Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int e1000_suspend(struct device *dev);
153static int e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 .shutdown = e1000_shutdown,
187 .err_handler = &e1000_err_handler
188};
189
190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191MODULE_LICENSE("GPL v2");
192
193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194static int debug = -1;
195module_param(debug, int, 0);
196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197
198/**
199 * e1000_get_hw_dev - helper function for getting netdev
200 * @hw: pointer to HW struct
201 *
202 * return device used by hardware layer to print debugging information
203 *
204 **/
205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206{
207 struct e1000_adapter *adapter = hw->back;
208 return adapter->netdev;
209}
210
211/**
212 * e1000_init_module - Driver Registration Routine
213 *
214 * e1000_init_module is the first routine called when the driver is
215 * loaded. All it does is register with the PCI subsystem.
216 **/
217static int __init e1000_init_module(void)
218{
219 int ret;
220 pr_info("%s\n", e1000_driver_string);
221
222 pr_info("%s\n", e1000_copyright);
223
224 ret = pci_register_driver(&e1000_driver);
225 if (copybreak != COPYBREAK_DEFAULT) {
226 if (copybreak == 0)
227 pr_info("copybreak disabled\n");
228 else
229 pr_info("copybreak enabled for "
230 "packets <= %u bytes\n", copybreak);
231 }
232 return ret;
233}
234
235module_init(e1000_init_module);
236
237/**
238 * e1000_exit_module - Driver Exit Cleanup Routine
239 *
240 * e1000_exit_module is called just before the driver is removed
241 * from memory.
242 **/
243static void __exit e1000_exit_module(void)
244{
245 pci_unregister_driver(&e1000_driver);
246}
247
248module_exit(e1000_exit_module);
249
250static int e1000_request_irq(struct e1000_adapter *adapter)
251{
252 struct net_device *netdev = adapter->netdev;
253 irq_handler_t handler = e1000_intr;
254 int irq_flags = IRQF_SHARED;
255 int err;
256
257 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 netdev);
259 if (err) {
260 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 }
262
263 return err;
264}
265
266static void e1000_free_irq(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269
270 free_irq(adapter->pdev->irq, netdev);
271}
272
273/**
274 * e1000_irq_disable - Mask off interrupt generation on the NIC
275 * @adapter: board private structure
276 **/
277static void e1000_irq_disable(struct e1000_adapter *adapter)
278{
279 struct e1000_hw *hw = &adapter->hw;
280
281 ew32(IMC, ~0);
282 E1000_WRITE_FLUSH();
283 synchronize_irq(adapter->pdev->irq);
284}
285
286/**
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
289 **/
290static void e1000_irq_enable(struct e1000_adapter *adapter)
291{
292 struct e1000_hw *hw = &adapter->hw;
293
294 ew32(IMS, IMS_ENABLE_MASK);
295 E1000_WRITE_FLUSH();
296}
297
298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299{
300 struct e1000_hw *hw = &adapter->hw;
301 struct net_device *netdev = adapter->netdev;
302 u16 vid = hw->mng_cookie.vlan_id;
303 u16 old_vid = adapter->mng_vlan_id;
304
305 if (!e1000_vlan_used(adapter))
306 return;
307
308 if (!test_bit(vid, adapter->active_vlans)) {
309 if (hw->mng_cookie.status &
310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 adapter->mng_vlan_id = vid;
313 } else {
314 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 }
316 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 (vid != old_vid) &&
318 !test_bit(old_vid, adapter->active_vlans))
319 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 old_vid);
321 } else {
322 adapter->mng_vlan_id = vid;
323 }
324}
325
326static void e1000_init_manageability(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329
330 if (adapter->en_mng_pt) {
331 u32 manc = er32(MANC);
332
333 /* disable hardware interception of ARP */
334 manc &= ~(E1000_MANC_ARP_EN);
335
336 ew32(MANC, manc);
337 }
338}
339
340static void e1000_release_manageability(struct e1000_adapter *adapter)
341{
342 struct e1000_hw *hw = &adapter->hw;
343
344 if (adapter->en_mng_pt) {
345 u32 manc = er32(MANC);
346
347 /* re-enable hardware interception of ARP */
348 manc |= E1000_MANC_ARP_EN;
349
350 ew32(MANC, manc);
351 }
352}
353
354/**
355 * e1000_configure - configure the hardware for RX and TX
356 * @adapter: private board structure
357 **/
358static void e1000_configure(struct e1000_adapter *adapter)
359{
360 struct net_device *netdev = adapter->netdev;
361 int i;
362
363 e1000_set_rx_mode(netdev);
364
365 e1000_restore_vlan(adapter);
366 e1000_init_manageability(adapter);
367
368 e1000_configure_tx(adapter);
369 e1000_setup_rctl(adapter);
370 e1000_configure_rx(adapter);
371 /* call E1000_DESC_UNUSED which always leaves
372 * at least 1 descriptor unused to make sure
373 * next_to_use != next_to_clean
374 */
375 for (i = 0; i < adapter->num_rx_queues; i++) {
376 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 adapter->alloc_rx_buf(adapter, ring,
378 E1000_DESC_UNUSED(ring));
379 }
380}
381
382int e1000_up(struct e1000_adapter *adapter)
383{
384 struct e1000_hw *hw = &adapter->hw;
385
386 /* hardware has been reset, we need to reload some things */
387 e1000_configure(adapter);
388
389 clear_bit(__E1000_DOWN, &adapter->flags);
390
391 napi_enable(&adapter->napi);
392
393 e1000_irq_enable(adapter);
394
395 netif_wake_queue(adapter->netdev);
396
397 /* fire a link change interrupt to start the watchdog */
398 ew32(ICS, E1000_ICS_LSC);
399 return 0;
400}
401
402/**
403 * e1000_power_up_phy - restore link in case the phy was powered down
404 * @adapter: address of board private structure
405 *
406 * The phy may be powered down to save power and turn off link when the
407 * driver is unloaded and wake on lan is not enabled (among others)
408 * *** this routine MUST be followed by a call to e1000_reset ***
409 **/
410void e1000_power_up_phy(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 u16 mii_reg = 0;
414
415 /* Just clear the power down bit to wake the phy back up */
416 if (hw->media_type == e1000_media_type_copper) {
417 /* according to the manual, the phy will retain its
418 * settings across a power-down/up cycle
419 */
420 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 mii_reg &= ~MII_CR_POWER_DOWN;
422 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 }
424}
425
426static void e1000_power_down_phy(struct e1000_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429
430 /* Power down the PHY so no link is implied when interface is down *
431 * The PHY cannot be powered down if any of the following is true *
432 * (a) WoL is enabled
433 * (b) AMT is active
434 * (c) SoL/IDER session is active
435 */
436 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 u16 mii_reg = 0;
439
440 switch (hw->mac_type) {
441 case e1000_82540:
442 case e1000_82545:
443 case e1000_82545_rev_3:
444 case e1000_82546:
445 case e1000_ce4100:
446 case e1000_82546_rev_3:
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 goto out;
453 break;
454 default:
455 goto out;
456 }
457 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 mii_reg |= MII_CR_POWER_DOWN;
459 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 msleep(1);
461 }
462out:
463 return;
464}
465
466static void e1000_down_and_stop(struct e1000_adapter *adapter)
467{
468 set_bit(__E1000_DOWN, &adapter->flags);
469
470 cancel_delayed_work_sync(&adapter->watchdog_task);
471
472 /*
473 * Since the watchdog task can reschedule other tasks, we should cancel
474 * it first, otherwise we can run into the situation when a work is
475 * still running after the adapter has been turned down.
476 */
477
478 cancel_delayed_work_sync(&adapter->phy_info_task);
479 cancel_delayed_work_sync(&adapter->fifo_stall_task);
480
481 /* Only kill reset task if adapter is not resetting */
482 if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 cancel_work_sync(&adapter->reset_task);
484}
485
486void e1000_down(struct e1000_adapter *adapter)
487{
488 struct e1000_hw *hw = &adapter->hw;
489 struct net_device *netdev = adapter->netdev;
490 u32 rctl, tctl;
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 /* Set the carrier off after transmits have been disabled in the
508 * hardware, to avoid race conditions with e1000_watchdog() (which
509 * may be running concurrently to us, checking for the carrier
510 * bit to decide whether it should enable transmits again). Such
511 * a race condition would result into transmission being disabled
512 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 */
514 netif_carrier_off(netdev);
515
516 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 napi_disable(&adapter->napi);
519
520 e1000_irq_disable(adapter);
521
522 /* Setting DOWN must be after irq_disable to prevent
523 * a screaming interrupt. Setting DOWN also prevents
524 * tasks from rescheduling.
525 */
526 e1000_down_and_stop(adapter);
527
528 adapter->link_speed = 0;
529 adapter->link_duplex = 0;
530
531 e1000_reset(adapter);
532 e1000_clean_all_tx_rings(adapter);
533 e1000_clean_all_rx_rings(adapter);
534}
535
536void e1000_reinit_locked(struct e1000_adapter *adapter)
537{
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_eth_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 napi_enable(&adapter->napi);
1399 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402 e1000_irq_enable(adapter);
1403
1404 netif_start_queue(netdev);
1405
1406 /* fire a link status change interrupt to start the watchdog */
1407 ew32(ICS, E1000_ICS_LSC);
1408
1409 return E1000_SUCCESS;
1410
1411err_req_irq:
1412 e1000_power_down_phy(adapter);
1413 e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415 e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417 e1000_reset(adapter);
1418
1419 return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS. The hardware is still under the drivers control, but
1430 * needs to be disabled. A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1437 int count = E1000_CHECK_RESET_COUNT;
1438
1439 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 usleep_range(10000, 20000);
1441
1442 WARN_ON(count < 0);
1443
1444 /* signal that we're down so that the reset task will no longer run */
1445 set_bit(__E1000_DOWN, &adapter->flags);
1446 clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448 e1000_down(adapter);
1449 e1000_power_down_phy(adapter);
1450 e1000_free_irq(adapter);
1451
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1454
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it)
1457 */
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 adapter->mng_vlan_id);
1463 }
1464
1465 return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 unsigned long len)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478 unsigned long begin = (unsigned long)start;
1479 unsigned long end = begin + len;
1480
1481 /* First rev 82545 and 82546 need to not allow any memory
1482 * write location to cross 64k boundary due to errata 23
1483 */
1484 if (hw->mac_type == e1000_82545 ||
1485 hw->mac_type == e1000_ce4100 ||
1486 hw->mac_type == e1000_82546) {
1487 return ((begin ^ (end - 1)) >> 16) == 0;
1488 }
1489
1490 return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr: tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 struct e1000_tx_ring *txdr)
1502{
1503 struct pci_dev *pdev = adapter->pdev;
1504 int size;
1505
1506 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 txdr->buffer_info = vzalloc(size);
1508 if (!txdr->buffer_info)
1509 return -ENOMEM;
1510
1511 /* round up to nearest 4K */
1512
1513 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 txdr->size = ALIGN(txdr->size, 4096);
1515
1516 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 GFP_KERNEL);
1518 if (!txdr->desc) {
1519setup_tx_desc_die:
1520 vfree(txdr->buffer_info);
1521 return -ENOMEM;
1522 }
1523
1524 /* Fix for errata 23, can't cross 64kB boundary */
1525 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 void *olddesc = txdr->desc;
1527 dma_addr_t olddma = txdr->dma;
1528 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 txdr->size, txdr->desc);
1530 /* Try again, without freeing the previous */
1531 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 &txdr->dma, GFP_KERNEL);
1533 /* Failed allocation, critical failure */
1534 if (!txdr->desc) {
1535 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 olddma);
1537 goto setup_tx_desc_die;
1538 }
1539
1540 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 /* give up */
1542 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 txdr->dma);
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 e_err(probe, "Unable to allocate aligned memory "
1547 "for the transmit descriptor ring\n");
1548 vfree(txdr->buffer_info);
1549 return -ENOMEM;
1550 } else {
1551 /* Free old allocation, new allocation was successful */
1552 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 olddma);
1554 }
1555 }
1556 memset(txdr->desc, 0, txdr->size);
1557
1558 txdr->next_to_use = 0;
1559 txdr->next_to_clean = 0;
1560
1561 return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573 int i, err = 0;
1574
1575 for (i = 0; i < adapter->num_tx_queues; i++) {
1576 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 if (err) {
1578 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 for (i-- ; i >= 0; i--)
1580 e1000_free_tx_resources(adapter,
1581 &adapter->tx_ring[i]);
1582 break;
1583 }
1584 }
1585
1586 return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597 u64 tdba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tdlen, tctl, tipg;
1600 u32 ipgr1, ipgr2;
1601
1602 /* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604 switch (adapter->num_tx_queues) {
1605 case 1:
1606 default:
1607 tdba = adapter->tx_ring[0].dma;
1608 tdlen = adapter->tx_ring[0].count *
1609 sizeof(struct e1000_tx_desc);
1610 ew32(TDLEN, tdlen);
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 ew32(TDT, 0);
1614 ew32(TDH, 0);
1615 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDH : E1000_82542_TDH);
1617 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDT : E1000_82542_TDT);
1619 break;
1620 }
1621
1622 /* Set the default values for the Tx Inter Packet Gap timer */
1623 if ((hw->media_type == e1000_media_type_fiber ||
1624 hw->media_type == e1000_media_type_internal_serdes))
1625 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 else
1627 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629 switch (hw->mac_type) {
1630 case e1000_82542_rev2_0:
1631 case e1000_82542_rev2_1:
1632 tipg = DEFAULT_82542_TIPG_IPGT;
1633 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 break;
1636 default:
1637 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 break;
1640 }
1641 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 ew32(TIPG, tipg);
1644
1645 /* Set the Tx Interrupt Delay register */
1646
1647 ew32(TIDV, adapter->tx_int_delay);
1648 if (hw->mac_type >= e1000_82540)
1649 ew32(TADV, adapter->tx_abs_int_delay);
1650
1651 /* Program the Transmit Control Register */
1652
1653 tctl = er32(TCTL);
1654 tctl &= ~E1000_TCTL_CT;
1655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658 e1000_config_collision_dist(hw);
1659
1660 /* Setup Transmit Descriptor Settings for eop descriptor */
1661 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663 /* only set IDE if we are delaying interrupts using the timers */
1664 if (adapter->tx_int_delay)
1665 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667 if (hw->mac_type < e1000_82543)
1668 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 else
1670 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672 /* Cache if we're 82544 running in PCI-X because we'll
1673 * need this to apply a workaround later in the send path.
1674 */
1675 if (hw->mac_type == e1000_82544 &&
1676 hw->bus_type == e1000_bus_type_pcix)
1677 adapter->pcix_82544 = true;
1678
1679 ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr: rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 struct e1000_rx_ring *rxdr)
1692{
1693 struct pci_dev *pdev = adapter->pdev;
1694 int size, desc_len;
1695
1696 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 rxdr->buffer_info = vzalloc(size);
1698 if (!rxdr->buffer_info)
1699 return -ENOMEM;
1700
1701 desc_len = sizeof(struct e1000_rx_desc);
1702
1703 /* Round up to nearest 4K */
1704
1705 rxdr->size = rxdr->count * desc_len;
1706 rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 GFP_KERNEL);
1710 if (!rxdr->desc) {
1711setup_rx_desc_die:
1712 vfree(rxdr->buffer_info);
1713 return -ENOMEM;
1714 }
1715
1716 /* Fix for errata 23, can't cross 64kB boundary */
1717 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 void *olddesc = rxdr->desc;
1719 dma_addr_t olddma = rxdr->dma;
1720 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 rxdr->size, rxdr->desc);
1722 /* Try again, without freeing the previous */
1723 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 &rxdr->dma, GFP_KERNEL);
1725 /* Failed allocation, critical failure */
1726 if (!rxdr->desc) {
1727 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 olddma);
1729 goto setup_rx_desc_die;
1730 }
1731
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 /* give up */
1734 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 rxdr->dma);
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate aligned memory for "
1739 "the Rx descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 } else {
1742 /* Free old allocation, new allocation was successful */
1743 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 olddma);
1745 }
1746 }
1747 memset(rxdr->desc, 0, rxdr->size);
1748
1749 rxdr->next_to_clean = 0;
1750 rxdr->next_to_use = 0;
1751 rxdr->rx_skb_top = NULL;
1752
1753 return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765 int i, err = 0;
1766
1767 for (i = 0; i < adapter->num_rx_queues; i++) {
1768 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 if (err) {
1770 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 for (i-- ; i >= 0; i--)
1772 e1000_free_rx_resources(adapter,
1773 &adapter->rx_ring[i]);
1774 break;
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787 struct e1000_hw *hw = &adapter->hw;
1788 u32 rctl;
1789
1790 rctl = er32(RCTL);
1791
1792 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 E1000_RCTL_RDMTS_HALF |
1796 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798 if (hw->tbi_compatibility_on == 1)
1799 rctl |= E1000_RCTL_SBP;
1800 else
1801 rctl &= ~E1000_RCTL_SBP;
1802
1803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 rctl &= ~E1000_RCTL_LPE;
1805 else
1806 rctl |= E1000_RCTL_LPE;
1807
1808 /* Setup buffer sizes */
1809 rctl &= ~E1000_RCTL_SZ_4096;
1810 rctl |= E1000_RCTL_BSEX;
1811 switch (adapter->rx_buffer_len) {
1812 case E1000_RXBUFFER_2048:
1813 default:
1814 rctl |= E1000_RCTL_SZ_2048;
1815 rctl &= ~E1000_RCTL_BSEX;
1816 break;
1817 case E1000_RXBUFFER_4096:
1818 rctl |= E1000_RCTL_SZ_4096;
1819 break;
1820 case E1000_RXBUFFER_8192:
1821 rctl |= E1000_RCTL_SZ_8192;
1822 break;
1823 case E1000_RXBUFFER_16384:
1824 rctl |= E1000_RCTL_SZ_16384;
1825 break;
1826 }
1827
1828 /* This is useful for sniffing bad packets. */
1829 if (adapter->netdev->features & NETIF_F_RXALL) {
1830 /* UPE and MPE will be handled by normal PROMISC logic
1831 * in e1000e_set_rx_mode
1832 */
1833 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 E1000_RCTL_DPF | /* Allow filtered pause */
1839 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 * and that breaks VLANs.
1842 */
1843 }
1844
1845 ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856 u64 rdba;
1857 struct e1000_hw *hw = &adapter->hw;
1858 u32 rdlen, rctl, rxcsum;
1859
1860 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(struct e1000_rx_desc);
1863 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 }
1871
1872 /* disable receives while setting up the descriptors */
1873 rctl = er32(RCTL);
1874 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876 /* set the Receive Delay Timer Register */
1877 ew32(RDTR, adapter->rx_int_delay);
1878
1879 if (hw->mac_type >= e1000_82540) {
1880 ew32(RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr_setting != 0)
1882 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 }
1884
1885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 * the Base and Length of the Rx Descriptor Ring
1887 */
1888 switch (adapter->num_rx_queues) {
1889 case 1:
1890 default:
1891 rdba = adapter->rx_ring[0].dma;
1892 ew32(RDLEN, rdlen);
1893 ew32(RDBAH, (rdba >> 32));
1894 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 ew32(RDT, 0);
1896 ew32(RDH, 0);
1897 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDH : E1000_82542_RDH);
1899 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDT : E1000_82542_RDT);
1901 break;
1902 }
1903
1904 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 if (hw->mac_type >= e1000_82543) {
1906 rxcsum = er32(RXCSUM);
1907 if (adapter->rx_csum)
1908 rxcsum |= E1000_RXCSUM_TUOFL;
1909 else
1910 /* don't need to clear IPPCSE as it defaults to 0 */
1911 rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 ew32(RXCSUM, rxcsum);
1913 }
1914
1915 /* Enable Receives */
1916 ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 struct e1000_tx_ring *tx_ring)
1928{
1929 struct pci_dev *pdev = adapter->pdev;
1930
1931 e1000_clean_tx_ring(adapter, tx_ring);
1932
1933 vfree(tx_ring->buffer_info);
1934 tx_ring->buffer_info = NULL;
1935
1936 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->dma);
1938
1939 tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950 int i;
1951
1952 for (i = 0; i < adapter->num_tx_queues; i++)
1953 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 struct e1000_tx_buffer *buffer_info,
1959 int budget)
1960{
1961 if (buffer_info->dma) {
1962 if (buffer_info->mapped_as_page)
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length, DMA_TO_DEVICE);
1965 else
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_TO_DEVICE);
1969 buffer_info->dma = 0;
1970 }
1971 if (buffer_info->skb) {
1972 napi_consume_skb(buffer_info->skb, budget);
1973 buffer_info->skb = NULL;
1974 }
1975 buffer_info->time_stamp = 0;
1976 /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 struct e1000_tx_ring *tx_ring)
1986{
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct e1000_tx_buffer *buffer_info;
1989 unsigned long size;
1990 unsigned int i;
1991
1992 /* Free all the Tx ring sk_buffs */
1993
1994 for (i = 0; i < tx_ring->count; i++) {
1995 buffer_info = &tx_ring->buffer_info[i];
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 }
1998
1999 netdev_reset_queue(adapter->netdev);
2000 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 memset(tx_ring->buffer_info, 0, size);
2002
2003 /* Zero out the descriptor ring */
2004
2005 memset(tx_ring->desc, 0, tx_ring->size);
2006
2007 tx_ring->next_to_use = 0;
2008 tx_ring->next_to_clean = 0;
2009 tx_ring->last_tx_tso = false;
2010
2011 writel(0, hw->hw_addr + tx_ring->tdh);
2012 writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021 int i;
2022
2023 for (i = 0; i < adapter->num_tx_queues; i++)
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 struct e1000_rx_ring *rx_ring)
2036{
2037 struct pci_dev *pdev = adapter->pdev;
2038
2039 e1000_clean_rx_ring(adapter, rx_ring);
2040
2041 vfree(rx_ring->buffer_info);
2042 rx_ring->buffer_info = NULL;
2043
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 rx_ring->dma);
2046
2047 rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058 int i;
2059
2060 for (i = 0; i < adapter->num_rx_queues; i++)
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073 unsigned int len = e1000_frag_len(a);
2074 u8 *data = netdev_alloc_frag(len);
2075
2076 if (likely(data))
2077 data += E1000_HEADROOM;
2078 return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 struct e1000_rx_ring *rx_ring)
2088{
2089 struct e1000_hw *hw = &adapter->hw;
2090 struct e1000_rx_buffer *buffer_info;
2091 struct pci_dev *pdev = adapter->pdev;
2092 unsigned long size;
2093 unsigned int i;
2094
2095 /* Free all the Rx netfrags */
2096 for (i = 0; i < rx_ring->count; i++) {
2097 buffer_info = &rx_ring->buffer_info[i];
2098 if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.data) {
2104 skb_free_frag(buffer_info->rxbuf.data);
2105 buffer_info->rxbuf.data = NULL;
2106 }
2107 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 if (buffer_info->dma)
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 adapter->rx_buffer_len,
2111 DMA_FROM_DEVICE);
2112 if (buffer_info->rxbuf.page) {
2113 put_page(buffer_info->rxbuf.page);
2114 buffer_info->rxbuf.page = NULL;
2115 }
2116 }
2117
2118 buffer_info->dma = 0;
2119 }
2120
2121 /* there also may be some cached data from a chained receive */
2122 napi_free_frags(&adapter->napi);
2123 rx_ring->rx_skb_top = NULL;
2124
2125 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 memset(rx_ring->buffer_info, 0, size);
2127
2128 /* Zero out the descriptor ring */
2129 memset(rx_ring->desc, 0, rx_ring->size);
2130
2131 rx_ring->next_to_clean = 0;
2132 rx_ring->next_to_use = 0;
2133
2134 writel(0, hw->hw_addr + rx_ring->rdh);
2135 writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203 struct e1000_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct sockaddr *addr = p;
2206
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2209
2210 /* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212 if (hw->mac_type == e1000_82542_rev2_0)
2213 e1000_enter_82542_rst(adapter);
2214
2215 eth_hw_addr_set(netdev, addr->sa_data);
2216 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218 e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237 struct e1000_adapter *adapter = netdev_priv(netdev);
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct netdev_hw_addr *ha;
2240 bool use_uc = false;
2241 u32 rctl;
2242 u32 hash_value;
2243 int i, rar_entries = E1000_RAR_ENTRIES;
2244 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247 if (!mcarray)
2248 return;
2249
2250 /* Check for Promiscuous and All Multicast modes */
2251
2252 rctl = er32(RCTL);
2253
2254 if (netdev->flags & IFF_PROMISC) {
2255 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 rctl &= ~E1000_RCTL_VFE;
2257 } else {
2258 if (netdev->flags & IFF_ALLMULTI)
2259 rctl |= E1000_RCTL_MPE;
2260 else
2261 rctl &= ~E1000_RCTL_MPE;
2262 /* Enable VLAN filter if there is a VLAN */
2263 if (e1000_vlan_used(adapter))
2264 rctl |= E1000_RCTL_VFE;
2265 }
2266
2267 if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 rctl |= E1000_RCTL_UPE;
2269 } else if (!(netdev->flags & IFF_PROMISC)) {
2270 rctl &= ~E1000_RCTL_UPE;
2271 use_uc = true;
2272 }
2273
2274 ew32(RCTL, rctl);
2275
2276 /* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278 if (hw->mac_type == e1000_82542_rev2_0)
2279 e1000_enter_82542_rst(adapter);
2280
2281 /* load the first 14 addresses into the exact filters 1-14. Unicast
2282 * addresses take precedence to avoid disabling unicast filtering
2283 * when possible.
2284 *
2285 * RAR 0 is used for the station MAC address
2286 * if there are not 14 addresses, go ahead and clear the filters
2287 */
2288 i = 1;
2289 if (use_uc)
2290 netdev_for_each_uc_addr(ha, netdev) {
2291 if (i == rar_entries)
2292 break;
2293 e1000_rar_set(hw, ha->addr, i++);
2294 }
2295
2296 netdev_for_each_mc_addr(ha, netdev) {
2297 if (i == rar_entries) {
2298 /* load any remaining addresses into the hash table */
2299 u32 hash_reg, hash_bit, mta;
2300 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 hash_reg = (hash_value >> 5) & 0x7F;
2302 hash_bit = hash_value & 0x1F;
2303 mta = (1 << hash_bit);
2304 mcarray[hash_reg] |= mta;
2305 } else {
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308 }
2309
2310 for (; i < rar_entries; i++) {
2311 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 E1000_WRITE_FLUSH();
2313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 E1000_WRITE_FLUSH();
2315 }
2316
2317 /* write the hash table completely, write from bottom to avoid
2318 * both stupid write combining chipsets, and flushing each write
2319 */
2320 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 /* If we are on an 82544 has an errata where writing odd
2322 * offsets overwrites the previous even offset, but writing
2323 * backwards over the range solves the issue by always
2324 * writing the odd offset first
2325 */
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 }
2328 E1000_WRITE_FLUSH();
2329
2330 if (hw->mac_type == e1000_82542_rev2_0)
2331 e1000_leave_82542_rst(adapter);
2332
2333 kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345 struct e1000_adapter *adapter = container_of(work,
2346 struct e1000_adapter,
2347 phy_info_task.work);
2348
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 fifo_stall_task.work);
2361 struct e1000_hw *hw = &adapter->hw;
2362 struct net_device *netdev = adapter->netdev;
2363 u32 tctl;
2364
2365 if (atomic_read(&adapter->tx_fifo_stall)) {
2366 if ((er32(TDT) == er32(TDH)) &&
2367 (er32(TDFT) == er32(TDFH)) &&
2368 (er32(TDFTS) == er32(TDFHS))) {
2369 tctl = er32(TCTL);
2370 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 ew32(TDFT, adapter->tx_head_addr);
2372 ew32(TDFH, adapter->tx_head_addr);
2373 ew32(TDFTS, adapter->tx_head_addr);
2374 ew32(TDFHS, adapter->tx_head_addr);
2375 ew32(TCTL, tctl);
2376 E1000_WRITE_FLUSH();
2377
2378 adapter->tx_fifo_head = 0;
2379 atomic_set(&adapter->tx_fifo_stall, 0);
2380 netif_wake_queue(netdev);
2381 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 }
2384 }
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389 struct e1000_hw *hw = &adapter->hw;
2390 bool link_active = false;
2391
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2396 * ONLY
2397 */
2398 switch (hw->media_type) {
2399 case e1000_media_type_copper:
2400 if (hw->mac_type == e1000_ce4100)
2401 hw->get_link_status = 1;
2402 if (hw->get_link_status) {
2403 e1000_check_for_link(hw);
2404 link_active = !hw->get_link_status;
2405 } else {
2406 link_active = true;
2407 }
2408 break;
2409 case e1000_media_type_fiber:
2410 e1000_check_for_link(hw);
2411 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 break;
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_active = hw->serdes_has_link;
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430 struct e1000_adapter *adapter = container_of(work,
2431 struct e1000_adapter,
2432 watchdog_task.work);
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct net_device *netdev = adapter->netdev;
2435 struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 u32 link, tctl;
2437
2438 link = e1000_has_link(adapter);
2439 if ((netif_carrier_ok(netdev)) && link)
2440 goto link_up;
2441
2442 if (link) {
2443 if (!netif_carrier_ok(netdev)) {
2444 u32 ctrl;
2445 /* update snapshot of PHY registers on LSC */
2446 e1000_get_speed_and_duplex(hw,
2447 &adapter->link_speed,
2448 &adapter->link_duplex);
2449
2450 ctrl = er32(CTRL);
2451 pr_info("%s NIC Link is Up %d Mbps %s, "
2452 "Flow Control: %s\n",
2453 netdev->name,
2454 adapter->link_speed,
2455 adapter->link_duplex == FULL_DUPLEX ?
