Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2014, Sony Mobile Communications AB.
   5 *
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/atomic.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dmapool.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/i2c.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
 
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/property.h>
  23#include <linux/scatterlist.h>
  24
  25/* QUP Registers */
  26#define QUP_CONFIG		0x000
  27#define QUP_STATE		0x004
  28#define QUP_IO_MODE		0x008
  29#define QUP_SW_RESET		0x00c
  30#define QUP_OPERATIONAL		0x018
  31#define QUP_ERROR_FLAGS		0x01c
  32#define QUP_ERROR_FLAGS_EN	0x020
  33#define QUP_OPERATIONAL_MASK	0x028
  34#define QUP_HW_VERSION		0x030
  35#define QUP_MX_OUTPUT_CNT	0x100
  36#define QUP_OUT_FIFO_BASE	0x110
  37#define QUP_MX_WRITE_CNT	0x150
  38#define QUP_MX_INPUT_CNT	0x200
  39#define QUP_MX_READ_CNT		0x208
  40#define QUP_IN_FIFO_BASE	0x218
  41#define QUP_I2C_CLK_CTL		0x400
  42#define QUP_I2C_STATUS		0x404
  43#define QUP_I2C_MASTER_GEN	0x408
  44
  45/* QUP States and reset values */
  46#define QUP_RESET_STATE		0
  47#define QUP_RUN_STATE		1
  48#define QUP_PAUSE_STATE		3
  49#define QUP_STATE_MASK		3
  50
  51#define QUP_STATE_VALID		BIT(2)
  52#define QUP_I2C_MAST_GEN	BIT(4)
  53#define QUP_I2C_FLUSH		BIT(6)
  54
  55#define QUP_OPERATIONAL_RESET	0x000ff0
  56#define QUP_I2C_STATUS_RESET	0xfffffc
  57
  58/* QUP OPERATIONAL FLAGS */
  59#define QUP_I2C_NACK_FLAG	BIT(3)
  60#define QUP_OUT_NOT_EMPTY	BIT(4)
  61#define QUP_IN_NOT_EMPTY	BIT(5)
  62#define QUP_OUT_FULL		BIT(6)
  63#define QUP_OUT_SVC_FLAG	BIT(8)
  64#define QUP_IN_SVC_FLAG		BIT(9)
  65#define QUP_MX_OUTPUT_DONE	BIT(10)
  66#define QUP_MX_INPUT_DONE	BIT(11)
  67#define OUT_BLOCK_WRITE_REQ	BIT(12)
  68#define IN_BLOCK_READ_REQ	BIT(13)
  69
  70/* I2C mini core related values */
  71#define QUP_NO_INPUT		BIT(7)
  72#define QUP_CLOCK_AUTO_GATE	BIT(13)
  73#define I2C_MINI_CORE		(2 << 8)
  74#define I2C_N_VAL		15
  75#define I2C_N_VAL_V2		7
  76
  77/* Most significant word offset in FIFO port */
  78#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
  79
  80/* Packing/Unpacking words in FIFOs, and IO modes */
  81#define QUP_OUTPUT_BLK_MODE	(1 << 10)
  82#define QUP_OUTPUT_BAM_MODE	(3 << 10)
  83#define QUP_INPUT_BLK_MODE	(1 << 12)
  84#define QUP_INPUT_BAM_MODE	(3 << 12)
  85#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86#define QUP_UNPACK_EN		BIT(14)
  87#define QUP_PACK_EN		BIT(15)
  88
  89#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
  90#define QUP_V2_TAGS_EN		1
  91
  92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
  94#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
  95#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
  96
  97/* QUP tags */
  98#define QUP_TAG_START		(1 << 8)
  99#define QUP_TAG_DATA		(2 << 8)
 100#define QUP_TAG_STOP		(3 << 8)
 101#define QUP_TAG_REC		(4 << 8)
 102#define QUP_BAM_INPUT_EOT		0x93
 103#define QUP_BAM_FLUSH_STOP		0x96
 104
 105/* QUP v2 tags */
 106#define QUP_TAG_V2_START               0x81
 107#define QUP_TAG_V2_DATAWR              0x82
 108#define QUP_TAG_V2_DATAWR_STOP         0x83
 109#define QUP_TAG_V2_DATARD              0x85
 110#define QUP_TAG_V2_DATARD_NACK         0x86
 111#define QUP_TAG_V2_DATARD_STOP         0x87
 112
 113/* Status, Error flags */
 114#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
 115#define I2C_STATUS_BUS_ACTIVE		BIT(8)
 116#define I2C_STATUS_ERROR_MASK		0x38000fc
 117#define QUP_STATUS_ERROR_FLAGS		0x7c
 118
 119#define QUP_READ_LIMIT			256
 120#define SET_BIT				0x1
 121#define RESET_BIT			0x0
 122#define ONE_BYTE			0x1
 123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124
 125/* Maximum transfer length for single DMA descriptor */
 126#define MX_TX_RX_LEN			SZ_64K
 127#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
 128/* Maximum transfer length for all DMA descriptors */
 129#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
 130#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131
 132/*
 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134 * the top of maximum transfer time calculated from i2c bus speed to compensate
 135 * the overheads.
 136 */
 137#define TOUT_MIN			2
 138
 139/* Default values. Use these if FW query fails */
 140#define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
 141#define DEFAULT_SRC_CLK 20000000
 142
 143/*
 144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 145 * data transfer
 146 */
 147#define QUP_MAX_TAGS_LEN		4
 148/* Max data length for each DATARD tags */
 149#define RECV_MAX_DATA_LEN		254
 150/* TAG length for DATA READ in RX FIFO  */
 151#define READ_RX_TAGS_LEN		2
 152
 153static unsigned int scl_freq;
 154module_param_named(scl_freq, scl_freq, uint, 0444);
 155MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 156
 157/*
 158 * count: no of blocks
 159 * pos: current block number
 160 * tx_tag_len: tx tag length for current block
 161 * rx_tag_len: rx tag length for current block
 162 * data_len: remaining data length for current message
 163 * cur_blk_len: data length for current block
 164 * total_tx_len: total tx length including tag bytes for current QUP transfer
 165 * total_rx_len: total rx length including tag bytes for current QUP transfer
 166 * tx_fifo_data_pos: current byte number in TX FIFO word
 167 * tx_fifo_free: number of free bytes in current QUP block write.
 168 * rx_fifo_data_pos: current byte number in RX FIFO word
 169 * fifo_available: number of available bytes in RX FIFO for current
 170 *		   QUP block read
 171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 172 *		 to TX FIFO will be appended in this data and will be written to
 173 *		 TX FIFO when all the 4 bytes are available.
 174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 175 *		 contains the 4 bytes of RX data.
 176 * cur_data: pointer to tell cur data position for current message
 177 * cur_tx_tags: pointer to tell cur position in tags
 178 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 179 * send_last_word: for tx FIFO, last word send is pending in current block
 180 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 184 * tags: contains tx tag bytes for current QUP transfer
 185 */
 186struct qup_i2c_block {
 187	int		count;
 188	int		pos;
 189	int		tx_tag_len;
 190	int		rx_tag_len;
 191	int		data_len;
 192	int		cur_blk_len;
 193	int		total_tx_len;
 194	int		total_rx_len;
 195	int		tx_fifo_data_pos;
 196	int		tx_fifo_free;
 197	int		rx_fifo_data_pos;
 198	int		fifo_available;
 199	u32		tx_fifo_data;
 200	u32		rx_fifo_data;
 201	u8		*cur_data;
 202	u8		*cur_tx_tags;
 203	bool		tx_tags_sent;
 204	bool		send_last_word;
 205	bool		rx_tags_fetched;
 206	bool		rx_bytes_read;
 207	bool		is_tx_blk_mode;
 208	bool		is_rx_blk_mode;
 209	u8		tags[6];
 210};
 211
 212struct qup_i2c_tag {
 213	u8 *start;
 214	dma_addr_t addr;
 215};
 216
 217struct qup_i2c_bam {
 218	struct	qup_i2c_tag tag;
 219	struct	dma_chan *dma;
 220	struct	scatterlist *sg;
 221	unsigned int sg_cnt;
 222};
 223
 224struct qup_i2c_dev {
 225	struct device		*dev;
 226	void __iomem		*base;
 227	int			irq;
 228	struct clk		*clk;
 229	struct clk		*pclk;
 230	struct i2c_adapter	adap;
 231
 232	int			clk_ctl;
 233	int			out_fifo_sz;
 234	int			in_fifo_sz;
 235	int			out_blk_sz;
 236	int			in_blk_sz;
 237
 238	int			blk_xfer_limit;
 239	unsigned long		one_byte_t;
 240	unsigned long		xfer_timeout;
 241	struct qup_i2c_block	blk;
 242
 243	struct i2c_msg		*msg;
 244	/* Current posion in user message buffer */
 245	int			pos;
 246	/* I2C protocol errors */
 247	u32			bus_err;
 248	/* QUP core errors */
 249	u32			qup_err;
 250
 251	/* To check if this is the last msg */
 252	bool			is_last;
 253	bool			is_smbus_read;
 254
 255	/* To configure when bus is in run state */
 256	u32			config_run;
 257
 258	/* dma parameters */
 259	bool			is_dma;
 260	/* To check if the current transfer is using DMA */
 261	bool			use_dma;
 262	unsigned int		max_xfer_sg_len;
 263	unsigned int		tag_buf_pos;
 264	/* The threshold length above which block mode will be used */
 265	unsigned int		blk_mode_threshold;
 266	struct			dma_pool *dpool;
 267	struct			qup_i2c_tag start_tag;
 268	struct			qup_i2c_bam brx;
 269	struct			qup_i2c_bam btx;
 270
 271	struct completion	xfer;
 272	/* function to write data in tx fifo */
 273	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 274	/* function to read data from rx fifo */
 275	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 276	/* function to write tags in tx fifo for i2c read transfer */
 277	void (*write_rx_tags)(struct qup_i2c_dev *qup);
 278};
 279
 280static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 281{
 282	struct qup_i2c_dev *qup = dev;
 283	struct qup_i2c_block *blk = &qup->blk;
 284	u32 bus_err;
 285	u32 qup_err;
 286	u32 opflags;
 287
 288	bus_err = readl(qup->base + QUP_I2C_STATUS);
 289	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 290	opflags = readl(qup->base + QUP_OPERATIONAL);
 291
 292	if (!qup->msg) {
 293		/* Clear Error interrupt */
 294		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 295		return IRQ_HANDLED;
 296	}
 297
 298	bus_err &= I2C_STATUS_ERROR_MASK;
 299	qup_err &= QUP_STATUS_ERROR_FLAGS;
 300
 301	/* Clear the error bits in QUP_ERROR_FLAGS */
 302	if (qup_err)
 303		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 304
 305	/* Clear the error bits in QUP_I2C_STATUS */
 306	if (bus_err)
 307		writel(bus_err, qup->base + QUP_I2C_STATUS);
 308
 309	/*
 310	 * Check for BAM mode and returns if already error has come for current
 311	 * transfer. In Error case, sometimes, QUP generates more than one
 312	 * interrupt.
 313	 */
 314	if (qup->use_dma && (qup->qup_err || qup->bus_err))
 315		return IRQ_HANDLED;
 316
 317	/* Reset the QUP State in case of error */
 318	if (qup_err || bus_err) {
 319		/*
 320		 * Don’t reset the QUP state in case of BAM mode. The BAM
 321		 * flush operation needs to be scheduled in transfer function
 322		 * which will clear the remaining schedule descriptors in BAM
 323		 * HW FIFO and generates the BAM interrupt.
 324		 */
 325		if (!qup->use_dma)
 326			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 327		goto done;
 328	}
 329
 330	if (opflags & QUP_OUT_SVC_FLAG) {
 331		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 332
 333		if (opflags & OUT_BLOCK_WRITE_REQ) {
 334			blk->tx_fifo_free += qup->out_blk_sz;
 335			if (qup->msg->flags & I2C_M_RD)
 336				qup->write_rx_tags(qup);
 337			else
 338				qup->write_tx_fifo(qup);
 339		}
 340	}
 341
 342	if (opflags & QUP_IN_SVC_FLAG) {
 343		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 344
 345		if (!blk->is_rx_blk_mode) {
 346			blk->fifo_available += qup->in_fifo_sz;
 347			qup->read_rx_fifo(qup);
 348		} else if (opflags & IN_BLOCK_READ_REQ) {
 349			blk->fifo_available += qup->in_blk_sz;
 350			qup->read_rx_fifo(qup);
 351		}
 352	}
 353
 354	if (qup->msg->flags & I2C_M_RD) {
 355		if (!blk->rx_bytes_read)
 356			return IRQ_HANDLED;
 357	} else {
 358		/*
 359		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 360		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 361		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 362		 * of interrupt for write message in FIFO mode is
 363		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
 364		 */
 365		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 366			return IRQ_HANDLED;
 367	}
 368
 369done:
 370	qup->qup_err = qup_err;
 371	qup->bus_err = bus_err;
 372	complete(&qup->xfer);
 373	return IRQ_HANDLED;
 374}
 375
 376static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 377				   u32 req_state, u32 req_mask)
 378{
 379	int retries = 1;
 380	u32 state;
 381
 382	/*
 383	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 384	 * cycles. So retry once after a 1uS delay.
 385	 */
 386	do {
 387		state = readl(qup->base + QUP_STATE);
 388
 389		if (state & QUP_STATE_VALID &&
 390		    (state & req_mask) == req_state)
 391			return 0;
 392
 393		udelay(1);
 394	} while (retries--);
 395
 396	return -ETIMEDOUT;
 397}
 398
 399static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 400{
 401	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 402}
 403
 404static void qup_i2c_flush(struct qup_i2c_dev *qup)
 405{
 406	u32 val = readl(qup->base + QUP_STATE);
 407
 408	val |= QUP_I2C_FLUSH;
 409	writel(val, qup->base + QUP_STATE);
 410}
 411
 412static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 413{
 414	return qup_i2c_poll_state_mask(qup, 0, 0);
 415}
 416
 417static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 418{
 419	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 420}
 421
 422static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 423{
 424	if (qup_i2c_poll_state_valid(qup) != 0)
 425		return -EIO;
 426
 427	writel(state, qup->base + QUP_STATE);
 428
 429	if (qup_i2c_poll_state(qup, state) != 0)
 430		return -EIO;
 431	return 0;
 432}
 433
 434/* Check if I2C bus returns to IDLE state */
 435static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 436{
 437	unsigned long timeout;
 
