Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int e1000_suspend(struct device *dev);
 153static int e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
 
 
 
 
 186	.shutdown = e1000_shutdown,
 187	.err_handler = &e1000_err_handler
 188};
 189
 
 190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 191MODULE_LICENSE("GPL v2");
 
 192
 193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 194static int debug = -1;
 195module_param(debug, int, 0);
 196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 197
 198/**
 199 * e1000_get_hw_dev - helper function for getting netdev
 200 * @hw: pointer to HW struct
 201 *
 202 * return device used by hardware layer to print debugging information
 203 *
 204 **/
 205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 206{
 207	struct e1000_adapter *adapter = hw->back;
 208	return adapter->netdev;
 209}
 210
 211/**
 212 * e1000_init_module - Driver Registration Routine
 213 *
 214 * e1000_init_module is the first routine called when the driver is
 215 * loaded. All it does is register with the PCI subsystem.
 216 **/
 217static int __init e1000_init_module(void)
 218{
 219	int ret;
 220	pr_info("%s\n", e1000_driver_string);
 221
 222	pr_info("%s\n", e1000_copyright);
 223
 224	ret = pci_register_driver(&e1000_driver);
 225	if (copybreak != COPYBREAK_DEFAULT) {
 226		if (copybreak == 0)
 227			pr_info("copybreak disabled\n");
 228		else
 229			pr_info("copybreak enabled for "
 230				   "packets <= %u bytes\n", copybreak);
 231	}
 232	return ret;
 233}
 234
 235module_init(e1000_init_module);
 236
 237/**
 238 * e1000_exit_module - Driver Exit Cleanup Routine
 239 *
 240 * e1000_exit_module is called just before the driver is removed
 241 * from memory.
 242 **/
 243static void __exit e1000_exit_module(void)
 244{
 245	pci_unregister_driver(&e1000_driver);
 246}
 247
 248module_exit(e1000_exit_module);
 249
 250static int e1000_request_irq(struct e1000_adapter *adapter)
 251{
 252	struct net_device *netdev = adapter->netdev;
 253	irq_handler_t handler = e1000_intr;
 254	int irq_flags = IRQF_SHARED;
 255	int err;
 256
 257	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 258			  netdev);
 259	if (err) {
 260		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 261	}
 262
 263	return err;
 264}
 265
 266static void e1000_free_irq(struct e1000_adapter *adapter)
 267{
 268	struct net_device *netdev = adapter->netdev;
 269
 270	free_irq(adapter->pdev->irq, netdev);
 271}
 272
 273/**
 274 * e1000_irq_disable - Mask off interrupt generation on the NIC
 275 * @adapter: board private structure
 276 **/
 277static void e1000_irq_disable(struct e1000_adapter *adapter)
 278{
 279	struct e1000_hw *hw = &adapter->hw;
 280
 281	ew32(IMC, ~0);
 282	E1000_WRITE_FLUSH();
 283	synchronize_irq(adapter->pdev->irq);
 284}
 285
 286/**
 287 * e1000_irq_enable - Enable default interrupt generation settings
 288 * @adapter: board private structure
 289 **/
 290static void e1000_irq_enable(struct e1000_adapter *adapter)
 291{
 292	struct e1000_hw *hw = &adapter->hw;
 293
 294	ew32(IMS, IMS_ENABLE_MASK);
 295	E1000_WRITE_FLUSH();
 296}
 297
 298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 299{
 300	struct e1000_hw *hw = &adapter->hw;
 301	struct net_device *netdev = adapter->netdev;
 302	u16 vid = hw->mng_cookie.vlan_id;
 303	u16 old_vid = adapter->mng_vlan_id;
 304
 305	if (!e1000_vlan_used(adapter))
 306		return;
 307
 308	if (!test_bit(vid, adapter->active_vlans)) {
 309		if (hw->mng_cookie.status &
 310		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 311			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 312			adapter->mng_vlan_id = vid;
 313		} else {
 314			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 315		}
 316		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 317		    (vid != old_vid) &&
 318		    !test_bit(old_vid, adapter->active_vlans))
 319			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 320					       old_vid);
 321	} else {
 322		adapter->mng_vlan_id = vid;
 323	}
 324}
 325
 326static void e1000_init_manageability(struct e1000_adapter *adapter)
 327{
 328	struct e1000_hw *hw = &adapter->hw;
 329
 330	if (adapter->en_mng_pt) {
 331		u32 manc = er32(MANC);
 332
 333		/* disable hardware interception of ARP */
 334		manc &= ~(E1000_MANC_ARP_EN);
 335
 336		ew32(MANC, manc);
 337	}
 338}
 339
 340static void e1000_release_manageability(struct e1000_adapter *adapter)
 341{
 342	struct e1000_hw *hw = &adapter->hw;
 343
 344	if (adapter->en_mng_pt) {
 345		u32 manc = er32(MANC);
 346
 347		/* re-enable hardware interception of ARP */
 348		manc |= E1000_MANC_ARP_EN;
 349
 350		ew32(MANC, manc);
 351	}
 352}
 353
 354/**
 355 * e1000_configure - configure the hardware for RX and TX
 356 * @adapter: private board structure
 357 **/
 358static void e1000_configure(struct e1000_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	int i;
 362
 363	e1000_set_rx_mode(netdev);
 364
 365	e1000_restore_vlan(adapter);
 366	e1000_init_manageability(adapter);
 367
 368	e1000_configure_tx(adapter);
 369	e1000_setup_rctl(adapter);
 370	e1000_configure_rx(adapter);
 371	/* call E1000_DESC_UNUSED which always leaves
 372	 * at least 1 descriptor unused to make sure
 373	 * next_to_use != next_to_clean
 374	 */
 375	for (i = 0; i < adapter->num_rx_queues; i++) {
 376		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 377		adapter->alloc_rx_buf(adapter, ring,
 378				      E1000_DESC_UNUSED(ring));
 379	}
 380}
 381
 382int e1000_up(struct e1000_adapter *adapter)
 383{
 384	struct e1000_hw *hw = &adapter->hw;
 385
 386	/* hardware has been reset, we need to reload some things */
 387	e1000_configure(adapter);
 388
 389	clear_bit(__E1000_DOWN, &adapter->flags);
 390
 391	napi_enable(&adapter->napi);
 392
 393	e1000_irq_enable(adapter);
 394
 395	netif_wake_queue(adapter->netdev);
 396
 397	/* fire a link change interrupt to start the watchdog */
 398	ew32(ICS, E1000_ICS_LSC);
 399	return 0;
 400}
 401
 402/**
 403 * e1000_power_up_phy - restore link in case the phy was powered down
 404 * @adapter: address of board private structure
 405 *
 406 * The phy may be powered down to save power and turn off link when the
 407 * driver is unloaded and wake on lan is not enabled (among others)
 408 * *** this routine MUST be followed by a call to e1000_reset ***
 409 **/
 410void e1000_power_up_phy(struct e1000_adapter *adapter)
 411{
 412	struct e1000_hw *hw = &adapter->hw;
 413	u16 mii_reg = 0;
 414
 415	/* Just clear the power down bit to wake the phy back up */
 416	if (hw->media_type == e1000_media_type_copper) {
 417		/* according to the manual, the phy will retain its
 418		 * settings across a power-down/up cycle
 419		 */
 420		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 421		mii_reg &= ~MII_CR_POWER_DOWN;
 422		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 423	}
 424}
 425
 426static void e1000_power_down_phy(struct e1000_adapter *adapter)
 427{
 428	struct e1000_hw *hw = &adapter->hw;
 429
 430	/* Power down the PHY so no link is implied when interface is down *
 431	 * The PHY cannot be powered down if any of the following is true *
 432	 * (a) WoL is enabled
 433	 * (b) AMT is active
 434	 * (c) SoL/IDER session is active
 435	 */
 436	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 437	   hw->media_type == e1000_media_type_copper) {
 438		u16 mii_reg = 0;
 439
 440		switch (hw->mac_type) {
 441		case e1000_82540:
 442		case e1000_82545:
 443		case e1000_82545_rev_3:
 444		case e1000_82546:
 445		case e1000_ce4100:
 446		case e1000_82546_rev_3:
 447		case e1000_82541:
 448		case e1000_82541_rev_2:
 449		case e1000_82547:
 450		case e1000_82547_rev_2:
 451			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 452				goto out;
 453			break;
 454		default:
 455			goto out;
 456		}
 457		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 458		mii_reg |= MII_CR_POWER_DOWN;
 459		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 460		msleep(1);
 461	}
 462out:
 463	return;
 464}
 465
 466static void e1000_down_and_stop(struct e1000_adapter *adapter)
 467{
 468	set_bit(__E1000_DOWN, &adapter->flags);
 469
 470	cancel_delayed_work_sync(&adapter->watchdog_task);
 471
 472	/*
 473	 * Since the watchdog task can reschedule other tasks, we should cancel
 474	 * it first, otherwise we can run into the situation when a work is
 475	 * still running after the adapter has been turned down.
 476	 */
 477
 478	cancel_delayed_work_sync(&adapter->phy_info_task);
 479	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 480
 481	/* Only kill reset task if adapter is not resetting */
 482	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 483		cancel_work_sync(&adapter->reset_task);
 484}
 485
 486void e1000_down(struct e1000_adapter *adapter)
 487{
 488	struct e1000_hw *hw = &adapter->hw;
 489	struct net_device *netdev = adapter->netdev;
 490	u32 rctl, tctl;
 491
 
 492	/* disable receives in the hardware */
 493	rctl = er32(RCTL);
 494	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 495	/* flush and sleep below */
 496
 497	netif_tx_disable(netdev);
 498
 499	/* disable transmits in the hardware */
 500	tctl = er32(TCTL);
 501	tctl &= ~E1000_TCTL_EN;
 502	ew32(TCTL, tctl);
 503	/* flush both disables and wait for them to finish */
 504	E1000_WRITE_FLUSH();
 505	msleep(10);
 506
 507	/* Set the carrier off after transmits have been disabled in the
 508	 * hardware, to avoid race conditions with e1000_watchdog() (which
 509	 * may be running concurrently to us, checking for the carrier
 510	 * bit to decide whether it should enable transmits again). Such
 511	 * a race condition would result into transmission being disabled
 512	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 513	 */
 514	netif_carrier_off(netdev);
 515
 516	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
 517	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
 518	napi_disable(&adapter->napi);
 519
 520	e1000_irq_disable(adapter);
 521
 522	/* Setting DOWN must be after irq_disable to prevent
 523	 * a screaming interrupt.  Setting DOWN also prevents
 524	 * tasks from rescheduling.
 525	 */
 526	e1000_down_and_stop(adapter);
 527
 528	adapter->link_speed = 0;
 529	adapter->link_duplex = 0;
 
 530
 531	e1000_reset(adapter);
 532	e1000_clean_all_tx_rings(adapter);
 533	e1000_clean_all_rx_rings(adapter);
 534}
 535
 536void e1000_reinit_locked(struct e1000_adapter *adapter)
 537{
 
 538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539		msleep(1);
 540
 541	/* only run the task if not already down */
 542	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 543		e1000_down(adapter);
 544		e1000_up(adapter);
 545	}
 546
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_eth_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		fallthrough;
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
 
 
 
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398	napi_enable(&adapter->napi);
1399	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402	e1000_irq_enable(adapter);
1403
1404	netif_start_queue(netdev);
1405
1406	/* fire a link status change interrupt to start the watchdog */
1407	ew32(ICS, E1000_ICS_LSC);
1408
1409	return E1000_SUCCESS;
1410
1411err_req_irq:
1412	e1000_power_down_phy(adapter);
1413	e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415	e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417	e1000_reset(adapter);
1418
1419	return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS.  The hardware is still under the drivers control, but
1430 * needs to be disabled.  A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435	struct e1000_adapter *adapter = netdev_priv(netdev);
1436	struct e1000_hw *hw = &adapter->hw;
1437	int count = E1000_CHECK_RESET_COUNT;
1438
1439	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440		usleep_range(10000, 20000);
1441
1442	WARN_ON(count < 0);
1443
1444	/* signal that we're down so that the reset task will no longer run */
1445	set_bit(__E1000_DOWN, &adapter->flags);
1446	clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448	e1000_down(adapter);
1449	e1000_power_down_phy(adapter);
1450	e1000_free_irq(adapter);
1451
1452	e1000_free_all_tx_resources(adapter);
1453	e1000_free_all_rx_resources(adapter);
1454
1455	/* kill manageability vlan ID if supported, but not if a vlan with
1456	 * the same ID is registered on the host OS (let 8021q kill it)
1457	 */
1458	if ((hw->mng_cookie.status &
1459	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462				       adapter->mng_vlan_id);
1463	}
1464
1465	return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475				  unsigned long len)
1476{
1477	struct e1000_hw *hw = &adapter->hw;
1478	unsigned long begin = (unsigned long)start;
1479	unsigned long end = begin + len;
1480
1481	/* First rev 82545 and 82546 need to not allow any memory
1482	 * write location to cross 64k boundary due to errata 23
1483	 */
1484	if (hw->mac_type == e1000_82545 ||
1485	    hw->mac_type == e1000_ce4100 ||
1486	    hw->mac_type == e1000_82546) {
1487		return ((begin ^ (end - 1)) >> 16) == 0;
1488	}
1489
1490	return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr:    tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501				    struct e1000_tx_ring *txdr)
1502{
1503	struct pci_dev *pdev = adapter->pdev;
1504	int size;
1505
1506	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507	txdr->buffer_info = vzalloc(size);
1508	if (!txdr->buffer_info)
1509		return -ENOMEM;
1510
1511	/* round up to nearest 4K */
1512
1513	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514	txdr->size = ALIGN(txdr->size, 4096);
1515
1516	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517					GFP_KERNEL);
1518	if (!txdr->desc) {
1519setup_tx_desc_die:
1520		vfree(txdr->buffer_info);
1521		return -ENOMEM;
1522	}
1523
1524	/* Fix for errata 23, can't cross 64kB boundary */
1525	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526		void *olddesc = txdr->desc;
1527		dma_addr_t olddma = txdr->dma;
1528		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529		      txdr->size, txdr->desc);
1530		/* Try again, without freeing the previous */
1531		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532						&txdr->dma, GFP_KERNEL);
1533		/* Failed allocation, critical failure */
1534		if (!txdr->desc) {
1535			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536					  olddma);
1537			goto setup_tx_desc_die;
1538		}
1539
1540		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541			/* give up */
1542			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543					  txdr->dma);
1544			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545					  olddma);
1546			e_err(probe, "Unable to allocate aligned memory "
1547			      "for the transmit descriptor ring\n");
1548			vfree(txdr->buffer_info);
1549			return -ENOMEM;
1550		} else {
1551			/* Free old allocation, new allocation was successful */
1552			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553					  olddma);
1554		}
1555	}
1556	memset(txdr->desc, 0, txdr->size);
1557
1558	txdr->next_to_use = 0;
1559	txdr->next_to_clean = 0;
1560
1561	return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * 				  (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573	int i, err = 0;
1574
1575	for (i = 0; i < adapter->num_tx_queues; i++) {
1576		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577		if (err) {
1578			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579			for (i-- ; i >= 0; i--)
1580				e1000_free_tx_resources(adapter,
1581							&adapter->tx_ring[i]);
1582			break;
1583		}
1584	}
1585
1586	return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597	u64 tdba;
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 tdlen, tctl, tipg;
1600	u32 ipgr1, ipgr2;
1601
1602	/* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604	switch (adapter->num_tx_queues) {
1605	case 1:
1606	default:
1607		tdba = adapter->tx_ring[0].dma;
1608		tdlen = adapter->tx_ring[0].count *
1609			sizeof(struct e1000_tx_desc);
1610		ew32(TDLEN, tdlen);
1611		ew32(TDBAH, (tdba >> 32));
1612		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613		ew32(TDT, 0);
1614		ew32(TDH, 0);
1615		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDH : E1000_82542_TDH);
1617		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDT : E1000_82542_TDT);
1619		break;
1620	}
1621
1622	/* Set the default values for the Tx Inter Packet Gap timer */
1623	if ((hw->media_type == e1000_media_type_fiber ||
1624	     hw->media_type == e1000_media_type_internal_serdes))
1625		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626	else
1627		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629	switch (hw->mac_type) {
1630	case e1000_82542_rev2_0:
1631	case e1000_82542_rev2_1:
1632		tipg = DEFAULT_82542_TIPG_IPGT;
1633		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635		break;
1636	default:
1637		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639		break;
1640	}
1641	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643	ew32(TIPG, tipg);
1644
1645	/* Set the Tx Interrupt Delay register */
1646
1647	ew32(TIDV, adapter->tx_int_delay);
1648	if (hw->mac_type >= e1000_82540)
1649		ew32(TADV, adapter->tx_abs_int_delay);
1650
1651	/* Program the Transmit Control Register */
1652
1653	tctl = er32(TCTL);
1654	tctl &= ~E1000_TCTL_CT;
1655	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658	e1000_config_collision_dist(hw);
1659
1660	/* Setup Transmit Descriptor Settings for eop descriptor */
1661	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663	/* only set IDE if we are delaying interrupts using the timers */
1664	if (adapter->tx_int_delay)
1665		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667	if (hw->mac_type < e1000_82543)
1668		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669	else
1670		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672	/* Cache if we're 82544 running in PCI-X because we'll
1673	 * need this to apply a workaround later in the send path.
1674	 */
1675	if (hw->mac_type == e1000_82544 &&
1676	    hw->bus_type == e1000_bus_type_pcix)
1677		adapter->pcix_82544 = true;
1678
1679	ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691				    struct e1000_rx_ring *rxdr)
1692{
1693	struct pci_dev *pdev = adapter->pdev;
1694	int size, desc_len;
1695
1696	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697	rxdr->buffer_info = vzalloc(size);
1698	if (!rxdr->buffer_info)
1699		return -ENOMEM;
1700
1701	desc_len = sizeof(struct e1000_rx_desc);
1702
1703	/* Round up to nearest 4K */
1704
1705	rxdr->size = rxdr->count * desc_len;
1706	rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709					GFP_KERNEL);
1710	if (!rxdr->desc) {
1711setup_rx_desc_die:
1712		vfree(rxdr->buffer_info);
1713		return -ENOMEM;
1714	}
1715
1716	/* Fix for errata 23, can't cross 64kB boundary */
1717	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718		void *olddesc = rxdr->desc;
1719		dma_addr_t olddma = rxdr->dma;
1720		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721		      rxdr->size, rxdr->desc);
1722		/* Try again, without freeing the previous */
1723		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724						&rxdr->dma, GFP_KERNEL);
1725		/* Failed allocation, critical failure */
1726		if (!rxdr->desc) {
1727			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728					  olddma);
1729			goto setup_rx_desc_die;
1730		}
1731
1732		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733			/* give up */
1734			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735					  rxdr->dma);
1736			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737					  olddma);
1738			e_err(probe, "Unable to allocate aligned memory for "
1739			      "the Rx descriptor ring\n");
1740			goto setup_rx_desc_die;
1741		} else {
1742			/* Free old allocation, new allocation was successful */
1743			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744					  olddma);
1745		}
1746	}
1747	memset(rxdr->desc, 0, rxdr->size);
1748
1749	rxdr->next_to_clean = 0;
1750	rxdr->next_to_use = 0;
1751	rxdr->rx_skb_top = NULL;
1752
1753	return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * 				  (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765	int i, err = 0;
1766
1767	for (i = 0; i < adapter->num_rx_queues; i++) {
1768		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769		if (err) {
1770			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771			for (i-- ; i >= 0; i--)
1772				e1000_free_rx_resources(adapter,
1773							&adapter->rx_ring[i]);
1774			break;
1775		}
1776	}
1777
1778	return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787	struct e1000_hw *hw = &adapter->hw;
1788	u32 rctl;
1789
1790	rctl = er32(RCTL);
1791
1792	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795		E1000_RCTL_RDMTS_HALF |
1796		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798	if (hw->tbi_compatibility_on == 1)
1799		rctl |= E1000_RCTL_SBP;
1800	else
1801		rctl &= ~E1000_RCTL_SBP;
1802
1803	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804		rctl &= ~E1000_RCTL_LPE;
1805	else
1806		rctl |= E1000_RCTL_LPE;
1807
1808	/* Setup buffer sizes */
1809	rctl &= ~E1000_RCTL_SZ_4096;
1810	rctl |= E1000_RCTL_BSEX;
1811	switch (adapter->rx_buffer_len) {
1812	case E1000_RXBUFFER_2048:
1813	default:
1814		rctl |= E1000_RCTL_SZ_2048;
1815		rctl &= ~E1000_RCTL_BSEX;
1816		break;
1817	case E1000_RXBUFFER_4096:
1818		rctl |= E1000_RCTL_SZ_4096;
1819		break;
1820	case E1000_RXBUFFER_8192:
1821		rctl |= E1000_RCTL_SZ_8192;
1822		break;
1823	case E1000_RXBUFFER_16384:
1824		rctl |= E1000_RCTL_SZ_16384;
1825		break;
1826	}
1827
1828	/* This is useful for sniffing bad packets. */
1829	if (adapter->netdev->features & NETIF_F_RXALL) {
1830		/* UPE and MPE will be handled by normal PROMISC logic
1831		 * in e1000e_set_rx_mode
1832		 */
1833		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838			  E1000_RCTL_DPF | /* Allow filtered pause */
1839			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841		 * and that breaks VLANs.
1842		 */
1843	}
1844
1845	ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856	u64 rdba;
1857	struct e1000_hw *hw = &adapter->hw;
1858	u32 rdlen, rctl, rxcsum;
1859
1860	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861		rdlen = adapter->rx_ring[0].count *
1862			sizeof(struct e1000_rx_desc);
1863		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865	} else {
1866		rdlen = adapter->rx_ring[0].count *
1867			sizeof(struct e1000_rx_desc);
1868		adapter->clean_rx = e1000_clean_rx_irq;
1869		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870	}
1871
1872	/* disable receives while setting up the descriptors */
1873	rctl = er32(RCTL);
1874	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876	/* set the Receive Delay Timer Register */
1877	ew32(RDTR, adapter->rx_int_delay);
1878
1879	if (hw->mac_type >= e1000_82540) {
1880		ew32(RADV, adapter->rx_abs_int_delay);
1881		if (adapter->itr_setting != 0)
1882			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883	}
1884
1885	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886	 * the Base and Length of the Rx Descriptor Ring
1887	 */
1888	switch (adapter->num_rx_queues) {
1889	case 1:
1890	default:
1891		rdba = adapter->rx_ring[0].dma;
1892		ew32(RDLEN, rdlen);
1893		ew32(RDBAH, (rdba >> 32));
1894		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895		ew32(RDT, 0);
1896		ew32(RDH, 0);
1897		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDH : E1000_82542_RDH);
1899		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDT : E1000_82542_RDT);
1901		break;
1902	}
1903
1904	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905	if (hw->mac_type >= e1000_82543) {
1906		rxcsum = er32(RXCSUM);
1907		if (adapter->rx_csum)
1908			rxcsum |= E1000_RXCSUM_TUOFL;
1909		else
1910			/* don't need to clear IPPCSE as it defaults to 0 */
1911			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912		ew32(RXCSUM, rxcsum);
1913	}
1914
1915	/* Enable Receives */
1916	ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927				    struct e1000_tx_ring *tx_ring)
1928{
1929	struct pci_dev *pdev = adapter->pdev;
1930
1931	e1000_clean_tx_ring(adapter, tx_ring);
1932
1933	vfree(tx_ring->buffer_info);
1934	tx_ring->buffer_info = NULL;
1935
1936	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937			  tx_ring->dma);
1938
1939	tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950	int i;
1951
1952	for (i = 0; i < adapter->num_tx_queues; i++)
1953		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958				 struct e1000_tx_buffer *buffer_info,
1959				 int budget)
1960{
1961	if (buffer_info->dma) {
1962		if (buffer_info->mapped_as_page)
1963			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964				       buffer_info->length, DMA_TO_DEVICE);
1965		else
1966			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967					 buffer_info->length,
1968					 DMA_TO_DEVICE);
1969		buffer_info->dma = 0;
1970	}
1971	if (buffer_info->skb) {
1972		napi_consume_skb(buffer_info->skb, budget);
1973		buffer_info->skb = NULL;
1974	}
1975	buffer_info->time_stamp = 0;
1976	/* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985				struct e1000_tx_ring *tx_ring)
1986{
1987	struct e1000_hw *hw = &adapter->hw;
1988	struct e1000_tx_buffer *buffer_info;
1989	unsigned long size;
1990	unsigned int i;
1991
1992	/* Free all the Tx ring sk_buffs */
1993
1994	for (i = 0; i < tx_ring->count; i++) {
1995		buffer_info = &tx_ring->buffer_info[i];
1996		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997	}
1998
1999	netdev_reset_queue(adapter->netdev);
2000	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001	memset(tx_ring->buffer_info, 0, size);
2002
2003	/* Zero out the descriptor ring */
2004
2005	memset(tx_ring->desc, 0, tx_ring->size);
2006
2007	tx_ring->next_to_use = 0;
2008	tx_ring->next_to_clean = 0;
2009	tx_ring->last_tx_tso = false;
2010
2011	writel(0, hw->hw_addr + tx_ring->tdh);
2012	writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021	int i;
2022
2023	for (i = 0; i < adapter->num_tx_queues; i++)
2024		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035				    struct e1000_rx_ring *rx_ring)
2036{
2037	struct pci_dev *pdev = adapter->pdev;
2038
2039	e1000_clean_rx_ring(adapter, rx_ring);
2040
2041	vfree(rx_ring->buffer_info);
2042	rx_ring->buffer_info = NULL;
2043
2044	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045			  rx_ring->dma);
2046
2047	rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058	int i;
2059
2060	for (i = 0; i < adapter->num_rx_queues; i++)
2061		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073	unsigned int len = e1000_frag_len(a);
2074	u8 *data = netdev_alloc_frag(len);
2075
2076	if (likely(data))
2077		data += E1000_HEADROOM;
2078	return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087				struct e1000_rx_ring *rx_ring)
2088{
2089	struct e1000_hw *hw = &adapter->hw;
2090	struct e1000_rx_buffer *buffer_info;
2091	struct pci_dev *pdev = adapter->pdev;
2092	unsigned long size;
2093	unsigned int i;
2094
2095	/* Free all the Rx netfrags */
2096	for (i = 0; i < rx_ring->count; i++) {
2097		buffer_info = &rx_ring->buffer_info[i];
2098		if (adapter->clean_rx == e1000_clean_rx_irq) {
2099			if (buffer_info->dma)
2100				dma_unmap_single(&pdev->dev, buffer_info->dma,
2101						 adapter->rx_buffer_len,
2102						 DMA_FROM_DEVICE);
2103			if (buffer_info->rxbuf.data) {
2104				skb_free_frag(buffer_info->rxbuf.data);
2105				buffer_info->rxbuf.data = NULL;
2106			}
2107		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108			if (buffer_info->dma)
2109				dma_unmap_page(&pdev->dev, buffer_info->dma,
2110					       adapter->rx_buffer_len,
2111					       DMA_FROM_DEVICE);
2112			if (buffer_info->rxbuf.page) {
2113				put_page(buffer_info->rxbuf.page);
2114				buffer_info->rxbuf.page = NULL;
2115			}
2116		}
2117
2118		buffer_info->dma = 0;
 
 
 
 
 
 
 
 
2119	}
2120
2121	/* there also may be some cached data from a chained receive */
2122	napi_free_frags(&adapter->napi);
2123	rx_ring->rx_skb_top = NULL;
 
 
2124
2125	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126	memset(rx_ring->buffer_info, 0, size);
2127
2128	/* Zero out the descriptor ring */
2129	memset(rx_ring->desc, 0, rx_ring->size);
2130
2131	rx_ring->next_to_clean = 0;
2132	rx_ring->next_to_use = 0;
2133
2134	writel(0, hw->hw_addr + rx_ring->rdh);
2135	writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144	int i;
2145
2146	for (i = 0; i < adapter->num_rx_queues; i++)
2147		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155	struct e1000_hw *hw = &adapter->hw;
2156	struct net_device *netdev = adapter->netdev;
2157	u32 rctl;
2158
2159	e1000_pci_clear_mwi(hw);
2160
2161	rctl = er32(RCTL);
2162	rctl |= E1000_RCTL_RST;
2163	ew32(RCTL, rctl);
2164	E1000_WRITE_FLUSH();
2165	mdelay(5);
2166
2167	if (netif_running(netdev))
2168		e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173	struct e1000_hw *hw = &adapter->hw;
2174	struct net_device *netdev = adapter->netdev;
2175	u32 rctl;
2176
2177	rctl = er32(RCTL);
2178	rctl &= ~E1000_RCTL_RST;
2179	ew32(RCTL, rctl);
2180	E1000_WRITE_FLUSH();
2181	mdelay(5);
2182
2183	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184		e1000_pci_set_mwi(hw);
2185
2186	if (netif_running(netdev)) {
2187		/* No need to loop, because 82542 supports only 1 queue */
2188		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189		e1000_configure_rx(adapter);
2190		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191	}
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203	struct e1000_adapter *adapter = netdev_priv(netdev);
2204	struct e1000_hw *hw = &adapter->hw;
2205	struct sockaddr *addr = p;
2206
2207	if (!is_valid_ether_addr(addr->sa_data))
2208		return -EADDRNOTAVAIL;
2209
2210	/* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212	if (hw->mac_type == e1000_82542_rev2_0)
2213		e1000_enter_82542_rst(adapter);
2214
2215	eth_hw_addr_set(netdev, addr->sa_data);
2216	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218	e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220	if (hw->mac_type == e1000_82542_rev2_0)
2221		e1000_leave_82542_rst(adapter);
2222
2223	return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237	struct e1000_adapter *adapter = netdev_priv(netdev);
2238	struct e1000_hw *hw = &adapter->hw;
2239	struct netdev_hw_addr *ha;
2240	bool use_uc = false;
2241	u32 rctl;
2242	u32 hash_value;
2243	int i, rar_entries = E1000_RAR_ENTRIES;
2244	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247	if (!mcarray)
2248		return;
2249
2250	/* Check for Promiscuous and All Multicast modes */
2251
2252	rctl = er32(RCTL);
2253
2254	if (netdev->flags & IFF_PROMISC) {
2255		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256		rctl &= ~E1000_RCTL_VFE;
2257	} else {
2258		if (netdev->flags & IFF_ALLMULTI)
2259			rctl |= E1000_RCTL_MPE;
2260		else
2261			rctl &= ~E1000_RCTL_MPE;
2262		/* Enable VLAN filter if there is a VLAN */
2263		if (e1000_vlan_used(adapter))
2264			rctl |= E1000_RCTL_VFE;
2265	}
2266
2267	if (netdev_uc_count(netdev) > rar_entries - 1) {
2268		rctl |= E1000_RCTL_UPE;
2269	} else if (!(netdev->flags & IFF_PROMISC)) {
2270		rctl &= ~E1000_RCTL_UPE;
2271		use_uc = true;
2272	}
2273
2274	ew32(RCTL, rctl);
2275
2276	/* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278	if (hw->mac_type == e1000_82542_rev2_0)
2279		e1000_enter_82542_rst(adapter);
2280
2281	/* load the first 14 addresses into the exact filters 1-14. Unicast
2282	 * addresses take precedence to avoid disabling unicast filtering
2283	 * when possible.
2284	 *
2285	 * RAR 0 is used for the station MAC address
2286	 * if there are not 14 addresses, go ahead and clear the filters
2287	 */
2288	i = 1;
2289	if (use_uc)
2290		netdev_for_each_uc_addr(ha, netdev) {
2291			if (i == rar_entries)
2292				break;
2293			e1000_rar_set(hw, ha->addr, i++);
2294		}
2295
2296	netdev_for_each_mc_addr(ha, netdev) {
2297		if (i == rar_entries) {
2298			/* load any remaining addresses into the hash table */
2299			u32 hash_reg, hash_bit, mta;
2300			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301			hash_reg = (hash_value >> 5) & 0x7F;
2302			hash_bit = hash_value & 0x1F;
2303			mta = (1 << hash_bit);
2304			mcarray[hash_reg] |= mta;
2305		} else {
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308	}
2309
2310	for (; i < rar_entries; i++) {
2311		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312		E1000_WRITE_FLUSH();
2313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314		E1000_WRITE_FLUSH();
2315	}
2316
2317	/* write the hash table completely, write from bottom to avoid
2318	 * both stupid write combining chipsets, and flushing each write
2319	 */
2320	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321		/* If we are on an 82544 has an errata where writing odd
2322		 * offsets overwrites the previous even offset, but writing
2323		 * backwards over the range solves the issue by always
2324		 * writing the odd offset first
2325		 */
2326		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327	}
2328	E1000_WRITE_FLUSH();
2329
2330	if (hw->mac_type == e1000_82542_rev2_0)
2331		e1000_leave_82542_rst(adapter);
2332
2333	kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345	struct e1000_adapter *adapter = container_of(work,
2346						     struct e1000_adapter,
2347						     phy_info_task.work);
2348
2349	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     fifo_stall_task.work);
2361	struct e1000_hw *hw = &adapter->hw;
2362	struct net_device *netdev = adapter->netdev;
2363	u32 tctl;
2364
2365	if (atomic_read(&adapter->tx_fifo_stall)) {
2366		if ((er32(TDT) == er32(TDH)) &&
2367		   (er32(TDFT) == er32(TDFH)) &&
2368		   (er32(TDFTS) == er32(TDFHS))) {
2369			tctl = er32(TCTL);
2370			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371			ew32(TDFT, adapter->tx_head_addr);
2372			ew32(TDFH, adapter->tx_head_addr);
2373			ew32(TDFTS, adapter->tx_head_addr);
2374			ew32(TDFHS, adapter->tx_head_addr);
2375			ew32(TCTL, tctl);
2376			E1000_WRITE_FLUSH();
2377
2378			adapter->tx_fifo_head = 0;
2379			atomic_set(&adapter->tx_fifo_stall, 0);
2380			netif_wake_queue(netdev);
2381		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383		}
2384	}
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389	struct e1000_hw *hw = &adapter->hw;
2390	bool link_active = false;
2391
2392	/* get_link_status is set on LSC (link status) interrupt or rx
2393	 * sequence error interrupt (except on intel ce4100).
2394	 * get_link_status will stay false until the
2395	 * e1000_check_for_link establishes link for copper adapters
2396	 * ONLY
2397	 */
2398	switch (hw->media_type) {
2399	case e1000_media_type_copper:
2400		if (hw->mac_type == e1000_ce4100)
2401			hw->get_link_status = 1;
2402		if (hw->get_link_status) {
2403			e1000_check_for_link(hw);
2404			link_active = !hw->get_link_status;
2405		} else {
2406			link_active = true;
2407		}
2408		break;
2409	case e1000_media_type_fiber:
2410		e1000_check_for_link(hw);
2411		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412		break;
2413	case e1000_media_type_internal_serdes:
2414		e1000_check_for_link(hw);
2415		link_active = hw->serdes_has_link;
2416		break;
2417	default:
2418		break;
2419	}
2420
2421	return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430	struct e1000_adapter *adapter = container_of(work,
2431						     struct e1000_adapter,
2432						     watchdog_task.work);
2433	struct e1000_hw *hw = &adapter->hw;
2434	struct net_device *netdev = adapter->netdev;
2435	struct e1000_tx_ring *txdr = adapter->tx_ring;
2436	u32 link, tctl;
2437
2438	link = e1000_has_link(adapter);
2439	if ((netif_carrier_ok(netdev)) && link)
2440		goto link_up;
2441
2442	if (link) {
2443		if (!netif_carrier_ok(netdev)) {
2444			u32 ctrl;
 