2456 "Full Duplex" : "Half Duplex",
2457 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462 /* adjust timeout factor according to speed/duplex */
2463 adapter->tx_timeout_factor = 1;
2464 switch (adapter->link_speed) {
2465 case SPEED_10:
2466 adapter->tx_timeout_factor = 16;
2467 break;
2468 case SPEED_100:
2469 /* maybe add some timeout factor ? */
2470 break;
2471 }
2472
2473 /* enable transmits in the hardware */
2474 tctl = er32(TCTL);
2475 tctl |= E1000_TCTL_EN;
2476 ew32(TCTL, tctl);
2477
2478 netif_carrier_on(netdev);
2479 if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 schedule_delayed_work(&adapter->phy_info_task,
2481 2 * HZ);
2482 adapter->smartspeed = 0;
2483 }
2484 } else {
2485 if (netif_carrier_ok(netdev)) {
2486 adapter->link_speed = 0;
2487 adapter->link_duplex = 0;
2488 pr_info("%s NIC Link is Down\n",
2489 netdev->name);
2490 netif_carrier_off(netdev);
2491
2492 if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 schedule_delayed_work(&adapter->phy_info_task,
2494 2 * HZ);
2495 }
2496
2497 e1000_smartspeed(adapter);
2498 }
2499
2500link_up:
2501 e1000_update_stats(adapter);
2502
2503 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 adapter->tpt_old = adapter->stats.tpt;
2505 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 adapter->colc_old = adapter->stats.colc;
2507
2508 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 adapter->gorcl_old = adapter->stats.gorcl;
2510 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 adapter->gotcl_old = adapter->stats.gotcl;
2512
2513 e1000_update_adaptive(hw);
2514
2515 if (!netif_carrier_ok(netdev)) {
2516 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 /* We've lost link, so the controller stops DMA,
2518 * but we've got queued Tx work that's never going
2519 * to get done, so reset controller to flush Tx.
2520 * (Do the reset outside of interrupt context).
2521 */
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
2524 /* exit immediately since reset is imminent */
2525 return;
2526 }
2527 }
2528
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 * everyone else is between 2000-8000.
2534 */
2535 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 adapter->gotcl - adapter->gorcl :
2538 adapter->gorcl - adapter->gotcl) / 10000;
2539 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541 ew32(ITR, 1000000000 / (itr * 256));
2542 }
2543
2544 /* Cause software interrupt to ensure rx ring is cleaned */
2545 ew32(ICS, E1000_ICS_RXDMT0);
2546
2547 /* Force detection of hung controller every watchdog period */
2548 adapter->detect_tx_hung = true;
2549
2550 /* Reschedule the task */
2551 if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556 lowest_latency = 0,
2557 low_latency = 1,
2558 bulk_latency = 2,
2559 latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 * Stores a new ITR value based on packets and byte
2570 * counts during the last interrupt. The advantage of per interrupt
2571 * computation is faster updates and more accurate ITR for the current
2572 * traffic pattern. Constants in this function were computed
2573 * based on theoretical maximum wire speed and thresholds were set based
2574 * on testing data as well as attempting to minimize response time
2575 * while increasing bulk throughput.
2576 * this functionality is controlled by the InterruptThrottleRate module
2577 * parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 u16 itr_setting, int packets, int bytes)
2581{
2582 unsigned int retval = itr_setting;
2583 struct e1000_hw *hw = &adapter->hw;
2584
2585 if (unlikely(hw->mac_type < e1000_82540))
2586 goto update_itr_done;
2587
2588 if (packets == 0)
2589 goto update_itr_done;
2590
2591 switch (itr_setting) {
2592 case lowest_latency:
2593 /* jumbo frames get bulk treatment*/
2594 if (bytes/packets > 8000)
2595 retval = bulk_latency;
2596 else if ((packets < 5) && (bytes > 512))
2597 retval = low_latency;
2598 break;
2599 case low_latency: /* 50 usec aka 20000 ints/s */
2600 if (bytes > 10000) {
2601 /* jumbo frames need bulk latency setting */
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 10) || ((bytes/packets) > 1200))
2605 retval = bulk_latency;
2606 else if ((packets > 35))
2607 retval = lowest_latency;
2608 } else if (bytes/packets > 2000)
2609 retval = bulk_latency;
2610 else if (packets <= 2 && bytes < 512)
2611 retval = lowest_latency;
2612 break;
2613 case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 if (bytes > 25000) {
2615 if (packets > 35)
2616 retval = low_latency;
2617 } else if (bytes < 6000) {
2618 retval = low_latency;
2619 }
2620 break;
2621 }
2622
2623update_itr_done:
2624 return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u16 current_itr;
2631 u32 new_itr = adapter->itr;
2632
2633 if (unlikely(hw->mac_type < e1000_82540))
2634 return;
2635
2636 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 new_itr = 4000;
2639 goto set_itr_now;
2640 }
2641
2642 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 adapter->total_tx_packets,
2644 adapter->total_tx_bytes);
2645 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 adapter->tx_itr = low_latency;
2648
2649 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 adapter->total_rx_packets,
2651 adapter->total_rx_bytes);
2652 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 adapter->rx_itr = low_latency;
2655
2656 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658 switch (current_itr) {
2659 /* counts and packets in update_itr are dependent on these numbers */
2660 case lowest_latency:
2661 new_itr = 70000;
2662 break;
2663 case low_latency:
2664 new_itr = 20000; /* aka hwitr = ~200 */
2665 break;
2666 case bulk_latency:
2667 new_itr = 4000;
2668 break;
2669 default:
2670 break;
2671 }
2672
2673set_itr_now:
2674 if (new_itr != adapter->itr) {
2675 /* this attempts to bias the interrupt rate towards Bulk
2676 * by adding intermediate steps when interrupt rate is
2677 * increasing
2678 */
2679 new_itr = new_itr > adapter->itr ?
2680 min(adapter->itr + (new_itr >> 2), new_itr) :
2681 new_itr;
2682 adapter->itr = new_itr;
2683 ew32(ITR, 1000000000 / (new_itr * 256));
2684 }
2685}
2686
2687#define E1000_TX_FLAGS_CSUM 0x00000001
2688#define E1000_TX_FLAGS_VLAN 0x00000002
2689#define E1000_TX_FLAGS_TSO 0x00000004
2690#define E1000_TX_FLAGS_IPV4 0x00000008
2691#define E1000_TX_FLAGS_NO_FCS 0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT 16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 __be16 protocol)
2698{
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_tx_buffer *buffer_info;
2701 unsigned int i;
2702 u32 cmd_length = 0;
2703 u16 ipcse = 0, tucse, mss;
2704 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706 if (skb_is_gso(skb)) {
2707 int err;
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return err;
2712
2713 hdr_len = skb_tcp_all_headers(skb);
2714 mss = skb_shinfo(skb)->gso_size;
2715 if (protocol == htons(ETH_P_IP)) {
2716 struct iphdr *iph = ip_hdr(skb);
2717 iph->tot_len = 0;
2718 iph->check = 0;
2719 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 iph->daddr, 0,
2721 IPPROTO_TCP,
2722 0);
2723 cmd_length = E1000_TXD_CMD_IP;
2724 ipcse = skb_transport_offset(skb) - 1;
2725 } else if (skb_is_gso_v6(skb)) {
2726 tcp_v6_gso_csum_prep(skb);
2727 ipcse = 0;
2728 }
2729 ipcss = skb_network_offset(skb);
2730 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 tucss = skb_transport_offset(skb);
2732 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 tucse = 0;
2734
2735 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738 i = tx_ring->next_to_use;
2739 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 buffer_info = &tx_ring->buffer_info[i];
2741
2742 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2743 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2744 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2745 context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2749 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752 buffer_info->time_stamp = jiffies;
2753 buffer_info->next_to_watch = i;
2754
2755 if (++i == tx_ring->count)
2756 i = 0;
2757
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 __be16 protocol)
2768{
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_tx_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count))
2813 i = 0;
2814
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR 12
2821#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824 struct e1000_tx_ring *tx_ring,
2825 struct sk_buff *skb, unsigned int first,
2826 unsigned int max_per_txd, unsigned int nr_frags,
2827 unsigned int mss)
2828{
2829 struct e1000_hw *hw = &adapter->hw;
2830 struct pci_dev *pdev = adapter->pdev;
2831 struct e1000_tx_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int offset = 0, size, count = 0, i;
2834 unsigned int f, bytecount, segs;
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (len) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 size = min(len, max_per_txd);
2841 /* Workaround for Controller erratum --
2842 * descriptor for non-tso packet in a linear SKB that follows a
2843 * tso gets written back prematurely before the data is fully
2844 * DMA'd to the controller
2845 */
2846 if (!skb->data_len && tx_ring->last_tx_tso &&
2847 !skb_is_gso(skb)) {
2848 tx_ring->last_tx_tso = false;
2849 size -= 4;
2850 }
2851
2852 /* Workaround for premature desc write-backs
2853 * in TSO mode. Append 4-byte sentinel desc
2854 */
2855 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 size -= 4;
2857 /* work-around for errata 10 and it applies
2858 * to all controllers in PCI-X mode
2859 * The fix is to make sure that the first descriptor of a
2860 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 */
2862 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 (size > 2015) && count == 0))
2864 size = 2015;
2865
2866 /* Workaround for potential 82544 hang in PCI-X. Avoid
2867 * terminating buffers within evenly-aligned dwords.
2868 */
2869 if (unlikely(adapter->pcix_82544 &&
2870 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 size > 4))
2872 size -= 4;
2873
2874 buffer_info->length = size;
2875 /* set time_stamp *before* dma to help avoid a possible race */
2876 buffer_info->time_stamp = jiffies;
2877 buffer_info->mapped_as_page = false;
2878 buffer_info->dma = dma_map_single(&pdev->dev,
2879 skb->data + offset,
2880 size, DMA_TO_DEVICE);
2881 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 goto dma_error;
2883 buffer_info->next_to_watch = i;
2884
2885 len -= size;
2886 offset += size;
2887 count++;
2888 if (len) {
2889 i++;
2890 if (unlikely(i == tx_ring->count))
2891 i = 0;
2892 }
2893 }
2894
2895 for (f = 0; f < nr_frags; f++) {
2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898 len = skb_frag_size(frag);
2899 offset = 0;
2900
2901 while (len) {
2902 unsigned long bufend;
2903 i++;
2904 if (unlikely(i == tx_ring->count))
2905 i = 0;
2906
2907 buffer_info = &tx_ring->buffer_info[i];
2908 size = min(len, max_per_txd);
2909 /* Workaround for premature desc write-backs
2910 * in TSO mode. Append 4-byte sentinel desc
2911 */
2912 if (unlikely(mss && f == (nr_frags-1) &&
2913 size == len && size > 8))
2914 size -= 4;
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords.
2918 */
2919 bufend = (unsigned long)
2920 page_to_phys(skb_frag_page(frag));
2921 bufend += offset + size - 1;
2922 if (unlikely(adapter->pcix_82544 &&
2923 !(bufend & 4) &&
2924 size > 4))
2925 size -= 4;
2926
2927 buffer_info->length = size;
2928 buffer_info->time_stamp = jiffies;
2929 buffer_info->mapped_as_page = true;
2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 offset, size, DMA_TO_DEVICE);
2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 goto dma_error;
2934 buffer_info->next_to_watch = i;
2935
2936 len -= size;
2937 offset += size;
2938 count++;
2939 }
2940 }
2941
2942 segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 /* multiply data chunks by size of headers */
2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946 tx_ring->buffer_info[i].skb = skb;
2947 tx_ring->buffer_info[i].segs = segs;
2948 tx_ring->buffer_info[i].bytecount = bytecount;
2949 tx_ring->buffer_info[first].next_to_watch = i;
2950
2951 return count;
2952
2953dma_error:
2954 dev_err(&pdev->dev, "TX DMA map failed\n");
2955 buffer_info->dma = 0;
2956 if (count)
2957 count--;
2958
2959 while (count--) {
2960 if (i == 0)
2961 i += tx_ring->count;
2962 i--;
2963 buffer_info = &tx_ring->buffer_info[i];
2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 }
2966
2967 return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 struct e1000_tx_ring *tx_ring, int tx_flags,
2972 int count)
2973{
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_tx_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count))
3011 i = 0;
3012 }
3013
3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020 /* Force memory writes to complete before letting h/w
3021 * know there are new descriptors to fetch. (Only
3022 * applicable for weak-ordered memory model archs,
3023 * such as IA-64).
3024 */
3025 dma_wmb();
3026
3027 tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time. This gives the Tx FIFO an opportunity to
3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR 0x10
3039#define E1000_82547_PAD_LEN 0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 struct sk_buff *skb)
3043{
3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049 if (adapter->link_duplex != HALF_DUPLEX)
3050 goto no_fifo_stall_required;
3051
3052 if (atomic_read(&adapter->tx_fifo_stall))
3053 return 1;
3054
3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 atomic_set(&adapter->tx_fifo_stall, 1);
3057 return 1;
3058 }
3059
3060no_fifo_stall_required:
3061 adapter->tx_fifo_head += skb_fifo_len;
3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072 netif_stop_queue(netdev);
3073 /* Herbert's original patch had:
3074 * smp_mb__after_netif_stop_queue();
3075 * but since that doesn't exist yet, just open code it.
3076 */
3077 smp_mb();
3078
3079 /* We need to check again in a case another CPU has just
3080 * made room available.
3081 */
3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 return -EBUSY;
3084
3085 /* A reprieve! */
3086 netif_start_queue(netdev);
3087 ++adapter->restart_queue;
3088 return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 struct e1000_tx_ring *tx_ring, int size)
3093{
3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 return 0;
3096 return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 struct net_device *netdev)
3102{
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104 struct e1000_hw *hw = &adapter->hw;
3105 struct e1000_tx_ring *tx_ring;
3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 unsigned int tx_flags = 0;
3109 unsigned int len = skb_headlen(skb);
3110 unsigned int nr_frags;
3111 unsigned int mss;
3112 int count = 0;
3113 int tso;
3114 unsigned int f;
3115 __be16 protocol = vlan_get_protocol(skb);
3116
3117 /* This goes back to the question of how to logically map a Tx queue
3118 * to a flow. Right now, performance is impacted slightly negatively
3119 * if using multiple Tx queues. If the stack breaks away from a
3120 * single qdisc implementation, we can look at this again.
3121 */
3122 tx_ring = adapter->tx_ring;
3123
3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 * packets may get corrupted during padding by HW.
3126 * To WA this issue, pad all small packets manually.
3127 */
3128 if (eth_skb_pad(skb))
3129 return NETDEV_TX_OK;
3130
3131 mss = skb_shinfo(skb)->gso_size;
3132 /* The controller does a simple calculation to
3133 * make sure there is enough room in the FIFO before
3134 * initiating the DMA for each buffer. The calc is:
3135 * 4 = ceil(buffer len/mss). To make sure we don't
3136 * overrun the FIFO, adjust the max buffer len if mss
3137 * drops.
3138 */
3139 if (mss) {
3140 u8 hdr_len;
3141 max_per_txd = min(mss << 2, max_per_txd);
3142 max_txd_pwr = fls(max_per_txd) - 1;
3143
3144 hdr_len = skb_tcp_all_headers(skb);
3145 if (skb->data_len && hdr_len == len) {
3146 switch (hw->mac_type) {
3147 case e1000_82544: {
3148 unsigned int pull_size;
3149
3150 /* Make sure we have room to chop off 4 bytes,
3151 * and that the end alignment will work out to
3152 * this hardware's requirements
3153 * NOTE: this is a TSO only workaround
3154 * if end byte alignment not correct move us
3155 * into the next dword
3156 */
3157 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 & 4)
3159 break;
3160 pull_size = min((unsigned int)4, skb->data_len);
3161 if (!__pskb_pull_tail(skb, pull_size)) {
3162 e_err(drv, "__pskb_pull_tail "
3163 "failed.\n");
3164 dev_kfree_skb_any(skb);
3165 return NETDEV_TX_OK;
3166 }
3167 len = skb_headlen(skb);
3168 break;
3169 }
3170 default:
3171 /* do nothing */
3172 break;
3173 }
3174 }
3175 }
3176
3177 /* reserve a descriptor for the offload context */
3178 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 count++;
3180 count++;
3181
3182 /* Controller Erratum workaround */
3183 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 count++;
3185
3186 count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188 if (adapter->pcix_82544)
3189 count++;
3190
3191 /* work-around for errata 10 and it applies to all controllers
3192 * in PCI-X mode, so add one more descriptor to the count
3193 */
3194 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 (len > 2015)))
3196 count++;
3197
3198 nr_frags = skb_shinfo(skb)->nr_frags;
3199 for (f = 0; f < nr_frags; f++)
3200 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 max_txd_pwr);
3202 if (adapter->pcix_82544)
3203 count += nr_frags;
3204
3205 /* need: count + 2 desc gap to keep tail from touching
3206 * head, otherwise try next time
3207 */
3208 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 return NETDEV_TX_BUSY;
3210
3211 if (unlikely((hw->mac_type == e1000_82547) &&
3212 (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 netif_stop_queue(netdev);
3214 if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (skb_vlan_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (skb_vlan_tag_get(skb) <<
3222 E1000_TX_FLAGS_VLAN_SHIFT);
3223 }
3224
3225 first = tx_ring->next_to_use;
3226
3227 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 if (tso < 0) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (likely(tso)) {
3234 if (likely(hw->mac_type != e1000_82544))
3235 tx_ring->last_tx_tso = true;
3236 tx_flags |= E1000_TX_FLAGS_TSO;
3237 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240 if (protocol == htons(ETH_P_IP))
3241 tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243 if (unlikely(skb->no_fcs))
3244 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 nr_frags, mss);
3248
3249 if (count) {
3250 /* The descriptors needed is higher than other Intel drivers
3251 * due to a number of workarounds. The breakdown is below:
3252 * Data descriptors: MAX_SKB_FRAGS + 1
3253 * Context Descriptor: 1
3254 * Keep head from touching tail: 2
3255 * Workarounds: 3
3256 */
3257 int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264 /* 82544 potentially requires twice as many data descriptors
3265 * in order to guarantee buffers don't end on evenly-aligned
3266 * dwords
3267 */
3268 if (adapter->pcix_82544)
3269 desc_needed += MAX_SKB_FRAGS + 1;
3270
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274 if (!netdev_xmit_more() ||
3275 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 }
3278 } else {
3279 dev_kfree_skb_any(skb);
3280 tx_ring->buffer_info[first].time_stamp = 0;
3281 tx_ring->next_to_use = first;
3282 }
3283
3284 return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 regs[NUM_REGS];
3292 u32 *regs_buff = regs;
3293 int i = 0;
3294
3295 static const char * const reg_name[] = {
3296 "CTRL", "STATUS",
3297 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 "TIDV", "TXDCTL", "TADV", "TARC0",
3300 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 "TXDCTL1", "TARC1",
3302 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 };
3306
3307 regs_buff[0] = er32(CTRL);
3308 regs_buff[1] = er32(STATUS);
3309
3310 regs_buff[2] = er32(RCTL);
3311 regs_buff[3] = er32(RDLEN);
3312 regs_buff[4] = er32(RDH);
3313 regs_buff[5] = er32(RDT);
3314 regs_buff[6] = er32(RDTR);
3315
3316 regs_buff[7] = er32(TCTL);
3317 regs_buff[8] = er32(TDBAL);
3318 regs_buff[9] = er32(TDBAH);
3319 regs_buff[10] = er32(TDLEN);
3320 regs_buff[11] = er32(TDH);
3321 regs_buff[12] = er32(TDT);
3322 regs_buff[13] = er32(TIDV);
3323 regs_buff[14] = er32(TXDCTL);
3324 regs_buff[15] = er32(TADV);
3325 regs_buff[16] = er32(TARC0);
3326
3327 regs_buff[17] = er32(TDBAL1);
3328 regs_buff[18] = er32(TDBAH1);
3329 regs_buff[19] = er32(TDLEN1);
3330 regs_buff[20] = er32(TDH1);
3331 regs_buff[21] = er32(TDT1);
3332 regs_buff[22] = er32(TXDCTL1);
3333 regs_buff[23] = er32(TARC1);
3334 regs_buff[24] = er32(CTRL_EXT);
3335 regs_buff[25] = er32(ERT);
3336 regs_buff[26] = er32(RDBAL0);
3337 regs_buff[27] = er32(RDBAH0);
3338 regs_buff[28] = er32(TDFH);
3339 regs_buff[29] = er32(TDFT);
3340 regs_buff[30] = er32(TDFHS);
3341 regs_buff[31] = er32(TDFTS);
3342 regs_buff[32] = er32(TDFPC);
3343 regs_buff[33] = er32(RDFH);
3344 regs_buff[34] = er32(RDFT);
3345 regs_buff[35] = er32(RDFHS);
3346 regs_buff[36] = er32(RDFTS);
3347 regs_buff[37] = er32(RDFPC);
3348
3349 pr_info("Register dump\n");
3350 for (i = 0; i < NUM_REGS; i++)
3351 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359 /* this code doesn't handle multiple rings */
3360 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 int i;
3363
3364 if (!netif_msg_hw(adapter))
3365 return;
3366
3367 /* Print Registers */
3368 e1000_regdump(adapter);
3369
3370 /* transmit dump */
3371 pr_info("TX Desc ring0 dump\n");
3372
3373 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 *
3375 * Legacy Transmit Descriptor
3376 * +--------------------------------------------------------------+
3377 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3378 * +--------------------------------------------------------------+
3379 * 8 | Special | CSS | Status | CMD | CSO | Length |
3380 * +--------------------------------------------------------------+
3381 * 63 48 47 36 35 32 31 24 23 16 15 0
3382 *
3383 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 * 63 48 47 40 39 32 31 16 15 8 7 0
3385 * +----------------------------------------------------------------+
3386 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3387 * +----------------------------------------------------------------+
3388 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 *
3392 * Extended Data Descriptor (DTYP=0x1)
3393 * +----------------------------------------------------------------+
3394 * 0 | Buffer Address [63:0] |
3395 * +----------------------------------------------------------------+
3396 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3397 * +----------------------------------------------------------------+
3398 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3399 */
3400 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3401 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3402
3403 if (!netif_msg_tx_done(adapter))
3404 goto rx_ring_summary;
3405
3406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 struct my_u { __le64 a; __le64 b; };
3410 struct my_u *u = (struct my_u *)tx_desc;
3411 const char *type;
3412
3413 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 type = "NTC/U";
3415 else if (i == tx_ring->next_to_use)
3416 type = "NTU";
3417 else if (i == tx_ring->next_to_clean)
3418 type = "NTC";
3419 else
3420 type = "";
3421
3422 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3423 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 (u64)buffer_info->dma, buffer_info->length,
3426 buffer_info->next_to_watch,
3427 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 }
3429
3430rx_ring_summary:
3431 /* receive dump */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 e_err(drv, "Reset adapter\n");
3512 rtnl_lock();
3513 e1000_reinit_locked(adapter);
3514 rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530 /* Adapter-specific max frame size limits. */
3531 switch (hw->mac_type) {
3532 case e1000_undefined ... e1000_82542_rev2_1:
3533 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 e_err(probe, "Jumbo Frames not supported.\n");
3535 return -EINVAL;
3536 }
3537 break;
3538 default:
3539 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 break;
3541 }
3542
3543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 msleep(1);
3545 /* e1000_down has a dependency on max_frame_size */
3546 hw->max_frame_size = max_frame;
3547 if (netif_running(netdev)) {
3548 /* prevent buffers from being reallocated */
3549 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 e1000_down(adapter);
3551 }
3552
3553 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 * means we reserve 2 more, this pushes us to allocate from the next
3555 * larger slab size.
3556 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 * fragmented skbs
3559 */
3560
3561 if (max_frame <= E1000_RXBUFFER_2048)
3562 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570 /* adjust allocation if LPE protects us, and we aren't using SBP */
3571 if (!hw->tbi_compatibility_on &&
3572 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 netdev->mtu, new_mtu);
3578 WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580 if (netif_running(netdev))
3581 e1000_up(adapter);
3582 else
3583 e1000_reset(adapter);
3584
3585 clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587 return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596 struct net_device *netdev = adapter->netdev;
3597 struct e1000_hw *hw = &adapter->hw;
3598 struct pci_dev *pdev = adapter->pdev;
3599 unsigned long flags;
3600 u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604 /* Prevent stats update while adapter is being reset, or if the pci
3605 * connection is down.
3606 */
3607 if (adapter->link_speed == 0)
3608 return;
3609 if (pci_channel_offline(pdev))
3610 return;
3611
3612 spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614 /* these counters are modified from e1000_tbi_adjust_stats,
3615 * called from the interrupt context, so they must only
3616 * be written while holding adapter->stats_lock
3617 */
3618
3619 adapter->stats.crcerrs += er32(CRCERRS);
3620 adapter->stats.gprc += er32(GPRC);
3621 adapter->stats.gorcl += er32(GORCL);
3622 adapter->stats.gorch += er32(GORCH);
3623 adapter->stats.bprc += er32(BPRC);
3624 adapter->stats.mprc += er32(MPRC);
3625 adapter->stats.roc += er32(ROC);
3626
3627 adapter->stats.prc64 += er32(PRC64);
3628 adapter->stats.prc127 += er32(PRC127);
3629 adapter->stats.prc255 += er32(PRC255);
3630 adapter->stats.prc511 += er32(PRC511);
3631 adapter->stats.prc1023 += er32(PRC1023);
3632 adapter->stats.prc1522 += er32(PRC1522);
3633
3634 adapter->stats.symerrs += er32(SYMERRS);
3635 adapter->stats.mpc += er32(MPC);
3636 adapter->stats.scc += er32(SCC);
3637 adapter->stats.ecol += er32(ECOL);
3638 adapter->stats.mcc += er32(MCC);
3639 adapter->stats.latecol += er32(LATECOL);
3640 adapter->stats.dc += er32(DC);
3641 adapter->stats.sec += er32(SEC);
3642 adapter->stats.rlec += er32(RLEC);
3643 adapter->stats.xonrxc += er32(XONRXC);
3644 adapter->stats.xontxc += er32(XONTXC);
3645 adapter->stats.xoffrxc += er32(XOFFRXC);
3646 adapter->stats.xofftxc += er32(XOFFTXC);
3647 adapter->stats.fcruc += er32(FCRUC);
3648 adapter->stats.gptc += er32(GPTC);
3649 adapter->stats.gotcl += er32(GOTCL);
3650 adapter->stats.gotch += er32(GOTCH);
3651 adapter->stats.rnbc += er32(RNBC);
3652 adapter->stats.ruc += er32(RUC);
3653 adapter->stats.rfc += er32(RFC);
3654 adapter->stats.rjc += er32(RJC);
3655 adapter->stats.torl += er32(TORL);
3656 adapter->stats.torh += er32(TORH);
3657 adapter->stats.totl += er32(TOTL);
3658 adapter->stats.toth += er32(TOTH);
3659 adapter->stats.tpr += er32(TPR);
3660
3661 adapter->stats.ptc64 += er32(PTC64);
3662 adapter->stats.ptc127 += er32(PTC127);
3663 adapter->stats.ptc255 += er32(PTC255);
3664 adapter->stats.ptc511 += er32(PTC511);
3665 adapter->stats.ptc1023 += er32(PTC1023);
3666 adapter->stats.ptc1522 += er32(PTC1522);
3667
3668 adapter->stats.mptc += er32(MPTC);
3669 adapter->stats.bptc += er32(BPTC);
3670
3671 /* used for adaptive IFS */
3672
3673 hw->tx_packet_delta = er32(TPT);
3674 adapter->stats.tpt += hw->tx_packet_delta;
3675 hw->collision_delta = er32(COLC);
3676 adapter->stats.colc += hw->collision_delta;
3677
3678 if (hw->mac_type >= e1000_82543) {
3679 adapter->stats.algnerrc += er32(ALGNERRC);
3680 adapter->stats.rxerrc += er32(RXERRC);
3681 adapter->stats.tncrs += er32(TNCRS);
3682 adapter->stats.cexterr += er32(CEXTERR);
3683 adapter->stats.tsctc += er32(TSCTC);
3684 adapter->stats.tsctfc += er32(TSCTFC);
3685 }
3686
3687 /* Fill out the OS statistics structure */
3688 netdev->stats.multicast = adapter->stats.mprc;
3689 netdev->stats.collisions = adapter->stats.colc;
3690
3691 /* Rx Errors */
3692
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC
3695 */
3696 netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 adapter->stats.ruc + adapter->stats.roc +
3699 adapter->stats.cexterr;
3700 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706 /* Tx Errors */
3707 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 netdev->stats.tx_errors = adapter->stats.txerrc;
3709 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 if (hw->bad_tx_carr_stats_fd &&
3713 adapter->link_duplex == FULL_DUPLEX) {
3714 netdev->stats.tx_carrier_errors = 0;
3715 adapter->stats.tncrs = 0;
3716 }
3717
3718 /* Tx Dropped needs to be maintained elsewhere */
3719
3720 /* Phy Stats */
3721 if (hw->media_type == e1000_media_type_copper) {
3722 if ((adapter->link_speed == SPEED_1000) &&
3723 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 adapter->phy_stats.idle_errors += phy_tmp;
3726 }
3727
3728 if ((hw->mac_type <= e1000_82546) &&
3729 (hw->phy_type == e1000_phy_m88) &&
3730 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 adapter->phy_stats.receive_errors += phy_tmp;
3732 }
3733
3734 /* Management Stats */
3735 if (hw->has_smbus) {
3736 adapter->stats.mgptc += er32(MGTPTC);
3737 adapter->stats.mgprc += er32(MGTPRC);
3738 adapter->stats.mgpdc += er32(MGTPDC);
3739 }
3740
3741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 icr = er32(ICR);
3755
3756 if (unlikely((!icr)))
3757 return IRQ_NONE; /* Not our interrupt */
3758
3759 /* we might have caused the interrupt, but the above
3760 * read cleared it, and just in case the driver is
3761 * down there is nothing to do so return handled
3762 */
3763 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 return IRQ_HANDLED;
3765
3766 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 hw->get_link_status = 1;
3768 /* guard against interrupt when we're going down */
3769 if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 schedule_delayed_work(&adapter->watchdog_task, 1);
3771 }
3772
3773 /* disable interrupts, without the synchronize_irq bit */
3774 ew32(IMC, ~0);
3775 E1000_WRITE_FLUSH();
3776
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3783 } else {
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue
3786 */
3787 if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 e1000_irq_enable(adapter);
3789 }
3790
3791 return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 napi);
3803 int tx_clean_complete = 0, work_done = 0;
3804
3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809 if (!tx_clean_complete || work_done == budget)
3810 return budget;
3811
3812 /* Exit the polling mode, but don't re-enable interrupts if stack might
3813 * poll us due to busy-polling
3814 */
3815 if (likely(napi_complete_done(napi, work_done))) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3820 }
3821
3822 return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832{
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_tx_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 dma_rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 64);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count))
3869 i = 0;
3870 }
3871
3872 eop = tx_ring->buffer_info[i].next_to_watch;
3873 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 }
3875
3876 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 * which will reuse the cleaned buffers.