 438	u32 status;
 439	int ret = 0;
 440
 441	timeout = jiffies + len * 4;
 
 442	for (;;) {
 
 443		status = readl(qup->base + QUP_I2C_STATUS);
 444		if (!(status & I2C_STATUS_BUS_ACTIVE))
 445			break;
 
 
 446
 447		if (time_after(jiffies, timeout))
 448			ret = -ETIMEDOUT;
 449
 450		usleep_range(len, len * 2);
 451	}
 
 452
 453	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454}
 455
 456static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 457{
 458	struct qup_i2c_block *blk = &qup->blk;
 459	struct i2c_msg *msg = qup->msg;
 460	u32 addr = i2c_8bit_addr_from_msg(msg);
 461	u32 qup_tag;
 
 462	int idx;
 463	u32 val;
 464
 465	if (qup->pos == 0) {
 466		val = QUP_TAG_START | addr;
 467		idx = 1;
 468		blk->tx_fifo_free--;
 469	} else {
 470		val = 0;
 471		idx = 0;
 472	}
 473
 474	while (blk->tx_fifo_free && qup->pos < msg->len) {
 
 
 
 
 
 475		if (qup->pos == msg->len - 1)
 476			qup_tag = QUP_TAG_STOP;
 477		else
 478			qup_tag = QUP_TAG_DATA;
 479
 480		if (idx & 1)
 481			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 482		else
 483			val = qup_tag | msg->buf[qup->pos];
 484
 485		/* Write out the pair and the last odd value */
 486		if (idx & 1 || qup->pos == msg->len - 1)
 487			writel(val, qup->base + QUP_OUT_FIFO_BASE);
 488
 489		qup->pos++;
 490		idx++;
 491		blk->tx_fifo_free--;
 492	}
 493}
 494
 495static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 496				 struct i2c_msg *msg)
 497{
 498	qup->blk.pos = 0;
 499	qup->blk.data_len = msg->len;
 500	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 501}
 502
 503static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 504{
 505	int data_len;
 506
 507	if (qup->blk.data_len > qup->blk_xfer_limit)
 508		data_len = qup->blk_xfer_limit;
 509	else
 510		data_len = qup->blk.data_len;
 511
 512	return data_len;
 513}
 514
 515static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 516{
 517	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 518}
 519
 520static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 521			struct i2c_msg *msg)
 522{
 523	int len = 0;
 524
 525	if (qup->is_smbus_read) {
 526		tags[len++] = QUP_TAG_V2_DATARD_STOP;
 527		tags[len++] = qup_i2c_get_data_len(qup);
 528	} else {
 529		tags[len++] = QUP_TAG_V2_START;
 530		tags[len++] = addr & 0xff;
 531
 532		if (msg->flags & I2C_M_TEN)
 533			tags[len++] = addr >> 8;
 534
 535		tags[len++] = QUP_TAG_V2_DATARD;
 536		/* Read 1 byte indicating the length of the SMBus message */
 537		tags[len++] = 1;
 538	}
 539	return len;
 540}
 541
 542static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 543			    struct i2c_msg *msg)
 544{
 545	u16 addr = i2c_8bit_addr_from_msg(msg);
 546	int len = 0;
 547	int data_len;
 548
 549	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 550
 551	/* Handle tags for SMBus block read */
 552	if (qup_i2c_check_msg_len(msg))
 553		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 554
 555	if (qup->blk.pos == 0) {
 556		tags[len++] = QUP_TAG_V2_START;
 557		tags[len++] = addr & 0xff;
 558
 559		if (msg->flags & I2C_M_TEN)
 560			tags[len++] = addr >> 8;
 561	}
 562
 563	/* Send _STOP commands for the last block */
 564	if (last) {
 565		if (msg->flags & I2C_M_RD)
 566			tags[len++] = QUP_TAG_V2_DATARD_STOP;
 567		else
 568			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 569	} else {
 570		if (msg->flags & I2C_M_RD)
 571			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 572				      QUP_TAG_V2_DATARD_NACK :
 573				      QUP_TAG_V2_DATARD;
 574		else
 575			tags[len++] = QUP_TAG_V2_DATAWR;
 576	}
 577
 578	data_len = qup_i2c_get_data_len(qup);
 579
 580	/* 0 implies 256 bytes */
 581	if (data_len == QUP_READ_LIMIT)
 582		tags[len++] = 0;
 583	else
 584		tags[len++] = data_len;
 585
 586	return len;
 587}
 588
 589
 590static void qup_i2c_bam_cb(void *data)
 591{
 592	struct qup_i2c_dev *qup = data;
 593
 594	complete(&qup->xfer);
 595}
 596
 597static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 598			  unsigned int buflen, struct qup_i2c_dev *qup,
 599			  int dir)
 600{
 
