Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2014, Sony Mobile Communications AB.
   5 *
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/atomic.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dmapool.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/i2c.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
 
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/property.h>
  23#include <linux/scatterlist.h>
  24
  25/* QUP Registers */
  26#define QUP_CONFIG		0x000
  27#define QUP_STATE		0x004
  28#define QUP_IO_MODE		0x008
  29#define QUP_SW_RESET		0x00c
  30#define QUP_OPERATIONAL		0x018
  31#define QUP_ERROR_FLAGS		0x01c
  32#define QUP_ERROR_FLAGS_EN	0x020
  33#define QUP_OPERATIONAL_MASK	0x028
  34#define QUP_HW_VERSION		0x030
  35#define QUP_MX_OUTPUT_CNT	0x100
  36#define QUP_OUT_FIFO_BASE	0x110
  37#define QUP_MX_WRITE_CNT	0x150
  38#define QUP_MX_INPUT_CNT	0x200
  39#define QUP_MX_READ_CNT		0x208
  40#define QUP_IN_FIFO_BASE	0x218
  41#define QUP_I2C_CLK_CTL		0x400
  42#define QUP_I2C_STATUS		0x404
  43#define QUP_I2C_MASTER_GEN	0x408
  44
  45/* QUP States and reset values */
  46#define QUP_RESET_STATE		0
  47#define QUP_RUN_STATE		1
  48#define QUP_PAUSE_STATE		3
  49#define QUP_STATE_MASK		3
  50
  51#define QUP_STATE_VALID		BIT(2)
  52#define QUP_I2C_MAST_GEN	BIT(4)
  53#define QUP_I2C_FLUSH		BIT(6)
  54
  55#define QUP_OPERATIONAL_RESET	0x000ff0
  56#define QUP_I2C_STATUS_RESET	0xfffffc
  57
  58/* QUP OPERATIONAL FLAGS */
  59#define QUP_I2C_NACK_FLAG	BIT(3)
  60#define QUP_OUT_NOT_EMPTY	BIT(4)
  61#define QUP_IN_NOT_EMPTY	BIT(5)
  62#define QUP_OUT_FULL		BIT(6)
  63#define QUP_OUT_SVC_FLAG	BIT(8)
  64#define QUP_IN_SVC_FLAG		BIT(9)
  65#define QUP_MX_OUTPUT_DONE	BIT(10)
  66#define QUP_MX_INPUT_DONE	BIT(11)
  67#define OUT_BLOCK_WRITE_REQ	BIT(12)
  68#define IN_BLOCK_READ_REQ	BIT(13)
  69
  70/* I2C mini core related values */
  71#define QUP_NO_INPUT		BIT(7)
  72#define QUP_CLOCK_AUTO_GATE	BIT(13)
  73#define I2C_MINI_CORE		(2 << 8)
  74#define I2C_N_VAL		15
  75#define I2C_N_VAL_V2		7
  76
  77/* Most significant word offset in FIFO port */
  78#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
  79
  80/* Packing/Unpacking words in FIFOs, and IO modes */
  81#define QUP_OUTPUT_BLK_MODE	(1 << 10)
  82#define QUP_OUTPUT_BAM_MODE	(3 << 10)
  83#define QUP_INPUT_BLK_MODE	(1 << 12)
  84#define QUP_INPUT_BAM_MODE	(3 << 12)
  85#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86#define QUP_UNPACK_EN		BIT(14)
  87#define QUP_PACK_EN		BIT(15)
  88
  89#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
  90#define QUP_V2_TAGS_EN		1
  91
  92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
  94#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
  95#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
  96
  97/* QUP tags */
  98#define QUP_TAG_START		(1 << 8)
  99#define QUP_TAG_DATA		(2 << 8)
 100#define QUP_TAG_STOP		(3 << 8)
 101#define QUP_TAG_REC		(4 << 8)
 102#define QUP_BAM_INPUT_EOT		0x93
 103#define QUP_BAM_FLUSH_STOP		0x96
 104
 105/* QUP v2 tags */
 106#define QUP_TAG_V2_START               0x81
 107#define QUP_TAG_V2_DATAWR              0x82
 108#define QUP_TAG_V2_DATAWR_STOP         0x83
 109#define QUP_TAG_V2_DATARD              0x85
 110#define QUP_TAG_V2_DATARD_NACK         0x86
 111#define QUP_TAG_V2_DATARD_STOP         0x87
 112
 113/* Status, Error flags */
 114#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
 115#define I2C_STATUS_BUS_ACTIVE		BIT(8)
 116#define I2C_STATUS_ERROR_MASK		0x38000fc
 117#define QUP_STATUS_ERROR_FLAGS		0x7c
 118
 119#define QUP_READ_LIMIT			256
 120#define SET_BIT				0x1
 121#define RESET_BIT			0x0
 122#define ONE_BYTE			0x1
 123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124
 125/* Maximum transfer length for single DMA descriptor */
 126#define MX_TX_RX_LEN			SZ_64K
 127#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
 128/* Maximum transfer length for all DMA descriptors */
 129#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
 130#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131
 132/*
 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134 * the top of maximum transfer time calculated from i2c bus speed to compensate
 135 * the overheads.
