet of version 4 or 6
348 * @add: add or delete filter
349 * @ipv4_filter_num: field to update
350 * @ipv6_filter_num: field to update
351 *
352 * Update filter number field for pf.
353 **/
354static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
355 u16 *ipv6_filter_num)
356{
357 if (add) {
358 if (ipv4)
359 (*ipv4_filter_num)++;
360 else
361 (*ipv6_filter_num)++;
362 } else {
363 if (ipv4)
364 (*ipv4_filter_num)--;
365 else
366 (*ipv6_filter_num)--;
367 }
368}
369
370#define I40E_UDPIP_DUMMY_PACKET_LEN 42
371#define I40E_UDPIP6_DUMMY_PACKET_LEN 62
372/**
373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
374 * @vsi: pointer to the targeted VSI
375 * @fd_data: the flow director data required for the FDir descriptor
376 * @add: true adds a filter, false removes it
377 * @ipv4: true is v4, false is v6
378 *
379 * Returns 0 if the filters were successfully added or removed
380 **/
381static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
382 struct i40e_fdir_filter *fd_data,
383 bool add,
384 bool ipv4)
385{
386 struct i40e_pf *pf = vsi->back;
387 u8 *raw_packet;
388 int ret;
389
390 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
391 if (!raw_packet)
392 return -ENOMEM;
393
394 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
395
396 if (ipv4)
397 ret = i40e_prepare_fdir_filter
398 (pf, fd_data, add, raw_packet,
399 I40E_UDPIP_DUMMY_PACKET_LEN,
400 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
401 else
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP6_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
406
407 if (ret) {
408 kfree(raw_packet);
409 return ret;
410 }
411
412 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
413 &pf->fd_udp6_filter_cnt);
414
415 return 0;
416}
417
418#define I40E_TCPIP_DUMMY_PACKET_LEN 54
419#define I40E_TCPIP6_DUMMY_PACKET_LEN 74
420/**
421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
422 * @vsi: pointer to the targeted VSI
423 * @fd_data: the flow director data required for the FDir descriptor
424 * @add: true adds a filter, false removes it
425 * @ipv4: true is v4, false is v6
426 *
427 * Returns 0 if the filters were successfully added or removed
428 **/
429static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
430 struct i40e_fdir_filter *fd_data,
431 bool add,
432 bool ipv4)
433{
434 struct i40e_pf *pf = vsi->back;
435 u8 *raw_packet;
436 int ret;
437
438 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
439 if (!raw_packet)
440 return -ENOMEM;
441
442 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
443 if (ipv4)
444 ret = i40e_prepare_fdir_filter
445 (pf, fd_data, add, raw_packet,
446 I40E_TCPIP_DUMMY_PACKET_LEN,
447 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
448 else
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP6_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
453
454 if (ret) {
455 kfree(raw_packet);
456 return ret;
457 }
458
459 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
460 &pf->fd_tcp6_filter_cnt);
461
462 if (add) {
463 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
464 I40E_DEBUG_FD & pf->hw.debug_mask)
465 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
466 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
467 }
468 return 0;
469}
470
471#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
472#define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
473/**
474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
475 * a specific flow spec
476 * @vsi: pointer to the targeted VSI
477 * @fd_data: the flow director data required for the FDir descriptor
478 * @add: true adds a filter, false removes it
479 * @ipv4: true is v4, false is v6
480 *
481 * Returns 0 if the filters were successfully added or removed
482 **/
483static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
484 struct i40e_fdir_filter *fd_data,
485 bool add,
486 bool ipv4)
487{
488 struct i40e_pf *pf = vsi->back;
489 u8 *raw_packet;
490 int ret;
491
492 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
493 if (!raw_packet)
494 return -ENOMEM;
495
496 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
497
498 if (ipv4)
499 ret = i40e_prepare_fdir_filter
500 (pf, fd_data, add, raw_packet,
501 I40E_SCTPIP_DUMMY_PACKET_LEN,
502 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
503 else
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP6_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
508
509 if (ret) {
510 kfree(raw_packet);
511 return ret;
512 }
513
514 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
515 &pf->fd_sctp6_filter_cnt);
516
517 return 0;
518}
519
520#define I40E_IP_DUMMY_PACKET_LEN 34
521#define I40E_IP6_DUMMY_PACKET_LEN 54
522/**
523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
524 * a specific flow spec
525 * @vsi: pointer to the targeted VSI
526 * @fd_data: the flow director data required for the FDir descriptor
527 * @add: true adds a filter, false removes it
528 * @ipv4: true is v4, false is v6
529 *
530 * Returns 0 if the filters were successfully added or removed
531 **/
532static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
533 struct i40e_fdir_filter *fd_data,
534 bool add,
535 bool ipv4)
536{
537 struct i40e_pf *pf = vsi->back;
538 int payload_offset;
539 u8 *raw_packet;
540 int iter_start;
541 int iter_end;
542 int ret;
543 int i;
544
545 if (ipv4) {
546 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
547 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
548 } else {
549 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
550 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
551 }
552
553 for (i = iter_start; i <= iter_end; i++) {
554 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
555 if (!raw_packet)
556 return -ENOMEM;
557
558 /* IPv6 no header option differs from IPv4 */
559 (void)i40e_create_dummy_packet
560 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
561 fd_data);
562
563 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
564 I40E_IP6_DUMMY_PACKET_LEN;
565 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
566 payload_offset, i);
567 if (ret)
568 goto err;
569 }
570
571 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
572 &pf->fd_ip6_filter_cnt);
573
574 return 0;
575err:
576 kfree(raw_packet);
577 return ret;
578}
579
580/**
581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
582 * @vsi: pointer to the targeted VSI
583 * @input: filter to add or delete
584 * @add: true adds a filter, false removes it
585 *
586 **/
587int i40e_add_del_fdir(struct i40e_vsi *vsi,
588 struct i40e_fdir_filter *input, bool add)
589{
590 enum ip_ver { ipv6 = 0, ipv4 = 1 };
591 struct i40e_pf *pf = vsi->back;
592 int ret;
593
594 switch (input->flow_type & ~FLOW_EXT) {
595 case TCP_V4_FLOW:
596 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
597 break;
598 case UDP_V4_FLOW:
599 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
600 break;
601 case SCTP_V4_FLOW:
602 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
603 break;
604 case TCP_V6_FLOW:
605 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
606 break;
607 case UDP_V6_FLOW:
608 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
609 break;
610 case SCTP_V6_FLOW:
611 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
612 break;
613 case IP_USER_FLOW:
614 switch (input->ipl4_proto) {
615 case IPPROTO_TCP:
616 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
617 break;
618 case IPPROTO_UDP:
619 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
620 break;
621 case IPPROTO_SCTP:
622 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
623 break;
624 case IPPROTO_IP:
625 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
626 break;
627 default:
628 /* We cannot support masking based on protocol */
629 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
630 input->ipl4_proto);
631 return -EINVAL;
632 }
633 break;
634 case IPV6_USER_FLOW:
635 switch (input->ipl4_proto) {
636 case IPPROTO_TCP:
637 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
638 break;
639 case IPPROTO_UDP:
640 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
641 break;
642 case IPPROTO_SCTP:
643 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
644 break;
645 case IPPROTO_IP:
646 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
647 break;
648 default:
649 /* We cannot support masking based on protocol */
650 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
651 input->ipl4_proto);
652 return -EINVAL;
653 }
654 break;
655 default:
656 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
657 input->flow_type);
658 return -EINVAL;
659 }
660
661 /* The buffer allocated here will be normally be freed by
662 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
663 * completion. In the event of an error adding the buffer to the FDIR
664 * ring, it will immediately be freed. It may also be freed by
665 * i40e_clean_tx_ring() when closing the VSI.
666 */
667 return ret;
668}
669
670/**
671 * i40e_fd_handle_status - check the Programming Status for FD
672 * @rx_ring: the Rx ring for this descriptor
673 * @qword0_raw: qword0
674 * @qword1: qword1 after le_to_cpu
675 * @prog_id: the id originally used for programming
676 *
677 * This is used to verify if the FD programming or invalidation
678 * requested by SW to the HW is successful or not and take actions accordingly.
679 **/
680static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
681 u64 qword1, u8 prog_id)
682{
683 struct i40e_pf *pf = rx_ring->vsi->back;
684 struct pci_dev *pdev = pf->pdev;
685 struct i40e_16b_rx_wb_qw0 *qw0;
686 u32 fcnt_prog, fcnt_avail;
687 u32 error;
688
689 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
690 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
691
692 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
693 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
694 if (qw0->hi_dword.fd_id != 0 ||
695 (I40E_DEBUG_FD & pf->hw.debug_mask))
696 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
697 pf->fd_inv);
698
699 /* Check if the programming error is for ATR.
700 * If so, auto disable ATR and set a state for
701 * flush in progress. Next time we come here if flush is in
702 * progress do nothing, once flush is complete the state will
703 * be cleared.
704 */
705 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
706 return;
707
708 pf->fd_add_err++;
709 /* store the current atr filter count */
710 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
711
712 if (qw0->hi_dword.fd_id == 0 &&
713 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
714 /* These set_bit() calls aren't atomic with the
715 * test_bit() here, but worse case we potentially
716 * disable ATR and queue a flush right after SB
717 * support is re-enabled. That shouldn't cause an
718 * issue in practice
719 */
720 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
721 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
722 }
723
724 /* filter programming failed most likely due to table full */
725 fcnt_prog = i40e_get_global_fd_count(pf);
726 fcnt_avail = pf->fdir_pf_filter_count;
727 /* If ATR is running fcnt_prog can quickly change,
728 * if we are very close to full, it makes sense to disable
729 * FD ATR/SB and then re-enable it when there is room.
730 */
731 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
732 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
733 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
734 pf->state))
735 if (I40E_DEBUG_FD & pf->hw.debug_mask)
736 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
737 }
738 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
739 if (I40E_DEBUG_FD & pf->hw.debug_mask)
740 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
741 qw0->hi_dword.fd_id);
742 }
743}
744
745/**
746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
747 * @ring: the ring that owns the buffer
748 * @tx_buffer: the buffer to free
749 **/
750static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
751 struct i40e_tx_buffer *tx_buffer)
752{
753 if (tx_buffer->skb) {
754 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
755 kfree(tx_buffer->raw_buf);
756 else if (ring_is_xdp(ring))
757 xdp_return_frame(tx_buffer->xdpf);
758 else
759 dev_kfree_skb_any(tx_buffer->skb);
760 if (dma_unmap_len(tx_buffer, len))
761 dma_unmap_single(ring->dev,
762 dma_unmap_addr(tx_buffer, dma),
763 dma_unmap_len(tx_buffer, len),
764 DMA_TO_DEVICE);
765 } else if (dma_unmap_len(tx_buffer, len)) {
766 dma_unmap_page(ring->dev,
767 dma_unmap_addr(tx_buffer, dma),
768 dma_unmap_len(tx_buffer, len),
769 DMA_TO_DEVICE);
770 }
771
772 tx_buffer->next_to_watch = NULL;
773 tx_buffer->skb = NULL;
774 dma_unmap_len_set(tx_buffer, len, 0);
775 /* tx_buffer must be completely set up in the transmit path */
776}
777
778/**
779 * i40e_clean_tx_ring - Free any empty Tx buffers
780 * @tx_ring: ring to be cleaned
781 **/
782void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
783{
784 unsigned long bi_size;
785 u16 i;
786
787 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
788 i40e_xsk_clean_tx_ring(tx_ring);
789 } else {
790 /* ring already cleared, nothing to do */
791 if (!tx_ring->tx_bi)
792 return;
793
794 /* Free all the Tx ring sk_buffs */
795 for (i = 0; i < tx_ring->count; i++)
796 i40e_unmap_and_free_tx_resource(tx_ring,
797 &tx_ring->tx_bi[i]);
798 }
799
800 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
801 memset(tx_ring->tx_bi, 0, bi_size);
802
803 /* Zero out the descriptor ring */
804 memset(tx_ring->desc, 0, tx_ring->size);
805
806 tx_ring->next_to_use = 0;
807 tx_ring->next_to_clean = 0;
808
809 if (!tx_ring->netdev)
810 return;
811
812 /* cleanup Tx queue statistics */
813 netdev_tx_reset_queue(txring_txq(tx_ring));
814}
815
816/**
817 * i40e_free_tx_resources - Free Tx resources per queue
818 * @tx_ring: Tx descriptor ring for a specific queue
819 *
820 * Free all transmit software resources
821 **/
822void i40e_free_tx_resources(struct i40e_ring *tx_ring)
823{
824 i40e_clean_tx_ring(tx_ring);
825 kfree(tx_ring->tx_bi);
826 tx_ring->tx_bi = NULL;
827
828 if (tx_ring->desc) {
829 dma_free_coherent(tx_ring->dev, tx_ring->size,
830 tx_ring->desc, tx_ring->dma);
831 tx_ring->desc = NULL;
832 }
833}
834
835/**
836 * i40e_get_tx_pending - how many tx descriptors not processed
837 * @ring: the ring of descriptors
838 * @in_sw: use SW variables
839 *
840 * Since there is no access to the ring head register
841 * in XL710, we need to use our local copies
842 **/
843u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
844{
845 u32 head, tail;
846
847 if (!in_sw) {
848 head = i40e_get_head(ring);
849 tail = readl(ring->tail);
850 } else {
851 head = ring->next_to_clean;
852 tail = ring->next_to_use;
853 }
854
855 if (head != tail)
856 return (head < tail) ?
857 tail - head : (tail + ring->count - head);
858
859 return 0;
860}
861
862/**
863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
864 * @pf: pointer to PF struct
865 *
866 * LAN VSI has netdev and netdev has TX queues. This function is to check
867 * each of those TX queues if they are hung, trigger recovery by issuing
868 * SW interrupt.
869 **/
870void i40e_detect_recover_hung(struct i40e_pf *pf)
871{
872 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
873 struct i40e_ring *tx_ring = NULL;
874 struct net_device *netdev;
875 unsigned int i;
876 int packets;
877
878 if (!vsi)
879 return;
880
881 if (test_bit(__I40E_VSI_DOWN, vsi->state))
882 return;
883
884 netdev = vsi->netdev;
885 if (!netdev)
886 return;
887
888 if (!netif_carrier_ok(netdev))
889 return;
890
891 for (i = 0; i < vsi->num_queue_pairs; i++) {
892 tx_ring = vsi->tx_rings[i];
893 if (tx_ring && tx_ring->desc) {
894 /* If packet counter has not changed the queue is
895 * likely stalled, so force an interrupt for this
896 * queue.
897 *
898 * prev_pkt_ctr would be negative if there was no
899 * pending work.
900 */
901 packets = tx_ring->stats.packets & INT_MAX;
902 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
903 i40e_force_wb(vsi, tx_ring->q_vector);
904 continue;
905 }
906
907 /* Memory barrier between read of packet count and call
908 * to i40e_get_tx_pending()
909 */
910 smp_rmb();
911 tx_ring->tx_stats.prev_pkt_ctr =
912 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
913 }
914 }
915}
916
917/**
918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
919 * @vsi: the VSI we care about
920 * @tx_ring: Tx ring to clean
921 * @napi_budget: Used to determine if we are in netpoll
922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
923 *
924 * Returns true if there's any budget left (e.g. the clean is finished)
925 **/
926static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
927 struct i40e_ring *tx_ring, int napi_budget,
928 unsigned int *tx_cleaned)
929{
930 int i = tx_ring->next_to_clean;
931 struct i40e_tx_buffer *tx_buf;
932 struct i40e_tx_desc *tx_head;
933 struct i40e_tx_desc *tx_desc;
934 unsigned int total_bytes = 0, total_packets = 0;
935 unsigned int budget = vsi->work_limit;
936
937 tx_buf = &tx_ring->tx_bi[i];
938 tx_desc = I40E_TX_DESC(tx_ring, i);
939 i -= tx_ring->count;
940
941 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
942
943 do {
944 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
945
946 /* if next_to_watch is not set then there is no work pending */
947 if (!eop_desc)
948 break;
949
950 /* prevent any other reads prior to eop_desc */
951 smp_rmb();
952
953 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
954 /* we have caught up to head, no work left to do */
955 if (tx_head == tx_desc)
956 break;
957
958 /* clear next_to_watch to prevent false hangs */
959 tx_buf->next_to_watch = NULL;
960
961 /* update the statistics for this packet */
962 total_bytes += tx_buf->bytecount;
963 total_packets += tx_buf->gso_segs;
964
965 /* free the skb/XDP data */
966 if (ring_is_xdp(tx_ring))
967 xdp_return_frame(tx_buf->xdpf);
968 else
969 napi_consume_skb(tx_buf->skb, napi_budget);
970
971 /* unmap skb header data */
972 dma_unmap_single(tx_ring->dev,
973 dma_unmap_addr(tx_buf, dma),
974 dma_unmap_len(tx_buf, len),
975 DMA_TO_DEVICE);
976
977 /* clear tx_buffer data */
978 tx_buf->skb = NULL;
979 dma_unmap_len_set(tx_buf, len, 0);
980
981 /* unmap remaining buffers */
982 while (tx_desc != eop_desc) {
983 i40e_trace(clean_tx_irq_unmap,
984 tx_ring, tx_desc, tx_buf);
985
986 tx_buf++;
987 tx_desc++;
988 i++;
989 if (unlikely(!i)) {
990 i -= tx_ring->count;
991 tx_buf = tx_ring->tx_bi;
992 tx_desc = I40E_TX_DESC(tx_ring, 0);
993 }
994
995 /* unmap any remaining paged data */
996 if (dma_unmap_len(tx_buf, len)) {
997 dma_unmap_page(tx_ring->dev,
998 dma_unmap_addr(tx_buf, dma),
999 dma_unmap_len(tx_buf, len),
1000 DMA_TO_DEVICE);
1001 dma_unmap_len_set(tx_buf, len, 0);
1002 }
1003 }
1004
1005 /* move us one more past the eop_desc for start of next pkt */
1006 tx_buf++;
1007 tx_desc++;
1008 i++;
1009 if (unlikely(!i)) {
1010 i -= tx_ring->count;
1011 tx_buf = tx_ring->tx_bi;
1012 tx_desc = I40E_TX_DESC(tx_ring, 0);
1013 }
1014
1015 prefetch(tx_desc);
1016
1017 /* update budget accounting */
1018 budget--;
1019 } while (likely(budget));
1020
1021 i += tx_ring->count;
1022 tx_ring->next_to_clean = i;
1023 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024 i40e_arm_wb(tx_ring, vsi, budget);
1025
1026 if (ring_is_xdp(tx_ring))
1027 return !!budget;
1028
1029 /* notify netdev of completed buffers */
1030 netdev_tx_completed_queue(txring_txq(tx_ring),
1031 total_packets, total_bytes);
1032
1033#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036 /* Make sure that anybody stopping the queue after this
1037 * sees the new next_to_clean.