 601	int ret;
 602
 603	sg_set_buf(sg, buf, buflen);
 604	ret = dma_map_sg(qup->dev, sg, 1, dir);
 605	if (!ret)
 606		return -EINVAL;
 607
 608	return 0;
 609}
 610
 611static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 612{
 613	if (qup->btx.dma)
 614		dma_release_channel(qup->btx.dma);
 615	if (qup->brx.dma)
 616		dma_release_channel(qup->brx.dma);
 617	qup->btx.dma = NULL;
 618	qup->brx.dma = NULL;
 619}
 620
 621static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 622{
 623	int err;
 624
 625	if (!qup->btx.dma) {
 626		qup->btx.dma = dma_request_chan(qup->dev, "tx");
 627		if (IS_ERR(qup->btx.dma)) {
 628			err = PTR_ERR(qup->btx.dma);
 629			qup->btx.dma = NULL;
 630			dev_err(qup->dev, "\n tx channel not available");
 631			return err;
 632		}
 633	}
 634
 635	if (!qup->brx.dma) {
 636		qup->brx.dma = dma_request_chan(qup->dev, "rx");
 637		if (IS_ERR(qup->brx.dma)) {
 638			dev_err(qup->dev, "\n rx channel not available");
 639			err = PTR_ERR(qup->brx.dma);
 640			qup->brx.dma = NULL;
 641			qup_i2c_rel_dma(qup);
 642			return err;
 643		}
 644	}
 645	return 0;
 646}
 647
 648static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 649{
 650	int ret = 0, limit = QUP_READ_LIMIT;
 651	u32 len = 0, blocks, rem;
 652	u32 i = 0, tlen, tx_len = 0;
 653	u8 *tags;
 654
 655	qup->blk_xfer_limit = QUP_READ_LIMIT;
 656	qup_i2c_set_blk_data(qup, msg);
 657
 658	blocks = qup->blk.count;
 659	rem = msg->len - (blocks - 1) * limit;
 660
 661	if (msg->flags & I2C_M_RD) {
 662		while (qup->blk.pos < blocks) {
 663			tlen = (i == (blocks - 1)) ? rem : limit;
 664			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 665			len += qup_i2c_set_tags(tags, qup, msg);
 666			qup->blk.data_len -= tlen;
 667
 668			/* scratch buf to read the start and len tags */
 669			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 670					     &qup->brx.tag.start[0],
 671					     2, qup, DMA_FROM_DEVICE);
 672
 673			if (ret)
 674				return ret;
 675
 676			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 677					     &msg->buf[limit * i],
 678					     tlen, qup,
 679					     DMA_FROM_DEVICE);
 680			if (ret)
 681				return ret;
 682
 683			i++;
 684			qup->blk.pos = i;
 685		}
 686		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 687				     &qup->start_tag.start[qup->tag_buf_pos],
 688				     len, qup, DMA_TO_DEVICE);
 689		if (ret)
 690			return ret;
 691
 692		qup->tag_buf_pos += len;
 693	} else {
 694		while (qup->blk.pos < blocks) {
 695			tlen = (i == (blocks - 1)) ? rem : limit;
 696			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 697			len = qup_i2c_set_tags(tags, qup, msg);
 698			qup->blk.data_len -= tlen;
 699
 700			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 701					     tags, len,
 702					     qup, DMA_TO_DEVICE);
 703			if (ret)
 704				return ret;
 705
 706			tx_len += len;
 707			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 708					     &msg->buf[limit * i],
 709					     tlen, qup, DMA_TO_DEVICE);
 710			if (ret)
 711				return ret;
 712			i++;
 713			qup->blk.pos = i;
 714		}
 715
 716		qup->tag_buf_pos += tx_len;
 717	}
 718
 719	return 0;
 720}
 721
 722static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 723{
 724	struct dma_async_tx_descriptor *txd, *rxd = NULL;
 725	int ret = 0;
 726	dma_cookie_t cookie_rx, cookie_tx;
 727	u32 len = 0;
 728	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 729
 730	/* schedule the EOT and FLUSH I2C tags */
 731	len = 1;
 732	if (rx_cnt) {
 733		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 734		len++;
 735
 736		/* scratch buf to read the BAM EOT FLUSH tags */
 737		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 738				     &qup->brx.tag.start[0],
 739				     1, qup, DMA_FROM_DEVICE);
 740		if (ret)
 741			return ret;
 742	}
 743
 744	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 745	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 746			     len, qup, DMA_TO_DEVICE);
 747	if (ret)
 748		return ret;
 749
 750	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 751				      DMA_MEM_TO_DEV,
 752				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 753	if (!txd) {
 754		dev_err(qup->dev, "failed to get tx desc\n");
 755		ret = -EINVAL;
 756		goto desc_err;
 757	}
 758
 759	if (!rx_cnt) {
 760		txd->callback = qup_i2c_bam_cb;
 761		txd->callback_param = qup;
 762	}
 763
 764	cookie_tx = dmaengine_submit(txd);
 765	if (dma_submit_error(cookie_tx)) {
 766		ret = -EINVAL;
 767		goto desc_err;
 768	}
 769
 770	dma_async_issue_pending(qup->btx.dma);
 771
 772	if (rx_cnt) {
 773		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 774					      rx_cnt, DMA_DEV_TO_MEM,
 775					      DMA_PREP_INTERRUPT);
 776		if (!rxd) {
 777			dev_err(qup->dev, "failed to get rx desc\n");
 778			ret = -EINVAL;
 779
 780			/* abort TX descriptors */
 781			dmaengine_terminate_sync(qup->btx.dma);
 782			goto desc_err;
 783		}
 784
 785		rxd->callback = qup_i2c_bam_cb;
 786		rxd->callback_param = qup;
 787		cookie_rx = dmaengine_submit(rxd);
 788		if (dma_submit_error(cookie_rx)) {
 789			ret = -EINVAL;
 790			goto desc_err;
 791		}
 792
 793		dma_async_issue_pending(qup->brx.dma);
 794	}
 795
 796	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout))
 797		ret = -ETIMEDOUT;
 798
 799	if (ret || qup->bus_err || qup->qup_err) {
 800		reinit_completion(&qup->xfer);
 801
 802		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 803		if (ret) {
 804			dev_err(qup->dev, "change to run state timed out");
 805			goto desc_err;
 806		}
 
 807
 808		qup_i2c_flush(qup);
 809
 810		/* wait for remaining interrupts to occur */
 811		if (!wait_for_completion_timeout(&qup->xfer, HZ))
 812			dev_err(qup->dev, "flush timed out\n");
 813
 814		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 815	}
 816
 817desc_err:
 818	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 819
 820	if (rx_cnt)
 821		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 822			     DMA_FROM_DEVICE);
 823
 824	return ret;
 825}
 826
 827static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 828{
 829	qup->btx.sg_cnt = 0;
 830	qup->brx.sg_cnt = 0;
 831	qup->tag_buf_pos = 0;
 832}
 833
 834static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 835			    int num)
 836{
 837	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 838	int ret = 0;
 839	int idx = 0;
 840
 841	enable_irq(qup->irq);
 842	ret = qup_i2c_req_dma(qup);
 843
 844	if (ret)
 845		goto out;
 846
 847	writel(0, qup->base + QUP_MX_INPUT_CNT);
 848	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 849
 850	/* set BAM mode */
 851	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 852
 853	/* mask fifo irqs */
 854	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 855
 856	/* set RUN STATE */
 857	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 858	if (ret)
 859		goto out;
 860
 861	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 862	qup_i2c_bam_clear_tag_buffers(qup);
 863
 864	for (idx = 0; idx < num; idx++) {
 865		qup->msg = msg + idx;
 866		qup->is_last = idx == (num - 1);
 867
 868		ret = qup_i2c_bam_make_desc(qup, qup->msg);
 869		if (ret)
 870			break;
 871
 872		/*
 873		 * Make DMA descriptor and schedule the BAM transfer if its
 874		 * already crossed the maximum length. Since the memory for all
 875		 * tags buffers have been taken for 2 maximum possible
 876		 * transfers length so it will never cross the buffer actual
 877		 * length.
 878		 */
 879		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 880		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 881		    qup->is_last) {
 882			ret = qup_i2c_bam_schedule_desc(qup);
 883			if (ret)
 884				break;
 885
 886			qup_i2c_bam_clear_tag_buffers(qup);
 887		}
 888	}
 889
 890out:
 891	disable_irq(qup->irq);
 892
 893	qup->msg = NULL;
 894	return ret;
 895}
 896
 897static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 898				     struct i2c_msg *msg)
 899{
 900	unsigned long left;
 901	int ret = 0;
 902
 903	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 904	if (!left) {
 905		writel(1, qup->base + QUP_SW_RESET);
 906		ret = -ETIMEDOUT;
 907	}
 908
 909	if (qup->bus_err || qup->qup_err)
 910		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 911
 912	return ret;
 
 913}
 914
 915static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 
 916{
 917	struct qup_i2c_block *blk = &qup->blk;
 918	struct i2c_msg *msg = qup->msg;
 919	u32 val = 0;
 920	int idx = 0;
 921
 922	while (blk->fifo_available && qup->pos < msg->len) {
 923		if ((idx & 1) == 0) {
 
 
 
 
 
 924			/* Reading 2 words at time */
 925			val = readl(qup->base + QUP_IN_FIFO_BASE);
 
 926			msg->buf[qup->pos++] = val & 0xFF;
 927		} else {
 928			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 929		}
 930		idx++;
 931		blk->fifo_available--;
 932	}
 933
 934	if (qup->pos == msg->len)
 935		blk->rx_bytes_read = true;
 936}
 937
 938static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 939{
 940	struct i2c_msg *msg = qup->msg;
 941	u32 addr, len, val;
 942
 943	addr = i2c_8bit_addr_from_msg(msg);
 944
 945	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 946	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 947
 948	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 949	writel(val, qup->base + QUP_OUT_FIFO_BASE);
 950}
 951
 952static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 953{
 954	struct qup_i2c_block *blk = &qup->blk;
 955	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 956	u32 io_mode = QUP_REPACK_EN;
 957
 958	blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
 959	blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
 960
 961	if (blk->is_tx_blk_mode) {
 962		io_mode |= QUP_OUTPUT_BLK_MODE;
 963		writel(0, qup->base + QUP_MX_WRITE_CNT);
 964		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 965	} else {
 966		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 967		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 968	}
 969
 970	if (blk->total_rx_len) {
 971		if (blk->is_rx_blk_mode) {
 972			io_mode |= QUP_INPUT_BLK_MODE;
 973			writel(0, qup->base + QUP_MX_READ_CNT);
 974			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 975		} else {
 976			writel(0, qup->base + QUP_MX_INPUT_CNT);
 977			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 978		}
 979	} else {
 980		qup_config |= QUP_NO_INPUT;
 981	}
 982
 983	writel(qup_config, qup->base + QUP_CONFIG);
 984	writel(io_mode, qup->base + QUP_IO_MODE);
 985}
 986
 987static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 988{
 989	blk->tx_fifo_free = 0;
 990	blk->fifo_available = 0;
 991	blk->rx_bytes_read = false;
 992}
 993
 994static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
 995{
 996	struct qup_i2c_block *blk = &qup->blk;
 997	int ret;
 998
 999	qup_i2c_clear_blk_v1(blk);
1000	qup_i2c_conf_v1(qup);
1001	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1002	if (ret)
1003		return ret;
1004
1005	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1006
1007	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1008	if (ret)
1009		return ret;
1010
1011	reinit_completion(&qup->xfer);
1012	enable_irq(qup->irq);
1013	if (!blk->is_tx_blk_mode) {
1014		blk->tx_fifo_free = qup->out_fifo_sz;
1015
1016		if (is_rx)
1017			qup_i2c_write_rx_tags_v1(qup);
1018		else
1019			qup_i2c_write_tx_fifo_v1(qup);
1020	}
1021
1022	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1023	if (ret)
1024		goto err;
1025
1026	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1027	if (ret)
1028		goto err;
 
 
 