2445			/* update snapshot of PHY registers on LSC */
2446			e1000_get_speed_and_duplex(hw,
2447						   &adapter->link_speed,
2448						   &adapter->link_duplex);
2449
2450			ctrl = er32(CTRL);
2451			pr_info("%s NIC Link is Up %d Mbps %s, "
2452				"Flow Control: %s\n",
2453				netdev->name,
2454				adapter->link_speed,
2455				adapter->link_duplex == FULL_DUPLEX ?
2456				"Full Duplex" : "Half Duplex",
2457				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460				E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462			/* adjust timeout factor according to speed/duplex */
2463			adapter->tx_timeout_factor = 1;
2464			switch (adapter->link_speed) {
2465			case SPEED_10:
 
2466				adapter->tx_timeout_factor = 16;
2467				break;
2468			case SPEED_100:
 
2469				/* maybe add some timeout factor ? */
2470				break;
2471			}
2472
2473			/* enable transmits in the hardware */
2474			tctl = er32(TCTL);
2475			tctl |= E1000_TCTL_EN;
2476			ew32(TCTL, tctl);
2477
2478			netif_carrier_on(netdev);
2479			if (!test_bit(__E1000_DOWN, &adapter->flags))
2480				schedule_delayed_work(&adapter->phy_info_task,
2481						      2 * HZ);
2482			adapter->smartspeed = 0;
2483		}
2484	} else {
2485		if (netif_carrier_ok(netdev)) {
2486			adapter->link_speed = 0;
2487			adapter->link_duplex = 0;
2488			pr_info("%s NIC Link is Down\n",
2489				netdev->name);
2490			netif_carrier_off(netdev);
2491
2492			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493				schedule_delayed_work(&adapter->phy_info_task,
2494						      2 * HZ);
2495		}
2496
2497		e1000_smartspeed(adapter);
2498	}
2499
2500link_up:
2501	e1000_update_stats(adapter);
2502
2503	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504	adapter->tpt_old = adapter->stats.tpt;
2505	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506	adapter->colc_old = adapter->stats.colc;
2507
2508	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509	adapter->gorcl_old = adapter->stats.gorcl;
2510	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511	adapter->gotcl_old = adapter->stats.gotcl;
2512
2513	e1000_update_adaptive(hw);
2514
2515	if (!netif_carrier_ok(netdev)) {
2516		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517			/* We've lost link, so the controller stops DMA,
2518			 * but we've got queued Tx work that's never going
2519			 * to get done, so reset controller to flush Tx.
2520			 * (Do the reset outside of interrupt context).
2521			 */
2522			adapter->tx_timeout_count++;
2523			schedule_work(&adapter->reset_task);
2524			/* exit immediately since reset is imminent */
2525			return;
2526		}
2527	}
2528
2529	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2532		 * Total asymmetrical Tx or Rx gets ITR=8000;
2533		 * everyone else is between 2000-8000.
2534		 */
2535		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536		u32 dif = (adapter->gotcl > adapter->gorcl ?
2537			    adapter->gotcl - adapter->gorcl :
2538			    adapter->gorcl - adapter->gotcl) / 10000;
2539		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541		ew32(ITR, 1000000000 / (itr * 256));
2542	}
2543
2544	/* Cause software interrupt to ensure rx ring is cleaned */
2545	ew32(ICS, E1000_ICS_RXDMT0);
2546
2547	/* Force detection of hung controller every watchdog period */
2548	adapter->detect_tx_hung = true;
2549
2550	/* Reschedule the task */
2551	if (!test_bit(__E1000_DOWN, &adapter->flags))
2552		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556	lowest_latency = 0,
2557	low_latency = 1,
2558	bulk_latency = 2,
2559	latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 *      Stores a new ITR value based on packets and byte
2570 *      counts during the last interrupt.  The advantage of per interrupt
2571 *      computation is faster updates and more accurate ITR for the current
2572 *      traffic pattern.  Constants in this function were computed
2573 *      based on theoretical maximum wire speed and thresholds were set based
2574 *      on testing data as well as attempting to minimize response time
2575 *      while increasing bulk throughput.
2576 *      this functionality is controlled by the InterruptThrottleRate module
2577 *      parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580				     u16 itr_setting, int packets, int bytes)
2581{
2582	unsigned int retval = itr_setting;
2583	struct e1000_hw *hw = &adapter->hw;
2584
2585	if (unlikely(hw->mac_type < e1000_82540))
2586		goto update_itr_done;
2587
2588	if (packets == 0)
2589		goto update_itr_done;
2590
2591	switch (itr_setting) {
2592	case lowest_latency:
2593		/* jumbo frames get bulk treatment*/
2594		if (bytes/packets > 8000)
2595			retval = bulk_latency;
2596		else if ((packets < 5) && (bytes > 512))
2597			retval = low_latency;
2598		break;
2599	case low_latency:  /* 50 usec aka 20000 ints/s */
2600		if (bytes > 10000) {
2601			/* jumbo frames need bulk latency setting */
2602			if (bytes/packets > 8000)
2603				retval = bulk_latency;
2604			else if ((packets < 10) || ((bytes/packets) > 1200))
2605				retval = bulk_latency;
2606			else if ((packets > 35))
2607				retval = lowest_latency;
2608		} else if (bytes/packets > 2000)
2609			retval = bulk_latency;
2610		else if (packets <= 2 && bytes < 512)
2611			retval = lowest_latency;
2612		break;
2613	case bulk_latency: /* 250 usec aka 4000 ints/s */
2614		if (bytes > 25000) {
2615			if (packets > 35)
2616				retval = low_latency;
2617		} else if (bytes < 6000) {
2618			retval = low_latency;
2619		}
2620		break;
2621	}
2622
2623update_itr_done:
2624	return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u16 current_itr;
2631	u32 new_itr = adapter->itr;
2632
2633	if (unlikely(hw->mac_type < e1000_82540))
2634		return;
2635
2636	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2638		new_itr = 4000;
2639		goto set_itr_now;
2640	}
2641
2642	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643					   adapter->total_tx_packets,
2644					   adapter->total_tx_bytes);
2645	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647		adapter->tx_itr = low_latency;
2648
2649	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650					   adapter->total_rx_packets,
2651					   adapter->total_rx_bytes);
2652	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654		adapter->rx_itr = low_latency;
2655
2656	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658	switch (current_itr) {
2659	/* counts and packets in update_itr are dependent on these numbers */
2660	case lowest_latency:
2661		new_itr = 70000;
2662		break;
2663	case low_latency:
2664		new_itr = 20000; /* aka hwitr = ~200 */
2665		break;
2666	case bulk_latency:
2667		new_itr = 4000;
2668		break;
2669	default:
2670		break;
2671	}
2672
2673set_itr_now:
2674	if (new_itr != adapter->itr) {
2675		/* this attempts to bias the interrupt rate towards Bulk
2676		 * by adding intermediate steps when interrupt rate is
2677		 * increasing
2678		 */
2679		new_itr = new_itr > adapter->itr ?
2680			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681			  new_itr;
2682		adapter->itr = new_itr;
2683		ew32(ITR, 1000000000 / (new_itr * 256));
2684	}
2685}
2686
2687#define E1000_TX_FLAGS_CSUM		0x00000001
2688#define E1000_TX_FLAGS_VLAN		0x00000002
2689#define E1000_TX_FLAGS_TSO		0x00000004
2690#define E1000_TX_FLAGS_IPV4		0x00000008
2691#define E1000_TX_FLAGS_NO_FCS		0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT	16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697		     __be16 protocol)
2698{
2699	struct e1000_context_desc *context_desc;
2700	struct e1000_tx_buffer *buffer_info;
2701	unsigned int i;
2702	u32 cmd_length = 0;
2703	u16 ipcse = 0, tucse, mss;
2704	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706	if (skb_is_gso(skb)) {
2707		int err;
2708
2709		err = skb_cow_head(skb, 0);
2710		if (err < 0)
2711			return err;
2712
2713		hdr_len = skb_tcp_all_headers(skb);
2714		mss = skb_shinfo(skb)->gso_size;
2715		if (protocol == htons(ETH_P_IP)) {
2716			struct iphdr *iph = ip_hdr(skb);
2717			iph->tot_len = 0;
2718			iph->check = 0;
2719			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720								 iph->daddr, 0,
2721								 IPPROTO_TCP,
2722								 0);
2723			cmd_length = E1000_TXD_CMD_IP;
2724			ipcse = skb_transport_offset(skb) - 1;
2725		} else if (skb_is_gso_v6(skb)) {
2726			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2727			ipcse = 0;
2728		}
2729		ipcss = skb_network_offset(skb);
2730		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731		tucss = skb_transport_offset(skb);
2732		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733		tucse = 0;
2734
2735		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738		i = tx_ring->next_to_use;
2739		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740		buffer_info = &tx_ring->buffer_info[i];
2741
2742		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752		buffer_info->time_stamp = jiffies;
2753		buffer_info->next_to_watch = i;
2754
2755		if (++i == tx_ring->count)
2756			i = 0;
2757
2758		tx_ring->next_to_use = i;
2759
2760		return true;
2761	}
2762	return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767			  __be16 protocol)
2768{
2769	struct e1000_context_desc *context_desc;
2770	struct e1000_tx_buffer *buffer_info;
2771	unsigned int i;
2772	u8 css;
2773	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776		return false;
2777
2778	switch (protocol) {
2779	case cpu_to_be16(ETH_P_IP):
2780		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781			cmd_len |= E1000_TXD_CMD_TCP;
2782		break;
2783	case cpu_to_be16(ETH_P_IPV6):
2784		/* XXX not handling all IPV6 headers */
2785		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786			cmd_len |= E1000_TXD_CMD_TCP;
2787		break;
2788	default:
2789		if (unlikely(net_ratelimit()))
2790			e_warn(drv, "checksum_partial proto=%x!\n",
2791			       skb->protocol);
2792		break;
2793	}
2794
2795	css = skb_checksum_start_offset(skb);
2796
2797	i = tx_ring->next_to_use;
2798	buffer_info = &tx_ring->buffer_info[i];
2799	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801	context_desc->lower_setup.ip_config = 0;
2802	context_desc->upper_setup.tcp_fields.tucss = css;
2803	context_desc->upper_setup.tcp_fields.tucso =
2804		css + skb->csum_offset;
2805	context_desc->upper_setup.tcp_fields.tucse = 0;
2806	context_desc->tcp_seg_setup.data = 0;
2807	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809	buffer_info->time_stamp = jiffies;
2810	buffer_info->next_to_watch = i;
2811
2812	if (unlikely(++i == tx_ring->count))
2813		i = 0;
2814
2815	tx_ring->next_to_use = i;
2816
2817	return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR	12
2821#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824			struct e1000_tx_ring *tx_ring,
2825			struct sk_buff *skb, unsigned int first,
2826			unsigned int max_per_txd, unsigned int nr_frags,
2827			unsigned int mss)
2828{
2829	struct e1000_hw *hw = &adapter->hw;
2830	struct pci_dev *pdev = adapter->pdev;
2831	struct e1000_tx_buffer *buffer_info;
2832	unsigned int len = skb_headlen(skb);
2833	unsigned int offset = 0, size, count = 0, i;
2834	unsigned int f, bytecount, segs;
2835
2836	i = tx_ring->next_to_use;
2837
2838	while (len) {
2839		buffer_info = &tx_ring->buffer_info[i];
2840		size = min(len, max_per_txd);
2841		/* Workaround for Controller erratum --
2842		 * descriptor for non-tso packet in a linear SKB that follows a
2843		 * tso gets written back prematurely before the data is fully
2844		 * DMA'd to the controller
2845		 */
2846		if (!skb->data_len && tx_ring->last_tx_tso &&
2847		    !skb_is_gso(skb)) {
2848			tx_ring->last_tx_tso = false;
2849			size -= 4;
2850		}
2851
2852		/* Workaround for premature desc write-backs
2853		 * in TSO mode.  Append 4-byte sentinel desc
2854		 */
2855		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856			size -= 4;
2857		/* work-around for errata 10 and it applies
2858		 * to all controllers in PCI-X mode
2859		 * The fix is to make sure that the first descriptor of a
2860		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861		 */
2862		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863			     (size > 2015) && count == 0))
2864			size = 2015;
2865
2866		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867		 * terminating buffers within evenly-aligned dwords.
2868		 */
2869		if (unlikely(adapter->pcix_82544 &&
2870		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871		   size > 4))
2872			size -= 4;
2873
2874		buffer_info->length = size;
2875		/* set time_stamp *before* dma to help avoid a possible race */
2876		buffer_info->time_stamp = jiffies;
2877		buffer_info->mapped_as_page = false;
2878		buffer_info->dma = dma_map_single(&pdev->dev,
2879						  skb->data + offset,
2880						  size, DMA_TO_DEVICE);
2881		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882			goto dma_error;
2883		buffer_info->next_to_watch = i;
2884
2885		len -= size;
2886		offset += size;
2887		count++;
2888		if (len) {
2889			i++;
2890			if (unlikely(i == tx_ring->count))
2891				i = 0;
2892		}
2893	}
2894
2895	for (f = 0; f < nr_frags; f++) {
2896		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
 
2898		len = skb_frag_size(frag);
2899		offset = 0;
2900
2901		while (len) {
2902			unsigned long bufend;
2903			i++;
2904			if (unlikely(i == tx_ring->count))
2905				i = 0;
2906
2907			buffer_info = &tx_ring->buffer_info[i];
2908			size = min(len, max_per_txd);
2909			/* Workaround for premature desc write-backs
2910			 * in TSO mode.  Append 4-byte sentinel desc
2911			 */
2912			if (unlikely(mss && f == (nr_frags-1) &&
2913			    size == len && size > 8))
2914				size -= 4;
2915			/* Workaround for potential 82544 hang in PCI-X.
2916			 * Avoid terminating buffers within evenly-aligned
2917			 * dwords.
2918			 */
2919			bufend = (unsigned long)
2920				page_to_phys(skb_frag_page(frag));
2921			bufend += offset + size - 1;
2922			if (unlikely(adapter->pcix_82544 &&
2923				     !(bufend & 4) &&
2924				     size > 4))
2925				size -= 4;
2926
2927			buffer_info->length = size;
2928			buffer_info->time_stamp = jiffies;
2929			buffer_info->mapped_as_page = true;
2930			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931						offset, size, DMA_TO_DEVICE);
2932			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933				goto dma_error;
2934			buffer_info->next_to_watch = i;
2935
2936			len -= size;
2937			offset += size;
2938			count++;
2939		}
2940	}
2941
2942	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943	/* multiply data chunks by size of headers */
2944	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946	tx_ring->buffer_info[i].skb = skb;
2947	tx_ring->buffer_info[i].segs = segs;
2948	tx_ring->buffer_info[i].bytecount = bytecount;
2949	tx_ring->buffer_info[first].next_to_watch = i;
2950
2951	return count;
2952
2953dma_error:
2954	dev_err(&pdev->dev, "TX DMA map failed\n");
2955	buffer_info->dma = 0;
2956	if (count)
2957		count--;
2958
2959	while (count--) {
2960		if (i == 0)
2961			i += tx_ring->count;
2962		i--;
2963		buffer_info = &tx_ring->buffer_info[i];
2964		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965	}
2966
2967	return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972			   int count)
2973{
 
2974	struct e1000_tx_desc *tx_desc = NULL;
2975	struct e1000_tx_buffer *buffer_info;
2976	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977	unsigned int i;
2978
2979	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981			     E1000_TXD_CMD_TSE;
2982		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986	}
2987
2988	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991	}
2992
2993	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994		txd_lower |= E1000_TXD_CMD_VLE;
2995		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996	}
2997
2998	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001	i = tx_ring->next_to_use;
3002
3003	while (count--) {
3004		buffer_info = &tx_ring->buffer_info[i];
3005		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007		tx_desc->lower.data =
3008			cpu_to_le32(txd_lower | buffer_info->length);
3009		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010		if (unlikely(++i == tx_ring->count))
3011			i = 0;
3012	}
3013
3014	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020	/* Force memory writes to complete before letting h/w
3021	 * know there are new descriptors to fetch.  (Only
3022	 * applicable for weak-ordered memory model archs,
3023	 * such as IA-64).
3024	 */
3025	dma_wmb();
3026
3027	tx_ring->next_to_use = i;
 
 
 
 
 
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR			0x10
3039#define E1000_82547_PAD_LEN		0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042				       struct sk_buff *skb)
3043{
3044	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049	if (adapter->link_duplex != HALF_DUPLEX)
3050		goto no_fifo_stall_required;
3051
3052	if (atomic_read(&adapter->tx_fifo_stall))
3053		return 1;
3054
3055	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056		atomic_set(&adapter->tx_fifo_stall, 1);
3057		return 1;
3058	}
3059
3060no_fifo_stall_required:
3061	adapter->tx_fifo_head += skb_fifo_len;
3062	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064	return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069	struct e1000_adapter *adapter = netdev_priv(netdev);
3070	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072	netif_stop_queue(netdev);
3073	/* Herbert's original patch had:
3074	 *  smp_mb__after_netif_stop_queue();
3075	 * but since that doesn't exist yet, just open code it.
3076	 */
3077	smp_mb();
3078
3079	/* We need to check again in a case another CPU has just
3080	 * made room available.
3081	 */
3082	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083		return -EBUSY;
3084
3085	/* A reprieve! */
3086	netif_start_queue(netdev);
3087	++adapter->restart_queue;
3088	return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092			       struct e1000_tx_ring *tx_ring, int size)
3093{
3094	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095		return 0;
3096	return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101				    struct net_device *netdev)
3102{
3103	struct e1000_adapter *adapter = netdev_priv(netdev);
3104	struct e1000_hw *hw = &adapter->hw;
3105	struct e1000_tx_ring *tx_ring;
3106	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108	unsigned int tx_flags = 0;
3109	unsigned int len = skb_headlen(skb);
3110	unsigned int nr_frags;
3111	unsigned int mss;
3112	int count = 0;
3113	int tso;
3114	unsigned int f;
3115	__be16 protocol = vlan_get_protocol(skb);
3116
3117	/* This goes back to the question of how to logically map a Tx queue
3118	 * to a flow.  Right now, performance is impacted slightly negatively
3119	 * if using multiple Tx queues.  If the stack breaks away from a
3120	 * single qdisc implementation, we can look at this again.
3121	 */
3122	tx_ring = adapter->tx_ring;
3123
 
 
 
 
 
3124	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125	 * packets may get corrupted during padding by HW.
3126	 * To WA this issue, pad all small packets manually.
3127	 */
3128	if (eth_skb_pad(skb))
3129		return NETDEV_TX_OK;
 
 
 
 
3130
3131	mss = skb_shinfo(skb)->gso_size;
3132	/* The controller does a simple calculation to
3133	 * make sure there is enough room in the FIFO before
3134	 * initiating the DMA for each buffer.  The calc is:
3135	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136	 * overrun the FIFO, adjust the max buffer len if mss
3137	 * drops.
3138	 */
3139	if (mss) {
3140		u8 hdr_len;
3141		max_per_txd = min(mss << 2, max_per_txd);
3142		max_txd_pwr = fls(max_per_txd) - 1;
3143
3144		hdr_len = skb_tcp_all_headers(skb);
3145		if (skb->data_len && hdr_len == len) {
3146			switch (hw->mac_type) {
3147			case e1000_82544: {
3148				unsigned int pull_size;
3149
3150				/* Make sure we have room to chop off 4 bytes,
3151				 * and that the end alignment will work out to
3152				 * this hardware's requirements
3153				 * NOTE: this is a TSO only workaround
3154				 * if end byte alignment not correct move us
3155				 * into the next dword
3156				 */
3157				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158				    & 4)
3159					break;
 
3160				pull_size = min((unsigned int)4, skb->data_len);
3161				if (!__pskb_pull_tail(skb, pull_size)) {
3162					e_err(drv, "__pskb_pull_tail "
3163					      "failed.\n");
3164					dev_kfree_skb_any(skb);
3165					return NETDEV_TX_OK;
3166				}
3167				len = skb_headlen(skb);
3168				break;
3169			}
3170			default:
3171				/* do nothing */
3172				break;
3173			}
3174		}
3175	}
3176
3177	/* reserve a descriptor for the offload context */
3178	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179		count++;
3180	count++;
3181
3182	/* Controller Erratum workaround */
3183	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184		count++;
3185
3186	count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188	if (adapter->pcix_82544)
3189		count++;
3190
3191	/* work-around for errata 10 and it applies to all controllers
3192	 * in PCI-X mode, so add one more descriptor to the count
3193	 */
3194	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195			(len > 2015)))
3196		count++;
3197
3198	nr_frags = skb_shinfo(skb)->nr_frags;
3199	for (f = 0; f < nr_frags; f++)
3200		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201				       max_txd_pwr);
3202	if (adapter->pcix_82544)
3203		count += nr_frags;
3204
3205	/* need: count + 2 desc gap to keep tail from touching
3206	 * head, otherwise try next time
3207	 */
3208	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209		return NETDEV_TX_BUSY;
3210
3211	if (unlikely((hw->mac_type == e1000_82547) &&
3212		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3213		netif_stop_queue(netdev);
3214		if (!test_bit(__E1000_DOWN, &adapter->flags))
3215			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216		return NETDEV_TX_BUSY;
3217	}
3218
3219	if (skb_vlan_tag_present(skb)) {
3220		tx_flags |= E1000_TX_FLAGS_VLAN;
3221		tx_flags |= (skb_vlan_tag_get(skb) <<
3222			     E1000_TX_FLAGS_VLAN_SHIFT);
3223	}
3224
3225	first = tx_ring->next_to_use;
3226
3227	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228	if (tso < 0) {
3229		dev_kfree_skb_any(skb);
3230		return NETDEV_TX_OK;
3231	}
3232
3233	if (likely(tso)) {
3234		if (likely(hw->mac_type != e1000_82544))
3235			tx_ring->last_tx_tso = true;
3236		tx_flags |= E1000_TX_FLAGS_TSO;
3237	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238		tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240	if (protocol == htons(ETH_P_IP))
3241		tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243	if (unlikely(skb->no_fcs))
3244		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247			     nr_frags, mss);
3248
3249	if (count) {
3250		/* The descriptors needed is higher than other Intel drivers
3251		 * due to a number of workarounds.  The breakdown is below:
3252		 * Data descriptors: MAX_SKB_FRAGS + 1
3253		 * Context Descriptor: 1
3254		 * Keep head from touching tail: 2
3255		 * Workarounds: 3
3256		 */
3257		int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259		netdev_sent_queue(netdev, skb->len);
3260		skb_tx_timestamp(skb);
3261
3262		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264		/* 82544 potentially requires twice as many data descriptors
3265		 * in order to guarantee buffers don't end on evenly-aligned
3266		 * dwords
3267		 */
3268		if (adapter->pcix_82544)
3269			desc_needed += MAX_SKB_FRAGS + 1;
3270
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274		if (!netdev_xmit_more() ||
3275		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277		}
3278	} else {
3279		dev_kfree_skb_any(skb);
3280		tx_ring->buffer_info[first].time_stamp = 0;
3281		tx_ring->next_to_use = first;
3282	}
3283
3284	return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290	struct e1000_hw *hw = &adapter->hw;
3291	u32 regs[NUM_REGS];
3292	u32 *regs_buff = regs;
3293	int i = 0;
3294
3295	static const char * const reg_name[] = {
3296		"CTRL",  "STATUS",
3297		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299		"TIDV", "TXDCTL", "TADV", "TARC0",
3300		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301		"TXDCTL1", "TARC1",
3302		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305	};
3306
3307	regs_buff[0]  = er32(CTRL);
3308	regs_buff[1]  = er32(STATUS);
3309
3310	regs_buff[2]  = er32(RCTL);
3311	regs_buff[3]  = er32(RDLEN);
3312	regs_buff[4]  = er32(RDH);
3313	regs_buff[5]  = er32(RDT);
3314	regs_buff[6]  = er32(RDTR);
3315
3316	regs_buff[7]  = er32(TCTL);
3317	regs_buff[8]  = er32(TDBAL);
3318	regs_buff[9]  = er32(TDBAH);
3319	regs_buff[10] = er32(TDLEN);
3320	regs_buff[11] = er32(TDH);
3321	regs_buff[12] = er32(TDT);
3322	regs_buff[13] = er32(TIDV);
3323	regs_buff[14] = er32(TXDCTL);
3324	regs_buff[15] = er32(TADV);
3325	regs_buff[16] = er32(TARC0);
3326
3327	regs_buff[17] = er32(TDBAL1);
3328	regs_buff[18] = er32(TDBAH1);
3329	regs_buff[19] = er32(TDLEN1);
3330	regs_buff[20] = er32(TDH1);
3331	regs_buff[21] = er32(TDT1);
3332	regs_buff[22] = er32(TXDCTL1);
3333	regs_buff[23] = er32(TARC1);
3334	regs_buff[24] = er32(CTRL_EXT);
3335	regs_buff[25] = er32(ERT);
3336	regs_buff[26] = er32(RDBAL0);
3337	regs_buff[27] = er32(RDBAH0);
3338	regs_buff[28] = er32(TDFH);
3339	regs_buff[29] = er32(TDFT);
3340	regs_buff[30] = er32(TDFHS);
3341	regs_buff[31] = er32(TDFTS);
3342	regs_buff[32] = er32(TDFPC);
3343	regs_buff[33] = er32(RDFH);
3344	regs_buff[34] = er32(RDFT);
3345	regs_buff[35] = er32(RDFHS);
3346	regs_buff[36] = er32(RDFTS);
3347	regs_buff[37] = er32(RDFPC);
3348
3349	pr_info("Register dump\n");
3350	for (i = 0; i < NUM_REGS; i++)
3351		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359	/* this code doesn't handle multiple rings */
3360	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362	int i;
3363
3364	if (!netif_msg_hw(adapter))
3365		return;
3366
3367	/* Print Registers */
3368	e1000_regdump(adapter);
3369
3370	/* transmit dump */
3371	pr_info("TX Desc ring0 dump\n");
3372
3373	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374	 *
3375	 * Legacy Transmit Descriptor
3376	 *   +--------------------------------------------------------------+
3377	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3378	 *   +--------------------------------------------------------------+
3379	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3380	 *   +--------------------------------------------------------------+
3381	 *   63       48 47        36 35    32 31     24 23    16 15        0
3382	 *
3383	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384	 *   63      48 47    40 39       32 31             16 15    8 7      0
3385	 *   +----------------------------------------------------------------+
3386	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3387	 *   +----------------------------------------------------------------+
3388	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3389	 *   +----------------------------------------------------------------+
3390	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3391	 *
3392	 * Extended Data Descriptor (DTYP=0x1)
3393	 *   +----------------------------------------------------------------+
3394	 * 0 |                     Buffer Address [63:0]                      |
3395	 *   +----------------------------------------------------------------+
3396	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3397	 *   +----------------------------------------------------------------+
3398	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3399	 */
3400	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402
3403	if (!netif_msg_tx_done(adapter))
3404		goto rx_ring_summary;
3405
3406	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409		struct my_u { __le64 a; __le64 b; };
3410		struct my_u *u = (struct my_u *)tx_desc;
3411		const char *type;
3412
3413		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414			type = "NTC/U";
3415		else if (i == tx_ring->next_to_use)
3416			type = "NTU";
3417		else if (i == tx_ring->next_to_clean)
3418			type = "NTC";
3419		else
3420			type = "";
3421
3422		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3423			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424			le64_to_cpu(u->a), le64_to_cpu(u->b),
3425			(u64)buffer_info->dma, buffer_info->length,
3426			buffer_info->next_to_watch,
3427			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3428	}
3429
3430rx_ring_summary:
3431	/* receive dump */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	e_err(drv, "Reset adapter\n");
3512	rtnl_lock();
3513	e1000_reinit_locked(adapter);
3514	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526	struct e1000_adapter *adapter = netdev_priv(netdev);
3527	struct e1000_hw *hw = &adapter->hw;
3528	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
 
 
 
 
 
 
3529
3530	/* Adapter-specific max frame size limits. */
3531	switch (hw->mac_type) {
3532	case e1000_undefined ... e1000_82542_rev2_1:
3533		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534			e_err(probe, "Jumbo Frames not supported.\n");
3535			return -EINVAL;
3536		}
3537		break;
3538	default:
3539		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540		break;
3541	}
3542
3543	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544		msleep(1);
3545	/* e1000_down has a dependency on max_frame_size */
3546	hw->max_frame_size = max_frame;
3547	if (netif_running(netdev)) {
3548		/* prevent buffers from being reallocated */
3549		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550		e1000_down(adapter);
3551	}
3552
3553	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554	 * means we reserve 2 more, this pushes us to allocate from the next
3555	 * larger slab size.
3556	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558	 * fragmented skbs
3559	 */
3560
3561	if (max_frame <= E1000_RXBUFFER_2048)
3562		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563	else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567		adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571	if (!hw->tbi_compatibility_on &&
3572	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577		   netdev->mtu, new_mtu);
3578	WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580	if (netif_running(netdev))
3581		e1000_up(adapter);
3582	else
3583		e1000_reset(adapter);
3584
3585	clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587	return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596	struct net_device *netdev = adapter->netdev;
3597	struct e1000_hw *hw = &adapter->hw;
3598	struct pci_dev *pdev = adapter->pdev;
3599	unsigned long flags;
3600	u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604	/* Prevent stats update while adapter is being reset, or if the pci
3605	 * connection is down.
3606	 */
3607	if (adapter->link_speed == 0)
3608		return;
3609	if (pci_channel_offline(pdev))
3610		return;
3611
3612	spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614	/* these counters are modified from e1000_tbi_adjust_stats,
3615	 * called from the interrupt context, so they must only
3616	 * be written while holding adapter->stats_lock
3617	 */
3618
3619	adapter->stats.crcerrs += er32(CRCERRS);
3620	adapter->stats.gprc += er32(GPRC);
3621	adapter->stats.gorcl += er32(GORCL);
3622	adapter->stats.gorch += er32(GORCH);
3623	adapter->stats.bprc += er32(BPRC);
3624	adapter->stats.mprc += er32(MPRC);
3625	adapter->stats.roc += er32(ROC);
3626
3627	adapter->stats.prc64 += er32(PRC64);
3628	adapter->stats.prc127 += er32(PRC127);
3629	adapter->stats.prc255 += er32(PRC255);
3630	adapter->stats.prc511 += er32(PRC511);
3631	adapter->stats.prc1023 += er32(PRC1023);
3632	adapter->stats.prc1522 += er32(PRC1522);
3633
3634	adapter->stats.symerrs += er32(SYMERRS);
3635	adapter->stats.mpc += er32(MPC);
3636	adapter->stats.scc += er32(SCC);
3637	adapter->stats.ecol += er32(ECOL);
3638	adapter->stats.mcc += er32(MCC);
3639	adapter->stats.latecol += er32(LATECOL);
3640	adapter->stats.dc += er32(DC);
3641	adapter->stats.sec += er32(SEC);
3642	adapter->stats.rlec += er32(RLEC);
3643	adapter->stats.xonrxc += er32(XONRXC);
3644	adapter->stats.xontxc += er32(XONTXC);
3645	adapter->stats.xoffrxc += er32(XOFFRXC);
3646	adapter->stats.xofftxc += er32(XOFFTXC);
3647	adapter->stats.fcruc += er32(FCRUC);
3648	adapter->stats.gptc += er32(GPTC);
3649	adapter->stats.gotcl += er32(GOTCL);
3650	adapter->stats.gotch += er32(GOTCH);
3651	adapter->stats.rnbc += er32(RNBC);
3652	adapter->stats.ruc += er32(RUC);
3653	adapter->stats.rfc += er32(RFC);
3654	adapter->stats.rjc += er32(RJC);
3655	adapter->stats.torl += er32(TORL);
3656	adapter->stats.torh += er32(TORH);
3657	adapter->stats.totl += er32(TOTL);
3658	adapter->stats.toth += er32(TOTH);
3659	adapter->stats.tpr += er32(TPR);
3660
3661	adapter->stats.ptc64 += er32(PTC64);
3662	adapter->stats.ptc127 += er32(PTC127);
3663	adapter->stats.ptc255 += er32(PTC255);
3664	adapter->stats.ptc511 += er32(PTC511);
3665	adapter->stats.ptc1023 += er32(PTC1023);
3666	adapter->stats.ptc1522 += er32(PTC1522);
3667
3668	adapter->stats.mptc += er32(MPTC);
3669	adapter->stats.bptc += er32(BPTC);
3670
3671	/* used for adaptive IFS */
3672
3673	hw->tx_packet_delta = er32(TPT);
3674	adapter->stats.tpt += hw->tx_packet_delta;
3675	hw->collision_delta = er32(COLC);
3676	adapter->stats.colc += hw->collision_delta;
3677
3678	if (hw->mac_type >= e1000_82543) {
3679		adapter->stats.algnerrc += er32(ALGNERRC);
3680		adapter->stats.rxerrc += er32(RXERRC);
3681		adapter->stats.tncrs += er32(TNCRS);
3682		adapter->stats.cexterr += er32(CEXTERR);
3683		adapter->stats.tsctc += er32(TSCTC);
3684		adapter->stats.tsctfc += er32(TSCTFC);
3685	}
3686
3687	/* Fill out the OS statistics structure */
3688	netdev->stats.multicast = adapter->stats.mprc;
3689	netdev->stats.collisions = adapter->stats.colc;
3690
3691	/* Rx Errors */
3692
3693	/* RLEC on some newer hardware can be incorrect so build
3694	 * our own version based on RUC and ROC
3695	 */
3696	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698		adapter->stats.ruc + adapter->stats.roc +
3699		adapter->stats.cexterr;
3700	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706	/* Tx Errors */
3707	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708	netdev->stats.tx_errors = adapter->stats.txerrc;
3709	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712	if (hw->bad_tx_carr_stats_fd &&
3713	    adapter->link_duplex == FULL_DUPLEX) {
3714		netdev->stats.tx_carrier_errors = 0;
3715		adapter->stats.tncrs = 0;
3716	}
3717
3718	/* Tx Dropped needs to be maintained elsewhere */
3719
3720	/* Phy Stats */
3721	if (hw->media_type == e1000_media_type_copper) {
3722		if ((adapter->link_speed == SPEED_1000) &&
3723		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725			adapter->phy_stats.idle_errors += phy_tmp;
3726		}
3727
3728		if ((hw->mac_type <= e1000_82546) &&
3729		   (hw->phy_type == e1000_phy_m88) &&
3730		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731			adapter->phy_stats.receive_errors += phy_tmp;
3732	}
3733
3734	/* Management Stats */
3735	if (hw->has_smbus) {
3736		adapter->stats.mgptc += er32(MGTPTC);
3737		adapter->stats.mgprc += er32(MGTPRC);
3738		adapter->stats.mgpdc += er32(MGTPDC);
3739	}
3740
3741	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751	struct net_device *netdev = data;
3752	struct e1000_adapter *adapter = netdev_priv(netdev);
3753	struct e1000_hw *hw = &adapter->hw;
3754	u32 icr = er32(ICR);
3755
3756	if (unlikely((!icr)))
3757		return IRQ_NONE;  /* Not our interrupt */
3758
3759	/* we might have caused the interrupt, but the above
3760	 * read cleared it, and just in case the driver is
3761	 * down there is nothing to do so return handled
3762	 */
3763	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764		return IRQ_HANDLED;
3765
3766	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767		hw->get_link_status = 1;
3768		/* guard against interrupt when we're going down */
3769		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770			schedule_delayed_work(&adapter->watchdog_task, 1);
3771	}
3772
3773	/* disable interrupts, without the synchronize_irq bit */
3774	ew32(IMC, ~0);
3775	E1000_WRITE_FLUSH();
3776
3777	if (likely(napi_schedule_prep(&adapter->napi))) {
3778		adapter->total_tx_bytes = 0;
3779		adapter->total_tx_packets = 0;
3780		adapter->total_rx_bytes = 0;
3781		adapter->total_rx_packets = 0;
3782		__napi_schedule(&adapter->napi);
3783	} else {
3784		/* this really should not happen! if it does it is basically a
3785		 * bug, but not a hard error, so enable ints and continue
3786		 */
3787		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788			e1000_irq_enable(adapter);
3789	}
3790
3791	return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802						     napi);
3803	int tx_clean_complete = 0, work_done = 0;
3804
3805	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809	if (!tx_clean_complete || work_done == budget)
3810		return budget;
3811
3812	/* Exit the polling mode, but don't re-enable interrupts if stack might
3813	 * poll us due to busy-polling
3814	 */
3815	if (likely(napi_complete_done(napi, work_done))) {
3816		if (likely(adapter->itr_setting & 3))
3817			e1000_set_itr(adapter);
 