1038 */
1039 smp_mb();
1040 if (__netif_subqueue_stopped(tx_ring->netdev,
1041 tx_ring->queue_index) &&
1042 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043 netif_wake_subqueue(tx_ring->netdev,
1044 tx_ring->queue_index);
1045 ++tx_ring->tx_stats.restart_queue;
1046 }
1047 }
1048
1049 *tx_cleaned = total_packets;
1050 return !!budget;
1051}
1052
1053/**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
1059static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060 struct i40e_q_vector *q_vector)
1061{
1062 u16 flags = q_vector->tx.ring[0].flags;
1063 u32 val;
1064
1065 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066 return;
1067
1068 if (q_vector->arm_wb_state)
1069 return;
1070
1071 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075 wr32(&vsi->back->hw,
1076 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077 val);
1078 } else {
1079 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083 }
1084 q_vector->arm_wb_state = true;
1085}
1086
1087/**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector on which to force writeback
1091 *
1092 **/
1093void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094{
1095 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100 /* allow 00 to be written to the index */
1101
1102 wr32(&vsi->back->hw,
1103 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104 } else {
1105 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109 /* allow 00 to be written to the index */
1110
1111 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112 }
1113}
1114
1115static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116 struct i40e_ring_container *rc)
1117{
1118 return &q_vector->rx == rc;
1119}
1120
1121static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122{
1123 unsigned int divisor;
1124
1125 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126 case I40E_LINK_SPEED_40GB:
1127 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128 break;
1129 case I40E_LINK_SPEED_25GB:
1130 case I40E_LINK_SPEED_20GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132 break;
1133 default:
1134 case I40E_LINK_SPEED_10GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136 break;
1137 case I40E_LINK_SPEED_1GB:
1138 case I40E_LINK_SPEED_100MB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140 break;
1141 }
1142
1143 return divisor;
1144}
1145
1146/**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt. The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern. Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1158 **/
1159static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160 struct i40e_ring_container *rc)
1161{
1162 unsigned int avg_wire_size, packets, bytes, itr;
1163 unsigned long next_update = jiffies;
1164
1165 /* If we don't have any rings just leave ourselves set for maximum
1166 * possible latency so we take ourselves out of the equation.
1167 */
1168 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169 return;
1170
1171 /* For Rx we want to push the delay up and default to low latency.
1172 * for Tx we want to pull the delay down and default to high latency.
1173 */
1174 itr = i40e_container_is_rx(q_vector, rc) ?
1175 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178 /* If we didn't update within up to 1 - 2 jiffies we can assume
1179 * that either packets are coming in so slow there hasn't been
1180 * any work, or that there is so much work that NAPI is dealing
1181 * with interrupt moderation and we don't need to do anything.
1182 */
1183 if (time_after(next_update, rc->next_update))
1184 goto clear_counts;
1185
1186 /* If itr_countdown is set it means we programmed an ITR within
1187 * the last 4 interrupt cycles. This has a side effect of us
1188 * potentially firing an early interrupt. In order to work around
1189 * this we need to throw out any data received for a few
1190 * interrupts following the update.
1191 */
1192 if (q_vector->itr_countdown) {
1193 itr = rc->target_itr;
1194 goto clear_counts;
1195 }
1196
1197 packets = rc->total_packets;
1198 bytes = rc->total_bytes;
1199
1200 if (i40e_container_is_rx(q_vector, rc)) {
1201 /* If Rx there are 1 to 4 packets and bytes are less than
1202 * 9000 assume insufficient data to use bulk rate limiting
1203 * approach unless Tx is already in bulk rate limiting. We
1204 * are likely latency driven.
1205 */
1206 if (packets && packets < 4 && bytes < 9000 &&
1207 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208 itr = I40E_ITR_ADAPTIVE_LATENCY;
1209 goto adjust_by_size;
1210 }
1211 } else if (packets < 4) {
1212 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213 * bulk mode and we are receiving 4 or fewer packets just
1214 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215 * that the Rx can relax.
1216 */
1217 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219 I40E_ITR_ADAPTIVE_MAX_USECS)
1220 goto clear_counts;
1221 } else if (packets > 32) {
1222 /* If we have processed over 32 packets in a single interrupt
1223 * for Tx assume we need to switch over to "bulk" mode.
1224 */
1225 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226 }
1227
1228 /* We have no packets to actually measure against. This means
1229 * either one of the other queues on this vector is active or
1230 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231 *
1232 * Between 4 and 56 we can assume that our current interrupt delay
1233 * is only slightly too low. As such we should increase it by a small
1234 * fixed amount.
1235 */
1236 if (packets < 56) {
1237 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241 }
1242 goto clear_counts;
1243 }
1244
1245 if (packets <= 256) {
1246 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247 itr &= I40E_ITR_MASK;
1248
1249 /* Between 56 and 112 is our "goldilocks" zone where we are
1250 * working out "just right". Just report that our current
1251 * ITR is good for us.
1252 */
1253 if (packets <= 112)
1254 goto clear_counts;
1255
1256 /* If packet count is 128 or greater we are likely looking
1257 * at a slight overrun of the delay we want. Try halving
1258 * our delay to see if that will cut the number of packets
1259 * in half per interrupt.
1260 */
1261 itr /= 2;
1262 itr &= I40E_ITR_MASK;
1263 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266 goto clear_counts;
1267 }
1268
1269 /* The paths below assume we are dealing with a bulk ITR since
1270 * number of packets is greater than 256. We are just going to have
1271 * to compute a value and try to bring the count under control,
1272 * though for smaller packet sizes there isn't much we can do as
1273 * NAPI polling will likely be kicking in sooner rather than later.
1274 */
1275 itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277adjust_by_size:
1278 /* If packet counts are 256 or greater we can assume we have a gross
1279 * overestimation of what the rate should be. Instead of trying to fine
1280 * tune it just use the formula below to try and dial in an exact value
1281 * give the current packet size of the frame.
1282 */
1283 avg_wire_size = bytes / packets;
1284
1285 /* The following is a crude approximation of:
1286 * wmem_default / (size + overhead) = desired_pkts_per_int
1287 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289 *
1290 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292 * formula down to
1293 *
1294 * (170 * (size + 24)) / (size + 640) = ITR
1295 *
1296 * We first do some math on the packet size and then finally bitshift
1297 * by 8 after rounding up. We also have to account for PCIe link speed
1298 * difference as ITR scales based on this.
1299 */
1300 if (avg_wire_size <= 60) {
1301 /* Start at 250k ints/sec */
1302 avg_wire_size = 4096;
1303 } else if (avg_wire_size <= 380) {
1304 /* 250K ints/sec to 60K ints/sec */
1305 avg_wire_size *= 40;
1306 avg_wire_size += 1696;
1307 } else if (avg_wire_size <= 1084) {
1308 /* 60K ints/sec to 36K ints/sec */
1309 avg_wire_size *= 15;
1310 avg_wire_size += 11452;
1311 } else if (avg_wire_size <= 1980) {
1312 /* 36K ints/sec to 30K ints/sec */
1313 avg_wire_size *= 5;
1314 avg_wire_size += 22420;
1315 } else {
1316 /* plateau at a limit of 30K ints/sec */
1317 avg_wire_size = 32256;
1318 }
1319
1320 /* If we are in low latency mode halve our delay which doubles the
1321 * rate to somewhere between 100K to 16K ints/sec
1322 */
1323 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324 avg_wire_size /= 2;
1325
1326 /* Resultant value is 256 times larger than it needs to be. This
1327 * gives us room to adjust the value as needed to either increase
1328 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329 *
1330 * Use addition as we have already recorded the new latency flag
1331 * for the ITR value.
1332 */
1333 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334 I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339 }
1340
1341clear_counts:
1342 /* write back value */
1343 rc->target_itr = itr;
1344
1345 /* next update should occur within next jiffy */
1346 rc->next_update = next_update + 1;
1347
1348 rc->total_bytes = 0;
1349 rc->total_packets = 0;
1350}
1351
1352static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353{
1354 return &rx_ring->rx_bi[idx];
1355}
1356
1357/**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
1364static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365 struct i40e_rx_buffer *old_buff)
1366{
1367 struct i40e_rx_buffer *new_buff;
1368 u16 nta = rx_ring->next_to_alloc;
1369
1370 new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372 /* update, and store next to alloc */
1373 nta++;
1374 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376 /* transfer page from old buffer to new buffer */
1377 new_buff->dma = old_buff->dma;
1378 new_buff->page = old_buff->page;
1379 new_buff->page_offset = old_buff->page_offset;
1380 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1381
1382 /* clear contents of buffer_info */
1383 old_buff->page = NULL;
1384}
1385
1386/**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
1398void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399 u64 qword1)
1400{
1401 u8 id;
1402
1403 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1404
1405 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407}
1408
1409/**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
1415int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416{
1417 struct device *dev = tx_ring->dev;
1418 int bi_size;
1419
1420 if (!dev)
1421 return -ENOMEM;
1422
1423 /* warn if we are about to overwrite the pointer */
1424 WARN_ON(tx_ring->tx_bi);
1425 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427 if (!tx_ring->tx_bi)
1428 goto err;
1429
1430 u64_stats_init(&tx_ring->syncp);
1431
1432 /* round up to nearest 4K */
1433 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434 /* add u32 for head writeback, align after this takes care of
1435 * guaranteeing this is at least one cache line in size
1436 */
1437 tx_ring->size += sizeof(u32);
1438 tx_ring->size = ALIGN(tx_ring->size, 4096);
1439 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440 &tx_ring->dma, GFP_KERNEL);
1441 if (!tx_ring->desc) {
1442 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443 tx_ring->size);
1444 goto err;
1445 }
1446
1447 tx_ring->next_to_use = 0;
1448 tx_ring->next_to_clean = 0;
1449 tx_ring->tx_stats.prev_pkt_ctr = -1;
1450 return 0;
1451
1452err:
1453 kfree(tx_ring->tx_bi);
1454 tx_ring->tx_bi = NULL;
1455 return -ENOMEM;
1456}
1457
1458static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459{
1460 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461}
1462
1463/**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
1467void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468{
1469 u16 i;
1470
1471 /* ring already cleared, nothing to do */
1472 if (!rx_ring->rx_bi)
1473 return;
1474
1475 if (rx_ring->xsk_pool) {
1476 i40e_xsk_clean_rx_ring(rx_ring);
1477 goto skip_free;
1478 }
1479
1480 /* Free all the Rx ring sk_buffs */
1481 for (i = 0; i < rx_ring->count; i++) {
1482 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
1484 if (!rx_bi->page)
1485 continue;
1486
1487 /* Invalidate cache lines that may have been written to by
1488 * device so that we avoid corrupting memory.
1489 */
1490 dma_sync_single_range_for_cpu(rx_ring->dev,
1491 rx_bi->dma,
1492 rx_bi->page_offset,
1493 rx_ring->rx_buf_len,
1494 DMA_FROM_DEVICE);
1495
1496 /* free resources associated with mapping */
1497 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498 i40e_rx_pg_size(rx_ring),
1499 DMA_FROM_DEVICE,
1500 I40E_RX_DMA_ATTR);
1501
1502 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504 rx_bi->page = NULL;
1505 rx_bi->page_offset = 0;
1506 }
1507
1508skip_free:
1509 if (rx_ring->xsk_pool)
1510 i40e_clear_rx_bi_zc(rx_ring);
1511 else
1512 i40e_clear_rx_bi(rx_ring);
1513
1514 /* Zero out the descriptor ring */
1515 memset(rx_ring->desc, 0, rx_ring->size);
1516
1517 rx_ring->next_to_alloc = 0;
1518 rx_ring->next_to_clean = 0;
1519 rx_ring->next_to_process = 0;
1520 rx_ring->next_to_use = 0;
1521}
1522
1523/**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
1529void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530{
1531 i40e_clean_rx_ring(rx_ring);
1532 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534 rx_ring->xdp_prog = NULL;
1535 kfree(rx_ring->rx_bi);
1536 rx_ring->rx_bi = NULL;
1537
1538 if (rx_ring->desc) {
1539 dma_free_coherent(rx_ring->dev, rx_ring->size,
1540 rx_ring->desc, rx_ring->dma);
1541 rx_ring->desc = NULL;
1542 }
1543}
1544
1545/**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
1551int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552{
1553 struct device *dev = rx_ring->dev;
1554
1555 u64_stats_init(&rx_ring->syncp);
1556
1557 /* Round up to nearest 4K */
1558 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559 rx_ring->size = ALIGN(rx_ring->size, 4096);
1560 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561 &rx_ring->dma, GFP_KERNEL);
1562
1563 if (!rx_ring->desc) {
1564 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565 rx_ring->size);
1566 return -ENOMEM;
1567 }
1568
1569 rx_ring->next_to_alloc = 0;
1570 rx_ring->next_to_clean = 0;
1571 rx_ring->next_to_process = 0;
1572 rx_ring->next_to_use = 0;
1573
1574 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1575
1576 rx_ring->rx_bi =
1577 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578 if (!rx_ring->rx_bi)
1579 return -ENOMEM;
1580
1581 return 0;
1582}
1583
1584/**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
1589void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590{
1591 rx_ring->next_to_use = val;
1592
1593 /* update next to alloc since we have filled the ring */
1594 rx_ring->next_to_alloc = val;
1595
1596 /* Force memory writes to complete before letting h/w
1597 * know there are new descriptors to fetch. (Only
1598 * applicable for weak-ordered memory model archs,
1599 * such as IA-64).
1600 */
1601 wmb();
1602 writel(val, rx_ring->tail);
1603}
1604
1605#if (PAGE_SIZE >= 8192)
1606static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607 unsigned int size)
1608{
1609 unsigned int truesize;
1610
1611 truesize = rx_ring->rx_offset ?
1612 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614 SKB_DATA_ALIGN(size);
1615 return truesize;
1616}
1617#endif
1618
1619/**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
1627static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628 struct i40e_rx_buffer *bi)
1629{
1630 struct page *page = bi->page;
1631 dma_addr_t dma;
1632
1633 /* since we are recycling buffers we should seldom need to alloc */
1634 if (likely(page)) {
1635 rx_ring->rx_stats.page_reuse_count++;
1636 return true;
1637 }
1638
1639 /* alloc new page for storage */
1640 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641 if (unlikely(!page)) {
1642 rx_ring->rx_stats.alloc_page_failed++;
1643 return false;
1644 }
1645
1646 rx_ring->rx_stats.page_alloc_count++;
1647
1648 /* map page for use */
1649 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650 i40e_rx_pg_size(rx_ring),
1651 DMA_FROM_DEVICE,
1652 I40E_RX_DMA_ATTR);
1653
1654 /* if mapping failed free memory back to system since
1655 * there isn't much point in holding memory we can't use
1656 */
1657 if (dma_mapping_error(rx_ring->dev, dma)) {
1658 __free_pages(page, i40e_rx_pg_order(rx_ring));
1659 rx_ring->rx_stats.alloc_page_failed++;
1660 return false;
1661 }
1662
1663 bi->dma = dma;
1664 bi->page = page;
1665 bi->page_offset = rx_ring->rx_offset;
1666 page_ref_add(page, USHRT_MAX - 1);
1667 bi->pagecnt_bias = USHRT_MAX;
1668
1669 return true;
1670}
1671
1672/**
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
1679bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680{
1681 u16 ntu = rx_ring->next_to_use;
1682 union i40e_rx_desc *rx_desc;
1683 struct i40e_rx_buffer *bi;
1684
1685 /* do nothing if no valid netdev defined */
1686 if (!rx_ring->netdev || !cleaned_count)
1687 return false;
1688
1689 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690 bi = i40e_rx_bi(rx_ring, ntu);
1691
1692 do {
1693 if (!i40e_alloc_mapped_page(rx_ring, bi))
1694 goto no_buffers;
1695
1696 /* sync the buffer for use by the device */
1697 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698 bi->page_offset,
1699 rx_ring->rx_buf_len,
1700 DMA_FROM_DEVICE);
1701
1702 /* Refresh the desc even if buffer_addrs didn't change
1703 * because each write-back erases this info.
1704 */
1705 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707 rx_desc++;
1708 bi++;
1709 ntu++;
1710 if (unlikely(ntu == rx_ring->count)) {
1711 rx_desc = I40E_RX_DESC(rx_ring, 0);
1712 bi = i40e_rx_bi(rx_ring, 0);
1713 ntu = 0;
1714 }
1715
1716 /* clear the status bits for the next_to_use descriptor */
1717 rx_desc->wb.qword1.status_error_len = 0;
1718
1719 cleaned_count--;
1720 } while (cleaned_count);
1721
1722 if (rx_ring->next_to_use != ntu)
1723 i40e_release_rx_desc(rx_ring, ntu);
1724
1725 return false;
1726
1727no_buffers:
1728 if (rx_ring->next_to_use != ntu)
1729 i40e_release_rx_desc(rx_ring, ntu);
1730
1731 /* make sure to come back via polling to try again after
1732 * allocation failure
1733 */
1734 return true;
1735}
1736
1737/**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1742 **/
1743static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744 struct sk_buff *skb,
1745 union i40e_rx_desc *rx_desc)
1746{
1747 struct libeth_rx_pt decoded;
1748 u32 rx_error, rx_status;
1749 bool ipv4, ipv6;
1750 u8 ptype;
1751 u64 qword;
1752
1753 skb->ip_summed = CHECKSUM_NONE;
1754
1755 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758 decoded = libie_rx_pt_parse(ptype);
1759 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760 return;
1761
1762 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765 /* did the hardware decode the packet and checksum? */
1766 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767 return;
1768
1769 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1771
1772 if (ipv4 &&
1773 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775 goto checksum_fail;
1776
1777 /* likely incorrect csum if alternate IP extension headers found */
1778 if (ipv6 &&
1779 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780 /* don't increment checksum err here, non-fatal err */
1781 return;
1782
1783 /* there was some L4 error, count error and punt packet to the stack */
1784 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785 goto checksum_fail;
1786
1787 /* handle packets that were not able to be checksummed due
1788 * to arrival speed, in this case the stack can compute
1789 * the csum.
1790 */
1791 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792 return;
1793
1794 /* If there is an outer header present that might contain a checksum
1795 * we need to bump the checksum level by 1 to reflect the fact that
1796 * we are indicating we validated the inner checksum.
1797 */
1798 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799 skb->csum_level = 1;
1800
1801 skb->ip_summed = CHECKSUM_UNNECESSARY;
1802 return;
1803
1804checksum_fail:
1805 vsi->back->hw_csum_rx_error++;
1806}
1807
1808/**
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
1815static inline void i40e_rx_hash(struct i40e_ring *ring,
1816 union i40e_rx_desc *rx_desc,
1817 struct sk_buff *skb,
1818 u8 rx_ptype)
1819{
1820 struct libeth_rx_pt decoded;
1821 u32 hash;
1822 const __le64 rss_mask =
1823 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826 decoded = libie_rx_pt_parse(rx_ptype);
1827 if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828 return;
1829
1830 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832 libeth_rx_pt_set_hash(skb, hash, decoded);
1833 }
1834}
1835
1836/**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
1846void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848{
1849 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1851 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854
1855 if (unlikely(tsynvalid))
1856 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
1860 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862 skb_record_rx_queue(skb, rx_ring->queue_index);
1863
1864 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866
1867 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868 le16_to_cpu(vlan_tag));
1869 }
1870
1871 /* modifies the skb - consumes the enet header */
1872 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873}
1874
1875/**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1880 *
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
1886static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887 union i40e_rx_desc *rx_desc)
1888
1889{
1890 /* ERR_MASK will only have valid bits if EOP set, and
1891 * what we are doing here is actually checking
1892 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893 * the error field
1894 */
1895 if (unlikely(i40e_test_staterr(rx_desc,
1896 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897 dev_kfree_skb_any(skb);
1898 return true;
1899 }
1900
1901 /* if eth_skb_pad returns an error the skb was freed */
1902 if (eth_skb_pad(skb))
1903 return true;
1904
1905 return false;
1906}
1907
1908/**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
1921static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922 struct i40e_rx_queue_stats *rx_stats)
1923{
1924 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925 struct page *page = rx_buffer->page;
1926
1927 /* Is any reuse possible? */
1928 if (!dev_page_is_reusable(page)) {
1929 rx_stats->page_waive_count++;
1930 return false;
1931 }
1932
1933#if (PAGE_SIZE < 8192)
1934 /* if we are only owner of page we can reuse it */
1935 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936 rx_stats->page_busy_count++;
1937 return false;
1938 }
1939#else
1940#define I40E_LAST_OFFSET \
1941 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943 rx_stats->page_busy_count++;
1944 return false;
1945 }
1946#endif
1947
1948 /* If we have drained the page fragment pool we need to update
1949 * the pagecnt_bias and page count so that we fully restock the
1950 * number of references the driver holds.