 
 
 
 
 
 
 
 
1029
1030	ret = qup_i2c_bus_active(qup, ONE_BYTE);
 
1031
1032err:
1033	disable_irq(qup->irq);
1034	return ret;
1035}
1036
1037static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1038{
1039	struct i2c_msg *msg = qup->msg;
1040	struct qup_i2c_block *blk = &qup->blk;
1041
1042	qup->pos = 0;
1043	blk->total_tx_len = msg->len + 1;
1044	blk->total_rx_len = 0;
1045
1046	return qup_i2c_conf_xfer_v1(qup, false);
1047}
1048
1049static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1050{
1051	struct qup_i2c_block *blk = &qup->blk;
1052
1053	qup->pos = 0;
1054	blk->total_tx_len = 2;
1055	blk->total_rx_len = qup->msg->len;
1056
1057	return qup_i2c_conf_xfer_v1(qup, true);
1058}
1059
1060static int qup_i2c_xfer(struct i2c_adapter *adap,
1061			struct i2c_msg msgs[],
1062			int num)
1063{
1064	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1065	int ret, idx;
1066
1067	ret = pm_runtime_get_sync(qup->dev);
1068	if (ret < 0)
1069		goto out;
1070
1071	qup->bus_err = 0;
1072	qup->qup_err = 0;
1073
1074	writel(1, qup->base + QUP_SW_RESET);
1075	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1076	if (ret)
1077		goto out;
1078
1079	/* Configure QUP as I2C mini core */
1080	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1081
1082	for (idx = 0; idx < num; idx++) {
1083		if (qup_i2c_poll_state_i2c_master(qup)) {
1084			ret = -EIO;
1085			goto out;
1086		}
1087
1088		if (qup_i2c_check_msg_len(&msgs[idx])) {
1089			ret = -EINVAL;
1090			goto out;
1091		}
1092
1093		qup->msg = &msgs[idx];
1094		if (msgs[idx].flags & I2C_M_RD)
1095			ret = qup_i2c_read_one(qup);
1096		else
1097			ret = qup_i2c_write_one(qup);
1098
1099		if (ret)
1100			break;
1101
1102		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1103		if (ret)
1104			break;
1105	}
1106
1107	if (ret == 0)
1108		ret = num;
1109out:
1110
1111	pm_runtime_mark_last_busy(qup->dev);
1112	pm_runtime_put_autosuspend(qup->dev);
1113
1114	return ret;
1115}
1116
1117/*
1118 * Configure registers related with reconfiguration during run and call it
1119 * before each i2c sub transfer.
1120 */
1121static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1122{
1123	struct qup_i2c_block *blk = &qup->blk;
1124	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1125
1126	if (blk->is_tx_blk_mode)
1127		writel(qup->config_run | blk->total_tx_len,
1128		       qup->base + QUP_MX_OUTPUT_CNT);
1129	else
1130		writel(qup->config_run | blk->total_tx_len,
1131		       qup->base + QUP_MX_WRITE_CNT);
1132
1133	if (blk->total_rx_len) {
1134		if (blk->is_rx_blk_mode)
1135			writel(qup->config_run | blk->total_rx_len,
1136			       qup->base + QUP_MX_INPUT_CNT);
1137		else
1138			writel(qup->config_run | blk->total_rx_len,
1139			       qup->base + QUP_MX_READ_CNT);
1140	} else {
1141		qup_config |= QUP_NO_INPUT;
1142	}
1143
1144	writel(qup_config, qup->base + QUP_CONFIG);
1145}
1146
1147/*
1148 * Configure registers related with transfer mode (FIFO/Block)
1149 * before starting of i2c transfer. It will be called only once in
1150 * QUP RESET state.
1151 */
1152static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1153{
1154	struct qup_i2c_block *blk = &qup->blk;
1155	u32 io_mode = QUP_REPACK_EN;
1156
1157	if (blk->is_tx_blk_mode) {
1158		io_mode |= QUP_OUTPUT_BLK_MODE;
1159		writel(0, qup->base + QUP_MX_WRITE_CNT);
1160	} else {
1161		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1162	}
1163
1164	if (blk->is_rx_blk_mode) {
1165		io_mode |= QUP_INPUT_BLK_MODE;
1166		writel(0, qup->base + QUP_MX_READ_CNT);
1167	} else {
1168		writel(0, qup->base + QUP_MX_INPUT_CNT);
1169	}
1170
1171	writel(io_mode, qup->base + QUP_IO_MODE);
1172}
1173
1174/* Clear required variables before starting of any QUP v2 sub transfer. */
1175static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1176{
1177	blk->send_last_word = false;
1178	blk->tx_tags_sent = false;
1179	blk->tx_fifo_data = 0;
1180	blk->tx_fifo_data_pos = 0;
1181	blk->tx_fifo_free = 0;
1182
1183	blk->rx_tags_fetched = false;
1184	blk->rx_bytes_read = false;
1185	blk->rx_fifo_data = 0;
1186	blk->rx_fifo_data_pos = 0;
1187	blk->fifo_available = 0;
1188}
1189
1190/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1191static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1192{
1193	struct qup_i2c_block *blk = &qup->blk;
1194	int j;
1195
1196	for (j = blk->rx_fifo_data_pos;
1197	     blk->cur_blk_len && blk->fifo_available;
1198	     blk->cur_blk_len--, blk->fifo_available--) {
1199		if (j == 0)
1200			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1201
1202		*(blk->cur_data++) = blk->rx_fifo_data;
1203		blk->rx_fifo_data >>= 8;
1204
1205		if (j == 3)
1206			j = 0;
1207		else
1208			j++;
1209	}
1210
1211	blk->rx_fifo_data_pos = j;
1212}
1213
1214/* Receive tags for read message in QUP v2 i2c transfer. */
1215static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1216{
1217	struct qup_i2c_block *blk = &qup->blk;
1218
1219	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1220	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1221	blk->rx_fifo_data_pos = blk->rx_tag_len;
1222	blk->fifo_available -= blk->rx_tag_len;
1223}
1224
1225/*
1226 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1227 * preceded by received data bytes so
1228 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1229 *    all tag bytes and discard that.
1230 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1231 *    set rx_bytes_read to true.
1232 */
1233static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1234{
1235	struct qup_i2c_block *blk = &qup->blk;
1236
1237	if (!blk->rx_tags_fetched) {
1238		qup_i2c_recv_tags(qup);
1239		blk->rx_tags_fetched = true;
1240	}
1241
1242	qup_i2c_recv_data(qup);
1243	if (!blk->cur_blk_len)
1244		blk->rx_bytes_read = true;
1245}
1246
1247/*
1248 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1249 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1250 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1251 */
1252static void
1253qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1254{
1255	struct qup_i2c_block *blk = &qup->blk;
1256	unsigned int j;
1257
1258	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1259	     (*len)--, blk->tx_fifo_free--) {
1260		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1261		if (j == 3) {
1262			writel(blk->tx_fifo_data,
1263			       qup->base + QUP_OUT_FIFO_BASE);
1264			blk->tx_fifo_data = 0x0;
1265			j = 0;
1266		} else {
1267			j++;
1268		}
1269	}
1270
1271	blk->tx_fifo_data_pos = j;
1272}
1273
1274/* Transfer tags for read message in QUP v2 i2c transfer. */
1275static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1276{
1277	struct qup_i2c_block *blk = &qup->blk;
1278
1279	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1280	if (blk->tx_fifo_data_pos)
1281		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1282}
1283
1284/*
1285 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1286 * need to be written and QUP write tags can have maximum 256 data length, so
1287 *
1288 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1289 *    tags to TX FIFO and set tx_tags_sent to true.
1290 * 2. Check if send_last_word is true. It will be set when last few data bytes
1291 *    (less than 4 bytes) are remaining to be written in FIFO because of no FIFO
1292 *    space. All this data bytes are available in tx_fifo_data so write this
1293 *    in FIFO.
1294 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1295 *    then more data is pending otherwise following 3 cases can be possible
1296 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1297 *       have been written in TX FIFO so nothing else is required.
1298 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1299 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1300 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1301 *       will be always greater than or equal to 4 bytes.
1302 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1303 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1304 *       FIFO full so make send_last_word true.
1305 */
1306static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1307{
1308	struct qup_i2c_block *blk = &qup->blk;
1309
1310	if (!blk->tx_tags_sent) {
1311		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1312				       &blk->tx_tag_len);
1313		blk->tx_tags_sent = true;
1314	}
1315
1316	if (blk->send_last_word)
1317		goto send_last_word;
1318
1319	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1320	if (!blk->cur_blk_len) {
1321		if (!blk->tx_fifo_data_pos)
1322			return;
1323
1324		if (blk->tx_fifo_free)
1325			goto send_last_word;
1326
1327		blk->send_last_word = true;
1328	}
1329
1330	return;
1331
1332send_last_word:
1333	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1334}
1335
1336/*
1337 * Main transfer function which read or write i2c data.
1338 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1339 * transfers can be scheduled.
1340 */
1341static int
1342qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1343		     bool change_pause_state)
1344{
1345	struct qup_i2c_block *blk = &qup->blk;
1346	struct i2c_msg *msg = qup->msg;
1347	int ret;
1348
1349	/*
1350	 * Check if its SMBus Block read for which the top level read will be
1351	 * done into 2 QUP reads. One with message length 1 while other one is
1352	 * with actual length.
1353	 */
1354	if (qup_i2c_check_msg_len(msg)) {
1355		if (qup->is_smbus_read) {
1356			/*
1357			 * If the message length is already read in
1358			 * the first byte of the buffer, account for
1359			 * that by setting the offset
1360			 */
1361			blk->cur_data += 1;
1362			is_first = false;
1363		} else {
1364			change_pause_state = false;
1365		}
1366	}
1367
1368	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1369
1370	qup_i2c_clear_blk_v2(blk);
1371	qup_i2c_conf_count_v2(qup);
1372
1373	/* If it is first sub transfer, then configure i2c bus clocks */
1374	if (is_first) {
1375		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1376		if (ret)
1377			return ret;
1378
1379		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1380
1381		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1382		if (ret)
1383			return ret;
1384	}
1385
1386	reinit_completion(&qup->xfer);
1387	enable_irq(qup->irq);
1388	/*
1389	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1390	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1391	 */
1392	if (!blk->is_tx_blk_mode) {
1393		blk->tx_fifo_free = qup->out_fifo_sz;
1394
1395		if (is_rx)
1396			qup_i2c_write_rx_tags_v2(qup);
1397		else
1398			qup_i2c_write_tx_fifo_v2(qup);
1399	}
1400
1401	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1402	if (ret)
1403		goto err;
1404
1405	ret = qup_i2c_wait_for_complete(qup, msg);
1406	if (ret)
1407		goto err;
1408
1409	/* Move to pause state for all the transfers, except last one */
1410	if (change_pause_state) {
1411		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1412		if (ret)
1413			goto err;
1414	}
1415
1416err:
1417	disable_irq(qup->irq);
1418	return ret;
1419}
1420
1421/*
1422 * Transfer one read/write message in i2c transfer. It splits the message into
1423 * multiple of blk_xfer_limit data length blocks and schedule each
1424 * QUP block individually.
1425 */
1426static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1427{
1428	int ret = 0;
1429	unsigned int data_len, i;
1430	struct i2c_msg *msg = qup->msg;
1431	struct qup_i2c_block *blk = &qup->blk;
1432	u8 *msg_buf = msg->buf;
1433
1434	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1435	qup_i2c_set_blk_data(qup, msg);
1436
1437	for (i = 0; i < blk->count; i++) {
1438		data_len =  qup_i2c_get_data_len(qup);
1439		blk->pos = i;
1440		blk->cur_tx_tags = blk->tags;
1441		blk->cur_blk_len = data_len;
1442		blk->tx_tag_len =
1443			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1444
1445		blk->cur_data = msg_buf;
1446
1447		if (is_rx) {
1448			blk->total_tx_len = blk->tx_tag_len;
1449			blk->rx_tag_len = 2;
1450			blk->total_rx_len = blk->rx_tag_len + data_len;
1451		} else {
1452			blk->total_tx_len = blk->tx_tag_len + data_len;
1453			blk->total_rx_len = 0;
1454		}
1455
1456		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1457					   !qup->is_last || i < blk->count - 1);
1458		if (ret)
1459			return ret;
1460
1461		/* Handle SMBus block read length */
1462		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1463		    !qup->is_smbus_read) {
1464			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1465				return -EPROTO;
1466
1467			msg->len = msg->buf[0];
1468			qup->is_smbus_read = true;
1469			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1470			qup->is_smbus_read = false;
1471			if (ret)
1472				return ret;
1473
1474			msg->len += 1;
1475		}
1476
1477		msg_buf += data_len;
1478		blk->data_len -= qup->blk_xfer_limit;
1479	}
1480
1481	return ret;
1482}
1483
1484/*
1485 * QUP v2 supports 3 modes
1486 * Programmed IO using FIFO mode : Less than FIFO size
1487 * Programmed IO using Block mode : Greater than FIFO size
1488 * DMA using BAM : Appropriate for any transaction size but the address should
1489 *		   be DMA applicable
1490 *
1491 * This function determines the mode which will be used for this transfer. An
1492 * i2c transfer contains multiple message. Following are the rules to determine
1493 * the mode used.
1494 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1495 * 2. If complete transfer length is greater than fifo size then use the DMA
1496 *    mode.
1497 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1498 *    for maximum tx and rx length to determine mode.
1499 */
1500static int
1501qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1502			  struct i2c_msg msgs[], int num)
1503{
1504	int idx;
1505	bool no_dma = false;
1506	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1507
1508	/* All i2c_msgs should be transferred using either dma or cpu */
1509	for (idx = 0; idx < num; idx++) {
1510		if (msgs[idx].flags & I2C_M_RD)
1511			max_rx_len = max_t(unsigned int, max_rx_len,
1512					   msgs[idx].len);
1513		else
1514			max_tx_len = max_t(unsigned int, max_tx_len,
1515					   msgs[idx].len);
1516
1517		if (is_vmalloc_addr(msgs[idx].buf))
1518			no_dma = true;
1519
1520		total_len += msgs[idx].len;
1521	}
1522
1523	if (!no_dma && qup->is_dma &&
1524	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1525		qup->use_dma = true;
1526	} else {
1527		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1528			QUP_MAX_TAGS_LEN;
1529		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1530			READ_RX_TAGS_LEN;
1531	}
1532
1533	return 0;
1534}
1535
1536static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1537			   struct i2c_msg msgs[],
1538			   int num)
1539{
1540	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1541	int ret, idx = 0;
1542
1543	qup->bus_err = 0;
1544	qup->qup_err = 0;
1545
1546	ret = pm_runtime_get_sync(qup->dev);
1547	if (ret < 0)
1548		goto out;
1549
1550	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1551	if (ret)
1552		goto out;
1553
1554	writel(1, qup->base + QUP_SW_RESET);
1555	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1556	if (ret)
1557		goto out;
1558
1559	/* Configure QUP as I2C mini core */
1560	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1561	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1562
1563	if (qup_i2c_poll_state_i2c_master(qup)) {
1564		ret = -EIO;
1565		goto out;
1566	}
1567
1568	if (qup->use_dma) {
1569		reinit_completion(&qup->xfer);
1570		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1571		qup->use_dma = false;
1572	} else {
1573		qup_i2c_conf_mode_v2(qup);
1574
1575		for (idx = 0; idx < num; idx++) {
1576			qup->msg = &msgs[idx];
1577			qup->is_last = idx == (num - 1);
1578
1579			ret = qup_i2c_xfer_v2_msg(qup, idx,
1580					!!(msgs[idx].flags & I2C_M_RD));
1581			if (ret)
1582				break;
1583		}
1584		qup->msg = NULL;
1585	}
1586
1587	if (!ret)
1588		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1589
1590	if (!ret)
1591		qup_i2c_change_state(qup, QUP_RESET_STATE);
1592
1593	if (ret == 0)
1594		ret = num;
1595out:
1596	pm_runtime_mark_last_busy(qup->dev);
1597	pm_runtime_put_autosuspend(qup->dev);
1598
1599	return ret;
1600}
1601
1602static u32 qup_i2c_func(struct i2c_adapter *adap)
1603{
1604	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
1605}
1606
1607static const struct i2c_algorithm qup_i2c_algo = {
1608	.master_xfer	= qup_i2c_xfer,
1609	.functionality	= qup_i2c_func,
1610};
1611
1612static const struct i2c_algorithm qup_i2c_algo_v2 = {
1613	.master_xfer	= qup_i2c_xfer_v2,
1614	.functionality	= qup_i2c_func,
1615};
1616
1617/*
1618 * The QUP block will issue a NACK and STOP on the bus when reaching
1619 * the end of the read, the length of the read is specified as one byte
1620 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1621 */
1622static const struct i2c_adapter_quirks qup_i2c_quirks = {
1623	.flags = I2C_AQ_NO_ZERO_LEN,
1624	.max_read_len = QUP_READ_LIMIT,
1625};
1626
1627static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1628	.flags = I2C_AQ_NO_ZERO_LEN,
1629};
1630
1631static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1632{
1633	clk_prepare_enable(qup->clk);
1634	clk_prepare_enable(qup->pclk);
1635}
1636
1637static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1638{
1639	u32 config;
1640
1641	qup_i2c_change_state(qup, QUP_RESET_STATE);
1642	clk_disable_unprepare(qup->clk);
1643	config = readl(qup->base + QUP_CONFIG);
1644	config |= QUP_CLOCK_AUTO_GATE;
1645	writel(config, qup->base + QUP_CONFIG);
1646	clk_disable_unprepare(qup->pclk);
1647}
1648
1649static const struct acpi_device_id qup_i2c_acpi_match[] = {
1650	{ "QCOM8010"},
1651	{ }
1652};
1653MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1654
1655static int qup_i2c_probe(struct platform_device *pdev)
1656{
1657	static const int blk_sizes[] = {4, 16, 32};
 