3878 */
3879 smp_store_release(&tx_ring->next_to_clean, i);
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @skb: socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949{
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543))
3958 return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 return;
3962 /* TCP/UDP checksum error bit is set */
3963 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 /* let the stack verify checksum errors */
3965 adapter->hw_csum_err++;
3966 return;
3967 }
3968 /* TCP/UDP Checksum has not been calculated */
3969 if (!(status & E1000_RXD_STAT_TCPCS))
3970 return;
3971
3972 /* It must be a TCP or UDP packet with a valid checksum */
3973 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 /* TCP checksum is good */
3975 skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 }
3977 adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988{
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004{
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 struct e1000_hw_stats *stats,
4026 u32 frame_len, const u8 *mac_addr)
4027{
4028 u64 carry_bit;
4029
4030 /* First adjust the frame length. */
4031 frame_len--;
4032 /* We need to adjust the statistics counters, since the hardware
4033 * counters overcount this packet as a CRC error and undercount
4034 * the packet as a good packet
4035 */
4036 /* This packet should not be counted as a CRC error. */
4037 stats->crcerrs--;
4038 /* This packet does count as a Good Packet Received. */
4039 stats->gprc++;
4040
4041 /* Adjust the Good Octets received counters */
4042 carry_bit = 0x80000000 & stats->gorcl;
4043 stats->gorcl += frame_len;
4044 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 * Received Count) was one before the addition,
4046 * AND it is zero after, then we lost the carry out,
4047 * need to add one to Gorch (Good Octets Received Count High).
4048 * This could be simplified if all environments supported
4049 * 64-bit integers.
4050 */
4051 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 stats->gorch++;
4053 /* Is this a broadcast or multicast? Check broadcast first,
4054 * since the test for a multicast frame will test positive on
4055 * a broadcast frame.
4056 */
4057 if (is_broadcast_ether_addr(mac_addr))
4058 stats->bprc++;
4059 else if (is_multicast_ether_addr(mac_addr))
4060 stats->mprc++;
4061
4062 if (frame_len == hw->max_frame_size) {
4063 /* In this case, the hardware has overcounted the number of
4064 * oversize frames.
4065 */
4066 if (stats->roc > 0)
4067 stats->roc--;
4068 }
4069
4070 /* Adjust the bin counters when the extra byte put the frame in the
4071 * wrong bin. Remember that the frame_len was adjusted above.
4072 */
4073 if (frame_len == 64) {
4074 stats->prc64++;
4075 stats->prc127--;
4076 } else if (frame_len == 127) {
4077 stats->prc127++;
4078 stats->prc255--;
4079 } else if (frame_len == 255) {
4080 stats->prc255++;
4081 stats->prc511--;
4082 } else if (frame_len == 511) {
4083 stats->prc511++;
4084 stats->prc1023--;
4085 } else if (frame_len == 1023) {
4086 stats->prc1023++;
4087 stats->prc1522--;
4088 } else if (frame_len == 1522) {
4089 stats->prc1522++;
4090 }
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 u8 status, u8 errors,
4095 u32 length, const u8 *data)
4096{
4097 struct e1000_hw *hw = &adapter->hw;
4098 u8 last_byte = *(data + length - 1);
4099
4100 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 unsigned long irq_flags;
4102
4103 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107 return true;
4108 }
4109
4110 return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 unsigned int bufsz)
4115{
4116 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118 if (unlikely(!skb))
4119 adapter->alloc_rx_buff_failed++;
4120 return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int *work_done, int work_to_do)
4136{
4137 struct net_device *netdev = adapter->netdev;
4138 struct pci_dev *pdev = adapter->pdev;
4139 struct e1000_rx_desc *rx_desc, *next_rxd;
4140 struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 u32 length;
4142 unsigned int i;
4143 int cleaned_count = 0;
4144 bool cleaned = false;
4145 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147 i = rx_ring->next_to_clean;
4148 rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 struct sk_buff *skb;
4153 u8 status;
4154
4155 if (*work_done >= work_to_do)
4156 break;
4157 (*work_done)++;
4158 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160 status = rx_desc->status;
4161
4162 if (++i == rx_ring->count)
4163 i = 0;
4164
4165 next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 prefetch(next_rxd);
4167
4168 next_buffer = &rx_ring->buffer_info[i];
4169
4170 cleaned = true;
4171 cleaned_count++;
4172 dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 buffer_info->dma = 0;
4175
4176 length = le16_to_cpu(rx_desc->length);
4177
4178 /* errors is only valid for DD + EOP descriptors */
4179 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183 if (e1000_tbi_should_accept(adapter, status,
4184 rx_desc->errors,
4185 length, mapped)) {
4186 length--;
4187 } else if (netdev->features & NETIF_F_RXALL) {
4188 goto process_skb;
4189 } else {
4190 /* an error means any chain goes out the window
4191 * too
4192 */
4193 dev_kfree_skb(rx_ring->rx_skb_top);
4194 rx_ring->rx_skb_top = NULL;
4195 goto next_desc;
4196 }
4197 }
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201 if (!(status & E1000_RXD_STAT_EOP)) {
4202 /* this descriptor is only the beginning (or middle) */
4203 if (!rxtop) {
4204 /* this is the beginning of a chain */
4205 rxtop = napi_get_frags(&adapter->napi);
4206 if (!rxtop)
4207 break;
4208
4209 skb_fill_page_desc(rxtop, 0,
4210 buffer_info->rxbuf.page,
4211 0, length);
4212 } else {
4213 /* this is the middle of a chain */
4214 skb_fill_page_desc(rxtop,
4215 skb_shinfo(rxtop)->nr_frags,
4216 buffer_info->rxbuf.page, 0, length);
4217 }
4218 e1000_consume_page(buffer_info, rxtop, length);
4219 goto next_desc;
4220 } else {
4221 if (rxtop) {
4222 /* end of the chain */
4223 skb_fill_page_desc(rxtop,
4224 skb_shinfo(rxtop)->nr_frags,
4225 buffer_info->rxbuf.page, 0, length);
4226 skb = rxtop;
4227 rxtop = NULL;
4228 e1000_consume_page(buffer_info, skb, length);
4229 } else {
4230 struct page *p;
4231 /* no chain, got EOP, this buf is the packet
4232 * copybreak to save the put_page/alloc_page
4233 */
4234 p = buffer_info->rxbuf.page;
4235 if (length <= copybreak) {
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 memcpy(skb_tail_pointer(skb),
4244 page_address(p), length);
4245
4246 /* re-use the page, so don't erase
4247 * buffer_info->rxbuf.page
4248 */
4249 skb_put(skb, length);
4250 e1000_rx_checksum(adapter,
4251 status | rx_desc->errors << 24,
4252 le16_to_cpu(rx_desc->csum), skb);
4253
4254 total_rx_bytes += skb->len;
4255 total_rx_packets++;
4256
4257 e1000_receive_skb(adapter, status,
4258 rx_desc->special, skb);
4259 goto next_desc;
4260 } else {
4261 skb = napi_get_frags(&adapter->napi);
4262 if (!skb) {
4263 adapter->alloc_rx_buff_failed++;
4264 break;
4265 }
4266 skb_fill_page_desc(skb, 0, p, 0,
4267 length);
4268 e1000_consume_page(buffer_info, skb,
4269 length);
4270 }
4271 }
4272 }
4273
4274 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 e1000_rx_checksum(adapter,
4276 (u32)(status) |
4277 ((u32)(rx_desc->errors) << 24),
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 pskb_trim(skb, skb->len - 4);
4283 total_rx_packets++;
4284
4285 if (status & E1000_RXD_STAT_VP) {
4286 __le16 vlan = rx_desc->special;
4287 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 }
4291
4292 napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 netdev->stats.rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_packets += total_rx_packets;
4317 return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 struct e1000_rx_buffer *buffer_info,
4325 u32 length, const void *data)
4326{
4327 struct sk_buff *skb;
4328
4329 if (length > copybreak)
4330 return NULL;
4331
4332 skb = e1000_alloc_rx_skb(adapter, length);
4333 if (!skb)
4334 return NULL;
4335
4336 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 length, DMA_FROM_DEVICE);
4338
4339 skb_put_data(skb, data, length);
4340
4341 return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 struct e1000_rx_ring *rx_ring,
4353 int *work_done, int work_to_do)
4354{
4355 struct net_device *netdev = adapter->netdev;
4356 struct pci_dev *pdev = adapter->pdev;
4357 struct e1000_rx_desc *rx_desc, *next_rxd;
4358 struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 u32 length;
4360 unsigned int i;
4361 int cleaned_count = 0;
4362 bool cleaned = false;
4363 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365 i = rx_ring->next_to_clean;
4366 rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 buffer_info = &rx_ring->buffer_info[i];
4368
4369 while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 struct sk_buff *skb;
4371 u8 *data;
4372 u8 status;
4373
4374 if (*work_done >= work_to_do)
4375 break;
4376 (*work_done)++;
4377 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379 status = rx_desc->status;
4380 length = le16_to_cpu(rx_desc->length);
4381
4382 data = buffer_info->rxbuf.data;
4383 prefetch(data);
4384 skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 if (!skb) {
4386 unsigned int frag_len = e1000_frag_len(adapter);
4387
4388 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 if (!skb) {
4390 adapter->alloc_rx_buff_failed++;
4391 break;
4392 }
4393
4394 skb_reserve(skb, E1000_HEADROOM);
4395 dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 adapter->rx_buffer_len,
4397 DMA_FROM_DEVICE);
4398 buffer_info->dma = 0;
4399 buffer_info->rxbuf.data = NULL;
4400 }
4401
4402 if (++i == rx_ring->count)
4403 i = 0;
4404
4405 next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 prefetch(next_rxd);
4407
4408 next_buffer = &rx_ring->buffer_info[i];
4409
4410 cleaned = true;
4411 cleaned_count++;
4412
4413 /* !EOP means multiple descriptors were used to store a single
4414 * packet, if thats the case we need to toss it. In fact, we
4415 * to toss every packet with the EOP bit clear and the next
4416 * frame that _does_ have the EOP bit set, as it is by
4417 * definition only a frame fragment
4418 */
4419 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 adapter->discarding = true;
4421
4422 if (adapter->discarding) {
4423 /* All receives must fit into a single buffer */
4424 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 dev_kfree_skb(skb);
4426 if (status & E1000_RXD_STAT_EOP)
4427 adapter->discarding = false;
4428 goto next_desc;
4429 }
4430
4431 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 if (e1000_tbi_should_accept(adapter, status,
4433 rx_desc->errors,
4434 length, data)) {
4435 length--;
4436 } else if (netdev->features & NETIF_F_RXALL) {
4437 goto process_skb;
4438 } else {
4439 dev_kfree_skb(skb);
4440 goto next_desc;
4441 }
4442 }
4443
4444process_skb:
4445 total_rx_bytes += (length - 4); /* don't count FCS */
4446 total_rx_packets++;
4447
4448 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 /* adjust length to remove Ethernet CRC, this must be
4450 * done after the TBI_ACCEPT workaround above
4451 */
4452 length -= 4;
4453
4454 if (buffer_info->rxbuf.data == NULL)
4455 skb_put(skb, length);
4456 else /* copybreak skb */
4457 skb_trim(skb, length);
4458
4459 /* Receive Checksum Offload */
4460 e1000_rx_checksum(adapter,
4461 (u32)(status) |
4462 ((u32)(rx_desc->errors) << 24),
4463 le16_to_cpu(rx_desc->csum), skb);
4464
4465 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468 rx_desc->status = 0;
4469
4470 /* return some buffers to hardware, one at a time is too slow */
4471 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 cleaned_count = 0;
4474 }
4475
4476 /* use prefetched values */
4477 rx_desc = next_rxd;
4478 buffer_info = next_buffer;
4479 }
4480 rx_ring->next_to_clean = i;
4481
4482 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 if (cleaned_count)
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486 adapter->total_rx_packets += total_rx_packets;
4487 adapter->total_rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_bytes += total_rx_bytes;
4489 netdev->stats.rx_packets += total_rx_packets;
4490 return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503 struct pci_dev *pdev = adapter->pdev;
4504 struct e1000_rx_desc *rx_desc;
4505 struct e1000_rx_buffer *buffer_info;
4506 unsigned int i;
4507
4508 i = rx_ring->next_to_use;
4509 buffer_info = &rx_ring->buffer_info[i];
4510
4511 while (cleaned_count--) {
4512 /* allocate a new page if necessary */
4513 if (!buffer_info->rxbuf.page) {
4514 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 if (unlikely(!buffer_info->rxbuf.page)) {
4516 adapter->alloc_rx_buff_failed++;
4517 break;
4518 }
4519 }
4520
4521 if (!buffer_info->dma) {
4522 buffer_info->dma = dma_map_page(&pdev->dev,
4523 buffer_info->rxbuf.page, 0,
4524 adapter->rx_buffer_len,
4525 DMA_FROM_DEVICE);
4526 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 put_page(buffer_info->rxbuf.page);
4528 buffer_info->rxbuf.page = NULL;
4529 buffer_info->dma = 0;
4530 adapter->alloc_rx_buff_failed++;
4531 break;
4532 }
4533 }
4534
4535 rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538 if (unlikely(++i == rx_ring->count))
4539 i = 0;
4540 buffer_info = &rx_ring->buffer_info[i];
4541 }
4542
4543 if (likely(rx_ring->next_to_use != i)) {
4544 rx_ring->next_to_use = i;
4545 if (unlikely(i-- == 0))
4546 i = (rx_ring->count - 1);
4547
4548 /* Force memory writes to complete before letting h/w
4549 * know there are new descriptors to fetch. (Only
4550 * applicable for weak-ordered memory model archs,
4551 * such as IA-64).
4552 */
4553 dma_wmb();
4554 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 }
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 struct e1000_rx_ring *rx_ring,
4566 int cleaned_count)
4567{
4568 struct e1000_hw *hw = &adapter->hw;
4569 struct pci_dev *pdev = adapter->pdev;
4570 struct e1000_rx_desc *rx_desc;
4571 struct e1000_rx_buffer *buffer_info;
4572 unsigned int i;
4573 unsigned int bufsz = adapter->rx_buffer_len;
4574
4575 i = rx_ring->next_to_use;
4576 buffer_info = &rx_ring->buffer_info[i];
4577
4578 while (cleaned_count--) {
4579 void *data;
4580
4581 if (buffer_info->rxbuf.data)
4582 goto skip;
4583
4584 data = e1000_alloc_frag(adapter);
4585 if (!data) {
4586 /* Better luck next round */
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 /* Fix for errata 23, can't cross 64kB boundary */
4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 void *olddata = data;
4594 e_err(rx_err, "skb align check failed: %u bytes at "
4595 "%p\n", bufsz, data);
4596 /* Try again, without freeing the previous */
4597 data = e1000_alloc_frag(adapter);
4598 /* Failed allocation, critical failure */
4599 if (!data) {
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 /* give up */
4607 skb_free_frag(data);
4608 skb_free_frag(olddata);
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Use new allocation */
4614 skb_free_frag(olddata);
4615 }
4616 buffer_info->dma = dma_map_single(&pdev->dev,
4617 data,
4618 adapter->rx_buffer_len,
4619 DMA_FROM_DEVICE);
4620 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 skb_free_frag(data);
4622 buffer_info->dma = 0;
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 /* XXX if it was allocated cleanly it will never map to a
4628 * boundary crossing
4629 */
4630
4631 /* Fix for errata 23, can't cross 64kB boundary */
4632 if (!e1000_check_64k_bound(adapter,
4633 (void *)(unsigned long)buffer_info->dma,
4634 adapter->rx_buffer_len)) {
4635 e_err(rx_err, "dma align check failed: %u bytes at "
4636 "%p\n", adapter->rx_buffer_len,
4637 (void *)(unsigned long)buffer_info->dma);
4638
4639 dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642
4643 skb_free_frag(data);
4644 buffer_info->rxbuf.data = NULL;
4645 buffer_info->dma = 0;
4646
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650 buffer_info->rxbuf.data = data;
4651 skip:
4652 rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655 if (unlikely(++i == rx_ring->count))
4656 i = 0;
4657 buffer_info = &rx_ring->buffer_info[i];
4658 }
4659
4660 if (likely(rx_ring->next_to_use != i)) {
4661 rx_ring->next_to_use = i;
4662 if (unlikely(i-- == 0))
4663 i = (rx_ring->count - 1);
4664
4665 /* Force memory writes to complete before letting h/w
4666 * know there are new descriptors to fetch. (Only
4667 * applicable for weak-ordered memory model archs,
4668 * such as IA-64).
4669 */
4670 dma_wmb();
4671 writel(i, hw->hw_addr + rx_ring->rdt);
4672 }
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681 struct e1000_hw *hw = &adapter->hw;
4682 u16 phy_status;
4683 u16 phy_ctrl;
4684
4685 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 return;
4688
4689 if (adapter->smartspeed == 0) {
4690 /* If Master/Slave config fault is asserted twice,
4691 * we assume back-to-back
4692 */
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 return;
4699 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 phy_ctrl);
4704 adapter->smartspeed++;
4705 if (!e1000_phy_setup_autoneg(hw) &&
4706 !e1000_read_phy_reg(hw, PHY_CTRL,
4707 &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL,
4711 phy_ctrl);
4712 }
4713 }
4714 return;
4715 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 /* If still no link, perhaps using 2/3 pair cable */
4717 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 phy_ctrl |= CR_1000T_MS_ENABLE;
4719 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 if (!e1000_phy_setup_autoneg(hw) &&
4721 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 MII_CR_RESTART_AUTO_NEG);
4724 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 }
4726 }
4727 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740 switch (cmd) {
4741 case SIOCGMIIPHY:
4742 case SIOCGMIIREG:
4743 case SIOCSMIIREG:
4744 return e1000_mii_ioctl(netdev, ifr, cmd);
4745 default:
4746 return -EOPNOTSUPP;
4747 }
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 int cmd)
4758{
4759 struct e1000_adapter *adapter = netdev_priv(netdev);
4760 struct e1000_hw *hw = &adapter->hw;
4761 struct mii_ioctl_data *data = if_mii(ifr);
4762 int retval;
4763 u16 mii_reg;
4764 unsigned long flags;
4765
4766 if (hw->media_type != e1000_media_type_copper)
4767 return -EOPNOTSUPP;
4768
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 data->phy_id = hw->phy_addr;
4772 break;
4773 case SIOCGMIIREG:
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 &data->val_out)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 break;
4782 case SIOCSMIIREG:
4783 if (data->reg_num & ~(0x1F))
4784 return -EFAULT;
4785 mii_reg = data->val_in;
4786 spin_lock_irqsave(&adapter->stats_lock, flags);
4787 if (e1000_write_phy_reg(hw, data->reg_num,
4788 mii_reg)) {
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 return -EIO;
4791 }
4792 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 if (hw->media_type == e1000_media_type_copper) {
4794 switch (data->reg_num) {
4795 case PHY_CTRL:
4796 if (mii_reg & MII_CR_POWER_DOWN)
4797 break;
4798 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 hw->autoneg = 1;
4800 hw->autoneg_advertised = 0x2F;
4801 } else {
4802 u32 speed;
4803 if (mii_reg & 0x40)
4804 speed = SPEED_1000;
4805 else if (mii_reg & 0x2000)
4806 speed = SPEED_100;
4807 else
4808 speed = SPEED_10;
4809 retval = e1000_set_spd_dplx(
4810 adapter, speed,
4811 ((mii_reg & 0x100)
4812 ? DUPLEX_FULL :
4813 DUPLEX_HALF));
4814 if (retval)
4815 return retval;
4816 }
4817 if (netif_running(adapter->netdev))
4818 e1000_reinit_locked(adapter);
4819 else
4820 e1000_reset(adapter);
4821 break;
4822 case M88E1000_PHY_SPEC_CTRL:
4823 case M88E1000_EXT_PHY_SPEC_CTRL:
4824 if (e1000_phy_reset(hw))
4825 return -EIO;
4826 break;
4827 }
4828 } else {
4829 switch (data->reg_num) {
4830 case PHY_CTRL:
4831 if (mii_reg & MII_CR_POWER_DOWN)
4832 break;
4833 if (netif_running(adapter->netdev))
4834 e1000_reinit_locked(adapter);
4835 else
4836 e1000_reset(adapter);
4837 break;
4838 }
4839 }
4840 break;
4841 default:
4842 return -EOPNOTSUPP;
4843 }
4844 return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849 struct e1000_adapter *adapter = hw->back;
4850 int ret_val = pci_set_mwi(adapter->pdev);
4851
4852 if (ret_val)
4853 e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858 struct e1000_adapter *adapter = hw->back;
4859
4860 pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866 return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877 outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882 u16 vid;
4883
4884 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 return true;
4886 return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 netdev_features_t features)
4891{
4892 struct e1000_hw *hw = &adapter->hw;
4893 u32 ctrl;
4894
4895 ctrl = er32(CTRL);
4896 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 /* enable VLAN tag insert/strip */
4898 ctrl |= E1000_CTRL_VME;
4899 } else {
4900 /* disable VLAN tag insert/strip */
4901 ctrl &= ~E1000_CTRL_VME;
4902 }
4903 ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 bool filter_on)
4907{
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 rctl;
4910
4911 if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 e1000_irq_disable(adapter);
4913
4914 __e1000_vlan_mode(adapter, adapter->netdev->features);
4915 if (filter_on) {
4916 /* enable VLAN receive filtering */
4917 rctl = er32(RCTL);
4918 rctl &= ~E1000_RCTL_CFIEN;
4919 if (!(adapter->netdev->flags & IFF_PROMISC))
4920 rctl |= E1000_RCTL_VFE;
4921 ew32(RCTL, rctl);
4922 e1000_update_mng_vlan(adapter);
4923 } else {
4924 /* disable VLAN receive filtering */
4925 rctl = er32(RCTL);
4926 rctl &= ~E1000_RCTL_VFE;
4927 ew32(RCTL, rctl);
4928 }
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935 netdev_features_t features)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_disable(adapter);
4941
4942 __e1000_vlan_mode(adapter, features);
4943
4944 if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 __be16 proto, u16 vid)
4950{
4951 struct e1000_adapter *adapter = netdev_priv(netdev);
4952 struct e1000_hw *hw = &adapter->hw;
4953 u32 vfta, index;
4954
4955 if ((hw->mng_cookie.status &
4956 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 (vid == adapter->mng_vlan_id))
4958 return 0;
4959
4960 if (!e1000_vlan_used(adapter))
4961 e1000_vlan_filter_on_off(adapter, true);
4962
4963 /* add VID to filter table */
4964 index = (vid >> 5) & 0x7F;
4965 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 vfta |= (1 << (vid & 0x1F));
4967 e1000_write_vfta(hw, index, vfta);
4968
4969 set_bit(vid, adapter->active_vlans);
4970
4971 return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 __be16 proto, u16 vid)
4976{
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 u32 vfta, index;
4980
4981 if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 e1000_irq_disable(adapter);
4983 if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 e1000_irq_enable(adapter);
4985
4986 /* remove VID from filter table */
4987 index = (vid >> 5) & 0x7F;
4988 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 vfta &= ~(1 << (vid & 0x1F));
4990 e1000_write_vfta(hw, index, vfta);
4991
4992 clear_bit(vid, adapter->active_vlans);
4993
4994 if (!e1000_vlan_used(adapter))
4995 e1000_vlan_filter_on_off(adapter, false);
4996
4997 return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002 u16 vid;
5003
5004 if (!e1000_vlan_used(adapter))
5005 return;
5006
5007 e1000_vlan_filter_on_off(adapter, true);
5008 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014 struct e1000_hw *hw = &adapter->hw;
5015
5016 hw->autoneg = 0;
5017
5018 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 * for the switch() below to work
5020 */
5021 if ((spd & 1) || (dplx & ~1))
5022 goto err_inval;
5023
5024 /* Fiber NICs only allow 1000 gbps Full duplex */
5025 if ((hw->media_type == e1000_media_type_fiber) &&
5026 spd != SPEED_1000 &&
5027 dplx != DUPLEX_FULL)
5028 goto err_inval;
5029
5030 switch (spd + dplx) {
5031 case SPEED_10 + DUPLEX_HALF:
5032 hw->forced_speed_duplex = e1000_10_half;
5033 break;
5034 case SPEED_10 + DUPLEX_FULL:
5035 hw->forced_speed_duplex = e1000_10_full;
5036 break;
5037 case SPEED_100 + DUPLEX_HALF:
5038 hw->forced_speed_duplex = e1000_100_half;
5039 break;
5040 case SPEED_100 + DUPLEX_FULL:
5041 hw->forced_speed_duplex = e1000_100_full;
5042 break;
5043 case SPEED_1000 + DUPLEX_FULL:
5044 hw->autoneg = 1;
5045 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 break;
5047 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 default:
5049 goto err_inval;
5050 }
5051
5052 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 hw->mdix = AUTO_ALL_MODES;
5054
5055 return 0;
5056
5057err_inval:
5058 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066 struct e1000_hw *hw = &adapter->hw;
5067 u32 ctrl, ctrl_ext, rctl, status;
5068 u32 wufc = adapter->wol;
5069
5070 netif_device_detach(netdev);
5071
5072 if (netif_running(netdev)) {
5073 int count = E1000_CHECK_RESET_COUNT;
5074
5075 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 usleep_range(10000, 20000);
5077
5078 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 rtnl_lock();
5080 e1000_down(adapter);
5081 rtnl_unlock();
5082 }
5083
5084 status = er32(STATUS);
5085 if (status & E1000_STATUS_LU)
5086 wufc &= ~E1000_WUFC_LNKC;
5087
5088 if (wufc) {
5089 e1000_setup_rctl(adapter);
5090 e1000_set_rx_mode(netdev);
5091
5092 rctl = er32(RCTL);
5093
5094 /* turn on all-multi mode if wake on multicast is enabled */
5095 if (wufc & E1000_WUFC_MC)
5096 rctl |= E1000_RCTL_MPE;
5097
5098 /* enable receives in the hardware */
5099 ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101 if (hw->mac_type >= e1000_82540) {
5102 ctrl = er32(CTRL);
5103 /* advertise wake from D3Cold */
5104 #define E1000_CTRL_ADVD3WUC 0x00100000
5105 /* phy power management enable */
5106 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 ctrl |= E1000_CTRL_ADVD3WUC |
5108 E1000_CTRL_EN_PHY_PWR_MGMT;
5109 ew32(CTRL, ctrl);
5110 }
5111
5112 if (hw->media_type == e1000_media_type_fiber ||
5113 hw->media_type == e1000_media_type_internal_serdes) {
5114 /* keep the laser running in D3 */
5115 ctrl_ext = er32(CTRL_EXT);
5116 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 ew32(CTRL_EXT, ctrl_ext);
5118 }
5119
5120 ew32(WUC, E1000_WUC_PME_EN);
5121 ew32(WUFC, wufc);
5122 } else {
5123 ew32(WUC, 0);
5124 ew32(WUFC, 0);
5125 }
5126
5127 e1000_release_manageability(adapter);
5128
5129 *enable_wake = !!wufc;
5130
5131 /* make sure adapter isn't asleep if manageability is enabled */
5132 if (adapter->en_mng_pt)
5133 *enable_wake = true;
5134
5135 if (netif_running(netdev))
5136 e1000_free_irq(adapter);
5137
5138 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 pci_disable_device(pdev);
5140
5141 return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146 int retval;
5147 struct pci_dev *pdev = to_pci_dev(dev);
5148 bool wake;
5149
5150 retval = __e1000_shutdown(pdev, &wake);
5151 device_set_wakeup_enable(dev, wake);
5152
5153 return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158 struct pci_dev *pdev = to_pci_dev(dev);
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 if (adapter->need_ioport)
5165 err = pci_enable_device(pdev);
5166 else
5167 err = pci_enable_device_mem(pdev);
5168 if (err) {
5169 pr_err("Cannot enable PCI device from suspend\n");
5170 return err;
5171 }
5172
5173 /* flush memory to make sure state is correct */
5174 smp_mb__before_atomic();
5175 clear_bit(__E1000_DISABLED, &adapter->flags);
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 if (netif_running(netdev)) {
5182 err = e1000_request_irq(adapter);
5183 if (err)
5184 return err;
5185 }
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 ew32(WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203 bool wake;
5204
5205 __e1000_shutdown(pdev, &wake);
5206
5207 if (system_state == SYSTEM_POWER_OFF) {
5208 pci_wake_from_d3(pdev, wake);
5209 pci_set_power_state(pdev, PCI_D3hot);
5210 }
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220 struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222 if (disable_hardirq(adapter->pdev->irq))
5223 e1000_intr(adapter->pdev->irq, netdev);
5224 enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 pci_channel_state_t state)
5238{
5239 struct net_device *netdev = pci_get_drvdata(pdev);
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242 rtnl_lock();
5243 netif_device_detach(netdev);
5244
5245 if (state == pci_channel_io_perm_failure) {
5246 rtnl_unlock();
5247 return PCI_ERS_RESULT_DISCONNECT;
5248 }
5249
5250 if (netif_running(netdev))
5251 e1000_down(adapter);
5252
5253 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 pci_disable_device(pdev);
5255 rtnl_unlock();
5256
5257 /* Request a slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int err;
5274
5275 if (adapter->need_ioport)
5276 err = pci_enable_device(pdev);
5277 else
5278 err = pci_enable_device_mem(pdev);
5279 if (err) {
5280 pr_err("Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT;
5282 }
5283
5284 /* flush memory to make sure state is correct */
5285 smp_mb__before_atomic();
5286 clear_bit(__E1000_DISABLED, &adapter->flags);
5287 pci_set_master(pdev);
5288
5289 pci_enable_wake(pdev, PCI_D3hot, 0);
5290 pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292 e1000_reset(adapter);
5293 ew32(WUS, ~0);
5294
5295 return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308 struct net_device *netdev = pci_get_drvdata(pdev);
5309 struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311 e1000_init_manageability(adapter);
5312
5313 if (netif_running(netdev)) {
5314 if (e1000_up(adapter)) {
5315 pr_info("can't bring device back up after reset\n");
5316 return;
5317 }
5318 }
5319
5320 netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
159static void e1000_reset_task(struct work_struct *work);
160static void e1000_smartspeed(struct e1000_adapter *adapter);
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164static bool e1000_vlan_used(struct e1000_adapter *adapter);
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 __be16 proto, u16 vid);
171static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 __be16 proto, u16 vid);
173static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175#ifdef CONFIG_PM
176static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177static int e1000_resume(struct pci_dev *pdev);
178#endif
179static void e1000_shutdown(struct pci_dev *pdev);
180
181#ifdef CONFIG_NET_POLL_CONTROLLER
182/* for netdump / net console */
183static void e1000_netpoll (struct net_device *netdev);
184#endif
185
186#define COPYBREAK_DEFAULT 256
187static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188module_param(copybreak, uint, 0644);
189MODULE_PARM_DESC(copybreak,
190 "Maximum size of packet that is copied to a new buffer on receive");
191
192static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193 pci_channel_state_t state);
194static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195static void e1000_io_resume(struct pci_dev *pdev);
196
197static const struct pci_error_handlers e1000_err_handler = {
198 .error_detected = e1000_io_error_detected,
199 .slot_reset = e1000_io_slot_reset,
200 .resume = e1000_io_resume,
201};
202
203static struct pci_driver e1000_driver = {
204 .name = e1000_driver_name,
205 .id_table = e1000_pci_tbl,
206 .probe = e1000_probe,
207 .remove = e1000_remove,
208#ifdef CONFIG_PM
209 /* Power Management Hooks */
210 .suspend = e1000_suspend,
211 .resume = e1000_resume,
212#endif
213 .shutdown = e1000_shutdown,
214 .err_handler = &e1000_err_handler
215};
216
217MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219MODULE_LICENSE("GPL");
220MODULE_VERSION(DRV_VERSION);
221
222#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223static int debug = -1;
224module_param(debug, int, 0);
225MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227/**
228 * e1000_get_hw_dev - return device
229 * used by hardware layer to print debugging information
230 *
231 **/
232struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233{
234 struct e1000_adapter *adapter = hw->back;
235 return adapter->netdev;
236}
237
238/**
239 * e1000_init_module - Driver Registration Routine
240 *
241 * e1000_init_module is the first routine called when the driver is
242 * loaded. All it does is register with the PCI subsystem.