 136 */
 137#define TOUT_MIN			2
 138
 
 
 
 
 
 139/* Default values. Use these if FW query fails */
 140#define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
 141#define DEFAULT_SRC_CLK 20000000
 142
 143/*
 144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 145 * data transfer
 146 */
 147#define QUP_MAX_TAGS_LEN		4
 148/* Max data length for each DATARD tags */
 149#define RECV_MAX_DATA_LEN		254
 150/* TAG length for DATA READ in RX FIFO  */
 151#define READ_RX_TAGS_LEN		2
 152
 153static unsigned int scl_freq;
 154module_param_named(scl_freq, scl_freq, uint, 0444);
 155MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 156
 157/*
 158 * count: no of blocks
 159 * pos: current block number
 160 * tx_tag_len: tx tag length for current block
 161 * rx_tag_len: rx tag length for current block
 162 * data_len: remaining data length for current message
 163 * cur_blk_len: data length for current block
 164 * total_tx_len: total tx length including tag bytes for current QUP transfer
 165 * total_rx_len: total rx length including tag bytes for current QUP transfer
 166 * tx_fifo_data_pos: current byte number in TX FIFO word
 167 * tx_fifo_free: number of free bytes in current QUP block write.
 168 * rx_fifo_data_pos: current byte number in RX FIFO word
 169 * fifo_available: number of available bytes in RX FIFO for current
 170 *		   QUP block read
 171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 172 *		 to TX FIFO will be appended in this data and will be written to
 173 *		 TX FIFO when all the 4 bytes are available.
 174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 175 *		 contains the 4 bytes of RX data.
 176 * cur_data: pointer to tell cur data position for current message
 177 * cur_tx_tags: pointer to tell cur position in tags
 178 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 179 * send_last_word: for tx FIFO, last word send is pending in current block
 180 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 184 * tags: contains tx tag bytes for current QUP transfer
 185 */
 186struct qup_i2c_block {
 187	int		count;
 188	int		pos;
 189	int		tx_tag_len;
 190	int		rx_tag_len;
 191	int		data_len;
 192	int		cur_blk_len;
 193	int		total_tx_len;
 194	int		total_rx_len;
 195	int		tx_fifo_data_pos;
 196	int		tx_fifo_free;
 197	int		rx_fifo_data_pos;
 198	int		fifo_available;
 199	u32		tx_fifo_data;
 200	u32		rx_fifo_data;
 201	u8		*cur_data;
 202	u8		*cur_tx_tags;
 203	bool		tx_tags_sent;
 204	bool		send_last_word;
 205	bool		rx_tags_fetched;
 206	bool		rx_bytes_read;
 207	bool		is_tx_blk_mode;
 208	bool		is_rx_blk_mode;
 209	u8		tags[6];
 210};
 211
 212struct qup_i2c_tag {
 213	u8 *start;
 214	dma_addr_t addr;
 215};
 216
 217struct qup_i2c_bam {
 218	struct	qup_i2c_tag tag;
 219	struct	dma_chan *dma;
 220	struct	scatterlist *sg;
 221	unsigned int sg_cnt;
 222};
 223
 224struct qup_i2c_dev {
 225	struct device		*dev;
 226	void __iomem		*base;
 227	int			irq;