1658	struct qup_i2c_dev *qup;
1659	unsigned long one_bit_t;
 
1660	u32 io_mode, hw_ver, size;
1661	int ret, fs_div, hs_div;
1662	u32 src_clk_freq = DEFAULT_SRC_CLK;
1663	u32 clk_freq = DEFAULT_CLK_FREQ;
1664	int blocks;
1665	bool is_qup_v1;
1666
1667	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1668	if (!qup)
1669		return -ENOMEM;
1670
1671	qup->dev = &pdev->dev;
1672	init_completion(&qup->xfer);
1673	platform_set_drvdata(pdev, qup);
1674
1675	if (scl_freq) {
1676		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1677		clk_freq = scl_freq;
1678	} else {
1679		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1680		if (ret) {
1681			dev_notice(qup->dev, "using default clock-frequency %d",
1682				DEFAULT_CLK_FREQ);
1683		}
1684	}
1685
1686	if (device_is_compatible(&pdev->dev, "qcom,i2c-qup-v1.1.1")) {
1687		qup->adap.algo = &qup_i2c_algo;
1688		qup->adap.quirks = &qup_i2c_quirks;
1689		is_qup_v1 = true;
1690	} else {
1691		qup->adap.algo = &qup_i2c_algo_v2;
1692		qup->adap.quirks = &qup_i2c_quirks_v2;
1693		is_qup_v1 = false;
1694		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1695			goto nodma;
1696		else
1697			ret = qup_i2c_req_dma(qup);
1698
1699		if (ret == -EPROBE_DEFER)
1700			goto fail_dma;
1701		else if (ret != 0)
1702			goto nodma;
1703
1704		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1705		blocks = (MX_DMA_BLOCKS << 1) + 1;
1706		qup->btx.sg = devm_kcalloc(&pdev->dev,
1707					   blocks, sizeof(*qup->btx.sg),
1708					   GFP_KERNEL);
1709		if (!qup->btx.sg) {
1710			ret = -ENOMEM;
1711			goto fail_dma;
1712		}
1713		sg_init_table(qup->btx.sg, blocks);
1714
1715		qup->brx.sg = devm_kcalloc(&pdev->dev,
1716					   blocks, sizeof(*qup->brx.sg),
1717					   GFP_KERNEL);
1718		if (!qup->brx.sg) {
1719			ret = -ENOMEM;
1720			goto fail_dma;
1721		}
1722		sg_init_table(qup->brx.sg, blocks);
1723
1724		/* 2 tag bytes for each block + 5 for start, stop tags */
1725		size = blocks * 2 + 5;
1726
1727		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1728						    size, GFP_KERNEL);
1729		if (!qup->start_tag.start) {
1730			ret = -ENOMEM;
1731			goto fail_dma;
1732		}
1733
1734		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1735		if (!qup->brx.tag.start) {
1736			ret = -ENOMEM;
1737			goto fail_dma;
1738		}
1739
1740		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1741		if (!qup->btx.tag.start) {
1742			ret = -ENOMEM;
1743			goto fail_dma;
1744		}
1745		qup->is_dma = true;
1746	}
1747
1748nodma:
1749	/* We support frequencies up to FAST Mode Plus (1MHz) */
1750	if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1751		dev_err(qup->dev, "clock frequency not supported %d\n",
1752			clk_freq);
1753		ret = -EINVAL;
1754		goto fail_dma;
1755	}
1756
1757	qup->base = devm_platform_ioremap_resource(pdev, 0);
1758	if (IS_ERR(qup->base)) {
1759		ret = PTR_ERR(qup->base);
1760		goto fail_dma;
1761	}
1762
1763	qup->irq = platform_get_irq(pdev, 0);
1764	if (qup->irq < 0) {
1765		ret = qup->irq;
1766		goto fail_dma;
1767	}
1768
1769	if (has_acpi_companion(qup->dev)) {
1770		ret = device_property_read_u32(qup->dev,
1771				"src-clock-hz", &src_clk_freq);
1772		if (ret) {
1773			dev_notice(qup->dev, "using default src-clock-hz %d",
1774				DEFAULT_SRC_CLK);
1775		}
1776		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1777	} else {
1778		qup->clk = devm_clk_get(qup->dev, "core");
1779		if (IS_ERR(qup->clk)) {
1780			dev_err(qup->dev, "Could not get core clock\n");
1781			ret = PTR_ERR(qup->clk);
1782			goto fail_dma;
1783		}
1784
1785		qup->pclk = devm_clk_get(qup->dev, "iface");
1786		if (IS_ERR(qup->pclk)) {
1787			dev_err(qup->dev, "Could not get iface clock\n");
1788			ret = PTR_ERR(qup->pclk);
1789			goto fail_dma;
1790		}
1791		qup_i2c_enable_clocks(qup);
1792		src_clk_freq = clk_get_rate(qup->clk);
1793	}
1794
 