243 **/
244static int __init e1000_init_module(void)
245{
246 int ret;
247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249 pr_info("%s\n", e1000_copyright);
250
251 ret = pci_register_driver(&e1000_driver);
252 if (copybreak != COPYBREAK_DEFAULT) {
253 if (copybreak == 0)
254 pr_info("copybreak disabled\n");
255 else
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak);
258 }
259 return ret;
260}
261
262module_init(e1000_init_module);
263
264/**
265 * e1000_exit_module - Driver Exit Cleanup Routine
266 *
267 * e1000_exit_module is called just before the driver is removed
268 * from memory.
269 **/
270static void __exit e1000_exit_module(void)
271{
272 pci_unregister_driver(&e1000_driver);
273}
274
275module_exit(e1000_exit_module);
276
277static int e1000_request_irq(struct e1000_adapter *adapter)
278{
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291}
292
293static void e1000_free_irq(struct e1000_adapter *adapter)
294{
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298}
299
300/**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304static void e1000_irq_disable(struct e1000_adapter *adapter)
305{
306 struct e1000_hw *hw = &adapter->hw;
307
308 ew32(IMC, ~0);
309 E1000_WRITE_FLUSH();
310 synchronize_irq(adapter->pdev->irq);
311}
312
313/**
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
316 **/
317static void e1000_irq_enable(struct e1000_adapter *adapter)
318{
319 struct e1000_hw *hw = &adapter->hw;
320
321 ew32(IMS, IMS_ENABLE_MASK);
322 E1000_WRITE_FLUSH();
323}
324
325static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326{
327 struct e1000_hw *hw = &adapter->hw;
328 struct net_device *netdev = adapter->netdev;
329 u16 vid = hw->mng_cookie.vlan_id;
330 u16 old_vid = adapter->mng_vlan_id;
331
332 if (!e1000_vlan_used(adapter))
333 return;
334
335 if (!test_bit(vid, adapter->active_vlans)) {
336 if (hw->mng_cookie.status &
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 adapter->mng_vlan_id = vid;
340 } else {
341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 }
343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 (vid != old_vid) &&
345 !test_bit(old_vid, adapter->active_vlans))
346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 old_vid);
348 } else {
349 adapter->mng_vlan_id = vid;
350 }
351}
352
353static void e1000_init_manageability(struct e1000_adapter *adapter)
354{
355 struct e1000_hw *hw = &adapter->hw;
356
357 if (adapter->en_mng_pt) {
358 u32 manc = er32(MANC);
359
360 /* disable hardware interception of ARP */
361 manc &= ~(E1000_MANC_ARP_EN);
362
363 ew32(MANC, manc);
364 }
365}
366
367static void e1000_release_manageability(struct e1000_adapter *adapter)
368{
369 struct e1000_hw *hw = &adapter->hw;
370
371 if (adapter->en_mng_pt) {
372 u32 manc = er32(MANC);
373
374 /* re-enable hardware interception of ARP */
375 manc |= E1000_MANC_ARP_EN;
376
377 ew32(MANC, manc);
378 }
379}
380
381/**
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
384 **/
385static void e1000_configure(struct e1000_adapter *adapter)
386{
387 struct net_device *netdev = adapter->netdev;
388 int i;
389
390 e1000_set_rx_mode(netdev);
391
392 e1000_restore_vlan(adapter);
393 e1000_init_manageability(adapter);
394
395 e1000_configure_tx(adapter);
396 e1000_setup_rctl(adapter);
397 e1000_configure_rx(adapter);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean
401 */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407}
408
409int e1000_up(struct e1000_adapter *adapter)
410{
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427}
428
429/**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 **/
437void e1000_power_up_phy(struct e1000_adapter *adapter)
438{
439 struct e1000_hw *hw = &adapter->hw;
440 u16 mii_reg = 0;
441
442 /* Just clear the power down bit to wake the phy back up */
443 if (hw->media_type == e1000_media_type_copper) {
444 /* according to the manual, the phy will retain its
445 * settings across a power-down/up cycle
446 */
447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 mii_reg &= ~MII_CR_POWER_DOWN;
449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 }
451}
452
453static void e1000_power_down_phy(struct e1000_adapter *adapter)
454{
455 struct e1000_hw *hw = &adapter->hw;
456
457 /* Power down the PHY so no link is implied when interface is down *
458 * The PHY cannot be powered down if any of the following is true *
459 * (a) WoL is enabled
460 * (b) AMT is active
461 * (c) SoL/IDER session is active
462 */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489out:
490 return;
491}
492
493static void e1000_down_and_stop(struct e1000_adapter *adapter)
494{
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 cancel_delayed_work_sync(&adapter->watchdog_task);
498
499 /*
500 * Since the watchdog task can reschedule other tasks, we should cancel
501 * it first, otherwise we can run into the situation when a work is
502 * still running after the adapter has been turned down.
503 */
504
505 cancel_delayed_work_sync(&adapter->phy_info_task);
506 cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508 /* Only kill reset task if adapter is not resetting */
509 if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 cancel_work_sync(&adapter->reset_task);
511}
512
513void e1000_down(struct e1000_adapter *adapter)
514{
515 struct e1000_hw *hw = &adapter->hw;
516 struct net_device *netdev = adapter->netdev;
517 u32 rctl, tctl;
518
519
520 /* disable receives in the hardware */
521 rctl = er32(RCTL);
522 ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 /* flush and sleep below */
524
525 netif_tx_disable(netdev);
526
527 /* disable transmits in the hardware */
528 tctl = er32(TCTL);
529 tctl &= ~E1000_TCTL_EN;
530 ew32(TCTL, tctl);
531 /* flush both disables and wait for them to finish */
532 E1000_WRITE_FLUSH();
533 msleep(10);
534
535 napi_disable(&adapter->napi);
536
537 e1000_irq_disable(adapter);
538
539 /* Setting DOWN must be after irq_disable to prevent
540 * a screaming interrupt. Setting DOWN also prevents
541 * tasks from rescheduling.
542 */
543 e1000_down_and_stop(adapter);
544
545 adapter->link_speed = 0;
546 adapter->link_duplex = 0;
547 netif_carrier_off(netdev);
548
549 e1000_reset(adapter);
550 e1000_clean_all_tx_rings(adapter);
551 e1000_clean_all_rx_rings(adapter);
552}
553
554void e1000_reinit_locked(struct e1000_adapter *adapter)
555{
556 WARN_ON(in_interrupt());
557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 msleep(1);
559 e1000_down(adapter);
560 e1000_up(adapter);
561 clear_bit(__E1000_RESETTING, &adapter->flags);
562}
563
564void e1000_reset(struct e1000_adapter *adapter)
565{
566 struct e1000_hw *hw = &adapter->hw;
567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568 bool legacy_pba_adjust = false;
569 u16 hwm;
570
571 /* Repartition Pba for greater than 9k mtu
572 * To take effect CTRL.RST is required.
573 */
574
575 switch (hw->mac_type) {
576 case e1000_82542_rev2_0:
577 case e1000_82542_rev2_1:
578 case e1000_82543:
579 case e1000_82544:
580 case e1000_82540:
581 case e1000_82541:
582 case e1000_82541_rev_2:
583 legacy_pba_adjust = true;
584 pba = E1000_PBA_48K;
585 break;
586 case e1000_82545:
587 case e1000_82545_rev_3:
588 case e1000_82546:
589 case e1000_ce4100:
590 case e1000_82546_rev_3:
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82547:
594 case e1000_82547_rev_2:
595 legacy_pba_adjust = true;
596 pba = E1000_PBA_30K;
597 break;
598 case e1000_undefined:
599 case e1000_num_macs:
600 break;
601 }
602
603 if (legacy_pba_adjust) {
604 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605 pba -= 8; /* allocate more FIFO for Tx */
606
607 if (hw->mac_type == e1000_82547) {
608 adapter->tx_fifo_head = 0;
609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 adapter->tx_fifo_size =
611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 atomic_set(&adapter->tx_fifo_stall, 0);
613 }
614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
615 /* adjust PBA for jumbo frames */
616 ew32(PBA, pba);
617
618 /* To maintain wire speed transmits, the Tx FIFO should be
619 * large enough to accommodate two full transmit packets,
620 * rounded up to the next 1KB and expressed in KB. Likewise,
621 * the Rx FIFO should be large enough to accommodate at least
622 * one full receive packet and is similarly rounded up and
623 * expressed in KB.
624 */
625 pba = er32(PBA);
626 /* upper 16 bits has Tx packet buffer allocation size in KB */
627 tx_space = pba >> 16;
628 /* lower 16 bits has Rx packet buffer allocation size in KB */
629 pba &= 0xffff;
630 /* the Tx fifo also stores 16 bytes of information about the Tx
631 * but don't include ethernet FCS because hardware appends it
632 */
633 min_tx_space = (hw->max_frame_size +
634 sizeof(struct e1000_tx_desc) -
635 ETH_FCS_LEN) * 2;
636 min_tx_space = ALIGN(min_tx_space, 1024);
637 min_tx_space >>= 10;
638 /* software strips receive CRC, so leave room for it */
639 min_rx_space = hw->max_frame_size;
640 min_rx_space = ALIGN(min_rx_space, 1024);
641 min_rx_space >>= 10;
642
643 /* If current Tx allocation is less than the min Tx FIFO size,
644 * and the min Tx FIFO size is less than the current Rx FIFO
645 * allocation, take space away from current Rx allocation
646 */
647 if (tx_space < min_tx_space &&
648 ((min_tx_space - tx_space) < pba)) {
649 pba = pba - (min_tx_space - tx_space);
650
651 /* PCI/PCIx hardware has PBA alignment constraints */
652 switch (hw->mac_type) {
653 case e1000_82545 ... e1000_82546_rev_3:
654 pba &= ~(E1000_PBA_8K - 1);
655 break;
656 default:
657 break;
658 }
659
660 /* if short on Rx space, Rx wins and must trump Tx
661 * adjustment or use Early Receive if available
662 */
663 if (pba < min_rx_space)
664 pba = min_rx_space;
665 }
666 }
667
668 ew32(PBA, pba);
669
670 /* flow control settings:
671 * The high water mark must be low enough to fit one full frame
672 * (or the size used for early receive) above it in the Rx FIFO.
673 * Set it to the lower of:
674 * - 90% of the Rx FIFO size, and
675 * - the full Rx FIFO size minus the early receive size (for parts
676 * with ERT support assuming ERT set to E1000_ERT_2048), or
677 * - the full Rx FIFO size minus one full frame
678 */
679 hwm = min(((pba << 10) * 9 / 10),
680 ((pba << 10) - hw->max_frame_size));
681
682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
683 hw->fc_low_water = hw->fc_high_water - 8;
684 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685 hw->fc_send_xon = 1;
686 hw->fc = hw->original_fc;
687
688 /* Allow time for pending master requests to run */
689 e1000_reset_hw(hw);
690 if (hw->mac_type >= e1000_82544)
691 ew32(WUC, 0);
692
693 if (e1000_init_hw(hw))
694 e_dev_err("Hardware Error\n");
695 e1000_update_mng_vlan(adapter);
696
697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 if (hw->mac_type >= e1000_82544 &&
699 hw->autoneg == 1 &&
700 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 u32 ctrl = er32(CTRL);
702 /* clear phy power management bit if we are in gig only mode,
703 * which if enabled will attempt negotiation to 100Mb, which
704 * can cause a loss of link at power off or driver unload
705 */
706 ctrl &= ~E1000_CTRL_SWDPIN3;
707 ew32(CTRL, ctrl);
708 }
709
710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713 e1000_reset_adaptive(hw);
714 e1000_phy_get_info(hw, &adapter->phy_info);
715
716 e1000_release_manageability(adapter);
717}
718
719/* Dump the eeprom for users having checksum issues */
720static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721{
722 struct net_device *netdev = adapter->netdev;
723 struct ethtool_eeprom eeprom;
724 const struct ethtool_ops *ops = netdev->ethtool_ops;
725 u8 *data;
726 int i;
727 u16 csum_old, csum_new = 0;
728
729 eeprom.len = ops->get_eeprom_len(netdev);
730 eeprom.offset = 0;
731
732 data = kmalloc(eeprom.len, GFP_KERNEL);
733 if (!data)
734 return;
735
736 ops->get_eeprom(netdev, &eeprom, data);
737
738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 csum_new += data[i] + (data[i + 1] << 8);
742 csum_new = EEPROM_SUM - csum_new;
743
744 pr_err("/*********************/\n");
745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 pr_err("Calculated : 0x%04x\n", csum_new);
747
748 pr_err("Offset Values\n");
749 pr_err("======== ======\n");
750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752 pr_err("Include this output when contacting your support provider.\n");
753 pr_err("This is not a software error! Something bad happened to\n");
754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 pr_err("result in further problems, possibly loss of data,\n");
756 pr_err("corruption or system hangs!\n");
757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 pr_err("which is invalid and requires you to set the proper MAC\n");
759 pr_err("address manually before continuing to enable this network\n");
760 pr_err("device. Please inspect the EEPROM dump and report the\n");
761 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 pr_err("/*********************/\n");
763
764 kfree(data);
765}
766
767/**
768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769 * @pdev: PCI device information struct
770 *
771 * Return true if an adapter needs ioport resources
772 **/
773static int e1000_is_need_ioport(struct pci_dev *pdev)
774{
775 switch (pdev->device) {
776 case E1000_DEV_ID_82540EM:
777 case E1000_DEV_ID_82540EM_LOM:
778 case E1000_DEV_ID_82540EP:
779 case E1000_DEV_ID_82540EP_LOM:
780 case E1000_DEV_ID_82540EP_LP:
781 case E1000_DEV_ID_82541EI:
782 case E1000_DEV_ID_82541EI_MOBILE:
783 case E1000_DEV_ID_82541ER:
784 case E1000_DEV_ID_82541ER_LOM:
785 case E1000_DEV_ID_82541GI:
786 case E1000_DEV_ID_82541GI_LF:
787 case E1000_DEV_ID_82541GI_MOBILE:
788 case E1000_DEV_ID_82544EI_COPPER:
789 case E1000_DEV_ID_82544EI_FIBER:
790 case E1000_DEV_ID_82544GC_COPPER:
791 case E1000_DEV_ID_82544GC_LOM:
792 case E1000_DEV_ID_82545EM_COPPER:
793 case E1000_DEV_ID_82545EM_FIBER:
794 case E1000_DEV_ID_82546EB_COPPER:
795 case E1000_DEV_ID_82546EB_FIBER:
796 case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 return true;
798 default:
799 return false;
800 }
801}
802
803static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 /* Since there is no support for separate Rx/Tx vlan accel
807 * enable/disable make sure Tx flag is always in same state as Rx.
808 */
809 if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 features |= NETIF_F_HW_VLAN_CTAG_TX;
811 else
812 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814 return features;
815}
816
817static int e1000_set_features(struct net_device *netdev,
818 netdev_features_t features)
819{
820 struct e1000_adapter *adapter = netdev_priv(netdev);
821 netdev_features_t changed = features ^ netdev->features;
822
823 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824 e1000_vlan_mode(netdev, features);
825
826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827 return 0;
828
829 netdev->features = features;
830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832 if (netif_running(netdev))
833 e1000_reinit_locked(adapter);
834 else
835 e1000_reset(adapter);
836
837 return 0;
838}
839
840static const struct net_device_ops e1000_netdev_ops = {
841 .ndo_open = e1000_open,
842 .ndo_stop = e1000_close,
843 .ndo_start_xmit = e1000_xmit_frame,
844 .ndo_get_stats = e1000_get_stats,
845 .ndo_set_rx_mode = e1000_set_rx_mode,
846 .ndo_set_mac_address = e1000_set_mac,
847 .ndo_tx_timeout = e1000_tx_timeout,
848 .ndo_change_mtu = e1000_change_mtu,
849 .ndo_do_ioctl = e1000_ioctl,
850 .ndo_validate_addr = eth_validate_addr,
851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
853#ifdef CONFIG_NET_POLL_CONTROLLER
854 .ndo_poll_controller = e1000_netpoll,
855#endif
856 .ndo_fix_features = e1000_fix_features,
857 .ndo_set_features = e1000_set_features,
858};
859
860/**
861 * e1000_init_hw_struct - initialize members of hw struct
862 * @adapter: board private struct
863 * @hw: structure used by e1000_hw.c
864 *
865 * Factors out initialization of the e1000_hw struct to its own function
866 * that can be called very early at init (just after struct allocation).
867 * Fields are initialized based on PCI device information and
868 * OS network device settings (MTU size).
869 * Returns negative error codes if MAC type setup fails.
870 */
871static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 struct e1000_hw *hw)
873{
874 struct pci_dev *pdev = adapter->pdev;
875
876 /* PCI config space info */
877 hw->vendor_id = pdev->vendor;
878 hw->device_id = pdev->device;
879 hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 hw->subsystem_id = pdev->subsystem_device;
881 hw->revision_id = pdev->revision;
882
883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885 hw->max_frame_size = adapter->netdev->mtu +
886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889 /* identify the MAC */
890 if (e1000_set_mac_type(hw)) {
891 e_err(probe, "Unknown MAC Type\n");
892 return -EIO;
893 }
894
895 switch (hw->mac_type) {
896 default:
897 break;
898 case e1000_82541:
899 case e1000_82547:
900 case e1000_82541_rev_2:
901 case e1000_82547_rev_2:
902 hw->phy_init_script = 1;
903 break;
904 }
905
906 e1000_set_media_type(hw);
907 e1000_get_bus_info(hw);
908
909 hw->wait_autoneg_complete = false;
910 hw->tbi_compatibility_en = true;
911 hw->adaptive_ifs = true;
912
913 /* Copper options */
914
915 if (hw->media_type == e1000_media_type_copper) {
916 hw->mdix = AUTO_ALL_MODES;
917 hw->disable_polarity_correction = false;
918 hw->master_slave = E1000_MASTER_SLAVE;
919 }
920
921 return 0;
922}
923
924/**
925 * e1000_probe - Device Initialization Routine
926 * @pdev: PCI device information struct
927 * @ent: entry in e1000_pci_tbl
928 *
929 * Returns 0 on success, negative on failure
930 *
931 * e1000_probe initializes an adapter identified by a pci_dev structure.
932 * The OS initialization, configuring of the adapter private structure,
933 * and a hardware reset occur.
934 **/
935static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936{
937 struct net_device *netdev;
938 struct e1000_adapter *adapter;
939 struct e1000_hw *hw;
940
941 static int cards_found = 0;
942 static int global_quad_port_a = 0; /* global ksp3 port a indication */
943 int i, err, pci_using_dac;
944 u16 eeprom_data = 0;
945 u16 tmp = 0;
946 u16 eeprom_apme_mask = E1000_EEPROM_APME;
947 int bars, need_ioport;
948
949 /* do not allocate ioport bars when not needed */
950 need_ioport = e1000_is_need_ioport(pdev);
951 if (need_ioport) {
952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 err = pci_enable_device(pdev);
954 } else {
955 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956 err = pci_enable_device_mem(pdev);
957 }
958 if (err)
959 return err;
960
961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962 if (err)
963 goto err_pci_reg;
964
965 pci_set_master(pdev);
966 err = pci_save_state(pdev);
967 if (err)
968 goto err_alloc_etherdev;
969
970 err = -ENOMEM;
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 if (!netdev)
973 goto err_alloc_etherdev;
974
975 SET_NETDEV_DEV(netdev, &pdev->dev);
976
977 pci_set_drvdata(pdev, netdev);
978 adapter = netdev_priv(netdev);
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
984
985 hw = &adapter->hw;
986 hw->back = adapter;
987
988 err = -EIO;
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 if (!hw->hw_addr)
991 goto err_ioremap;
992
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
996 continue;
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
999 break;
1000 }
1001 }
1002 }
1003
1004 /* make ready for any if (hw->...) below */
1005 err = e1000_init_hw_struct(adapter, hw);
1006 if (err)
1007 goto err_sw_init;
1008
1009 /* there is a workaround being applied below that limits
1010 * 64-bit DMA addresses to 64-bit hardware. There are some
1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 */
1013 pci_using_dac = 0;
1014 if ((hw->bus_type == e1000_bus_type_pcix) &&
1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016 pci_using_dac = 1;
1017 } else {
1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 if (err) {
1020 pr_err("No usable DMA config, aborting\n");
1021 goto err_dma;
1022 }
1023 }
1024
1025 netdev->netdev_ops = &e1000_netdev_ops;
1026 e1000_set_ethtool_ops(netdev);
1027 netdev->watchdog_timeo = 5 * HZ;
1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032 adapter->bd_number = cards_found;
1033
1034 /* setup the private structure */
1035
1036 err = e1000_sw_init(adapter);
1037 if (err)
1038 goto err_sw_init;
1039
1040 err = -EIO;
1041 if (hw->mac_type == e1000_ce4100) {
1042 hw->ce4100_gbe_mdio_base_virt =
1043 ioremap(pci_resource_start(pdev, BAR_1),
1044 pci_resource_len(pdev, BAR_1));
1045
1046 if (!hw->ce4100_gbe_mdio_base_virt)
1047 goto err_mdio_ioremap;
1048 }
1049
1050 if (hw->mac_type >= e1000_82543) {
1051 netdev->hw_features = NETIF_F_SG |
1052 NETIF_F_HW_CSUM |
1053 NETIF_F_HW_VLAN_CTAG_RX;
1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 NETIF_F_HW_VLAN_CTAG_FILTER;
1056 }
1057
1058 if ((hw->mac_type >= e1000_82544) &&
1059 (hw->mac_type != e1000_82547))
1060 netdev->hw_features |= NETIF_F_TSO;
1061
1062 netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064 netdev->features |= netdev->hw_features;
1065 netdev->hw_features |= (NETIF_F_RXCSUM |
1066 NETIF_F_RXALL |
1067 NETIF_F_RXFCS);
1068
1069 if (pci_using_dac) {
1070 netdev->features |= NETIF_F_HIGHDMA;
1071 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 }
1073
1074 netdev->vlan_features |= (NETIF_F_TSO |
1075 NETIF_F_HW_CSUM |
1076 NETIF_F_SG);
1077
1078 netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1080 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082 /* initialize eeprom parameters */
1083 if (e1000_init_eeprom_params(hw)) {
1084 e_err(probe, "EEPROM initialization failed\n");
1085 goto err_eeprom;
1086 }
1087
1088 /* before reading the EEPROM, reset the controller to
1089 * put the device in a known good starting state
1090 */
1091
1092 e1000_reset_hw(hw);
1093
1094 /* make sure the EEPROM is good */
1095 if (e1000_validate_eeprom_checksum(hw) < 0) {
1096 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097 e1000_dump_eeprom(adapter);
1098 /* set MAC address to all zeroes to invalidate and temporary
1099 * disable this device for the user. This blocks regular
1100 * traffic while still permitting ethtool ioctls from reaching
1101 * the hardware as well as allowing the user to run the
1102 * interface after manually setting a hw addr using
1103 * `ip set address`
1104 */
1105 memset(hw->mac_addr, 0, netdev->addr_len);
1106 } else {
1107 /* copy the MAC address out of the EEPROM */
1108 if (e1000_read_mac_addr(hw))
1109 e_err(probe, "EEPROM Read Error\n");
1110 }
1111 /* don't block initalization here due to bad MAC address */
1112 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114 if (!is_valid_ether_addr(netdev->dev_addr))
1115 e_err(probe, "Invalid MAC Address\n");
1116
1117
1118 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 e1000_82547_tx_fifo_stall_task);
1121 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124 e1000_check_options(adapter);
1125
1126 /* Initial Wake on LAN setting
1127 * If APM wake is enabled in the EEPROM,
1128 * enable the ACPI Magic Packet filter
1129 */
1130
1131 switch (hw->mac_type) {
1132 case e1000_82542_rev2_0:
1133 case e1000_82542_rev2_1:
1134 case e1000_82543:
1135 break;
1136 case e1000_82544:
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 break;
1141 case e1000_82546:
1142 case e1000_82546_rev_3:
1143 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 break;
1147 }
1148 /* Fall Through */
1149 default:
1150 e1000_read_eeprom(hw,
1151 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 break;
1153 }
1154 if (eeprom_data & eeprom_apme_mask)
1155 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157 /* now that we have the eeprom settings, apply the special cases
1158 * where the eeprom may be wrong or the board simply won't support
1159 * wake on lan on a particular port
1160 */
1161 switch (pdev->device) {
1162 case E1000_DEV_ID_82546GB_PCIE:
1163 adapter->eeprom_wol = 0;
1164 break;
1165 case E1000_DEV_ID_82546EB_FIBER:
1166 case E1000_DEV_ID_82546GB_FIBER:
1167 /* Wake events only supported on port A for dual fiber
1168 * regardless of eeprom setting
1169 */
1170 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 /* if quad port adapter, disable WoL on all but port A */
1175 if (global_quad_port_a != 0)
1176 adapter->eeprom_wol = 0;
1177 else
1178 adapter->quad_port_a = true;
1179 /* Reset for multiple quad port adapters */
1180 if (++global_quad_port_a == 4)
1181 global_quad_port_a = 0;
1182 break;
1183 }
1184
1185 /* initialize the wol settings based on the eeprom settings */
1186 adapter->wol = adapter->eeprom_wol;
1187 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189 /* Auto detect PHY address */
1190 if (hw->mac_type == e1000_ce4100) {
1191 for (i = 0; i < 32; i++) {
1192 hw->phy_addr = i;
1193 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 if (tmp == 0 || tmp == 0xFF) {
1195 if (i == 31)
1196 goto err_eeprom;
1197 continue;
1198 } else
1199 break;
1200 }
1201 }
1202
1203 /* reset the hardware with the new settings */
1204 e1000_reset(adapter);
1205
1206 strcpy(netdev->name, "eth%d");
1207 err = register_netdev(netdev);
1208 if (err)
1209 goto err_register;
1210
1211 e1000_vlan_filter_on_off(adapter, false);
1212
1213 /* print bus type/speed/width info */
1214 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 netdev->dev_addr);
1222
1223 /* carrier off reporting is important to ethtool even BEFORE open */
1224 netif_carrier_off(netdev);
1225
1226 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228 cards_found++;
1229 return 0;
1230
1231err_register:
1232err_eeprom:
1233 e1000_phy_hw_reset(hw);
1234
1235 if (hw->flash_address)
1236 iounmap(hw->flash_address);
1237 kfree(adapter->tx_ring);
1238 kfree(adapter->rx_ring);
1239err_dma:
1240err_sw_init:
1241err_mdio_ioremap:
1242 iounmap(hw->ce4100_gbe_mdio_base_virt);
1243 iounmap(hw->hw_addr);
1244err_ioremap:
1245 free_netdev(netdev);
1246err_alloc_etherdev:
1247 pci_release_selected_regions(pdev, bars);
1248err_pci_reg:
1249 pci_disable_device(pdev);
1250 return err;
1251}
1252
1253/**
1254 * e1000_remove - Device Removal Routine
1255 * @pdev: PCI device information struct
1256 *
1257 * e1000_remove is called by the PCI subsystem to alert the driver
1258 * that it should release a PCI device. The could be caused by a
1259 * Hot-Plug event, or because the driver is going to be removed from
1260 * memory.
1261 **/
1262static void e1000_remove(struct pci_dev *pdev)
1263{
1264 struct net_device *netdev = pci_get_drvdata(pdev);
1265 struct e1000_adapter *adapter = netdev_priv(netdev);
1266 struct e1000_hw *hw = &adapter->hw;
1267
1268 e1000_down_and_stop(adapter);
1269 e1000_release_manageability(adapter);
1270
1271 unregister_netdev(netdev);
1272
1273 e1000_phy_hw_reset(hw);
1274
1275 kfree(adapter->tx_ring);
1276 kfree(adapter->rx_ring);
1277
1278 if (hw->mac_type == e1000_ce4100)
1279 iounmap(hw->ce4100_gbe_mdio_base_virt);
1280 iounmap(hw->hw_addr);
1281 if (hw->flash_address)
1282 iounmap(hw->flash_address);
1283 pci_release_selected_regions(pdev, adapter->bars);
1284
1285 free_netdev(netdev);
1286
1287 pci_disable_device(pdev);
1288}
1289
1290/**
1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292 * @adapter: board private structure to initialize
1293 *
1294 * e1000_sw_init initializes the Adapter private data structure.