1951 */
1952 if (unlikely(pagecnt_bias == 1)) {
1953 page_ref_add(page, USHRT_MAX - 1);
1954 rx_buffer->pagecnt_bias = USHRT_MAX;
1955 }
1956
1957 return true;
1958}
1959
1960/**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
1965static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966 unsigned int truesize)
1967{
1968#if (PAGE_SIZE < 8192)
1969 rx_buffer->page_offset ^= truesize;
1970#else
1971 rx_buffer->page_offset += truesize;
1972#endif
1973}
1974
1975/**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
1983static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984 const unsigned int size)
1985{
1986 struct i40e_rx_buffer *rx_buffer;
1987
1988 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989 rx_buffer->page_count =
1990#if (PAGE_SIZE < 8192)
1991 page_count(rx_buffer->page);
1992#else
1993 0;
1994#endif
1995 prefetch_page_address(rx_buffer->page);
1996
1997 /* we are reusing so sync this buffer for CPU use */
1998 dma_sync_single_range_for_cpu(rx_ring->dev,
1999 rx_buffer->dma,
2000 rx_buffer->page_offset,
2001 size,
2002 DMA_FROM_DEVICE);
2003
2004 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2005 rx_buffer->pagecnt_bias--;
2006
2007 return rx_buffer;
2008}
2009
2010/**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer. It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
2018static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019 struct i40e_rx_buffer *rx_buffer)
2020{
2021 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022 /* hand second half of page back to the ring */
2023 i40e_reuse_rx_page(rx_ring, rx_buffer);
2024 } else {
2025 /* we are not reusing the buffer so unmap it */
2026 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027 i40e_rx_pg_size(rx_ring),
2028 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029 __page_frag_cache_drain(rx_buffer->page,
2030 rx_buffer->pagecnt_bias);
2031 /* clear contents of buffer_info */
2032 rx_buffer->page = NULL;
2033 }
2034}
2035
2036/**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
2042static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043 struct xdp_buff *xdp)
2044{
2045 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046 u32 next = rx_ring->next_to_clean, i = 0;
2047 struct i40e_rx_buffer *rx_buffer;
2048
2049 xdp->flags = 0;
2050
2051 while (1) {
2052 rx_buffer = i40e_rx_bi(rx_ring, next);
2053 if (++next == rx_ring->count)
2054 next = 0;
2055
2056 if (!rx_buffer->page)
2057 continue;
2058
2059 if (xdp_res != I40E_XDP_CONSUMED)
2060 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061 else if (i++ <= nr_frags)
2062 rx_buffer->pagecnt_bias++;
2063
2064 /* EOP buffer will be put in i40e_clean_rx_irq() */
2065 if (next == rx_ring->next_to_process)
2066 return;
2067
2068 i40e_put_rx_buffer(rx_ring, rx_buffer);
2069 }
2070}
2071
2072/**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb. It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
2080 */
2081static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2082 struct xdp_buff *xdp)
2083{
2084 unsigned int size = xdp->data_end - xdp->data;
2085 struct i40e_rx_buffer *rx_buffer;
2086 struct skb_shared_info *sinfo;
2087 unsigned int headlen;
2088 struct sk_buff *skb;
2089 u32 nr_frags = 0;
2090
2091 /* prefetch first cache line of first page */
2092 net_prefetch(xdp->data);
2093
2094 /* Note, we get here by enabling legacy-rx via:
2095 *
2096 * ethtool --set-priv-flags <dev> legacy-rx on
2097 *
2098 * In this mode, we currently get 0 extra XDP headroom as
2099 * opposed to having legacy-rx off, where we process XDP
2100 * packets going to stack via i40e_build_skb(). The latter
2101 * provides us currently with 192 bytes of headroom.
2102 *
2103 * For i40e_construct_skb() mode it means that the
2104 * xdp->data_meta will always point to xdp->data, since
2105 * the helper cannot expand the head. Should this ever
2106 * change in future for legacy-rx mode on, then lets also
2107 * add xdp->data_meta handling here.
2108 */
2109
2110 /* allocate a skb to store the frags */
2111 skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2112 if (unlikely(!skb))
2113 return NULL;
2114
2115 /* Determine available headroom for copy */
2116 headlen = size;
2117 if (headlen > I40E_RX_HDR_SIZE)
2118 headlen = eth_get_headlen(skb->dev, xdp->data,
2119 I40E_RX_HDR_SIZE);
2120
2121 /* align pull length to size of long to optimize memcpy performance */
2122 memcpy(__skb_put(skb, headlen), xdp->data,
2123 ALIGN(headlen, sizeof(long)));
2124
2125 if (unlikely(xdp_buff_has_frags(xdp))) {
2126 sinfo = xdp_get_shared_info_from_buff(xdp);
2127 nr_frags = sinfo->nr_frags;
2128 }
2129 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130 /* update all of the pointers */
2131 size -= headlen;
2132 if (size) {
2133 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134 dev_kfree_skb(skb);
2135 return NULL;
2136 }
2137 skb_add_rx_frag(skb, 0, rx_buffer->page,
2138 rx_buffer->page_offset + headlen,
2139 size, xdp->frame_sz);
2140 /* buffer is used by skb, update page_offset */
2141 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2142 } else {
2143 /* buffer is unused, reset bias back to rx_buffer */
2144 rx_buffer->pagecnt_bias++;
2145 }
2146
2147 if (unlikely(xdp_buff_has_frags(xdp))) {
2148 struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151 sizeof(skb_frag_t) * nr_frags);
2152
2153 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154 sinfo->xdp_frags_size,
2155 nr_frags * xdp->frame_sz,
2156 xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158 /* First buffer has already been processed, so bump ntc */
2159 if (++rx_ring->next_to_clean == rx_ring->count)
2160 rx_ring->next_to_clean = 0;
2161
2162 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163 }
2164
2165 return skb;
2166}
2167
2168/**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
2176static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2177 struct xdp_buff *xdp)
2178{
2179 unsigned int metasize = xdp->data - xdp->data_meta;
2180 struct skb_shared_info *sinfo;
2181 struct sk_buff *skb;
2182 u32 nr_frags;
2183
2184 /* Prefetch first cache line of first page. If xdp->data_meta
2185 * is unused, this points exactly as xdp->data, otherwise we
2186 * likely have a consumer accessing first few bytes of meta
2187 * data, and then actual data.
2188 */
2189 net_prefetch(xdp->data_meta);
2190
2191 if (unlikely(xdp_buff_has_frags(xdp))) {
2192 sinfo = xdp_get_shared_info_from_buff(xdp);
2193 nr_frags = sinfo->nr_frags;
2194 }
2195
2196 /* build an skb around the page buffer */
2197 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198 if (unlikely(!skb))
2199 return NULL;
2200
2201 /* update pointers within the skb to store the data */
2202 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203 __skb_put(skb, xdp->data_end - xdp->data);
2204 if (metasize)
2205 skb_metadata_set(skb, metasize);
2206
2207 if (unlikely(xdp_buff_has_frags(xdp))) {
2208 xdp_update_skb_shared_info(skb, nr_frags,
2209 sinfo->xdp_frags_size,
2210 nr_frags * xdp->frame_sz,
2211 xdp_buff_is_frag_pfmemalloc(xdp));
2212
2213 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 } else {
2215 struct i40e_rx_buffer *rx_buffer;
2216
2217 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218 /* buffer is used by skb, update page_offset */
2219 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220 }
2221
2222 return skb;
2223}
2224
2225/**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
2233bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234 union i40e_rx_desc *rx_desc)
2235{
2236 /* if we are the last buffer then there is nothing else to do */
2237#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239 return false;
2240
2241 rx_ring->rx_stats.non_eop_descs++;
2242
2243 return true;
2244}
2245
2246static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247 struct i40e_ring *xdp_ring);
2248
2249int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250{
2251 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253 if (unlikely(!xdpf))
2254 return I40E_XDP_CONSUMED;
2255
2256 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257}
2258
2259/**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
2265static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266{
2267 int err, result = I40E_XDP_PASS;
2268 struct i40e_ring *xdp_ring;
2269 u32 act;
2270
2271 if (!xdp_prog)
2272 goto xdp_out;
2273
2274 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276 act = bpf_prog_run_xdp(xdp_prog, xdp);
2277 switch (act) {
2278 case XDP_PASS:
2279 break;
2280 case XDP_TX:
2281 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283 if (result == I40E_XDP_CONSUMED)
2284 goto out_failure;
2285 break;
2286 case XDP_REDIRECT:
2287 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288 if (err)
2289 goto out_failure;
2290 result = I40E_XDP_REDIR;
2291 break;
2292 default:
2293 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294 fallthrough;
2295 case XDP_ABORTED:
2296out_failure:
2297 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298 fallthrough; /* handle aborts by dropping packet */
2299 case XDP_DROP:
2300 result = I40E_XDP_CONSUMED;
2301 break;
2302 }
2303xdp_out:
2304 return result;
2305}
2306
2307/**
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
2313void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314{
2315 /* Force memory writes to complete before letting h/w
2316 * know there are new descriptors to fetch.
2317 */
2318 wmb();
2319 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320}
2321
2322/**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
2330void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331 unsigned int total_rx_bytes,
2332 unsigned int total_rx_packets)
2333{
2334 u64_stats_update_begin(&rx_ring->syncp);
2335 rx_ring->stats.packets += total_rx_packets;
2336 rx_ring->stats.bytes += total_rx_bytes;
2337 u64_stats_update_end(&rx_ring->syncp);
2338 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340}
2341
2342/**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
2351void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352{
2353 if (xdp_res & I40E_XDP_REDIR)
2354 xdp_do_flush();
2355
2356 if (xdp_res & I40E_XDP_TX) {
2357 struct i40e_ring *xdp_ring =
2358 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360 i40e_xdp_ring_update_tail(xdp_ring);
2361 }
2362}
2363
2364/**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
2368static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369{
2370 u32 ntp = rx_ring->next_to_process + 1;
2371
2372 ntp = (ntp < rx_ring->count) ? ntp : 0;
2373 rx_ring->next_to_process = ntp;
2374 prefetch(I40E_RX_DESC(rx_ring, ntp));
2375}
2376
2377/**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
2384static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385 struct i40e_rx_buffer *rx_buffer, u32 size)
2386{
2387 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389 if (!xdp_buff_has_frags(xdp)) {
2390 sinfo->nr_frags = 0;
2391 sinfo->xdp_frags_size = 0;
2392 xdp_buff_set_frags_flag(xdp);
2393 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394 /* Overflowing packet: All frags need to be dropped */
2395 return -ENOMEM;
2396 }
2397
2398 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399 rx_buffer->page_offset, size);
2400
2401 sinfo->xdp_frags_size += size;
2402
2403 if (page_is_pfmemalloc(rx_buffer->page))
2404 xdp_buff_set_frag_pfmemalloc(xdp);
2405 *nr_frags = sinfo->nr_frags;
2406
2407 return 0;
2408}
2409
2410/**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
2416static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417 struct xdp_buff *xdp,
2418 struct i40e_rx_buffer *rx_buffer)
2419{
2420 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421 i40e_put_rx_buffer(rx_ring, rx_buffer);
2422 rx_ring->next_to_clean = rx_ring->next_to_process;
2423 xdp->data = NULL;
2424}
2425
2426/**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing. The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
2439static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440 unsigned int *rx_cleaned)
2441{
2442 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444 u16 clean_threshold = rx_ring->count / 2;
2445 unsigned int offset = rx_ring->rx_offset;
2446 struct xdp_buff *xdp = &rx_ring->xdp;
2447 unsigned int xdp_xmit = 0;
2448 struct bpf_prog *xdp_prog;
2449 bool failure = false;
2450 int xdp_res = 0;
2451
2452 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453
2454 while (likely(total_rx_packets < (unsigned int)budget)) {
2455 u16 ntp = rx_ring->next_to_process;
2456 struct i40e_rx_buffer *rx_buffer;
2457 union i40e_rx_desc *rx_desc;
2458 struct sk_buff *skb;
2459 unsigned int size;
2460 u32 nfrags = 0;
2461 bool neop;
2462 u64 qword;
2463
2464 /* return some buffers to hardware, one at a time is too slow */
2465 if (cleaned_count >= clean_threshold) {
2466 failure = failure ||
2467 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 cleaned_count = 0;
2469 }
2470
2471 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473 /* status_error_len will always be zero for unused descriptors
2474 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 * which is always zero because packet split isn't used, if the
2476 * hardware wrote DD then the length will be non-zero
2477 */
2478 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480 /* This memory barrier is needed to keep us from reading
2481 * any other fields out of the rx_desc until we have
2482 * verified the descriptor has been written back.
2483 */
2484 dma_rmb();
2485
2486 if (i40e_rx_is_programming_status(qword)) {
2487 i40e_clean_programming_status(rx_ring,
2488 rx_desc->raw.qword[0],
2489 qword);
2490 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491 i40e_inc_ntp(rx_ring);
2492 i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 /* Update ntc and bump cleaned count if not in the
2494 * middle of mb packet.
2495 */
2496 if (rx_ring->next_to_clean == ntp) {
2497 rx_ring->next_to_clean =
2498 rx_ring->next_to_process;
2499 cleaned_count++;
2500 }
2501 continue;
2502 }
2503
2504 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505 if (!size)
2506 break;
2507
2508 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509 /* retrieve a buffer from the ring */
2510 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512 neop = i40e_is_non_eop(rx_ring, rx_desc);
2513 i40e_inc_ntp(rx_ring);
2514
2515 if (!xdp->data) {
2516 unsigned char *hard_start;
2517
2518 hard_start = page_address(rx_buffer->page) +
2519 rx_buffer->page_offset - offset;
2520 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521#if (PAGE_SIZE > 4096)
2522 /* At larger PAGE_SIZE, frame_sz depend on len size */
2523 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524#endif
2525 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526 !neop) {
2527 /* Overflowing packet: Drop all frags on EOP */
2528 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529 break;
2530 }
2531
2532 if (neop)
2533 continue;
2534
2535 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536
2537 if (xdp_res) {
2538 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540 if (unlikely(xdp_buff_has_frags(xdp))) {
2541 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542 size = xdp_get_buff_len(xdp);
2543 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545 } else {
2546 rx_buffer->pagecnt_bias++;
2547 }
2548 total_rx_bytes += size;
2549 } else {
2550 if (ring_uses_build_skb(rx_ring))
2551 skb = i40e_build_skb(rx_ring, xdp);
2552 else
2553 skb = i40e_construct_skb(rx_ring, xdp);
2554
2555 /* drop if we failed to retrieve a buffer */
2556 if (!skb) {
2557 rx_ring->rx_stats.alloc_buff_failed++;
2558 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559 break;
2560 }
2561
2562 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563 goto process_next;
2564
2565 /* probably a little skewed due to removing CRC */
2566 total_rx_bytes += skb->len;
2567
2568 /* populate checksum, VLAN, and protocol */
2569 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570
2571 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573 }
2574
2575 /* update budget accounting */
2576 total_rx_packets++;
2577process_next:
2578 cleaned_count += nfrags + 1;
2579 i40e_put_rx_buffer(rx_ring, rx_buffer);
2580 rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582 xdp->data = NULL;
2583 }
2584
2585 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586
2587 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588
2589 *rx_cleaned = total_rx_packets;
2590
2591 /* guarantee a trip back through this routine if there was a failure */
2592 return failure ? budget : (int)total_rx_packets;
2593}
2594
2595/**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
2609static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610 bool force_swint)
2611{
2612 u32 val;
2613
2614 /* We don't bother with setting the CLEARPBA bit as the data sheet
2615 * points out doing so is "meaningless since it was already
2616 * auto-cleared". The auto-clearing happens when the interrupt is
2617 * asserted.
2618 *
2619 * Hardware errata 28 for also indicates that writing to a
2620 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621 * an event in the PBA anyway so we need to rely on the automask
2622 * to hold pending events for us until the interrupt is re-enabled
2623 *
2624 * We have to shift the given value as it is reported in microseconds
2625 * and the register value is recorded in 2 microsecond units.
2626 */
2627 interval >>= 1;
2628
2629 /* 1. Enable vector interrupt
2630 * 2. Update the interval for the specified ITR index
2631 * (I40E_ITR_NONE in the register is used to indicate that
2632 * no interval update is requested)
2633 */
2634 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638 /* 3. Enforce software interrupt trigger if requested
2639 * (These software interrupts rate is limited by ITR2 that is
2640 * set to 20K interrupts per second)
2641 */
2642 if (force_swint)
2643 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646 I40E_SW_ITR);
2647
2648 return val;
2649}
2650
2651/* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658#define ITR_COUNTDOWN_START 3
2659
2660/**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
2666static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667 struct i40e_q_vector *q_vector)
2668{
2669 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670 struct i40e_hw *hw = &vsi->back->hw;
2671 u16 interval = 0;
2672 u32 itr_val;
2673
2674 /* If we don't have MSIX, then we only need to re-enable icr0 */
2675 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676 i40e_irq_dynamic_enable_icr0(vsi->back);
2677 return;
2678 }
2679
2680 /* These will do nothing if dynamic updates are not enabled */
2681 i40e_update_itr(q_vector, &q_vector->tx);
2682 i40e_update_itr(q_vector, &q_vector->rx);
2683
2684 /* This block of logic allows us to get away with only updating
2685 * one ITR value with each interrupt. The idea is to perform a
2686 * pseudo-lazy update with the following criteria.
2687 *
2688 * 1. Rx is given higher priority than Tx if both are in same state
2689 * 2. If we must reduce an ITR that is given highest priority.
2690 * 3. We then give priority to increasing ITR based on amount.
2691 */
2692 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693 /* Rx ITR needs to be reduced, this is highest priority */
2694 itr_idx = I40E_RX_ITR;
2695 interval = q_vector->rx.target_itr;
2696 q_vector->rx.current_itr = q_vector->rx.target_itr;
2697 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701 /* Tx ITR needs to be reduced, this is second priority
2702 * Tx ITR needs to be increased more than Rx, fourth priority
2703 */
2704 itr_idx = I40E_TX_ITR;
2705 interval = q_vector->tx.target_itr;
2706 q_vector->tx.current_itr = q_vector->tx.target_itr;
2707 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709 /* Rx ITR needs to be increased, third priority */
2710 itr_idx = I40E_RX_ITR;
2711 interval = q_vector->rx.target_itr;
2712 q_vector->rx.current_itr = q_vector->rx.target_itr;
2713 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714 } else {
2715 /* No ITR update, lowest priority */
2716 if (q_vector->itr_countdown)
2717 q_vector->itr_countdown--;
2718 }
2719
2720 /* Do not update interrupt control register if VSI is down */
2721 if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722 return;
2723
2724 /* Update ITR interval if necessary and enforce software interrupt
2725 * if we are exiting busy poll.
2726 */
2727 if (q_vector->in_busy_poll) {
2728 itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729 q_vector->in_busy_poll = false;
2730 } else {
2731 itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732 }
2733 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747 struct i40e_q_vector *q_vector =
2748 container_of(napi, struct i40e_q_vector, napi);
2749 struct i40e_vsi *vsi = q_vector->vsi;
2750 struct i40e_ring *ring;
2751 bool tx_clean_complete = true;
2752 bool rx_clean_complete = true;
2753 unsigned int tx_cleaned = 0;
2754 unsigned int rx_cleaned = 0;
2755 bool clean_complete = true;
2756 bool arm_wb = false;
2757 int budget_per_ring;
2758 int work_done = 0;
2759
2760 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 napi_complete(napi);
2762 return 0;
2763 }
2764
2765 /* Since the actual Tx work is minimal, we can give the Tx a larger
2766 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 */
2768 i40e_for_each_ring(ring, q_vector->tx) {
2769 bool wd = ring->xsk_pool ?