 228	struct clk		*clk;
 229	struct clk		*pclk;
 230	struct i2c_adapter	adap;
 231
 232	int			clk_ctl;
 233	int			out_fifo_sz;
 234	int			in_fifo_sz;
 235	int			out_blk_sz;
 236	int			in_blk_sz;
 237
 238	int			blk_xfer_limit;
 239	unsigned long		one_byte_t;
 240	unsigned long		xfer_timeout;
 241	struct qup_i2c_block	blk;
 242
 243	struct i2c_msg		*msg;
 244	/* Current posion in user message buffer */
 245	int			pos;
 246	/* I2C protocol errors */
 247	u32			bus_err;
 248	/* QUP core errors */
 249	u32			qup_err;
 250
 251	/* To check if this is the last msg */
 252	bool			is_last;
 253	bool			is_smbus_read;
 254
 255	/* To configure when bus is in run state */
 256	u32			config_run;
 257
 258	/* dma parameters */
 259	bool			is_dma;
 260	/* To check if the current transfer is using DMA */
 261	bool			use_dma;
 262	unsigned int		max_xfer_sg_len;
 263	unsigned int		tag_buf_pos;
 264	/* The threshold length above which block mode will be used */
 265	unsigned int		blk_mode_threshold;
 266	struct			dma_pool *dpool;
 267	struct			qup_i2c_tag start_tag;
 268	struct			qup_i2c_bam brx;
 269	struct			qup_i2c_bam btx;
 270
 271	struct completion	xfer;
 272	/* function to write data in tx fifo */
 273	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 274	/* function to read data from rx fifo */
 275	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 276	/* function to write tags in tx fifo for i2c read transfer */
 277	void (*write_rx_tags)(struct qup_i2c_dev *qup);
 278};
 279
 280static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 281{
 282	struct qup_i2c_dev *qup = dev;
 283	struct qup_i2c_block *blk = &qup->blk;
 284	u32 bus_err;
 285	u32 qup_err;
 286	u32 opflags;
 287
 288	bus_err = readl(qup->base + QUP_I2C_STATUS);
 289	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 290	opflags = readl(qup->base + QUP_OPERATIONAL);
 291
 292	if (!qup->msg) {
 293		/* Clear Error interrupt */
 294		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 295		return IRQ_HANDLED;
 296	}
 297
 298	bus_err &= I2C_STATUS_ERROR_MASK;
 299	qup_err &= QUP_STATUS_ERROR_FLAGS;
 300
 301	/* Clear the error bits in QUP_ERROR_FLAGS */
 302	if (qup_err)
 303		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 304
 305	/* Clear the error bits in QUP_I2C_STATUS */
 306	if (bus_err)
 307		writel(bus_err, qup->base + QUP_I2C_STATUS);
 308
 309	/*
 310	 * Check for BAM mode and returns if already error has come for current
 311	 * transfer. In Error case, sometimes, QUP generates more than one
 312	 * interrupt.
 313	 */
 314	if (qup->use_dma && (qup->qup_err || qup->bus_err))
 315		return IRQ_HANDLED;
 316
 317	/* Reset the QUP State in case of error */
 318	if (qup_err || bus_err) {
 319		/*
 320		 * Don’t reset the QUP state in case of BAM mode. The BAM
 321		 * flush operation needs to be scheduled in transfer function
 322		 * which will clear the remaining schedule descriptors in BAM
 323		 * HW FIFO and generates the BAM interrupt.