1295 * e1000_init_hw_struct MUST be called before this function
1296 **/
1297static int e1000_sw_init(struct e1000_adapter *adapter)
1298{
1299 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301 adapter->num_tx_queues = 1;
1302 adapter->num_rx_queues = 1;
1303
1304 if (e1000_alloc_queues(adapter)) {
1305 e_err(probe, "Unable to allocate memory for queues\n");
1306 return -ENOMEM;
1307 }
1308
1309 /* Explicitly disable IRQ since the NIC can be in any state. */
1310 e1000_irq_disable(adapter);
1311
1312 spin_lock_init(&adapter->stats_lock);
1313
1314 set_bit(__E1000_DOWN, &adapter->flags);
1315
1316 return 0;
1317}
1318
1319/**
1320 * e1000_alloc_queues - Allocate memory for all rings
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one ring per queue at run-time since we don't know the
1324 * number of queues at compile-time.
1325 **/
1326static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327{
1328 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330 if (!adapter->tx_ring)
1331 return -ENOMEM;
1332
1333 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335 if (!adapter->rx_ring) {
1336 kfree(adapter->tx_ring);
1337 return -ENOMEM;
1338 }
1339
1340 return E1000_SUCCESS;
1341}
1342
1343/**
1344 * e1000_open - Called when a network interface is made active
1345 * @netdev: network interface device structure
1346 *
1347 * Returns 0 on success, negative value on failure
1348 *
1349 * The open entry point is called when a network interface is made
1350 * active by the system (IFF_UP). At this point all resources needed
1351 * for transmit and receive operations are allocated, the interrupt
1352 * handler is registered with the OS, the watchdog task is started,
1353 * and the stack is notified that the interface is ready.
1354 **/
1355static int e1000_open(struct net_device *netdev)
1356{
1357 struct e1000_adapter *adapter = netdev_priv(netdev);
1358 struct e1000_hw *hw = &adapter->hw;
1359 int err;
1360
1361 /* disallow open during test */
1362 if (test_bit(__E1000_TESTING, &adapter->flags))
1363 return -EBUSY;
1364
1365 netif_carrier_off(netdev);
1366
1367 /* allocate transmit descriptors */
1368 err = e1000_setup_all_tx_resources(adapter);
1369 if (err)
1370 goto err_setup_tx;
1371
1372 /* allocate receive descriptors */
1373 err = e1000_setup_all_rx_resources(adapter);
1374 if (err)
1375 goto err_setup_rx;
1376
1377 e1000_power_up_phy(adapter);
1378
1379 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380 if ((hw->mng_cookie.status &
1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 e1000_update_mng_vlan(adapter);
1383 }
1384
1385 /* before we allocate an interrupt, we must be ready to handle it.
1386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 * as soon as we call pci_request_irq, so we have to setup our
1388 * clean_rx handler before we do so.
1389 */
1390 e1000_configure(adapter);
1391
1392 err = e1000_request_irq(adapter);
1393 if (err)
1394 goto err_req_irq;
1395
1396 /* From here on the code is the same as e1000_up() */
1397 clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399 napi_enable(&adapter->napi);
1400
1401 e1000_irq_enable(adapter);
1402
1403 netif_start_queue(netdev);
1404
1405 /* fire a link status change interrupt to start the watchdog */
1406 ew32(ICS, E1000_ICS_LSC);
1407
1408 return E1000_SUCCESS;
1409
1410err_req_irq:
1411 e1000_power_down_phy(adapter);
1412 e1000_free_all_rx_resources(adapter);
1413err_setup_rx:
1414 e1000_free_all_tx_resources(adapter);
1415err_setup_tx:
1416 e1000_reset(adapter);
1417
1418 return err;
1419}
1420
1421/**
1422 * e1000_close - Disables a network interface
1423 * @netdev: network interface device structure
1424 *
1425 * Returns 0, this is not allowed to fail
1426 *
1427 * The close entry point is called when an interface is de-activated
1428 * by the OS. The hardware is still under the drivers control, but
1429 * needs to be disabled. A global MAC reset is issued to stop the
1430 * hardware, and all transmit and receive resources are freed.
1431 **/
1432static int e1000_close(struct net_device *netdev)
1433{
1434 struct e1000_adapter *adapter = netdev_priv(netdev);
1435 struct e1000_hw *hw = &adapter->hw;
1436 int count = E1000_CHECK_RESET_COUNT;
1437
1438 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 usleep_range(10000, 20000);
1440
1441 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442 e1000_down(adapter);
1443 e1000_power_down_phy(adapter);
1444 e1000_free_irq(adapter);
1445
1446 e1000_free_all_tx_resources(adapter);
1447 e1000_free_all_rx_resources(adapter);
1448
1449 /* kill manageability vlan ID if supported, but not if a vlan with
1450 * the same ID is registered on the host OS (let 8021q kill it)
1451 */
1452 if ((hw->mng_cookie.status &
1453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 adapter->mng_vlan_id);
1457 }
1458
1459 return 0;
1460}
1461
1462/**
1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464 * @adapter: address of board private structure
1465 * @start: address of beginning of memory
1466 * @len: length of memory
1467 **/
1468static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 unsigned long len)
1470{
1471 struct e1000_hw *hw = &adapter->hw;
1472 unsigned long begin = (unsigned long)start;
1473 unsigned long end = begin + len;
1474
1475 /* First rev 82545 and 82546 need to not allow any memory
1476 * write location to cross 64k boundary due to errata 23
1477 */
1478 if (hw->mac_type == e1000_82545 ||
1479 hw->mac_type == e1000_ce4100 ||
1480 hw->mac_type == e1000_82546) {
1481 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482 }
1483
1484 return true;
1485}
1486
1487/**
1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489 * @adapter: board private structure
1490 * @txdr: tx descriptor ring (for a specific queue) to setup
1491 *
1492 * Return 0 on success, negative on failure
1493 **/
1494static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 struct e1000_tx_ring *txdr)
1496{
1497 struct pci_dev *pdev = adapter->pdev;
1498 int size;
1499
1500 size = sizeof(struct e1000_buffer) * txdr->count;
1501 txdr->buffer_info = vzalloc(size);
1502 if (!txdr->buffer_info)
1503 return -ENOMEM;
1504
1505 /* round up to nearest 4K */
1506
1507 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508 txdr->size = ALIGN(txdr->size, 4096);
1509
1510 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 GFP_KERNEL);
1512 if (!txdr->desc) {
1513setup_tx_desc_die:
1514 vfree(txdr->buffer_info);
1515 return -ENOMEM;
1516 }
1517
1518 /* Fix for errata 23, can't cross 64kB boundary */
1519 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 void *olddesc = txdr->desc;
1521 dma_addr_t olddma = txdr->dma;
1522 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523 txdr->size, txdr->desc);
1524 /* Try again, without freeing the previous */
1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 &txdr->dma, GFP_KERNEL);
1527 /* Failed allocation, critical failure */
1528 if (!txdr->desc) {
1529 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 olddma);
1531 goto setup_tx_desc_die;
1532 }
1533
1534 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 /* give up */
1536 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 txdr->dma);
1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 olddma);
1540 e_err(probe, "Unable to allocate aligned memory "
1541 "for the transmit descriptor ring\n");
1542 vfree(txdr->buffer_info);
1543 return -ENOMEM;
1544 } else {
1545 /* Free old allocation, new allocation was successful */
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 }
1549 }
1550 memset(txdr->desc, 0, txdr->size);
1551
1552 txdr->next_to_use = 0;
1553 txdr->next_to_clean = 0;
1554
1555 return 0;
1556}
1557
1558/**
1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560 * (Descriptors) for all queues
1561 * @adapter: board private structure
1562 *
1563 * Return 0 on success, negative on failure
1564 **/
1565int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566{
1567 int i, err = 0;
1568
1569 for (i = 0; i < adapter->num_tx_queues; i++) {
1570 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 if (err) {
1572 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573 for (i-- ; i >= 0; i--)
1574 e1000_free_tx_resources(adapter,
1575 &adapter->tx_ring[i]);
1576 break;
1577 }
1578 }
1579
1580 return err;
1581}
1582
1583/**
1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585 * @adapter: board private structure
1586 *
1587 * Configure the Tx unit of the MAC after a reset.
1588 **/
1589static void e1000_configure_tx(struct e1000_adapter *adapter)
1590{
1591 u64 tdba;
1592 struct e1000_hw *hw = &adapter->hw;
1593 u32 tdlen, tctl, tipg;
1594 u32 ipgr1, ipgr2;
1595
1596 /* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598 switch (adapter->num_tx_queues) {
1599 case 1:
1600 default:
1601 tdba = adapter->tx_ring[0].dma;
1602 tdlen = adapter->tx_ring[0].count *
1603 sizeof(struct e1000_tx_desc);
1604 ew32(TDLEN, tdlen);
1605 ew32(TDBAH, (tdba >> 32));
1606 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 ew32(TDT, 0);
1608 ew32(TDH, 0);
1609 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 E1000_TDH : E1000_82542_TDH);
1611 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 E1000_TDT : E1000_82542_TDT);
1613 break;
1614 }
1615
1616 /* Set the default values for the Tx Inter Packet Gap timer */
1617 if ((hw->media_type == e1000_media_type_fiber ||
1618 hw->media_type == e1000_media_type_internal_serdes))
1619 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 else
1621 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623 switch (hw->mac_type) {
1624 case e1000_82542_rev2_0:
1625 case e1000_82542_rev2_1:
1626 tipg = DEFAULT_82542_TIPG_IPGT;
1627 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629 break;
1630 default:
1631 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 break;
1634 }
1635 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637 ew32(TIPG, tipg);
1638
1639 /* Set the Tx Interrupt Delay register */
1640
1641 ew32(TIDV, adapter->tx_int_delay);
1642 if (hw->mac_type >= e1000_82540)
1643 ew32(TADV, adapter->tx_abs_int_delay);
1644
1645 /* Program the Transmit Control Register */
1646
1647 tctl = er32(TCTL);
1648 tctl &= ~E1000_TCTL_CT;
1649 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652 e1000_config_collision_dist(hw);
1653
1654 /* Setup Transmit Descriptor Settings for eop descriptor */
1655 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657 /* only set IDE if we are delaying interrupts using the timers */
1658 if (adapter->tx_int_delay)
1659 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661 if (hw->mac_type < e1000_82543)
1662 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 else
1664 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666 /* Cache if we're 82544 running in PCI-X because we'll
1667 * need this to apply a workaround later in the send path.
1668 */
1669 if (hw->mac_type == e1000_82544 &&
1670 hw->bus_type == e1000_bus_type_pcix)
1671 adapter->pcix_82544 = true;
1672
1673 ew32(TCTL, tctl);
1674
1675}
1676
1677/**
1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679 * @adapter: board private structure
1680 * @rxdr: rx descriptor ring (for a specific queue) to setup
1681 *
1682 * Returns 0 on success, negative on failure
1683 **/
1684static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 struct e1000_rx_ring *rxdr)
1686{
1687 struct pci_dev *pdev = adapter->pdev;
1688 int size, desc_len;
1689
1690 size = sizeof(struct e1000_buffer) * rxdr->count;
1691 rxdr->buffer_info = vzalloc(size);
1692 if (!rxdr->buffer_info)
1693 return -ENOMEM;
1694
1695 desc_len = sizeof(struct e1000_rx_desc);
1696
1697 /* Round up to nearest 4K */
1698
1699 rxdr->size = rxdr->count * desc_len;
1700 rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 GFP_KERNEL);
1704 if (!rxdr->desc) {
1705setup_rx_desc_die:
1706 vfree(rxdr->buffer_info);
1707 return -ENOMEM;
1708 }
1709
1710 /* Fix for errata 23, can't cross 64kB boundary */
1711 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 void *olddesc = rxdr->desc;
1713 dma_addr_t olddma = rxdr->dma;
1714 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715 rxdr->size, rxdr->desc);
1716 /* Try again, without freeing the previous */
1717 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 &rxdr->dma, GFP_KERNEL);
1719 /* Failed allocation, critical failure */
1720 if (!rxdr->desc) {
1721 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 olddma);
1723 goto setup_rx_desc_die;
1724 }
1725
1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 /* give up */
1728 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 rxdr->dma);
1730 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 olddma);
1732 e_err(probe, "Unable to allocate aligned memory for "
1733 "the Rx descriptor ring\n");
1734 goto setup_rx_desc_die;
1735 } else {
1736 /* Free old allocation, new allocation was successful */
1737 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 olddma);
1739 }
1740 }
1741 memset(rxdr->desc, 0, rxdr->size);
1742
1743 rxdr->next_to_clean = 0;
1744 rxdr->next_to_use = 0;
1745 rxdr->rx_skb_top = NULL;
1746
1747 return 0;
1748}
1749
1750/**
1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752 * (Descriptors) for all queues
1753 * @adapter: board private structure
1754 *
1755 * Return 0 on success, negative on failure
1756 **/
1757int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758{
1759 int i, err = 0;
1760
1761 for (i = 0; i < adapter->num_rx_queues; i++) {
1762 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 if (err) {
1764 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765 for (i-- ; i >= 0; i--)
1766 e1000_free_rx_resources(adapter,
1767 &adapter->rx_ring[i]);
1768 break;
1769 }
1770 }
1771
1772 return err;
1773}
1774
1775/**
1776 * e1000_setup_rctl - configure the receive control registers
1777 * @adapter: Board private structure
1778 **/
1779static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780{
1781 struct e1000_hw *hw = &adapter->hw;
1782 u32 rctl;
1783
1784 rctl = er32(RCTL);
1785
1786 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 E1000_RCTL_RDMTS_HALF |
1790 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792 if (hw->tbi_compatibility_on == 1)
1793 rctl |= E1000_RCTL_SBP;
1794 else
1795 rctl &= ~E1000_RCTL_SBP;
1796
1797 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 rctl &= ~E1000_RCTL_LPE;
1799 else
1800 rctl |= E1000_RCTL_LPE;
1801
1802 /* Setup buffer sizes */
1803 rctl &= ~E1000_RCTL_SZ_4096;
1804 rctl |= E1000_RCTL_BSEX;
1805 switch (adapter->rx_buffer_len) {
1806 case E1000_RXBUFFER_2048:
1807 default:
1808 rctl |= E1000_RCTL_SZ_2048;
1809 rctl &= ~E1000_RCTL_BSEX;
1810 break;
1811 case E1000_RXBUFFER_4096:
1812 rctl |= E1000_RCTL_SZ_4096;
1813 break;
1814 case E1000_RXBUFFER_8192:
1815 rctl |= E1000_RCTL_SZ_8192;
1816 break;
1817 case E1000_RXBUFFER_16384:
1818 rctl |= E1000_RCTL_SZ_16384;
1819 break;
1820 }
1821
1822 /* This is useful for sniffing bad packets. */
1823 if (adapter->netdev->features & NETIF_F_RXALL) {
1824 /* UPE and MPE will be handled by normal PROMISC logic
1825 * in e1000e_set_rx_mode
1826 */
1827 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 E1000_RCTL_DPF | /* Allow filtered pause */
1833 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 * and that breaks VLANs.
1836 */
1837 }
1838
1839 ew32(RCTL, rctl);
1840}
1841
1842/**
1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844 * @adapter: board private structure
1845 *
1846 * Configure the Rx unit of the MAC after a reset.
1847 **/
1848static void e1000_configure_rx(struct e1000_adapter *adapter)
1849{
1850 u64 rdba;
1851 struct e1000_hw *hw = &adapter->hw;
1852 u32 rdlen, rctl, rxcsum;
1853
1854 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 rdlen = adapter->rx_ring[0].count *
1856 sizeof(struct e1000_rx_desc);
1857 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 } else {
1860 rdlen = adapter->rx_ring[0].count *
1861 sizeof(struct e1000_rx_desc);
1862 adapter->clean_rx = e1000_clean_rx_irq;
1863 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 }
1865
1866 /* disable receives while setting up the descriptors */
1867 rctl = er32(RCTL);
1868 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870 /* set the Receive Delay Timer Register */
1871 ew32(RDTR, adapter->rx_int_delay);
1872
1873 if (hw->mac_type >= e1000_82540) {
1874 ew32(RADV, adapter->rx_abs_int_delay);
1875 if (adapter->itr_setting != 0)
1876 ew32(ITR, 1000000000 / (adapter->itr * 256));
1877 }
1878
1879 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880 * the Base and Length of the Rx Descriptor Ring
1881 */
1882 switch (adapter->num_rx_queues) {
1883 case 1:
1884 default:
1885 rdba = adapter->rx_ring[0].dma;
1886 ew32(RDLEN, rdlen);
1887 ew32(RDBAH, (rdba >> 32));
1888 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 ew32(RDT, 0);
1890 ew32(RDH, 0);
1891 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 E1000_RDH : E1000_82542_RDH);
1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 E1000_RDT : E1000_82542_RDT);
1895 break;
1896 }
1897
1898 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899 if (hw->mac_type >= e1000_82543) {
1900 rxcsum = er32(RXCSUM);
1901 if (adapter->rx_csum)
1902 rxcsum |= E1000_RXCSUM_TUOFL;
1903 else
1904 /* don't need to clear IPPCSE as it defaults to 0 */
1905 rxcsum &= ~E1000_RXCSUM_TUOFL;
1906 ew32(RXCSUM, rxcsum);
1907 }
1908
1909 /* Enable Receives */
1910 ew32(RCTL, rctl | E1000_RCTL_EN);
1911}
1912
1913/**
1914 * e1000_free_tx_resources - Free Tx Resources per Queue
1915 * @adapter: board private structure
1916 * @tx_ring: Tx descriptor ring for a specific queue
1917 *
1918 * Free all transmit software resources
1919 **/
1920static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 struct e1000_tx_ring *tx_ring)
1922{
1923 struct pci_dev *pdev = adapter->pdev;
1924
1925 e1000_clean_tx_ring(adapter, tx_ring);
1926
1927 vfree(tx_ring->buffer_info);
1928 tx_ring->buffer_info = NULL;
1929
1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 tx_ring->dma);
1932
1933 tx_ring->desc = NULL;
1934}
1935
1936/**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
1942void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943{
1944 int i;
1945
1946 for (i = 0; i < adapter->num_tx_queues; i++)
1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948}
1949
1950static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951 struct e1000_buffer *buffer_info)
1952{
1953 if (buffer_info->dma) {
1954 if (buffer_info->mapped_as_page)
1955 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956 buffer_info->length, DMA_TO_DEVICE);
1957 else
1958 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959 buffer_info->length,
1960 DMA_TO_DEVICE);
1961 buffer_info->dma = 0;
1962 }
1963 if (buffer_info->skb) {
1964 dev_kfree_skb_any(buffer_info->skb);
1965 buffer_info->skb = NULL;
1966 }
1967 buffer_info->time_stamp = 0;
1968 /* buffer_info must be completely set up in the transmit path */
1969}
1970
1971/**
1972 * e1000_clean_tx_ring - Free Tx Buffers
1973 * @adapter: board private structure
1974 * @tx_ring: ring to be cleaned
1975 **/
1976static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977 struct e1000_tx_ring *tx_ring)
1978{
1979 struct e1000_hw *hw = &adapter->hw;
1980 struct e1000_buffer *buffer_info;
1981 unsigned long size;
1982 unsigned int i;
1983
1984 /* Free all the Tx ring sk_buffs */
1985
1986 for (i = 0; i < tx_ring->count; i++) {
1987 buffer_info = &tx_ring->buffer_info[i];
1988 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989 }
1990
1991 netdev_reset_queue(adapter->netdev);
1992 size = sizeof(struct e1000_buffer) * tx_ring->count;
1993 memset(tx_ring->buffer_info, 0, size);
1994
1995 /* Zero out the descriptor ring */
1996
1997 memset(tx_ring->desc, 0, tx_ring->size);
1998
1999 tx_ring->next_to_use = 0;
2000 tx_ring->next_to_clean = 0;
2001 tx_ring->last_tx_tso = false;
2002
2003 writel(0, hw->hw_addr + tx_ring->tdh);
2004 writel(0, hw->hw_addr + tx_ring->tdt);
2005}
2006
2007/**
2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
2011static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012{
2013 int i;
2014
2015 for (i = 0; i < adapter->num_tx_queues; i++)
2016 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017}
2018
2019/**
2020 * e1000_free_rx_resources - Free Rx Resources
2021 * @adapter: board private structure
2022 * @rx_ring: ring to clean the resources from
2023 *
2024 * Free all receive software resources
2025 **/
2026static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027 struct e1000_rx_ring *rx_ring)
2028{
2029 struct pci_dev *pdev = adapter->pdev;
2030
2031 e1000_clean_rx_ring(adapter, rx_ring);
2032
2033 vfree(rx_ring->buffer_info);
2034 rx_ring->buffer_info = NULL;
2035
2036 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037 rx_ring->dma);
2038
2039 rx_ring->desc = NULL;
2040}
2041
2042/**
2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044 * @adapter: board private structure
2045 *
2046 * Free all receive software resources
2047 **/
2048void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049{
2050 int i;
2051
2052 for (i = 0; i < adapter->num_rx_queues; i++)
2053 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054}
2055
2056/**
2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058 * @adapter: board private structure
2059 * @rx_ring: ring to free buffers from
2060 **/
2061static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062 struct e1000_rx_ring *rx_ring)
2063{
2064 struct e1000_hw *hw = &adapter->hw;
2065 struct e1000_buffer *buffer_info;
2066 struct pci_dev *pdev = adapter->pdev;
2067 unsigned long size;
2068 unsigned int i;
2069
2070 /* Free all the Rx ring sk_buffs */
2071 for (i = 0; i < rx_ring->count; i++) {
2072 buffer_info = &rx_ring->buffer_info[i];
2073 if (buffer_info->dma &&
2074 adapter->clean_rx == e1000_clean_rx_irq) {
2075 dma_unmap_single(&pdev->dev, buffer_info->dma,
2076 buffer_info->length,
2077 DMA_FROM_DEVICE);
2078 } else if (buffer_info->dma &&
2079 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080 dma_unmap_page(&pdev->dev, buffer_info->dma,
2081 buffer_info->length,
2082 DMA_FROM_DEVICE);
2083 }
2084
2085 buffer_info->dma = 0;
2086 if (buffer_info->page) {
2087 put_page(buffer_info->page);
2088 buffer_info->page = NULL;
2089 }
2090 if (buffer_info->skb) {
2091 dev_kfree_skb(buffer_info->skb);
2092 buffer_info->skb = NULL;
2093 }
2094 }
2095
2096 /* there also may be some cached data from a chained receive */
2097 if (rx_ring->rx_skb_top) {
2098 dev_kfree_skb(rx_ring->rx_skb_top);
2099 rx_ring->rx_skb_top = NULL;
2100 }
2101
2102 size = sizeof(struct e1000_buffer) * rx_ring->count;
2103 memset(rx_ring->buffer_info, 0, size);
2104
2105 /* Zero out the descriptor ring */
2106 memset(rx_ring->desc, 0, rx_ring->size);
2107
2108 rx_ring->next_to_clean = 0;
2109 rx_ring->next_to_use = 0;
2110
2111 writel(0, hw->hw_addr + rx_ring->rdh);
2112 writel(0, hw->hw_addr + rx_ring->rdt);
2113}
2114
2115/**
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2118 **/
2119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120{
2121 int i;
2122
2123 for (i = 0; i < adapter->num_rx_queues; i++)
2124 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125}
2126
2127/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128 * and memory write and invalidate disabled for certain operations
2129 */
2130static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131{
2132 struct e1000_hw *hw = &adapter->hw;
2133 struct net_device *netdev = adapter->netdev;
2134 u32 rctl;
2135
2136 e1000_pci_clear_mwi(hw);
2137
2138 rctl = er32(RCTL);
2139 rctl |= E1000_RCTL_RST;
2140 ew32(RCTL, rctl);
2141 E1000_WRITE_FLUSH();
2142 mdelay(5);
2143
2144 if (netif_running(netdev))
2145 e1000_clean_all_rx_rings(adapter);
2146}
2147
2148static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149{
2150 struct e1000_hw *hw = &adapter->hw;
2151 struct net_device *netdev = adapter->netdev;
2152 u32 rctl;
2153
2154 rctl = er32(RCTL);
2155 rctl &= ~E1000_RCTL_RST;
2156 ew32(RCTL, rctl);
2157 E1000_WRITE_FLUSH();
2158 mdelay(5);
2159
2160 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161 e1000_pci_set_mwi(hw);
2162
2163 if (netif_running(netdev)) {
2164 /* No need to loop, because 82542 supports only 1 queue */
2165 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166 e1000_configure_rx(adapter);
2167 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168 }
2169}
2170
2171/**
2172 * e1000_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
2178static int e1000_set_mac(struct net_device *netdev, void *p)
2179{
2180 struct e1000_adapter *adapter = netdev_priv(netdev);
2181 struct e1000_hw *hw = &adapter->hw;
2182 struct sockaddr *addr = p;
2183
2184 if (!is_valid_ether_addr(addr->sa_data))
2185 return -EADDRNOTAVAIL;
2186
2187 /* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189 if (hw->mac_type == e1000_82542_rev2_0)
2190 e1000_enter_82542_rst(adapter);
2191
2192 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195 e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197 if (hw->mac_type == e1000_82542_rev2_0)
2198 e1000_leave_82542_rst(adapter);
2199
2200 return 0;
2201}
2202
2203/**
2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205 * @netdev: network interface device structure
2206 *
2207 * The set_rx_mode entry point is called whenever the unicast or multicast
2208 * address lists or the network interface flags are updated. This routine is
2209 * responsible for configuring the hardware for proper unicast, multicast,
2210 * promiscuous mode, and all-multi behavior.
2211 **/
2212static void e1000_set_rx_mode(struct net_device *netdev)
2213{
2214 struct e1000_adapter *adapter = netdev_priv(netdev);
2215 struct e1000_hw *hw = &adapter->hw;
2216 struct netdev_hw_addr *ha;
2217 bool use_uc = false;
2218 u32 rctl;
2219 u32 hash_value;
2220 int i, rar_entries = E1000_RAR_ENTRIES;
2221 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224 if (!mcarray)
2225 return;
2226
2227 /* Check for Promiscuous and All Multicast modes */
2228
2229 rctl = er32(RCTL);
2230
2231 if (netdev->flags & IFF_PROMISC) {
2232 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233 rctl &= ~E1000_RCTL_VFE;
2234 } else {
2235 if (netdev->flags & IFF_ALLMULTI)
2236 rctl |= E1000_RCTL_MPE;
2237 else
2238 rctl &= ~E1000_RCTL_MPE;
2239 /* Enable VLAN filter if there is a VLAN */
2240 if (e1000_vlan_used(adapter))
2241 rctl |= E1000_RCTL_VFE;
2242 }
2243
2244 if (netdev_uc_count(netdev) > rar_entries - 1) {
2245 rctl |= E1000_RCTL_UPE;
2246 } else if (!(netdev->flags & IFF_PROMISC)) {
2247 rctl &= ~E1000_RCTL_UPE;
2248 use_uc = true;
2249 }
2250
2251 ew32(RCTL, rctl);
2252
2253 /* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255 if (hw->mac_type == e1000_82542_rev2_0)
2256 e1000_enter_82542_rst(adapter);
2257
2258 /* load the first 14 addresses into the exact filters 1-14. Unicast
2259 * addresses take precedence to avoid disabling unicast filtering
2260 * when possible.
2261 *
2262 * RAR 0 is used for the station MAC address
2263 * if there are not 14 addresses, go ahead and clear the filters
2264 */
2265 i = 1;
2266 if (use_uc)
2267 netdev_for_each_uc_addr(ha, netdev) {
2268 if (i == rar_entries)
2269 break;
2270 e1000_rar_set(hw, ha->addr, i++);
2271 }
2272
2273 netdev_for_each_mc_addr(ha, netdev) {
2274 if (i == rar_entries) {
2275 /* load any remaining addresses into the hash table */
2276 u32 hash_reg, hash_bit, mta;
2277 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278 hash_reg = (hash_value >> 5) & 0x7F;
2279 hash_bit = hash_value & 0x1F;
2280 mta = (1 << hash_bit);
2281 mcarray[hash_reg] |= mta;
2282 } else {
2283 e1000_rar_set(hw, ha->addr, i++);
2284 }
2285 }
2286
2287 for (; i < rar_entries; i++) {
2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 E1000_WRITE_FLUSH();
2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 E1000_WRITE_FLUSH();
2292 }
2293
2294 /* write the hash table completely, write from bottom to avoid
2295 * both stupid write combining chipsets, and flushing each write
2296 */
2297 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298 /* If we are on an 82544 has an errata where writing odd
2299 * offsets overwrites the previous even offset, but writing
2300 * backwards over the range solves the issue by always
2301 * writing the odd offset first
2302 */
2303 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304 }
2305 E1000_WRITE_FLUSH();
2306
2307 if (hw->mac_type == e1000_82542_rev2_0)
2308 e1000_leave_82542_rst(adapter);
2309
2310 kfree(mcarray);
2311}
2312
2313/**
2314 * e1000_update_phy_info_task - get phy info
2315 * @work: work struct contained inside adapter struct
2316 *
2317 * Need to wait a few seconds after link up to get diagnostic information from
2318 * the phy
2319 */
2320static void e1000_update_phy_info_task(struct work_struct *work)
2321{
2322 struct e1000_adapter *adapter = container_of(work,
2323 struct e1000_adapter,
2324 phy_info_task.work);
2325
2326 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327}
2328
2329/**
2330 * e1000_82547_tx_fifo_stall_task - task to complete work
2331 * @work: work struct contained inside adapter struct
2332 **/
2333static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334{
2335 struct e1000_adapter *adapter = container_of(work,
2336 struct e1000_adapter,
2337 fifo_stall_task.work);
2338 struct e1000_hw *hw = &adapter->hw;
2339 struct net_device *netdev = adapter->netdev;
2340 u32 tctl;
2341
2342 if (atomic_read(&adapter->tx_fifo_stall)) {
2343 if ((er32(TDT) == er32(TDH)) &&
2344 (er32(TDFT) == er32(TDFH)) &&
2345 (er32(TDFTS) == er32(TDFHS))) {
2346 tctl = er32(TCTL);
2347 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348 ew32(TDFT, adapter->tx_head_addr);
2349 ew32(TDFH, adapter->tx_head_addr);
2350 ew32(TDFTS, adapter->tx_head_addr);
2351 ew32(TDFHS, adapter->tx_head_addr);
2352 ew32(TCTL, tctl);
2353 E1000_WRITE_FLUSH();
2354
2355 adapter->tx_fifo_head = 0;
2356 atomic_set(&adapter->tx_fifo_stall, 0);
2357 netif_wake_queue(netdev);
2358 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360 }
2361 }
2362}
2363
2364bool e1000_has_link(struct e1000_adapter *adapter)
2365{
2366 struct e1000_hw *hw = &adapter->hw;
2367 bool link_active = false;
2368
2369 /* get_link_status is set on LSC (link status) interrupt or rx
2370 * sequence error interrupt (except on intel ce4100).