2770 i40e_clean_xdp_tx_irq(vsi, ring) :
2771 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773 if (!wd) {
2774 clean_complete = tx_clean_complete = false;
2775 continue;
2776 }
2777 arm_wb |= ring->arm_wb;
2778 ring->arm_wb = false;
2779 }
2780
2781 /* Handle case where we are called by netpoll with a budget of 0 */
2782 if (budget <= 0)
2783 goto tx_only;
2784
2785 /* normally we have 1 Rx ring per q_vector */
2786 if (unlikely(q_vector->num_ringpairs > 1))
2787 /* We attempt to distribute budget to each Rx queue fairly, but
2788 * don't allow the budget to go below 1 because that would exit
2789 * polling early.
2790 */
2791 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 else
2793 /* Max of 1 Rx ring in this q_vector so give it the budget */
2794 budget_per_ring = budget;
2795
2796 i40e_for_each_ring(ring, q_vector->rx) {
2797 int cleaned = ring->xsk_pool ?
2798 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801 work_done += cleaned;
2802 /* if we clean as many as budgeted, we must not be done */
2803 if (cleaned >= budget_per_ring)
2804 clean_complete = rx_clean_complete = false;
2805 }
2806
2807 if (!i40e_enabled_xdp_vsi(vsi))
2808 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811 /* If work not completed, return budget and polling will return */
2812 if (!clean_complete) {
2813 int cpu_id = smp_processor_id();
2814
2815 /* It is possible that the interrupt affinity has changed but,
2816 * if the cpu is pegged at 100%, polling will never exit while
2817 * traffic continues and the interrupt will be stuck on this
2818 * cpu. We check to make sure affinity is correct before we
2819 * continue to poll, otherwise we must stop polling so the
2820 * interrupt can move to the correct cpu.
2821 */
2822 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 /* Tell napi that we are done polling */
2824 napi_complete_done(napi, work_done);
2825
2826 /* Force an interrupt */
2827 i40e_force_wb(vsi, q_vector);
2828
2829 /* Return budget-1 so that polling stops */
2830 return budget - 1;
2831 }
2832tx_only:
2833 if (arm_wb) {
2834 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 i40e_enable_wb_on_itr(vsi, q_vector);
2836 }
2837 return budget;
2838 }
2839
2840 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 q_vector->arm_wb_state = false;
2842
2843 /* Exit the polling mode, but don't re-enable interrupts if stack might
2844 * poll us due to busy-polling
2845 */
2846 if (likely(napi_complete_done(napi, work_done)))
2847 i40e_update_enable_itr(vsi, q_vector);
2848 else
2849 q_vector->in_busy_poll = true;
2850
2851 return min(work_done, budget - 1);
2852}
2853
2854/**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring: ring to add programming descriptor to
2857 * @skb: send buffer
2858 * @tx_flags: send tx flags
2859 **/
2860static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861 u32 tx_flags)
2862{
2863 struct i40e_filter_program_desc *fdir_desc;
2864 struct i40e_pf *pf = tx_ring->vsi->back;
2865 union {
2866 unsigned char *network;
2867 struct iphdr *ipv4;
2868 struct ipv6hdr *ipv6;
2869 } hdr;
2870 struct tcphdr *th;
2871 unsigned int hlen;
2872 u32 flex_ptype, dtype_cmd;
2873 int l4_proto;
2874 u16 i;
2875
2876 /* make sure ATR is enabled */
2877 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878 return;
2879
2880 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881 return;
2882
2883 /* if sampling is disabled do nothing */
2884 if (!tx_ring->atr_sample_rate)
2885 return;
2886
2887 /* Currently only IPv4/IPv6 with TCP is supported */
2888 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889 return;
2890
2891 /* snag network header to get L4 type and address */
2892 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893 skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895 /* Note: tx_flags gets modified to reflect inner protocols in
2896 * tx_enable_csum function if encap is enabled.
2897 */
2898 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899 /* access ihl as u8 to avoid unaligned access on ia64 */
2900 hlen = (hdr.network[0] & 0x0F) << 2;
2901 l4_proto = hdr.ipv4->protocol;
2902 } else {
2903 /* find the start of the innermost ipv6 header */
2904 unsigned int inner_hlen = hdr.network - skb->data;
2905 unsigned int h_offset = inner_hlen;
2906
2907 /* this function updates h_offset to the end of the header */
2908 l4_proto =
2909 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910 /* hlen will contain our best estimate of the tcp header */
2911 hlen = h_offset - inner_hlen;
2912 }
2913
2914 if (l4_proto != IPPROTO_TCP)
2915 return;
2916
2917 th = (struct tcphdr *)(hdr.network + hlen);
2918
2919 /* Due to lack of space, no more new filters can be programmed */
2920 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921 return;
2922 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923 /* HW ATR eviction will take care of removing filters on FIN
2924 * and RST packets.
2925 */
2926 if (th->fin || th->rst)
2927 return;
2928 }
2929
2930 tx_ring->atr_count++;
2931
2932 /* sample on all syn/fin/rst packets or once every atr sample rate */
2933 if (!th->fin &&
2934 !th->syn &&
2935 !th->rst &&
2936 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937 return;
2938
2939 tx_ring->atr_count = 0;
2940
2941 /* grab the next descriptor */
2942 i = tx_ring->next_to_use;
2943 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945 i++;
2946 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949 tx_ring->queue_index);
2950 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960 dtype_cmd |= (th->fin || th->rst) ?
2961 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974 dtype_cmd |=
2975 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2977 else
2978 dtype_cmd |=
2979 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2981
2982 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986 fdir_desc->rsvd = cpu_to_le32(0);
2987 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988 fdir_desc->fd_id = cpu_to_le32(0);
2989}
2990
2991/**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb: send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags: the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise returns 0 to indicate the flags has been set properly.
3002 **/
3003static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004 struct i40e_ring *tx_ring,
3005 u32 *flags)
3006{
3007 __be16 protocol = skb->protocol;
3008 u32 tx_flags = 0;
3009
3010 if (protocol == htons(ETH_P_8021Q) &&
3011 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012 /* When HW VLAN acceleration is turned off by the user the
3013 * stack sets the protocol to 8021q so that the driver
3014 * can take any steps required to support the SW only
3015 * VLAN handling. In our case the driver doesn't need
3016 * to take any further steps so just set the protocol
3017 * to the encapsulated ethertype.
3018 */
3019 skb->protocol = vlan_get_protocol(skb);
3020 goto out;
3021 }
3022
3023 /* if we have a HW VLAN tag being added, default to the HW one */
3024 if (skb_vlan_tag_present(skb)) {
3025 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027 /* else if it is a SW VLAN, check the next protocol and store the tag */
3028 } else if (protocol == htons(ETH_P_8021Q)) {
3029 struct vlan_hdr *vhdr, _vhdr;
3030
3031 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032 if (!vhdr)
3033 return -EINVAL;
3034
3035 protocol = vhdr->h_vlan_encapsulated_proto;
3036 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038 }
3039
3040 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041 goto out;
3042
3043 /* Insert 802.1p priority into VLAN header */
3044 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045 (skb->priority != TC_PRIO_CONTROL)) {
3046 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047 tx_flags |= (skb->priority & 0x7) <<
3048 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050 struct vlan_ethhdr *vhdr;
3051 int rc;
3052
3053 rc = skb_cow_head(skb, 0);
3054 if (rc < 0)
3055 return rc;
3056 vhdr = skb_vlan_eth_hdr(skb);
3057 vhdr->h_vlan_TCI = htons(tx_flags >>
3058 I40E_TX_FLAGS_VLAN_SHIFT);
3059 } else {
3060 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061 }
3062 }
3063
3064out:
3065 *flags = tx_flags;
3066 return 0;
3067}
3068
3069/**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first: pointer to first Tx buffer for xmit
3072 * @hdr_len: ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
3077static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078 u64 *cd_type_cmd_tso_mss)
3079{
3080 struct sk_buff *skb = first->skb;
3081 u64 cd_cmd, cd_tso_len, cd_mss;
3082 __be16 protocol;
3083 union {
3084 struct iphdr *v4;
3085 struct ipv6hdr *v6;
3086 unsigned char *hdr;
3087 } ip;
3088 union {
3089 struct tcphdr *tcp;
3090 struct udphdr *udp;
3091 unsigned char *hdr;
3092 } l4;
3093 u32 paylen, l4_offset;
3094 u16 gso_size;
3095 int err;
3096
3097 if (skb->ip_summed != CHECKSUM_PARTIAL)
3098 return 0;
3099
3100 if (!skb_is_gso(skb))
3101 return 0;
3102
3103 err = skb_cow_head(skb, 0);
3104 if (err < 0)
3105 return err;
3106
3107 protocol = vlan_get_protocol(skb);
3108
3109 if (eth_p_mpls(protocol))
3110 ip.hdr = skb_inner_network_header(skb);
3111 else
3112 ip.hdr = skb_network_header(skb);
3113 l4.hdr = skb_checksum_start(skb);
3114
3115 /* initialize outer IP header fields */
3116 if (ip.v4->version == 4) {
3117 ip.v4->tot_len = 0;
3118 ip.v4->check = 0;
3119
3120 first->tx_flags |= I40E_TX_FLAGS_TSO;
3121 } else {
3122 ip.v6->payload_len = 0;
3123 first->tx_flags |= I40E_TX_FLAGS_TSO;
3124 }
3125
3126 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127 SKB_GSO_GRE_CSUM |
3128 SKB_GSO_IPXIP4 |
3129 SKB_GSO_IPXIP6 |
3130 SKB_GSO_UDP_TUNNEL |
3131 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134 l4.udp->len = 0;
3135
3136 /* determine offset of outer transport header */
3137 l4_offset = l4.hdr - skb->data;
3138
3139 /* remove payload length from outer checksum */
3140 paylen = skb->len - l4_offset;
3141 csum_replace_by_diff(&l4.udp->check,
3142 (__force __wsum)htonl(paylen));
3143 }
3144
3145 /* reset pointers to inner headers */
3146 ip.hdr = skb_inner_network_header(skb);
3147 l4.hdr = skb_inner_transport_header(skb);
3148
3149 /* initialize inner IP header fields */
3150 if (ip.v4->version == 4) {
3151 ip.v4->tot_len = 0;
3152 ip.v4->check = 0;
3153 } else {
3154 ip.v6->payload_len = 0;
3155 }
3156 }
3157
3158 /* determine offset of inner transport header */
3159 l4_offset = l4.hdr - skb->data;
3160
3161 /* remove payload length from inner checksum */
3162 paylen = skb->len - l4_offset;
3163
3164 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166 /* compute length of segmentation header */
3167 *hdr_len = sizeof(*l4.udp) + l4_offset;
3168 } else {
3169 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170 /* compute length of segmentation header */
3171 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172 }
3173
3174 /* pull values out of skb_shinfo */
3175 gso_size = skb_shinfo(skb)->gso_size;
3176
3177 /* update GSO size and bytecount with header size */
3178 first->gso_segs = skb_shinfo(skb)->gso_segs;
3179 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181 /* find the field values */
3182 cd_cmd = I40E_TX_CTX_DESC_TSO;
3183 cd_tso_len = skb->len - *hdr_len;
3184 cd_mss = gso_size;
3185 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188 return 1;
3189}
3190
3191/**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring: ptr to the ring to send
3194 * @skb: ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
3200static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202{
3203 struct i40e_pf *pf;
3204
3205 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206 return 0;
3207
3208 /* Tx timestamps cannot be sampled when doing TSO */
3209 if (tx_flags & I40E_TX_FLAGS_TSO)
3210 return 0;
3211
3212 /* only timestamp the outbound packet if the user has requested it and
3213 * we are not already transmitting a packet to be timestamped
3214 */
3215 pf = i40e_netdev_to_pf(tx_ring->netdev);
3216 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217 return 0;
3218
3219 if (pf->ptp_tx &&
3220 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222 pf->ptp_tx_start = jiffies;
3223 pf->ptp_tx_skb = skb_get(skb);
3224 } else {
3225 pf->tx_hwtstamp_skipped++;
3226 return 0;
3227 }
3228
3229 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230 I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232 return 1;
3233}
3234
3235/**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
3244static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245 u32 *td_cmd, u32 *td_offset,
3246 struct i40e_ring *tx_ring,
3247 u32 *cd_tunneling)
3248{
3249 union {
3250 struct iphdr *v4;
3251 struct ipv6hdr *v6;
3252 unsigned char *hdr;
3253 } ip;
3254 union {
3255 struct tcphdr *tcp;
3256 struct udphdr *udp;
3257 unsigned char *hdr;
3258 } l4;
3259 unsigned char *exthdr;
3260 u32 offset, cmd = 0;
3261 __be16 frag_off;
3262 __be16 protocol;
3263 u8 l4_proto = 0;
3264
3265 if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 return 0;
3267
3268 protocol = vlan_get_protocol(skb);
3269
3270 if (eth_p_mpls(protocol)) {
3271 ip.hdr = skb_inner_network_header(skb);
3272 l4.hdr = skb_checksum_start(skb);
3273 } else {
3274 ip.hdr = skb_network_header(skb);
3275 l4.hdr = skb_transport_header(skb);
3276 }
3277
3278 /* set the tx_flags to indicate the IP protocol type. this is
3279 * required so that checksum header computation below is accurate.
3280 */
3281 if (ip.v4->version == 4)
3282 *tx_flags |= I40E_TX_FLAGS_IPV4;
3283 else
3284 *tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286 /* compute outer L2 header size */
3287 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289 if (skb->encapsulation) {
3290 u32 tunnel = 0;
3291 /* define outer network header type */
3292 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294 I40E_TX_CTX_EXT_IP_IPV4 :
3295 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297 l4_proto = ip.v4->protocol;
3298 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299 int ret;
3300
3301 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303 exthdr = ip.hdr + sizeof(*ip.v6);
3304 l4_proto = ip.v6->nexthdr;
3305 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306 &l4_proto, &frag_off);
3307 if (ret < 0)
3308 return -1;
3309 }
3310
3311 /* define outer transport */
3312 switch (l4_proto) {
3313 case IPPROTO_UDP:
3314 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316 break;
3317 case IPPROTO_GRE:
3318 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320 break;
3321 case IPPROTO_IPIP:
3322 case IPPROTO_IPV6:
3323 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324 l4.hdr = skb_inner_network_header(skb);
3325 break;
3326 default:
3327 if (*tx_flags & I40E_TX_FLAGS_TSO)
3328 return -1;
3329
3330 skb_checksum_help(skb);
3331 return 0;
3332 }
3333
3334 /* compute outer L3 header size */
3335 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338 /* switch IP header pointer from outer to inner header */
3339 ip.hdr = skb_inner_network_header(skb);
3340
3341 /* compute tunnel header size */
3342 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345 /* indicate if we need to offload outer UDP header */
3346 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351 /* record tunnel offload values */
3352 *cd_tunneling |= tunnel;
3353
3354 /* switch L4 header pointer from outer to inner */
3355 l4.hdr = skb_inner_transport_header(skb);
3356 l4_proto = 0;
3357
3358 /* reset type as we transition from outer to inner headers */
3359 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360 if (ip.v4->version == 4)
3361 *tx_flags |= I40E_TX_FLAGS_IPV4;
3362 if (ip.v6->version == 6)
3363 *tx_flags |= I40E_TX_FLAGS_IPV6;
3364 }
3365
3366 /* Enable IP checksum offloads */
3367 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368 l4_proto = ip.v4->protocol;
3369 /* the stack computes the IP header already, the only time we
3370 * need the hardware to recompute it is in the case of TSO.
3371 */
3372 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374 I40E_TX_DESC_CMD_IIPT_IPV4;
3375 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378 exthdr = ip.hdr + sizeof(*ip.v6);
3379 l4_proto = ip.v6->nexthdr;
3380 if (l4.hdr != exthdr)
3381 ipv6_skip_exthdr(skb, exthdr - skb->data,
3382 &l4_proto, &frag_off);
3383 }
3384
3385 /* compute inner L3 header size */
3386 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388 /* Enable L4 checksum offloads */
3389 switch (l4_proto) {
3390 case IPPROTO_TCP:
3391 /* enable checksum offloads */
3392 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394 break;
3395 case IPPROTO_SCTP:
3396 /* enable SCTP checksum offload */
3397 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398 offset |= (sizeof(struct sctphdr) >> 2) <<
3399 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400 break;
3401 case IPPROTO_UDP:
3402 /* enable UDP checksum offload */
3403 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404 offset |= (sizeof(struct udphdr) >> 2) <<
3405 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406 break;
3407 default:
3408 if (*tx_flags & I40E_TX_FLAGS_TSO)
3409 return -1;
3410 skb_checksum_help(skb);
3411 return 0;
3412 }
3413
3414 *td_cmd |= cmd;
3415 *td_offset |= offset;
3416
3417 return 1;
3418}
3419
3420/**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring: ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
3427static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428 const u64 cd_type_cmd_tso_mss,
3429 const u32 cd_tunneling, const u32 cd_l2tag2)
3430{
3431 struct i40e_tx_context_desc *context_desc;
3432 int i = tx_ring->next_to_use;
3433
3434 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435 !cd_tunneling && !cd_l2tag2)
3436 return;
3437
3438 /* grab the next descriptor */
3439 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441 i++;
3442 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444 /* cpu_to_le32 and assign to struct fields */
3445 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447 context_desc->rsvd = cpu_to_le16(0);
3448 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449}
3450
3451/**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size: the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
3458int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459{
3460 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461 /* Memory barrier before checking head and tail */
3462 smp_mb();
3463
3464 ++tx_ring->tx_stats.tx_stopped;
3465
3466 /* Check again in a case another CPU has just made room available. */
3467 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468 return -EBUSY;
3469
3470 /* A reprieve! - use start_queue because it doesn't call schedule */
3471 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472 ++tx_ring->tx_stats.restart_queue;
3473 return 0;
3474}
3475
3476/**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb: send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
3489bool __i40e_chk_linearize(struct sk_buff *skb)
3490{
3491 const skb_frag_t *frag, *stale;
3492 int nr_frags, sum;
3493
3494 /* no need to check if number of frags is less than 7 */
3495 nr_frags = skb_shinfo(skb)->nr_frags;
3496 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497 return false;
3498
3499 /* We need to walk through the list and validate that each group
3500 * of 6 fragments totals at least gso_size.
3501 */
3502 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503 frag = &skb_shinfo(skb)->frags[0];
3504
3505 /* Initialize size to the negative value of gso_size minus 1. We
3506 * use this as the worst case scenerio in which the frag ahead
3507 * of us only provides one byte which is why we are limited to 6
3508 * descriptors for a single transmit as the header and previous
3509 * fragment are already consuming 2 descriptors.
3510 */
3511 sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513 /* Add size of frags 0 through 4 to create our initial sum */
3514 sum += skb_frag_size(frag++);
3515 sum += skb_frag_size(frag++);
3516 sum += skb_frag_size(frag++);
3517 sum += skb_frag_size(frag++);
3518 sum += skb_frag_size(frag++);
3519
3520 /* Walk through fragments adding latest fragment, testing it, and
3521 * then removing stale fragments from the sum.