 
1795	/*
1796	 * Bootloaders might leave a pending interrupt on certain QUP's,
1797	 * so we reset the core before registering for interrupts.
1798	 */
1799	writel(1, qup->base + QUP_SW_RESET);
1800	ret = qup_i2c_poll_state_valid(qup);
1801	if (ret)
1802		goto fail;
1803
1804	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1805			       IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1806			       "i2c_qup", qup);
1807	if (ret) {
1808		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1809		goto fail;
1810	}
 
1811
1812	hw_ver = readl(qup->base + QUP_HW_VERSION);
1813	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1814
1815	io_mode = readl(qup->base + QUP_IO_MODE);
1816
1817	/*
1818	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1819	 * associated with each byte written/received
1820	 */
1821	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1822	if (size >= ARRAY_SIZE(blk_sizes)) {
1823		ret = -EIO;
1824		goto fail;
1825	}
1826	qup->out_blk_sz = blk_sizes[size];
1827
1828	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1829	if (size >= ARRAY_SIZE(blk_sizes)) {
1830		ret = -EIO;
1831		goto fail;
1832	}
1833	qup->in_blk_sz = blk_sizes[size];
1834
1835	if (is_qup_v1) {
1836		/*
1837		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1838		 * single transfer but the block size is in bytes so divide the
1839		 * in_blk_sz and out_blk_sz by 2
1840		 */
1841		qup->in_blk_sz /= 2;
1842		qup->out_blk_sz /= 2;
1843		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1844		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1845		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1846	} else {
1847		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1848		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1849		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1850	}
1851
1852	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1853	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1854
1855	size = QUP_INPUT_FIFO_SIZE(io_mode);
1856	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1857
 
 
1858	hs_div = 3;
1859	if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1860		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1861		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1862	} else {
1863		/* 33%/66% duty cycle */
1864		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1865		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1866	}
1867
1868	/*
1869	 * Time it takes for a byte to be clocked out on the bus.
1870	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1871	 */
1872	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1873	qup->one_byte_t = one_bit_t * 9;
1874	qup->xfer_timeout = TOUT_MIN * HZ +
1875		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1876
1877	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1878		qup->in_blk_sz, qup->in_fifo_sz,
1879		qup->out_blk_sz, qup->out_fifo_sz);
1880
1881	i2c_set_adapdata(&qup->adap, qup);
 
1882	qup->adap.dev.parent = qup->dev;
1883	qup->adap.dev.of_node = pdev->dev.of_node;
1884	qup->is_last = true;
1885
1886	strscpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
 
 
1887
1888	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1889	pm_runtime_use_autosuspend(qup->dev);
1890	pm_runtime_set_active(qup->dev);
1891	pm_runtime_enable(qup->dev);
1892
1893	ret = i2c_add_adapter(&qup->adap);
1894	if (ret)
1895		goto fail_runtime;
1896
1897	return 0;
1898
1899fail_runtime:
1900	pm_runtime_disable(qup->dev);
1901	pm_runtime_set_suspended(qup->dev);
1902fail:
1903	qup_i2c_disable_clocks(qup);
1904fail_dma:
1905	if (qup->btx.dma)
1906		dma_release_channel(qup->btx.dma);
1907	if (qup->brx.dma)
1908		dma_release_channel(qup->brx.dma);
1909	return ret;
1910}
1911
1912static void qup_i2c_remove(struct platform_device *pdev)
1913{
1914	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1915
1916	if (qup->is_dma) {
1917		dma_release_channel(qup->btx.dma);
1918		dma_release_channel(qup->brx.dma);
1919	}
1920
1921	disable_irq(qup->irq);
1922	qup_i2c_disable_clocks(qup);
1923	i2c_del_adapter(&qup->adap);
1924	pm_runtime_disable(qup->dev);
1925	pm_runtime_set_suspended(qup->dev);
 
1926}
1927
 
1928static int qup_i2c_pm_suspend_runtime(struct device *device)
1929{
1930	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1931
1932	dev_dbg(device, "pm_runtime: suspending...\n");
1933	qup_i2c_disable_clocks(qup);
1934	return 0;
1935}
1936
1937static int qup_i2c_pm_resume_runtime(struct device *device)
1938{
1939	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1940
1941	dev_dbg(device, "pm_runtime: resuming...\n");
1942	qup_i2c_enable_clocks(qup);
1943	return 0;
1944}
 
1945
 
1946static int qup_i2c_suspend(struct device *device)
1947{
1948	if (!pm_runtime_suspended(device))
1949		return qup_i2c_pm_suspend_runtime(device);
1950	return 0;
1951}
1952
1953static int qup_i2c_resume(struct device *device)
1954{
1955	qup_i2c_pm_resume_runtime(device);
1956	pm_runtime_mark_last_busy(device);
1957	pm_request_autosuspend(device);
1958	return 0;
1959}
 
1960
1961static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1962	SYSTEM_SLEEP_PM_OPS(qup_i2c_suspend, qup_i2c_resume)
1963	RUNTIME_PM_OPS(qup_i2c_pm_suspend_runtime,
1964		       qup_i2c_pm_resume_runtime, NULL)
 
 
 
 
1965};
1966
1967static const struct of_device_id qup_i2c_dt_match[] = {
1968	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1969	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1970	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1971	{}
1972};
1973MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1974
1975static struct platform_driver qup_i2c_driver = {
1976	.probe  = qup_i2c_probe,
1977	.remove = qup_i2c_remove,
1978	.driver = {
1979		.name = "i2c_qup",
1980		.pm = pm_ptr(&qup_i2c_qup_pm_ops),
 
1981		.of_match_table = qup_i2c_dt_match,
1982		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1983	},
1984};
1985
1986module_platform_driver(qup_i2c_driver);
1987
1988MODULE_DESCRIPTION("Qualcomm QUP based I2C controller");
1989MODULE_LICENSE("GPL v2");
1990MODULE_ALIAS("platform:i2c_qup");
v3.15
 
  1/*
  2 * Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
  3 * Copyright (c) 2014, Sony Mobile Communications AB.
  4 *
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 and
  8 * only version 2 as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 */
 16
 
 
 17#include <linux/clk.h>
 18#include <linux/delay.h>
 
 
 
 19#include <linux/err.h>
 20#include <linux/i2c.h>
 21#include <linux/interrupt.h>
 22#include <linux/io.h>
 23#include <linux/module.h>
 24#include <linux/of.h>
 25#include <linux/platform_device.h>
 26#include <linux/pm_runtime.h>
 
 
 27
 28/* QUP Registers */
 29#define QUP_CONFIG		0x000
 30#define QUP_STATE		0x004
 31#define QUP_IO_MODE		0x008
 32#define QUP_SW_RESET		0x00c
 33#define QUP_OPERATIONAL		0x018
 34#define QUP_ERROR_FLAGS		0x01c
 35#define QUP_ERROR_FLAGS_EN	0x020
 
 36#define QUP_HW_VERSION		0x030
 37#define QUP_MX_OUTPUT_CNT	0x100
 38#define QUP_OUT_FIFO_BASE	0x110
 39#define QUP_MX_WRITE_CNT	0x150
 40#define QUP_MX_INPUT_CNT	0x200
 41#define QUP_MX_READ_CNT		0x208
 42#define QUP_IN_FIFO_BASE	0x218
 43#define QUP_I2C_CLK_CTL		0x400
 44#define QUP_I2C_STATUS		0x404
 
 45
 46/* QUP States and reset values */
 47#define QUP_RESET_STATE		0
 48#define QUP_RUN_STATE		1
 49#define QUP_PAUSE_STATE		3
 50#define QUP_STATE_MASK		3
 51
 52#define QUP_STATE_VALID		BIT(2)
 53#define QUP_I2C_MAST_GEN	BIT(4)
 
 54
 55#define QUP_OPERATIONAL_RESET	0x000ff0
 56#define QUP_I2C_STATUS_RESET	0xfffffc
 57
 58/* QUP OPERATIONAL FLAGS */
 59#define QUP_I2C_NACK_FLAG	BIT(3)
 60#define QUP_OUT_NOT_EMPTY	BIT(4)
 61#define QUP_IN_NOT_EMPTY	BIT(5)
 62#define QUP_OUT_FULL		BIT(6)
 63#define QUP_OUT_SVC_FLAG	BIT(8)
 64#define QUP_IN_SVC_FLAG		BIT(9)
 65#define QUP_MX_OUTPUT_DONE	BIT(10)
 66#define QUP_MX_INPUT_DONE	BIT(11)
 