3818		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819			e1000_irq_enable(adapter);
3820	}
3821
3822	return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831			       struct e1000_tx_ring *tx_ring)
3832{
3833	struct e1000_hw *hw = &adapter->hw;
3834	struct net_device *netdev = adapter->netdev;
3835	struct e1000_tx_desc *tx_desc, *eop_desc;
3836	struct e1000_tx_buffer *buffer_info;
3837	unsigned int i, eop;
3838	unsigned int count = 0;
3839	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840	unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842	i = tx_ring->next_to_clean;
3843	eop = tx_ring->buffer_info[i].next_to_watch;
3844	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847	       (count < tx_ring->count)) {
3848		bool cleaned = false;
3849		dma_rmb();	/* read buffer_info after eop_desc */
3850		for ( ; !cleaned; count++) {
3851			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852			buffer_info = &tx_ring->buffer_info[i];
3853			cleaned = (i == eop);
3854
3855			if (cleaned) {
3856				total_tx_packets += buffer_info->segs;
3857				total_tx_bytes += buffer_info->bytecount;
3858				if (buffer_info->skb) {
3859					bytes_compl += buffer_info->skb->len;
3860					pkts_compl++;
3861				}
3862
3863			}
3864			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865							 64);
3866			tx_desc->upper.data = 0;
3867
3868			if (unlikely(++i == tx_ring->count))
3869				i = 0;
3870		}
3871
3872		eop = tx_ring->buffer_info[i].next_to_watch;
3873		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874	}
3875
3876	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877	 * which will reuse the cleaned buffers.
3878	 */
3879	smp_store_release(&tx_ring->next_to_clean, i);
3880
3881	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884	if (unlikely(count && netif_carrier_ok(netdev) &&
3885		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886		/* Make sure that anybody stopping the queue after this
3887		 * sees the new next_to_clean.
3888		 */
3889		smp_mb();
3890
3891		if (netif_queue_stopped(netdev) &&
3892		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893			netif_wake_queue(netdev);
3894			++adapter->restart_queue;
3895		}
3896	}
3897
3898	if (adapter->detect_tx_hung) {
3899		/* Detect a transmit hang in hardware, this serializes the
3900		 * check with the clearing of time_stamp and movement of i
3901		 */
3902		adapter->detect_tx_hung = false;
3903		if (tx_ring->buffer_info[eop].time_stamp &&
3904		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905			       (adapter->tx_timeout_factor * HZ)) &&
3906		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908			/* detected Tx unit hang */
3909			e_err(drv, "Detected Tx Unit Hang\n"
3910			      "  Tx Queue             <%lu>\n"
3911			      "  TDH                  <%x>\n"
3912			      "  TDT                  <%x>\n"
3913			      "  next_to_use          <%x>\n"
3914			      "  next_to_clean        <%x>\n"
3915			      "buffer_info[next_to_clean]\n"
3916			      "  time_stamp           <%lx>\n"
3917			      "  next_to_watch        <%x>\n"
3918			      "  jiffies              <%lx>\n"
3919			      "  next_to_watch.status <%x>\n",
3920				(unsigned long)(tx_ring - adapter->tx_ring),
3921				readl(hw->hw_addr + tx_ring->tdh),
3922				readl(hw->hw_addr + tx_ring->tdt),
3923				tx_ring->next_to_use,
3924				tx_ring->next_to_clean,
3925				tx_ring->buffer_info[eop].time_stamp,
3926				eop,
3927				jiffies,
3928				eop_desc->upper.fields.status);
3929			e1000_dump(adapter);
3930			netif_stop_queue(netdev);
3931		}
3932	}
3933	adapter->total_tx_bytes += total_tx_bytes;
3934	adapter->total_tx_packets += total_tx_packets;
3935	netdev->stats.tx_bytes += total_tx_bytes;
3936	netdev->stats.tx_packets += total_tx_packets;
3937	return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter:     board private structure
3943 * @status_err:  receive descriptor status and error fields
3944 * @csum:        receive descriptor csum field
3945 * @skb:         socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948			      u32 csum, struct sk_buff *skb)
3949{
3950	struct e1000_hw *hw = &adapter->hw;
3951	u16 status = (u16)status_err;
3952	u8 errors = (u8)(status_err >> 24);
3953
3954	skb_checksum_none_assert(skb);
3955
3956	/* 82543 or newer only */
3957	if (unlikely(hw->mac_type < e1000_82543))
3958		return;
3959	/* Ignore Checksum bit is set */
3960	if (unlikely(status & E1000_RXD_STAT_IXSM))
3961		return;
3962	/* TCP/UDP checksum error bit is set */
3963	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964		/* let the stack verify checksum errors */
3965		adapter->hw_csum_err++;
3966		return;
3967	}
3968	/* TCP/UDP Checksum has not been calculated */
3969	if (!(status & E1000_RXD_STAT_TCPCS))
3970		return;
3971
3972	/* It must be a TCP or UDP packet with a valid checksum */
3973	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974		/* TCP checksum is good */
3975		skb->ip_summed = CHECKSUM_UNNECESSARY;
3976	}
3977	adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987			       u16 length)
3988{
3989	bi->rxbuf.page = NULL;
3990	skb->len += length;
3991	skb->data_len += length;
3992	skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003			      __le16 vlan, struct sk_buff *skb)
4004{
4005	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007	if (status & E1000_RXD_STAT_VP) {
4008		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011	}
4012	napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025				   struct e1000_hw_stats *stats,
4026				   u32 frame_len, const u8 *mac_addr)
4027{
4028	u64 carry_bit;
4029
4030	/* First adjust the frame length. */
4031	frame_len--;
4032	/* We need to adjust the statistics counters, since the hardware
4033	 * counters overcount this packet as a CRC error and undercount
4034	 * the packet as a good packet
4035	 */
4036	/* This packet should not be counted as a CRC error. */
4037	stats->crcerrs--;
4038	/* This packet does count as a Good Packet Received. */
4039	stats->gprc++;
4040
4041	/* Adjust the Good Octets received counters */
4042	carry_bit = 0x80000000 & stats->gorcl;
4043	stats->gorcl += frame_len;
4044	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045	 * Received Count) was one before the addition,
4046	 * AND it is zero after, then we lost the carry out,
4047	 * need to add one to Gorch (Good Octets Received Count High).
4048	 * This could be simplified if all environments supported
4049	 * 64-bit integers.
4050	 */
4051	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052		stats->gorch++;
4053	/* Is this a broadcast or multicast?  Check broadcast first,
4054	 * since the test for a multicast frame will test positive on
4055	 * a broadcast frame.
4056	 */
4057	if (is_broadcast_ether_addr(mac_addr))
4058		stats->bprc++;
4059	else if (is_multicast_ether_addr(mac_addr))
4060		stats->mprc++;
4061
4062	if (frame_len == hw->max_frame_size) {
4063		/* In this case, the hardware has overcounted the number of
4064		 * oversize frames.
4065		 */
4066		if (stats->roc > 0)
4067			stats->roc--;
4068	}
4069
4070	/* Adjust the bin counters when the extra byte put the frame in the
4071	 * wrong bin. Remember that the frame_len was adjusted above.
4072	 */
4073	if (frame_len == 64) {
4074		stats->prc64++;
4075		stats->prc127--;
4076	} else if (frame_len == 127) {
4077		stats->prc127++;
4078		stats->prc255--;
4079	} else if (frame_len == 255) {
4080		stats->prc255++;
4081		stats->prc511--;
4082	} else if (frame_len == 511) {
4083		stats->prc511++;
4084		stats->prc1023--;
4085	} else if (frame_len == 1023) {
4086		stats->prc1023++;
4087		stats->prc1522--;
4088	} else if (frame_len == 1522) {
4089		stats->prc1522++;
4090	}
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094				    u8 status, u8 errors,
4095				    u32 length, const u8 *data)
4096{
4097	struct e1000_hw *hw = &adapter->hw;
4098	u8 last_byte = *(data + length - 1);
4099
4100	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101		unsigned long irq_flags;
4102
4103		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107		return true;
4108	}
4109
4110	return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114					  unsigned int bufsz)
4115{
4116	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118	if (unlikely(!skb))
4119		adapter->alloc_rx_buff_failed++;
4120	return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134				     struct e1000_rx_ring *rx_ring,
4135				     int *work_done, int work_to_do)
4136{
 
4137	struct net_device *netdev = adapter->netdev;
4138	struct pci_dev *pdev = adapter->pdev;
4139	struct e1000_rx_desc *rx_desc, *next_rxd;
4140	struct e1000_rx_buffer *buffer_info, *next_buffer;
 
4141	u32 length;
4142	unsigned int i;
4143	int cleaned_count = 0;
4144	bool cleaned = false;
4145	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147	i = rx_ring->next_to_clean;
4148	rx_desc = E1000_RX_DESC(*rx_ring, i);
4149	buffer_info = &rx_ring->buffer_info[i];
4150
4151	while (rx_desc->status & E1000_RXD_STAT_DD) {
4152		struct sk_buff *skb;
4153		u8 status;
4154
4155		if (*work_done >= work_to_do)
4156			break;
4157		(*work_done)++;
4158		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160		status = rx_desc->status;
 
 
4161
4162		if (++i == rx_ring->count)
4163			i = 0;
4164
4165		next_rxd = E1000_RX_DESC(*rx_ring, i);
4166		prefetch(next_rxd);
4167
4168		next_buffer = &rx_ring->buffer_info[i];
4169
4170		cleaned = true;
4171		cleaned_count++;
4172		dma_unmap_page(&pdev->dev, buffer_info->dma,
4173			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174		buffer_info->dma = 0;
4175
4176		length = le16_to_cpu(rx_desc->length);
4177
4178		/* errors is only valid for DD + EOP descriptors */
4179		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181			u8 *mapped = page_address(buffer_info->rxbuf.page);
 
4182
4183			if (e1000_tbi_should_accept(adapter, status,
4184						    rx_desc->errors,
4185						    length, mapped)) {
 
 
 
 
 
 
 
4186				length--;
4187			} else if (netdev->features & NETIF_F_RXALL) {
4188				goto process_skb;
4189			} else {
 
 
 
 
4190				/* an error means any chain goes out the window
4191				 * too
4192				 */
4193				dev_kfree_skb(rx_ring->rx_skb_top);
 
4194				rx_ring->rx_skb_top = NULL;
4195				goto next_desc;
4196			}
4197		}
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201		if (!(status & E1000_RXD_STAT_EOP)) {
4202			/* this descriptor is only the beginning (or middle) */
4203			if (!rxtop) {
4204				/* this is the beginning of a chain */
4205				rxtop = napi_get_frags(&adapter->napi);
4206				if (!rxtop)
4207					break;
4208
4209				skb_fill_page_desc(rxtop, 0,
4210						   buffer_info->rxbuf.page,
4211						   0, length);
4212			} else {
4213				/* this is the middle of a chain */
4214				skb_fill_page_desc(rxtop,
4215				    skb_shinfo(rxtop)->nr_frags,
4216				    buffer_info->rxbuf.page, 0, length);
 
 
4217			}
4218			e1000_consume_page(buffer_info, rxtop, length);
4219			goto next_desc;
4220		} else {
4221			if (rxtop) {
4222				/* end of the chain */
4223				skb_fill_page_desc(rxtop,
4224				    skb_shinfo(rxtop)->nr_frags,
4225				    buffer_info->rxbuf.page, 0, length);
 
 
 
 
4226				skb = rxtop;
4227				rxtop = NULL;
4228				e1000_consume_page(buffer_info, skb, length);
4229			} else {
4230				struct page *p;
4231				/* no chain, got EOP, this buf is the packet
4232				 * copybreak to save the put_page/alloc_page
4233				 */
4234				p = buffer_info->rxbuf.page;
4235				if (length <= copybreak) {
4236					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237						length -= 4;
4238					skb = e1000_alloc_rx_skb(adapter,
4239								 length);
4240					if (!skb)
4241						break;
4242
4243					memcpy(skb_tail_pointer(skb),
4244					       page_address(p), length);
4245
4246					/* re-use the page, so don't erase
4247					 * buffer_info->rxbuf.page
4248					 */
4249					skb_put(skb, length);
4250					e1000_rx_checksum(adapter,
4251							  status | rx_desc->errors << 24,
4252							  le16_to_cpu(rx_desc->csum), skb);
4253
4254					total_rx_bytes += skb->len;
4255					total_rx_packets++;
4256
4257					e1000_receive_skb(adapter, status,
4258							  rx_desc->special, skb);
4259					goto next_desc;
4260				} else {
4261					skb = napi_get_frags(&adapter->napi);
4262					if (!skb) {
4263						adapter->alloc_rx_buff_failed++;
4264						break;
4265					}
4266					skb_fill_page_desc(skb, 0, p, 0,
4267							   length);
4268					e1000_consume_page(buffer_info, skb,
4269							   length);
4270				}
4271			}
4272		}
4273
4274		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4275		e1000_rx_checksum(adapter,
4276				  (u32)(status) |
4277				  ((u32)(rx_desc->errors) << 24),
4278				  le16_to_cpu(rx_desc->csum), skb);
4279
4280		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282			pskb_trim(skb, skb->len - 4);
4283		total_rx_packets++;
4284
4285		if (status & E1000_RXD_STAT_VP) {
4286			__le16 vlan = rx_desc->special;
4287			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290		}
4291
4292		napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295		rx_desc->status = 0;
4296
4297		/* return some buffers to hardware, one at a time is too slow */
4298		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300			cleaned_count = 0;
4301		}
4302
4303		/* use prefetched values */
4304		rx_desc = next_rxd;
4305		buffer_info = next_buffer;
4306	}
4307	rx_ring->next_to_clean = i;
4308
4309	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310	if (cleaned_count)
4311		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313	adapter->total_rx_packets += total_rx_packets;
4314	adapter->total_rx_bytes += total_rx_bytes;
4315	netdev->stats.rx_bytes += total_rx_bytes;
4316	netdev->stats.rx_packets += total_rx_packets;
4317	return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324				       struct e1000_rx_buffer *buffer_info,
4325				       u32 length, const void *data)
4326{
4327	struct sk_buff *skb;
4328
4329	if (length > copybreak)
4330		return NULL;
4331
4332	skb = e1000_alloc_rx_skb(adapter, length);
4333	if (!skb)
4334		return NULL;
4335
4336	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337				length, DMA_FROM_DEVICE);
4338
4339	skb_put_data(skb, data, length);
 
 
4340
4341	return skb;
 
 
 
 
 
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352			       struct e1000_rx_ring *rx_ring,
4353			       int *work_done, int work_to_do)
4354{
 
4355	struct net_device *netdev = adapter->netdev;
4356	struct pci_dev *pdev = adapter->pdev;
4357	struct e1000_rx_desc *rx_desc, *next_rxd;
4358	struct e1000_rx_buffer *buffer_info, *next_buffer;
 
4359	u32 length;
4360	unsigned int i;
4361	int cleaned_count = 0;
4362	bool cleaned = false;
4363	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365	i = rx_ring->next_to_clean;
4366	rx_desc = E1000_RX_DESC(*rx_ring, i);
4367	buffer_info = &rx_ring->buffer_info[i];
4368
4369	while (rx_desc->status & E1000_RXD_STAT_DD) {
4370		struct sk_buff *skb;
4371		u8 *data;
4372		u8 status;
4373
4374		if (*work_done >= work_to_do)
4375			break;
4376		(*work_done)++;
4377		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379		status = rx_desc->status;
4380		length = le16_to_cpu(rx_desc->length);
4381
4382		data = buffer_info->rxbuf.data;
4383		prefetch(data);
4384		skb = e1000_copybreak(adapter, buffer_info, length, data);
4385		if (!skb) {
4386			unsigned int frag_len = e1000_frag_len(adapter);
4387
4388			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389			if (!skb) {
4390				adapter->alloc_rx_buff_failed++;
4391				break;
4392			}
4393
4394			skb_reserve(skb, E1000_HEADROOM);
4395			dma_unmap_single(&pdev->dev, buffer_info->dma,
4396					 adapter->rx_buffer_len,
4397					 DMA_FROM_DEVICE);
4398			buffer_info->dma = 0;
4399			buffer_info->rxbuf.data = NULL;
4400		}
4401
4402		if (++i == rx_ring->count)
4403			i = 0;
4404
 
4405		next_rxd = E1000_RX_DESC(*rx_ring, i);
4406		prefetch(next_rxd);
4407
4408		next_buffer = &rx_ring->buffer_info[i];
4409
4410		cleaned = true;
4411		cleaned_count++;
 
 
 
4412
 
4413		/* !EOP means multiple descriptors were used to store a single
4414		 * packet, if thats the case we need to toss it.  In fact, we
4415		 * to toss every packet with the EOP bit clear and the next
4416		 * frame that _does_ have the EOP bit set, as it is by
4417		 * definition only a frame fragment
4418		 */
4419		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420			adapter->discarding = true;
4421
4422		if (adapter->discarding) {
4423			/* All receives must fit into a single buffer */
4424			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425			dev_kfree_skb(skb);
 
4426			if (status & E1000_RXD_STAT_EOP)
4427				adapter->discarding = false;
4428			goto next_desc;
4429		}
4430
4431		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432			if (e1000_tbi_should_accept(adapter, status,
4433						    rx_desc->errors,
4434						    length, data)) {
 
 
 
 
 
4435				length--;
4436			} else if (netdev->features & NETIF_F_RXALL) {
4437				goto process_skb;
4438			} else {
4439				dev_kfree_skb(skb);
 
 
 
4440				goto next_desc;
4441			}
4442		}
4443
4444process_skb:
4445		total_rx_bytes += (length - 4); /* don't count FCS */
4446		total_rx_packets++;
4447
4448		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449			/* adjust length to remove Ethernet CRC, this must be
4450			 * done after the TBI_ACCEPT workaround above
4451			 */
4452			length -= 4;
4453
4454		if (buffer_info->rxbuf.data == NULL)
4455			skb_put(skb, length);
4456		else /* copybreak skb */
4457			skb_trim(skb, length);
4458
4459		/* Receive Checksum Offload */
4460		e1000_rx_checksum(adapter,
4461				  (u32)(status) |
4462				  ((u32)(rx_desc->errors) << 24),
4463				  le16_to_cpu(rx_desc->csum), skb);
4464
4465		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468		rx_desc->status = 0;
4469
4470		/* return some buffers to hardware, one at a time is too slow */
4471		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473			cleaned_count = 0;
4474		}
4475
4476		/* use prefetched values */
4477		rx_desc = next_rxd;
4478		buffer_info = next_buffer;
4479	}
4480	rx_ring->next_to_clean = i;
4481
4482	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483	if (cleaned_count)
4484		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486	adapter->total_rx_packets += total_rx_packets;
4487	adapter->total_rx_bytes += total_rx_bytes;
4488	netdev->stats.rx_bytes += total_rx_bytes;
4489	netdev->stats.rx_packets += total_rx_packets;
4490	return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
 
4503	struct pci_dev *pdev = adapter->pdev;
4504	struct e1000_rx_desc *rx_desc;
4505	struct e1000_rx_buffer *buffer_info;
 
4506	unsigned int i;
 
4507
4508	i = rx_ring->next_to_use;
4509	buffer_info = &rx_ring->buffer_info[i];
4510
4511	while (cleaned_count--) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512		/* allocate a new page if necessary */
4513		if (!buffer_info->rxbuf.page) {
4514			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515			if (unlikely(!buffer_info->rxbuf.page)) {
4516				adapter->alloc_rx_buff_failed++;
4517				break;
4518			}
4519		}
4520
4521		if (!buffer_info->dma) {
4522			buffer_info->dma = dma_map_page(&pdev->dev,
4523							buffer_info->rxbuf.page, 0,
4524							adapter->rx_buffer_len,
4525							DMA_FROM_DEVICE);
4526			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527				put_page(buffer_info->rxbuf.page);
4528				buffer_info->rxbuf.page = NULL;
 
 
4529				buffer_info->dma = 0;
4530				adapter->alloc_rx_buff_failed++;
4531				break;
4532			}
4533		}
4534
4535		rx_desc = E1000_RX_DESC(*rx_ring, i);
4536		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538		if (unlikely(++i == rx_ring->count))
4539			i = 0;
4540		buffer_info = &rx_ring->buffer_info[i];
4541	}
4542
4543	if (likely(rx_ring->next_to_use != i)) {
4544		rx_ring->next_to_use = i;
4545		if (unlikely(i-- == 0))
4546			i = (rx_ring->count - 1);
4547
4548		/* Force memory writes to complete before letting h/w
4549		 * know there are new descriptors to fetch.  (Only
4550		 * applicable for weak-ordered memory model archs,
4551		 * such as IA-64).
4552		 */
4553		dma_wmb();
4554		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555	}
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565				   struct e1000_rx_ring *rx_ring,
4566				   int cleaned_count)
4567{
4568	struct e1000_hw *hw = &adapter->hw;
 
4569	struct pci_dev *pdev = adapter->pdev;
4570	struct e1000_rx_desc *rx_desc;
4571	struct e1000_rx_buffer *buffer_info;
 
4572	unsigned int i;
4573	unsigned int bufsz = adapter->rx_buffer_len;
4574
4575	i = rx_ring->next_to_use;
4576	buffer_info = &rx_ring->buffer_info[i];
4577
4578	while (cleaned_count--) {
4579		void *data;
4580
4581		if (buffer_info->rxbuf.data)
4582			goto skip;
 
4583
4584		data = e1000_alloc_frag(adapter);
4585		if (!data) {
4586			/* Better luck next round */
4587			adapter->alloc_rx_buff_failed++;
4588			break;
4589		}
4590
4591		/* Fix for errata 23, can't cross 64kB boundary */
4592		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593			void *olddata = data;
4594			e_err(rx_err, "skb align check failed: %u bytes at "
4595			      "%p\n", bufsz, data);
4596			/* Try again, without freeing the previous */
4597			data = e1000_alloc_frag(adapter);
4598			/* Failed allocation, critical failure */
4599			if (!data) {
4600				skb_free_frag(olddata);
4601				adapter->alloc_rx_buff_failed++;
4602				break;
4603			}
4604
4605			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606				/* give up */
4607				skb_free_frag(data);
4608				skb_free_frag(olddata);
4609				adapter->alloc_rx_buff_failed++;
4610				break;
4611			}
4612
4613			/* Use new allocation */
4614			skb_free_frag(olddata);
4615		}
 
 
 
4616		buffer_info->dma = dma_map_single(&pdev->dev,
4617						  data,
4618						  adapter->rx_buffer_len,
4619						  DMA_FROM_DEVICE);
4620		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621			skb_free_frag(data);
 
4622			buffer_info->dma = 0;
4623			adapter->alloc_rx_buff_failed++;
4624			break;
4625		}
4626
4627		/* XXX if it was allocated cleanly it will never map to a
4628		 * boundary crossing
4629		 */
4630
4631		/* Fix for errata 23, can't cross 64kB boundary */
4632		if (!e1000_check_64k_bound(adapter,
4633					(void *)(unsigned long)buffer_info->dma,
4634					adapter->rx_buffer_len)) {
4635			e_err(rx_err, "dma align check failed: %u bytes at "
4636			      "%p\n", adapter->rx_buffer_len,
4637			      (void *)(unsigned long)buffer_info->dma);
 
 
4638
4639			dma_unmap_single(&pdev->dev, buffer_info->dma,
4640					 adapter->rx_buffer_len,
4641					 DMA_FROM_DEVICE);
4642
4643			skb_free_frag(data);
4644			buffer_info->rxbuf.data = NULL;
4645			buffer_info->dma = 0;
4646
4647			adapter->alloc_rx_buff_failed++;
4648			break;
4649		}
4650		buffer_info->rxbuf.data = data;
4651 skip:
4652		rx_desc = E1000_RX_DESC(*rx_ring, i);
4653		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655		if (unlikely(++i == rx_ring->count))
4656			i = 0;
4657		buffer_info = &rx_ring->buffer_info[i];
4658	}
4659
4660	if (likely(rx_ring->next_to_use != i)) {
4661		rx_ring->next_to_use = i;
4662		if (unlikely(i-- == 0))
4663			i = (rx_ring->count - 1);
4664
4665		/* Force memory writes to complete before letting h/w
4666		 * know there are new descriptors to fetch.  (Only
4667		 * applicable for weak-ordered memory model archs,
4668		 * such as IA-64).
4669		 */
4670		dma_wmb();
4671		writel(i, hw->hw_addr + rx_ring->rdt);
4672	}
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681	struct e1000_hw *hw = &adapter->hw;
4682	u16 phy_status;
4683	u16 phy_ctrl;
4684
4685	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687		return;
4688
4689	if (adapter->smartspeed == 0) {
4690		/* If Master/Slave config fault is asserted twice,
4691		 * we assume back-to-back
4692		 */
4693		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695			return;
4696		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698			return;
4699		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703					    phy_ctrl);
4704			adapter->smartspeed++;
4705			if (!e1000_phy_setup_autoneg(hw) &&
4706			   !e1000_read_phy_reg(hw, PHY_CTRL,
4707					       &phy_ctrl)) {
4708				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709					     MII_CR_RESTART_AUTO_NEG);
4710				e1000_write_phy_reg(hw, PHY_CTRL,
4711						    phy_ctrl);
4712			}
4713		}
4714		return;
4715	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716		/* If still no link, perhaps using 2/3 pair cable */
4717		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718		phy_ctrl |= CR_1000T_MS_ENABLE;
4719		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720		if (!e1000_phy_setup_autoneg(hw) &&
4721		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723				     MII_CR_RESTART_AUTO_NEG);
4724			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725		}
4726	}
4727	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4728	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729		adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740	switch (cmd) {
4741	case SIOCGMIIPHY:
4742	case SIOCGMIIREG:
4743	case SIOCSMIIREG:
4744		return e1000_mii_ioctl(netdev, ifr, cmd);
4745	default:
4746		return -EOPNOTSUPP;
4747	}
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757			   int cmd)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct mii_ioctl_data *data = if_mii(ifr);
4762	int retval;
4763	u16 mii_reg;
4764	unsigned long flags;
4765
4766	if (hw->media_type != e1000_media_type_copper)
4767		return -EOPNOTSUPP;
4768
4769	switch (cmd) {
4770	case SIOCGMIIPHY:
4771		data->phy_id = hw->phy_addr;
4772		break;
4773	case SIOCGMIIREG:
4774		spin_lock_irqsave(&adapter->stats_lock, flags);
4775		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776				   &data->val_out)) {
4777			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778			return -EIO;
4779		}
4780		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781		break;
4782	case SIOCSMIIREG:
4783		if (data->reg_num & ~(0x1F))
4784			return -EFAULT;
4785		mii_reg = data->val_in;
4786		spin_lock_irqsave(&adapter->stats_lock, flags);
4787		if (e1000_write_phy_reg(hw, data->reg_num,
4788					mii_reg)) {
4789			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790			return -EIO;
4791		}
4792		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793		if (hw->media_type == e1000_media_type_copper) {
4794			switch (data->reg_num) {
4795			case PHY_CTRL:
4796				if (mii_reg & MII_CR_POWER_DOWN)
4797					break;
4798				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799					hw->autoneg = 1;
4800					hw->autoneg_advertised = 0x2F;
4801				} else {
4802					u32 speed;
4803					if (mii_reg & 0x40)
4804						speed = SPEED_1000;
4805					else if (mii_reg & 0x2000)
4806						speed = SPEED_100;
4807					else
4808						speed = SPEED_10;
4809					retval = e1000_set_spd_dplx(
4810						adapter, speed,
4811						((mii_reg & 0x100)
4812						 ? DUPLEX_FULL :
4813						 DUPLEX_HALF));
4814					if (retval)
4815						return retval;
4816				}
4817				if (netif_running(adapter->netdev))
4818					e1000_reinit_locked(adapter);
4819				else
4820					e1000_reset(adapter);
4821				break;
4822			case M88E1000_PHY_SPEC_CTRL:
4823			case M88E1000_EXT_PHY_SPEC_CTRL:
4824				if (e1000_phy_reset(hw))
4825					return -EIO;
4826				break;
4827			}
4828		} else {
4829			switch (data->reg_num) {
4830			case PHY_CTRL:
4831				if (mii_reg & MII_CR_POWER_DOWN)
4832					break;
4833				if (netif_running(adapter->netdev))
4834					e1000_reinit_locked(adapter);
4835				else
4836					e1000_reset(adapter);
4837				break;
4838			}
4839		}
4840		break;
4841	default:
4842		return -EOPNOTSUPP;
4843	}
4844	return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849	struct e1000_adapter *adapter = hw->back;
4850	int ret_val = pci_set_mwi(adapter->pdev);
4851
4852	if (ret_val)
4853		e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858	struct e1000_adapter *adapter = hw->back;
4859
4860	pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865	struct e1000_adapter *adapter = hw->back;
4866	return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871	struct e1000_adapter *adapter = hw->back;
4872	pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877	outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882	u16 vid;
4883
4884	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885		return true;
4886	return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890			      netdev_features_t features)
4891{
4892	struct e1000_hw *hw = &adapter->hw;
4893	u32 ctrl;
4894
4895	ctrl = er32(CTRL);
4896	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897		/* enable VLAN tag insert/strip */
4898		ctrl |= E1000_CTRL_VME;
4899	} else {
4900		/* disable VLAN tag insert/strip */
4901		ctrl &= ~E1000_CTRL_VME;
4902	}
4903	ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906				     bool filter_on)
4907{
4908	struct e1000_hw *hw = &adapter->hw;
4909	u32 rctl;
4910
4911	if (!test_bit(__E1000_DOWN, &adapter->flags))
4912		e1000_irq_disable(adapter);
4913
4914	__e1000_vlan_mode(adapter, adapter->netdev->features);
4915	if (filter_on) {
4916		/* enable VLAN receive filtering */
4917		rctl = er32(RCTL);
4918		rctl &= ~E1000_RCTL_CFIEN;
4919		if (!(adapter->netdev->flags & IFF_PROMISC))
4920			rctl |= E1000_RCTL_VFE;
4921		ew32(RCTL, rctl);
4922		e1000_update_mng_vlan(adapter);
4923	} else {
4924		/* disable VLAN receive filtering */
4925		rctl = er32(RCTL);
4926		rctl &= ~E1000_RCTL_VFE;
4927		ew32(RCTL, rctl);
4928	}
4929
4930	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931		e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935			    netdev_features_t features)
4936{
4937	struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940		e1000_irq_disable(adapter);
4941
4942	__e1000_vlan_mode(adapter, features);
4943
4944	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945		e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949				 __be16 proto, u16 vid)
4950{
4951	struct e1000_adapter *adapter = netdev_priv(netdev);
4952	struct e1000_hw *hw = &adapter->hw;
4953	u32 vfta, index;
4954
4955	if ((hw->mng_cookie.status &
4956	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957	    (vid == adapter->mng_vlan_id))
4958		return 0;
4959
4960	if (!e1000_vlan_used(adapter))
4961		e1000_vlan_filter_on_off(adapter, true);
4962
4963	/* add VID to filter table */
4964	index = (vid >> 5) & 0x7F;
4965	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966	vfta |= (1 << (vid & 0x1F));
4967	e1000_write_vfta(hw, index, vfta);
4968
4969	set_bit(vid, adapter->active_vlans);
4970
4971	return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975				  __be16 proto, u16 vid)
4976{
4977	struct e1000_adapter *adapter = netdev_priv(netdev);
4978	struct e1000_hw *hw = &adapter->hw;
4979	u32 vfta, index;
4980
4981	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982		e1000_irq_disable(adapter);
4983	if (!test_bit(__E1000_DOWN, &adapter->flags))
4984		e1000_irq_enable(adapter);
4985
4986	/* remove VID from filter table */
4987	index = (vid >> 5) & 0x7F;
4988	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989	vfta &= ~(1 << (vid & 0x1F));
4990	e1000_write_vfta(hw, index, vfta);
4991
4992	clear_bit(vid, adapter->active_vlans);
4993
4994	if (!e1000_vlan_used(adapter))
4995		e1000_vlan_filter_on_off(adapter, false);
4996
4997	return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002	u16 vid;
5003
5004	if (!e1000_vlan_used(adapter))
5005		return;
5006
5007	e1000_vlan_filter_on_off(adapter, true);
5008	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014	struct e1000_hw *hw = &adapter->hw;
5015
5016	hw->autoneg = 0;
5017
5018	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5019	 * for the switch() below to work
5020	 */
5021	if ((spd & 1) || (dplx & ~1))
5022		goto err_inval;
5023
5024	/* Fiber NICs only allow 1000 gbps Full duplex */
5025	if ((hw->media_type == e1000_media_type_fiber) &&
5026	    spd != SPEED_1000 &&
5027	    dplx != DUPLEX_FULL)
5028		goto err_inval;
5029
5030	switch (spd + dplx) {
5031	case SPEED_10 + DUPLEX_HALF:
5032		hw->forced_speed_duplex = e1000_10_half;
5033		break;
5034	case SPEED_10 + DUPLEX_FULL:
5035		hw->forced_speed_duplex = e1000_10_full;
5036		break;
5037	case SPEED_100 + DUPLEX_HALF:
5038		hw->forced_speed_duplex = e1000_100_half;
5039		break;
5040	case SPEED_100 + DUPLEX_FULL:
5041		hw->forced_speed_duplex = e1000_100_full;
5042		break;
5043	case SPEED_1000 + DUPLEX_FULL:
5044		hw->autoneg = 1;
5045		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046		break;
5047	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048	default:
5049		goto err_inval;
5050	}
5051
5052	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053	hw->mdix = AUTO_ALL_MODES;
5054
5055	return 0;
5056
5057err_inval:
5058	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059	return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064	struct net_device *netdev = pci_get_drvdata(pdev);
5065	struct e1000_adapter *adapter = netdev_priv(netdev);
5066	struct e1000_hw *hw = &adapter->hw;
5067	u32 ctrl, ctrl_ext, rctl, status;
5068	u32 wufc = adapter->wol;
 