 324		 */
 325		if (!qup->use_dma)
 326			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 327		goto done;
 328	}
 329
 330	if (opflags & QUP_OUT_SVC_FLAG) {
 331		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 332
 333		if (opflags & OUT_BLOCK_WRITE_REQ) {
 334			blk->tx_fifo_free += qup->out_blk_sz;
 335			if (qup->msg->flags & I2C_M_RD)
 336				qup->write_rx_tags(qup);
 337			else
 338				qup->write_tx_fifo(qup);
 339		}
 340	}
 341
 342	if (opflags & QUP_IN_SVC_FLAG) {
 343		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 344
 345		if (!blk->is_rx_blk_mode) {
 346			blk->fifo_available += qup->in_fifo_sz;
 347			qup->read_rx_fifo(qup);
 348		} else if (opflags & IN_BLOCK_READ_REQ) {
 349			blk->fifo_available += qup->in_blk_sz;
 350			qup->read_rx_fifo(qup);
 351		}
 352	}
 353
 354	if (qup->msg->flags & I2C_M_RD) {
 355		if (!blk->rx_bytes_read)
 356			return IRQ_HANDLED;
 357	} else {
 358		/*
 359		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 360		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 361		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 362		 * of interrupt for write message in FIFO mode is
 363		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
 364		 */
 365		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 366			return IRQ_HANDLED;
 367	}
 368
 369done:
 370	qup->qup_err = qup_err;
 371	qup->bus_err = bus_err;
 372	complete(&qup->xfer);
 373	return IRQ_HANDLED;
 374}
 375
 376static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 377				   u32 req_state, u32 req_mask)
 378{
 379	int retries = 1;
 380	u32 state;
 381
 382	/*
 383	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 384	 * cycles. So retry once after a 1uS delay.
 385	 */
 386	do {
 387		state = readl(qup->base + QUP_STATE);
 388
 389		if (state & QUP_STATE_VALID &&
 390		    (state & req_mask) == req_state)
 391			return 0;
 392
 393		udelay(1);
 394	} while (retries--);
 395
 396	return -ETIMEDOUT;
 397}
 398
 399static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 400{
 401	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 402}
 403
 404static void qup_i2c_flush(struct qup_i2c_dev *qup)
 405{
 406	u32 val = readl(qup->base + QUP_STATE);
 407
 408	val |= QUP_I2C_FLUSH;
 409	writel(val, qup->base + QUP_STATE);
 410}
 411
 412static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 413{
 414	return qup_i2c_poll_state_mask(qup, 0, 0);
 415}
 416
 417static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 418{
 419	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 420}
 421
 422static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 423{
 424	if (qup_i2c_poll_state_valid(qup) != 0)
 425		return -EIO;
 426
 427	writel(state, qup->base + QUP_STATE);
 428
 429	if (qup_i2c_poll_state(qup, state) != 0)
 430		return -EIO;
 431	return 0;
 432}
 433
 434/* Check if I2C bus returns to IDLE state */
 435static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 436{
 437	unsigned long timeout;
 438	u32 status;
 439	int ret = 0;
 440
 441	timeout = jiffies + len * 4;
 442	for (;;) {
 443		status = readl(qup->base + QUP_I2C_STATUS);
 444		if (!(status & I2C_STATUS_BUS_ACTIVE))
 445			break;
 446
 447		if (time_after(jiffies, timeout))
 448			ret = -ETIMEDOUT;
 449
 450		usleep_range(len, len * 2);
 451	}
 452
 453	return ret;
 454}
 455
 456static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 457{
 458	struct qup_i2c_block *blk = &qup->blk;
 459	struct i2c_msg *msg = qup->msg;
 460	u32 addr = i2c_8bit_addr_from_msg(msg);
 461	u32 qup_tag;
 462	int idx;
 463	u32 val;
 464
 465	if (qup->pos == 0) {
 466		val = QUP_TAG_START | addr;
 467		idx = 1;
 468		blk->tx_fifo_free--;
 469	} else {
 470		val = 0;
 471		idx = 0;
 472	}
 473
 474	while (blk->tx_fifo_free && qup->pos < msg->len) {
 475		if (qup->pos == msg->len - 1)