2371 * get_link_status will stay false until the
2372 * e1000_check_for_link establishes link for copper adapters
2373 * ONLY
2374 */
2375 switch (hw->media_type) {
2376 case e1000_media_type_copper:
2377 if (hw->mac_type == e1000_ce4100)
2378 hw->get_link_status = 1;
2379 if (hw->get_link_status) {
2380 e1000_check_for_link(hw);
2381 link_active = !hw->get_link_status;
2382 } else {
2383 link_active = true;
2384 }
2385 break;
2386 case e1000_media_type_fiber:
2387 e1000_check_for_link(hw);
2388 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389 break;
2390 case e1000_media_type_internal_serdes:
2391 e1000_check_for_link(hw);
2392 link_active = hw->serdes_has_link;
2393 break;
2394 default:
2395 break;
2396 }
2397
2398 return link_active;
2399}
2400
2401/**
2402 * e1000_watchdog - work function
2403 * @work: work struct contained inside adapter struct
2404 **/
2405static void e1000_watchdog(struct work_struct *work)
2406{
2407 struct e1000_adapter *adapter = container_of(work,
2408 struct e1000_adapter,
2409 watchdog_task.work);
2410 struct e1000_hw *hw = &adapter->hw;
2411 struct net_device *netdev = adapter->netdev;
2412 struct e1000_tx_ring *txdr = adapter->tx_ring;
2413 u32 link, tctl;
2414
2415 link = e1000_has_link(adapter);
2416 if ((netif_carrier_ok(netdev)) && link)
2417 goto link_up;
2418
2419 if (link) {
2420 if (!netif_carrier_ok(netdev)) {
2421 u32 ctrl;
2422 bool txb2b = true;
2423 /* update snapshot of PHY registers on LSC */
2424 e1000_get_speed_and_duplex(hw,
2425 &adapter->link_speed,
2426 &adapter->link_duplex);
2427
2428 ctrl = er32(CTRL);
2429 pr_info("%s NIC Link is Up %d Mbps %s, "
2430 "Flow Control: %s\n",
2431 netdev->name,
2432 adapter->link_speed,
2433 adapter->link_duplex == FULL_DUPLEX ?
2434 "Full Duplex" : "Half Duplex",
2435 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438 E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440 /* adjust timeout factor according to speed/duplex */
2441 adapter->tx_timeout_factor = 1;
2442 switch (adapter->link_speed) {
2443 case SPEED_10:
2444 txb2b = false;
2445 adapter->tx_timeout_factor = 16;
2446 break;
2447 case SPEED_100:
2448 txb2b = false;
2449 /* maybe add some timeout factor ? */
2450 break;
2451 }
2452
2453 /* enable transmits in the hardware */
2454 tctl = er32(TCTL);
2455 tctl |= E1000_TCTL_EN;
2456 ew32(TCTL, tctl);
2457
2458 netif_carrier_on(netdev);
2459 if (!test_bit(__E1000_DOWN, &adapter->flags))
2460 schedule_delayed_work(&adapter->phy_info_task,
2461 2 * HZ);
2462 adapter->smartspeed = 0;
2463 }
2464 } else {
2465 if (netif_carrier_ok(netdev)) {
2466 adapter->link_speed = 0;
2467 adapter->link_duplex = 0;
2468 pr_info("%s NIC Link is Down\n",
2469 netdev->name);
2470 netif_carrier_off(netdev);
2471
2472 if (!test_bit(__E1000_DOWN, &adapter->flags))
2473 schedule_delayed_work(&adapter->phy_info_task,
2474 2 * HZ);
2475 }
2476
2477 e1000_smartspeed(adapter);
2478 }
2479
2480link_up:
2481 e1000_update_stats(adapter);
2482
2483 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484 adapter->tpt_old = adapter->stats.tpt;
2485 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486 adapter->colc_old = adapter->stats.colc;
2487
2488 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489 adapter->gorcl_old = adapter->stats.gorcl;
2490 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491 adapter->gotcl_old = adapter->stats.gotcl;
2492
2493 e1000_update_adaptive(hw);
2494
2495 if (!netif_carrier_ok(netdev)) {
2496 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497 /* We've lost link, so the controller stops DMA,
2498 * but we've got queued Tx work that's never going
2499 * to get done, so reset controller to flush Tx.
2500 * (Do the reset outside of interrupt context).
2501 */
2502 adapter->tx_timeout_count++;
2503 schedule_work(&adapter->reset_task);
2504 /* exit immediately since reset is imminent */
2505 return;
2506 }
2507 }
2508
2509 /* Simple mode for Interrupt Throttle Rate (ITR) */
2510 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2512 * Total asymmetrical Tx or Rx gets ITR=8000;
2513 * everyone else is between 2000-8000.
2514 */
2515 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517 adapter->gotcl - adapter->gorcl :
2518 adapter->gorcl - adapter->gotcl) / 10000;
2519 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521 ew32(ITR, 1000000000 / (itr * 256));
2522 }
2523
2524 /* Cause software interrupt to ensure rx ring is cleaned */
2525 ew32(ICS, E1000_ICS_RXDMT0);
2526
2527 /* Force detection of hung controller every watchdog period */
2528 adapter->detect_tx_hung = true;
2529
2530 /* Reschedule the task */
2531 if (!test_bit(__E1000_DOWN, &adapter->flags))
2532 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533}
2534
2535enum latency_range {
2536 lowest_latency = 0,
2537 low_latency = 1,
2538 bulk_latency = 2,
2539 latency_invalid = 255
2540};
2541
2542/**
2543 * e1000_update_itr - update the dynamic ITR value based on statistics
2544 * @adapter: pointer to adapter
2545 * @itr_setting: current adapter->itr
2546 * @packets: the number of packets during this measurement interval
2547 * @bytes: the number of bytes during this measurement interval
2548 *
2549 * Stores a new ITR value based on packets and byte
2550 * counts during the last interrupt. The advantage of per interrupt
2551 * computation is faster updates and more accurate ITR for the current
2552 * traffic pattern. Constants in this function were computed
2553 * based on theoretical maximum wire speed and thresholds were set based
2554 * on testing data as well as attempting to minimize response time
2555 * while increasing bulk throughput.
2556 * this functionality is controlled by the InterruptThrottleRate module
2557 * parameter (see e1000_param.c)
2558 **/
2559static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560 u16 itr_setting, int packets, int bytes)
2561{
2562 unsigned int retval = itr_setting;
2563 struct e1000_hw *hw = &adapter->hw;
2564
2565 if (unlikely(hw->mac_type < e1000_82540))
2566 goto update_itr_done;
2567
2568 if (packets == 0)
2569 goto update_itr_done;
2570
2571 switch (itr_setting) {
2572 case lowest_latency:
2573 /* jumbo frames get bulk treatment*/
2574 if (bytes/packets > 8000)
2575 retval = bulk_latency;
2576 else if ((packets < 5) && (bytes > 512))
2577 retval = low_latency;
2578 break;
2579 case low_latency: /* 50 usec aka 20000 ints/s */
2580 if (bytes > 10000) {
2581 /* jumbo frames need bulk latency setting */
2582 if (bytes/packets > 8000)
2583 retval = bulk_latency;
2584 else if ((packets < 10) || ((bytes/packets) > 1200))
2585 retval = bulk_latency;
2586 else if ((packets > 35))
2587 retval = lowest_latency;
2588 } else if (bytes/packets > 2000)
2589 retval = bulk_latency;
2590 else if (packets <= 2 && bytes < 512)
2591 retval = lowest_latency;
2592 break;
2593 case bulk_latency: /* 250 usec aka 4000 ints/s */
2594 if (bytes > 25000) {
2595 if (packets > 35)
2596 retval = low_latency;
2597 } else if (bytes < 6000) {
2598 retval = low_latency;
2599 }
2600 break;
2601 }
2602
2603update_itr_done:
2604 return retval;
2605}
2606
2607static void e1000_set_itr(struct e1000_adapter *adapter)
2608{
2609 struct e1000_hw *hw = &adapter->hw;
2610 u16 current_itr;
2611 u32 new_itr = adapter->itr;
2612
2613 if (unlikely(hw->mac_type < e1000_82540))
2614 return;
2615
2616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617 if (unlikely(adapter->link_speed != SPEED_1000)) {
2618 current_itr = 0;
2619 new_itr = 4000;
2620 goto set_itr_now;
2621 }
2622
2623 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624 adapter->total_tx_packets,
2625 adapter->total_tx_bytes);
2626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628 adapter->tx_itr = low_latency;
2629
2630 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631 adapter->total_rx_packets,
2632 adapter->total_rx_bytes);
2633 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635 adapter->rx_itr = low_latency;
2636
2637 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639 switch (current_itr) {
2640 /* counts and packets in update_itr are dependent on these numbers */
2641 case lowest_latency:
2642 new_itr = 70000;
2643 break;
2644 case low_latency:
2645 new_itr = 20000; /* aka hwitr = ~200 */
2646 break;
2647 case bulk_latency:
2648 new_itr = 4000;
2649 break;
2650 default:
2651 break;
2652 }
2653
2654set_itr_now:
2655 if (new_itr != adapter->itr) {
2656 /* this attempts to bias the interrupt rate towards Bulk
2657 * by adding intermediate steps when interrupt rate is
2658 * increasing
2659 */
2660 new_itr = new_itr > adapter->itr ?
2661 min(adapter->itr + (new_itr >> 2), new_itr) :
2662 new_itr;
2663 adapter->itr = new_itr;
2664 ew32(ITR, 1000000000 / (new_itr * 256));
2665 }
2666}
2667
2668#define E1000_TX_FLAGS_CSUM 0x00000001
2669#define E1000_TX_FLAGS_VLAN 0x00000002
2670#define E1000_TX_FLAGS_TSO 0x00000004
2671#define E1000_TX_FLAGS_IPV4 0x00000008
2672#define E1000_TX_FLAGS_NO_FCS 0x00000010
2673#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2674#define E1000_TX_FLAGS_VLAN_SHIFT 16
2675
2676static int e1000_tso(struct e1000_adapter *adapter,
2677 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2678{
2679 struct e1000_context_desc *context_desc;
2680 struct e1000_buffer *buffer_info;
2681 unsigned int i;
2682 u32 cmd_length = 0;
2683 u16 ipcse = 0, tucse, mss;
2684 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685
2686 if (skb_is_gso(skb)) {
2687 int err;
2688
2689 err = skb_cow_head(skb, 0);
2690 if (err < 0)
2691 return err;
2692
2693 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2694 mss = skb_shinfo(skb)->gso_size;
2695 if (skb->protocol == htons(ETH_P_IP)) {
2696 struct iphdr *iph = ip_hdr(skb);
2697 iph->tot_len = 0;
2698 iph->check = 0;
2699 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700 iph->daddr, 0,
2701 IPPROTO_TCP,
2702 0);
2703 cmd_length = E1000_TXD_CMD_IP;
2704 ipcse = skb_transport_offset(skb) - 1;
2705 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2706 ipv6_hdr(skb)->payload_len = 0;
2707 tcp_hdr(skb)->check =
2708 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709 &ipv6_hdr(skb)->daddr,
2710 0, IPPROTO_TCP, 0);
2711 ipcse = 0;
2712 }
2713 ipcss = skb_network_offset(skb);
2714 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2715 tucss = skb_transport_offset(skb);
2716 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2717 tucse = 0;
2718
2719 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2720 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2721
2722 i = tx_ring->next_to_use;
2723 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2724 buffer_info = &tx_ring->buffer_info[i];
2725
2726 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2727 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2728 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2729 context_desc->upper_setup.tcp_fields.tucss = tucss;
2730 context_desc->upper_setup.tcp_fields.tucso = tucso;
2731 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2732 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2733 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2734 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2735
2736 buffer_info->time_stamp = jiffies;
2737 buffer_info->next_to_watch = i;
2738
2739 if (++i == tx_ring->count) i = 0;
2740 tx_ring->next_to_use = i;
2741
2742 return true;
2743 }
2744 return false;
2745}
2746
2747static bool e1000_tx_csum(struct e1000_adapter *adapter,
2748 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2749{
2750 struct e1000_context_desc *context_desc;
2751 struct e1000_buffer *buffer_info;
2752 unsigned int i;
2753 u8 css;
2754 u32 cmd_len = E1000_TXD_CMD_DEXT;
2755
2756 if (skb->ip_summed != CHECKSUM_PARTIAL)
2757 return false;
2758
2759 switch (skb->protocol) {
2760 case cpu_to_be16(ETH_P_IP):
2761 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2762 cmd_len |= E1000_TXD_CMD_TCP;
2763 break;
2764 case cpu_to_be16(ETH_P_IPV6):
2765 /* XXX not handling all IPV6 headers */
2766 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2767 cmd_len |= E1000_TXD_CMD_TCP;
2768 break;
2769 default:
2770 if (unlikely(net_ratelimit()))
2771 e_warn(drv, "checksum_partial proto=%x!\n",
2772 skb->protocol);
2773 break;
2774 }
2775
2776 css = skb_checksum_start_offset(skb);
2777
2778 i = tx_ring->next_to_use;
2779 buffer_info = &tx_ring->buffer_info[i];
2780 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2781
2782 context_desc->lower_setup.ip_config = 0;
2783 context_desc->upper_setup.tcp_fields.tucss = css;
2784 context_desc->upper_setup.tcp_fields.tucso =
2785 css + skb->csum_offset;
2786 context_desc->upper_setup.tcp_fields.tucse = 0;
2787 context_desc->tcp_seg_setup.data = 0;
2788 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2789
2790 buffer_info->time_stamp = jiffies;
2791 buffer_info->next_to_watch = i;
2792
2793 if (unlikely(++i == tx_ring->count)) i = 0;
2794 tx_ring->next_to_use = i;
2795
2796 return true;
2797}
2798
2799#define E1000_MAX_TXD_PWR 12
2800#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2801
2802static int e1000_tx_map(struct e1000_adapter *adapter,
2803 struct e1000_tx_ring *tx_ring,
2804 struct sk_buff *skb, unsigned int first,
2805 unsigned int max_per_txd, unsigned int nr_frags,
2806 unsigned int mss)
2807{
2808 struct e1000_hw *hw = &adapter->hw;
2809 struct pci_dev *pdev = adapter->pdev;
2810 struct e1000_buffer *buffer_info;
2811 unsigned int len = skb_headlen(skb);
2812 unsigned int offset = 0, size, count = 0, i;
2813 unsigned int f, bytecount, segs;
2814
2815 i = tx_ring->next_to_use;
2816
2817 while (len) {
2818 buffer_info = &tx_ring->buffer_info[i];
2819 size = min(len, max_per_txd);
2820 /* Workaround for Controller erratum --
2821 * descriptor for non-tso packet in a linear SKB that follows a
2822 * tso gets written back prematurely before the data is fully
2823 * DMA'd to the controller
2824 */
2825 if (!skb->data_len && tx_ring->last_tx_tso &&
2826 !skb_is_gso(skb)) {
2827 tx_ring->last_tx_tso = false;
2828 size -= 4;
2829 }
2830
2831 /* Workaround for premature desc write-backs
2832 * in TSO mode. Append 4-byte sentinel desc
2833 */
2834 if (unlikely(mss && !nr_frags && size == len && size > 8))
2835 size -= 4;
2836 /* work-around for errata 10 and it applies
2837 * to all controllers in PCI-X mode
2838 * The fix is to make sure that the first descriptor of a
2839 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2840 */
2841 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2842 (size > 2015) && count == 0))
2843 size = 2015;
2844
2845 /* Workaround for potential 82544 hang in PCI-X. Avoid
2846 * terminating buffers within evenly-aligned dwords.
2847 */
2848 if (unlikely(adapter->pcix_82544 &&
2849 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2850 size > 4))
2851 size -= 4;
2852
2853 buffer_info->length = size;
2854 /* set time_stamp *before* dma to help avoid a possible race */
2855 buffer_info->time_stamp = jiffies;
2856 buffer_info->mapped_as_page = false;
2857 buffer_info->dma = dma_map_single(&pdev->dev,
2858 skb->data + offset,
2859 size, DMA_TO_DEVICE);
2860 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2861 goto dma_error;
2862 buffer_info->next_to_watch = i;
2863
2864 len -= size;
2865 offset += size;
2866 count++;
2867 if (len) {
2868 i++;
2869 if (unlikely(i == tx_ring->count))
2870 i = 0;
2871 }
2872 }
2873
2874 for (f = 0; f < nr_frags; f++) {
2875 const struct skb_frag_struct *frag;
2876
2877 frag = &skb_shinfo(skb)->frags[f];
2878 len = skb_frag_size(frag);
2879 offset = 0;
2880
2881 while (len) {
2882 unsigned long bufend;
2883 i++;
2884 if (unlikely(i == tx_ring->count))
2885 i = 0;
2886
2887 buffer_info = &tx_ring->buffer_info[i];
2888 size = min(len, max_per_txd);
2889 /* Workaround for premature desc write-backs
2890 * in TSO mode. Append 4-byte sentinel desc
2891 */
2892 if (unlikely(mss && f == (nr_frags-1) &&
2893 size == len && size > 8))
2894 size -= 4;
2895 /* Workaround for potential 82544 hang in PCI-X.
2896 * Avoid terminating buffers within evenly-aligned
2897 * dwords.
2898 */
2899 bufend = (unsigned long)
2900 page_to_phys(skb_frag_page(frag));
2901 bufend += offset + size - 1;
2902 if (unlikely(adapter->pcix_82544 &&
2903 !(bufend & 4) &&
2904 size > 4))
2905 size -= 4;
2906
2907 buffer_info->length = size;
2908 buffer_info->time_stamp = jiffies;
2909 buffer_info->mapped_as_page = true;
2910 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2911 offset, size, DMA_TO_DEVICE);
2912 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2913 goto dma_error;
2914 buffer_info->next_to_watch = i;
2915
2916 len -= size;
2917 offset += size;
2918 count++;
2919 }
2920 }
2921
2922 segs = skb_shinfo(skb)->gso_segs ?: 1;
2923 /* multiply data chunks by size of headers */
2924 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2925
2926 tx_ring->buffer_info[i].skb = skb;
2927 tx_ring->buffer_info[i].segs = segs;
2928 tx_ring->buffer_info[i].bytecount = bytecount;
2929 tx_ring->buffer_info[first].next_to_watch = i;
2930
2931 return count;
2932
2933dma_error:
2934 dev_err(&pdev->dev, "TX DMA map failed\n");
2935 buffer_info->dma = 0;
2936 if (count)
2937 count--;
2938
2939 while (count--) {
2940 if (i==0)
2941 i += tx_ring->count;
2942 i--;
2943 buffer_info = &tx_ring->buffer_info[i];
2944 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2945 }
2946
2947 return 0;
2948}
2949
2950static void e1000_tx_queue(struct e1000_adapter *adapter,
2951 struct e1000_tx_ring *tx_ring, int tx_flags,
2952 int count)
2953{
2954 struct e1000_hw *hw = &adapter->hw;
2955 struct e1000_tx_desc *tx_desc = NULL;
2956 struct e1000_buffer *buffer_info;
2957 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2958 unsigned int i;
2959
2960 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2961 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2962 E1000_TXD_CMD_TSE;
2963 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2964
2965 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2966 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2967 }
2968
2969 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2970 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2971 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972 }
2973
2974 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2975 txd_lower |= E1000_TXD_CMD_VLE;
2976 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2977 }
2978
2979 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2980 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2981
2982 i = tx_ring->next_to_use;
2983
2984 while (count--) {
2985 buffer_info = &tx_ring->buffer_info[i];
2986 tx_desc = E1000_TX_DESC(*tx_ring, i);
2987 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2988 tx_desc->lower.data =
2989 cpu_to_le32(txd_lower | buffer_info->length);
2990 tx_desc->upper.data = cpu_to_le32(txd_upper);
2991 if (unlikely(++i == tx_ring->count)) i = 0;
2992 }
2993
2994 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2995
2996 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2997 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
2999
3000 /* Force memory writes to complete before letting h/w
3001 * know there are new descriptors to fetch. (Only
3002 * applicable for weak-ordered memory model archs,
3003 * such as IA-64).
3004 */
3005 wmb();
3006
3007 tx_ring->next_to_use = i;
3008 writel(i, hw->hw_addr + tx_ring->tdt);
3009 /* we need this if more than one processor can write to our tail
3010 * at a time, it synchronizes IO on IA64/Altix systems
3011 */
3012 mmiowb();
3013}
3014
3015/* 82547 workaround to avoid controller hang in half-duplex environment.
3016 * The workaround is to avoid queuing a large packet that would span
3017 * the internal Tx FIFO ring boundary by notifying the stack to resend
3018 * the packet at a later time. This gives the Tx FIFO an opportunity to
3019 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3020 * to the beginning of the Tx FIFO.
3021 */
3022
3023#define E1000_FIFO_HDR 0x10
3024#define E1000_82547_PAD_LEN 0x3E0
3025
3026static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3027 struct sk_buff *skb)
3028{
3029 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3033
3034 if (adapter->link_duplex != HALF_DUPLEX)
3035 goto no_fifo_stall_required;
3036
3037 if (atomic_read(&adapter->tx_fifo_stall))
3038 return 1;
3039
3040 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041 atomic_set(&adapter->tx_fifo_stall, 1);
3042 return 1;
3043 }
3044
3045no_fifo_stall_required:
3046 adapter->tx_fifo_head += skb_fifo_len;
3047 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049 return 0;
3050}
3051
3052static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3053{
3054 struct e1000_adapter *adapter = netdev_priv(netdev);
3055 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3056
3057 netif_stop_queue(netdev);
3058 /* Herbert's original patch had:
3059 * smp_mb__after_netif_stop_queue();
3060 * but since that doesn't exist yet, just open code it.
3061 */
3062 smp_mb();
3063
3064 /* We need to check again in a case another CPU has just
3065 * made room available.
3066 */
3067 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3068 return -EBUSY;
3069
3070 /* A reprieve! */
3071 netif_start_queue(netdev);
3072 ++adapter->restart_queue;
3073 return 0;
3074}
3075
3076static int e1000_maybe_stop_tx(struct net_device *netdev,
3077 struct e1000_tx_ring *tx_ring, int size)
3078{
3079 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3080 return 0;
3081 return __e1000_maybe_stop_tx(netdev, size);
3082}
3083
3084#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3085static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3086 struct net_device *netdev)
3087{
3088 struct e1000_adapter *adapter = netdev_priv(netdev);
3089 struct e1000_hw *hw = &adapter->hw;
3090 struct e1000_tx_ring *tx_ring;
3091 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3092 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3093 unsigned int tx_flags = 0;
3094 unsigned int len = skb_headlen(skb);
3095 unsigned int nr_frags;
3096 unsigned int mss;
3097 int count = 0;
3098 int tso;
3099 unsigned int f;
3100
3101 /* This goes back to the question of how to logically map a Tx queue
3102 * to a flow. Right now, performance is impacted slightly negatively
3103 * if using multiple Tx queues. If the stack breaks away from a
3104 * single qdisc implementation, we can look at this again.
3105 */
3106 tx_ring = adapter->tx_ring;
3107
3108 if (unlikely(skb->len <= 0)) {
3109 dev_kfree_skb_any(skb);
3110 return NETDEV_TX_OK;
3111 }
3112
3113 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3114 * packets may get corrupted during padding by HW.
3115 * To WA this issue, pad all small packets manually.
3116 */
3117 if (skb->len < ETH_ZLEN) {
3118 if (skb_pad(skb, ETH_ZLEN - skb->len))
3119 return NETDEV_TX_OK;
3120 skb->len = ETH_ZLEN;
3121 skb_set_tail_pointer(skb, ETH_ZLEN);
3122 }
3123
3124 mss = skb_shinfo(skb)->gso_size;
3125 /* The controller does a simple calculation to
3126 * make sure there is enough room in the FIFO before
3127 * initiating the DMA for each buffer. The calc is:
3128 * 4 = ceil(buffer len/mss). To make sure we don't
3129 * overrun the FIFO, adjust the max buffer len if mss
3130 * drops.
3131 */
3132 if (mss) {
3133 u8 hdr_len;
3134 max_per_txd = min(mss << 2, max_per_txd);
3135 max_txd_pwr = fls(max_per_txd) - 1;
3136
3137 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3138 if (skb->data_len && hdr_len == len) {
3139 switch (hw->mac_type) {
3140 unsigned int pull_size;
3141 case e1000_82544:
3142 /* Make sure we have room to chop off 4 bytes,
3143 * and that the end alignment will work out to
3144 * this hardware's requirements
3145 * NOTE: this is a TSO only workaround
3146 * if end byte alignment not correct move us
3147 * into the next dword
3148 */
3149 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3150 & 4)
3151 break;
3152 /* fall through */
3153 pull_size = min((unsigned int)4, skb->data_len);
3154 if (!__pskb_pull_tail(skb, pull_size)) {
3155 e_err(drv, "__pskb_pull_tail "
3156 "failed.\n");
3157 dev_kfree_skb_any(skb);
3158 return NETDEV_TX_OK;
3159 }
3160 len = skb_headlen(skb);
3161 break;
3162 default:
3163 /* do nothing */
3164 break;
3165 }
3166 }
3167 }
3168
3169 /* reserve a descriptor for the offload context */
3170 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3171 count++;
3172 count++;
3173
3174 /* Controller Erratum workaround */
3175 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3176 count++;
3177
3178 count += TXD_USE_COUNT(len, max_txd_pwr);
3179
3180 if (adapter->pcix_82544)
3181 count++;
3182
3183 /* work-around for errata 10 and it applies to all controllers
3184 * in PCI-X mode, so add one more descriptor to the count
3185 */
3186 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3187 (len > 2015)))
3188 count++;
3189
3190 nr_frags = skb_shinfo(skb)->nr_frags;
3191 for (f = 0; f < nr_frags; f++)
3192 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3193 max_txd_pwr);
3194 if (adapter->pcix_82544)
3195 count += nr_frags;
3196
3197 /* need: count + 2 desc gap to keep tail from touching
3198 * head, otherwise try next time
3199 */
3200 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3201 return NETDEV_TX_BUSY;
3202
3203 if (unlikely((hw->mac_type == e1000_82547) &&
3204 (e1000_82547_fifo_workaround(adapter, skb)))) {
3205 netif_stop_queue(netdev);
3206 if (!test_bit(__E1000_DOWN, &adapter->flags))
3207 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3208 return NETDEV_TX_BUSY;
3209 }
3210
3211 if (vlan_tx_tag_present(skb)) {
3212 tx_flags |= E1000_TX_FLAGS_VLAN;
3213 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3214 }
3215
3216 first = tx_ring->next_to_use;
3217
3218 tso = e1000_tso(adapter, tx_ring, skb);
3219 if (tso < 0) {
3220 dev_kfree_skb_any(skb);
3221 return NETDEV_TX_OK;
3222 }
3223
3224 if (likely(tso)) {
3225 if (likely(hw->mac_type != e1000_82544))
3226 tx_ring->last_tx_tso = true;
3227 tx_flags |= E1000_TX_FLAGS_TSO;
3228 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3229 tx_flags |= E1000_TX_FLAGS_CSUM;
3230
3231 if (likely(skb->protocol == htons(ETH_P_IP)))
3232 tx_flags |= E1000_TX_FLAGS_IPV4;
3233
3234 if (unlikely(skb->no_fcs))
3235 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3236
3237 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3238 nr_frags, mss);
3239
3240 if (count) {
3241 netdev_sent_queue(netdev, skb->len);
3242 skb_tx_timestamp(skb);
3243
3244 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3245 /* Make sure there is space in the ring for the next send. */
3246 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3247
3248 } else {
3249 dev_kfree_skb_any(skb);
3250 tx_ring->buffer_info[first].time_stamp = 0;
3251 tx_ring->next_to_use = first;
3252 }
3253
3254 return NETDEV_TX_OK;
3255}
3256
3257#define NUM_REGS 38 /* 1 based count */
3258static void e1000_regdump(struct e1000_adapter *adapter)
3259{
3260 struct e1000_hw *hw = &adapter->hw;
3261 u32 regs[NUM_REGS];
3262 u32 *regs_buff = regs;
3263 int i = 0;
3264
3265 static const char * const reg_name[] = {
3266 "CTRL", "STATUS",
3267 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3268 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3269 "TIDV", "TXDCTL", "TADV", "TARC0",
3270 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3271 "TXDCTL1", "TARC1",
3272 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3273 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3274 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3275 };
3276
3277 regs_buff[0] = er32(CTRL);
3278 regs_buff[1] = er32(STATUS);
3279
3280 regs_buff[2] = er32(RCTL);
3281 regs_buff[3] = er32(RDLEN);
3282 regs_buff[4] = er32(RDH);
3283 regs_buff[5] = er32(RDT);
3284 regs_buff[6] = er32(RDTR);
3285
3286 regs_buff[7] = er32(TCTL);
3287 regs_buff[8] = er32(TDBAL);
3288 regs_buff[9] = er32(TDBAH);
3289 regs_buff[10] = er32(TDLEN);
3290 regs_buff[11] = er32(TDH);
3291 regs_buff[12] = er32(TDT);
3292 regs_buff[13] = er32(TIDV);
3293 regs_buff[14] = er32(TXDCTL);
3294 regs_buff[15] = er32(TADV);
3295 regs_buff[16] = er32(TARC0);
3296
3297 regs_buff[17] = er32(TDBAL1);
3298 regs_buff[18] = er32(TDBAH1);
3299 regs_buff[19] = er32(TDLEN1);
3300 regs_buff[20] = er32(TDH1);
3301 regs_buff[21] = er32(TDT1);
3302 regs_buff[22] = er32(TXDCTL1);
3303 regs_buff[23] = er32(TARC1);
3304 regs_buff[24] = er32(CTRL_EXT);
3305 regs_buff[25] = er32(ERT);
3306 regs_buff[26] = er32(RDBAL0);
3307 regs_buff[27] = er32(RDBAH0);
3308 regs_buff[28] = er32(TDFH);
3309 regs_buff[29] = er32(TDFT);
3310 regs_buff[30] = er32(TDFHS);
3311 regs_buff[31] = er32(TDFTS);
3312 regs_buff[32] = er32(TDFPC);
3313 regs_buff[33] = er32(RDFH);
3314 regs_buff[34] = er32(RDFT);
3315 regs_buff[35] = er32(RDFHS);
3316 regs_buff[36] = er32(RDFTS);
3317 regs_buff[37] = er32(RDFPC);
3318
3319 pr_info("Register dump\n");
3320 for (i = 0; i < NUM_REGS; i++)
3321 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3322}
3323
3324/*
3325 * e1000_dump: Print registers, tx ring and rx ring
3326 */
3327static void e1000_dump(struct e1000_adapter *adapter)
3328{
3329 /* this code doesn't handle multiple rings */
3330 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3331 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3332 int i;
3333
3334 if (!netif_msg_hw(adapter))
3335 return;
3336
3337 /* Print Registers */
3338 e1000_regdump(adapter);
3339
3340 /* transmit dump */
3341 pr_info("TX Desc ring0 dump\n");
3342
3343 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3344 *
3345 * Legacy Transmit Descriptor
3346 * +--------------------------------------------------------------+
3347 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3348 * +--------------------------------------------------------------+
3349 * 8 | Special | CSS | Status | CMD | CSO | Length |
3350 * +--------------------------------------------------------------+
3351 * 63 48 47 36 35 32 31 24 23 16 15 0
3352 *
3353 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3354 * 63 48 47 40 39 32 31 16 15 8 7 0
3355 * +----------------------------------------------------------------+
3356 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3357 * +----------------------------------------------------------------+
3358 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3359 * +----------------------------------------------------------------+
3360 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3361 *
3362 * Extended Data Descriptor (DTYP=0x1)
3363 * +----------------------------------------------------------------+
3364 * 0 | Buffer Address [63:0] |
3365 * +----------------------------------------------------------------+
3366 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3367 * +----------------------------------------------------------------+
3368 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3369 */
3370 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3371 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3372
3373 if (!netif_msg_tx_done(adapter))
3374 goto rx_ring_summary;
3375
3376 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3377 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3378 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3379 struct my_u { __le64 a; __le64 b; };
3380 struct my_u *u = (struct my_u *)tx_desc;
3381 const char *type;
3382
3383 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3384 type = "NTC/U";
3385 else if (i == tx_ring->next_to_use)
3386 type = "NTU";
3387 else if (i == tx_ring->next_to_clean)
3388 type = "NTC";
3389 else
3390 type = "";
3391
3392 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3393 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3394 le64_to_cpu(u->a), le64_to_cpu(u->b),
3395 (u64)buffer_info->dma, buffer_info->length,
3396 buffer_info->next_to_watch,
3397 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3398 }
3399
3400rx_ring_summary:
3401 /* receive dump */
3402 pr_info("\nRX Desc ring dump\n");
3403
3404 /* Legacy Receive Descriptor Format
3405 *
3406 * +-----------------------------------------------------+
3407 * | Buffer Address [63:0] |
3408 * +-----------------------------------------------------+
3409 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3410 * +-----------------------------------------------------+
3411 * 63 48 47 40 39 32 31 16 15 0
3412 */
3413 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3414
3415 if (!netif_msg_rx_status(adapter))
3416 goto exit;
3417
3418 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3419 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3420 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3421 struct my_u { __le64 a; __le64 b; };
3422 struct my_u *u = (struct my_u *)rx_desc;
3423 const char *type;
3424
3425 if (i == rx_ring->next_to_use)
3426 type = "NTU";
3427 else if (i == rx_ring->next_to_clean)
3428 type = "NTC";
3429 else
3430 type = "";
3431
3432 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3433 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3434 (u64)buffer_info->dma, buffer_info->skb, type);
3435 } /* for */
3436
3437 /* dump the descriptor caches */
3438 /* rx */
3439 pr_info("Rx descriptor cache in 64bit format\n");
3440 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3441 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3442 i,
3443 readl(adapter->hw.hw_addr + i+4),
3444 readl(adapter->hw.hw_addr + i),
3445 readl(adapter->hw.hw_addr + i+12),
3446 readl(adapter->hw.hw_addr + i+8));
3447 }
3448 /* tx */
3449 pr_info("Tx descriptor cache in 64bit format\n");
3450 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3451 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3452 i,
3453 readl(adapter->hw.hw_addr + i+4),
3454 readl(adapter->hw.hw_addr + i),
3455 readl(adapter->hw.hw_addr + i+12),
3456 readl(adapter->hw.hw_addr + i+8));
3457 }
3458exit:
3459 return;
3460}
3461
3462/**
3463 * e1000_tx_timeout - Respond to a Tx Hang
3464 * @netdev: network interface device structure
3465 **/
3466static void e1000_tx_timeout(struct net_device *netdev)
3467{
3468 struct e1000_adapter *adapter = netdev_priv(netdev);
3469
3470 /* Do the reset outside of interrupt context */
3471 adapter->tx_timeout_count++;
3472 schedule_work(&adapter->reset_task);
3473}
3474
3475static void e1000_reset_task(struct work_struct *work)
3476{
3477 struct e1000_adapter *adapter =
3478 container_of(work, struct e1000_adapter, reset_task);
3479
3480 e_err(drv, "Reset adapter\n");
3481 e1000_reinit_locked(adapter);
3482}
3483
3484/**
3485 * e1000_get_stats - Get System Network Statistics
3486 * @netdev: network interface device structure
3487 *
3488 * Returns the address of the device statistics structure.