 
 
5069
5070	netif_device_detach(netdev);
5071
5072	if (netif_running(netdev)) {
5073		int count = E1000_CHECK_RESET_COUNT;
5074
5075		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076			usleep_range(10000, 20000);
5077
5078		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079		rtnl_lock();
5080		e1000_down(adapter);
5081		rtnl_unlock();
5082	}
5083
 
 
 
 
 
 
5084	status = er32(STATUS);
5085	if (status & E1000_STATUS_LU)
5086		wufc &= ~E1000_WUFC_LNKC;
5087
5088	if (wufc) {
5089		e1000_setup_rctl(adapter);
5090		e1000_set_rx_mode(netdev);
5091
5092		rctl = er32(RCTL);
5093
5094		/* turn on all-multi mode if wake on multicast is enabled */
5095		if (wufc & E1000_WUFC_MC)
5096			rctl |= E1000_RCTL_MPE;
5097
5098		/* enable receives in the hardware */
5099		ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101		if (hw->mac_type >= e1000_82540) {
5102			ctrl = er32(CTRL);
5103			/* advertise wake from D3Cold */
5104			#define E1000_CTRL_ADVD3WUC 0x00100000
5105			/* phy power management enable */
5106			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107			ctrl |= E1000_CTRL_ADVD3WUC |
5108				E1000_CTRL_EN_PHY_PWR_MGMT;
5109			ew32(CTRL, ctrl);
5110		}
5111
5112		if (hw->media_type == e1000_media_type_fiber ||
5113		    hw->media_type == e1000_media_type_internal_serdes) {
5114			/* keep the laser running in D3 */
5115			ctrl_ext = er32(CTRL_EXT);
5116			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117			ew32(CTRL_EXT, ctrl_ext);
5118		}
5119
5120		ew32(WUC, E1000_WUC_PME_EN);
5121		ew32(WUFC, wufc);
5122	} else {
5123		ew32(WUC, 0);
5124		ew32(WUFC, 0);
5125	}
5126
5127	e1000_release_manageability(adapter);
5128
5129	*enable_wake = !!wufc;
5130
5131	/* make sure adapter isn't asleep if manageability is enabled */
5132	if (adapter->en_mng_pt)
5133		*enable_wake = true;
5134
5135	if (netif_running(netdev))
5136		e1000_free_irq(adapter);
5137
5138	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139		pci_disable_device(pdev);
5140
5141	return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
 
5145{
5146	int retval;
5147	struct pci_dev *pdev = to_pci_dev(dev);
5148	bool wake;
5149
5150	retval = __e1000_shutdown(pdev, &wake);
5151	device_set_wakeup_enable(dev, wake);
 
5152
5153	return retval;
 
 
 
 
 
 
 
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158	struct pci_dev *pdev = to_pci_dev(dev);
5159	struct net_device *netdev = pci_get_drvdata(pdev);
5160	struct e1000_adapter *adapter = netdev_priv(netdev);
5161	struct e1000_hw *hw = &adapter->hw;
5162	u32 err;
5163
 
 
 
 
5164	if (adapter->need_ioport)
5165		err = pci_enable_device(pdev);
5166	else
5167		err = pci_enable_device_mem(pdev);
5168	if (err) {
5169		pr_err("Cannot enable PCI device from suspend\n");
5170		return err;
5171	}
5172
5173	/* flush memory to make sure state is correct */
5174	smp_mb__before_atomic();
5175	clear_bit(__E1000_DISABLED, &adapter->flags);
5176	pci_set_master(pdev);
5177
5178	pci_enable_wake(pdev, PCI_D3hot, 0);
5179	pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181	if (netif_running(netdev)) {
5182		err = e1000_request_irq(adapter);
5183		if (err)
5184			return err;
5185	}
5186
5187	e1000_power_up_phy(adapter);
5188	e1000_reset(adapter);
5189	ew32(WUS, ~0);
5190
5191	e1000_init_manageability(adapter);
5192
5193	if (netif_running(netdev))
5194		e1000_up(adapter);
5195
5196	netif_device_attach(netdev);
5197
5198	return 0;
5199}
 
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203	bool wake;
5204
5205	__e1000_shutdown(pdev, &wake);
5206
5207	if (system_state == SYSTEM_POWER_OFF) {
5208		pci_wake_from_d3(pdev, wake);
5209		pci_set_power_state(pdev, PCI_D3hot);
5210	}
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220	struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222	if (disable_hardirq(adapter->pdev->irq))
5223		e1000_intr(adapter->pdev->irq, netdev);
5224	enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237						pci_channel_state_t state)
5238{
5239	struct net_device *netdev = pci_get_drvdata(pdev);
5240	struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242	rtnl_lock();
5243	netif_device_detach(netdev);
5244
5245	if (state == pci_channel_io_perm_failure) {
5246		rtnl_unlock();
5247		return PCI_ERS_RESULT_DISCONNECT;
5248	}
5249
5250	if (netif_running(netdev))
5251		e1000_down(adapter);
 
5252
5253	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254		pci_disable_device(pdev);
5255	rtnl_unlock();
5256
5257	/* Request a slot reset. */
5258	return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270	struct net_device *netdev = pci_get_drvdata(pdev);
5271	struct e1000_adapter *adapter = netdev_priv(netdev);
5272	struct e1000_hw *hw = &adapter->hw;
5273	int err;
5274
5275	if (adapter->need_ioport)
5276		err = pci_enable_device(pdev);
5277	else
5278		err = pci_enable_device_mem(pdev);
5279	if (err) {
5280		pr_err("Cannot re-enable PCI device after reset.\n");
5281		return PCI_ERS_RESULT_DISCONNECT;
5282	}
5283
5284	/* flush memory to make sure state is correct */
5285	smp_mb__before_atomic();
5286	clear_bit(__E1000_DISABLED, &adapter->flags);
5287	pci_set_master(pdev);
5288
5289	pci_enable_wake(pdev, PCI_D3hot, 0);
5290	pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292	e1000_reset(adapter);
5293	ew32(WUS, ~0);
5294
5295	return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308	struct net_device *netdev = pci_get_drvdata(pdev);
5309	struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311	e1000_init_manageability(adapter);
5312
5313	if (netif_running(netdev)) {
5314		if (e1000_up(adapter)) {
5315			pr_info("can't bring device back up after reset\n");
5316			return;
5317		}
5318	}
5319
5320	netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
v3.15
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87	/* required last entry */
  88	{0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                             struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                             struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                             struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                             struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133				    struct net_device *netdev);
 134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 
 
 
 
 
 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 148				   struct e1000_rx_ring *rx_ring,
 149				   int cleaned_count);
 150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 151					 struct e1000_rx_ring *rx_ring,
 152					 int cleaned_count);
 153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 155			   int cmd);
 156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 158static void e1000_tx_timeout(struct net_device *dev);
 159static void e1000_reset_task(struct work_struct *work);
 160static void e1000_smartspeed(struct e1000_adapter *adapter);
 161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 162                                       struct sk_buff *skb);
 163
 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
 165static void e1000_vlan_mode(struct net_device *netdev,
 166			    netdev_features_t features);
 167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 168				     bool filter_on);
 169static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 170				 __be16 proto, u16 vid);
 171static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 172				  __be16 proto, u16 vid);
 173static void e1000_restore_vlan(struct e1000_adapter *adapter);
 174
 175#ifdef CONFIG_PM
 176static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 177static int e1000_resume(struct pci_dev *pdev);
 178#endif
 179static void e1000_shutdown(struct pci_dev *pdev);
 180
 181#ifdef CONFIG_NET_POLL_CONTROLLER
 182/* for netdump / net console */
 183static void e1000_netpoll (struct net_device *netdev);
 184#endif
 185
 186#define COPYBREAK_DEFAULT 256
 187static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 188module_param(copybreak, uint, 0644);
 189MODULE_PARM_DESC(copybreak,
 190	"Maximum size of packet that is copied to a new buffer on receive");
 191
 192static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 193                     pci_channel_state_t state);
 194static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 195static void e1000_io_resume(struct pci_dev *pdev);
 196
 197static const struct pci_error_handlers e1000_err_handler = {
 198	.error_detected = e1000_io_error_detected,
 199	.slot_reset = e1000_io_slot_reset,
 200	.resume = e1000_io_resume,
 201};
 202
 
 
 203static struct pci_driver e1000_driver = {
 204	.name     = e1000_driver_name,
 205	.id_table = e1000_pci_tbl,
 206	.probe    = e1000_probe,
 207	.remove   = e1000_remove,
 208#ifdef CONFIG_PM
 209	/* Power Management Hooks */
 210	.suspend  = e1000_suspend,
 211	.resume   = e1000_resume,
 212#endif
 213	.shutdown = e1000_shutdown,
 214	.err_handler = &e1000_err_handler
 215};
 216
 217MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 218MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 219MODULE_LICENSE("GPL");
 220MODULE_VERSION(DRV_VERSION);
 221
 222#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 223static int debug = -1;
 224module_param(debug, int, 0);
 225MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 226
 227/**
 228 * e1000_get_hw_dev - return device
 229 * used by hardware layer to print debugging information
 
 
 230 *
 231 **/
 232struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 233{
 234	struct e1000_adapter *adapter = hw->back;
 235	return adapter->netdev;
 236}
 237
 238/**
 239 * e1000_init_module - Driver Registration Routine
 240 *
 241 * e1000_init_module is the first routine called when the driver is
 242 * loaded. All it does is register with the PCI subsystem.
 243 **/
 244static int __init e1000_init_module(void)
 245{
 246	int ret;
 247	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 248
 249	pr_info("%s\n", e1000_copyright);
 250
 251	ret = pci_register_driver(&e1000_driver);
 252	if (copybreak != COPYBREAK_DEFAULT) {
 253		if (copybreak == 0)
 254			pr_info("copybreak disabled\n");
 255		else
 256			pr_info("copybreak enabled for "
 257				   "packets <= %u bytes\n", copybreak);
 258	}
 259	return ret;
 260}
 261
 262module_init(e1000_init_module);
 263
 264/**
 265 * e1000_exit_module - Driver Exit Cleanup Routine
 266 *
 267 * e1000_exit_module is called just before the driver is removed
 268 * from memory.
 269 **/
 270static void __exit e1000_exit_module(void)
 271{
 272	pci_unregister_driver(&e1000_driver);
 273}
 274
 275module_exit(e1000_exit_module);
 276
 277static int e1000_request_irq(struct e1000_adapter *adapter)
 278{
 279	struct net_device *netdev = adapter->netdev;
 280	irq_handler_t handler = e1000_intr;
 281	int irq_flags = IRQF_SHARED;
 282	int err;
 283
 284	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 285	                  netdev);
 286	if (err) {
 287		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 288	}
 289
 290	return err;
 291}
 292
 293static void e1000_free_irq(struct e1000_adapter *adapter)
 294{
 295	struct net_device *netdev = adapter->netdev;
 296
 297	free_irq(adapter->pdev->irq, netdev);
 298}
 299
 300/**
 301 * e1000_irq_disable - Mask off interrupt generation on the NIC
 302 * @adapter: board private structure
 303 **/
 304static void e1000_irq_disable(struct e1000_adapter *adapter)
 305{
 306	struct e1000_hw *hw = &adapter->hw;
 307
 308	ew32(IMC, ~0);
 309	E1000_WRITE_FLUSH();
 310	synchronize_irq(adapter->pdev->irq);
 311}
 312
 313/**
 314 * e1000_irq_enable - Enable default interrupt generation settings
 315 * @adapter: board private structure
 316 **/
 317static void e1000_irq_enable(struct e1000_adapter *adapter)
 318{
 319	struct e1000_hw *hw = &adapter->hw;
 320
 321	ew32(IMS, IMS_ENABLE_MASK);
 322	E1000_WRITE_FLUSH();
 323}
 324
 325static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 326{
 327	struct e1000_hw *hw = &adapter->hw;
 328	struct net_device *netdev = adapter->netdev;
 329	u16 vid = hw->mng_cookie.vlan_id;
 330	u16 old_vid = adapter->mng_vlan_id;
 331
 332	if (!e1000_vlan_used(adapter))
 333		return;
 334
 335	if (!test_bit(vid, adapter->active_vlans)) {
 336		if (hw->mng_cookie.status &
 337		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 338			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 339			adapter->mng_vlan_id = vid;
 340		} else {
 341			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 342		}
 343		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 344		    (vid != old_vid) &&
 345		    !test_bit(old_vid, adapter->active_vlans))
 346			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 347					       old_vid);
 348	} else {
 349		adapter->mng_vlan_id = vid;
 350	}
 351}
 352
 353static void e1000_init_manageability(struct e1000_adapter *adapter)
 354{
 355	struct e1000_hw *hw = &adapter->hw;
 356
 357	if (adapter->en_mng_pt) {
 358		u32 manc = er32(MANC);
 359
 360		/* disable hardware interception of ARP */
 361		manc &= ~(E1000_MANC_ARP_EN);
 362
 363		ew32(MANC, manc);
 364	}
 365}
 366
 367static void e1000_release_manageability(struct e1000_adapter *adapter)
 368{
 369	struct e1000_hw *hw = &adapter->hw;
 370
 371	if (adapter->en_mng_pt) {
 372		u32 manc = er32(MANC);
 373
 374		/* re-enable hardware interception of ARP */
 375		manc |= E1000_MANC_ARP_EN;
 376
 377		ew32(MANC, manc);
 378	}
 379}
 380
 381/**
 382 * e1000_configure - configure the hardware for RX and TX
 383 * @adapter = private board structure
 384 **/
 385static void e1000_configure(struct e1000_adapter *adapter)
 386{
 387	struct net_device *netdev = adapter->netdev;
 388	int i;
 389
 390	e1000_set_rx_mode(netdev);
 391
 392	e1000_restore_vlan(adapter);
 393	e1000_init_manageability(adapter);
 394
 395	e1000_configure_tx(adapter);
 396	e1000_setup_rctl(adapter);
 397	e1000_configure_rx(adapter);
 398	/* call E1000_DESC_UNUSED which always leaves
 399	 * at least 1 descriptor unused to make sure
 400	 * next_to_use != next_to_clean
 401	 */
 402	for (i = 0; i < adapter->num_rx_queues; i++) {
 403		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 404		adapter->alloc_rx_buf(adapter, ring,
 405				      E1000_DESC_UNUSED(ring));
 406	}
 407}
 408
 409int e1000_up(struct e1000_adapter *adapter)
 410{
 411	struct e1000_hw *hw = &adapter->hw;
 412
 413	/* hardware has been reset, we need to reload some things */
 414	e1000_configure(adapter);
 415
 416	clear_bit(__E1000_DOWN, &adapter->flags);
 417
 418	napi_enable(&adapter->napi);
 419
 420	e1000_irq_enable(adapter);
 421
 422	netif_wake_queue(adapter->netdev);
 423
 424	/* fire a link change interrupt to start the watchdog */
 425	ew32(ICS, E1000_ICS_LSC);
 426	return 0;
 427}
 428
 429/**
 430 * e1000_power_up_phy - restore link in case the phy was powered down
 431 * @adapter: address of board private structure
 432 *
 433 * The phy may be powered down to save power and turn off link when the
 434 * driver is unloaded and wake on lan is not enabled (among others)
 435 * *** this routine MUST be followed by a call to e1000_reset ***
 436 **/
 437void e1000_power_up_phy(struct e1000_adapter *adapter)
 438{
 439	struct e1000_hw *hw = &adapter->hw;
 440	u16 mii_reg = 0;
 441
 442	/* Just clear the power down bit to wake the phy back up */
 443	if (hw->media_type == e1000_media_type_copper) {
 444		/* according to the manual, the phy will retain its
 445		 * settings across a power-down/up cycle
 446		 */
 447		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 448		mii_reg &= ~MII_CR_POWER_DOWN;
 449		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 450	}
 451}
 452
 453static void e1000_power_down_phy(struct e1000_adapter *adapter)
 454{
 455	struct e1000_hw *hw = &adapter->hw;
 456
 457	/* Power down the PHY so no link is implied when interface is down *
 458	 * The PHY cannot be powered down if any of the following is true *
 459	 * (a) WoL is enabled
 460	 * (b) AMT is active
 461	 * (c) SoL/IDER session is active
 462	 */
 463	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 464	   hw->media_type == e1000_media_type_copper) {
 465		u16 mii_reg = 0;
 466
 467		switch (hw->mac_type) {
 468		case e1000_82540:
 469		case e1000_82545:
 470		case e1000_82545_rev_3:
 471		case e1000_82546:
 472		case e1000_ce4100:
 473		case e1000_82546_rev_3:
 474		case e1000_82541:
 475		case e1000_82541_rev_2:
 476		case e1000_82547:
 477		case e1000_82547_rev_2:
 478			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 479				goto out;
 480			break;
 481		default:
 482			goto out;
 483		}
 484		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 485		mii_reg |= MII_CR_POWER_DOWN;
 486		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 487		msleep(1);
 488	}
 489out:
 490	return;
 491}
 492
 493static void e1000_down_and_stop(struct e1000_adapter *adapter)
 494{
 495	set_bit(__E1000_DOWN, &adapter->flags);
 496
 497	cancel_delayed_work_sync(&adapter->watchdog_task);
 498
 499	/*
 500	 * Since the watchdog task can reschedule other tasks, we should cancel
 501	 * it first, otherwise we can run into the situation when a work is
 502	 * still running after the adapter has been turned down.
 503	 */
 504
 505	cancel_delayed_work_sync(&adapter->phy_info_task);
 506	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 507
 508	/* Only kill reset task if adapter is not resetting */
 509	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 510		cancel_work_sync(&adapter->reset_task);
 511}
 512
 513void e1000_down(struct e1000_adapter *adapter)
 514{
 515	struct e1000_hw *hw = &adapter->hw;
 516	struct net_device *netdev = adapter->netdev;
 517	u32 rctl, tctl;
 518
 519
 520	/* disable receives in the hardware */
 521	rctl = er32(RCTL);
 522	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 523	/* flush and sleep below */
 524
 525	netif_tx_disable(netdev);
 526
 527	/* disable transmits in the hardware */
 528	tctl = er32(TCTL);
 529	tctl &= ~E1000_TCTL_EN;
 530	ew32(TCTL, tctl);
 531	/* flush both disables and wait for them to finish */
 532	E1000_WRITE_FLUSH();
 533	msleep(10);
 534
 
 
 
 
 
 
 
 
 
 
 
 535	napi_disable(&adapter->napi);
 536
 537	e1000_irq_disable(adapter);
 538
 539	/* Setting DOWN must be after irq_disable to prevent
 540	 * a screaming interrupt.  Setting DOWN also prevents
 541	 * tasks from rescheduling.
 542	 */
 543	e1000_down_and_stop(adapter);
 544
 545	adapter->link_speed = 0;
 546	adapter->link_duplex = 0;
 547	netif_carrier_off(netdev);
 548
 549	e1000_reset(adapter);
 550	e1000_clean_all_tx_rings(adapter);
 551	e1000_clean_all_rx_rings(adapter);
 552}
 553
 554void e1000_reinit_locked(struct e1000_adapter *adapter)
 555{
 556	WARN_ON(in_interrupt());
 557	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 558		msleep(1);
 559	e1000_down(adapter);
 560	e1000_up(adapter);
 
 
 
 
 
 561	clear_bit(__E1000_RESETTING, &adapter->flags);
 562}
 563
 564void e1000_reset(struct e1000_adapter *adapter)
 565{
 566	struct e1000_hw *hw = &adapter->hw;
 567	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 568	bool legacy_pba_adjust = false;
 569	u16 hwm;
 570
 571	/* Repartition Pba for greater than 9k mtu
 572	 * To take effect CTRL.RST is required.
 573	 */
 574
 575	switch (hw->mac_type) {
 576	case e1000_82542_rev2_0:
 577	case e1000_82542_rev2_1:
 578	case e1000_82543:
 579	case e1000_82544:
 580	case e1000_82540:
 581	case e1000_82541:
 582	case e1000_82541_rev_2:
 583		legacy_pba_adjust = true;
 584		pba = E1000_PBA_48K;
 585		break;
 586	case e1000_82545:
 587	case e1000_82545_rev_3:
 588	case e1000_82546:
 589	case e1000_ce4100:
 590	case e1000_82546_rev_3:
 591		pba = E1000_PBA_48K;
 592		break;
 593	case e1000_82547:
 594	case e1000_82547_rev_2:
 595		legacy_pba_adjust = true;
 596		pba = E1000_PBA_30K;
 597		break;
 598	case e1000_undefined:
 599	case e1000_num_macs:
 600		break;
 601	}
 602
 603	if (legacy_pba_adjust) {
 604		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 605			pba -= 8; /* allocate more FIFO for Tx */
 606
 607		if (hw->mac_type == e1000_82547) {
 608			adapter->tx_fifo_head = 0;
 609			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 610			adapter->tx_fifo_size =
 611				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 612			atomic_set(&adapter->tx_fifo_stall, 0);
 613		}
 614	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 615		/* adjust PBA for jumbo frames */
 616		ew32(PBA, pba);
 617
 618		/* To maintain wire speed transmits, the Tx FIFO should be
 619		 * large enough to accommodate two full transmit packets,
 620		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 621		 * the Rx FIFO should be large enough to accommodate at least
 622		 * one full receive packet and is similarly rounded up and
 623		 * expressed in KB.
 624		 */
 625		pba = er32(PBA);
 626		/* upper 16 bits has Tx packet buffer allocation size in KB */
 627		tx_space = pba >> 16;
 628		/* lower 16 bits has Rx packet buffer allocation size in KB */
 629		pba &= 0xffff;
 630		/* the Tx fifo also stores 16 bytes of information about the Tx
 631		 * but don't include ethernet FCS because hardware appends it
 632		 */
 633		min_tx_space = (hw->max_frame_size +
 634		                sizeof(struct e1000_tx_desc) -
 635		                ETH_FCS_LEN) * 2;
 636		min_tx_space = ALIGN(min_tx_space, 1024);
 637		min_tx_space >>= 10;
 638		/* software strips receive CRC, so leave room for it */
 639		min_rx_space = hw->max_frame_size;
 640		min_rx_space = ALIGN(min_rx_space, 1024);
 641		min_rx_space >>= 10;
 642
 643		/* If current Tx allocation is less than the min Tx FIFO size,
 644		 * and the min Tx FIFO size is less than the current Rx FIFO
 645		 * allocation, take space away from current Rx allocation
 646		 */
 647		if (tx_space < min_tx_space &&
 648		    ((min_tx_space - tx_space) < pba)) {
 649			pba = pba - (min_tx_space - tx_space);
 650
 651			/* PCI/PCIx hardware has PBA alignment constraints */
 652			switch (hw->mac_type) {
 653			case e1000_82545 ... e1000_82546_rev_3:
 654				pba &= ~(E1000_PBA_8K - 1);
 655				break;
 656			default:
 657				break;
 658			}
 659
 660			/* if short on Rx space, Rx wins and must trump Tx
 661			 * adjustment or use Early Receive if available
 662			 */
 663			if (pba < min_rx_space)
 664				pba = min_rx_space;
 665		}
 666	}
 667
 668	ew32(PBA, pba);
 669
 670	/* flow control settings:
 671	 * The high water mark must be low enough to fit one full frame
 672	 * (or the size used for early receive) above it in the Rx FIFO.
 673	 * Set it to the lower of:
 674	 * - 90% of the Rx FIFO size, and
 675	 * - the full Rx FIFO size minus the early receive size (for parts
 676	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 677	 * - the full Rx FIFO size minus one full frame
 678	 */
 679	hwm = min(((pba << 10) * 9 / 10),
 680		  ((pba << 10) - hw->max_frame_size));
 681
 682	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 683	hw->fc_low_water = hw->fc_high_water - 8;
 684	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 685	hw->fc_send_xon = 1;
 686	hw->fc = hw->original_fc;
 687
 688	/* Allow time for pending master requests to run */
 689	e1000_reset_hw(hw);
 690	if (hw->mac_type >= e1000_82544)
 691		ew32(WUC, 0);
 692
 693	if (e1000_init_hw(hw))
 694		e_dev_err("Hardware Error\n");
 695	e1000_update_mng_vlan(adapter);
 696
 697	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 698	if (hw->mac_type >= e1000_82544 &&
 699	    hw->autoneg == 1 &&
 700	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 701		u32 ctrl = er32(CTRL);
 702		/* clear phy power management bit if we are in gig only mode,
 703		 * which if enabled will attempt negotiation to 100Mb, which
 704		 * can cause a loss of link at power off or driver unload
 705		 */
 706		ctrl &= ~E1000_CTRL_SWDPIN3;
 707		ew32(CTRL, ctrl);
 708	}
 709
 710	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 711	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 712
 713	e1000_reset_adaptive(hw);
 714	e1000_phy_get_info(hw, &adapter->phy_info);
 715
 716	e1000_release_manageability(adapter);
 717}
 718
 719/* Dump the eeprom for users having checksum issues */
 720static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 721{
 722	struct net_device *netdev = adapter->netdev;
 723	struct ethtool_eeprom eeprom;
 724	const struct ethtool_ops *ops = netdev->ethtool_ops;
 725	u8 *data;
 726	int i;
 727	u16 csum_old, csum_new = 0;
 728
 729	eeprom.len = ops->get_eeprom_len(netdev);
 730	eeprom.offset = 0;
 731
 732	data = kmalloc(eeprom.len, GFP_KERNEL);
 733	if (!data)
 734		return;
 735
 736	ops->get_eeprom(netdev, &eeprom, data);
 737
 738	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 739		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 740	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 741		csum_new += data[i] + (data[i + 1] << 8);
 742	csum_new = EEPROM_SUM - csum_new;
 743
 744	pr_err("/*********************/\n");
 745	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 746	pr_err("Calculated              : 0x%04x\n", csum_new);
 747
 748	pr_err("Offset    Values\n");
 749	pr_err("========  ======\n");
 750	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 751
 752	pr_err("Include this output when contacting your support provider.\n");
 753	pr_err("This is not a software error! Something bad happened to\n");
 754	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 755	pr_err("result in further problems, possibly loss of data,\n");
 756	pr_err("corruption or system hangs!\n");
 757	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 758	pr_err("which is invalid and requires you to set the proper MAC\n");
 759	pr_err("address manually before continuing to enable this network\n");
 760	pr_err("device. Please inspect the EEPROM dump and report the\n");
 761	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 762	pr_err("/*********************/\n");
 763
 764	kfree(data);
 765}
 766
 767/**
 768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 769 * @pdev: PCI device information struct
 770 *
 771 * Return true if an adapter needs ioport resources
 772 **/
 773static int e1000_is_need_ioport(struct pci_dev *pdev)
 774{
 775	switch (pdev->device) {
 776	case E1000_DEV_ID_82540EM:
 777	case E1000_DEV_ID_82540EM_LOM:
 778	case E1000_DEV_ID_82540EP:
 779	case E1000_DEV_ID_82540EP_LOM:
 780	case E1000_DEV_ID_82540EP_LP:
 781	case E1000_DEV_ID_82541EI:
 782	case E1000_DEV_ID_82541EI_MOBILE:
 783	case E1000_DEV_ID_82541ER:
 784	case E1000_DEV_ID_82541ER_LOM:
 785	case E1000_DEV_ID_82541GI:
 786	case E1000_DEV_ID_82541GI_LF:
 787	case E1000_DEV_ID_82541GI_MOBILE:
 788	case E1000_DEV_ID_82544EI_COPPER:
 789	case E1000_DEV_ID_82544EI_FIBER:
 790	case E1000_DEV_ID_82544GC_COPPER:
 791	case E1000_DEV_ID_82544GC_LOM:
 792	case E1000_DEV_ID_82545EM_COPPER:
 793	case E1000_DEV_ID_82545EM_FIBER:
 794	case E1000_DEV_ID_82546EB_COPPER:
 795	case E1000_DEV_ID_82546EB_FIBER:
 796	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 797		return true;
 798	default:
 799		return false;
 800	}
 801}
 802
 803static netdev_features_t e1000_fix_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	/* Since there is no support for separate Rx/Tx vlan accel
 807	 * enable/disable make sure Tx flag is always in same state as Rx.
 808	 */
 809	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 810		features |= NETIF_F_HW_VLAN_CTAG_TX;
 811	else
 812		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 813
 814	return features;
 815}
 816
 817static int e1000_set_features(struct net_device *netdev,
 818	netdev_features_t features)
 819{
 820	struct e1000_adapter *adapter = netdev_priv(netdev);
 821	netdev_features_t changed = features ^ netdev->features;
 822
 823	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 824		e1000_vlan_mode(netdev, features);
 825
 826	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 827		return 0;
 828
 829	netdev->features = features;
 830	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 831
 832	if (netif_running(netdev))
 833		e1000_reinit_locked(adapter);
 834	else
 835		e1000_reset(adapter);
 836
 837	return 0;
 838}
 839
 840static const struct net_device_ops e1000_netdev_ops = {
 841	.ndo_open		= e1000_open,
 842	.ndo_stop		= e1000_close,
 843	.ndo_start_xmit		= e1000_xmit_frame,
 844	.ndo_get_stats		= e1000_get_stats,
 845	.ndo_set_rx_mode	= e1000_set_rx_mode,
 846	.ndo_set_mac_address	= e1000_set_mac,
 847	.ndo_tx_timeout		= e1000_tx_timeout,
 848	.ndo_change_mtu		= e1000_change_mtu,
 849	.ndo_do_ioctl		= e1000_ioctl,
 850	.ndo_validate_addr	= eth_validate_addr,
 851	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 852	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 853#ifdef CONFIG_NET_POLL_CONTROLLER
 854	.ndo_poll_controller	= e1000_netpoll,
 855#endif
 856	.ndo_fix_features	= e1000_fix_features,
 857	.ndo_set_features	= e1000_set_features,
 858};
 859
 860/**
 861 * e1000_init_hw_struct - initialize members of hw struct
 862 * @adapter: board private struct
 863 * @hw: structure used by e1000_hw.c
 864 *
 865 * Factors out initialization of the e1000_hw struct to its own function
 866 * that can be called very early at init (just after struct allocation).
 867 * Fields are initialized based on PCI device information and
 868 * OS network device settings (MTU size).
 869 * Returns negative error codes if MAC type setup fails.
 870 */
 871static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 872				struct e1000_hw *hw)
 873{
 874	struct pci_dev *pdev = adapter->pdev;
 875
 876	/* PCI config space info */
 877	hw->vendor_id = pdev->vendor;
 878	hw->device_id = pdev->device;
 879	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 880	hw->subsystem_id = pdev->subsystem_device;
 881	hw->revision_id = pdev->revision;
 882
 883	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 884
 885	hw->max_frame_size = adapter->netdev->mtu +
 886			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 887	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 888
 889	/* identify the MAC */
 890	if (e1000_set_mac_type(hw)) {
 891		e_err(probe, "Unknown MAC Type\n");
 892		return -EIO;
 893	}
 894
 895	switch (hw->mac_type) {
 896	default:
 897		break;
 898	case e1000_82541:
 899	case e1000_82547:
 900	case e1000_82541_rev_2:
 901	case e1000_82547_rev_2:
 902		hw->phy_init_script = 1;
 903		break;
 904	}
 905
 906	e1000_set_media_type(hw);
 907	e1000_get_bus_info(hw);
 908
 909	hw->wait_autoneg_complete = false;
 910	hw->tbi_compatibility_en = true;
 911	hw->adaptive_ifs = true;
 912
 913	/* Copper options */
 914
 915	if (hw->media_type == e1000_media_type_copper) {
 916		hw->mdix = AUTO_ALL_MODES;
 917		hw->disable_polarity_correction = false;
 918		hw->master_slave = E1000_MASTER_SLAVE;
 919	}
 920
 921	return 0;
 922}
 923
 924/**
 925 * e1000_probe - Device Initialization Routine
 926 * @pdev: PCI device information struct
 927 * @ent: entry in e1000_pci_tbl
 928 *
 929 * Returns 0 on success, negative on failure
 930 *
 931 * e1000_probe initializes an adapter identified by a pci_dev structure.
 932 * The OS initialization, configuring of the adapter private structure,
 933 * and a hardware reset occur.
 934 **/
 935static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 936{
 937	struct net_device *netdev;
 938	struct e1000_adapter *adapter;
 939	struct e1000_hw *hw;
 940
 941	static int cards_found = 0;
 942	static int global_quad_port_a = 0; /* global ksp3 port a indication */
 943	int i, err, pci_using_dac;
 944	u16 eeprom_data = 0;
 945	u16 tmp = 0;
 946	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 947	int bars, need_ioport;
 