 
 67
 68/* I2C mini core related values */
 
 69#define QUP_CLOCK_AUTO_GATE	BIT(13)
 70#define I2C_MINI_CORE		(2 << 8)
 71#define I2C_N_VAL		15
 
 
 72/* Most significant word offset in FIFO port */
 73#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
 74
 75/* Packing/Unpacking words in FIFOs, and IO modes */
 76#define QUP_OUTPUT_BLK_MODE	(1 << 10)
 
 77#define QUP_INPUT_BLK_MODE	(1 << 12)
 
 
 78#define QUP_UNPACK_EN		BIT(14)
 79#define QUP_PACK_EN		BIT(15)
 80
 81#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
 
 82
 83#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
 84#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
 85#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
 86#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
 87
 88/* QUP tags */
 89#define QUP_TAG_START		(1 << 8)
 90#define QUP_TAG_DATA		(2 << 8)
 91#define QUP_TAG_STOP		(3 << 8)
 92#define QUP_TAG_REC		(4 << 8)
 
 
 
 
 
 
 
 
 
 
 93
 94/* Status, Error flags */
 95#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
 96#define I2C_STATUS_BUS_ACTIVE		BIT(8)
 97#define I2C_STATUS_ERROR_MASK		0x38000fc
 98#define QUP_STATUS_ERROR_FLAGS		0x7c
 99
100#define QUP_READ_LIMIT			256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
102struct qup_i2c_dev {
103	struct device		*dev;
104	void __iomem		*base;
105	int			irq;
106	struct clk		*clk;
107	struct clk		*pclk;
108	struct i2c_adapter	adap;
109
110	int			clk_ctl;
111	int			out_fifo_sz;
112	int			in_fifo_sz;
113	int			out_blk_sz;
114	int			in_blk_sz;
115
 
116	unsigned long		one_byte_t;
 
 
117
118	struct i2c_msg		*msg;
119	/* Current posion in user message buffer */
120	int			pos;
121	/* I2C protocol errors */
122	u32			bus_err;
123	/* QUP core errors */
124	u32			qup_err;
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126	struct completion	xfer;
 
 
 
 
 
 
127};
128
129static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
130{
131	struct qup_i2c_dev *qup = dev;
 
132	u32 bus_err;
133	u32 qup_err;
134	u32 opflags;
135
136	bus_err = readl(qup->base + QUP_I2C_STATUS);
137	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
138	opflags = readl(qup->base + QUP_OPERATIONAL);
139
140	if (!qup->msg) {
141		/* Clear Error interrupt */
142		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
143		return IRQ_HANDLED;
144	}
145
146	bus_err &= I2C_STATUS_ERROR_MASK;
147	qup_err &= QUP_STATUS_ERROR_FLAGS;
148
149	if (qup_err) {
150		/* Clear Error interrupt */
151		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152		goto done;
153	}
154
155	if (bus_err) {
156		/* Clear Error interrupt */
157		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
158		goto done;
 
 
 
 
 
 
159	}
160
161	if (opflags & QUP_IN_SVC_FLAG)
162		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
163
164	if (opflags & QUP_OUT_SVC_FLAG)
165		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
167done:
168	qup->qup_err = qup_err;
169	qup->bus_err = bus_err;
170	complete(&qup->xfer);
171	return IRQ_HANDLED;
172}
173
174static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
175				   u32 req_state, u32 req_mask)
176{
177	int retries = 1;
178	u32 state;
179
180	/*
181	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
182	 * cycles. So retry once after a 1uS delay.
183	 */
184	do {
185		state = readl(qup->base + QUP_STATE);
186
187		if (state & QUP_STATE_VALID &&
188		    (state & req_mask) == req_state)
189			return 0;
190
191		udelay(1);
192	} while (retries--);
193
194	return -ETIMEDOUT;
195}
196
197static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
198{
199	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
200}
201
 
 
 
 
 
 
 
 
202static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
203{
204	return qup_i2c_poll_state_mask(qup, 0, 0);
205}
206
207static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
208{
209	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
210}
211
212static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
213{
214	if (qup_i2c_poll_state_valid(qup) != 0)
215		return -EIO;
216
217	writel(state, qup->base + QUP_STATE);
218
219	if (qup_i2c_poll_state(qup, state) != 0)
220		return -EIO;
221	return 0;
222}
223
224static int qup_i2c_wait_writeready(struct qup_i2c_dev *qup)
 
225{
226	unsigned long timeout;
227	u32 opflags;
228	u32 status;
 
229
230	timeout = jiffies + HZ;
231
232	for (;;) {
233		opflags = readl(qup->base + QUP_OPERATIONAL);
234		status = readl(qup->base + QUP_I2C_STATUS);
235
236		if (!(opflags & QUP_OUT_NOT_EMPTY) &&
237		    !(status & I2C_STATUS_BUS_ACTIVE))
238			return 0;
239
240		if (time_after(jiffies, timeout))
241			return -ETIMEDOUT;
242
243		usleep_range(qup->one_byte_t, qup->one_byte_t * 2);
244	}
245}
246
247static void qup_i2c_set_write_mode(struct qup_i2c_dev *qup, struct i2c_msg *msg)
248{
249	/* Number of entries to shift out, including the start */
250	int total = msg->len + 1;
251
252	if (total < qup->out_fifo_sz) {
253		/* FIFO mode */
254		writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
255		writel(total, qup->base + QUP_MX_WRITE_CNT);
256	} else {
257		/* BLOCK mode (transfer data on chunks) */
258		writel(QUP_OUTPUT_BLK_MODE | QUP_REPACK_EN,
259		       qup->base + QUP_IO_MODE);
260		writel(total, qup->base + QUP_MX_OUTPUT_CNT);
261	}
262}
263
264static void qup_i2c_issue_write(struct qup_i2c_dev *qup, struct i2c_msg *msg)
265{
266	u32 addr = msg->addr << 1;
 
 
267	u32 qup_tag;
268	u32 opflags;
269	int idx;
270	u32 val;
271
272	if (qup->pos == 0) {
273		val = QUP_TAG_START | addr;
274		idx = 1;
 
275	} else {
276		val = 0;
277		idx = 0;
278	}
279
280	while (qup->pos < msg->len) {
281		/* Check that there's space in the FIFO for our pair */
282		opflags = readl(qup->base + QUP_OPERATIONAL);
283		if (opflags & QUP_OUT_FULL)
284			break;
285
286		if (qup->pos == msg->len - 1)
287			qup_tag = QUP_TAG_STOP;
288		else
289			qup_tag = QUP_TAG_DATA;
290
291		if (idx & 1)
292			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
293		else
294			val = qup_tag | msg->buf[qup->pos];
295
296		/* Write out the pair and the last odd value */
297		if (idx & 1 || qup->pos == msg->len - 1)
298			writel(val, qup->base + QUP_OUT_FIFO_BASE);
299
300		qup->pos++;
301		idx++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303}
304
305static int qup_i2c_write_one(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 
 
306{
307	unsigned long left;
308	int ret;
309
310	qup->msg = msg;
311	qup->pos = 0;
 
 
312
313	enable_irq(qup->irq);
 
314
315	qup_i2c_set_write_mode(qup, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316
317	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
318	if (ret)
319		goto err;
 
 
 
 
 
 
 
 
 
320
321	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322
323	do {
324		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
 
 
 
 
325		if (ret)
326			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
328		qup_i2c_issue_write(qup, msg);
 
329
330		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331		if (ret)
332			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334		left = wait_for_completion_timeout(&qup->xfer, HZ);
335		if (!left) {
336			writel(1, qup->base + QUP_SW_RESET);
337			ret = -ETIMEDOUT;
338			goto err;
 
339		}
340
341		if (qup->bus_err || qup->qup_err) {
342			if (qup->bus_err & QUP_I2C_NACK_FLAG)
343				dev_err(qup->dev, "NACK from %x\n", msg->addr);
344			ret = -EIO;
345			goto err;
 
 
 
 
 
 
 
 
346		}
347	} while (qup->pos < msg->len);
348
349	/* Wait for the outstanding data in the fifo to drain */
350	ret = qup_i2c_wait_writeready(qup);
 
 
 
 
 
 
 
 
 
351
352err:
353	disable_irq(qup->irq);
354	qup->msg = NULL;
355
356	return ret;
357}
358
359static void qup_i2c_set_read_mode(struct qup_i2c_dev *qup, int len)
 
 
 
 
 
 
 
 
360{
361	if (len < qup->in_fifo_sz) {
362		/* FIFO mode */
363		writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
364		writel(len, qup->base + QUP_MX_READ_CNT);
365	} else {
366		/* BLOCK mode (transfer data on chunks) */
367		writel(QUP_INPUT_BLK_MODE | QUP_REPACK_EN,
368		       qup->base + QUP_IO_MODE);
369		writel(len, qup->base + QUP_MX_INPUT_CNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370	}
 
 
 
 
 
 
371}
372
373static void qup_i2c_issue_read(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 
374{
375	u32 addr, len, val;
 
376
377	addr = (msg->addr << 1) | 1;
 
 
 
 
378
379	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
380	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
381
382	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
383	writel(val, qup->base + QUP_OUT_FIFO_BASE);
384}
385
386
387static void qup_i2c_read_fifo(struct qup_i2c_dev *qup, struct i2c_msg *msg)
388{
389	u32 opflags;
 
390	u32 val = 0;
391	int idx;
392
393	for (idx = 0; qup->pos < msg->len; idx++) {
394		if ((idx & 1) == 0) {
395			/* Check that FIFO have data */
396			opflags = readl(qup->base + QUP_OPERATIONAL);
397			if (!(opflags & QUP_IN_NOT_EMPTY))
398				break;
399
400			/* Reading 2 words at time */
401			val = readl(qup->base + QUP_IN_FIFO_BASE);
402
403			msg->buf[qup->pos++] = val & 0xFF;
404		} else {
405			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
406		}
 
 
407	}
 
 
 
408}
409
410static int qup_i2c_read_one(struct qup_i2c_dev *qup, struct i2c_msg *msg)
411{
412	unsigned long left;
413	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
415	/*
416	 * The QUP block will issue a NACK and STOP on the bus when reaching
417	 * the end of the read, the length of the read is specified as one byte
418	 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
419	 */
420	if (msg->len > QUP_READ_LIMIT) {
421		dev_err(qup->dev, "HW not capable of reads over %d bytes\n",
422			QUP_READ_LIMIT);
423		return -EINVAL;
 