3489 * The statistics are actually updated from the watchdog.
3490 **/
3491static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3492{
3493 /* only return the current stats */
3494 return &netdev->stats;
3495}
3496
3497/**
3498 * e1000_change_mtu - Change the Maximum Transfer Unit
3499 * @netdev: network interface device structure
3500 * @new_mtu: new value for maximum frame size
3501 *
3502 * Returns 0 on success, negative on failure
3503 **/
3504static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3505{
3506 struct e1000_adapter *adapter = netdev_priv(netdev);
3507 struct e1000_hw *hw = &adapter->hw;
3508 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3509
3510 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3511 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3512 e_err(probe, "Invalid MTU setting\n");
3513 return -EINVAL;
3514 }
3515
3516 /* Adapter-specific max frame size limits. */
3517 switch (hw->mac_type) {
3518 case e1000_undefined ... e1000_82542_rev2_1:
3519 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3520 e_err(probe, "Jumbo Frames not supported.\n");
3521 return -EINVAL;
3522 }
3523 break;
3524 default:
3525 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3526 break;
3527 }
3528
3529 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3530 msleep(1);
3531 /* e1000_down has a dependency on max_frame_size */
3532 hw->max_frame_size = max_frame;
3533 if (netif_running(netdev))
3534 e1000_down(adapter);
3535
3536 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3537 * means we reserve 2 more, this pushes us to allocate from the next
3538 * larger slab size.
3539 * i.e. RXBUFFER_2048 --> size-4096 slab
3540 * however with the new *_jumbo_rx* routines, jumbo receives will use
3541 * fragmented skbs
3542 */
3543
3544 if (max_frame <= E1000_RXBUFFER_2048)
3545 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3546 else
3547#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3548 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3550 adapter->rx_buffer_len = PAGE_SIZE;
3551#endif
3552
3553 /* adjust allocation if LPE protects us, and we aren't using SBP */
3554 if (!hw->tbi_compatibility_on &&
3555 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3556 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3557 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3558
3559 pr_info("%s changing MTU from %d to %d\n",
3560 netdev->name, netdev->mtu, new_mtu);
3561 netdev->mtu = new_mtu;
3562
3563 if (netif_running(netdev))
3564 e1000_up(adapter);
3565 else
3566 e1000_reset(adapter);
3567
3568 clear_bit(__E1000_RESETTING, &adapter->flags);
3569
3570 return 0;
3571}
3572
3573/**
3574 * e1000_update_stats - Update the board statistics counters
3575 * @adapter: board private structure
3576 **/
3577void e1000_update_stats(struct e1000_adapter *adapter)
3578{
3579 struct net_device *netdev = adapter->netdev;
3580 struct e1000_hw *hw = &adapter->hw;
3581 struct pci_dev *pdev = adapter->pdev;
3582 unsigned long flags;
3583 u16 phy_tmp;
3584
3585#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3586
3587 /* Prevent stats update while adapter is being reset, or if the pci
3588 * connection is down.
3589 */
3590 if (adapter->link_speed == 0)
3591 return;
3592 if (pci_channel_offline(pdev))
3593 return;
3594
3595 spin_lock_irqsave(&adapter->stats_lock, flags);
3596
3597 /* these counters are modified from e1000_tbi_adjust_stats,
3598 * called from the interrupt context, so they must only
3599 * be written while holding adapter->stats_lock
3600 */
3601
3602 adapter->stats.crcerrs += er32(CRCERRS);
3603 adapter->stats.gprc += er32(GPRC);
3604 adapter->stats.gorcl += er32(GORCL);
3605 adapter->stats.gorch += er32(GORCH);
3606 adapter->stats.bprc += er32(BPRC);
3607 adapter->stats.mprc += er32(MPRC);
3608 adapter->stats.roc += er32(ROC);
3609
3610 adapter->stats.prc64 += er32(PRC64);
3611 adapter->stats.prc127 += er32(PRC127);
3612 adapter->stats.prc255 += er32(PRC255);
3613 adapter->stats.prc511 += er32(PRC511);
3614 adapter->stats.prc1023 += er32(PRC1023);
3615 adapter->stats.prc1522 += er32(PRC1522);
3616
3617 adapter->stats.symerrs += er32(SYMERRS);
3618 adapter->stats.mpc += er32(MPC);
3619 adapter->stats.scc += er32(SCC);
3620 adapter->stats.ecol += er32(ECOL);
3621 adapter->stats.mcc += er32(MCC);
3622 adapter->stats.latecol += er32(LATECOL);
3623 adapter->stats.dc += er32(DC);
3624 adapter->stats.sec += er32(SEC);
3625 adapter->stats.rlec += er32(RLEC);
3626 adapter->stats.xonrxc += er32(XONRXC);
3627 adapter->stats.xontxc += er32(XONTXC);
3628 adapter->stats.xoffrxc += er32(XOFFRXC);
3629 adapter->stats.xofftxc += er32(XOFFTXC);
3630 adapter->stats.fcruc += er32(FCRUC);
3631 adapter->stats.gptc += er32(GPTC);
3632 adapter->stats.gotcl += er32(GOTCL);
3633 adapter->stats.gotch += er32(GOTCH);
3634 adapter->stats.rnbc += er32(RNBC);
3635 adapter->stats.ruc += er32(RUC);
3636 adapter->stats.rfc += er32(RFC);
3637 adapter->stats.rjc += er32(RJC);
3638 adapter->stats.torl += er32(TORL);
3639 adapter->stats.torh += er32(TORH);
3640 adapter->stats.totl += er32(TOTL);
3641 adapter->stats.toth += er32(TOTH);
3642 adapter->stats.tpr += er32(TPR);
3643
3644 adapter->stats.ptc64 += er32(PTC64);
3645 adapter->stats.ptc127 += er32(PTC127);
3646 adapter->stats.ptc255 += er32(PTC255);
3647 adapter->stats.ptc511 += er32(PTC511);
3648 adapter->stats.ptc1023 += er32(PTC1023);
3649 adapter->stats.ptc1522 += er32(PTC1522);
3650
3651 adapter->stats.mptc += er32(MPTC);
3652 adapter->stats.bptc += er32(BPTC);
3653
3654 /* used for adaptive IFS */
3655
3656 hw->tx_packet_delta = er32(TPT);
3657 adapter->stats.tpt += hw->tx_packet_delta;
3658 hw->collision_delta = er32(COLC);
3659 adapter->stats.colc += hw->collision_delta;
3660
3661 if (hw->mac_type >= e1000_82543) {
3662 adapter->stats.algnerrc += er32(ALGNERRC);
3663 adapter->stats.rxerrc += er32(RXERRC);
3664 adapter->stats.tncrs += er32(TNCRS);
3665 adapter->stats.cexterr += er32(CEXTERR);
3666 adapter->stats.tsctc += er32(TSCTC);
3667 adapter->stats.tsctfc += er32(TSCTFC);
3668 }
3669
3670 /* Fill out the OS statistics structure */
3671 netdev->stats.multicast = adapter->stats.mprc;
3672 netdev->stats.collisions = adapter->stats.colc;
3673
3674 /* Rx Errors */
3675
3676 /* RLEC on some newer hardware can be incorrect so build
3677 * our own version based on RUC and ROC
3678 */
3679 netdev->stats.rx_errors = adapter->stats.rxerrc +
3680 adapter->stats.crcerrs + adapter->stats.algnerrc +
3681 adapter->stats.ruc + adapter->stats.roc +
3682 adapter->stats.cexterr;
3683 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3684 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3685 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3686 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3687 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3688
3689 /* Tx Errors */
3690 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3691 netdev->stats.tx_errors = adapter->stats.txerrc;
3692 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3693 netdev->stats.tx_window_errors = adapter->stats.latecol;
3694 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3695 if (hw->bad_tx_carr_stats_fd &&
3696 adapter->link_duplex == FULL_DUPLEX) {
3697 netdev->stats.tx_carrier_errors = 0;
3698 adapter->stats.tncrs = 0;
3699 }
3700
3701 /* Tx Dropped needs to be maintained elsewhere */
3702
3703 /* Phy Stats */
3704 if (hw->media_type == e1000_media_type_copper) {
3705 if ((adapter->link_speed == SPEED_1000) &&
3706 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3707 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3708 adapter->phy_stats.idle_errors += phy_tmp;
3709 }
3710
3711 if ((hw->mac_type <= e1000_82546) &&
3712 (hw->phy_type == e1000_phy_m88) &&
3713 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3714 adapter->phy_stats.receive_errors += phy_tmp;
3715 }
3716
3717 /* Management Stats */
3718 if (hw->has_smbus) {
3719 adapter->stats.mgptc += er32(MGTPTC);
3720 adapter->stats.mgprc += er32(MGTPRC);
3721 adapter->stats.mgpdc += er32(MGTPDC);
3722 }
3723
3724 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3725}
3726
3727/**
3728 * e1000_intr - Interrupt Handler
3729 * @irq: interrupt number
3730 * @data: pointer to a network interface device structure
3731 **/
3732static irqreturn_t e1000_intr(int irq, void *data)
3733{
3734 struct net_device *netdev = data;
3735 struct e1000_adapter *adapter = netdev_priv(netdev);
3736 struct e1000_hw *hw = &adapter->hw;
3737 u32 icr = er32(ICR);
3738
3739 if (unlikely((!icr)))
3740 return IRQ_NONE; /* Not our interrupt */
3741
3742 /* we might have caused the interrupt, but the above
3743 * read cleared it, and just in case the driver is
3744 * down there is nothing to do so return handled
3745 */
3746 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3747 return IRQ_HANDLED;
3748
3749 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3750 hw->get_link_status = 1;
3751 /* guard against interrupt when we're going down */
3752 if (!test_bit(__E1000_DOWN, &adapter->flags))
3753 schedule_delayed_work(&adapter->watchdog_task, 1);
3754 }
3755
3756 /* disable interrupts, without the synchronize_irq bit */
3757 ew32(IMC, ~0);
3758 E1000_WRITE_FLUSH();
3759
3760 if (likely(napi_schedule_prep(&adapter->napi))) {
3761 adapter->total_tx_bytes = 0;
3762 adapter->total_tx_packets = 0;
3763 adapter->total_rx_bytes = 0;
3764 adapter->total_rx_packets = 0;
3765 __napi_schedule(&adapter->napi);
3766 } else {
3767 /* this really should not happen! if it does it is basically a
3768 * bug, but not a hard error, so enable ints and continue
3769 */
3770 if (!test_bit(__E1000_DOWN, &adapter->flags))
3771 e1000_irq_enable(adapter);
3772 }
3773
3774 return IRQ_HANDLED;
3775}
3776
3777/**
3778 * e1000_clean - NAPI Rx polling callback
3779 * @adapter: board private structure
3780 **/
3781static int e1000_clean(struct napi_struct *napi, int budget)
3782{
3783 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3784 napi);
3785 int tx_clean_complete = 0, work_done = 0;
3786
3787 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3788
3789 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3790
3791 if (!tx_clean_complete)
3792 work_done = budget;
3793
3794 /* If budget not fully consumed, exit the polling mode */
3795 if (work_done < budget) {
3796 if (likely(adapter->itr_setting & 3))
3797 e1000_set_itr(adapter);
3798 napi_complete(napi);
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 e1000_irq_enable(adapter);
3801 }
3802
3803 return work_done;
3804}
3805
3806/**
3807 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3808 * @adapter: board private structure
3809 **/
3810static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3811 struct e1000_tx_ring *tx_ring)
3812{
3813 struct e1000_hw *hw = &adapter->hw;
3814 struct net_device *netdev = adapter->netdev;
3815 struct e1000_tx_desc *tx_desc, *eop_desc;
3816 struct e1000_buffer *buffer_info;
3817 unsigned int i, eop;
3818 unsigned int count = 0;
3819 unsigned int total_tx_bytes=0, total_tx_packets=0;
3820 unsigned int bytes_compl = 0, pkts_compl = 0;
3821
3822 i = tx_ring->next_to_clean;
3823 eop = tx_ring->buffer_info[i].next_to_watch;
3824 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3825
3826 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3827 (count < tx_ring->count)) {
3828 bool cleaned = false;
3829 rmb(); /* read buffer_info after eop_desc */
3830 for ( ; !cleaned; count++) {
3831 tx_desc = E1000_TX_DESC(*tx_ring, i);
3832 buffer_info = &tx_ring->buffer_info[i];
3833 cleaned = (i == eop);
3834
3835 if (cleaned) {
3836 total_tx_packets += buffer_info->segs;
3837 total_tx_bytes += buffer_info->bytecount;
3838 if (buffer_info->skb) {
3839 bytes_compl += buffer_info->skb->len;
3840 pkts_compl++;
3841 }
3842
3843 }
3844 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3845 tx_desc->upper.data = 0;
3846
3847 if (unlikely(++i == tx_ring->count)) i = 0;
3848 }
3849
3850 eop = tx_ring->buffer_info[i].next_to_watch;
3851 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3852 }
3853
3854 tx_ring->next_to_clean = i;
3855
3856 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3857
3858#define TX_WAKE_THRESHOLD 32
3859 if (unlikely(count && netif_carrier_ok(netdev) &&
3860 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3861 /* Make sure that anybody stopping the queue after this
3862 * sees the new next_to_clean.
3863 */
3864 smp_mb();
3865
3866 if (netif_queue_stopped(netdev) &&
3867 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3868 netif_wake_queue(netdev);
3869 ++adapter->restart_queue;
3870 }
3871 }
3872
3873 if (adapter->detect_tx_hung) {
3874 /* Detect a transmit hang in hardware, this serializes the
3875 * check with the clearing of time_stamp and movement of i
3876 */
3877 adapter->detect_tx_hung = false;
3878 if (tx_ring->buffer_info[eop].time_stamp &&
3879 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3880 (adapter->tx_timeout_factor * HZ)) &&
3881 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3882
3883 /* detected Tx unit hang */
3884 e_err(drv, "Detected Tx Unit Hang\n"
3885 " Tx Queue <%lu>\n"
3886 " TDH <%x>\n"
3887 " TDT <%x>\n"
3888 " next_to_use <%x>\n"
3889 " next_to_clean <%x>\n"
3890 "buffer_info[next_to_clean]\n"
3891 " time_stamp <%lx>\n"
3892 " next_to_watch <%x>\n"
3893 " jiffies <%lx>\n"
3894 " next_to_watch.status <%x>\n",
3895 (unsigned long)(tx_ring - adapter->tx_ring),
3896 readl(hw->hw_addr + tx_ring->tdh),
3897 readl(hw->hw_addr + tx_ring->tdt),
3898 tx_ring->next_to_use,
3899 tx_ring->next_to_clean,
3900 tx_ring->buffer_info[eop].time_stamp,
3901 eop,
3902 jiffies,
3903 eop_desc->upper.fields.status);
3904 e1000_dump(adapter);
3905 netif_stop_queue(netdev);
3906 }
3907 }
3908 adapter->total_tx_bytes += total_tx_bytes;
3909 adapter->total_tx_packets += total_tx_packets;
3910 netdev->stats.tx_bytes += total_tx_bytes;
3911 netdev->stats.tx_packets += total_tx_packets;
3912 return count < tx_ring->count;
3913}
3914
3915/**
3916 * e1000_rx_checksum - Receive Checksum Offload for 82543
3917 * @adapter: board private structure
3918 * @status_err: receive descriptor status and error fields
3919 * @csum: receive descriptor csum field
3920 * @sk_buff: socket buffer with received data
3921 **/
3922static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3923 u32 csum, struct sk_buff *skb)
3924{
3925 struct e1000_hw *hw = &adapter->hw;
3926 u16 status = (u16)status_err;
3927 u8 errors = (u8)(status_err >> 24);
3928
3929 skb_checksum_none_assert(skb);
3930
3931 /* 82543 or newer only */
3932 if (unlikely(hw->mac_type < e1000_82543)) return;
3933 /* Ignore Checksum bit is set */
3934 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3935 /* TCP/UDP checksum error bit is set */
3936 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3937 /* let the stack verify checksum errors */
3938 adapter->hw_csum_err++;
3939 return;
3940 }
3941 /* TCP/UDP Checksum has not been calculated */
3942 if (!(status & E1000_RXD_STAT_TCPCS))
3943 return;
3944
3945 /* It must be a TCP or UDP packet with a valid checksum */
3946 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3947 /* TCP checksum is good */
3948 skb->ip_summed = CHECKSUM_UNNECESSARY;
3949 }
3950 adapter->hw_csum_good++;
3951}
3952
3953/**
3954 * e1000_consume_page - helper function
3955 **/
3956static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3957 u16 length)
3958{
3959 bi->page = NULL;
3960 skb->len += length;
3961 skb->data_len += length;
3962 skb->truesize += PAGE_SIZE;
3963}
3964
3965/**
3966 * e1000_receive_skb - helper function to handle rx indications
3967 * @adapter: board private structure
3968 * @status: descriptor status field as written by hardware
3969 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3970 * @skb: pointer to sk_buff to be indicated to stack
3971 */
3972static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3973 __le16 vlan, struct sk_buff *skb)
3974{
3975 skb->protocol = eth_type_trans(skb, adapter->netdev);
3976
3977 if (status & E1000_RXD_STAT_VP) {
3978 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3979
3980 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3981 }
3982 napi_gro_receive(&adapter->napi, skb);
3983}
3984
3985/**
3986 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3987 * @adapter: board private structure
3988 * @rx_ring: ring to clean
3989 * @work_done: amount of napi work completed this call
3990 * @work_to_do: max amount of work allowed for this call to do
3991 *
3992 * the return value indicates whether actual cleaning was done, there
3993 * is no guarantee that everything was cleaned
3994 */
3995static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3996 struct e1000_rx_ring *rx_ring,
3997 int *work_done, int work_to_do)
3998{
3999 struct e1000_hw *hw = &adapter->hw;
4000 struct net_device *netdev = adapter->netdev;
4001 struct pci_dev *pdev = adapter->pdev;
4002 struct e1000_rx_desc *rx_desc, *next_rxd;
4003 struct e1000_buffer *buffer_info, *next_buffer;
4004 unsigned long irq_flags;
4005 u32 length;
4006 unsigned int i;
4007 int cleaned_count = 0;
4008 bool cleaned = false;
4009 unsigned int total_rx_bytes=0, total_rx_packets=0;
4010
4011 i = rx_ring->next_to_clean;
4012 rx_desc = E1000_RX_DESC(*rx_ring, i);
4013 buffer_info = &rx_ring->buffer_info[i];
4014
4015 while (rx_desc->status & E1000_RXD_STAT_DD) {
4016 struct sk_buff *skb;
4017 u8 status;
4018
4019 if (*work_done >= work_to_do)
4020 break;
4021 (*work_done)++;
4022 rmb(); /* read descriptor and rx_buffer_info after status DD */
4023
4024 status = rx_desc->status;
4025 skb = buffer_info->skb;
4026 buffer_info->skb = NULL;
4027
4028 if (++i == rx_ring->count) i = 0;
4029 next_rxd = E1000_RX_DESC(*rx_ring, i);
4030 prefetch(next_rxd);
4031
4032 next_buffer = &rx_ring->buffer_info[i];
4033
4034 cleaned = true;
4035 cleaned_count++;
4036 dma_unmap_page(&pdev->dev, buffer_info->dma,
4037 buffer_info->length, DMA_FROM_DEVICE);
4038 buffer_info->dma = 0;
4039
4040 length = le16_to_cpu(rx_desc->length);
4041
4042 /* errors is only valid for DD + EOP descriptors */
4043 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4044 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4045 u8 *mapped;
4046 u8 last_byte;
4047
4048 mapped = page_address(buffer_info->page);
4049 last_byte = *(mapped + length - 1);
4050 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4051 last_byte)) {
4052 spin_lock_irqsave(&adapter->stats_lock,
4053 irq_flags);
4054 e1000_tbi_adjust_stats(hw, &adapter->stats,
4055 length, mapped);
4056 spin_unlock_irqrestore(&adapter->stats_lock,
4057 irq_flags);
4058 length--;
4059 } else {
4060 if (netdev->features & NETIF_F_RXALL)
4061 goto process_skb;
4062 /* recycle both page and skb */
4063 buffer_info->skb = skb;
4064 /* an error means any chain goes out the window
4065 * too
4066 */
4067 if (rx_ring->rx_skb_top)
4068 dev_kfree_skb(rx_ring->rx_skb_top);
4069 rx_ring->rx_skb_top = NULL;
4070 goto next_desc;
4071 }
4072 }
4073
4074#define rxtop rx_ring->rx_skb_top
4075process_skb:
4076 if (!(status & E1000_RXD_STAT_EOP)) {
4077 /* this descriptor is only the beginning (or middle) */
4078 if (!rxtop) {
4079 /* this is the beginning of a chain */
4080 rxtop = skb;
4081 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4082 0, length);
4083 } else {
4084 /* this is the middle of a chain */
4085 skb_fill_page_desc(rxtop,
4086 skb_shinfo(rxtop)->nr_frags,
4087 buffer_info->page, 0, length);
4088 /* re-use the skb, only consumed the page */
4089 buffer_info->skb = skb;
4090 }
4091 e1000_consume_page(buffer_info, rxtop, length);
4092 goto next_desc;
4093 } else {
4094 if (rxtop) {
4095 /* end of the chain */
4096 skb_fill_page_desc(rxtop,
4097 skb_shinfo(rxtop)->nr_frags,
4098 buffer_info->page, 0, length);
4099 /* re-use the current skb, we only consumed the
4100 * page
4101 */
4102 buffer_info->skb = skb;
4103 skb = rxtop;
4104 rxtop = NULL;
4105 e1000_consume_page(buffer_info, skb, length);
4106 } else {
4107 /* no chain, got EOP, this buf is the packet
4108 * copybreak to save the put_page/alloc_page
4109 */
4110 if (length <= copybreak &&
4111 skb_tailroom(skb) >= length) {
4112 u8 *vaddr;
4113 vaddr = kmap_atomic(buffer_info->page);
4114 memcpy(skb_tail_pointer(skb), vaddr,
4115 length);
4116 kunmap_atomic(vaddr);
4117 /* re-use the page, so don't erase
4118 * buffer_info->page
4119 */
4120 skb_put(skb, length);
4121 } else {
4122 skb_fill_page_desc(skb, 0,
4123 buffer_info->page, 0,
4124 length);
4125 e1000_consume_page(buffer_info, skb,
4126 length);
4127 }
4128 }
4129 }
4130
4131 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4132 e1000_rx_checksum(adapter,
4133 (u32)(status) |
4134 ((u32)(rx_desc->errors) << 24),
4135 le16_to_cpu(rx_desc->csum), skb);
4136
4137 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4138 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4139 pskb_trim(skb, skb->len - 4);
4140 total_rx_packets++;
4141
4142 /* eth type trans needs skb->data to point to something */
4143 if (!pskb_may_pull(skb, ETH_HLEN)) {
4144 e_err(drv, "pskb_may_pull failed.\n");
4145 dev_kfree_skb(skb);
4146 goto next_desc;
4147 }
4148
4149 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4150
4151next_desc:
4152 rx_desc->status = 0;
4153
4154 /* return some buffers to hardware, one at a time is too slow */
4155 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4156 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4157 cleaned_count = 0;
4158 }
4159
4160 /* use prefetched values */
4161 rx_desc = next_rxd;
4162 buffer_info = next_buffer;
4163 }
4164 rx_ring->next_to_clean = i;
4165
4166 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4167 if (cleaned_count)
4168 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4169
4170 adapter->total_rx_packets += total_rx_packets;
4171 adapter->total_rx_bytes += total_rx_bytes;
4172 netdev->stats.rx_bytes += total_rx_bytes;
4173 netdev->stats.rx_packets += total_rx_packets;
4174 return cleaned;
4175}
4176
4177/* this should improve performance for small packets with large amounts
4178 * of reassembly being done in the stack
4179 */
4180static void e1000_check_copybreak(struct net_device *netdev,
4181 struct e1000_buffer *buffer_info,
4182 u32 length, struct sk_buff **skb)
4183{
4184 struct sk_buff *new_skb;
4185
4186 if (length > copybreak)
4187 return;
4188
4189 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4190 if (!new_skb)
4191 return;
4192
4193 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4194 (*skb)->data - NET_IP_ALIGN,
4195 length + NET_IP_ALIGN);
4196 /* save the skb in buffer_info as good */
4197 buffer_info->skb = *skb;
4198 *skb = new_skb;
4199}
4200
4201/**
4202 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4203 * @adapter: board private structure
4204 * @rx_ring: ring to clean
4205 * @work_done: amount of napi work completed this call
4206 * @work_to_do: max amount of work allowed for this call to do
4207 */
4208static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4209 struct e1000_rx_ring *rx_ring,
4210 int *work_done, int work_to_do)
4211{
4212 struct e1000_hw *hw = &adapter->hw;
4213 struct net_device *netdev = adapter->netdev;
4214 struct pci_dev *pdev = adapter->pdev;
4215 struct e1000_rx_desc *rx_desc, *next_rxd;
4216 struct e1000_buffer *buffer_info, *next_buffer;
4217 unsigned long flags;
4218 u32 length;
4219 unsigned int i;
4220 int cleaned_count = 0;
4221 bool cleaned = false;
4222 unsigned int total_rx_bytes=0, total_rx_packets=0;
4223
4224 i = rx_ring->next_to_clean;
4225 rx_desc = E1000_RX_DESC(*rx_ring, i);
4226 buffer_info = &rx_ring->buffer_info[i];
4227
4228 while (rx_desc->status & E1000_RXD_STAT_DD) {
4229 struct sk_buff *skb;
4230 u8 status;
4231
4232 if (*work_done >= work_to_do)
4233 break;
4234 (*work_done)++;
4235 rmb(); /* read descriptor and rx_buffer_info after status DD */
4236
4237 status = rx_desc->status;
4238 skb = buffer_info->skb;
4239 buffer_info->skb = NULL;
4240
4241 prefetch(skb->data - NET_IP_ALIGN);
4242
4243 if (++i == rx_ring->count) i = 0;
4244 next_rxd = E1000_RX_DESC(*rx_ring, i);
4245 prefetch(next_rxd);
4246
4247 next_buffer = &rx_ring->buffer_info[i];
4248
4249 cleaned = true;
4250 cleaned_count++;
4251 dma_unmap_single(&pdev->dev, buffer_info->dma,
4252 buffer_info->length, DMA_FROM_DEVICE);
4253 buffer_info->dma = 0;
4254
4255 length = le16_to_cpu(rx_desc->length);
4256 /* !EOP means multiple descriptors were used to store a single
4257 * packet, if thats the case we need to toss it. In fact, we
4258 * to toss every packet with the EOP bit clear and the next
4259 * frame that _does_ have the EOP bit set, as it is by
4260 * definition only a frame fragment
4261 */
4262 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4263 adapter->discarding = true;
4264
4265 if (adapter->discarding) {
4266 /* All receives must fit into a single buffer */
4267 e_dbg("Receive packet consumed multiple buffers\n");
4268 /* recycle */
4269 buffer_info->skb = skb;
4270 if (status & E1000_RXD_STAT_EOP)
4271 adapter->discarding = false;
4272 goto next_desc;
4273 }
4274
4275 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4276 u8 last_byte = *(skb->data + length - 1);
4277 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4278 last_byte)) {
4279 spin_lock_irqsave(&adapter->stats_lock, flags);
4280 e1000_tbi_adjust_stats(hw, &adapter->stats,
4281 length, skb->data);
4282 spin_unlock_irqrestore(&adapter->stats_lock,
4283 flags);
4284 length--;
4285 } else {
4286 if (netdev->features & NETIF_F_RXALL)
4287 goto process_skb;
4288 /* recycle */
4289 buffer_info->skb = skb;
4290 goto next_desc;
4291 }
4292 }
4293
4294process_skb:
4295 total_rx_bytes += (length - 4); /* don't count FCS */
4296 total_rx_packets++;
4297
4298 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4299 /* adjust length to remove Ethernet CRC, this must be
4300 * done after the TBI_ACCEPT workaround above
4301 */
4302 length -= 4;
4303
4304 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4305
4306 skb_put(skb, length);
4307
4308 /* Receive Checksum Offload */
4309 e1000_rx_checksum(adapter,
4310 (u32)(status) |
4311 ((u32)(rx_desc->errors) << 24),
4312 le16_to_cpu(rx_desc->csum), skb);
4313
4314 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4315
4316next_desc:
4317 rx_desc->status = 0;
4318
4319 /* return some buffers to hardware, one at a time is too slow */
4320 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4321 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4322 cleaned_count = 0;
4323 }
4324
4325 /* use prefetched values */
4326 rx_desc = next_rxd;
4327 buffer_info = next_buffer;
4328 }
4329 rx_ring->next_to_clean = i;
4330
4331 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4332 if (cleaned_count)
4333 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334
4335 adapter->total_rx_packets += total_rx_packets;
4336 adapter->total_rx_bytes += total_rx_bytes;
4337 netdev->stats.rx_bytes += total_rx_bytes;
4338 netdev->stats.rx_packets += total_rx_packets;
4339 return cleaned;
4340}
4341
4342/**
4343 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4344 * @adapter: address of board private structure
4345 * @rx_ring: pointer to receive ring structure
4346 * @cleaned_count: number of buffers to allocate this pass
4347 **/
4348static void
4349e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4350 struct e1000_rx_ring *rx_ring, int cleaned_count)
4351{
4352 struct net_device *netdev = adapter->netdev;
4353 struct pci_dev *pdev = adapter->pdev;
4354 struct e1000_rx_desc *rx_desc;
4355 struct e1000_buffer *buffer_info;
4356 struct sk_buff *skb;
4357 unsigned int i;
4358 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4359
4360 i = rx_ring->next_to_use;
4361 buffer_info = &rx_ring->buffer_info[i];
4362
4363 while (cleaned_count--) {
4364 skb = buffer_info->skb;
4365 if (skb) {
4366 skb_trim(skb, 0);
4367 goto check_page;
4368 }
4369
4370 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4371 if (unlikely(!skb)) {
4372 /* Better luck next round */
4373 adapter->alloc_rx_buff_failed++;
4374 break;
4375 }
4376
4377 buffer_info->skb = skb;
4378 buffer_info->length = adapter->rx_buffer_len;
4379check_page:
4380 /* allocate a new page if necessary */
4381 if (!buffer_info->page) {
4382 buffer_info->page = alloc_page(GFP_ATOMIC);
4383 if (unlikely(!buffer_info->page)) {
4384 adapter->alloc_rx_buff_failed++;
4385 break;
4386 }
4387 }
4388
4389 if (!buffer_info->dma) {
4390 buffer_info->dma = dma_map_page(&pdev->dev,
4391 buffer_info->page, 0,
4392 buffer_info->length,
4393 DMA_FROM_DEVICE);
4394 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4395 put_page(buffer_info->page);
4396 dev_kfree_skb(skb);
4397 buffer_info->page = NULL;
4398 buffer_info->skb = NULL;
4399 buffer_info->dma = 0;
4400 adapter->alloc_rx_buff_failed++;
4401 break; /* while !buffer_info->skb */
4402 }
4403 }
4404
4405 rx_desc = E1000_RX_DESC(*rx_ring, i);
4406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4407
4408 if (unlikely(++i == rx_ring->count))
4409 i = 0;
4410 buffer_info = &rx_ring->buffer_info[i];
4411 }
4412
4413 if (likely(rx_ring->next_to_use != i)) {
4414 rx_ring->next_to_use = i;
4415 if (unlikely(i-- == 0))
4416 i = (rx_ring->count - 1);
4417
4418 /* Force memory writes to complete before letting h/w
4419 * know there are new descriptors to fetch. (Only
4420 * applicable for weak-ordered memory model archs,
4421 * such as IA-64).