 948
 949	/* do not allocate ioport bars when not needed */
 950	need_ioport = e1000_is_need_ioport(pdev);
 951	if (need_ioport) {
 952		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 953		err = pci_enable_device(pdev);
 954	} else {
 955		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 956		err = pci_enable_device_mem(pdev);
 957	}
 958	if (err)
 959		return err;
 960
 961	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 962	if (err)
 963		goto err_pci_reg;
 964
 965	pci_set_master(pdev);
 966	err = pci_save_state(pdev);
 967	if (err)
 968		goto err_alloc_etherdev;
 969
 970	err = -ENOMEM;
 971	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 972	if (!netdev)
 973		goto err_alloc_etherdev;
 974
 975	SET_NETDEV_DEV(netdev, &pdev->dev);
 976
 977	pci_set_drvdata(pdev, netdev);
 978	adapter = netdev_priv(netdev);
 979	adapter->netdev = netdev;
 980	adapter->pdev = pdev;
 981	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 982	adapter->bars = bars;
 983	adapter->need_ioport = need_ioport;
 984
 985	hw = &adapter->hw;
 986	hw->back = adapter;
 987
 988	err = -EIO;
 989	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 990	if (!hw->hw_addr)
 991		goto err_ioremap;
 992
 993	if (adapter->need_ioport) {
 994		for (i = BAR_1; i <= BAR_5; i++) {
 995			if (pci_resource_len(pdev, i) == 0)
 996				continue;
 997			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 998				hw->io_base = pci_resource_start(pdev, i);
 999				break;
1000			}
1001		}
1002	}
1003
1004	/* make ready for any if (hw->...) below */
1005	err = e1000_init_hw_struct(adapter, hw);
1006	if (err)
1007		goto err_sw_init;
1008
1009	/* there is a workaround being applied below that limits
1010	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1011	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012	 */
1013	pci_using_dac = 0;
1014	if ((hw->bus_type == e1000_bus_type_pcix) &&
1015	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016		pci_using_dac = 1;
1017	} else {
1018		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019		if (err) {
1020			pr_err("No usable DMA config, aborting\n");
1021			goto err_dma;
1022		}
1023	}
1024
1025	netdev->netdev_ops = &e1000_netdev_ops;
1026	e1000_set_ethtool_ops(netdev);
1027	netdev->watchdog_timeo = 5 * HZ;
1028	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032	adapter->bd_number = cards_found;
1033
1034	/* setup the private structure */
1035
1036	err = e1000_sw_init(adapter);
1037	if (err)
1038		goto err_sw_init;
1039
1040	err = -EIO;
1041	if (hw->mac_type == e1000_ce4100) {
1042		hw->ce4100_gbe_mdio_base_virt =
1043					ioremap(pci_resource_start(pdev, BAR_1),
1044		                                pci_resource_len(pdev, BAR_1));
1045
1046		if (!hw->ce4100_gbe_mdio_base_virt)
1047			goto err_mdio_ioremap;
1048	}
1049
1050	if (hw->mac_type >= e1000_82543) {
1051		netdev->hw_features = NETIF_F_SG |
1052				   NETIF_F_HW_CSUM |
1053				   NETIF_F_HW_VLAN_CTAG_RX;
1054		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055				   NETIF_F_HW_VLAN_CTAG_FILTER;
1056	}
1057
1058	if ((hw->mac_type >= e1000_82544) &&
1059	   (hw->mac_type != e1000_82547))
1060		netdev->hw_features |= NETIF_F_TSO;
1061
1062	netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064	netdev->features |= netdev->hw_features;
1065	netdev->hw_features |= (NETIF_F_RXCSUM |
1066				NETIF_F_RXALL |
1067				NETIF_F_RXFCS);
1068
1069	if (pci_using_dac) {
1070		netdev->features |= NETIF_F_HIGHDMA;
1071		netdev->vlan_features |= NETIF_F_HIGHDMA;
1072	}
1073
1074	netdev->vlan_features |= (NETIF_F_TSO |
1075				  NETIF_F_HW_CSUM |
1076				  NETIF_F_SG);
1077
1078	netdev->priv_flags |= IFF_UNICAST_FLT;
 
 
 
 
 
 
 
1079
1080	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082	/* initialize eeprom parameters */
1083	if (e1000_init_eeprom_params(hw)) {
1084		e_err(probe, "EEPROM initialization failed\n");
1085		goto err_eeprom;
1086	}
1087
1088	/* before reading the EEPROM, reset the controller to
1089	 * put the device in a known good starting state
1090	 */
1091
1092	e1000_reset_hw(hw);
1093
1094	/* make sure the EEPROM is good */
1095	if (e1000_validate_eeprom_checksum(hw) < 0) {
1096		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097		e1000_dump_eeprom(adapter);
1098		/* set MAC address to all zeroes to invalidate and temporary
1099		 * disable this device for the user. This blocks regular
1100		 * traffic while still permitting ethtool ioctls from reaching
1101		 * the hardware as well as allowing the user to run the
1102		 * interface after manually setting a hw addr using
1103		 * `ip set address`
1104		 */
1105		memset(hw->mac_addr, 0, netdev->addr_len);
1106	} else {
1107		/* copy the MAC address out of the EEPROM */
1108		if (e1000_read_mac_addr(hw))
1109			e_err(probe, "EEPROM Read Error\n");
1110	}
1111	/* don't block initalization here due to bad MAC address */
1112	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114	if (!is_valid_ether_addr(netdev->dev_addr))
1115		e_err(probe, "Invalid MAC Address\n");
1116
1117
1118	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120			  e1000_82547_tx_fifo_stall_task);
1121	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124	e1000_check_options(adapter);
1125
1126	/* Initial Wake on LAN setting
1127	 * If APM wake is enabled in the EEPROM,
1128	 * enable the ACPI Magic Packet filter
1129	 */
1130
1131	switch (hw->mac_type) {
1132	case e1000_82542_rev2_0:
1133	case e1000_82542_rev2_1:
1134	case e1000_82543:
1135		break;
1136	case e1000_82544:
1137		e1000_read_eeprom(hw,
1138			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140		break;
1141	case e1000_82546:
1142	case e1000_82546_rev_3:
1143		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144			e1000_read_eeprom(hw,
1145				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146			break;
1147		}
1148		/* Fall Through */
1149	default:
1150		e1000_read_eeprom(hw,
1151			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152		break;
1153	}
1154	if (eeprom_data & eeprom_apme_mask)
1155		adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157	/* now that we have the eeprom settings, apply the special cases
1158	 * where the eeprom may be wrong or the board simply won't support
1159	 * wake on lan on a particular port
1160	 */
1161	switch (pdev->device) {
1162	case E1000_DEV_ID_82546GB_PCIE:
1163		adapter->eeprom_wol = 0;
1164		break;
1165	case E1000_DEV_ID_82546EB_FIBER:
1166	case E1000_DEV_ID_82546GB_FIBER:
1167		/* Wake events only supported on port A for dual fiber
1168		 * regardless of eeprom setting
1169		 */
1170		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171			adapter->eeprom_wol = 0;
1172		break;
1173	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174		/* if quad port adapter, disable WoL on all but port A */
1175		if (global_quad_port_a != 0)
1176			adapter->eeprom_wol = 0;
1177		else
1178			adapter->quad_port_a = true;
1179		/* Reset for multiple quad port adapters */
1180		if (++global_quad_port_a == 4)
1181			global_quad_port_a = 0;
1182		break;
1183	}
1184
1185	/* initialize the wol settings based on the eeprom settings */
1186	adapter->wol = adapter->eeprom_wol;
1187	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189	/* Auto detect PHY address */
1190	if (hw->mac_type == e1000_ce4100) {
1191		for (i = 0; i < 32; i++) {
1192			hw->phy_addr = i;
1193			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194			if (tmp == 0 || tmp == 0xFF) {
1195				if (i == 31)
1196					goto err_eeprom;
1197				continue;
1198			} else
1199				break;
1200		}
 
 
 
1201	}
1202
1203	/* reset the hardware with the new settings */
1204	e1000_reset(adapter);
1205
1206	strcpy(netdev->name, "eth%d");
1207	err = register_netdev(netdev);
1208	if (err)
1209		goto err_register;
1210
1211	e1000_vlan_filter_on_off(adapter, false);
1212
1213	/* print bus type/speed/width info */
1214	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221	       netdev->dev_addr);
1222
1223	/* carrier off reporting is important to ethtool even BEFORE open */
1224	netif_carrier_off(netdev);
1225
1226	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228	cards_found++;
1229	return 0;
1230
1231err_register:
1232err_eeprom:
1233	e1000_phy_hw_reset(hw);
1234
1235	if (hw->flash_address)
1236		iounmap(hw->flash_address);
1237	kfree(adapter->tx_ring);
1238	kfree(adapter->rx_ring);
1239err_dma:
1240err_sw_init:
1241err_mdio_ioremap:
1242	iounmap(hw->ce4100_gbe_mdio_base_virt);
1243	iounmap(hw->hw_addr);
1244err_ioremap:
 
1245	free_netdev(netdev);
1246err_alloc_etherdev:
1247	pci_release_selected_regions(pdev, bars);
1248err_pci_reg:
1249	pci_disable_device(pdev);
 
1250	return err;
1251}
1252
1253/**
1254 * e1000_remove - Device Removal Routine
1255 * @pdev: PCI device information struct
1256 *
1257 * e1000_remove is called by the PCI subsystem to alert the driver
1258 * that it should release a PCI device.  The could be caused by a
1259 * Hot-Plug event, or because the driver is going to be removed from
1260 * memory.
1261 **/
1262static void e1000_remove(struct pci_dev *pdev)
1263{
1264	struct net_device *netdev = pci_get_drvdata(pdev);
1265	struct e1000_adapter *adapter = netdev_priv(netdev);
1266	struct e1000_hw *hw = &adapter->hw;
 
1267
1268	e1000_down_and_stop(adapter);
1269	e1000_release_manageability(adapter);
1270
1271	unregister_netdev(netdev);
1272
1273	e1000_phy_hw_reset(hw);
1274
1275	kfree(adapter->tx_ring);
1276	kfree(adapter->rx_ring);
1277
1278	if (hw->mac_type == e1000_ce4100)
1279		iounmap(hw->ce4100_gbe_mdio_base_virt);
1280	iounmap(hw->hw_addr);
1281	if (hw->flash_address)
1282		iounmap(hw->flash_address);
1283	pci_release_selected_regions(pdev, adapter->bars);
1284
 
1285	free_netdev(netdev);
1286
1287	pci_disable_device(pdev);
 
1288}
1289
1290/**
1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292 * @adapter: board private structure to initialize
1293 *
1294 * e1000_sw_init initializes the Adapter private data structure.
1295 * e1000_init_hw_struct MUST be called before this function
1296 **/
1297static int e1000_sw_init(struct e1000_adapter *adapter)
1298{
1299	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301	adapter->num_tx_queues = 1;
1302	adapter->num_rx_queues = 1;
1303
1304	if (e1000_alloc_queues(adapter)) {
1305		e_err(probe, "Unable to allocate memory for queues\n");
1306		return -ENOMEM;
1307	}
1308
1309	/* Explicitly disable IRQ since the NIC can be in any state. */
1310	e1000_irq_disable(adapter);
1311
1312	spin_lock_init(&adapter->stats_lock);
1313
1314	set_bit(__E1000_DOWN, &adapter->flags);
1315
1316	return 0;
1317}
1318
1319/**
1320 * e1000_alloc_queues - Allocate memory for all rings
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one ring per queue at run-time since we don't know the
1324 * number of queues at compile-time.
1325 **/
1326static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327{
1328	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330	if (!adapter->tx_ring)
1331		return -ENOMEM;
1332
1333	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335	if (!adapter->rx_ring) {
1336		kfree(adapter->tx_ring);
1337		return -ENOMEM;
1338	}
1339
1340	return E1000_SUCCESS;
1341}
1342
1343/**
1344 * e1000_open - Called when a network interface is made active
1345 * @netdev: network interface device structure
1346 *
1347 * Returns 0 on success, negative value on failure
1348 *
1349 * The open entry point is called when a network interface is made
1350 * active by the system (IFF_UP).  At this point all resources needed
1351 * for transmit and receive operations are allocated, the interrupt
1352 * handler is registered with the OS, the watchdog task is started,
1353 * and the stack is notified that the interface is ready.
1354 **/
1355static int e1000_open(struct net_device *netdev)
1356{
1357	struct e1000_adapter *adapter = netdev_priv(netdev);
1358	struct e1000_hw *hw = &adapter->hw;
1359	int err;
1360
1361	/* disallow open during test */
1362	if (test_bit(__E1000_TESTING, &adapter->flags))
1363		return -EBUSY;
1364
1365	netif_carrier_off(netdev);
1366
1367	/* allocate transmit descriptors */
1368	err = e1000_setup_all_tx_resources(adapter);
1369	if (err)
1370		goto err_setup_tx;
1371
1372	/* allocate receive descriptors */
1373	err = e1000_setup_all_rx_resources(adapter);
1374	if (err)
1375		goto err_setup_rx;
1376
1377	e1000_power_up_phy(adapter);
1378
1379	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380	if ((hw->mng_cookie.status &
1381			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382		e1000_update_mng_vlan(adapter);
1383	}
1384
1385	/* before we allocate an interrupt, we must be ready to handle it.
1386	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387	 * as soon as we call pci_request_irq, so we have to setup our
1388	 * clean_rx handler before we do so.
1389	 */
1390	e1000_configure(adapter);
1391
1392	err = e1000_request_irq(adapter);
1393	if (err)
1394		goto err_req_irq;
1395
1396	/* From here on the code is the same as e1000_up() */
1397	clear_bit(__E1000_DOWN, &adapter->flags);
1398
 
1399	napi_enable(&adapter->napi);
 
 
1400
1401	e1000_irq_enable(adapter);
1402
1403	netif_start_queue(netdev);
1404
1405	/* fire a link status change interrupt to start the watchdog */
1406	ew32(ICS, E1000_ICS_LSC);
1407
1408	return E1000_SUCCESS;
1409
1410err_req_irq:
1411	e1000_power_down_phy(adapter);
1412	e1000_free_all_rx_resources(adapter);
1413err_setup_rx:
1414	e1000_free_all_tx_resources(adapter);
1415err_setup_tx:
1416	e1000_reset(adapter);
1417
1418	return err;
1419}
1420
1421/**
1422 * e1000_close - Disables a network interface
1423 * @netdev: network interface device structure
1424 *
1425 * Returns 0, this is not allowed to fail
1426 *
1427 * The close entry point is called when an interface is de-activated
1428 * by the OS.  The hardware is still under the drivers control, but
1429 * needs to be disabled.  A global MAC reset is issued to stop the
1430 * hardware, and all transmit and receive resources are freed.
1431 **/
1432static int e1000_close(struct net_device *netdev)
1433{
1434	struct e1000_adapter *adapter = netdev_priv(netdev);
1435	struct e1000_hw *hw = &adapter->hw;
1436	int count = E1000_CHECK_RESET_COUNT;
1437
1438	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439		usleep_range(10000, 20000);
1440
1441	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
 
 
 
 
1442	e1000_down(adapter);
1443	e1000_power_down_phy(adapter);
1444	e1000_free_irq(adapter);
1445
1446	e1000_free_all_tx_resources(adapter);
1447	e1000_free_all_rx_resources(adapter);
1448
1449	/* kill manageability vlan ID if supported, but not if a vlan with
1450	 * the same ID is registered on the host OS (let 8021q kill it)
1451	 */
1452	if ((hw->mng_cookie.status &
1453	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456				       adapter->mng_vlan_id);
1457	}
1458
1459	return 0;
1460}
1461
1462/**
1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464 * @adapter: address of board private structure
1465 * @start: address of beginning of memory
1466 * @len: length of memory
1467 **/
1468static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469				  unsigned long len)
1470{
1471	struct e1000_hw *hw = &adapter->hw;
1472	unsigned long begin = (unsigned long)start;
1473	unsigned long end = begin + len;
1474
1475	/* First rev 82545 and 82546 need to not allow any memory
1476	 * write location to cross 64k boundary due to errata 23
1477	 */
1478	if (hw->mac_type == e1000_82545 ||
1479	    hw->mac_type == e1000_ce4100 ||
1480	    hw->mac_type == e1000_82546) {
1481		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482	}
1483
1484	return true;
1485}
1486
1487/**
1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489 * @adapter: board private structure
1490 * @txdr:    tx descriptor ring (for a specific queue) to setup
1491 *
1492 * Return 0 on success, negative on failure
1493 **/
1494static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495				    struct e1000_tx_ring *txdr)
1496{
1497	struct pci_dev *pdev = adapter->pdev;
1498	int size;
1499
1500	size = sizeof(struct e1000_buffer) * txdr->count;
1501	txdr->buffer_info = vzalloc(size);
1502	if (!txdr->buffer_info)
1503		return -ENOMEM;
1504
1505	/* round up to nearest 4K */
1506
1507	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508	txdr->size = ALIGN(txdr->size, 4096);
1509
1510	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511					GFP_KERNEL);
1512	if (!txdr->desc) {
1513setup_tx_desc_die:
1514		vfree(txdr->buffer_info);
1515		return -ENOMEM;
1516	}
1517
1518	/* Fix for errata 23, can't cross 64kB boundary */
1519	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520		void *olddesc = txdr->desc;
1521		dma_addr_t olddma = txdr->dma;
1522		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523		      txdr->size, txdr->desc);
1524		/* Try again, without freeing the previous */
1525		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526						&txdr->dma, GFP_KERNEL);
1527		/* Failed allocation, critical failure */
1528		if (!txdr->desc) {
1529			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530					  olddma);
1531			goto setup_tx_desc_die;
1532		}
1533
1534		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535			/* give up */
1536			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537					  txdr->dma);
1538			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539					  olddma);
1540			e_err(probe, "Unable to allocate aligned memory "
1541			      "for the transmit descriptor ring\n");
1542			vfree(txdr->buffer_info);
1543			return -ENOMEM;
1544		} else {
1545			/* Free old allocation, new allocation was successful */
1546			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547					  olddma);
1548		}
1549	}
1550	memset(txdr->desc, 0, txdr->size);
1551
1552	txdr->next_to_use = 0;
1553	txdr->next_to_clean = 0;
1554
1555	return 0;
1556}
1557
1558/**
1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560 * 				  (Descriptors) for all queues
1561 * @adapter: board private structure
1562 *
1563 * Return 0 on success, negative on failure
1564 **/
1565int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566{
1567	int i, err = 0;
1568
1569	for (i = 0; i < adapter->num_tx_queues; i++) {
1570		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571		if (err) {
1572			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573			for (i-- ; i >= 0; i--)
1574				e1000_free_tx_resources(adapter,
1575							&adapter->tx_ring[i]);
1576			break;
1577		}
1578	}
1579
1580	return err;
1581}
1582
1583/**
1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585 * @adapter: board private structure
1586 *
1587 * Configure the Tx unit of the MAC after a reset.
1588 **/
1589static void e1000_configure_tx(struct e1000_adapter *adapter)
1590{
1591	u64 tdba;
1592	struct e1000_hw *hw = &adapter->hw;
1593	u32 tdlen, tctl, tipg;
1594	u32 ipgr1, ipgr2;
1595
1596	/* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598	switch (adapter->num_tx_queues) {
1599	case 1:
1600	default:
1601		tdba = adapter->tx_ring[0].dma;
1602		tdlen = adapter->tx_ring[0].count *
1603			sizeof(struct e1000_tx_desc);
1604		ew32(TDLEN, tdlen);
1605		ew32(TDBAH, (tdba >> 32));
1606		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607		ew32(TDT, 0);
1608		ew32(TDH, 0);
1609		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610					   E1000_TDH : E1000_82542_TDH);
1611		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612					   E1000_TDT : E1000_82542_TDT);
1613		break;
1614	}
1615
1616	/* Set the default values for the Tx Inter Packet Gap timer */
1617	if ((hw->media_type == e1000_media_type_fiber ||
1618	     hw->media_type == e1000_media_type_internal_serdes))
1619		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620	else
1621		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623	switch (hw->mac_type) {
1624	case e1000_82542_rev2_0:
1625	case e1000_82542_rev2_1:
1626		tipg = DEFAULT_82542_TIPG_IPGT;
1627		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629		break;
1630	default:
1631		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633		break;
1634	}
1635	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637	ew32(TIPG, tipg);
1638
1639	/* Set the Tx Interrupt Delay register */
1640
1641	ew32(TIDV, adapter->tx_int_delay);
1642	if (hw->mac_type >= e1000_82540)
1643		ew32(TADV, adapter->tx_abs_int_delay);
1644
1645	/* Program the Transmit Control Register */
1646
1647	tctl = er32(TCTL);
1648	tctl &= ~E1000_TCTL_CT;
1649	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652	e1000_config_collision_dist(hw);
1653
1654	/* Setup Transmit Descriptor Settings for eop descriptor */
1655	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657	/* only set IDE if we are delaying interrupts using the timers */
1658	if (adapter->tx_int_delay)
1659		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661	if (hw->mac_type < e1000_82543)
1662		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663	else
1664		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666	/* Cache if we're 82544 running in PCI-X because we'll
1667	 * need this to apply a workaround later in the send path.
1668	 */
1669	if (hw->mac_type == e1000_82544 &&
1670	    hw->bus_type == e1000_bus_type_pcix)
1671		adapter->pcix_82544 = true;
1672
1673	ew32(TCTL, tctl);
1674
1675}
1676
1677/**
1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679 * @adapter: board private structure
1680 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681 *
1682 * Returns 0 on success, negative on failure
1683 **/
1684static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685				    struct e1000_rx_ring *rxdr)
1686{
1687	struct pci_dev *pdev = adapter->pdev;
1688	int size, desc_len;
1689
1690	size = sizeof(struct e1000_buffer) * rxdr->count;
1691	rxdr->buffer_info = vzalloc(size);
1692	if (!rxdr->buffer_info)
1693		return -ENOMEM;
1694
1695	desc_len = sizeof(struct e1000_rx_desc);
1696
1697	/* Round up to nearest 4K */
1698
1699	rxdr->size = rxdr->count * desc_len;
1700	rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703					GFP_KERNEL);
1704	if (!rxdr->desc) {
1705setup_rx_desc_die:
1706		vfree(rxdr->buffer_info);
1707		return -ENOMEM;
1708	}
1709
1710	/* Fix for errata 23, can't cross 64kB boundary */
1711	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712		void *olddesc = rxdr->desc;
1713		dma_addr_t olddma = rxdr->dma;
1714		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715		      rxdr->size, rxdr->desc);
1716		/* Try again, without freeing the previous */
1717		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718						&rxdr->dma, GFP_KERNEL);
1719		/* Failed allocation, critical failure */
1720		if (!rxdr->desc) {
1721			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722					  olddma);
1723			goto setup_rx_desc_die;
1724		}
1725
1726		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727			/* give up */
1728			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729					  rxdr->dma);
1730			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731					  olddma);
1732			e_err(probe, "Unable to allocate aligned memory for "
1733			      "the Rx descriptor ring\n");
1734			goto setup_rx_desc_die;
1735		} else {
1736			/* Free old allocation, new allocation was successful */
1737			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738					  olddma);
1739		}
1740	}
1741	memset(rxdr->desc, 0, rxdr->size);
1742
1743	rxdr->next_to_clean = 0;
1744	rxdr->next_to_use = 0;
1745	rxdr->rx_skb_top = NULL;
1746
1747	return 0;
1748}
1749
1750/**
1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752 * 				  (Descriptors) for all queues
1753 * @adapter: board private structure
1754 *
1755 * Return 0 on success, negative on failure
1756 **/
1757int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758{
1759	int i, err = 0;
1760
1761	for (i = 0; i < adapter->num_rx_queues; i++) {
1762		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763		if (err) {
1764			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765			for (i-- ; i >= 0; i--)
1766				e1000_free_rx_resources(adapter,
1767							&adapter->rx_ring[i]);
1768			break;
1769		}
1770	}
1771
1772	return err;
1773}
1774
1775/**
1776 * e1000_setup_rctl - configure the receive control registers
1777 * @adapter: Board private structure
1778 **/
1779static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780{
1781	struct e1000_hw *hw = &adapter->hw;
1782	u32 rctl;
1783
1784	rctl = er32(RCTL);
1785
1786	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789		E1000_RCTL_RDMTS_HALF |
1790		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792	if (hw->tbi_compatibility_on == 1)
1793		rctl |= E1000_RCTL_SBP;
1794	else
1795		rctl &= ~E1000_RCTL_SBP;
1796
1797	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798		rctl &= ~E1000_RCTL_LPE;
1799	else
1800		rctl |= E1000_RCTL_LPE;
1801
1802	/* Setup buffer sizes */
1803	rctl &= ~E1000_RCTL_SZ_4096;
1804	rctl |= E1000_RCTL_BSEX;
1805	switch (adapter->rx_buffer_len) {
1806		case E1000_RXBUFFER_2048:
1807		default:
1808			rctl |= E1000_RCTL_SZ_2048;
1809			rctl &= ~E1000_RCTL_BSEX;
1810			break;
1811		case E1000_RXBUFFER_4096:
1812			rctl |= E1000_RCTL_SZ_4096;
1813			break;
1814		case E1000_RXBUFFER_8192:
1815			rctl |= E1000_RCTL_SZ_8192;
1816			break;
1817		case E1000_RXBUFFER_16384:
1818			rctl |= E1000_RCTL_SZ_16384;
1819			break;
1820	}
1821
1822	/* This is useful for sniffing bad packets. */
1823	if (adapter->netdev->features & NETIF_F_RXALL) {
1824		/* UPE and MPE will be handled by normal PROMISC logic
1825		 * in e1000e_set_rx_mode
1826		 */
1827		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832			  E1000_RCTL_DPF | /* Allow filtered pause */
1833			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835		 * and that breaks VLANs.
1836		 */
1837	}
1838
1839	ew32(RCTL, rctl);
1840}
1841
1842/**
1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844 * @adapter: board private structure
1845 *
1846 * Configure the Rx unit of the MAC after a reset.
1847 **/
1848static void e1000_configure_rx(struct e1000_adapter *adapter)
1849{
1850	u64 rdba;
1851	struct e1000_hw *hw = &adapter->hw;
1852	u32 rdlen, rctl, rxcsum;
1853
1854	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855		rdlen = adapter->rx_ring[0].count *
1856		        sizeof(struct e1000_rx_desc);
1857		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859	} else {
1860		rdlen = adapter->rx_ring[0].count *
1861		        sizeof(struct e1000_rx_desc);
1862		adapter->clean_rx = e1000_clean_rx_irq;
1863		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864	}
1865
1866	/* disable receives while setting up the descriptors */
1867	rctl = er32(RCTL);
1868	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870	/* set the Receive Delay Timer Register */
1871	ew32(RDTR, adapter->rx_int_delay);
1872
1873	if (hw->mac_type >= e1000_82540) {
1874		ew32(RADV, adapter->rx_abs_int_delay);
1875		if (adapter->itr_setting != 0)
1876			ew32(ITR, 1000000000 / (adapter->itr * 256));
1877	}
1878
1879	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1880	 * the Base and Length of the Rx Descriptor Ring
1881	 */
1882	switch (adapter->num_rx_queues) {
1883	case 1:
1884	default:
1885		rdba = adapter->rx_ring[0].dma;
1886		ew32(RDLEN, rdlen);
1887		ew32(RDBAH, (rdba >> 32));
1888		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889		ew32(RDT, 0);
1890		ew32(RDH, 0);
1891		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892					   E1000_RDH : E1000_82542_RDH);
1893		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894					   E1000_RDT : E1000_82542_RDT);
1895		break;
1896	}
1897
1898	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899	if (hw->mac_type >= e1000_82543) {
1900		rxcsum = er32(RXCSUM);
1901		if (adapter->rx_csum)
1902			rxcsum |= E1000_RXCSUM_TUOFL;
1903		else
1904			/* don't need to clear IPPCSE as it defaults to 0 */
1905			rxcsum &= ~E1000_RXCSUM_TUOFL;
1906		ew32(RXCSUM, rxcsum);
1907	}
1908
1909	/* Enable Receives */
1910	ew32(RCTL, rctl | E1000_RCTL_EN);
1911}
1912
1913/**
1914 * e1000_free_tx_resources - Free Tx Resources per Queue
1915 * @adapter: board private structure
1916 * @tx_ring: Tx descriptor ring for a specific queue
1917 *
1918 * Free all transmit software resources
1919 **/
1920static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921				    struct e1000_tx_ring *tx_ring)
1922{
1923	struct pci_dev *pdev = adapter->pdev;
1924
1925	e1000_clean_tx_ring(adapter, tx_ring);
1926
1927	vfree(tx_ring->buffer_info);
1928	tx_ring->buffer_info = NULL;
1929
1930	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931			  tx_ring->dma);
1932
1933	tx_ring->desc = NULL;
1934}
1935
1936/**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
1942void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943{
1944	int i;
1945
1946	for (i = 0; i < adapter->num_tx_queues; i++)
1947		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948}
1949
1950static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951					     struct e1000_buffer *buffer_info)
 