 
424	}
425
426	qup->msg = msg;
427	qup->pos  = 0;
 
428
429	enable_irq(qup->irq);
 
 
 
 
 
430
431	qup_i2c_set_read_mode(qup, msg->len);
 
 
 
432
 
 
433	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
434	if (ret)
435		goto err;
436
437	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
438
439	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
440	if (ret)
441		goto err;
 
 
 
 
 
442
443	qup_i2c_issue_read(qup, msg);
 
 
 
 
444
445	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
446	if (ret)
447		goto err;
448
449	do {
450		left = wait_for_completion_timeout(&qup->xfer, HZ);
451		if (!left) {
452			writel(1, qup->base + QUP_SW_RESET);
453			ret = -ETIMEDOUT;
454			goto err;
455		}
456
457		if (qup->bus_err || qup->qup_err) {
458			if (qup->bus_err & QUP_I2C_NACK_FLAG)
459				dev_err(qup->dev, "NACK from %x\n", msg->addr);
460			ret = -EIO;
461			goto err;
462		}
463
464		qup_i2c_read_fifo(qup, msg);
465	} while (qup->pos < msg->len);
466
467err:
468	disable_irq(qup->irq);
469	qup->msg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470
471	return ret;
472}
473
474static int qup_i2c_xfer(struct i2c_adapter *adap,
475			struct i2c_msg msgs[],
476			int num)
477{
478	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
479	int ret, idx;
480
481	ret = pm_runtime_get_sync(qup->dev);
482	if (ret < 0)
483		goto out;
484
 
 
 
485	writel(1, qup->base + QUP_SW_RESET);
486	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
487	if (ret)
488		goto out;
489
490	/* Configure QUP as I2C mini core */
491	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
492
493	for (idx = 0; idx < num; idx++) {
494		if (msgs[idx].len == 0) {
495			ret = -EINVAL;
496			goto out;
497		}
498
499		if (qup_i2c_poll_state_i2c_master(qup)) {
500			ret = -EIO;
501			goto out;
502		}
503
 
504		if (msgs[idx].flags & I2C_M_RD)
505			ret = qup_i2c_read_one(qup, &msgs[idx]);
506		else
507			ret = qup_i2c_write_one(qup, &msgs[idx]);
508
509		if (ret)
510			break;
511
512		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
513		if (ret)
514			break;
515	}
516
517	if (ret == 0)
518		ret = num;
519out:
520
521	pm_runtime_mark_last_busy(qup->dev);
522	pm_runtime_put_autosuspend(qup->dev);
523
524	return ret;
525}
526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527static u32 qup_i2c_func(struct i2c_adapter *adap)
528{
529	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
530}
531
532static const struct i2c_algorithm qup_i2c_algo = {
533	.master_xfer	= qup_i2c_xfer,
534	.functionality	= qup_i2c_func,
535};
536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
538{
539	clk_prepare_enable(qup->clk);
540	clk_prepare_enable(qup->pclk);
541}
542
543static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
544{
545	u32 config;
546
547	qup_i2c_change_state(qup, QUP_RESET_STATE);
548	clk_disable_unprepare(qup->clk);
549	config = readl(qup->base + QUP_CONFIG);
550	config |= QUP_CLOCK_AUTO_GATE;
551	writel(config, qup->base + QUP_CONFIG);
552	clk_disable_unprepare(qup->pclk);
553}
554
 
 
 
 
 
 
555static int qup_i2c_probe(struct platform_device *pdev)
556{
557	static const int blk_sizes[] = {4, 16, 32};
558	struct device_node *node = pdev->dev.of_node;
559	struct qup_i2c_dev *qup;
560	unsigned long one_bit_t;
561	struct resource *res;
562	u32 io_mode, hw_ver, size;
563	int ret, fs_div, hs_div;
564	int src_clk_freq;
565	u32 clk_freq = 100000;
 
 
566
567	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
568	if (!qup)
569		return -ENOMEM;
570
571	qup->dev = &pdev->dev;
572	init_completion(&qup->xfer);
573	platform_set_drvdata(pdev, qup);
574
575	of_property_read_u32(node, "clock-frequency", &clk_freq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576
577	/* We support frequencies up to FAST Mode (400KHz) */
578	if (!clk_freq || clk_freq > 400000) {
 
579		dev_err(qup->dev, "clock frequency not supported %d\n",
580			clk_freq);
581		return -EINVAL;
 
582	}
583
584	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
585	qup->base = devm_ioremap_resource(qup->dev, res);
586	if (IS_ERR(qup->base))
587		return PTR_ERR(qup->base);
 
588
589	qup->irq = platform_get_irq(pdev, 0);
590	if (qup->irq < 0) {
591		dev_err(qup->dev, "No IRQ defined\n");
592		return qup->irq;
593	}
594
595	qup->clk = devm_clk_get(qup->dev, "core");
596	if (IS_ERR(qup->clk)) {
597		dev_err(qup->dev, "Could not get core clock\n");
598		return PTR_ERR(qup->clk);
599	}
 
 
 
 
 
 
 
 
 
 
600
601	qup->pclk = devm_clk_get(qup->dev, "iface");
602	if (IS_ERR(qup->pclk)) {
603		dev_err(qup->dev, "Could not get iface clock\n");
604		return PTR_ERR(qup->pclk);
 
 
 
 
605	}
606
607	qup_i2c_enable_clocks(qup);
608
609	/*
610	 * Bootloaders might leave a pending interrupt on certain QUP's,
611	 * so we reset the core before registering for interrupts.
612	 */
613	writel(1, qup->base + QUP_SW_RESET);
614	ret = qup_i2c_poll_state_valid(qup);
615	if (ret)
616		goto fail;
617
618	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
619			       IRQF_TRIGGER_HIGH, "i2c_qup", qup);
 
620	if (ret) {
621		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
622		goto fail;
623	}
624	disable_irq(qup->irq);
625
626	hw_ver = readl(qup->base + QUP_HW_VERSION);
627	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
628
629	io_mode = readl(qup->base + QUP_IO_MODE);
630
631	/*
632	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
633	 * associated with each byte written/received
634	 */
635	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
636	if (size >= ARRAY_SIZE(blk_sizes))
637		return -EIO;
638	qup->out_blk_sz = blk_sizes[size] / 2;
 
 
639
640	size = QUP_INPUT_BLOCK_SIZE(io_mode);
641	if (size >= ARRAY_SIZE(blk_sizes))
642		return -EIO;
643	qup->in_blk_sz = blk_sizes[size] / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644
645	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
646	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
647
648	size = QUP_INPUT_FIFO_SIZE(io_mode);
649	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
650
651	src_clk_freq = clk_get_rate(qup->clk);
652	fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
653	hs_div = 3;
654	qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
 
 
 
 
 
 
 
655
656	/*
657	 * Time it takes for a byte to be clocked out on the bus.
658	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
659	 */
660	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
661	qup->one_byte_t = one_bit_t * 9;
 
 
662
663	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
664		qup->in_blk_sz, qup->in_fifo_sz,
665		qup->out_blk_sz, qup->out_fifo_sz);
666
667	i2c_set_adapdata(&qup->adap, qup);
668	qup->adap.algo = &qup_i2c_algo;
669	qup->adap.dev.parent = qup->dev;
670	qup->adap.dev.of_node = pdev->dev.of_node;
671	strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
672
673	ret = i2c_add_adapter(&qup->adap);
674	if (ret)
675		goto fail;
676
677	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
678	pm_runtime_use_autosuspend(qup->dev);
679	pm_runtime_set_active(qup->dev);
680	pm_runtime_enable(qup->dev);
 
 
 
 
 
681	return 0;
682
 
 
 
683fail:
684	qup_i2c_disable_clocks(qup);
 
 
 
 
 
685	return ret;
686}
687
688static int qup_i2c_remove(struct platform_device *pdev)
689{
690	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
691
 
 
 
 
 
692	disable_irq(qup->irq);
693	qup_i2c_disable_clocks(qup);
694	i2c_del_adapter(&qup->adap);
695	pm_runtime_disable(qup->dev);
696	pm_runtime_set_suspended(qup->dev);
697	return 0;
698}
699
700#ifdef CONFIG_PM
701static int qup_i2c_pm_suspend_runtime(struct device *device)
702{
703	struct qup_i2c_dev *qup = dev_get_drvdata(device);
704
705	dev_dbg(device, "pm_runtime: suspending...\n");
706	qup_i2c_disable_clocks(qup);
707	return 0;
708}
709
710static int qup_i2c_pm_resume_runtime(struct device *device)
711{
712	struct qup_i2c_dev *qup = dev_get_drvdata(device);
713
714	dev_dbg(device, "pm_runtime: resuming...\n");
715	qup_i2c_enable_clocks(qup);
716	return 0;
717}
718#endif
719
720#ifdef CONFIG_PM_SLEEP
721static int qup_i2c_suspend(struct device *device)
722{
723	qup_i2c_pm_suspend_runtime(device);
 
724	return 0;
725}
726
727static int qup_i2c_resume(struct device *device)
728{
729	qup_i2c_pm_resume_runtime(device);
730	pm_runtime_mark_last_busy(device);
731	pm_request_autosuspend(device);
732	return 0;
733}
734#endif
735
736static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
737	SET_SYSTEM_SLEEP_PM_OPS(
738		qup_i2c_suspend,
739		qup_i2c_resume)
740	SET_RUNTIME_PM_OPS(
741		qup_i2c_pm_suspend_runtime,
742		qup_i2c_pm_resume_runtime,
743		NULL)
744};
745
746static const struct of_device_id qup_i2c_dt_match[] = {
747	{ .compatible = "qcom,i2c-qup-v1.1.1" },
748	{ .compatible = "qcom,i2c-qup-v2.1.1" },
749	{ .compatible = "qcom,i2c-qup-v2.2.1" },
750	{}
751};
752MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
753
754static struct platform_driver qup_i2c_driver = {
755	.probe  = qup_i2c_probe,
756	.remove = qup_i2c_remove,
757	.driver = {
758		.name = "i2c_qup",
759		.owner = THIS_MODULE,
760		.pm = &qup_i2c_qup_pm_ops,
761		.of_match_table = qup_i2c_dt_match,
 
762	},
763};
764
765module_platform_driver(qup_i2c_driver);
766
 
767MODULE_LICENSE("GPL v2");
768MODULE_ALIAS("platform:i2c_qup");