3522 */
3523 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524 int stale_size = skb_frag_size(stale);
3525
3526 sum += skb_frag_size(frag++);
3527
3528 /* The stale fragment may present us with a smaller
3529 * descriptor than the actual fragment size. To account
3530 * for that we need to remove all the data on the front and
3531 * figure out what the remainder would be in the last
3532 * descriptor associated with the fragment.
3533 */
3534 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535 int align_pad = -(skb_frag_off(stale)) &
3536 (I40E_MAX_READ_REQ_SIZE - 1);
3537
3538 sum -= align_pad;
3539 stale_size -= align_pad;
3540
3541 do {
3542 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3545 }
3546
3547 /* if sum is negative we failed to make sufficient progress */
3548 if (sum < 0)
3549 return true;
3550
3551 if (!nr_frags--)
3552 break;
3553
3554 sum -= stale_size;
3555 }
3556
3557 return false;
3558}
3559
3560/**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring: ring to send buffer on
3563 * @skb: send buffer
3564 * @first: first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len: size of the packet header
3567 * @td_cmd: the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
3572static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573 struct i40e_tx_buffer *first, u32 tx_flags,
3574 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575{
3576 unsigned int data_len = skb->data_len;
3577 unsigned int size = skb_headlen(skb);
3578 skb_frag_t *frag;
3579 struct i40e_tx_buffer *tx_bi;
3580 struct i40e_tx_desc *tx_desc;
3581 u16 i = tx_ring->next_to_use;
3582 u32 td_tag = 0;
3583 dma_addr_t dma;
3584 u16 desc_count = 1;
3585
3586 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3589 }
3590
3591 first->tx_flags = tx_flags;
3592
3593 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595 tx_desc = I40E_TX_DESC(tx_ring, i);
3596 tx_bi = first;
3597
3598 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601 if (dma_mapping_error(tx_ring->dev, dma))
3602 goto dma_error;
3603
3604 /* record length, and DMA address */
3605 dma_unmap_len_set(tx_bi, len, size);
3606 dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608 /* align size to end of page */
3609 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610 tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613 tx_desc->cmd_type_offset_bsz =
3614 build_ctob(td_cmd, td_offset,
3615 max_data, td_tag);
3616
3617 tx_desc++;
3618 i++;
3619 desc_count++;
3620
3621 if (i == tx_ring->count) {
3622 tx_desc = I40E_TX_DESC(tx_ring, 0);
3623 i = 0;
3624 }
3625
3626 dma += max_data;
3627 size -= max_data;
3628
3629 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630 tx_desc->buffer_addr = cpu_to_le64(dma);
3631 }
3632
3633 if (likely(!data_len))
3634 break;
3635
3636 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637 size, td_tag);
3638
3639 tx_desc++;
3640 i++;
3641 desc_count++;
3642
3643 if (i == tx_ring->count) {
3644 tx_desc = I40E_TX_DESC(tx_ring, 0);
3645 i = 0;
3646 }
3647
3648 size = skb_frag_size(frag);
3649 data_len -= size;
3650
3651 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652 DMA_TO_DEVICE);
3653
3654 tx_bi = &tx_ring->tx_bi[i];
3655 }
3656
3657 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659 i++;
3660 if (i == tx_ring->count)
3661 i = 0;
3662
3663 tx_ring->next_to_use = i;
3664
3665 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667 /* write last descriptor with EOP bit */
3668 td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670 /* We OR these values together to check both against 4 (WB_STRIDE)
3671 * below. This is safe since we don't re-use desc_count afterwards.
3672 */
3673 desc_count |= ++tx_ring->packet_stride;
3674
3675 if (desc_count >= WB_STRIDE) {
3676 /* write last descriptor with RS bit set */
3677 td_cmd |= I40E_TX_DESC_CMD_RS;
3678 tx_ring->packet_stride = 0;
3679 }
3680
3681 tx_desc->cmd_type_offset_bsz =
3682 build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684 skb_tx_timestamp(skb);
3685
3686 /* Force memory writes to complete before letting h/w know there
3687 * are new descriptors to fetch.
3688 *
3689 * We also use this memory barrier to make certain all of the
3690 * status bits have been updated before next_to_watch is written.
3691 */
3692 wmb();
3693
3694 /* set next_to_watch value indicating a packet is present */
3695 first->next_to_watch = tx_desc;
3696
3697 /* notify HW of packet */
3698 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699 writel(i, tx_ring->tail);
3700 }
3701
3702 return 0;
3703
3704dma_error:
3705 dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707 /* clear dma mappings for failed tx_bi map */
3708 for (;;) {
3709 tx_bi = &tx_ring->tx_bi[i];
3710 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711 if (tx_bi == first)
3712 break;
3713 if (i == 0)
3714 i = tx_ring->count;
3715 i--;
3716 }
3717
3718 tx_ring->next_to_use = i;
3719
3720 return -1;
3721}
3722
3723static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724 const struct sk_buff *skb,
3725 u16 num_tx_queues)
3726{
3727 u32 jhash_initval_salt = 0xd631614b;
3728 u32 hash;
3729
3730 if (skb->sk && skb->sk->sk_hash)
3731 hash = skb->sk->sk_hash;
3732 else
3733 hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735 hash = jhash_1word(hash, jhash_initval_salt);
3736
3737 return (u16)(((u64)hash * num_tx_queues) >> 32);
3738}
3739
3740u16 i40e_lan_select_queue(struct net_device *netdev,
3741 struct sk_buff *skb,
3742 struct net_device __always_unused *sb_dev)
3743{
3744 struct i40e_netdev_priv *np = netdev_priv(netdev);
3745 struct i40e_vsi *vsi = np->vsi;
3746 struct i40e_hw *hw;
3747 u16 qoffset;
3748 u16 qcount;
3749 u8 tclass;
3750 u16 hash;
3751 u8 prio;
3752
3753 /* is DCB enabled at all? */
3754 if (vsi->tc_config.numtc == 1 ||
3755 i40e_is_tc_mqprio_enabled(vsi->back))
3756 return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758 prio = skb->priority;
3759 hw = &vsi->back->hw;
3760 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761 /* sanity check */
3762 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763 tclass = 0;
3764
3765 /* select a queue assigned for the given TC */
3766 qcount = vsi->tc_config.tc_info[tclass].qcount;
3767 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770 return qoffset + hash;
3771}
3772
3773/**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
3778static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779 struct i40e_ring *xdp_ring)
3780{
3781 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783 u16 i = 0, index = xdp_ring->next_to_use;
3784 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785 struct i40e_tx_buffer *tx_bi = tx_head;
3786 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787 void *data = xdpf->data;
3788 u32 size = xdpf->len;
3789
3790 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791 xdp_ring->tx_stats.tx_busy++;
3792 return I40E_XDP_CONSUMED;
3793 }
3794
3795 tx_head->bytecount = xdp_get_frame_len(xdpf);
3796 tx_head->gso_segs = 1;
3797 tx_head->xdpf = xdpf;
3798
3799 for (;;) {
3800 dma_addr_t dma;
3801
3802 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803 if (dma_mapping_error(xdp_ring->dev, dma))
3804 goto unmap;
3805
3806 /* record length, and DMA address */
3807 dma_unmap_len_set(tx_bi, len, size);
3808 dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810 tx_desc->buffer_addr = cpu_to_le64(dma);
3811 tx_desc->cmd_type_offset_bsz =
3812 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814 if (++index == xdp_ring->count)
3815 index = 0;
3816
3817 if (i == nr_frags)
3818 break;
3819
3820 tx_bi = &xdp_ring->tx_bi[index];
3821 tx_desc = I40E_TX_DESC(xdp_ring, index);
3822
3823 data = skb_frag_address(&sinfo->frags[i]);
3824 size = skb_frag_size(&sinfo->frags[i]);
3825 i++;
3826 }
3827
3828 tx_desc->cmd_type_offset_bsz |=
3829 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830
3831 /* Make certain all of the status bits have been updated
3832 * before next_to_watch is written.
3833 */
3834 smp_wmb();
3835
3836 xdp_ring->xdp_tx_active++;
3837
3838 tx_head->next_to_watch = tx_desc;
3839 xdp_ring->next_to_use = index;
3840
3841 return I40E_XDP_TX;
3842
3843unmap:
3844 for (;;) {
3845 tx_bi = &xdp_ring->tx_bi[index];
3846 if (dma_unmap_len(tx_bi, len))
3847 dma_unmap_page(xdp_ring->dev,
3848 dma_unmap_addr(tx_bi, dma),
3849 dma_unmap_len(tx_bi, len),
3850 DMA_TO_DEVICE);
3851 dma_unmap_len_set(tx_bi, len, 0);
3852 if (tx_bi == tx_head)
3853 break;
3854
3855 if (!index)
3856 index += xdp_ring->count;
3857 index--;
3858 }
3859
3860 return I40E_XDP_CONSUMED;
3861}
3862
3863/**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb: send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
3870static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871 struct i40e_ring *tx_ring)
3872{
3873 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875 struct i40e_tx_buffer *first;
3876 u32 td_offset = 0;
3877 u32 tx_flags = 0;
3878 u32 td_cmd = 0;
3879 u8 hdr_len = 0;
3880 int tso, count;
3881 int tsyn;
3882
3883 /* prefetch the data, we'll need it later */
3884 prefetch(skb->data);
3885
3886 i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888 count = i40e_xmit_descriptor_count(skb);
3889 if (i40e_chk_linearize(skb, count)) {
3890 if (__skb_linearize(skb)) {
3891 dev_kfree_skb_any(skb);
3892 return NETDEV_TX_OK;
3893 }
3894 count = i40e_txd_use_count(skb->len);
3895 tx_ring->tx_stats.tx_linearize++;
3896 }
3897
3898 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900 * + 4 desc gap to avoid the cache line where head is,
3901 * + 1 desc for context descriptor,
3902 * otherwise try next time
3903 */
3904 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905 tx_ring->tx_stats.tx_busy++;
3906 return NETDEV_TX_BUSY;
3907 }
3908
3909 /* record the location of the first descriptor for this packet */
3910 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911 first->skb = skb;
3912 first->bytecount = skb->len;
3913 first->gso_segs = 1;
3914
3915 /* prepare the xmit flags */
3916 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917 goto out_drop;
3918
3919 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920
3921 if (tso < 0)
3922 goto out_drop;
3923 else if (tso)
3924 tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926 /* Always offload the checksum, since it's in the data descriptor */
3927 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928 tx_ring, &cd_tunneling);
3929 if (tso < 0)
3930 goto out_drop;
3931
3932 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934 if (tsyn)
3935 tx_flags |= I40E_TX_FLAGS_TSYN;
3936
3937 /* always enable CRC insertion offload */
3938 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941 cd_tunneling, cd_l2tag2);
3942
3943 /* Add Flow Director ATR if it's enabled.
3944 *
3945 * NOTE: this must always be directly before the data descriptor.
3946 */
3947 i40e_atr(tx_ring, skb, tx_flags);
3948
3949 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950 td_cmd, td_offset))
3951 goto cleanup_tx_tstamp;
3952
3953 return NETDEV_TX_OK;
3954
3955out_drop:
3956 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957 dev_kfree_skb_any(first->skb);
3958 first->skb = NULL;
3959cleanup_tx_tstamp:
3960 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963 dev_kfree_skb_any(pf->ptp_tx_skb);
3964 pf->ptp_tx_skb = NULL;
3965 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966 }
3967
3968 return NETDEV_TX_OK;
3969}
3970
3971/**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb: send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
3978netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979{
3980 struct i40e_netdev_priv *np = netdev_priv(netdev);
3981 struct i40e_vsi *vsi = np->vsi;
3982 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984 /* hardware can't handle really short frames, hardware padding works
3985 * beyond this point
3986 */
3987 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988 return NETDEV_TX_OK;
3989
3990 return i40e_xmit_frame_ring(skb, tx_ring);
3991}
3992
3993/**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
4006int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007 u32 flags)
4008{
4009 struct i40e_netdev_priv *np = netdev_priv(dev);
4010 unsigned int queue_index = smp_processor_id();
4011 struct i40e_vsi *vsi = np->vsi;
4012 struct i40e_pf *pf = vsi->back;
4013 struct i40e_ring *xdp_ring;
4014 int nxmit = 0;
4015 int i;
4016
4017 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018 return -ENETDOWN;
4019
4020 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021 test_bit(__I40E_CONFIG_BUSY, pf->state))
4022 return -ENXIO;
4023
4024 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025 return -EINVAL;
4026
4027 xdp_ring = vsi->xdp_rings[queue_index];
4028
4029 for (i = 0; i < n; i++) {
4030 struct xdp_frame *xdpf = frames[i];
4031 int err;
4032
4033 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034 if (err != I40E_XDP_TX)
4035 break;
4036 nxmit++;
4037 }
4038
4039 if (unlikely(flags & XDP_XMIT_FLUSH))
4040 i40e_xdp_ring_update_tail(xdp_ring);
4041
4042 return nxmit;
4043}
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#include "i40e.h"
28#include "i40e_prototype.h"
29
30static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
31 u32 td_tag)
32{
33 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
34 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
35 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
36 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
37 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
38}
39
40#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
41/**
42 * i40e_program_fdir_filter - Program a Flow Director filter
43 * @fdir_data: Packet data that will be filter parameters
44 * @raw_packet: the pre-allocated packet buffer for FDir
45 * @pf: The pf pointer
46 * @add: True for add/update, False for remove
47 **/
48int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
49 struct i40e_pf *pf, bool add)
50{
51 struct i40e_filter_program_desc *fdir_desc;
52 struct i40e_tx_buffer *tx_buf;
53 struct i40e_tx_desc *tx_desc;
54 struct i40e_ring *tx_ring;
55 unsigned int fpt, dcc;
56 struct i40e_vsi *vsi;
57 struct device *dev;
58 dma_addr_t dma;
59 u32 td_cmd = 0;
60 u16 i;
61
62 /* find existing FDIR VSI */
63 vsi = NULL;
64 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
65 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
66 vsi = pf->vsi[i];
67 if (!vsi)
68 return -ENOENT;
69
70 tx_ring = vsi->tx_rings[0];
71 dev = tx_ring->dev;
72
73 dma = dma_map_single(dev, raw_packet,
74 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
75 if (dma_mapping_error(dev, dma))
76 goto dma_fail;
77
78 /* grab the next descriptor */
79 i = tx_ring->next_to_use;
80 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
81
82 tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
83
84 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
85 I40E_TXD_FLTR_QW0_QINDEX_MASK;
86
87 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
88 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
89
90 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
91 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
92
93 /* Use LAN VSI Id if not programmed by user */
94 if (fdir_data->dest_vsi == 0)
95 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
96 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
97 else
98 fpt |= ((u32)fdir_data->dest_vsi <<
99 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
100 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
101
102 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
103
104 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
105
106 if (add)
107 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
108 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
109 else
110 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
111 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
112
113 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
114 I40E_TXD_FLTR_QW1_DEST_MASK;
115
116 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
117 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
118
119 if (fdir_data->cnt_index != 0) {
120 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
121 dcc |= ((u32)fdir_data->cnt_index <<
122 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
123 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
124 }
125
126 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
127 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
128
129 /* Now program a dummy descriptor */
130 i = tx_ring->next_to_use;
131 tx_desc = I40E_TX_DESC(tx_ring, i);
132 tx_buf = &tx_ring->tx_bi[i];
133
134 tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
135
136 /* record length, and DMA address */
137 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
138 dma_unmap_addr_set(tx_buf, dma, dma);
139
140 tx_desc->buffer_addr = cpu_to_le64(dma);
141 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* set the timestamp */
147 tx_buf->time_stamp = jiffies;
148
149 /* Force memory writes to complete before letting h/w
150 * know there are new descriptors to fetch. (Only
151 * applicable for weak-ordered memory model archs,
152 * such as IA-64).
153 */
154 wmb();
155
156 /* Mark the data descriptor to be watched */
157 tx_buf->next_to_watch = tx_desc;
158
159 writel(tx_ring->next_to_use, tx_ring->tail);
160 return 0;
161
162dma_fail:
163 return -1;
164}
165
166#define IP_HEADER_OFFSET 14
167#define I40E_UDPIP_DUMMY_PACKET_LEN 42
168/**
169 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
170 * @vsi: pointer to the targeted VSI
171 * @fd_data: the flow director data required for the FDir descriptor
172 * @raw_packet: the pre-allocated packet buffer for FDir
173 * @add: true adds a filter, false removes it
174 *
175 * Returns 0 if the filters were successfully added or removed
176 **/
177static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
178 struct i40e_fdir_filter *fd_data,
179 u8 *raw_packet, bool add)
180{
181 struct i40e_pf *pf = vsi->back;
182 struct udphdr *udp;
183 struct iphdr *ip;
184 bool err = false;
185 int ret;
186 int i;
187 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
188 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
189 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
190
191 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
192
193 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
194 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
195 + sizeof(struct iphdr));
196
197 ip->daddr = fd_data->dst_ip[0];
198 udp->dest = fd_data->dst_port;
199 ip->saddr = fd_data->src_ip[0];
200 udp->source = fd_data->src_port;
201
202 for (i = I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP;
203 i <= I40E_FILTER_PCTYPE_NONF_IPV4_UDP; i++) {
204 fd_data->pctype = i;
205 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
206
207 if (ret) {
208 dev_info(&pf->pdev->dev,
209 "Filter command send failed for PCTYPE %d (ret = %d)\n",
210 fd_data->pctype, ret);
211 err = true;
212 } else {
213 dev_info(&pf->pdev->dev,
214 "Filter OK for PCTYPE %d (ret = %d)\n",
215 fd_data->pctype, ret);
216 }
217 }
218
219 return err ? -EOPNOTSUPP : 0;
220}
221
222#define I40E_TCPIP_DUMMY_PACKET_LEN 54
223/**
224 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
225 * @vsi: pointer to the targeted VSI
226 * @fd_data: the flow director data required for the FDir descriptor
227 * @raw_packet: the pre-allocated packet buffer for FDir
228 * @add: true adds a filter, false removes it
229 *
230 * Returns 0 if the filters were successfully added or removed
231 **/
232static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
233 struct i40e_fdir_filter *fd_data,
234 u8 *raw_packet, bool add)
235{
236 struct i40e_pf *pf = vsi->back;
237 struct tcphdr *tcp;
238 struct iphdr *ip;
239 bool err = false;
240 int ret;
241 /* Dummy packet */
242 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
243 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
244 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
245 0x0, 0x72, 0, 0, 0, 0};
246
247 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
248
249 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
250 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
251 + sizeof(struct iphdr));
252
253 ip->daddr = fd_data->dst_ip[0];
254 tcp->dest = fd_data->dst_port;
255 ip->saddr = fd_data->src_ip[0];
256 tcp->source = fd_data->src_port;
257
258 if (add) {
259 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
260 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
261 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
262 }
263 }
264
265 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN;
266 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
267
268 if (ret) {
269 dev_info(&pf->pdev->dev,
270 "Filter command send failed for PCTYPE %d (ret = %d)\n",
271 fd_data->pctype, ret);
272 err = true;
273 } else {
274 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
275 fd_data->pctype, ret);
276 }
277
278 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
279
280 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
281 if (ret) {
282 dev_info(&pf->pdev->dev,
283 "Filter command send failed for PCTYPE %d (ret = %d)\n",
284 fd_data->pctype, ret);
285 err = true;
286 } else {
287 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
288 fd_data->pctype, ret);
289 }
290
291 return err ? -EOPNOTSUPP : 0;
292}
293
294/**
295 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
296 * a specific flow spec
297 * @vsi: pointer to the targeted VSI
298 * @fd_data: the flow director data required for the FDir descriptor
299 * @raw_packet: the pre-allocated packet buffer for FDir
300 * @add: true adds a filter, false removes it
301 *
302 * Always returns -EOPNOTSUPP
303 **/
304static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
305 struct i40e_fdir_filter *fd_data,
306 u8 *raw_packet, bool add)
307{
308 return -EOPNOTSUPP;
309}
310
311#define I40E_IP_DUMMY_PACKET_LEN 34
312/**
313 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
314 * a specific flow spec
315 * @vsi: pointer to the targeted VSI
316 * @fd_data: the flow director data required for the FDir descriptor
317 * @raw_packet: the pre-allocated packet buffer for FDir
318 * @add: true adds a filter, false removes it
319 *
320 * Returns 0 if the filters were successfully added or removed
321 **/
322static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
323 struct i40e_fdir_filter *fd_data,
324 u8 *raw_packet, bool add)
325{
326 struct i40e_pf *pf = vsi->back;
327 struct iphdr *ip;
328 bool err = false;
329 int ret;
330 int i;
331 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
332 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
333 0, 0, 0, 0};
334
335 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
336 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
337
338 ip->saddr = fd_data->src_ip[0];
339 ip->daddr = fd_data->dst_ip[0];
340 ip->protocol = 0;
341
342 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
343 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
344 fd_data->pctype = i;
345 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
346
347 if (ret) {
348 dev_info(&pf->pdev->dev,
349 "Filter command send failed for PCTYPE %d (ret = %d)\n",
350 fd_data->pctype, ret);
351 err = true;
352 } else {
353 dev_info(&pf->pdev->dev,
354 "Filter OK for PCTYPE %d (ret = %d)\n",
355 fd_data->pctype, ret);
356 }
357 }
358
359 return err ? -EOPNOTSUPP : 0;
360}
361
362/**
363 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
364 * @vsi: pointer to the targeted VSI
365 * @cmd: command to get or set RX flow classification rules
366 * @add: true adds a filter, false removes it
367 *
368 **/
369int i40e_add_del_fdir(struct i40e_vsi *vsi,
370 struct i40e_fdir_filter *input, bool add)
371{
372 struct i40e_pf *pf = vsi->back;
373 u8 *raw_packet;
374 int ret;
375
376 /* Populate the Flow Director that we have at the moment
377 * and allocate the raw packet buffer for the calling functions
378 */
379 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
380 if (!raw_packet)
381 return -ENOMEM;
382
383 switch (input->flow_type & ~FLOW_EXT) {
384 case TCP_V4_FLOW:
385 ret = i40e_add_del_fdir_tcpv4(vsi, input, raw_packet,
386 add);
387 break;
388 case UDP_V4_FLOW:
389 ret = i40e_add_del_fdir_udpv4(vsi, input, raw_packet,
390 add);
391 break;
392 case SCTP_V4_FLOW:
393 ret = i40e_add_del_fdir_sctpv4(vsi, input, raw_packet,
394 add);
395 break;
396 case IPV4_FLOW:
397 ret = i40e_add_del_fdir_ipv4(vsi, input, raw_packet,
398 add);
399 break;
400 case IP_USER_FLOW:
401 switch (input->ip4_proto) {
402 case IPPROTO_TCP:
403 ret = i40e_add_del_fdir_tcpv4(vsi, input,
404 raw_packet, add);
405 break;
406 case IPPROTO_UDP:
407 ret = i40e_add_del_fdir_udpv4(vsi, input,
408 raw_packet, add);
409 break;
410 case IPPROTO_SCTP:
411 ret = i40e_add_del_fdir_sctpv4(vsi, input,
412 raw_packet, add);
413 break;
414 default:
415 ret = i40e_add_del_fdir_ipv4(vsi, input,
416 raw_packet, add);
417 break;
418 }
419 break;
420 default:
421 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
422 input->flow_type);
423 ret = -EINVAL;
424 }
425
426 kfree(raw_packet);
427 return ret;
428}
429
430/**
431 * i40e_fd_handle_status - check the Programming Status for FD
432 * @rx_ring: the Rx ring for this descriptor
433 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
434 * @prog_id: the id originally used for programming
435 *
436 * This is used to verify if the FD programming or invalidation
437 * requested by SW to the HW is successful or not and take actions accordingly.