 
1952{
1953	if (buffer_info->dma) {
1954		if (buffer_info->mapped_as_page)
1955			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956				       buffer_info->length, DMA_TO_DEVICE);
1957		else
1958			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959					 buffer_info->length,
1960					 DMA_TO_DEVICE);
1961		buffer_info->dma = 0;
1962	}
1963	if (buffer_info->skb) {
1964		dev_kfree_skb_any(buffer_info->skb);
1965		buffer_info->skb = NULL;
1966	}
1967	buffer_info->time_stamp = 0;
1968	/* buffer_info must be completely set up in the transmit path */
1969}
1970
1971/**
1972 * e1000_clean_tx_ring - Free Tx Buffers
1973 * @adapter: board private structure
1974 * @tx_ring: ring to be cleaned
1975 **/
1976static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977				struct e1000_tx_ring *tx_ring)
1978{
1979	struct e1000_hw *hw = &adapter->hw;
1980	struct e1000_buffer *buffer_info;
1981	unsigned long size;
1982	unsigned int i;
1983
1984	/* Free all the Tx ring sk_buffs */
1985
1986	for (i = 0; i < tx_ring->count; i++) {
1987		buffer_info = &tx_ring->buffer_info[i];
1988		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989	}
1990
1991	netdev_reset_queue(adapter->netdev);
1992	size = sizeof(struct e1000_buffer) * tx_ring->count;
1993	memset(tx_ring->buffer_info, 0, size);
1994
1995	/* Zero out the descriptor ring */
1996
1997	memset(tx_ring->desc, 0, tx_ring->size);
1998
1999	tx_ring->next_to_use = 0;
2000	tx_ring->next_to_clean = 0;
2001	tx_ring->last_tx_tso = false;
2002
2003	writel(0, hw->hw_addr + tx_ring->tdh);
2004	writel(0, hw->hw_addr + tx_ring->tdt);
2005}
2006
2007/**
2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
2011static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012{
2013	int i;
2014
2015	for (i = 0; i < adapter->num_tx_queues; i++)
2016		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017}
2018
2019/**
2020 * e1000_free_rx_resources - Free Rx Resources
2021 * @adapter: board private structure
2022 * @rx_ring: ring to clean the resources from
2023 *
2024 * Free all receive software resources
2025 **/
2026static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027				    struct e1000_rx_ring *rx_ring)
2028{
2029	struct pci_dev *pdev = adapter->pdev;
2030
2031	e1000_clean_rx_ring(adapter, rx_ring);
2032
2033	vfree(rx_ring->buffer_info);
2034	rx_ring->buffer_info = NULL;
2035
2036	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037			  rx_ring->dma);
2038
2039	rx_ring->desc = NULL;
2040}
2041
2042/**
2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044 * @adapter: board private structure
2045 *
2046 * Free all receive software resources
2047 **/
2048void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049{
2050	int i;
2051
2052	for (i = 0; i < adapter->num_rx_queues; i++)
2053		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054}
2055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056/**
2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058 * @adapter: board private structure
2059 * @rx_ring: ring to free buffers from
2060 **/
2061static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062				struct e1000_rx_ring *rx_ring)
2063{
2064	struct e1000_hw *hw = &adapter->hw;
2065	struct e1000_buffer *buffer_info;
2066	struct pci_dev *pdev = adapter->pdev;
2067	unsigned long size;
2068	unsigned int i;
2069
2070	/* Free all the Rx ring sk_buffs */
2071	for (i = 0; i < rx_ring->count; i++) {
2072		buffer_info = &rx_ring->buffer_info[i];
2073		if (buffer_info->dma &&
2074		    adapter->clean_rx == e1000_clean_rx_irq) {
2075			dma_unmap_single(&pdev->dev, buffer_info->dma,
2076			                 buffer_info->length,
2077					 DMA_FROM_DEVICE);
2078		} else if (buffer_info->dma &&
2079		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080			dma_unmap_page(&pdev->dev, buffer_info->dma,
2081				       buffer_info->length,
2082				       DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
2083		}
2084
2085		buffer_info->dma = 0;
2086		if (buffer_info->page) {
2087			put_page(buffer_info->page);
2088			buffer_info->page = NULL;
2089		}
2090		if (buffer_info->skb) {
2091			dev_kfree_skb(buffer_info->skb);
2092			buffer_info->skb = NULL;
2093		}
2094	}
2095
2096	/* there also may be some cached data from a chained receive */
2097	if (rx_ring->rx_skb_top) {
2098		dev_kfree_skb(rx_ring->rx_skb_top);
2099		rx_ring->rx_skb_top = NULL;
2100	}
2101
2102	size = sizeof(struct e1000_buffer) * rx_ring->count;
2103	memset(rx_ring->buffer_info, 0, size);
2104
2105	/* Zero out the descriptor ring */
2106	memset(rx_ring->desc, 0, rx_ring->size);
2107
2108	rx_ring->next_to_clean = 0;
2109	rx_ring->next_to_use = 0;
2110
2111	writel(0, hw->hw_addr + rx_ring->rdh);
2112	writel(0, hw->hw_addr + rx_ring->rdt);
2113}
2114
2115/**
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2118 **/
2119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120{
2121	int i;
2122
2123	for (i = 0; i < adapter->num_rx_queues; i++)
2124		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125}
2126
2127/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128 * and memory write and invalidate disabled for certain operations
2129 */
2130static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131{
2132	struct e1000_hw *hw = &adapter->hw;
2133	struct net_device *netdev = adapter->netdev;
2134	u32 rctl;
2135
2136	e1000_pci_clear_mwi(hw);
2137
2138	rctl = er32(RCTL);
2139	rctl |= E1000_RCTL_RST;
2140	ew32(RCTL, rctl);
2141	E1000_WRITE_FLUSH();
2142	mdelay(5);
2143
2144	if (netif_running(netdev))
2145		e1000_clean_all_rx_rings(adapter);
2146}
2147
2148static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149{
2150	struct e1000_hw *hw = &adapter->hw;
2151	struct net_device *netdev = adapter->netdev;
2152	u32 rctl;
2153
2154	rctl = er32(RCTL);
2155	rctl &= ~E1000_RCTL_RST;
2156	ew32(RCTL, rctl);
2157	E1000_WRITE_FLUSH();
2158	mdelay(5);
2159
2160	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161		e1000_pci_set_mwi(hw);
2162
2163	if (netif_running(netdev)) {
2164		/* No need to loop, because 82542 supports only 1 queue */
2165		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166		e1000_configure_rx(adapter);
2167		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168	}
2169}
2170
2171/**
2172 * e1000_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
2178static int e1000_set_mac(struct net_device *netdev, void *p)
2179{
2180	struct e1000_adapter *adapter = netdev_priv(netdev);
2181	struct e1000_hw *hw = &adapter->hw;
2182	struct sockaddr *addr = p;
2183
2184	if (!is_valid_ether_addr(addr->sa_data))
2185		return -EADDRNOTAVAIL;
2186
2187	/* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189	if (hw->mac_type == e1000_82542_rev2_0)
2190		e1000_enter_82542_rst(adapter);
2191
2192	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195	e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197	if (hw->mac_type == e1000_82542_rev2_0)
2198		e1000_leave_82542_rst(adapter);
2199
2200	return 0;
2201}
2202
2203/**
2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205 * @netdev: network interface device structure
2206 *
2207 * The set_rx_mode entry point is called whenever the unicast or multicast
2208 * address lists or the network interface flags are updated. This routine is
2209 * responsible for configuring the hardware for proper unicast, multicast,
2210 * promiscuous mode, and all-multi behavior.
2211 **/
2212static void e1000_set_rx_mode(struct net_device *netdev)
2213{
2214	struct e1000_adapter *adapter = netdev_priv(netdev);
2215	struct e1000_hw *hw = &adapter->hw;
2216	struct netdev_hw_addr *ha;
2217	bool use_uc = false;
2218	u32 rctl;
2219	u32 hash_value;
2220	int i, rar_entries = E1000_RAR_ENTRIES;
2221	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224	if (!mcarray)
2225		return;
2226
2227	/* Check for Promiscuous and All Multicast modes */
2228
2229	rctl = er32(RCTL);
2230
2231	if (netdev->flags & IFF_PROMISC) {
2232		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233		rctl &= ~E1000_RCTL_VFE;
2234	} else {
2235		if (netdev->flags & IFF_ALLMULTI)
2236			rctl |= E1000_RCTL_MPE;
2237		else
2238			rctl &= ~E1000_RCTL_MPE;
2239		/* Enable VLAN filter if there is a VLAN */
2240		if (e1000_vlan_used(adapter))
2241			rctl |= E1000_RCTL_VFE;
2242	}
2243
2244	if (netdev_uc_count(netdev) > rar_entries - 1) {
2245		rctl |= E1000_RCTL_UPE;
2246	} else if (!(netdev->flags & IFF_PROMISC)) {
2247		rctl &= ~E1000_RCTL_UPE;
2248		use_uc = true;
2249	}
2250
2251	ew32(RCTL, rctl);
2252
2253	/* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255	if (hw->mac_type == e1000_82542_rev2_0)
2256		e1000_enter_82542_rst(adapter);
2257
2258	/* load the first 14 addresses into the exact filters 1-14. Unicast
2259	 * addresses take precedence to avoid disabling unicast filtering
2260	 * when possible.
2261	 *
2262	 * RAR 0 is used for the station MAC address
2263	 * if there are not 14 addresses, go ahead and clear the filters
2264	 */
2265	i = 1;
2266	if (use_uc)
2267		netdev_for_each_uc_addr(ha, netdev) {
2268			if (i == rar_entries)
2269				break;
2270			e1000_rar_set(hw, ha->addr, i++);
2271		}
2272
2273	netdev_for_each_mc_addr(ha, netdev) {
2274		if (i == rar_entries) {
2275			/* load any remaining addresses into the hash table */
2276			u32 hash_reg, hash_bit, mta;
2277			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278			hash_reg = (hash_value >> 5) & 0x7F;
2279			hash_bit = hash_value & 0x1F;
2280			mta = (1 << hash_bit);
2281			mcarray[hash_reg] |= mta;
2282		} else {
2283			e1000_rar_set(hw, ha->addr, i++);
2284		}
2285	}
2286
2287	for (; i < rar_entries; i++) {
2288		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289		E1000_WRITE_FLUSH();
2290		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291		E1000_WRITE_FLUSH();
2292	}
2293
2294	/* write the hash table completely, write from bottom to avoid
2295	 * both stupid write combining chipsets, and flushing each write
2296	 */
2297	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298		/* If we are on an 82544 has an errata where writing odd
2299		 * offsets overwrites the previous even offset, but writing
2300		 * backwards over the range solves the issue by always
2301		 * writing the odd offset first
2302		 */
2303		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304	}
2305	E1000_WRITE_FLUSH();
2306
2307	if (hw->mac_type == e1000_82542_rev2_0)
2308		e1000_leave_82542_rst(adapter);
2309
2310	kfree(mcarray);
2311}
2312
2313/**
2314 * e1000_update_phy_info_task - get phy info
2315 * @work: work struct contained inside adapter struct
2316 *
2317 * Need to wait a few seconds after link up to get diagnostic information from
2318 * the phy
2319 */
2320static void e1000_update_phy_info_task(struct work_struct *work)
2321{
2322	struct e1000_adapter *adapter = container_of(work,
2323						     struct e1000_adapter,
2324						     phy_info_task.work);
2325
2326	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327}
2328
2329/**
2330 * e1000_82547_tx_fifo_stall_task - task to complete work
2331 * @work: work struct contained inside adapter struct
2332 **/
2333static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334{
2335	struct e1000_adapter *adapter = container_of(work,
2336						     struct e1000_adapter,
2337						     fifo_stall_task.work);
2338	struct e1000_hw *hw = &adapter->hw;
2339	struct net_device *netdev = adapter->netdev;
2340	u32 tctl;
2341
2342	if (atomic_read(&adapter->tx_fifo_stall)) {
2343		if ((er32(TDT) == er32(TDH)) &&
2344		   (er32(TDFT) == er32(TDFH)) &&
2345		   (er32(TDFTS) == er32(TDFHS))) {
2346			tctl = er32(TCTL);
2347			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348			ew32(TDFT, adapter->tx_head_addr);
2349			ew32(TDFH, adapter->tx_head_addr);
2350			ew32(TDFTS, adapter->tx_head_addr);
2351			ew32(TDFHS, adapter->tx_head_addr);
2352			ew32(TCTL, tctl);
2353			E1000_WRITE_FLUSH();
2354
2355			adapter->tx_fifo_head = 0;
2356			atomic_set(&adapter->tx_fifo_stall, 0);
2357			netif_wake_queue(netdev);
2358		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360		}
2361	}
2362}
2363
2364bool e1000_has_link(struct e1000_adapter *adapter)
2365{
2366	struct e1000_hw *hw = &adapter->hw;
2367	bool link_active = false;
2368
2369	/* get_link_status is set on LSC (link status) interrupt or rx
2370	 * sequence error interrupt (except on intel ce4100).
2371	 * get_link_status will stay false until the
2372	 * e1000_check_for_link establishes link for copper adapters
2373	 * ONLY
2374	 */
2375	switch (hw->media_type) {
2376	case e1000_media_type_copper:
2377		if (hw->mac_type == e1000_ce4100)
2378			hw->get_link_status = 1;
2379		if (hw->get_link_status) {
2380			e1000_check_for_link(hw);
2381			link_active = !hw->get_link_status;
2382		} else {
2383			link_active = true;
2384		}
2385		break;
2386	case e1000_media_type_fiber:
2387		e1000_check_for_link(hw);
2388		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389		break;
2390	case e1000_media_type_internal_serdes:
2391		e1000_check_for_link(hw);
2392		link_active = hw->serdes_has_link;
2393		break;
2394	default:
2395		break;
2396	}
2397
2398	return link_active;
2399}
2400
2401/**
2402 * e1000_watchdog - work function
2403 * @work: work struct contained inside adapter struct
2404 **/
2405static void e1000_watchdog(struct work_struct *work)
2406{
2407	struct e1000_adapter *adapter = container_of(work,
2408						     struct e1000_adapter,
2409						     watchdog_task.work);
2410	struct e1000_hw *hw = &adapter->hw;
2411	struct net_device *netdev = adapter->netdev;
2412	struct e1000_tx_ring *txdr = adapter->tx_ring;
2413	u32 link, tctl;
2414
2415	link = e1000_has_link(adapter);
2416	if ((netif_carrier_ok(netdev)) && link)
2417		goto link_up;
2418
2419	if (link) {
2420		if (!netif_carrier_ok(netdev)) {
2421			u32 ctrl;
2422			bool txb2b = true;
2423			/* update snapshot of PHY registers on LSC */
2424			e1000_get_speed_and_duplex(hw,
2425						   &adapter->link_speed,
2426						   &adapter->link_duplex);
2427
2428			ctrl = er32(CTRL);
2429			pr_info("%s NIC Link is Up %d Mbps %s, "
2430				"Flow Control: %s\n",
2431				netdev->name,
2432				adapter->link_speed,
2433				adapter->link_duplex == FULL_DUPLEX ?
2434				"Full Duplex" : "Half Duplex",
2435				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438				E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440			/* adjust timeout factor according to speed/duplex */
2441			adapter->tx_timeout_factor = 1;
2442			switch (adapter->link_speed) {
2443			case SPEED_10:
2444				txb2b = false;
2445				adapter->tx_timeout_factor = 16;
2446				break;
2447			case SPEED_100:
2448				txb2b = false;
2449				/* maybe add some timeout factor ? */
2450				break;
2451			}
2452
2453			/* enable transmits in the hardware */
2454			tctl = er32(TCTL);
2455			tctl |= E1000_TCTL_EN;
2456			ew32(TCTL, tctl);
2457
2458			netif_carrier_on(netdev);
2459			if (!test_bit(__E1000_DOWN, &adapter->flags))
2460				schedule_delayed_work(&adapter->phy_info_task,
2461						      2 * HZ);
2462			adapter->smartspeed = 0;
2463		}
2464	} else {
2465		if (netif_carrier_ok(netdev)) {
2466			adapter->link_speed = 0;
2467			adapter->link_duplex = 0;
2468			pr_info("%s NIC Link is Down\n",
2469				netdev->name);
2470			netif_carrier_off(netdev);
2471
2472			if (!test_bit(__E1000_DOWN, &adapter->flags))
2473				schedule_delayed_work(&adapter->phy_info_task,
2474						      2 * HZ);
2475		}
2476
2477		e1000_smartspeed(adapter);
2478	}
2479
2480link_up:
2481	e1000_update_stats(adapter);
2482
2483	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484	adapter->tpt_old = adapter->stats.tpt;
2485	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486	adapter->colc_old = adapter->stats.colc;
2487
2488	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489	adapter->gorcl_old = adapter->stats.gorcl;
2490	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491	adapter->gotcl_old = adapter->stats.gotcl;
2492
2493	e1000_update_adaptive(hw);
2494
2495	if (!netif_carrier_ok(netdev)) {
2496		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497			/* We've lost link, so the controller stops DMA,
2498			 * but we've got queued Tx work that's never going
2499			 * to get done, so reset controller to flush Tx.
2500			 * (Do the reset outside of interrupt context).
2501			 */
2502			adapter->tx_timeout_count++;
2503			schedule_work(&adapter->reset_task);
2504			/* exit immediately since reset is imminent */
2505			return;
2506		}
2507	}
2508
2509	/* Simple mode for Interrupt Throttle Rate (ITR) */
2510	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2512		 * Total asymmetrical Tx or Rx gets ITR=8000;
2513		 * everyone else is between 2000-8000.
2514		 */
2515		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516		u32 dif = (adapter->gotcl > adapter->gorcl ?
2517			    adapter->gotcl - adapter->gorcl :
2518			    adapter->gorcl - adapter->gotcl) / 10000;
2519		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521		ew32(ITR, 1000000000 / (itr * 256));
2522	}
2523
2524	/* Cause software interrupt to ensure rx ring is cleaned */
2525	ew32(ICS, E1000_ICS_RXDMT0);
2526
2527	/* Force detection of hung controller every watchdog period */
2528	adapter->detect_tx_hung = true;
2529
2530	/* Reschedule the task */
2531	if (!test_bit(__E1000_DOWN, &adapter->flags))
2532		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533}
2534
2535enum latency_range {
2536	lowest_latency = 0,
2537	low_latency = 1,
2538	bulk_latency = 2,
2539	latency_invalid = 255
2540};
2541
2542/**
2543 * e1000_update_itr - update the dynamic ITR value based on statistics
2544 * @adapter: pointer to adapter
2545 * @itr_setting: current adapter->itr
2546 * @packets: the number of packets during this measurement interval
2547 * @bytes: the number of bytes during this measurement interval
2548 *
2549 *      Stores a new ITR value based on packets and byte
2550 *      counts during the last interrupt.  The advantage of per interrupt
2551 *      computation is faster updates and more accurate ITR for the current
2552 *      traffic pattern.  Constants in this function were computed
2553 *      based on theoretical maximum wire speed and thresholds were set based
2554 *      on testing data as well as attempting to minimize response time
2555 *      while increasing bulk throughput.
2556 *      this functionality is controlled by the InterruptThrottleRate module
2557 *      parameter (see e1000_param.c)
2558 **/
2559static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560				     u16 itr_setting, int packets, int bytes)
2561{
2562	unsigned int retval = itr_setting;
2563	struct e1000_hw *hw = &adapter->hw;
2564
2565	if (unlikely(hw->mac_type < e1000_82540))
2566		goto update_itr_done;
2567
2568	if (packets == 0)
2569		goto update_itr_done;
2570
2571	switch (itr_setting) {
2572	case lowest_latency:
2573		/* jumbo frames get bulk treatment*/
2574		if (bytes/packets > 8000)
2575			retval = bulk_latency;
2576		else if ((packets < 5) && (bytes > 512))
2577			retval = low_latency;
2578		break;
2579	case low_latency:  /* 50 usec aka 20000 ints/s */
2580		if (bytes > 10000) {
2581			/* jumbo frames need bulk latency setting */
2582			if (bytes/packets > 8000)
2583				retval = bulk_latency;
2584			else if ((packets < 10) || ((bytes/packets) > 1200))
2585				retval = bulk_latency;
2586			else if ((packets > 35))
2587				retval = lowest_latency;
2588		} else if (bytes/packets > 2000)
2589			retval = bulk_latency;
2590		else if (packets <= 2 && bytes < 512)
2591			retval = lowest_latency;
2592		break;
2593	case bulk_latency: /* 250 usec aka 4000 ints/s */
2594		if (bytes > 25000) {
2595			if (packets > 35)
2596				retval = low_latency;
2597		} else if (bytes < 6000) {
2598			retval = low_latency;
2599		}
2600		break;
2601	}
2602
2603update_itr_done:
2604	return retval;
2605}
2606
2607static void e1000_set_itr(struct e1000_adapter *adapter)
2608{
2609	struct e1000_hw *hw = &adapter->hw;
2610	u16 current_itr;
2611	u32 new_itr = adapter->itr;
2612
2613	if (unlikely(hw->mac_type < e1000_82540))
2614		return;
2615
2616	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617	if (unlikely(adapter->link_speed != SPEED_1000)) {
2618		current_itr = 0;
2619		new_itr = 4000;
2620		goto set_itr_now;
2621	}
2622
2623	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624					   adapter->total_tx_packets,
2625					   adapter->total_tx_bytes);
2626	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2627	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628		adapter->tx_itr = low_latency;
2629
2630	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631					   adapter->total_rx_packets,
2632					   adapter->total_rx_bytes);
2633	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2634	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635		adapter->rx_itr = low_latency;
2636
2637	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639	switch (current_itr) {
2640	/* counts and packets in update_itr are dependent on these numbers */
2641	case lowest_latency:
2642		new_itr = 70000;
2643		break;
2644	case low_latency:
2645		new_itr = 20000; /* aka hwitr = ~200 */
2646		break;
2647	case bulk_latency:
2648		new_itr = 4000;
2649		break;
2650	default:
2651		break;
2652	}
2653
2654set_itr_now:
2655	if (new_itr != adapter->itr) {
2656		/* this attempts to bias the interrupt rate towards Bulk
2657		 * by adding intermediate steps when interrupt rate is
2658		 * increasing
2659		 */
2660		new_itr = new_itr > adapter->itr ?
2661			  min(adapter->itr + (new_itr >> 2), new_itr) :
2662			  new_itr;
2663		adapter->itr = new_itr;
2664		ew32(ITR, 1000000000 / (new_itr * 256));
2665	}
2666}
2667
2668#define E1000_TX_FLAGS_CSUM		0x00000001
2669#define E1000_TX_FLAGS_VLAN		0x00000002
2670#define E1000_TX_FLAGS_TSO		0x00000004
2671#define E1000_TX_FLAGS_IPV4		0x00000008
2672#define E1000_TX_FLAGS_NO_FCS		0x00000010
2673#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2674#define E1000_TX_FLAGS_VLAN_SHIFT	16
2675
2676static int e1000_tso(struct e1000_adapter *adapter,
2677		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 
2678{
2679	struct e1000_context_desc *context_desc;
2680	struct e1000_buffer *buffer_info;
2681	unsigned int i;
2682	u32 cmd_length = 0;
2683	u16 ipcse = 0, tucse, mss;
2684	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685
2686	if (skb_is_gso(skb)) {
2687		int err;
2688
2689		err = skb_cow_head(skb, 0);
2690		if (err < 0)
2691			return err;
2692
2693		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2694		mss = skb_shinfo(skb)->gso_size;
2695		if (skb->protocol == htons(ETH_P_IP)) {
2696			struct iphdr *iph = ip_hdr(skb);
2697			iph->tot_len = 0;
2698			iph->check = 0;
2699			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700								 iph->daddr, 0,
2701								 IPPROTO_TCP,
2702								 0);
2703			cmd_length = E1000_TXD_CMD_IP;
2704			ipcse = skb_transport_offset(skb) - 1;
2705		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2706			ipv6_hdr(skb)->payload_len = 0;
2707			tcp_hdr(skb)->check =
2708				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709						 &ipv6_hdr(skb)->daddr,
2710						 0, IPPROTO_TCP, 0);
2711			ipcse = 0;
2712		}
2713		ipcss = skb_network_offset(skb);
2714		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2715		tucss = skb_transport_offset(skb);
2716		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2717		tucse = 0;
2718
2719		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2720			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2721
2722		i = tx_ring->next_to_use;
2723		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2724		buffer_info = &tx_ring->buffer_info[i];
2725
2726		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2727		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2728		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2729		context_desc->upper_setup.tcp_fields.tucss = tucss;
2730		context_desc->upper_setup.tcp_fields.tucso = tucso;
2731		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2732		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2733		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2734		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2735
2736		buffer_info->time_stamp = jiffies;
2737		buffer_info->next_to_watch = i;
2738
2739		if (++i == tx_ring->count) i = 0;
 
 
2740		tx_ring->next_to_use = i;
2741
2742		return true;
2743	}
2744	return false;
2745}
2746
2747static bool e1000_tx_csum(struct e1000_adapter *adapter,
2748			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 
2749{
2750	struct e1000_context_desc *context_desc;
2751	struct e1000_buffer *buffer_info;
2752	unsigned int i;
2753	u8 css;
2754	u32 cmd_len = E1000_TXD_CMD_DEXT;
2755
2756	if (skb->ip_summed != CHECKSUM_PARTIAL)
2757		return false;
2758
2759	switch (skb->protocol) {
2760	case cpu_to_be16(ETH_P_IP):
2761		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2762			cmd_len |= E1000_TXD_CMD_TCP;
2763		break;
2764	case cpu_to_be16(ETH_P_IPV6):
2765		/* XXX not handling all IPV6 headers */
2766		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2767			cmd_len |= E1000_TXD_CMD_TCP;
2768		break;
2769	default:
2770		if (unlikely(net_ratelimit()))
2771			e_warn(drv, "checksum_partial proto=%x!\n",
2772			       skb->protocol);
2773		break;
2774	}
2775
2776	css = skb_checksum_start_offset(skb);
2777
2778	i = tx_ring->next_to_use;
2779	buffer_info = &tx_ring->buffer_info[i];
2780	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2781
2782	context_desc->lower_setup.ip_config = 0;
2783	context_desc->upper_setup.tcp_fields.tucss = css;
2784	context_desc->upper_setup.tcp_fields.tucso =
2785		css + skb->csum_offset;
2786	context_desc->upper_setup.tcp_fields.tucse = 0;
2787	context_desc->tcp_seg_setup.data = 0;
2788	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2789
2790	buffer_info->time_stamp = jiffies;
2791	buffer_info->next_to_watch = i;
2792
2793	if (unlikely(++i == tx_ring->count)) i = 0;
 
 
2794	tx_ring->next_to_use = i;
2795
2796	return true;
2797}
2798
2799#define E1000_MAX_TXD_PWR	12
2800#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2801
2802static int e1000_tx_map(struct e1000_adapter *adapter,
2803			struct e1000_tx_ring *tx_ring,
2804			struct sk_buff *skb, unsigned int first,
2805			unsigned int max_per_txd, unsigned int nr_frags,
2806			unsigned int mss)
2807{
2808	struct e1000_hw *hw = &adapter->hw;
2809	struct pci_dev *pdev = adapter->pdev;
2810	struct e1000_buffer *buffer_info;
2811	unsigned int len = skb_headlen(skb);
2812	unsigned int offset = 0, size, count = 0, i;
2813	unsigned int f, bytecount, segs;
2814
2815	i = tx_ring->next_to_use;
2816
2817	while (len) {
2818		buffer_info = &tx_ring->buffer_info[i];
2819		size = min(len, max_per_txd);
2820		/* Workaround for Controller erratum --
2821		 * descriptor for non-tso packet in a linear SKB that follows a
2822		 * tso gets written back prematurely before the data is fully
2823		 * DMA'd to the controller
2824		 */
2825		if (!skb->data_len && tx_ring->last_tx_tso &&
2826		    !skb_is_gso(skb)) {
2827			tx_ring->last_tx_tso = false;
2828			size -= 4;
2829		}
2830
2831		/* Workaround for premature desc write-backs
2832		 * in TSO mode.  Append 4-byte sentinel desc
2833		 */
2834		if (unlikely(mss && !nr_frags && size == len && size > 8))
2835			size -= 4;
2836		/* work-around for errata 10 and it applies
2837		 * to all controllers in PCI-X mode
2838		 * The fix is to make sure that the first descriptor of a
2839		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2840		 */
2841		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2842		                (size > 2015) && count == 0))
2843		        size = 2015;
2844
2845		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2846		 * terminating buffers within evenly-aligned dwords.
2847		 */
2848		if (unlikely(adapter->pcix_82544 &&
2849		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2850		   size > 4))
2851			size -= 4;
2852
2853		buffer_info->length = size;
2854		/* set time_stamp *before* dma to help avoid a possible race */
2855		buffer_info->time_stamp = jiffies;
2856		buffer_info->mapped_as_page = false;
2857		buffer_info->dma = dma_map_single(&pdev->dev,
2858						  skb->data + offset,
2859						  size, DMA_TO_DEVICE);
2860		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2861			goto dma_error;
2862		buffer_info->next_to_watch = i;
2863
2864		len -= size;
2865		offset += size;
2866		count++;
2867		if (len) {
2868			i++;
2869			if (unlikely(i == tx_ring->count))
2870				i = 0;
2871		}
2872	}
2873
2874	for (f = 0; f < nr_frags; f++) {
2875		const struct skb_frag_struct *frag;
2876
2877		frag = &skb_shinfo(skb)->frags[f];
2878		len = skb_frag_size(frag);
2879		offset = 0;
2880
2881		while (len) {
2882			unsigned long bufend;
2883			i++;
2884			if (unlikely(i == tx_ring->count))
2885				i = 0;
2886
2887			buffer_info = &tx_ring->buffer_info[i];
2888			size = min(len, max_per_txd);
2889			/* Workaround for premature desc write-backs
2890			 * in TSO mode.  Append 4-byte sentinel desc
2891			 */
2892			if (unlikely(mss && f == (nr_frags-1) &&
2893			    size == len && size > 8))
2894				size -= 4;
2895			/* Workaround for potential 82544 hang in PCI-X.
2896			 * Avoid terminating buffers within evenly-aligned
2897			 * dwords.
2898			 */
2899			bufend = (unsigned long)
2900				page_to_phys(skb_frag_page(frag));
2901			bufend += offset + size - 1;
2902			if (unlikely(adapter->pcix_82544 &&
2903				     !(bufend & 4) &&
2904				     size > 4))
2905				size -= 4;
2906
2907			buffer_info->length = size;
2908			buffer_info->time_stamp = jiffies;
2909			buffer_info->mapped_as_page = true;
2910			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2911						offset, size, DMA_TO_DEVICE);
2912			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2913				goto dma_error;
2914			buffer_info->next_to_watch = i;
2915
2916			len -= size;
2917			offset += size;
2918			count++;
2919		}
2920	}
2921
2922	segs = skb_shinfo(skb)->gso_segs ?: 1;
2923	/* multiply data chunks by size of headers */
2924	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2925
2926	tx_ring->buffer_info[i].skb = skb;
2927	tx_ring->buffer_info[i].segs = segs;
2928	tx_ring->buffer_info[i].bytecount = bytecount;
2929	tx_ring->buffer_info[first].next_to_watch = i;
2930
2931	return count;
2932
2933dma_error:
2934	dev_err(&pdev->dev, "TX DMA map failed\n");
2935	buffer_info->dma = 0;
2936	if (count)
2937		count--;
2938
2939	while (count--) {
2940		if (i==0)
2941			i += tx_ring->count;
2942		i--;
2943		buffer_info = &tx_ring->buffer_info[i];
2944		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2945	}
2946
2947	return 0;
2948}
2949
2950static void e1000_tx_queue(struct e1000_adapter *adapter,
2951			   struct e1000_tx_ring *tx_ring, int tx_flags,
2952			   int count)
2953{
2954	struct e1000_hw *hw = &adapter->hw;
2955	struct e1000_tx_desc *tx_desc = NULL;
2956	struct e1000_buffer *buffer_info;
2957	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2958	unsigned int i;
2959
2960	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2961		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2962			     E1000_TXD_CMD_TSE;
2963		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2964
2965		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2966			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2967	}
2968
2969	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2970		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2971		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972	}
2973
2974	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2975		txd_lower |= E1000_TXD_CMD_VLE;
2976		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2977	}
2978
2979	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2980		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2981
2982	i = tx_ring->next_to_use;
2983
2984	while (count--) {
2985		buffer_info = &tx_ring->buffer_info[i];
2986		tx_desc = E1000_TX_DESC(*tx_ring, i);
2987		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2988		tx_desc->lower.data =
2989			cpu_to_le32(txd_lower | buffer_info->length);
2990		tx_desc->upper.data = cpu_to_le32(txd_upper);
2991		if (unlikely(++i == tx_ring->count)) i = 0;
 
2992	}
2993
2994	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2995
2996	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2997	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
2999
3000	/* Force memory writes to complete before letting h/w
3001	 * know there are new descriptors to fetch.  (Only
3002	 * applicable for weak-ordered memory model archs,
3003	 * such as IA-64).
3004	 */
3005	wmb();
3006
3007	tx_ring->next_to_use = i;
3008	writel(i, hw->hw_addr + tx_ring->tdt);
3009	/* we need this if more than one processor can write to our tail
3010	 * at a time, it synchronizes IO on IA64/Altix systems
3011	 */
3012	mmiowb();
3013}
3014
3015/* 82547 workaround to avoid controller hang in half-duplex environment.
3016 * The workaround is to avoid queuing a large packet that would span
3017 * the internal Tx FIFO ring boundary by notifying the stack to resend
3018 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3019 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3020 * to the beginning of the Tx FIFO.
3021 */
3022
3023#define E1000_FIFO_HDR			0x10
3024#define E1000_82547_PAD_LEN		0x3E0
3025
3026static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3027				       struct sk_buff *skb)
3028{
3029	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3033
3034	if (adapter->link_duplex != HALF_DUPLEX)
3035		goto no_fifo_stall_required;
3036
3037	if (atomic_read(&adapter->tx_fifo_stall))
3038		return 1;
3039
3040	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041		atomic_set(&adapter->tx_fifo_stall, 1);
3042		return 1;
3043	}
3044
3045no_fifo_stall_required:
3046	adapter->tx_fifo_head += skb_fifo_len;
3047	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049	return 0;
3050}
3051
3052static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3053{
3054	struct e1000_adapter *adapter = netdev_priv(netdev);
3055	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3056
3057	netif_stop_queue(netdev);
3058	/* Herbert's original patch had:
3059	 *  smp_mb__after_netif_stop_queue();
3060	 * but since that doesn't exist yet, just open code it.
3061	 */
3062	smp_mb();
3063
3064	/* We need to check again in a case another CPU has just
3065	 * made room available.
3066	 */
3067	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3068		return -EBUSY;
3069
3070	/* A reprieve! */
3071	netif_start_queue(netdev);
3072	++adapter->restart_queue;
3073	return 0;
3074}
3075
3076static int e1000_maybe_stop_tx(struct net_device *netdev,
3077			       struct e1000_tx_ring *tx_ring, int size)
3078{
3079	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3080		return 0;
3081	return __e1000_maybe_stop_tx(netdev, size);
3082}
3083
3084#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3085static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3086				    struct net_device *netdev)
3087{
3088	struct e1000_adapter *adapter = netdev_priv(netdev);
3089	struct e1000_hw *hw = &adapter->hw;
3090	struct e1000_tx_ring *tx_ring;
3091	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3092	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3093	unsigned int tx_flags = 0;
3094	unsigned int len = skb_headlen(skb);
3095	unsigned int nr_frags;
3096	unsigned int mss;
3097	int count = 0;
3098	int tso;
3099	unsigned int f;
 
3100
3101	/* This goes back to the question of how to logically map a Tx queue
3102	 * to a flow.  Right now, performance is impacted slightly negatively
3103	 * if using multiple Tx queues.  If the stack breaks away from a
3104	 * single qdisc implementation, we can look at this again.
3105	 */
3106	tx_ring = adapter->tx_ring;
3107
3108	if (unlikely(skb->len <= 0)) {
3109		dev_kfree_skb_any(skb);
3110		return NETDEV_TX_OK;
3111	}
3112
3113	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3114	 * packets may get corrupted during padding by HW.
3115	 * To WA this issue, pad all small packets manually.
3116	 */
3117	if (skb->len < ETH_ZLEN) {
3118		if (skb_pad(skb, ETH_ZLEN - skb->len))
3119			return NETDEV_TX_OK;
3120		skb->len = ETH_ZLEN;
3121		skb_set_tail_pointer(skb, ETH_ZLEN);
3122	}
3123
3124	mss = skb_shinfo(skb)->gso_size;
3125	/* The controller does a simple calculation to
3126	 * make sure there is enough room in the FIFO before
3127	 * initiating the DMA for each buffer.  The calc is:
3128	 * 4 = ceil(buffer len/mss).  To make sure we don't
3129	 * overrun the FIFO, adjust the max buffer len if mss
3130	 * drops.
3131	 */
3132	if (mss) {
3133		u8 hdr_len;
3134		max_per_txd = min(mss << 2, max_per_txd);
3135		max_txd_pwr = fls(max_per_txd) - 1;
3136
3137		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3138		if (skb->data_len && hdr_len == len) {
3139			switch (hw->mac_type) {
 