 476			qup_tag = QUP_TAG_STOP;
 477		else
 478			qup_tag = QUP_TAG_DATA;
 479
 480		if (idx & 1)
 481			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 482		else
 483			val = qup_tag | msg->buf[qup->pos];
 484
 485		/* Write out the pair and the last odd value */
 486		if (idx & 1 || qup->pos == msg->len - 1)
 487			writel(val, qup->base + QUP_OUT_FIFO_BASE);
 488
 489		qup->pos++;
 490		idx++;
 491		blk->tx_fifo_free--;
 492	}
 493}
 494
 495static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 496				 struct i2c_msg *msg)
 497{
 498	qup->blk.pos = 0;
 499	qup->blk.data_len = msg->len;
 500	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 501}
 502
 503static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 504{
 505	int data_len;
 506
 507	if (qup->blk.data_len > qup->blk_xfer_limit)
 508		data_len = qup->blk_xfer_limit;
 509	else
 510		data_len = qup->blk.data_len;
 511
 512	return data_len;
 513}
 514
 515static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 516{
 517	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 518}
 519
 520static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 521			struct i2c_msg *msg)
 522{
 523	int len = 0;
 524
 525	if (qup->is_smbus_read) {
 526		tags[len++] = QUP_TAG_V2_DATARD_STOP;
 527		tags[len++] = qup_i2c_get_data_len(qup);
 528	} else {
 529		tags[len++] = QUP_TAG_V2_START;
 530		tags[len++] = addr & 0xff;
 531
 532		if (msg->flags & I2C_M_TEN)
 533			tags[len++] = addr >> 8;
 534
 535		tags[len++] = QUP_TAG_V2_DATARD;
 536		/* Read 1 byte indicating the length of the SMBus message */
 537		tags[len++] = 1;
 538	}
 539	return len;
 540}
 541
 542static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 543			    struct i2c_msg *msg)
 544{
 545	u16 addr = i2c_8bit_addr_from_msg(msg);
 546	int len = 0;
 547	int data_len;
 548
 549	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 550
 551	/* Handle tags for SMBus block read */
 552	if (qup_i2c_check_msg_len(msg))
 553		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 554
 555	if (qup->blk.pos == 0) {
 556		tags[len++] = QUP_TAG_V2_START;
 557		tags[len++] = addr & 0xff;
 558
 559		if (msg->flags & I2C_M_TEN)
 560			tags[len++] = addr >> 8;
 561	}
 562
 563	/* Send _STOP commands for the last block */
 564	if (last) {
 565		if (msg->flags & I2C_M_RD)
 566			tags[len++] = QUP_TAG_V2_DATARD_STOP;
 567		else
 568			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 569	} else {
 570		if (msg->flags & I2C_M_RD)
 571			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 572				      QUP_TAG_V2_DATARD_NACK :
 573				      QUP_TAG_V2_DATARD;
 574		else
 575			tags[len++] = QUP_TAG_V2_DATAWR;
 576	}
 577
 578	data_len = qup_i2c_get_data_len(qup);
 579
 580	/* 0 implies 256 bytes */
 581	if (data_len == QUP_READ_LIMIT)
 582		tags[len++] = 0;
 583	else
 584		tags[len++] = data_len;
 585
 586	return len;
 587}
 588
 589
 590static void qup_i2c_bam_cb(void *data)
 591{
 592	struct qup_i2c_dev *qup = data;
 593
 594	complete(&qup->xfer);
 595}
 596
 597static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 598			  unsigned int buflen, struct qup_i2c_dev *qup,
 599			  int dir)
 600{
 601	int ret;
 602
 603	sg_set_buf(sg, buf, buflen);
 604	ret = dma_map_sg(qup->dev, sg, 1, dir);
 605	if (!ret)
 606		return -EINVAL;
 607
 608	return 0;
 609}
 610
 611static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 612{
 613	if (qup->btx.dma)
 614		dma_release_channel(qup->btx.dma);
 615	if (qup->brx.dma)
 616		dma_release_channel(qup->brx.dma);
 617	qup->btx.dma = NULL;
 618	qup->brx.dma = NULL;
 619}
 620
 621static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 622{
 623	int err;
 624
 625	if (!qup->btx.dma) {
 626		qup->btx.dma = dma_request_chan(qup->dev, "tx");
 627		if (IS_ERR(qup->btx.dma)) {
 628			err = PTR_ERR(qup->btx.dma);
 629			qup->btx.dma = NULL;