438 **/
439static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
440 union i40e_rx_desc *rx_desc, u8 prog_id)
441{
442 struct i40e_pf *pf = rx_ring->vsi->back;
443 struct pci_dev *pdev = pf->pdev;
444 u32 fcnt_prog, fcnt_avail;
445 u32 error;
446 u64 qw;
447
448 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
449 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
450 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
451
452 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
453 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
454 rx_desc->wb.qword0.hi_dword.fd_id);
455
456 /* filter programming failed most likely due to table full */
457 fcnt_prog = i40e_get_current_fd_count(pf);
458 fcnt_avail = pf->hw.fdir_shared_filter_count +
459 pf->fdir_pf_filter_count;
460
461 /* If ATR is running fcnt_prog can quickly change,
462 * if we are very close to full, it makes sense to disable
463 * FD ATR/SB and then re-enable it when there is room.
464 */
465 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
466 /* Turn off ATR first */
467 if (pf->flags | I40E_FLAG_FD_ATR_ENABLED) {
468 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
469 dev_warn(&pdev->dev, "FD filter space full, ATR for further flows will be turned off\n");
470 pf->auto_disable_flags |=
471 I40E_FLAG_FD_ATR_ENABLED;
472 pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
473 } else if (pf->flags | I40E_FLAG_FD_SB_ENABLED) {
474 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
475 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
476 pf->auto_disable_flags |=
477 I40E_FLAG_FD_SB_ENABLED;
478 pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
479 }
480 } else {
481 dev_info(&pdev->dev, "FD filter programming error\n");
482 }
483 } else if (error ==
484 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
485 if (I40E_DEBUG_FD & pf->hw.debug_mask)
486 dev_info(&pdev->dev, "ntuple filter loc = %d, could not be removed\n",
487 rx_desc->wb.qword0.hi_dword.fd_id);
488 }
489}
490
491/**
492 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
493 * @ring: the ring that owns the buffer
494 * @tx_buffer: the buffer to free
495 **/
496static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
497 struct i40e_tx_buffer *tx_buffer)
498{
499 if (tx_buffer->skb) {
500 dev_kfree_skb_any(tx_buffer->skb);
501 if (dma_unmap_len(tx_buffer, len))
502 dma_unmap_single(ring->dev,
503 dma_unmap_addr(tx_buffer, dma),
504 dma_unmap_len(tx_buffer, len),
505 DMA_TO_DEVICE);
506 } else if (dma_unmap_len(tx_buffer, len)) {
507 dma_unmap_page(ring->dev,
508 dma_unmap_addr(tx_buffer, dma),
509 dma_unmap_len(tx_buffer, len),
510 DMA_TO_DEVICE);
511 }
512 tx_buffer->next_to_watch = NULL;
513 tx_buffer->skb = NULL;
514 dma_unmap_len_set(tx_buffer, len, 0);
515 /* tx_buffer must be completely set up in the transmit path */
516}
517
518/**
519 * i40e_clean_tx_ring - Free any empty Tx buffers
520 * @tx_ring: ring to be cleaned
521 **/
522void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
523{
524 unsigned long bi_size;
525 u16 i;
526
527 /* ring already cleared, nothing to do */
528 if (!tx_ring->tx_bi)
529 return;
530
531 /* Free all the Tx ring sk_buffs */
532 for (i = 0; i < tx_ring->count; i++)
533 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
534
535 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
536 memset(tx_ring->tx_bi, 0, bi_size);
537
538 /* Zero out the descriptor ring */
539 memset(tx_ring->desc, 0, tx_ring->size);
540
541 tx_ring->next_to_use = 0;
542 tx_ring->next_to_clean = 0;
543
544 if (!tx_ring->netdev)
545 return;
546
547 /* cleanup Tx queue statistics */
548 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
549 tx_ring->queue_index));
550}
551
552/**
553 * i40e_free_tx_resources - Free Tx resources per queue
554 * @tx_ring: Tx descriptor ring for a specific queue
555 *
556 * Free all transmit software resources
557 **/
558void i40e_free_tx_resources(struct i40e_ring *tx_ring)
559{
560 i40e_clean_tx_ring(tx_ring);
561 kfree(tx_ring->tx_bi);
562 tx_ring->tx_bi = NULL;
563
564 if (tx_ring->desc) {
565 dma_free_coherent(tx_ring->dev, tx_ring->size,
566 tx_ring->desc, tx_ring->dma);
567 tx_ring->desc = NULL;
568 }
569}
570
571/**
572 * i40e_get_tx_pending - how many tx descriptors not processed
573 * @tx_ring: the ring of descriptors
574 *
575 * Since there is no access to the ring head register
576 * in XL710, we need to use our local copies
577 **/
578static u32 i40e_get_tx_pending(struct i40e_ring *ring)
579{
580 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
581 ? ring->next_to_use
582 : ring->next_to_use + ring->count);
583 return ntu - ring->next_to_clean;
584}
585
586/**
587 * i40e_check_tx_hang - Is there a hang in the Tx queue
588 * @tx_ring: the ring of descriptors
589 **/
590static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
591{
592 u32 tx_pending = i40e_get_tx_pending(tx_ring);
593 bool ret = false;
594
595 clear_check_for_tx_hang(tx_ring);
596
597 /* Check for a hung queue, but be thorough. This verifies
598 * that a transmit has been completed since the previous
599 * check AND there is at least one packet pending. The
600 * ARMED bit is set to indicate a potential hang. The
601 * bit is cleared if a pause frame is received to remove
602 * false hang detection due to PFC or 802.3x frames. By
603 * requiring this to fail twice we avoid races with
604 * PFC clearing the ARMED bit and conditions where we
605 * run the check_tx_hang logic with a transmit completion
606 * pending but without time to complete it yet.
607 */
608 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
609 tx_pending) {
610 /* make sure it is true for two checks in a row */
611 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
612 &tx_ring->state);
613 } else {
614 /* update completed stats and disarm the hang check */
615 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
616 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
617 }
618
619 return ret;
620}
621
622/**
623 * i40e_get_head - Retrieve head from head writeback
624 * @tx_ring: tx ring to fetch head of
625 *
626 * Returns value of Tx ring head based on value stored
627 * in head write-back location
628 **/
629static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
630{
631 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
632
633 return le32_to_cpu(*(volatile __le32 *)head);
634}
635
636/**
637 * i40e_clean_tx_irq - Reclaim resources after transmit completes
638 * @tx_ring: tx ring to clean
639 * @budget: how many cleans we're allowed
640 *
641 * Returns true if there's any budget left (e.g. the clean is finished)
642 **/
643static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
644{
645 u16 i = tx_ring->next_to_clean;
646 struct i40e_tx_buffer *tx_buf;
647 struct i40e_tx_desc *tx_head;
648 struct i40e_tx_desc *tx_desc;
649 unsigned int total_packets = 0;
650 unsigned int total_bytes = 0;
651
652 tx_buf = &tx_ring->tx_bi[i];
653 tx_desc = I40E_TX_DESC(tx_ring, i);
654 i -= tx_ring->count;
655
656 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
657
658 do {
659 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
660
661 /* if next_to_watch is not set then there is no work pending */
662 if (!eop_desc)
663 break;
664
665 /* prevent any other reads prior to eop_desc */
666 read_barrier_depends();
667
668 /* we have caught up to head, no work left to do */
669 if (tx_head == tx_desc)
670 break;
671
672 /* clear next_to_watch to prevent false hangs */
673 tx_buf->next_to_watch = NULL;
674
675 /* update the statistics for this packet */
676 total_bytes += tx_buf->bytecount;
677 total_packets += tx_buf->gso_segs;
678
679 /* free the skb */
680 dev_kfree_skb_any(tx_buf->skb);
681
682 /* unmap skb header data */
683 dma_unmap_single(tx_ring->dev,
684 dma_unmap_addr(tx_buf, dma),
685 dma_unmap_len(tx_buf, len),
686 DMA_TO_DEVICE);
687
688 /* clear tx_buffer data */
689 tx_buf->skb = NULL;
690 dma_unmap_len_set(tx_buf, len, 0);
691
692 /* unmap remaining buffers */
693 while (tx_desc != eop_desc) {
694
695 tx_buf++;
696 tx_desc++;
697 i++;
698 if (unlikely(!i)) {
699 i -= tx_ring->count;
700 tx_buf = tx_ring->tx_bi;
701 tx_desc = I40E_TX_DESC(tx_ring, 0);
702 }
703
704 /* unmap any remaining paged data */
705 if (dma_unmap_len(tx_buf, len)) {
706 dma_unmap_page(tx_ring->dev,
707 dma_unmap_addr(tx_buf, dma),
708 dma_unmap_len(tx_buf, len),
709 DMA_TO_DEVICE);
710 dma_unmap_len_set(tx_buf, len, 0);
711 }
712 }
713
714 /* move us one more past the eop_desc for start of next pkt */
715 tx_buf++;
716 tx_desc++;
717 i++;
718 if (unlikely(!i)) {
719 i -= tx_ring->count;
720 tx_buf = tx_ring->tx_bi;
721 tx_desc = I40E_TX_DESC(tx_ring, 0);
722 }
723
724 /* update budget accounting */
725 budget--;
726 } while (likely(budget));
727
728 i += tx_ring->count;
729 tx_ring->next_to_clean = i;
730 u64_stats_update_begin(&tx_ring->syncp);
731 tx_ring->stats.bytes += total_bytes;
732 tx_ring->stats.packets += total_packets;
733 u64_stats_update_end(&tx_ring->syncp);
734 tx_ring->q_vector->tx.total_bytes += total_bytes;
735 tx_ring->q_vector->tx.total_packets += total_packets;
736
737 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
738 /* schedule immediate reset if we believe we hung */
739 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
740 " VSI <%d>\n"
741 " Tx Queue <%d>\n"
742 " next_to_use <%x>\n"
743 " next_to_clean <%x>\n",
744 tx_ring->vsi->seid,
745 tx_ring->queue_index,
746 tx_ring->next_to_use, i);
747 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
748 " time_stamp <%lx>\n"
749 " jiffies <%lx>\n",
750 tx_ring->tx_bi[i].time_stamp, jiffies);
751
752 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
753
754 dev_info(tx_ring->dev,
755 "tx hang detected on queue %d, resetting adapter\n",
756 tx_ring->queue_index);
757
758 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
759
760 /* the adapter is about to reset, no point in enabling stuff */
761 return true;
762 }
763
764 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
765 tx_ring->queue_index),
766 total_packets, total_bytes);
767
768#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
769 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
770 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
771 /* Make sure that anybody stopping the queue after this
772 * sees the new next_to_clean.
773 */
774 smp_mb();
775 if (__netif_subqueue_stopped(tx_ring->netdev,
776 tx_ring->queue_index) &&
777 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
778 netif_wake_subqueue(tx_ring->netdev,
779 tx_ring->queue_index);
780 ++tx_ring->tx_stats.restart_queue;
781 }
782 }
783
784 return budget > 0;
785}
786
787/**
788 * i40e_set_new_dynamic_itr - Find new ITR level
789 * @rc: structure containing ring performance data
790 *
791 * Stores a new ITR value based on packets and byte counts during
792 * the last interrupt. The advantage of per interrupt computation
793 * is faster updates and more accurate ITR for the current traffic
794 * pattern. Constants in this function were computed based on
795 * theoretical maximum wire speed and thresholds were set based on
796 * testing data as well as attempting to minimize response time
797 * while increasing bulk throughput.
798 **/
799static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
800{
801 enum i40e_latency_range new_latency_range = rc->latency_range;
802 u32 new_itr = rc->itr;
803 int bytes_per_int;
804
805 if (rc->total_packets == 0 || !rc->itr)
806 return;
807
808 /* simple throttlerate management
809 * 0-10MB/s lowest (100000 ints/s)
810 * 10-20MB/s low (20000 ints/s)
811 * 20-1249MB/s bulk (8000 ints/s)
812 */
813 bytes_per_int = rc->total_bytes / rc->itr;
814 switch (rc->itr) {
815 case I40E_LOWEST_LATENCY:
816 if (bytes_per_int > 10)
817 new_latency_range = I40E_LOW_LATENCY;
818 break;
819 case I40E_LOW_LATENCY:
820 if (bytes_per_int > 20)
821 new_latency_range = I40E_BULK_LATENCY;
822 else if (bytes_per_int <= 10)
823 new_latency_range = I40E_LOWEST_LATENCY;
824 break;
825 case I40E_BULK_LATENCY:
826 if (bytes_per_int <= 20)
827 rc->latency_range = I40E_LOW_LATENCY;
828 break;
829 }
830
831 switch (new_latency_range) {
832 case I40E_LOWEST_LATENCY:
833 new_itr = I40E_ITR_100K;
834 break;
835 case I40E_LOW_LATENCY:
836 new_itr = I40E_ITR_20K;
837 break;
838 case I40E_BULK_LATENCY:
839 new_itr = I40E_ITR_8K;
840 break;
841 default:
842 break;
843 }
844
845 if (new_itr != rc->itr) {
846 /* do an exponential smoothing */
847 new_itr = (10 * new_itr * rc->itr) /
848 ((9 * new_itr) + rc->itr);
849 rc->itr = new_itr & I40E_MAX_ITR;
850 }
851
852 rc->total_bytes = 0;
853 rc->total_packets = 0;
854}
855
856/**
857 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
858 * @q_vector: the vector to adjust
859 **/
860static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
861{
862 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
863 struct i40e_hw *hw = &q_vector->vsi->back->hw;
864 u32 reg_addr;
865 u16 old_itr;
866
867 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
868 old_itr = q_vector->rx.itr;
869 i40e_set_new_dynamic_itr(&q_vector->rx);
870 if (old_itr != q_vector->rx.itr)
871 wr32(hw, reg_addr, q_vector->rx.itr);
872
873 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
874 old_itr = q_vector->tx.itr;
875 i40e_set_new_dynamic_itr(&q_vector->tx);
876 if (old_itr != q_vector->tx.itr)
877 wr32(hw, reg_addr, q_vector->tx.itr);
878}
879
880/**
881 * i40e_clean_programming_status - clean the programming status descriptor
882 * @rx_ring: the rx ring that has this descriptor
883 * @rx_desc: the rx descriptor written back by HW
884 *
885 * Flow director should handle FD_FILTER_STATUS to check its filter programming
886 * status being successful or not and take actions accordingly. FCoE should
887 * handle its context/filter programming/invalidation status and take actions.