3140				unsigned int pull_size;
3141			case e1000_82544:
3142				/* Make sure we have room to chop off 4 bytes,
3143				 * and that the end alignment will work out to
3144				 * this hardware's requirements
3145				 * NOTE: this is a TSO only workaround
3146				 * if end byte alignment not correct move us
3147				 * into the next dword
3148				 */
3149				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3150				    & 4)
3151					break;
3152				/* fall through */
3153				pull_size = min((unsigned int)4, skb->data_len);
3154				if (!__pskb_pull_tail(skb, pull_size)) {
3155					e_err(drv, "__pskb_pull_tail "
3156					      "failed.\n");
3157					dev_kfree_skb_any(skb);
3158					return NETDEV_TX_OK;
3159				}
3160				len = skb_headlen(skb);
3161				break;
 
3162			default:
3163				/* do nothing */
3164				break;
3165			}
3166		}
3167	}
3168
3169	/* reserve a descriptor for the offload context */
3170	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3171		count++;
3172	count++;
3173
3174	/* Controller Erratum workaround */
3175	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3176		count++;
3177
3178	count += TXD_USE_COUNT(len, max_txd_pwr);
3179
3180	if (adapter->pcix_82544)
3181		count++;
3182
3183	/* work-around for errata 10 and it applies to all controllers
3184	 * in PCI-X mode, so add one more descriptor to the count
3185	 */
3186	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3187			(len > 2015)))
3188		count++;
3189
3190	nr_frags = skb_shinfo(skb)->nr_frags;
3191	for (f = 0; f < nr_frags; f++)
3192		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3193				       max_txd_pwr);
3194	if (adapter->pcix_82544)
3195		count += nr_frags;
3196
3197	/* need: count + 2 desc gap to keep tail from touching
3198	 * head, otherwise try next time
3199	 */
3200	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3201		return NETDEV_TX_BUSY;
3202
3203	if (unlikely((hw->mac_type == e1000_82547) &&
3204		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3205		netif_stop_queue(netdev);
3206		if (!test_bit(__E1000_DOWN, &adapter->flags))
3207			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3208		return NETDEV_TX_BUSY;
3209	}
3210
3211	if (vlan_tx_tag_present(skb)) {
3212		tx_flags |= E1000_TX_FLAGS_VLAN;
3213		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
3214	}
3215
3216	first = tx_ring->next_to_use;
3217
3218	tso = e1000_tso(adapter, tx_ring, skb);
3219	if (tso < 0) {
3220		dev_kfree_skb_any(skb);
3221		return NETDEV_TX_OK;
3222	}
3223
3224	if (likely(tso)) {
3225		if (likely(hw->mac_type != e1000_82544))
3226			tx_ring->last_tx_tso = true;
3227		tx_flags |= E1000_TX_FLAGS_TSO;
3228	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3229		tx_flags |= E1000_TX_FLAGS_CSUM;
3230
3231	if (likely(skb->protocol == htons(ETH_P_IP)))
3232		tx_flags |= E1000_TX_FLAGS_IPV4;
3233
3234	if (unlikely(skb->no_fcs))
3235		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3236
3237	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3238			     nr_frags, mss);
3239
3240	if (count) {
 
 
 
 
 
 
 
 
 
3241		netdev_sent_queue(netdev, skb->len);
3242		skb_tx_timestamp(skb);
3243
3244		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
 
 
 
 
 
 
 
 
3245		/* Make sure there is space in the ring for the next send. */
3246		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3247
 
 
 
 
3248	} else {
3249		dev_kfree_skb_any(skb);
3250		tx_ring->buffer_info[first].time_stamp = 0;
3251		tx_ring->next_to_use = first;
3252	}
3253
3254	return NETDEV_TX_OK;
3255}
3256
3257#define NUM_REGS 38 /* 1 based count */
3258static void e1000_regdump(struct e1000_adapter *adapter)
3259{
3260	struct e1000_hw *hw = &adapter->hw;
3261	u32 regs[NUM_REGS];
3262	u32 *regs_buff = regs;
3263	int i = 0;
3264
3265	static const char * const reg_name[] = {
3266		"CTRL",  "STATUS",
3267		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3268		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3269		"TIDV", "TXDCTL", "TADV", "TARC0",
3270		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3271		"TXDCTL1", "TARC1",
3272		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3273		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3274		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3275	};
3276
3277	regs_buff[0]  = er32(CTRL);
3278	regs_buff[1]  = er32(STATUS);
3279
3280	regs_buff[2]  = er32(RCTL);
3281	regs_buff[3]  = er32(RDLEN);
3282	regs_buff[4]  = er32(RDH);
3283	regs_buff[5]  = er32(RDT);
3284	regs_buff[6]  = er32(RDTR);
3285
3286	regs_buff[7]  = er32(TCTL);
3287	regs_buff[8]  = er32(TDBAL);
3288	regs_buff[9]  = er32(TDBAH);
3289	regs_buff[10] = er32(TDLEN);
3290	regs_buff[11] = er32(TDH);
3291	regs_buff[12] = er32(TDT);
3292	regs_buff[13] = er32(TIDV);
3293	regs_buff[14] = er32(TXDCTL);
3294	regs_buff[15] = er32(TADV);
3295	regs_buff[16] = er32(TARC0);
3296
3297	regs_buff[17] = er32(TDBAL1);
3298	regs_buff[18] = er32(TDBAH1);
3299	regs_buff[19] = er32(TDLEN1);
3300	regs_buff[20] = er32(TDH1);
3301	regs_buff[21] = er32(TDT1);
3302	regs_buff[22] = er32(TXDCTL1);
3303	regs_buff[23] = er32(TARC1);
3304	regs_buff[24] = er32(CTRL_EXT);
3305	regs_buff[25] = er32(ERT);
3306	regs_buff[26] = er32(RDBAL0);
3307	regs_buff[27] = er32(RDBAH0);
3308	regs_buff[28] = er32(TDFH);
3309	regs_buff[29] = er32(TDFT);
3310	regs_buff[30] = er32(TDFHS);
3311	regs_buff[31] = er32(TDFTS);
3312	regs_buff[32] = er32(TDFPC);
3313	regs_buff[33] = er32(RDFH);
3314	regs_buff[34] = er32(RDFT);
3315	regs_buff[35] = er32(RDFHS);
3316	regs_buff[36] = er32(RDFTS);
3317	regs_buff[37] = er32(RDFPC);
3318
3319	pr_info("Register dump\n");
3320	for (i = 0; i < NUM_REGS; i++)
3321		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3322}
3323
3324/*
3325 * e1000_dump: Print registers, tx ring and rx ring
3326 */
3327static void e1000_dump(struct e1000_adapter *adapter)
3328{
3329	/* this code doesn't handle multiple rings */
3330	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3331	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3332	int i;
3333
3334	if (!netif_msg_hw(adapter))
3335		return;
3336
3337	/* Print Registers */
3338	e1000_regdump(adapter);
3339
3340	/* transmit dump */
3341	pr_info("TX Desc ring0 dump\n");
3342
3343	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3344	 *
3345	 * Legacy Transmit Descriptor
3346	 *   +--------------------------------------------------------------+
3347	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3348	 *   +--------------------------------------------------------------+
3349	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3350	 *   +--------------------------------------------------------------+
3351	 *   63       48 47        36 35    32 31     24 23    16 15        0
3352	 *
3353	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3354	 *   63      48 47    40 39       32 31             16 15    8 7      0
3355	 *   +----------------------------------------------------------------+
3356	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3357	 *   +----------------------------------------------------------------+
3358	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3359	 *   +----------------------------------------------------------------+
3360	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3361	 *
3362	 * Extended Data Descriptor (DTYP=0x1)
3363	 *   +----------------------------------------------------------------+
3364	 * 0 |                     Buffer Address [63:0]                      |
3365	 *   +----------------------------------------------------------------+
3366	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3367	 *   +----------------------------------------------------------------+
3368	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3369	 */
3370	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3371	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3372
3373	if (!netif_msg_tx_done(adapter))
3374		goto rx_ring_summary;
3375
3376	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3377		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3378		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3379		struct my_u { __le64 a; __le64 b; };
3380		struct my_u *u = (struct my_u *)tx_desc;
3381		const char *type;
3382
3383		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3384			type = "NTC/U";
3385		else if (i == tx_ring->next_to_use)
3386			type = "NTU";
3387		else if (i == tx_ring->next_to_clean)
3388			type = "NTC";
3389		else
3390			type = "";
3391
3392		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3393			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3394			le64_to_cpu(u->a), le64_to_cpu(u->b),
3395			(u64)buffer_info->dma, buffer_info->length,
3396			buffer_info->next_to_watch,
3397			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3398	}
3399
3400rx_ring_summary:
3401	/* receive dump */
3402	pr_info("\nRX Desc ring dump\n");
3403
3404	/* Legacy Receive Descriptor Format
3405	 *
3406	 * +-----------------------------------------------------+
3407	 * |                Buffer Address [63:0]                |
3408	 * +-----------------------------------------------------+
3409	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3410	 * +-----------------------------------------------------+
3411	 * 63       48 47    40 39      32 31         16 15      0
3412	 */
3413	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3414
3415	if (!netif_msg_rx_status(adapter))
3416		goto exit;
3417
3418	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3419		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3420		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3421		struct my_u { __le64 a; __le64 b; };
3422		struct my_u *u = (struct my_u *)rx_desc;
3423		const char *type;
3424
3425		if (i == rx_ring->next_to_use)
3426			type = "NTU";
3427		else if (i == rx_ring->next_to_clean)
3428			type = "NTC";
3429		else
3430			type = "";
3431
3432		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3433			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3434			(u64)buffer_info->dma, buffer_info->skb, type);
3435	} /* for */
3436
3437	/* dump the descriptor caches */
3438	/* rx */
3439	pr_info("Rx descriptor cache in 64bit format\n");
3440	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3441		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3442			i,
3443			readl(adapter->hw.hw_addr + i+4),
3444			readl(adapter->hw.hw_addr + i),
3445			readl(adapter->hw.hw_addr + i+12),
3446			readl(adapter->hw.hw_addr + i+8));
3447	}
3448	/* tx */
3449	pr_info("Tx descriptor cache in 64bit format\n");
3450	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3451		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3452			i,
3453			readl(adapter->hw.hw_addr + i+4),
3454			readl(adapter->hw.hw_addr + i),
3455			readl(adapter->hw.hw_addr + i+12),
3456			readl(adapter->hw.hw_addr + i+8));
3457	}
3458exit:
3459	return;
3460}
3461
3462/**
3463 * e1000_tx_timeout - Respond to a Tx Hang
3464 * @netdev: network interface device structure
 
3465 **/
3466static void e1000_tx_timeout(struct net_device *netdev)
3467{
3468	struct e1000_adapter *adapter = netdev_priv(netdev);
3469
3470	/* Do the reset outside of interrupt context */
3471	adapter->tx_timeout_count++;
3472	schedule_work(&adapter->reset_task);
3473}
3474
3475static void e1000_reset_task(struct work_struct *work)
3476{
3477	struct e1000_adapter *adapter =
3478		container_of(work, struct e1000_adapter, reset_task);
3479
3480	e_err(drv, "Reset adapter\n");
 
3481	e1000_reinit_locked(adapter);
3482}
3483
3484/**
3485 * e1000_get_stats - Get System Network Statistics
3486 * @netdev: network interface device structure
3487 *
3488 * Returns the address of the device statistics structure.
3489 * The statistics are actually updated from the watchdog.
3490 **/
3491static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3492{
3493	/* only return the current stats */
3494	return &netdev->stats;
3495}
3496
3497/**
3498 * e1000_change_mtu - Change the Maximum Transfer Unit
3499 * @netdev: network interface device structure
3500 * @new_mtu: new value for maximum frame size
3501 *
3502 * Returns 0 on success, negative on failure
3503 **/
3504static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3505{
3506	struct e1000_adapter *adapter = netdev_priv(netdev);
3507	struct e1000_hw *hw = &adapter->hw;
3508	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3509
3510	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3511	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3512		e_err(probe, "Invalid MTU setting\n");
3513		return -EINVAL;
3514	}
3515
3516	/* Adapter-specific max frame size limits. */
3517	switch (hw->mac_type) {
3518	case e1000_undefined ... e1000_82542_rev2_1:
3519		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3520			e_err(probe, "Jumbo Frames not supported.\n");
3521			return -EINVAL;
3522		}
3523		break;
3524	default:
3525		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3526		break;
3527	}
3528
3529	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3530		msleep(1);
3531	/* e1000_down has a dependency on max_frame_size */
3532	hw->max_frame_size = max_frame;
3533	if (netif_running(netdev))
 
 
3534		e1000_down(adapter);
 
3535
3536	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3537	 * means we reserve 2 more, this pushes us to allocate from the next
3538	 * larger slab size.
3539	 * i.e. RXBUFFER_2048 --> size-4096 slab
3540	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3541	 * fragmented skbs
3542	 */
3543
3544	if (max_frame <= E1000_RXBUFFER_2048)
3545		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3546	else
3547#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3548		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3550		adapter->rx_buffer_len = PAGE_SIZE;
3551#endif
3552
3553	/* adjust allocation if LPE protects us, and we aren't using SBP */
3554	if (!hw->tbi_compatibility_on &&
3555	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3556	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3557		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3558
3559	pr_info("%s changing MTU from %d to %d\n",
3560		netdev->name, netdev->mtu, new_mtu);
3561	netdev->mtu = new_mtu;
3562
3563	if (netif_running(netdev))
3564		e1000_up(adapter);
3565	else
3566		e1000_reset(adapter);
3567
3568	clear_bit(__E1000_RESETTING, &adapter->flags);
3569
3570	return 0;
3571}
3572
3573/**
3574 * e1000_update_stats - Update the board statistics counters
3575 * @adapter: board private structure
3576 **/
3577void e1000_update_stats(struct e1000_adapter *adapter)
3578{
3579	struct net_device *netdev = adapter->netdev;
3580	struct e1000_hw *hw = &adapter->hw;
3581	struct pci_dev *pdev = adapter->pdev;
3582	unsigned long flags;
3583	u16 phy_tmp;
3584
3585#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3586
3587	/* Prevent stats update while adapter is being reset, or if the pci
3588	 * connection is down.
3589	 */
3590	if (adapter->link_speed == 0)
3591		return;
3592	if (pci_channel_offline(pdev))
3593		return;
3594
3595	spin_lock_irqsave(&adapter->stats_lock, flags);
3596
3597	/* these counters are modified from e1000_tbi_adjust_stats,
3598	 * called from the interrupt context, so they must only
3599	 * be written while holding adapter->stats_lock
3600	 */
3601
3602	adapter->stats.crcerrs += er32(CRCERRS);
3603	adapter->stats.gprc += er32(GPRC);
3604	adapter->stats.gorcl += er32(GORCL);
3605	adapter->stats.gorch += er32(GORCH);
3606	adapter->stats.bprc += er32(BPRC);
3607	adapter->stats.mprc += er32(MPRC);
3608	adapter->stats.roc += er32(ROC);
3609
3610	adapter->stats.prc64 += er32(PRC64);
3611	adapter->stats.prc127 += er32(PRC127);
3612	adapter->stats.prc255 += er32(PRC255);
3613	adapter->stats.prc511 += er32(PRC511);
3614	adapter->stats.prc1023 += er32(PRC1023);
3615	adapter->stats.prc1522 += er32(PRC1522);
3616
3617	adapter->stats.symerrs += er32(SYMERRS);
3618	adapter->stats.mpc += er32(MPC);
3619	adapter->stats.scc += er32(SCC);
3620	adapter->stats.ecol += er32(ECOL);
3621	adapter->stats.mcc += er32(MCC);
3622	adapter->stats.latecol += er32(LATECOL);
3623	adapter->stats.dc += er32(DC);
3624	adapter->stats.sec += er32(SEC);
3625	adapter->stats.rlec += er32(RLEC);
3626	adapter->stats.xonrxc += er32(XONRXC);
3627	adapter->stats.xontxc += er32(XONTXC);
3628	adapter->stats.xoffrxc += er32(XOFFRXC);
3629	adapter->stats.xofftxc += er32(XOFFTXC);
3630	adapter->stats.fcruc += er32(FCRUC);
3631	adapter->stats.gptc += er32(GPTC);
3632	adapter->stats.gotcl += er32(GOTCL);
3633	adapter->stats.gotch += er32(GOTCH);
3634	adapter->stats.rnbc += er32(RNBC);
3635	adapter->stats.ruc += er32(RUC);
3636	adapter->stats.rfc += er32(RFC);
3637	adapter->stats.rjc += er32(RJC);
3638	adapter->stats.torl += er32(TORL);
3639	adapter->stats.torh += er32(TORH);
3640	adapter->stats.totl += er32(TOTL);
3641	adapter->stats.toth += er32(TOTH);
3642	adapter->stats.tpr += er32(TPR);
3643
3644	adapter->stats.ptc64 += er32(PTC64);
3645	adapter->stats.ptc127 += er32(PTC127);
3646	adapter->stats.ptc255 += er32(PTC255);
3647	adapter->stats.ptc511 += er32(PTC511);
3648	adapter->stats.ptc1023 += er32(PTC1023);
3649	adapter->stats.ptc1522 += er32(PTC1522);
3650
3651	adapter->stats.mptc += er32(MPTC);
3652	adapter->stats.bptc += er32(BPTC);
3653
3654	/* used for adaptive IFS */
3655
3656	hw->tx_packet_delta = er32(TPT);
3657	adapter->stats.tpt += hw->tx_packet_delta;
3658	hw->collision_delta = er32(COLC);
3659	adapter->stats.colc += hw->collision_delta;
3660
3661	if (hw->mac_type >= e1000_82543) {
3662		adapter->stats.algnerrc += er32(ALGNERRC);
3663		adapter->stats.rxerrc += er32(RXERRC);
3664		adapter->stats.tncrs += er32(TNCRS);
3665		adapter->stats.cexterr += er32(CEXTERR);
3666		adapter->stats.tsctc += er32(TSCTC);
3667		adapter->stats.tsctfc += er32(TSCTFC);
3668	}
3669
3670	/* Fill out the OS statistics structure */
3671	netdev->stats.multicast = adapter->stats.mprc;
3672	netdev->stats.collisions = adapter->stats.colc;
3673
3674	/* Rx Errors */
3675
3676	/* RLEC on some newer hardware can be incorrect so build
3677	 * our own version based on RUC and ROC
3678	 */
3679	netdev->stats.rx_errors = adapter->stats.rxerrc +
3680		adapter->stats.crcerrs + adapter->stats.algnerrc +
3681		adapter->stats.ruc + adapter->stats.roc +
3682		adapter->stats.cexterr;
3683	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3684	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3685	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3686	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3687	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3688
3689	/* Tx Errors */
3690	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3691	netdev->stats.tx_errors = adapter->stats.txerrc;
3692	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3693	netdev->stats.tx_window_errors = adapter->stats.latecol;
3694	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3695	if (hw->bad_tx_carr_stats_fd &&
3696	    adapter->link_duplex == FULL_DUPLEX) {
3697		netdev->stats.tx_carrier_errors = 0;
3698		adapter->stats.tncrs = 0;
3699	}
3700
3701	/* Tx Dropped needs to be maintained elsewhere */
3702
3703	/* Phy Stats */
3704	if (hw->media_type == e1000_media_type_copper) {
3705		if ((adapter->link_speed == SPEED_1000) &&
3706		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3707			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3708			adapter->phy_stats.idle_errors += phy_tmp;
3709		}
3710
3711		if ((hw->mac_type <= e1000_82546) &&
3712		   (hw->phy_type == e1000_phy_m88) &&
3713		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3714			adapter->phy_stats.receive_errors += phy_tmp;
3715	}
3716
3717	/* Management Stats */
3718	if (hw->has_smbus) {
3719		adapter->stats.mgptc += er32(MGTPTC);
3720		adapter->stats.mgprc += er32(MGTPRC);
3721		adapter->stats.mgpdc += er32(MGTPDC);
3722	}
3723
3724	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3725}
3726
3727/**
3728 * e1000_intr - Interrupt Handler
3729 * @irq: interrupt number
3730 * @data: pointer to a network interface device structure
3731 **/
3732static irqreturn_t e1000_intr(int irq, void *data)
3733{
3734	struct net_device *netdev = data;
3735	struct e1000_adapter *adapter = netdev_priv(netdev);
3736	struct e1000_hw *hw = &adapter->hw;
3737	u32 icr = er32(ICR);
3738
3739	if (unlikely((!icr)))
3740		return IRQ_NONE;  /* Not our interrupt */
3741
3742	/* we might have caused the interrupt, but the above
3743	 * read cleared it, and just in case the driver is
3744	 * down there is nothing to do so return handled
3745	 */
3746	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3747		return IRQ_HANDLED;
3748
3749	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3750		hw->get_link_status = 1;
3751		/* guard against interrupt when we're going down */
3752		if (!test_bit(__E1000_DOWN, &adapter->flags))
3753			schedule_delayed_work(&adapter->watchdog_task, 1);
3754	}
3755
3756	/* disable interrupts, without the synchronize_irq bit */
3757	ew32(IMC, ~0);
3758	E1000_WRITE_FLUSH();
3759
3760	if (likely(napi_schedule_prep(&adapter->napi))) {
3761		adapter->total_tx_bytes = 0;
3762		adapter->total_tx_packets = 0;
3763		adapter->total_rx_bytes = 0;
3764		adapter->total_rx_packets = 0;
3765		__napi_schedule(&adapter->napi);
3766	} else {
3767		/* this really should not happen! if it does it is basically a
3768		 * bug, but not a hard error, so enable ints and continue
3769		 */
3770		if (!test_bit(__E1000_DOWN, &adapter->flags))
3771			e1000_irq_enable(adapter);
3772	}
3773
3774	return IRQ_HANDLED;
3775}
3776
3777/**
3778 * e1000_clean - NAPI Rx polling callback
3779 * @adapter: board private structure
 
3780 **/
3781static int e1000_clean(struct napi_struct *napi, int budget)
3782{
3783	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3784						     napi);
3785	int tx_clean_complete = 0, work_done = 0;
3786
3787	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3788
3789	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3790
3791	if (!tx_clean_complete)
3792		work_done = budget;
3793
3794	/* If budget not fully consumed, exit the polling mode */
3795	if (work_done < budget) {
 
 
3796		if (likely(adapter->itr_setting & 3))
3797			e1000_set_itr(adapter);
3798		napi_complete(napi);
3799		if (!test_bit(__E1000_DOWN, &adapter->flags))
3800			e1000_irq_enable(adapter);
3801	}
3802
3803	return work_done;
3804}
3805
3806/**
3807 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3808 * @adapter: board private structure
 
3809 **/
3810static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3811			       struct e1000_tx_ring *tx_ring)
3812{
3813	struct e1000_hw *hw = &adapter->hw;
3814	struct net_device *netdev = adapter->netdev;
3815	struct e1000_tx_desc *tx_desc, *eop_desc;
3816	struct e1000_buffer *buffer_info;
3817	unsigned int i, eop;
3818	unsigned int count = 0;
3819	unsigned int total_tx_bytes=0, total_tx_packets=0;
3820	unsigned int bytes_compl = 0, pkts_compl = 0;
3821
3822	i = tx_ring->next_to_clean;
3823	eop = tx_ring->buffer_info[i].next_to_watch;
3824	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3825
3826	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3827	       (count < tx_ring->count)) {
3828		bool cleaned = false;
3829		rmb();	/* read buffer_info after eop_desc */
3830		for ( ; !cleaned; count++) {
3831			tx_desc = E1000_TX_DESC(*tx_ring, i);
3832			buffer_info = &tx_ring->buffer_info[i];
3833			cleaned = (i == eop);
3834
3835			if (cleaned) {
3836				total_tx_packets += buffer_info->segs;
3837				total_tx_bytes += buffer_info->bytecount;
3838				if (buffer_info->skb) {
3839					bytes_compl += buffer_info->skb->len;
3840					pkts_compl++;
3841				}
3842
3843			}
3844			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3845			tx_desc->upper.data = 0;
3846
3847			if (unlikely(++i == tx_ring->count)) i = 0;
 
3848		}
3849
3850		eop = tx_ring->buffer_info[i].next_to_watch;
3851		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3852	}
3853
3854	tx_ring->next_to_clean = i;
 
 
 
3855
3856	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3857
3858#define TX_WAKE_THRESHOLD 32
3859	if (unlikely(count && netif_carrier_ok(netdev) &&
3860		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3861		/* Make sure that anybody stopping the queue after this
3862		 * sees the new next_to_clean.
3863		 */
3864		smp_mb();
3865
3866		if (netif_queue_stopped(netdev) &&
3867		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3868			netif_wake_queue(netdev);
3869			++adapter->restart_queue;
3870		}
3871	}
3872
3873	if (adapter->detect_tx_hung) {
3874		/* Detect a transmit hang in hardware, this serializes the
3875		 * check with the clearing of time_stamp and movement of i
3876		 */
3877		adapter->detect_tx_hung = false;
3878		if (tx_ring->buffer_info[eop].time_stamp &&
3879		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3880			       (adapter->tx_timeout_factor * HZ)) &&
3881		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3882
3883			/* detected Tx unit hang */
3884			e_err(drv, "Detected Tx Unit Hang\n"
3885			      "  Tx Queue             <%lu>\n"
3886			      "  TDH                  <%x>\n"
3887			      "  TDT                  <%x>\n"
3888			      "  next_to_use          <%x>\n"
3889			      "  next_to_clean        <%x>\n"
3890			      "buffer_info[next_to_clean]\n"
3891			      "  time_stamp           <%lx>\n"
3892			      "  next_to_watch        <%x>\n"
3893			      "  jiffies              <%lx>\n"
3894			      "  next_to_watch.status <%x>\n",
3895				(unsigned long)(tx_ring - adapter->tx_ring),
3896				readl(hw->hw_addr + tx_ring->tdh),
3897				readl(hw->hw_addr + tx_ring->tdt),
3898				tx_ring->next_to_use,
3899				tx_ring->next_to_clean,
3900				tx_ring->buffer_info[eop].time_stamp,
3901				eop,
3902				jiffies,
3903				eop_desc->upper.fields.status);
3904			e1000_dump(adapter);
3905			netif_stop_queue(netdev);
3906		}
3907	}
3908	adapter->total_tx_bytes += total_tx_bytes;
3909	adapter->total_tx_packets += total_tx_packets;
3910	netdev->stats.tx_bytes += total_tx_bytes;
3911	netdev->stats.tx_packets += total_tx_packets;
3912	return count < tx_ring->count;
3913}
3914
3915/**
3916 * e1000_rx_checksum - Receive Checksum Offload for 82543
3917 * @adapter:     board private structure
3918 * @status_err:  receive descriptor status and error fields
3919 * @csum:        receive descriptor csum field
3920 * @sk_buff:     socket buffer with received data
3921 **/
3922static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3923			      u32 csum, struct sk_buff *skb)
3924{
3925	struct e1000_hw *hw = &adapter->hw;
3926	u16 status = (u16)status_err;
3927	u8 errors = (u8)(status_err >> 24);
3928
3929	skb_checksum_none_assert(skb);
3930
3931	/* 82543 or newer only */
3932	if (unlikely(hw->mac_type < e1000_82543)) return;
 
3933	/* Ignore Checksum bit is set */
3934	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
 
3935	/* TCP/UDP checksum error bit is set */
3936	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3937		/* let the stack verify checksum errors */
3938		adapter->hw_csum_err++;
3939		return;
3940	}
3941	/* TCP/UDP Checksum has not been calculated */
3942	if (!(status & E1000_RXD_STAT_TCPCS))
3943		return;
3944
3945	/* It must be a TCP or UDP packet with a valid checksum */
3946	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3947		/* TCP checksum is good */
3948		skb->ip_summed = CHECKSUM_UNNECESSARY;
3949	}
3950	adapter->hw_csum_good++;
3951}
3952
3953/**
3954 * e1000_consume_page - helper function
 
 
 
3955 **/
3956static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3957			       u16 length)
3958{
3959	bi->page = NULL;
3960	skb->len += length;
3961	skb->data_len += length;
3962	skb->truesize += PAGE_SIZE;
3963}
3964
3965/**
3966 * e1000_receive_skb - helper function to handle rx indications
3967 * @adapter: board private structure
3968 * @status: descriptor status field as written by hardware
3969 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3970 * @skb: pointer to sk_buff to be indicated to stack
3971 */
3972static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3973			      __le16 vlan, struct sk_buff *skb)
3974{
3975	skb->protocol = eth_type_trans(skb, adapter->netdev);
3976
3977	if (status & E1000_RXD_STAT_VP) {
3978		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3979
3980		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3981	}
3982	napi_gro_receive(&adapter->napi, skb);
3983}
3984
3985/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3986 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3987 * @adapter: board private structure
3988 * @rx_ring: ring to clean
3989 * @work_done: amount of napi work completed this call
3990 * @work_to_do: max amount of work allowed for this call to do
3991 *
3992 * the return value indicates whether actual cleaning was done, there
3993 * is no guarantee that everything was cleaned
3994 */
3995static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3996				     struct e1000_rx_ring *rx_ring,
3997				     int *work_done, int work_to_do)
3998{
3999	struct e1000_hw *hw = &adapter->hw;
4000	struct net_device *netdev = adapter->netdev;
4001	struct pci_dev *pdev = adapter->pdev;
4002	struct e1000_rx_desc *rx_desc, *next_rxd;
4003	struct e1000_buffer *buffer_info, *next_buffer;
4004	unsigned long irq_flags;
4005	u32 length;
4006	unsigned int i;
4007	int cleaned_count = 0;
4008	bool cleaned = false;
4009	unsigned int total_rx_bytes=0, total_rx_packets=0;
4010
4011	i = rx_ring->next_to_clean;
4012	rx_desc = E1000_RX_DESC(*rx_ring, i);
4013	buffer_info = &rx_ring->buffer_info[i];
4014
4015	while (rx_desc->status & E1000_RXD_STAT_DD) {
4016		struct sk_buff *skb;
4017		u8 status;
4018
4019		if (*work_done >= work_to_do)
4020			break;
4021		(*work_done)++;
4022		rmb(); /* read descriptor and rx_buffer_info after status DD */
4023
4024		status = rx_desc->status;
4025		skb = buffer_info->skb;
4026		buffer_info->skb = NULL;
4027
4028		if (++i == rx_ring->count) i = 0;
 
 
4029		next_rxd = E1000_RX_DESC(*rx_ring, i);
4030		prefetch(next_rxd);
4031
4032		next_buffer = &rx_ring->buffer_info[i];
4033
4034		cleaned = true;
4035		cleaned_count++;
4036		dma_unmap_page(&pdev->dev, buffer_info->dma,
4037			       buffer_info->length, DMA_FROM_DEVICE);
4038		buffer_info->dma = 0;
4039
4040		length = le16_to_cpu(rx_desc->length);
4041
4042		/* errors is only valid for DD + EOP descriptors */
4043		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4044		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4045			u8 *mapped;
4046			u8 last_byte;
4047
4048			mapped = page_address(buffer_info->page);
4049			last_byte = *(mapped + length - 1);
4050			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4051				       last_byte)) {
4052				spin_lock_irqsave(&adapter->stats_lock,
4053						  irq_flags);
4054				e1000_tbi_adjust_stats(hw, &adapter->stats,
4055						       length, mapped);
4056				spin_unlock_irqrestore(&adapter->stats_lock,
4057						       irq_flags);
4058				length--;
 
 
4059			} else {
4060				if (netdev->features & NETIF_F_RXALL)
4061					goto process_skb;
4062				/* recycle both page and skb */
4063				buffer_info->skb = skb;
4064				/* an error means any chain goes out the window
4065				 * too
4066				 */
4067				if (rx_ring->rx_skb_top)
4068					dev_kfree_skb(rx_ring->rx_skb_top);
4069				rx_ring->rx_skb_top = NULL;
4070				goto next_desc;
4071			}
4072		}
4073
4074#define rxtop rx_ring->rx_skb_top
4075process_skb:
4076		if (!(status & E1000_RXD_STAT_EOP)) {
4077			/* this descriptor is only the beginning (or middle) */
4078			if (!rxtop) {
4079				/* this is the beginning of a chain */
4080				rxtop = skb;
4081				skb_fill_page_desc(rxtop, 0, buffer_info->page,
 
 
 
 
4082						   0, length);
4083			} else {
4084				/* this is the middle of a chain */
4085				skb_fill_page_desc(rxtop,
4086				    skb_shinfo(rxtop)->nr_frags,
4087				    buffer_info->page, 0, length);
4088				/* re-use the skb, only consumed the page */
4089				buffer_info->skb = skb;
4090			}
4091			e1000_consume_page(buffer_info, rxtop, length);
4092			goto next_desc;
4093		} else {
4094			if (rxtop) {
4095				/* end of the chain */
4096				skb_fill_page_desc(rxtop,
4097				    skb_shinfo(rxtop)->nr_frags,
4098				    buffer_info->page, 0, length);
4099				/* re-use the current skb, we only consumed the
4100				 * page
4101				 */
4102				buffer_info->skb = skb;
4103				skb = rxtop;
4104				rxtop = NULL;
4105				e1000_consume_page(buffer_info, skb, length);
4106			} else {
 
4107				/* no chain, got EOP, this buf is the packet
4108				 * copybreak to save the put_page/alloc_page
4109				 */
4110				if (length <= copybreak &&
4111				    skb_tailroom(skb) >= length) {
4112					u8 *vaddr;
4113					vaddr = kmap_atomic(buffer_info->page);
4114					memcpy(skb_tail_pointer(skb), vaddr,
4115					       length);
4116					kunmap_atomic(vaddr);
 
 
 
 
 