4422 */
4423 wmb();
4424 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4425 }
4426}
4427
4428/**
4429 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4430 * @adapter: address of board private structure
4431 **/
4432static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4433 struct e1000_rx_ring *rx_ring,
4434 int cleaned_count)
4435{
4436 struct e1000_hw *hw = &adapter->hw;
4437 struct net_device *netdev = adapter->netdev;
4438 struct pci_dev *pdev = adapter->pdev;
4439 struct e1000_rx_desc *rx_desc;
4440 struct e1000_buffer *buffer_info;
4441 struct sk_buff *skb;
4442 unsigned int i;
4443 unsigned int bufsz = adapter->rx_buffer_len;
4444
4445 i = rx_ring->next_to_use;
4446 buffer_info = &rx_ring->buffer_info[i];
4447
4448 while (cleaned_count--) {
4449 skb = buffer_info->skb;
4450 if (skb) {
4451 skb_trim(skb, 0);
4452 goto map_skb;
4453 }
4454
4455 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4456 if (unlikely(!skb)) {
4457 /* Better luck next round */
4458 adapter->alloc_rx_buff_failed++;
4459 break;
4460 }
4461
4462 /* Fix for errata 23, can't cross 64kB boundary */
4463 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4464 struct sk_buff *oldskb = skb;
4465 e_err(rx_err, "skb align check failed: %u bytes at "
4466 "%p\n", bufsz, skb->data);
4467 /* Try again, without freeing the previous */
4468 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4469 /* Failed allocation, critical failure */
4470 if (!skb) {
4471 dev_kfree_skb(oldskb);
4472 adapter->alloc_rx_buff_failed++;
4473 break;
4474 }
4475
4476 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4477 /* give up */
4478 dev_kfree_skb(skb);
4479 dev_kfree_skb(oldskb);
4480 adapter->alloc_rx_buff_failed++;
4481 break; /* while !buffer_info->skb */
4482 }
4483
4484 /* Use new allocation */
4485 dev_kfree_skb(oldskb);
4486 }
4487 buffer_info->skb = skb;
4488 buffer_info->length = adapter->rx_buffer_len;
4489map_skb:
4490 buffer_info->dma = dma_map_single(&pdev->dev,
4491 skb->data,
4492 buffer_info->length,
4493 DMA_FROM_DEVICE);
4494 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4495 dev_kfree_skb(skb);
4496 buffer_info->skb = NULL;
4497 buffer_info->dma = 0;
4498 adapter->alloc_rx_buff_failed++;
4499 break; /* while !buffer_info->skb */
4500 }
4501
4502 /* XXX if it was allocated cleanly it will never map to a
4503 * boundary crossing
4504 */
4505
4506 /* Fix for errata 23, can't cross 64kB boundary */
4507 if (!e1000_check_64k_bound(adapter,
4508 (void *)(unsigned long)buffer_info->dma,
4509 adapter->rx_buffer_len)) {
4510 e_err(rx_err, "dma align check failed: %u bytes at "
4511 "%p\n", adapter->rx_buffer_len,
4512 (void *)(unsigned long)buffer_info->dma);
4513 dev_kfree_skb(skb);
4514 buffer_info->skb = NULL;
4515
4516 dma_unmap_single(&pdev->dev, buffer_info->dma,
4517 adapter->rx_buffer_len,
4518 DMA_FROM_DEVICE);
4519 buffer_info->dma = 0;
4520
4521 adapter->alloc_rx_buff_failed++;
4522 break; /* while !buffer_info->skb */
4523 }
4524 rx_desc = E1000_RX_DESC(*rx_ring, i);
4525 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4526
4527 if (unlikely(++i == rx_ring->count))
4528 i = 0;
4529 buffer_info = &rx_ring->buffer_info[i];
4530 }
4531
4532 if (likely(rx_ring->next_to_use != i)) {
4533 rx_ring->next_to_use = i;
4534 if (unlikely(i-- == 0))
4535 i = (rx_ring->count - 1);
4536
4537 /* Force memory writes to complete before letting h/w
4538 * know there are new descriptors to fetch. (Only
4539 * applicable for weak-ordered memory model archs,
4540 * such as IA-64).
4541 */
4542 wmb();
4543 writel(i, hw->hw_addr + rx_ring->rdt);
4544 }
4545}
4546
4547/**
4548 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4549 * @adapter:
4550 **/
4551static void e1000_smartspeed(struct e1000_adapter *adapter)
4552{
4553 struct e1000_hw *hw = &adapter->hw;
4554 u16 phy_status;
4555 u16 phy_ctrl;
4556
4557 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4558 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4559 return;
4560
4561 if (adapter->smartspeed == 0) {
4562 /* If Master/Slave config fault is asserted twice,
4563 * we assume back-to-back
4564 */
4565 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4566 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4567 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4568 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4569 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4570 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4571 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4572 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4573 phy_ctrl);
4574 adapter->smartspeed++;
4575 if (!e1000_phy_setup_autoneg(hw) &&
4576 !e1000_read_phy_reg(hw, PHY_CTRL,
4577 &phy_ctrl)) {
4578 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4579 MII_CR_RESTART_AUTO_NEG);
4580 e1000_write_phy_reg(hw, PHY_CTRL,
4581 phy_ctrl);
4582 }
4583 }
4584 return;
4585 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4586 /* If still no link, perhaps using 2/3 pair cable */
4587 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4588 phy_ctrl |= CR_1000T_MS_ENABLE;
4589 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4590 if (!e1000_phy_setup_autoneg(hw) &&
4591 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4592 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4593 MII_CR_RESTART_AUTO_NEG);
4594 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4595 }
4596 }
4597 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4598 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4599 adapter->smartspeed = 0;
4600}
4601
4602/**
4603 * e1000_ioctl -
4604 * @netdev:
4605 * @ifreq:
4606 * @cmd:
4607 **/
4608static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4609{
4610 switch (cmd) {
4611 case SIOCGMIIPHY:
4612 case SIOCGMIIREG:
4613 case SIOCSMIIREG:
4614 return e1000_mii_ioctl(netdev, ifr, cmd);
4615 default:
4616 return -EOPNOTSUPP;
4617 }
4618}
4619
4620/**
4621 * e1000_mii_ioctl -
4622 * @netdev:
4623 * @ifreq:
4624 * @cmd:
4625 **/
4626static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4627 int cmd)
4628{
4629 struct e1000_adapter *adapter = netdev_priv(netdev);
4630 struct e1000_hw *hw = &adapter->hw;
4631 struct mii_ioctl_data *data = if_mii(ifr);
4632 int retval;
4633 u16 mii_reg;
4634 unsigned long flags;
4635
4636 if (hw->media_type != e1000_media_type_copper)
4637 return -EOPNOTSUPP;
4638
4639 switch (cmd) {
4640 case SIOCGMIIPHY:
4641 data->phy_id = hw->phy_addr;
4642 break;
4643 case SIOCGMIIREG:
4644 spin_lock_irqsave(&adapter->stats_lock, flags);
4645 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4646 &data->val_out)) {
4647 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4648 return -EIO;
4649 }
4650 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4651 break;
4652 case SIOCSMIIREG:
4653 if (data->reg_num & ~(0x1F))
4654 return -EFAULT;
4655 mii_reg = data->val_in;
4656 spin_lock_irqsave(&adapter->stats_lock, flags);
4657 if (e1000_write_phy_reg(hw, data->reg_num,
4658 mii_reg)) {
4659 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4660 return -EIO;
4661 }
4662 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4663 if (hw->media_type == e1000_media_type_copper) {
4664 switch (data->reg_num) {
4665 case PHY_CTRL:
4666 if (mii_reg & MII_CR_POWER_DOWN)
4667 break;
4668 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4669 hw->autoneg = 1;
4670 hw->autoneg_advertised = 0x2F;
4671 } else {
4672 u32 speed;
4673 if (mii_reg & 0x40)
4674 speed = SPEED_1000;
4675 else if (mii_reg & 0x2000)
4676 speed = SPEED_100;
4677 else
4678 speed = SPEED_10;
4679 retval = e1000_set_spd_dplx(
4680 adapter, speed,
4681 ((mii_reg & 0x100)
4682 ? DUPLEX_FULL :
4683 DUPLEX_HALF));
4684 if (retval)
4685 return retval;
4686 }
4687 if (netif_running(adapter->netdev))
4688 e1000_reinit_locked(adapter);
4689 else
4690 e1000_reset(adapter);
4691 break;
4692 case M88E1000_PHY_SPEC_CTRL:
4693 case M88E1000_EXT_PHY_SPEC_CTRL:
4694 if (e1000_phy_reset(hw))
4695 return -EIO;
4696 break;
4697 }
4698 } else {
4699 switch (data->reg_num) {
4700 case PHY_CTRL:
4701 if (mii_reg & MII_CR_POWER_DOWN)
4702 break;
4703 if (netif_running(adapter->netdev))
4704 e1000_reinit_locked(adapter);
4705 else
4706 e1000_reset(adapter);
4707 break;
4708 }
4709 }
4710 break;
4711 default:
4712 return -EOPNOTSUPP;
4713 }
4714 return E1000_SUCCESS;
4715}
4716
4717void e1000_pci_set_mwi(struct e1000_hw *hw)
4718{
4719 struct e1000_adapter *adapter = hw->back;
4720 int ret_val = pci_set_mwi(adapter->pdev);
4721
4722 if (ret_val)
4723 e_err(probe, "Error in setting MWI\n");
4724}
4725
4726void e1000_pci_clear_mwi(struct e1000_hw *hw)
4727{
4728 struct e1000_adapter *adapter = hw->back;
4729
4730 pci_clear_mwi(adapter->pdev);
4731}
4732
4733int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4734{
4735 struct e1000_adapter *adapter = hw->back;
4736 return pcix_get_mmrbc(adapter->pdev);
4737}
4738
4739void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4740{
4741 struct e1000_adapter *adapter = hw->back;
4742 pcix_set_mmrbc(adapter->pdev, mmrbc);
4743}
4744
4745void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4746{
4747 outl(value, port);
4748}
4749
4750static bool e1000_vlan_used(struct e1000_adapter *adapter)
4751{
4752 u16 vid;
4753
4754 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4755 return true;
4756 return false;
4757}
4758
4759static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4760 netdev_features_t features)
4761{
4762 struct e1000_hw *hw = &adapter->hw;
4763 u32 ctrl;
4764
4765 ctrl = er32(CTRL);
4766 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4767 /* enable VLAN tag insert/strip */
4768 ctrl |= E1000_CTRL_VME;
4769 } else {
4770 /* disable VLAN tag insert/strip */
4771 ctrl &= ~E1000_CTRL_VME;
4772 }
4773 ew32(CTRL, ctrl);
4774}
4775static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4776 bool filter_on)
4777{
4778 struct e1000_hw *hw = &adapter->hw;
4779 u32 rctl;
4780
4781 if (!test_bit(__E1000_DOWN, &adapter->flags))
4782 e1000_irq_disable(adapter);
4783
4784 __e1000_vlan_mode(adapter, adapter->netdev->features);
4785 if (filter_on) {
4786 /* enable VLAN receive filtering */
4787 rctl = er32(RCTL);
4788 rctl &= ~E1000_RCTL_CFIEN;
4789 if (!(adapter->netdev->flags & IFF_PROMISC))
4790 rctl |= E1000_RCTL_VFE;
4791 ew32(RCTL, rctl);
4792 e1000_update_mng_vlan(adapter);
4793 } else {
4794 /* disable VLAN receive filtering */
4795 rctl = er32(RCTL);
4796 rctl &= ~E1000_RCTL_VFE;
4797 ew32(RCTL, rctl);
4798 }
4799
4800 if (!test_bit(__E1000_DOWN, &adapter->flags))
4801 e1000_irq_enable(adapter);
4802}
4803
4804static void e1000_vlan_mode(struct net_device *netdev,
4805 netdev_features_t features)
4806{
4807 struct e1000_adapter *adapter = netdev_priv(netdev);
4808
4809 if (!test_bit(__E1000_DOWN, &adapter->flags))
4810 e1000_irq_disable(adapter);
4811
4812 __e1000_vlan_mode(adapter, features);
4813
4814 if (!test_bit(__E1000_DOWN, &adapter->flags))
4815 e1000_irq_enable(adapter);
4816}
4817
4818static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4819 __be16 proto, u16 vid)
4820{
4821 struct e1000_adapter *adapter = netdev_priv(netdev);
4822 struct e1000_hw *hw = &adapter->hw;
4823 u32 vfta, index;
4824
4825 if ((hw->mng_cookie.status &
4826 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4827 (vid == adapter->mng_vlan_id))
4828 return 0;
4829
4830 if (!e1000_vlan_used(adapter))
4831 e1000_vlan_filter_on_off(adapter, true);
4832
4833 /* add VID to filter table */
4834 index = (vid >> 5) & 0x7F;
4835 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4836 vfta |= (1 << (vid & 0x1F));
4837 e1000_write_vfta(hw, index, vfta);
4838
4839 set_bit(vid, adapter->active_vlans);
4840
4841 return 0;
4842}
4843
4844static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4845 __be16 proto, u16 vid)
4846{
4847 struct e1000_adapter *adapter = netdev_priv(netdev);
4848 struct e1000_hw *hw = &adapter->hw;
4849 u32 vfta, index;
4850
4851 if (!test_bit(__E1000_DOWN, &adapter->flags))
4852 e1000_irq_disable(adapter);
4853 if (!test_bit(__E1000_DOWN, &adapter->flags))
4854 e1000_irq_enable(adapter);
4855
4856 /* remove VID from filter table */
4857 index = (vid >> 5) & 0x7F;
4858 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4859 vfta &= ~(1 << (vid & 0x1F));
4860 e1000_write_vfta(hw, index, vfta);
4861
4862 clear_bit(vid, adapter->active_vlans);
4863
4864 if (!e1000_vlan_used(adapter))
4865 e1000_vlan_filter_on_off(adapter, false);
4866
4867 return 0;
4868}
4869
4870static void e1000_restore_vlan(struct e1000_adapter *adapter)
4871{
4872 u16 vid;
4873
4874 if (!e1000_vlan_used(adapter))
4875 return;
4876
4877 e1000_vlan_filter_on_off(adapter, true);
4878 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4880}
4881
4882int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4883{
4884 struct e1000_hw *hw = &adapter->hw;
4885
4886 hw->autoneg = 0;
4887
4888 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4889 * for the switch() below to work
4890 */
4891 if ((spd & 1) || (dplx & ~1))
4892 goto err_inval;
4893
4894 /* Fiber NICs only allow 1000 gbps Full duplex */
4895 if ((hw->media_type == e1000_media_type_fiber) &&
4896 spd != SPEED_1000 &&
4897 dplx != DUPLEX_FULL)
4898 goto err_inval;
4899
4900 switch (spd + dplx) {
4901 case SPEED_10 + DUPLEX_HALF:
4902 hw->forced_speed_duplex = e1000_10_half;
4903 break;
4904 case SPEED_10 + DUPLEX_FULL:
4905 hw->forced_speed_duplex = e1000_10_full;
4906 break;
4907 case SPEED_100 + DUPLEX_HALF:
4908 hw->forced_speed_duplex = e1000_100_half;
4909 break;
4910 case SPEED_100 + DUPLEX_FULL:
4911 hw->forced_speed_duplex = e1000_100_full;
4912 break;
4913 case SPEED_1000 + DUPLEX_FULL:
4914 hw->autoneg = 1;
4915 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4916 break;
4917 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4918 default:
4919 goto err_inval;
4920 }
4921
4922 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4923 hw->mdix = AUTO_ALL_MODES;
4924
4925 return 0;
4926
4927err_inval:
4928 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4929 return -EINVAL;
4930}
4931
4932static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4933{
4934 struct net_device *netdev = pci_get_drvdata(pdev);
4935 struct e1000_adapter *adapter = netdev_priv(netdev);
4936 struct e1000_hw *hw = &adapter->hw;
4937 u32 ctrl, ctrl_ext, rctl, status;
4938 u32 wufc = adapter->wol;
4939#ifdef CONFIG_PM
4940 int retval = 0;
4941#endif
4942
4943 netif_device_detach(netdev);
4944
4945 if (netif_running(netdev)) {
4946 int count = E1000_CHECK_RESET_COUNT;
4947
4948 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4949 usleep_range(10000, 20000);
4950
4951 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4952 e1000_down(adapter);
4953 }
4954
4955#ifdef CONFIG_PM
4956 retval = pci_save_state(pdev);
4957 if (retval)
4958 return retval;
4959#endif
4960
4961 status = er32(STATUS);
4962 if (status & E1000_STATUS_LU)
4963 wufc &= ~E1000_WUFC_LNKC;
4964
4965 if (wufc) {
4966 e1000_setup_rctl(adapter);
4967 e1000_set_rx_mode(netdev);
4968
4969 rctl = er32(RCTL);
4970
4971 /* turn on all-multi mode if wake on multicast is enabled */
4972 if (wufc & E1000_WUFC_MC)
4973 rctl |= E1000_RCTL_MPE;
4974
4975 /* enable receives in the hardware */
4976 ew32(RCTL, rctl | E1000_RCTL_EN);
4977
4978 if (hw->mac_type >= e1000_82540) {
4979 ctrl = er32(CTRL);
4980 /* advertise wake from D3Cold */
4981 #define E1000_CTRL_ADVD3WUC 0x00100000
4982 /* phy power management enable */
4983 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4984 ctrl |= E1000_CTRL_ADVD3WUC |
4985 E1000_CTRL_EN_PHY_PWR_MGMT;
4986 ew32(CTRL, ctrl);
4987 }
4988
4989 if (hw->media_type == e1000_media_type_fiber ||
4990 hw->media_type == e1000_media_type_internal_serdes) {
4991 /* keep the laser running in D3 */
4992 ctrl_ext = er32(CTRL_EXT);
4993 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4994 ew32(CTRL_EXT, ctrl_ext);
4995 }
4996
4997 ew32(WUC, E1000_WUC_PME_EN);
4998 ew32(WUFC, wufc);
4999 } else {
5000 ew32(WUC, 0);
5001 ew32(WUFC, 0);
5002 }
5003
5004 e1000_release_manageability(adapter);
5005
5006 *enable_wake = !!wufc;
5007
5008 /* make sure adapter isn't asleep if manageability is enabled */
5009 if (adapter->en_mng_pt)
5010 *enable_wake = true;
5011
5012 if (netif_running(netdev))
5013 e1000_free_irq(adapter);
5014
5015 pci_disable_device(pdev);
5016
5017 return 0;
5018}
5019
5020#ifdef CONFIG_PM
5021static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5022{
5023 int retval;
5024 bool wake;
5025
5026 retval = __e1000_shutdown(pdev, &wake);
5027 if (retval)
5028 return retval;
5029
5030 if (wake) {
5031 pci_prepare_to_sleep(pdev);
5032 } else {
5033 pci_wake_from_d3(pdev, false);
5034 pci_set_power_state(pdev, PCI_D3hot);
5035 }
5036
5037 return 0;
5038}
5039
5040static int e1000_resume(struct pci_dev *pdev)
5041{
5042 struct net_device *netdev = pci_get_drvdata(pdev);
5043 struct e1000_adapter *adapter = netdev_priv(netdev);
5044 struct e1000_hw *hw = &adapter->hw;
5045 u32 err;
5046
5047 pci_set_power_state(pdev, PCI_D0);
5048 pci_restore_state(pdev);
5049 pci_save_state(pdev);
5050
5051 if (adapter->need_ioport)
5052 err = pci_enable_device(pdev);
5053 else
5054 err = pci_enable_device_mem(pdev);
5055 if (err) {
5056 pr_err("Cannot enable PCI device from suspend\n");
5057 return err;
5058 }
5059 pci_set_master(pdev);
5060
5061 pci_enable_wake(pdev, PCI_D3hot, 0);
5062 pci_enable_wake(pdev, PCI_D3cold, 0);
5063
5064 if (netif_running(netdev)) {
5065 err = e1000_request_irq(adapter);
5066 if (err)
5067 return err;
5068 }
5069
5070 e1000_power_up_phy(adapter);
5071 e1000_reset(adapter);
5072 ew32(WUS, ~0);
5073
5074 e1000_init_manageability(adapter);
5075
5076 if (netif_running(netdev))
5077 e1000_up(adapter);
5078
5079 netif_device_attach(netdev);
5080
5081 return 0;
5082}
5083#endif
5084
5085static void e1000_shutdown(struct pci_dev *pdev)
5086{
5087 bool wake;
5088
5089 __e1000_shutdown(pdev, &wake);
5090
5091 if (system_state == SYSTEM_POWER_OFF) {
5092 pci_wake_from_d3(pdev, wake);
5093 pci_set_power_state(pdev, PCI_D3hot);
5094 }
5095}
5096
5097#ifdef CONFIG_NET_POLL_CONTROLLER
5098/* Polling 'interrupt' - used by things like netconsole to send skbs
5099 * without having to re-enable interrupts. It's not called while
5100 * the interrupt routine is executing.
5101 */
5102static void e1000_netpoll(struct net_device *netdev)
5103{
5104 struct e1000_adapter *adapter = netdev_priv(netdev);
5105
5106 disable_irq(adapter->pdev->irq);
5107 e1000_intr(adapter->pdev->irq, netdev);
5108 enable_irq(adapter->pdev->irq);
5109}
5110#endif
5111
5112/**
5113 * e1000_io_error_detected - called when PCI error is detected
5114 * @pdev: Pointer to PCI device
5115 * @state: The current pci connection state
5116 *
5117 * This function is called after a PCI bus error affecting
5118 * this device has been detected.
5119 */
5120static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5121 pci_channel_state_t state)
5122{
5123 struct net_device *netdev = pci_get_drvdata(pdev);
5124 struct e1000_adapter *adapter = netdev_priv(netdev);
5125
5126 netif_device_detach(netdev);
5127
5128 if (state == pci_channel_io_perm_failure)
5129 return PCI_ERS_RESULT_DISCONNECT;
5130
5131 if (netif_running(netdev))
5132 e1000_down(adapter);
5133 pci_disable_device(pdev);
5134
5135 /* Request a slot slot reset. */
5136 return PCI_ERS_RESULT_NEED_RESET;
5137}
5138
5139/**
5140 * e1000_io_slot_reset - called after the pci bus has been reset.
5141 * @pdev: Pointer to PCI device
5142 *
5143 * Restart the card from scratch, as if from a cold-boot. Implementation
5144 * resembles the first-half of the e1000_resume routine.
5145 */
5146static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5147{
5148 struct net_device *netdev = pci_get_drvdata(pdev);
5149 struct e1000_adapter *adapter = netdev_priv(netdev);
5150 struct e1000_hw *hw = &adapter->hw;
5151 int err;
5152
5153 if (adapter->need_ioport)
5154 err = pci_enable_device(pdev);
5155 else
5156 err = pci_enable_device_mem(pdev);
5157 if (err) {
5158 pr_err("Cannot re-enable PCI device after reset.\n");
5159 return PCI_ERS_RESULT_DISCONNECT;
5160 }
5161 pci_set_master(pdev);
5162
5163 pci_enable_wake(pdev, PCI_D3hot, 0);
5164 pci_enable_wake(pdev, PCI_D3cold, 0);
5165
5166 e1000_reset(adapter);
5167 ew32(WUS, ~0);
5168
5169 return PCI_ERS_RESULT_RECOVERED;
5170}
5171
5172/**
5173 * e1000_io_resume - called when traffic can start flowing again.
5174 * @pdev: Pointer to PCI device
5175 *
5176 * This callback is called when the error recovery driver tells us that
5177 * its OK to resume normal operation. Implementation resembles the
5178 * second-half of the e1000_resume routine.
5179 */
5180static void e1000_io_resume(struct pci_dev *pdev)
5181{
5182 struct net_device *netdev = pci_get_drvdata(pdev);
5183 struct e1000_adapter *adapter = netdev_priv(netdev);
5184
5185 e1000_init_manageability(adapter);
5186
5187 if (netif_running(netdev)) {
5188 if (e1000_up(adapter)) {
5189 pr_info("can't bring device back up after reset\n");
5190 return;
5191 }
5192 }
5193
5194 netif_device_attach(netdev);
5195}
5196
5197/* e1000_main.c */