888 *
889 **/
890static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
891 union i40e_rx_desc *rx_desc)
892{
893 u64 qw;
894 u8 id;
895
896 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
897 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
898 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
899
900 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
901 i40e_fd_handle_status(rx_ring, rx_desc, id);
902}
903
904/**
905 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
906 * @tx_ring: the tx ring to set up
907 *
908 * Return 0 on success, negative on error
909 **/
910int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
911{
912 struct device *dev = tx_ring->dev;
913 int bi_size;
914
915 if (!dev)
916 return -ENOMEM;
917
918 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
919 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
920 if (!tx_ring->tx_bi)
921 goto err;
922
923 /* round up to nearest 4K */
924 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
925 /* add u32 for head writeback, align after this takes care of
926 * guaranteeing this is at least one cache line in size
927 */
928 tx_ring->size += sizeof(u32);
929 tx_ring->size = ALIGN(tx_ring->size, 4096);
930 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
931 &tx_ring->dma, GFP_KERNEL);
932 if (!tx_ring->desc) {
933 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
934 tx_ring->size);
935 goto err;
936 }
937
938 tx_ring->next_to_use = 0;
939 tx_ring->next_to_clean = 0;
940 return 0;
941
942err:
943 kfree(tx_ring->tx_bi);
944 tx_ring->tx_bi = NULL;
945 return -ENOMEM;
946}
947
948/**
949 * i40e_clean_rx_ring - Free Rx buffers
950 * @rx_ring: ring to be cleaned
951 **/
952void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
953{
954 struct device *dev = rx_ring->dev;
955 struct i40e_rx_buffer *rx_bi;
956 unsigned long bi_size;
957 u16 i;
958
959 /* ring already cleared, nothing to do */
960 if (!rx_ring->rx_bi)
961 return;
962
963 /* Free all the Rx ring sk_buffs */
964 for (i = 0; i < rx_ring->count; i++) {
965 rx_bi = &rx_ring->rx_bi[i];
966 if (rx_bi->dma) {
967 dma_unmap_single(dev,
968 rx_bi->dma,
969 rx_ring->rx_buf_len,
970 DMA_FROM_DEVICE);
971 rx_bi->dma = 0;
972 }
973 if (rx_bi->skb) {
974 dev_kfree_skb(rx_bi->skb);
975 rx_bi->skb = NULL;
976 }
977 if (rx_bi->page) {
978 if (rx_bi->page_dma) {
979 dma_unmap_page(dev,
980 rx_bi->page_dma,
981 PAGE_SIZE / 2,
982 DMA_FROM_DEVICE);
983 rx_bi->page_dma = 0;
984 }
985 __free_page(rx_bi->page);
986 rx_bi->page = NULL;
987 rx_bi->page_offset = 0;
988 }
989 }
990
991 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
992 memset(rx_ring->rx_bi, 0, bi_size);
993
994 /* Zero out the descriptor ring */
995 memset(rx_ring->desc, 0, rx_ring->size);
996
997 rx_ring->next_to_clean = 0;
998 rx_ring->next_to_use = 0;
999}
1000
1001/**
1002 * i40e_free_rx_resources - Free Rx resources
1003 * @rx_ring: ring to clean the resources from
1004 *
1005 * Free all receive software resources
1006 **/
1007void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1008{
1009 i40e_clean_rx_ring(rx_ring);
1010 kfree(rx_ring->rx_bi);
1011 rx_ring->rx_bi = NULL;
1012
1013 if (rx_ring->desc) {
1014 dma_free_coherent(rx_ring->dev, rx_ring->size,
1015 rx_ring->desc, rx_ring->dma);
1016 rx_ring->desc = NULL;
1017 }
1018}
1019
1020/**
1021 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1022 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1023 *
1024 * Returns 0 on success, negative on failure
1025 **/
1026int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1027{
1028 struct device *dev = rx_ring->dev;
1029 int bi_size;
1030
1031 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1032 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1033 if (!rx_ring->rx_bi)
1034 goto err;
1035
1036 /* Round up to nearest 4K */
1037 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1038 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1039 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1040 rx_ring->size = ALIGN(rx_ring->size, 4096);
1041 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1042 &rx_ring->dma, GFP_KERNEL);
1043
1044 if (!rx_ring->desc) {
1045 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1046 rx_ring->size);
1047 goto err;
1048 }
1049
1050 rx_ring->next_to_clean = 0;
1051 rx_ring->next_to_use = 0;
1052
1053 return 0;
1054err:
1055 kfree(rx_ring->rx_bi);
1056 rx_ring->rx_bi = NULL;
1057 return -ENOMEM;
1058}
1059
1060/**
1061 * i40e_release_rx_desc - Store the new tail and head values
1062 * @rx_ring: ring to bump
1063 * @val: new head index
1064 **/
1065static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1066{
1067 rx_ring->next_to_use = val;
1068 /* Force memory writes to complete before letting h/w
1069 * know there are new descriptors to fetch. (Only
1070 * applicable for weak-ordered memory model archs,
1071 * such as IA-64).
1072 */
1073 wmb();
1074 writel(val, rx_ring->tail);
1075}
1076
1077/**
1078 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1079 * @rx_ring: ring to place buffers on
1080 * @cleaned_count: number of buffers to replace
1081 **/
1082void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1083{
1084 u16 i = rx_ring->next_to_use;
1085 union i40e_rx_desc *rx_desc;
1086 struct i40e_rx_buffer *bi;
1087 struct sk_buff *skb;
1088
1089 /* do nothing if no valid netdev defined */
1090 if (!rx_ring->netdev || !cleaned_count)
1091 return;
1092
1093 while (cleaned_count--) {
1094 rx_desc = I40E_RX_DESC(rx_ring, i);
1095 bi = &rx_ring->rx_bi[i];
1096 skb = bi->skb;
1097
1098 if (!skb) {
1099 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1100 rx_ring->rx_buf_len);
1101 if (!skb) {
1102 rx_ring->rx_stats.alloc_buff_failed++;
1103 goto no_buffers;
1104 }
1105 /* initialize queue mapping */
1106 skb_record_rx_queue(skb, rx_ring->queue_index);
1107 bi->skb = skb;
1108 }
1109
1110 if (!bi->dma) {
1111 bi->dma = dma_map_single(rx_ring->dev,
1112 skb->data,
1113 rx_ring->rx_buf_len,
1114 DMA_FROM_DEVICE);
1115 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1116 rx_ring->rx_stats.alloc_buff_failed++;
1117 bi->dma = 0;
1118 goto no_buffers;
1119 }
1120 }
1121
1122 if (ring_is_ps_enabled(rx_ring)) {
1123 if (!bi->page) {
1124 bi->page = alloc_page(GFP_ATOMIC);
1125 if (!bi->page) {
1126 rx_ring->rx_stats.alloc_page_failed++;
1127 goto no_buffers;
1128 }
1129 }
1130
1131 if (!bi->page_dma) {
1132 /* use a half page if we're re-using */
1133 bi->page_offset ^= PAGE_SIZE / 2;
1134 bi->page_dma = dma_map_page(rx_ring->dev,
1135 bi->page,
1136 bi->page_offset,
1137 PAGE_SIZE / 2,
1138 DMA_FROM_DEVICE);
1139 if (dma_mapping_error(rx_ring->dev,
1140 bi->page_dma)) {
1141 rx_ring->rx_stats.alloc_page_failed++;
1142 bi->page_dma = 0;
1143 goto no_buffers;
1144 }
1145 }
1146
1147 /* Refresh the desc even if buffer_addrs didn't change
1148 * because each write-back erases this info.
1149 */
1150 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1151 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1152 } else {
1153 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1154 rx_desc->read.hdr_addr = 0;
1155 }
1156 i++;
1157 if (i == rx_ring->count)
1158 i = 0;
1159 }
1160
1161no_buffers:
1162 if (rx_ring->next_to_use != i)
1163 i40e_release_rx_desc(rx_ring, i);
1164}
1165
1166/**
1167 * i40e_receive_skb - Send a completed packet up the stack
1168 * @rx_ring: rx ring in play
1169 * @skb: packet to send up
1170 * @vlan_tag: vlan tag for packet
1171 **/
1172static void i40e_receive_skb(struct i40e_ring *rx_ring,
1173 struct sk_buff *skb, u16 vlan_tag)
1174{
1175 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1176 struct i40e_vsi *vsi = rx_ring->vsi;
1177 u64 flags = vsi->back->flags;
1178
1179 if (vlan_tag & VLAN_VID_MASK)
1180 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1181
1182 if (flags & I40E_FLAG_IN_NETPOLL)
1183 netif_rx(skb);
1184 else
1185 napi_gro_receive(&q_vector->napi, skb);
1186}
1187
1188/**
1189 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1190 * @vsi: the VSI we care about
1191 * @skb: skb currently being received and modified
1192 * @rx_status: status value of last descriptor in packet
1193 * @rx_error: error value of last descriptor in packet
1194 * @rx_ptype: ptype value of last descriptor in packet
1195 **/
1196static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1197 struct sk_buff *skb,
1198 u32 rx_status,
1199 u32 rx_error,
1200 u16 rx_ptype)
1201{
1202 bool ipv4_tunnel, ipv6_tunnel;
1203 __wsum rx_udp_csum;
1204 __sum16 csum;
1205 struct iphdr *iph;
1206
1207 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1208 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1209 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1210 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1211
1212 skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
1213 skb->ip_summed = CHECKSUM_NONE;
1214
1215 /* Rx csum enabled and ip headers found? */
1216 if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
1217 rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1218 return;
1219
1220 /* likely incorrect csum if alternate IP extension headers found */
1221 if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1222 return;
1223
1224 /* IP or L4 or outmost IP checksum error */
1225 if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1226 (1 << I40E_RX_DESC_ERROR_L4E_SHIFT) |
1227 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) {
1228 vsi->back->hw_csum_rx_error++;
1229 return;
1230 }
1231
1232 if (ipv4_tunnel &&
1233 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
1234 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1235 * it in the driver, hardware does not do it for us.
1236 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1237 * so the total length of IPv4 header is IHL*4 bytes
1238 */
1239 skb->transport_header = skb->mac_header +
1240 sizeof(struct ethhdr) +
1241 (ip_hdr(skb)->ihl * 4);
1242
1243 /* Add 4 bytes for VLAN tagged packets */
1244 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1245 skb->protocol == htons(ETH_P_8021AD))
1246 ? VLAN_HLEN : 0;
1247
1248 rx_udp_csum = udp_csum(skb);
1249 iph = ip_hdr(skb);
1250 csum = csum_tcpudp_magic(
1251 iph->saddr, iph->daddr,
1252 (skb->len - skb_transport_offset(skb)),
1253 IPPROTO_UDP, rx_udp_csum);
1254
1255 if (udp_hdr(skb)->check != csum) {
1256 vsi->back->hw_csum_rx_error++;
1257 return;
1258 }
1259 }
1260
1261 skb->ip_summed = CHECKSUM_UNNECESSARY;
1262}
1263
1264/**
1265 * i40e_rx_hash - returns the hash value from the Rx descriptor
1266 * @ring: descriptor ring
1267 * @rx_desc: specific descriptor
1268 **/
1269static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1270 union i40e_rx_desc *rx_desc)
1271{
1272 const __le64 rss_mask =
1273 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1274 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1275
1276 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1277 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1278 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1279 else
1280 return 0;
1281}
1282
1283/**
1284 * i40e_ptype_to_hash - get a hash type
1285 * @ptype: the ptype value from the descriptor
1286 *
1287 * Returns a hash type to be used by skb_set_hash
1288 **/
1289static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1290{
1291 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1292
1293 if (!decoded.known)
1294 return PKT_HASH_TYPE_NONE;
1295
1296 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1297 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1298 return PKT_HASH_TYPE_L4;
1299 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1300 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1301 return PKT_HASH_TYPE_L3;
1302 else
1303 return PKT_HASH_TYPE_L2;
1304}
1305
1306/**
1307 * i40e_clean_rx_irq - Reclaim resources after receive completes
1308 * @rx_ring: rx ring to clean
1309 * @budget: how many cleans we're allowed
1310 *
1311 * Returns true if there's any budget left (e.g. the clean is finished)
1312 **/
1313static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1314{
1315 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1316 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1317 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1318 const int current_node = numa_node_id();
1319 struct i40e_vsi *vsi = rx_ring->vsi;
1320 u16 i = rx_ring->next_to_clean;
1321 union i40e_rx_desc *rx_desc;
1322 u32 rx_error, rx_status;
1323 u8 rx_ptype;
1324 u64 qword;
1325
1326 if (budget <= 0)
1327 return 0;
1328
1329 rx_desc = I40E_RX_DESC(rx_ring, i);
1330 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1331 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1332 I40E_RXD_QW1_STATUS_SHIFT;
1333
1334 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1335 union i40e_rx_desc *next_rxd;
1336 struct i40e_rx_buffer *rx_bi;
1337 struct sk_buff *skb;
1338 u16 vlan_tag;
1339 if (i40e_rx_is_programming_status(qword)) {
1340 i40e_clean_programming_status(rx_ring, rx_desc);
1341 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1342 goto next_desc;
1343 }
1344 rx_bi = &rx_ring->rx_bi[i];
1345 skb = rx_bi->skb;
1346 prefetch(skb->data);
1347
1348 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1349 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1350 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1351 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1352 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1353 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1354
1355 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1356 I40E_RXD_QW1_ERROR_SHIFT;
1357 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1358 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1359
1360 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1361 I40E_RXD_QW1_PTYPE_SHIFT;
1362 rx_bi->skb = NULL;
1363
1364 /* This memory barrier is needed to keep us from reading
1365 * any other fields out of the rx_desc until we know the
1366 * STATUS_DD bit is set
1367 */
1368 rmb();
1369
1370 /* Get the header and possibly the whole packet
1371 * If this is an skb from previous receive dma will be 0
1372 */
1373 if (rx_bi->dma) {
1374 u16 len;
1375
1376 if (rx_hbo)
1377 len = I40E_RX_HDR_SIZE;
1378 else if (rx_sph)
1379 len = rx_header_len;
1380 else if (rx_packet_len)
1381 len = rx_packet_len; /* 1buf/no split found */
1382 else
1383 len = rx_header_len; /* split always mode */
1384
1385 skb_put(skb, len);
1386 dma_unmap_single(rx_ring->dev,
1387 rx_bi->dma,
1388 rx_ring->rx_buf_len,
1389 DMA_FROM_DEVICE);
1390 rx_bi->dma = 0;
1391 }
1392
1393 /* Get the rest of the data if this was a header split */
1394 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1395
1396 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1397 rx_bi->page,
1398 rx_bi->page_offset,
1399 rx_packet_len);
1400
1401 skb->len += rx_packet_len;
1402 skb->data_len += rx_packet_len;
1403 skb->truesize += rx_packet_len;
1404
1405 if ((page_count(rx_bi->page) == 1) &&
1406 (page_to_nid(rx_bi->page) == current_node))
1407 get_page(rx_bi->page);
1408 else
1409 rx_bi->page = NULL;
1410
1411 dma_unmap_page(rx_ring->dev,
1412 rx_bi->page_dma,
1413 PAGE_SIZE / 2,
1414 DMA_FROM_DEVICE);
1415 rx_bi->page_dma = 0;
1416 }
1417 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1418
1419 if (unlikely(
1420 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1421 struct i40e_rx_buffer *next_buffer;
1422
1423 next_buffer = &rx_ring->rx_bi[i];
1424
1425 if (ring_is_ps_enabled(rx_ring)) {
1426 rx_bi->skb = next_buffer->skb;
1427 rx_bi->dma = next_buffer->dma;
1428 next_buffer->skb = skb;
1429 next_buffer->dma = 0;
1430 }
1431 rx_ring->rx_stats.non_eop_descs++;
1432 goto next_desc;
1433 }
1434
1435 /* ERR_MASK will only have valid bits if EOP set */
1436 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1437 dev_kfree_skb_any(skb);
1438 goto next_desc;
1439 }
1440
1441 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1442 i40e_ptype_to_hash(rx_ptype));
1443 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1444 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1445 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1446 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1447 rx_ring->last_rx_timestamp = jiffies;
1448 }
1449
1450 /* probably a little skewed due to removing CRC */
1451 total_rx_bytes += skb->len;
1452 total_rx_packets++;
1453
1454 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1455
1456 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1457
1458 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1459 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1460 : 0;
1461 i40e_receive_skb(rx_ring, skb, vlan_tag);
1462
1463 rx_ring->netdev->last_rx = jiffies;
1464 budget--;
1465next_desc:
1466 rx_desc->wb.qword1.status_error_len = 0;
1467 if (!budget)
1468 break;
1469
1470 cleaned_count++;
1471 /* return some buffers to hardware, one at a time is too slow */
1472 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1473 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1480 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1481 I40E_RXD_QW1_STATUS_SHIFT;
1482 }
1483
1484 rx_ring->next_to_clean = i;
1485 u64_stats_update_begin(&rx_ring->syncp);
1486 rx_ring->stats.packets += total_rx_packets;
1487 rx_ring->stats.bytes += total_rx_bytes;
1488 u64_stats_update_end(&rx_ring->syncp);
1489 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1490 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1491
1492 if (cleaned_count)
1493 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1494
1495 return budget > 0;
1496}
1497
1498/**
1499 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1500 * @napi: napi struct with our devices info in it
1501 * @budget: amount of work driver is allowed to do this pass, in packets
1502 *
1503 * This function will clean all queues associated with a q_vector.
1504 *
1505 * Returns the amount of work done
1506 **/
1507int i40e_napi_poll(struct napi_struct *napi, int budget)
1508{
1509 struct i40e_q_vector *q_vector =
1510 container_of(napi, struct i40e_q_vector, napi);
1511 struct i40e_vsi *vsi = q_vector->vsi;
1512 struct i40e_ring *ring;
1513 bool clean_complete = true;
1514 int budget_per_ring;
1515
1516 if (test_bit(__I40E_DOWN, &vsi->state)) {
1517 napi_complete(napi);
1518 return 0;
1519 }
1520
1521 /* Since the actual Tx work is minimal, we can give the Tx a larger
1522 * budget and be more aggressive about cleaning up the Tx descriptors.
1523 */
1524 i40e_for_each_ring(ring, q_vector->tx)
1525 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1526
1527 /* We attempt to distribute budget to each Rx queue fairly, but don't
1528 * allow the budget to go below 1 because that would exit polling early.
1529 */
1530 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1531
1532 i40e_for_each_ring(ring, q_vector->rx)
1533 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1534
1535 /* If work not completed, return budget and polling will return */
1536 if (!clean_complete)
1537 return budget;
1538
1539 /* Work is done so exit the polling mode and re-enable the interrupt */
1540 napi_complete(napi);
1541 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1542 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1543 i40e_update_dynamic_itr(q_vector);
1544
1545 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1546 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1547 i40e_irq_dynamic_enable(vsi,
1548 q_vector->v_idx + vsi->base_vector);
1549 } else {
1550 struct i40e_hw *hw = &vsi->back->hw;
1551 /* We re-enable the queue 0 cause, but
1552 * don't worry about dynamic_enable
1553 * because we left it on for the other
1554 * possible interrupts during napi
1555 */
1556 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1557 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1558 wr32(hw, I40E_QINT_RQCTL(0), qval);
1559
1560 qval = rd32(hw, I40E_QINT_TQCTL(0));
1561 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1562 wr32(hw, I40E_QINT_TQCTL(0), qval);
1563
1564 i40e_irq_dynamic_enable_icr0(vsi->back);
1565 }
1566 }
1567
1568 return 0;
1569}
1570
1571/**
1572 * i40e_atr - Add a Flow Director ATR filter
1573 * @tx_ring: ring to add programming descriptor to
1574 * @skb: send buffer
1575 * @flags: send flags
1576 * @protocol: wire protocol
1577 **/
1578static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1579 u32 flags, __be16 protocol)
1580{
1581 struct i40e_filter_program_desc *fdir_desc;
1582 struct i40e_pf *pf = tx_ring->vsi->back;
1583 union {
1584 unsigned char *network;
1585 struct iphdr *ipv4;
1586 struct ipv6hdr *ipv6;
1587 } hdr;
1588 struct tcphdr *th;
1589 unsigned int hlen;
1590 u32 flex_ptype, dtype_cmd;
1591 u16 i;
1592
1593 /* make sure ATR is enabled */
1594 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1595 return;
1596
1597 /* if sampling is disabled do nothing */
1598 if (!tx_ring->atr_sample_rate)
1599 return;
1600
1601 /* snag network header to get L4 type and address */
1602 hdr.network = skb_network_header(skb);
1603
1604 /* Currently only IPv4/IPv6 with TCP is supported */
1605 if (protocol == htons(ETH_P_IP)) {
1606 if (hdr.ipv4->protocol != IPPROTO_TCP)
1607 return;
1608
1609 /* access ihl as a u8 to avoid unaligned access on ia64 */
1610 hlen = (hdr.network[0] & 0x0F) << 2;
1611 } else if (protocol == htons(ETH_P_IPV6)) {
1612 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1613 return;
1614
1615 hlen = sizeof(struct ipv6hdr);
1616 } else {
1617 return;
1618 }
1619
1620 th = (struct tcphdr *)(hdr.network + hlen);
1621
1622 /* Due to lack of space, no more new filters can be programmed */
1623 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1624 return;
1625
1626 tx_ring->atr_count++;
1627
1628 /* sample on all syn/fin/rst packets or once every atr sample rate */
1629 if (!th->fin &&
1630 !th->syn &&
1631 !th->rst &&
1632 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1633 return;
1634
1635 tx_ring->atr_count = 0;
1636
1637 /* grab the next descriptor */
1638 i = tx_ring->next_to_use;
1639 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1640
1641 i++;
1642 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1643
1644 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1645 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1646 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1647 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1648 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1649 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1650 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1651
1652 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1653
1654 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1655
1656 dtype_cmd |= (th->fin || th->rst) ?