4117					/* re-use the page, so don't erase
4118					 * buffer_info->page
4119					 */
4120					skb_put(skb, length);
 
 
 
 
 
 
 
 
 
 
4121				} else {
4122					skb_fill_page_desc(skb, 0,
4123							   buffer_info->page, 0,
 
 
 
 
4124							   length);
4125					e1000_consume_page(buffer_info, skb,
4126							   length);
4127				}
4128			}
4129		}
4130
4131		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4132		e1000_rx_checksum(adapter,
4133				  (u32)(status) |
4134				  ((u32)(rx_desc->errors) << 24),
4135				  le16_to_cpu(rx_desc->csum), skb);
4136
4137		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4138		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4139			pskb_trim(skb, skb->len - 4);
4140		total_rx_packets++;
4141
4142		/* eth type trans needs skb->data to point to something */
4143		if (!pskb_may_pull(skb, ETH_HLEN)) {
4144			e_err(drv, "pskb_may_pull failed.\n");
4145			dev_kfree_skb(skb);
4146			goto next_desc;
4147		}
4148
4149		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4150
4151next_desc:
4152		rx_desc->status = 0;
4153
4154		/* return some buffers to hardware, one at a time is too slow */
4155		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4156			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4157			cleaned_count = 0;
4158		}
4159
4160		/* use prefetched values */
4161		rx_desc = next_rxd;
4162		buffer_info = next_buffer;
4163	}
4164	rx_ring->next_to_clean = i;
4165
4166	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4167	if (cleaned_count)
4168		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4169
4170	adapter->total_rx_packets += total_rx_packets;
4171	adapter->total_rx_bytes += total_rx_bytes;
4172	netdev->stats.rx_bytes += total_rx_bytes;
4173	netdev->stats.rx_packets += total_rx_packets;
4174	return cleaned;
4175}
4176
4177/* this should improve performance for small packets with large amounts
4178 * of reassembly being done in the stack
4179 */
4180static void e1000_check_copybreak(struct net_device *netdev,
4181				 struct e1000_buffer *buffer_info,
4182				 u32 length, struct sk_buff **skb)
4183{
4184	struct sk_buff *new_skb;
4185
4186	if (length > copybreak)
4187		return;
 
 
 
 
 
 
 
4188
4189	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4190	if (!new_skb)
4191		return;
4192
4193	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4194				       (*skb)->data - NET_IP_ALIGN,
4195				       length + NET_IP_ALIGN);
4196	/* save the skb in buffer_info as good */
4197	buffer_info->skb = *skb;
4198	*skb = new_skb;
4199}
4200
4201/**
4202 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4203 * @adapter: board private structure
4204 * @rx_ring: ring to clean
4205 * @work_done: amount of napi work completed this call
4206 * @work_to_do: max amount of work allowed for this call to do
4207 */
4208static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4209			       struct e1000_rx_ring *rx_ring,
4210			       int *work_done, int work_to_do)
4211{
4212	struct e1000_hw *hw = &adapter->hw;
4213	struct net_device *netdev = adapter->netdev;
4214	struct pci_dev *pdev = adapter->pdev;
4215	struct e1000_rx_desc *rx_desc, *next_rxd;
4216	struct e1000_buffer *buffer_info, *next_buffer;
4217	unsigned long flags;
4218	u32 length;
4219	unsigned int i;
4220	int cleaned_count = 0;
4221	bool cleaned = false;
4222	unsigned int total_rx_bytes=0, total_rx_packets=0;
4223
4224	i = rx_ring->next_to_clean;
4225	rx_desc = E1000_RX_DESC(*rx_ring, i);
4226	buffer_info = &rx_ring->buffer_info[i];
4227
4228	while (rx_desc->status & E1000_RXD_STAT_DD) {
4229		struct sk_buff *skb;
 
4230		u8 status;
4231
4232		if (*work_done >= work_to_do)
4233			break;
4234		(*work_done)++;
4235		rmb(); /* read descriptor and rx_buffer_info after status DD */
4236
4237		status = rx_desc->status;
4238		skb = buffer_info->skb;
4239		buffer_info->skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4240
4241		prefetch(skb->data - NET_IP_ALIGN);
 
4242
4243		if (++i == rx_ring->count) i = 0;
4244		next_rxd = E1000_RX_DESC(*rx_ring, i);
4245		prefetch(next_rxd);
4246
4247		next_buffer = &rx_ring->buffer_info[i];
4248
4249		cleaned = true;
4250		cleaned_count++;
4251		dma_unmap_single(&pdev->dev, buffer_info->dma,
4252				 buffer_info->length, DMA_FROM_DEVICE);
4253		buffer_info->dma = 0;
4254
4255		length = le16_to_cpu(rx_desc->length);
4256		/* !EOP means multiple descriptors were used to store a single
4257		 * packet, if thats the case we need to toss it.  In fact, we
4258		 * to toss every packet with the EOP bit clear and the next
4259		 * frame that _does_ have the EOP bit set, as it is by
4260		 * definition only a frame fragment
4261		 */
4262		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4263			adapter->discarding = true;
4264
4265		if (adapter->discarding) {
4266			/* All receives must fit into a single buffer */
4267			e_dbg("Receive packet consumed multiple buffers\n");
4268			/* recycle */
4269			buffer_info->skb = skb;
4270			if (status & E1000_RXD_STAT_EOP)
4271				adapter->discarding = false;
4272			goto next_desc;
4273		}
4274
4275		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4276			u8 last_byte = *(skb->data + length - 1);
4277			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4278				       last_byte)) {
4279				spin_lock_irqsave(&adapter->stats_lock, flags);
4280				e1000_tbi_adjust_stats(hw, &adapter->stats,
4281						       length, skb->data);
4282				spin_unlock_irqrestore(&adapter->stats_lock,
4283						       flags);
4284				length--;
 
 
4285			} else {
4286				if (netdev->features & NETIF_F_RXALL)
4287					goto process_skb;
4288				/* recycle */
4289				buffer_info->skb = skb;
4290				goto next_desc;
4291			}
4292		}
4293
4294process_skb:
4295		total_rx_bytes += (length - 4); /* don't count FCS */
4296		total_rx_packets++;
4297
4298		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4299			/* adjust length to remove Ethernet CRC, this must be
4300			 * done after the TBI_ACCEPT workaround above
4301			 */
4302			length -= 4;
4303
4304		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4305
4306		skb_put(skb, length);
 
4307
4308		/* Receive Checksum Offload */
4309		e1000_rx_checksum(adapter,
4310				  (u32)(status) |
4311				  ((u32)(rx_desc->errors) << 24),
4312				  le16_to_cpu(rx_desc->csum), skb);
4313
4314		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4315
4316next_desc:
4317		rx_desc->status = 0;
4318
4319		/* return some buffers to hardware, one at a time is too slow */
4320		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4321			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4322			cleaned_count = 0;
4323		}
4324
4325		/* use prefetched values */
4326		rx_desc = next_rxd;
4327		buffer_info = next_buffer;
4328	}
4329	rx_ring->next_to_clean = i;
4330
4331	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4332	if (cleaned_count)
4333		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334
4335	adapter->total_rx_packets += total_rx_packets;
4336	adapter->total_rx_bytes += total_rx_bytes;
4337	netdev->stats.rx_bytes += total_rx_bytes;
4338	netdev->stats.rx_packets += total_rx_packets;
4339	return cleaned;
4340}
4341
4342/**
4343 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4344 * @adapter: address of board private structure
4345 * @rx_ring: pointer to receive ring structure
4346 * @cleaned_count: number of buffers to allocate this pass
4347 **/
4348static void
4349e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4350			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4351{
4352	struct net_device *netdev = adapter->netdev;
4353	struct pci_dev *pdev = adapter->pdev;
4354	struct e1000_rx_desc *rx_desc;
4355	struct e1000_buffer *buffer_info;
4356	struct sk_buff *skb;
4357	unsigned int i;
4358	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4359
4360	i = rx_ring->next_to_use;
4361	buffer_info = &rx_ring->buffer_info[i];
4362
4363	while (cleaned_count--) {
4364		skb = buffer_info->skb;
4365		if (skb) {
4366			skb_trim(skb, 0);
4367			goto check_page;
4368		}
4369
4370		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4371		if (unlikely(!skb)) {
4372			/* Better luck next round */
4373			adapter->alloc_rx_buff_failed++;
4374			break;
4375		}
4376
4377		buffer_info->skb = skb;
4378		buffer_info->length = adapter->rx_buffer_len;
4379check_page:
4380		/* allocate a new page if necessary */
4381		if (!buffer_info->page) {
4382			buffer_info->page = alloc_page(GFP_ATOMIC);
4383			if (unlikely(!buffer_info->page)) {
4384				adapter->alloc_rx_buff_failed++;
4385				break;
4386			}
4387		}
4388
4389		if (!buffer_info->dma) {
4390			buffer_info->dma = dma_map_page(&pdev->dev,
4391							buffer_info->page, 0,
4392							buffer_info->length,
4393							DMA_FROM_DEVICE);
4394			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4395				put_page(buffer_info->page);
4396				dev_kfree_skb(skb);
4397				buffer_info->page = NULL;
4398				buffer_info->skb = NULL;
4399				buffer_info->dma = 0;
4400				adapter->alloc_rx_buff_failed++;
4401				break; /* while !buffer_info->skb */
4402			}
4403		}
4404
4405		rx_desc = E1000_RX_DESC(*rx_ring, i);
4406		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4407
4408		if (unlikely(++i == rx_ring->count))
4409			i = 0;
4410		buffer_info = &rx_ring->buffer_info[i];
4411	}
4412
4413	if (likely(rx_ring->next_to_use != i)) {
4414		rx_ring->next_to_use = i;
4415		if (unlikely(i-- == 0))
4416			i = (rx_ring->count - 1);
4417
4418		/* Force memory writes to complete before letting h/w
4419		 * know there are new descriptors to fetch.  (Only
4420		 * applicable for weak-ordered memory model archs,
4421		 * such as IA-64).
4422		 */
4423		wmb();
4424		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4425	}
4426}
4427
4428/**
4429 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4430 * @adapter: address of board private structure
 
 
4431 **/
4432static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4433				   struct e1000_rx_ring *rx_ring,
4434				   int cleaned_count)
4435{
4436	struct e1000_hw *hw = &adapter->hw;
4437	struct net_device *netdev = adapter->netdev;
4438	struct pci_dev *pdev = adapter->pdev;
4439	struct e1000_rx_desc *rx_desc;
4440	struct e1000_buffer *buffer_info;
4441	struct sk_buff *skb;
4442	unsigned int i;
4443	unsigned int bufsz = adapter->rx_buffer_len;
4444
4445	i = rx_ring->next_to_use;
4446	buffer_info = &rx_ring->buffer_info[i];
4447
4448	while (cleaned_count--) {
4449		skb = buffer_info->skb;
4450		if (skb) {
4451			skb_trim(skb, 0);
4452			goto map_skb;
4453		}
4454
4455		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4456		if (unlikely(!skb)) {
4457			/* Better luck next round */
4458			adapter->alloc_rx_buff_failed++;
4459			break;
4460		}
4461
4462		/* Fix for errata 23, can't cross 64kB boundary */
4463		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4464			struct sk_buff *oldskb = skb;
4465			e_err(rx_err, "skb align check failed: %u bytes at "
4466			      "%p\n", bufsz, skb->data);
4467			/* Try again, without freeing the previous */
4468			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4469			/* Failed allocation, critical failure */
4470			if (!skb) {
4471				dev_kfree_skb(oldskb);
4472				adapter->alloc_rx_buff_failed++;
4473				break;
4474			}
4475
4476			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4477				/* give up */
4478				dev_kfree_skb(skb);
4479				dev_kfree_skb(oldskb);
4480				adapter->alloc_rx_buff_failed++;
4481				break; /* while !buffer_info->skb */
4482			}
4483
4484			/* Use new allocation */
4485			dev_kfree_skb(oldskb);
4486		}
4487		buffer_info->skb = skb;
4488		buffer_info->length = adapter->rx_buffer_len;
4489map_skb:
4490		buffer_info->dma = dma_map_single(&pdev->dev,
4491						  skb->data,
4492						  buffer_info->length,
4493						  DMA_FROM_DEVICE);
4494		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4495			dev_kfree_skb(skb);
4496			buffer_info->skb = NULL;
4497			buffer_info->dma = 0;
4498			adapter->alloc_rx_buff_failed++;
4499			break; /* while !buffer_info->skb */
4500		}
4501
4502		/* XXX if it was allocated cleanly it will never map to a
4503		 * boundary crossing
4504		 */
4505
4506		/* Fix for errata 23, can't cross 64kB boundary */
4507		if (!e1000_check_64k_bound(adapter,
4508					(void *)(unsigned long)buffer_info->dma,
4509					adapter->rx_buffer_len)) {
4510			e_err(rx_err, "dma align check failed: %u bytes at "
4511			      "%p\n", adapter->rx_buffer_len,
4512			      (void *)(unsigned long)buffer_info->dma);
4513			dev_kfree_skb(skb);
4514			buffer_info->skb = NULL;
4515
4516			dma_unmap_single(&pdev->dev, buffer_info->dma,
4517					 adapter->rx_buffer_len,
4518					 DMA_FROM_DEVICE);
 
 
 
4519			buffer_info->dma = 0;
4520
4521			adapter->alloc_rx_buff_failed++;
4522			break; /* while !buffer_info->skb */
4523		}
 
 
4524		rx_desc = E1000_RX_DESC(*rx_ring, i);
4525		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4526
4527		if (unlikely(++i == rx_ring->count))
4528			i = 0;
4529		buffer_info = &rx_ring->buffer_info[i];
4530	}
4531
4532	if (likely(rx_ring->next_to_use != i)) {
4533		rx_ring->next_to_use = i;
4534		if (unlikely(i-- == 0))
4535			i = (rx_ring->count - 1);
4536
4537		/* Force memory writes to complete before letting h/w
4538		 * know there are new descriptors to fetch.  (Only
4539		 * applicable for weak-ordered memory model archs,
4540		 * such as IA-64).
4541		 */
4542		wmb();
4543		writel(i, hw->hw_addr + rx_ring->rdt);
4544	}
4545}
4546
4547/**
4548 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4549 * @adapter:
4550 **/
4551static void e1000_smartspeed(struct e1000_adapter *adapter)
4552{
4553	struct e1000_hw *hw = &adapter->hw;
4554	u16 phy_status;
4555	u16 phy_ctrl;
4556
4557	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4558	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4559		return;
4560
4561	if (adapter->smartspeed == 0) {
4562		/* If Master/Slave config fault is asserted twice,
4563		 * we assume back-to-back
4564		 */
4565		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4566		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 
4567		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4568		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 
4569		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4570		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4571			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4572			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4573					    phy_ctrl);
4574			adapter->smartspeed++;
4575			if (!e1000_phy_setup_autoneg(hw) &&
4576			   !e1000_read_phy_reg(hw, PHY_CTRL,
4577					       &phy_ctrl)) {
4578				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4579					     MII_CR_RESTART_AUTO_NEG);
4580				e1000_write_phy_reg(hw, PHY_CTRL,
4581						    phy_ctrl);
4582			}
4583		}
4584		return;
4585	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4586		/* If still no link, perhaps using 2/3 pair cable */
4587		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4588		phy_ctrl |= CR_1000T_MS_ENABLE;
4589		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4590		if (!e1000_phy_setup_autoneg(hw) &&
4591		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4592			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4593				     MII_CR_RESTART_AUTO_NEG);
4594			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4595		}
4596	}
4597	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4598	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4599		adapter->smartspeed = 0;
4600}
4601
4602/**
4603 * e1000_ioctl -
4604 * @netdev:
4605 * @ifreq:
4606 * @cmd:
4607 **/
4608static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4609{
4610	switch (cmd) {
4611	case SIOCGMIIPHY:
4612	case SIOCGMIIREG:
4613	case SIOCSMIIREG:
4614		return e1000_mii_ioctl(netdev, ifr, cmd);
4615	default:
4616		return -EOPNOTSUPP;
4617	}
4618}
4619
4620/**
4621 * e1000_mii_ioctl -
4622 * @netdev:
4623 * @ifreq:
4624 * @cmd:
4625 **/
4626static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4627			   int cmd)
4628{
4629	struct e1000_adapter *adapter = netdev_priv(netdev);
4630	struct e1000_hw *hw = &adapter->hw;
4631	struct mii_ioctl_data *data = if_mii(ifr);
4632	int retval;
4633	u16 mii_reg;
4634	unsigned long flags;
4635
4636	if (hw->media_type != e1000_media_type_copper)
4637		return -EOPNOTSUPP;
4638
4639	switch (cmd) {
4640	case SIOCGMIIPHY:
4641		data->phy_id = hw->phy_addr;
4642		break;
4643	case SIOCGMIIREG:
4644		spin_lock_irqsave(&adapter->stats_lock, flags);
4645		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4646				   &data->val_out)) {
4647			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4648			return -EIO;
4649		}
4650		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4651		break;
4652	case SIOCSMIIREG:
4653		if (data->reg_num & ~(0x1F))
4654			return -EFAULT;
4655		mii_reg = data->val_in;
4656		spin_lock_irqsave(&adapter->stats_lock, flags);
4657		if (e1000_write_phy_reg(hw, data->reg_num,
4658					mii_reg)) {
4659			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4660			return -EIO;
4661		}
4662		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4663		if (hw->media_type == e1000_media_type_copper) {
4664			switch (data->reg_num) {
4665			case PHY_CTRL:
4666				if (mii_reg & MII_CR_POWER_DOWN)
4667					break;
4668				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4669					hw->autoneg = 1;
4670					hw->autoneg_advertised = 0x2F;
4671				} else {
4672					u32 speed;
4673					if (mii_reg & 0x40)
4674						speed = SPEED_1000;
4675					else if (mii_reg & 0x2000)
4676						speed = SPEED_100;
4677					else
4678						speed = SPEED_10;
4679					retval = e1000_set_spd_dplx(
4680						adapter, speed,
4681						((mii_reg & 0x100)
4682						 ? DUPLEX_FULL :
4683						 DUPLEX_HALF));
4684					if (retval)
4685						return retval;
4686				}
4687				if (netif_running(adapter->netdev))
4688					e1000_reinit_locked(adapter);
4689				else
4690					e1000_reset(adapter);
4691				break;
4692			case M88E1000_PHY_SPEC_CTRL:
4693			case M88E1000_EXT_PHY_SPEC_CTRL:
4694				if (e1000_phy_reset(hw))
4695					return -EIO;
4696				break;
4697			}
4698		} else {
4699			switch (data->reg_num) {
4700			case PHY_CTRL:
4701				if (mii_reg & MII_CR_POWER_DOWN)
4702					break;
4703				if (netif_running(adapter->netdev))
4704					e1000_reinit_locked(adapter);
4705				else
4706					e1000_reset(adapter);
4707				break;
4708			}
4709		}
4710		break;
4711	default:
4712		return -EOPNOTSUPP;
4713	}
4714	return E1000_SUCCESS;
4715}
4716
4717void e1000_pci_set_mwi(struct e1000_hw *hw)
4718{
4719	struct e1000_adapter *adapter = hw->back;
4720	int ret_val = pci_set_mwi(adapter->pdev);
4721
4722	if (ret_val)
4723		e_err(probe, "Error in setting MWI\n");
4724}
4725
4726void e1000_pci_clear_mwi(struct e1000_hw *hw)
4727{
4728	struct e1000_adapter *adapter = hw->back;
4729
4730	pci_clear_mwi(adapter->pdev);
4731}
4732
4733int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4734{
4735	struct e1000_adapter *adapter = hw->back;
4736	return pcix_get_mmrbc(adapter->pdev);
4737}
4738
4739void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4740{
4741	struct e1000_adapter *adapter = hw->back;
4742	pcix_set_mmrbc(adapter->pdev, mmrbc);
4743}
4744
4745void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4746{
4747	outl(value, port);
4748}
4749
4750static bool e1000_vlan_used(struct e1000_adapter *adapter)
4751{
4752	u16 vid;
4753
4754	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4755		return true;
4756	return false;
4757}
4758
4759static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4760			      netdev_features_t features)
4761{
4762	struct e1000_hw *hw = &adapter->hw;
4763	u32 ctrl;
4764
4765	ctrl = er32(CTRL);
4766	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4767		/* enable VLAN tag insert/strip */
4768		ctrl |= E1000_CTRL_VME;
4769	} else {
4770		/* disable VLAN tag insert/strip */
4771		ctrl &= ~E1000_CTRL_VME;
4772	}
4773	ew32(CTRL, ctrl);
4774}
4775static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4776				     bool filter_on)
4777{
4778	struct e1000_hw *hw = &adapter->hw;
4779	u32 rctl;
4780
4781	if (!test_bit(__E1000_DOWN, &adapter->flags))
4782		e1000_irq_disable(adapter);
4783
4784	__e1000_vlan_mode(adapter, adapter->netdev->features);
4785	if (filter_on) {
4786		/* enable VLAN receive filtering */
4787		rctl = er32(RCTL);
4788		rctl &= ~E1000_RCTL_CFIEN;
4789		if (!(adapter->netdev->flags & IFF_PROMISC))
4790			rctl |= E1000_RCTL_VFE;
4791		ew32(RCTL, rctl);
4792		e1000_update_mng_vlan(adapter);
4793	} else {
4794		/* disable VLAN receive filtering */
4795		rctl = er32(RCTL);
4796		rctl &= ~E1000_RCTL_VFE;
4797		ew32(RCTL, rctl);
4798	}
4799
4800	if (!test_bit(__E1000_DOWN, &adapter->flags))
4801		e1000_irq_enable(adapter);
4802}
4803
4804static void e1000_vlan_mode(struct net_device *netdev,
4805			    netdev_features_t features)
4806{
4807	struct e1000_adapter *adapter = netdev_priv(netdev);
4808
4809	if (!test_bit(__E1000_DOWN, &adapter->flags))
4810		e1000_irq_disable(adapter);
4811
4812	__e1000_vlan_mode(adapter, features);
4813
4814	if (!test_bit(__E1000_DOWN, &adapter->flags))
4815		e1000_irq_enable(adapter);
4816}
4817
4818static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4819				 __be16 proto, u16 vid)
4820{
4821	struct e1000_adapter *adapter = netdev_priv(netdev);
4822	struct e1000_hw *hw = &adapter->hw;
4823	u32 vfta, index;
4824
4825	if ((hw->mng_cookie.status &
4826	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4827	    (vid == adapter->mng_vlan_id))
4828		return 0;
4829
4830	if (!e1000_vlan_used(adapter))
4831		e1000_vlan_filter_on_off(adapter, true);
4832
4833	/* add VID to filter table */
4834	index = (vid >> 5) & 0x7F;
4835	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4836	vfta |= (1 << (vid & 0x1F));
4837	e1000_write_vfta(hw, index, vfta);
4838
4839	set_bit(vid, adapter->active_vlans);
4840
4841	return 0;
4842}
4843
4844static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4845				  __be16 proto, u16 vid)
4846{
4847	struct e1000_adapter *adapter = netdev_priv(netdev);
4848	struct e1000_hw *hw = &adapter->hw;
4849	u32 vfta, index;
4850
4851	if (!test_bit(__E1000_DOWN, &adapter->flags))
4852		e1000_irq_disable(adapter);
4853	if (!test_bit(__E1000_DOWN, &adapter->flags))
4854		e1000_irq_enable(adapter);
4855
4856	/* remove VID from filter table */
4857	index = (vid >> 5) & 0x7F;
4858	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4859	vfta &= ~(1 << (vid & 0x1F));
4860	e1000_write_vfta(hw, index, vfta);
4861
4862	clear_bit(vid, adapter->active_vlans);
4863
4864	if (!e1000_vlan_used(adapter))
4865		e1000_vlan_filter_on_off(adapter, false);
4866
4867	return 0;
4868}
4869
4870static void e1000_restore_vlan(struct e1000_adapter *adapter)
4871{
4872	u16 vid;
4873
4874	if (!e1000_vlan_used(adapter))
4875		return;
4876
4877	e1000_vlan_filter_on_off(adapter, true);
4878	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4880}
4881
4882int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4883{
4884	struct e1000_hw *hw = &adapter->hw;
4885
4886	hw->autoneg = 0;
4887
4888	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4889	 * for the switch() below to work
4890	 */
4891	if ((spd & 1) || (dplx & ~1))
4892		goto err_inval;
4893
4894	/* Fiber NICs only allow 1000 gbps Full duplex */
4895	if ((hw->media_type == e1000_media_type_fiber) &&
4896	    spd != SPEED_1000 &&
4897	    dplx != DUPLEX_FULL)
4898		goto err_inval;
4899
4900	switch (spd + dplx) {
4901	case SPEED_10 + DUPLEX_HALF:
4902		hw->forced_speed_duplex = e1000_10_half;
4903		break;
4904	case SPEED_10 + DUPLEX_FULL:
4905		hw->forced_speed_duplex = e1000_10_full;
4906		break;
4907	case SPEED_100 + DUPLEX_HALF:
4908		hw->forced_speed_duplex = e1000_100_half;
4909		break;
4910	case SPEED_100 + DUPLEX_FULL:
4911		hw->forced_speed_duplex = e1000_100_full;
4912		break;
4913	case SPEED_1000 + DUPLEX_FULL:
4914		hw->autoneg = 1;
4915		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4916		break;
4917	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4918	default:
4919		goto err_inval;
4920	}
4921
4922	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4923	hw->mdix = AUTO_ALL_MODES;
4924
4925	return 0;
4926
4927err_inval:
4928	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4929	return -EINVAL;
4930}
4931
4932static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4933{
4934	struct net_device *netdev = pci_get_drvdata(pdev);
4935	struct e1000_adapter *adapter = netdev_priv(netdev);
4936	struct e1000_hw *hw = &adapter->hw;
4937	u32 ctrl, ctrl_ext, rctl, status;
4938	u32 wufc = adapter->wol;
4939#ifdef CONFIG_PM
4940	int retval = 0;
4941#endif
4942
4943	netif_device_detach(netdev);
4944
4945	if (netif_running(netdev)) {
4946		int count = E1000_CHECK_RESET_COUNT;
4947
4948		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4949			usleep_range(10000, 20000);
4950
4951		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
4952		e1000_down(adapter);
 
4953	}
4954
4955#ifdef CONFIG_PM
4956	retval = pci_save_state(pdev);
4957	if (retval)
4958		return retval;
4959#endif
4960
4961	status = er32(STATUS);
4962	if (status & E1000_STATUS_LU)
4963		wufc &= ~E1000_WUFC_LNKC;
4964
4965	if (wufc) {
4966		e1000_setup_rctl(adapter);
4967		e1000_set_rx_mode(netdev);
4968
4969		rctl = er32(RCTL);
4970
4971		/* turn on all-multi mode if wake on multicast is enabled */
4972		if (wufc & E1000_WUFC_MC)
4973			rctl |= E1000_RCTL_MPE;
4974
4975		/* enable receives in the hardware */
4976		ew32(RCTL, rctl | E1000_RCTL_EN);
4977
4978		if (hw->mac_type >= e1000_82540) {
4979			ctrl = er32(CTRL);
4980			/* advertise wake from D3Cold */
4981			#define E1000_CTRL_ADVD3WUC 0x00100000
4982			/* phy power management enable */
4983			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4984			ctrl |= E1000_CTRL_ADVD3WUC |
4985				E1000_CTRL_EN_PHY_PWR_MGMT;
4986			ew32(CTRL, ctrl);
4987		}
4988
4989		if (hw->media_type == e1000_media_type_fiber ||
4990		    hw->media_type == e1000_media_type_internal_serdes) {
4991			/* keep the laser running in D3 */
4992			ctrl_ext = er32(CTRL_EXT);
4993			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4994			ew32(CTRL_EXT, ctrl_ext);
4995		}
4996
4997		ew32(WUC, E1000_WUC_PME_EN);
4998		ew32(WUFC, wufc);
4999	} else {
5000		ew32(WUC, 0);
5001		ew32(WUFC, 0);
5002	}
5003
5004	e1000_release_manageability(adapter);
5005
5006	*enable_wake = !!wufc;
5007
5008	/* make sure adapter isn't asleep if manageability is enabled */
5009	if (adapter->en_mng_pt)
5010		*enable_wake = true;
5011
5012	if (netif_running(netdev))
5013		e1000_free_irq(adapter);
5014
5015	pci_disable_device(pdev);
 
5016
5017	return 0;
5018}
5019
5020#ifdef CONFIG_PM
5021static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5022{
5023	int retval;
 
5024	bool wake;
5025
5026	retval = __e1000_shutdown(pdev, &wake);
5027	if (retval)
5028		return retval;
5029
5030	if (wake) {
5031		pci_prepare_to_sleep(pdev);
5032	} else {
5033		pci_wake_from_d3(pdev, false);
5034		pci_set_power_state(pdev, PCI_D3hot);
5035	}
5036
5037	return 0;
5038}
5039
5040static int e1000_resume(struct pci_dev *pdev)
5041{
 
5042	struct net_device *netdev = pci_get_drvdata(pdev);
5043	struct e1000_adapter *adapter = netdev_priv(netdev);
5044	struct e1000_hw *hw = &adapter->hw;
5045	u32 err;
5046
5047	pci_set_power_state(pdev, PCI_D0);
5048	pci_restore_state(pdev);
5049	pci_save_state(pdev);
5050
5051	if (adapter->need_ioport)
5052		err = pci_enable_device(pdev);
5053	else
5054		err = pci_enable_device_mem(pdev);
5055	if (err) {
5056		pr_err("Cannot enable PCI device from suspend\n");
5057		return err;
5058	}
 
 
 
 
5059	pci_set_master(pdev);
5060
5061	pci_enable_wake(pdev, PCI_D3hot, 0);
5062	pci_enable_wake(pdev, PCI_D3cold, 0);
5063
5064	if (netif_running(netdev)) {
5065		err = e1000_request_irq(adapter);
5066		if (err)
5067			return err;
5068	}
5069
5070	e1000_power_up_phy(adapter);
5071	e1000_reset(adapter);
5072	ew32(WUS, ~0);
5073
5074	e1000_init_manageability(adapter);
5075
5076	if (netif_running(netdev))
5077		e1000_up(adapter);
5078
5079	netif_device_attach(netdev);
5080
5081	return 0;
5082}
5083#endif
5084
5085static void e1000_shutdown(struct pci_dev *pdev)
5086{
5087	bool wake;
5088
5089	__e1000_shutdown(pdev, &wake);
5090
5091	if (system_state == SYSTEM_POWER_OFF) {
5092		pci_wake_from_d3(pdev, wake);
5093		pci_set_power_state(pdev, PCI_D3hot);
5094	}
5095}
5096
5097#ifdef CONFIG_NET_POLL_CONTROLLER
5098/* Polling 'interrupt' - used by things like netconsole to send skbs
5099 * without having to re-enable interrupts. It's not called while
5100 * the interrupt routine is executing.
5101 */
5102static void e1000_netpoll(struct net_device *netdev)
5103{
5104	struct e1000_adapter *adapter = netdev_priv(netdev);
5105
5106	disable_irq(adapter->pdev->irq);
5107	e1000_intr(adapter->pdev->irq, netdev);
5108	enable_irq(adapter->pdev->irq);
5109}
5110#endif
5111
5112/**
5113 * e1000_io_error_detected - called when PCI error is detected
5114 * @pdev: Pointer to PCI device
5115 * @state: The current pci connection state
5116 *
5117 * This function is called after a PCI bus error affecting
5118 * this device has been detected.
5119 */
5120static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5121						pci_channel_state_t state)
5122{
5123	struct net_device *netdev = pci_get_drvdata(pdev);
5124	struct e1000_adapter *adapter = netdev_priv(netdev);
5125
 
5126	netif_device_detach(netdev);
5127
5128	if (state == pci_channel_io_perm_failure)
 
5129		return PCI_ERS_RESULT_DISCONNECT;
 
5130
5131	if (netif_running(netdev))
5132		e1000_down(adapter);
5133	pci_disable_device(pdev);
5134
5135	/* Request a slot slot reset. */
 
 
 
 
5136	return PCI_ERS_RESULT_NEED_RESET;
5137}
5138
5139/**
5140 * e1000_io_slot_reset - called after the pci bus has been reset.
5141 * @pdev: Pointer to PCI device
5142 *
5143 * Restart the card from scratch, as if from a cold-boot. Implementation
5144 * resembles the first-half of the e1000_resume routine.
5145 */
5146static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5147{
5148	struct net_device *netdev = pci_get_drvdata(pdev);
5149	struct e1000_adapter *adapter = netdev_priv(netdev);
5150	struct e1000_hw *hw = &adapter->hw;
5151	int err;
5152
5153	if (adapter->need_ioport)
5154		err = pci_enable_device(pdev);
5155	else
5156		err = pci_enable_device_mem(pdev);
5157	if (err) {
5158		pr_err("Cannot re-enable PCI device after reset.\n");
5159		return PCI_ERS_RESULT_DISCONNECT;
5160	}
 
 
 
 
5161	pci_set_master(pdev);
5162
5163	pci_enable_wake(pdev, PCI_D3hot, 0);
5164	pci_enable_wake(pdev, PCI_D3cold, 0);
5165
5166	e1000_reset(adapter);
5167	ew32(WUS, ~0);
5168
5169	return PCI_ERS_RESULT_RECOVERED;
5170}
5171
5172/**
5173 * e1000_io_resume - called when traffic can start flowing again.
5174 * @pdev: Pointer to PCI device
5175 *
5176 * This callback is called when the error recovery driver tells us that
5177 * its OK to resume normal operation. Implementation resembles the
5178 * second-half of the e1000_resume routine.
5179 */
5180static void e1000_io_resume(struct pci_dev *pdev)
5181{
5182	struct net_device *netdev = pci_get_drvdata(pdev);
5183	struct e1000_adapter *adapter = netdev_priv(netdev);
5184
5185	e1000_init_manageability(adapter);
5186
5187	if (netif_running(netdev)) {
5188		if (e1000_up(adapter)) {
5189			pr_info("can't bring device back up after reset\n");
5190			return;
5191		}
5192	}
5193
5194	netif_device_attach(netdev);
5195}
5196
5197/* e1000_main.c */