1657 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1658 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1659 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1660 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1661
1662 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1663 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1664
1665 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1666 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1667
1668 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1669 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1670}
1671
1672/**
1673 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1674 * @skb: send buffer
1675 * @tx_ring: ring to send buffer on
1676 * @flags: the tx flags to be set
1677 *
1678 * Checks the skb and set up correspondingly several generic transmit flags
1679 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1680 *
1681 * Returns error code indicate the frame should be dropped upon error and the
1682 * otherwise returns 0 to indicate the flags has been set properly.
1683 **/
1684static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1685 struct i40e_ring *tx_ring,
1686 u32 *flags)
1687{
1688 __be16 protocol = skb->protocol;
1689 u32 tx_flags = 0;
1690
1691 /* if we have a HW VLAN tag being added, default to the HW one */
1692 if (vlan_tx_tag_present(skb)) {
1693 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1694 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1695 /* else if it is a SW VLAN, check the next protocol and store the tag */
1696 } else if (protocol == htons(ETH_P_8021Q)) {
1697 struct vlan_hdr *vhdr, _vhdr;
1698 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1699 if (!vhdr)
1700 return -EINVAL;
1701
1702 protocol = vhdr->h_vlan_encapsulated_proto;
1703 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1704 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1705 }
1706
1707 /* Insert 802.1p priority into VLAN header */
1708 if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
1709 ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1710 (skb->priority != TC_PRIO_CONTROL))) {
1711 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1712 tx_flags |= (skb->priority & 0x7) <<
1713 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1714 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1715 struct vlan_ethhdr *vhdr;
1716 int rc;
1717
1718 rc = skb_cow_head(skb, 0);
1719 if (rc < 0)
1720 return rc;
1721 vhdr = (struct vlan_ethhdr *)skb->data;
1722 vhdr->h_vlan_TCI = htons(tx_flags >>
1723 I40E_TX_FLAGS_VLAN_SHIFT);
1724 } else {
1725 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1726 }
1727 }
1728 *flags = tx_flags;
1729 return 0;
1730}
1731
1732/**
1733 * i40e_tso - set up the tso context descriptor
1734 * @tx_ring: ptr to the ring to send
1735 * @skb: ptr to the skb we're sending
1736 * @tx_flags: the collected send information
1737 * @protocol: the send protocol
1738 * @hdr_len: ptr to the size of the packet header
1739 * @cd_tunneling: ptr to context descriptor bits
1740 *
1741 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1742 **/
1743static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1744 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1745 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1746{
1747 u32 cd_cmd, cd_tso_len, cd_mss;
1748 struct ipv6hdr *ipv6h;
1749 struct tcphdr *tcph;
1750 struct iphdr *iph;
1751 u32 l4len;
1752 int err;
1753
1754 if (!skb_is_gso(skb))
1755 return 0;
1756
1757 err = skb_cow_head(skb, 0);
1758 if (err < 0)
1759 return err;
1760
1761 if (protocol == htons(ETH_P_IP)) {
1762 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1763 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1764 iph->tot_len = 0;
1765 iph->check = 0;
1766 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1767 0, IPPROTO_TCP, 0);
1768 } else if (skb_is_gso_v6(skb)) {
1769
1770 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1771 : ipv6_hdr(skb);
1772 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1773 ipv6h->payload_len = 0;
1774 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1775 0, IPPROTO_TCP, 0);
1776 }
1777
1778 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1779 *hdr_len = (skb->encapsulation
1780 ? (skb_inner_transport_header(skb) - skb->data)
1781 : skb_transport_offset(skb)) + l4len;
1782
1783 /* find the field values */
1784 cd_cmd = I40E_TX_CTX_DESC_TSO;
1785 cd_tso_len = skb->len - *hdr_len;
1786 cd_mss = skb_shinfo(skb)->gso_size;
1787 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1788 ((u64)cd_tso_len <<
1789 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1790 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1791 return 1;
1792}
1793
1794/**
1795 * i40e_tsyn - set up the tsyn context descriptor
1796 * @tx_ring: ptr to the ring to send
1797 * @skb: ptr to the skb we're sending
1798 * @tx_flags: the collected send information
1799 *
1800 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1801 **/
1802static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1803 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1804{
1805 struct i40e_pf *pf;
1806
1807 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1808 return 0;
1809
1810 /* Tx timestamps cannot be sampled when doing TSO */
1811 if (tx_flags & I40E_TX_FLAGS_TSO)
1812 return 0;
1813
1814 /* only timestamp the outbound packet if the user has requested it and
1815 * we are not already transmitting a packet to be timestamped
1816 */
1817 pf = i40e_netdev_to_pf(tx_ring->netdev);
1818 if (pf->ptp_tx && !pf->ptp_tx_skb) {
1819 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1820 pf->ptp_tx_skb = skb_get(skb);
1821 } else {
1822 return 0;
1823 }
1824
1825 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1826 I40E_TXD_CTX_QW1_CMD_SHIFT;
1827
1828 pf->ptp_tx_start = jiffies;
1829 schedule_work(&pf->ptp_tx_work);
1830
1831 return 1;
1832}
1833
1834/**
1835 * i40e_tx_enable_csum - Enable Tx checksum offloads
1836 * @skb: send buffer
1837 * @tx_flags: Tx flags currently set
1838 * @td_cmd: Tx descriptor command bits to set
1839 * @td_offset: Tx descriptor header offsets to set
1840 * @cd_tunneling: ptr to context desc bits
1841 **/
1842static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1843 u32 *td_cmd, u32 *td_offset,
1844 struct i40e_ring *tx_ring,
1845 u32 *cd_tunneling)
1846{
1847 struct ipv6hdr *this_ipv6_hdr;
1848 unsigned int this_tcp_hdrlen;
1849 struct iphdr *this_ip_hdr;
1850 u32 network_hdr_len;
1851 u8 l4_hdr = 0;
1852
1853 if (skb->encapsulation) {
1854 network_hdr_len = skb_inner_network_header_len(skb);
1855 this_ip_hdr = inner_ip_hdr(skb);
1856 this_ipv6_hdr = inner_ipv6_hdr(skb);
1857 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1858
1859 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1860
1861 if (tx_flags & I40E_TX_FLAGS_TSO) {
1862 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1863 ip_hdr(skb)->check = 0;
1864 } else {
1865 *cd_tunneling |=
1866 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1867 }
1868 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1869 if (tx_flags & I40E_TX_FLAGS_TSO) {
1870 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1871 ip_hdr(skb)->check = 0;
1872 } else {
1873 *cd_tunneling |=
1874 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1875 }
1876 }
1877
1878 /* Now set the ctx descriptor fields */
1879 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1880 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1881 I40E_TXD_CTX_UDP_TUNNELING |
1882 ((skb_inner_network_offset(skb) -
1883 skb_transport_offset(skb)) >> 1) <<
1884 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1885
1886 } else {
1887 network_hdr_len = skb_network_header_len(skb);
1888 this_ip_hdr = ip_hdr(skb);
1889 this_ipv6_hdr = ipv6_hdr(skb);
1890 this_tcp_hdrlen = tcp_hdrlen(skb);
1891 }
1892
1893 /* Enable IP checksum offloads */
1894 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1895 l4_hdr = this_ip_hdr->protocol;
1896 /* the stack computes the IP header already, the only time we
1897 * need the hardware to recompute it is in the case of TSO.
1898 */
1899 if (tx_flags & I40E_TX_FLAGS_TSO) {
1900 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1901 this_ip_hdr->check = 0;
1902 } else {
1903 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1904 }
1905 /* Now set the td_offset for IP header length */
1906 *td_offset = (network_hdr_len >> 2) <<
1907 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1908 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1909 l4_hdr = this_ipv6_hdr->nexthdr;
1910 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1911 /* Now set the td_offset for IP header length */
1912 *td_offset = (network_hdr_len >> 2) <<
1913 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1914 }
1915 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1916 *td_offset |= (skb_network_offset(skb) >> 1) <<
1917 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1918
1919 /* Enable L4 checksum offloads */
1920 switch (l4_hdr) {
1921 case IPPROTO_TCP:
1922 /* enable checksum offloads */
1923 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1924 *td_offset |= (this_tcp_hdrlen >> 2) <<
1925 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1926 break;
1927 case IPPROTO_SCTP:
1928 /* enable SCTP checksum offload */
1929 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1930 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1931 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1932 break;
1933 case IPPROTO_UDP:
1934 /* enable UDP checksum offload */
1935 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1936 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1937 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1938 break;
1939 default:
1940 break;
1941 }
1942}
1943
1944/**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring: ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952 const u64 cd_type_cmd_tso_mss,
1953 const u32 cd_tunneling, const u32 cd_l2tag2)
1954{
1955 struct i40e_tx_context_desc *context_desc;
1956 int i = tx_ring->next_to_use;
1957
1958 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959 !cd_tunneling && !cd_l2tag2)
1960 return;
1961
1962 /* grab the next descriptor */
1963 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965 i++;
1966 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968 /* cpu_to_le32 and assign to struct fields */
1969 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1971 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1972}
1973
1974/**
1975 * i40e_tx_map - Build the Tx descriptor
1976 * @tx_ring: ring to send buffer on
1977 * @skb: send buffer
1978 * @first: first buffer info buffer to use
1979 * @tx_flags: collected send information
1980 * @hdr_len: size of the packet header
1981 * @td_cmd: the command field in the descriptor
1982 * @td_offset: offset for checksum or crc
1983 **/
1984static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1985 struct i40e_tx_buffer *first, u32 tx_flags,
1986 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1987{
1988 unsigned int data_len = skb->data_len;
1989 unsigned int size = skb_headlen(skb);
1990 struct skb_frag_struct *frag;
1991 struct i40e_tx_buffer *tx_bi;
1992 struct i40e_tx_desc *tx_desc;
1993 u16 i = tx_ring->next_to_use;
1994 u32 td_tag = 0;
1995 dma_addr_t dma;
1996 u16 gso_segs;
1997
1998 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1999 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2000 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2001 I40E_TX_FLAGS_VLAN_SHIFT;
2002 }
2003
2004 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2005 gso_segs = skb_shinfo(skb)->gso_segs;
2006 else
2007 gso_segs = 1;
2008
2009 /* multiply data chunks by size of headers */
2010 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2011 first->gso_segs = gso_segs;
2012 first->skb = skb;
2013 first->tx_flags = tx_flags;
2014
2015 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2016
2017 tx_desc = I40E_TX_DESC(tx_ring, i);
2018 tx_bi = first;
2019
2020 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2021 if (dma_mapping_error(tx_ring->dev, dma))
2022 goto dma_error;
2023
2024 /* record length, and DMA address */
2025 dma_unmap_len_set(tx_bi, len, size);
2026 dma_unmap_addr_set(tx_bi, dma, dma);
2027
2028 tx_desc->buffer_addr = cpu_to_le64(dma);
2029
2030 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2031 tx_desc->cmd_type_offset_bsz =
2032 build_ctob(td_cmd, td_offset,
2033 I40E_MAX_DATA_PER_TXD, td_tag);
2034
2035 tx_desc++;
2036 i++;
2037 if (i == tx_ring->count) {
2038 tx_desc = I40E_TX_DESC(tx_ring, 0);
2039 i = 0;
2040 }
2041
2042 dma += I40E_MAX_DATA_PER_TXD;
2043 size -= I40E_MAX_DATA_PER_TXD;
2044
2045 tx_desc->buffer_addr = cpu_to_le64(dma);
2046 }
2047
2048 if (likely(!data_len))
2049 break;
2050
2051 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2052 size, td_tag);
2053
2054 tx_desc++;
2055 i++;
2056 if (i == tx_ring->count) {
2057 tx_desc = I40E_TX_DESC(tx_ring, 0);
2058 i = 0;
2059 }
2060
2061 size = skb_frag_size(frag);
2062 data_len -= size;
2063
2064 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2065 DMA_TO_DEVICE);
2066
2067 tx_bi = &tx_ring->tx_bi[i];
2068 }
2069
2070 /* Place RS bit on last descriptor of any packet that spans across the
2071 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2072 */
2073#define WB_STRIDE 0x3
2074 if (((i & WB_STRIDE) != WB_STRIDE) &&
2075 (first <= &tx_ring->tx_bi[i]) &&
2076 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2077 tx_desc->cmd_type_offset_bsz =
2078 build_ctob(td_cmd, td_offset, size, td_tag) |
2079 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2080 I40E_TXD_QW1_CMD_SHIFT);
2081 } else {
2082 tx_desc->cmd_type_offset_bsz =
2083 build_ctob(td_cmd, td_offset, size, td_tag) |
2084 cpu_to_le64((u64)I40E_TXD_CMD <<
2085 I40E_TXD_QW1_CMD_SHIFT);
2086 }
2087
2088 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2089 tx_ring->queue_index),
2090 first->bytecount);
2091
2092 /* set the timestamp */
2093 first->time_stamp = jiffies;
2094
2095 /* Force memory writes to complete before letting h/w
2096 * know there are new descriptors to fetch. (Only
2097 * applicable for weak-ordered memory model archs,
2098 * such as IA-64).
2099 */
2100 wmb();
2101
2102 /* set next_to_watch value indicating a packet is present */
2103 first->next_to_watch = tx_desc;
2104
2105 i++;
2106 if (i == tx_ring->count)
2107 i = 0;
2108
2109 tx_ring->next_to_use = i;
2110
2111 /* notify HW of packet */
2112 writel(i, tx_ring->tail);
2113
2114 return;
2115
2116dma_error:
2117 dev_info(tx_ring->dev, "TX DMA map failed\n");
2118
2119 /* clear dma mappings for failed tx_bi map */
2120 for (;;) {
2121 tx_bi = &tx_ring->tx_bi[i];
2122 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2123 if (tx_bi == first)
2124 break;
2125 if (i == 0)
2126 i = tx_ring->count;
2127 i--;
2128 }
2129
2130 tx_ring->next_to_use = i;
2131}
2132
2133/**
2134 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2135 * @tx_ring: the ring to be checked
2136 * @size: the size buffer we want to assure is available
2137 *
2138 * Returns -EBUSY if a stop is needed, else 0
2139 **/
2140static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2141{
2142 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2143 /* Memory barrier before checking head and tail */
2144 smp_mb();
2145
2146 /* Check again in a case another CPU has just made room available. */
2147 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2148 return -EBUSY;
2149
2150 /* A reprieve! - use start_queue because it doesn't call schedule */
2151 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2152 ++tx_ring->tx_stats.restart_queue;
2153 return 0;
2154}
2155
2156/**
2157 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2158 * @tx_ring: the ring to be checked
2159 * @size: the size buffer we want to assure is available
2160 *
2161 * Returns 0 if stop is not needed
2162 **/
2163static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2164{
2165 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2166 return 0;
2167 return __i40e_maybe_stop_tx(tx_ring, size);
2168}
2169
2170/**
2171 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2172 * @skb: send buffer
2173 * @tx_ring: ring to send buffer on
2174 *
2175 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2176 * there is not enough descriptors available in this ring since we need at least
2177 * one descriptor.
2178 **/
2179static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2180 struct i40e_ring *tx_ring)
2181{
2182#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2183 unsigned int f;
2184#endif
2185 int count = 0;
2186
2187 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2188 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2189 * + 4 desc gap to avoid the cache line where head is,
2190 * + 1 desc for context descriptor,
2191 * otherwise try next time
2192 */
2193#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2194 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2195 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2196#else
2197 count += skb_shinfo(skb)->nr_frags;
2198#endif
2199 count += TXD_USE_COUNT(skb_headlen(skb));
2200 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2201 tx_ring->tx_stats.tx_busy++;
2202 return 0;
2203 }
2204 return count;
2205}
2206
2207/**
2208 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2209 * @skb: send buffer
2210 * @tx_ring: ring to send buffer on
2211 *
2212 * Returns NETDEV_TX_OK if sent, else an error code
2213 **/
2214static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2215 struct i40e_ring *tx_ring)
2216{
2217 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2218 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2219 struct i40e_tx_buffer *first;
2220 u32 td_offset = 0;
2221 u32 tx_flags = 0;
2222 __be16 protocol;
2223 u32 td_cmd = 0;
2224 u8 hdr_len = 0;
2225 int tsyn;
2226 int tso;
2227 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2228 return NETDEV_TX_BUSY;
2229
2230 /* prepare the xmit flags */
2231 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2232 goto out_drop;
2233
2234 /* obtain protocol of skb */
2235 protocol = skb->protocol;
2236
2237 /* record the location of the first descriptor for this packet */
2238 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2239
2240 /* setup IPv4/IPv6 offloads */
2241 if (protocol == htons(ETH_P_IP))
2242 tx_flags |= I40E_TX_FLAGS_IPV4;
2243 else if (protocol == htons(ETH_P_IPV6))
2244 tx_flags |= I40E_TX_FLAGS_IPV6;
2245
2246 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2247 &cd_type_cmd_tso_mss, &cd_tunneling);
2248
2249 if (tso < 0)
2250 goto out_drop;
2251 else if (tso)
2252 tx_flags |= I40E_TX_FLAGS_TSO;
2253
2254 skb_tx_timestamp(skb);
2255
2256 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2257
2258 if (tsyn)
2259 tx_flags |= I40E_TX_FLAGS_TSYN;
2260
2261 /* always enable CRC insertion offload */
2262 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2263
2264 /* Always offload the checksum, since it's in the data descriptor */
2265 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2266 tx_flags |= I40E_TX_FLAGS_CSUM;
2267
2268 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2269 tx_ring, &cd_tunneling);
2270 }
2271
2272 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2273 cd_tunneling, cd_l2tag2);
2274
2275 /* Add Flow Director ATR if it's enabled.
2276 *
2277 * NOTE: this must always be directly before the data descriptor.
2278 */
2279 i40e_atr(tx_ring, skb, tx_flags, protocol);
2280
2281 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2282 td_cmd, td_offset);
2283
2284 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2285
2286 return NETDEV_TX_OK;
2287
2288out_drop:
2289 dev_kfree_skb_any(skb);
2290 return NETDEV_TX_OK;
2291}
2292
2293/**
2294 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2295 * @skb: send buffer
2296 * @netdev: network interface device structure
2297 *
2298 * Returns NETDEV_TX_OK if sent, else an error code
2299 **/
2300netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2301{
2302 struct i40e_netdev_priv *np = netdev_priv(netdev);
2303 struct i40e_vsi *vsi = np->vsi;
2304 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2305
2306 /* hardware can't handle really short frames, hardware padding works
2307 * beyond this point
2308 */
2309 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2310 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2311 return NETDEV_TX_OK;
2312 skb->len = I40E_MIN_TX_LEN;
2313 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2314 }
2315
2316 return i40e_xmit_frame_ring(skb, tx_ring);
2317}