 630			dev_err(qup->dev, "\n tx channel not available");
 631			return err;
 632		}
 633	}
 634
 635	if (!qup->brx.dma) {
 636		qup->brx.dma = dma_request_chan(qup->dev, "rx");
 637		if (IS_ERR(qup->brx.dma)) {
 638			dev_err(qup->dev, "\n rx channel not available");
 639			err = PTR_ERR(qup->brx.dma);
 640			qup->brx.dma = NULL;
 641			qup_i2c_rel_dma(qup);
 642			return err;
 643		}
 644	}
 645	return 0;
 646}
 647
 648static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 649{
 650	int ret = 0, limit = QUP_READ_LIMIT;
 651	u32 len = 0, blocks, rem;
 652	u32 i = 0, tlen, tx_len = 0;
 653	u8 *tags;
 654
 655	qup->blk_xfer_limit = QUP_READ_LIMIT;
 656	qup_i2c_set_blk_data(qup, msg);
 657
 658	blocks = qup->blk.count;
 659	rem = msg->len - (blocks - 1) * limit;
 660
 661	if (msg->flags & I2C_M_RD) {
 662		while (qup->blk.pos < blocks) {
 663			tlen = (i == (blocks - 1)) ? rem : limit;
 664			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 665			len += qup_i2c_set_tags(tags, qup, msg);
 666			qup->blk.data_len -= tlen;
 667
 668			/* scratch buf to read the start and len tags */
 669			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 670					     &qup->brx.tag.start[0],
 671					     2, qup, DMA_FROM_DEVICE);
 672
 673			if (ret)
 674				return ret;
 675
 676			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 677					     &msg->buf[limit * i],
 678					     tlen, qup,
 679					     DMA_FROM_DEVICE);
 680			if (ret)
 681				return ret;
 682
 683			i++;
 684			qup->blk.pos = i;
 685		}
 686		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 687				     &qup->start_tag.start[qup->tag_buf_pos],
 688				     len, qup, DMA_TO_DEVICE);
 689		if (ret)
 690			return ret;
 691
 692		qup->tag_buf_pos += len;
 693	} else {
 694		while (qup->blk.pos < blocks) {
 695			tlen = (i == (blocks - 1)) ? rem : limit;
 696			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 697			len = qup_i2c_set_tags(tags, qup, msg);
 698			qup->blk.data_len -= tlen;
 699
 700			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 701					     tags, len,
 702					     qup, DMA_TO_DEVICE);
 703			if (ret)
 704				return ret;
 705
 706			tx_len += len;
 707			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 708					     &msg->buf[limit * i],
 709					     tlen, qup, DMA_TO_DEVICE);
 710			if (ret)
 711				return ret;
 712			i++;
 713			qup->blk.pos = i;
 714		}
 715
 716		qup->tag_buf_pos += tx_len;
 717	}
 718
 719	return 0;
 720}
 721
 722static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 723{
 724	struct dma_async_tx_descriptor *txd, *rxd = NULL;
 725	int ret = 0;
 726	dma_cookie_t cookie_rx, cookie_tx;
 727	u32 len = 0;
 728	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 729
 730	/* schedule the EOT and FLUSH I2C tags */
 731	len = 1;
 732	if (rx_cnt) {
 733		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 734		len++;
 735
 736		/* scratch buf to read the BAM EOT FLUSH tags */
 737		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 738				     &qup->brx.tag.start[0],
 739				     1, qup, DMA_FROM_DEVICE);
 740		if (ret)
 741			return ret;
 742	}
 743
 744	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 745	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 746			     len, qup, DMA_TO_DEVICE);
 747	if (ret)
 748		return ret;
 749
 750	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 751				      DMA_MEM_TO_DEV,
 752				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 753	if (!txd) {
 754		dev_err(qup->dev, "failed to get tx desc\n");
 755		ret = -EINVAL;
 756		goto desc_err;
 757	}
 758
 759	if (!rx_cnt) {
 760		txd->callback = qup_i2c_bam_cb;
 761		txd->callback_param = qup;
 762	}
 763
 764	cookie_tx = dmaengine_submit(txd);
 765	if (dma_submit_error(cookie_tx)) {
 766		ret = -EINVAL;
 767		goto desc_err;
 768	}
 769
 770	dma_async_issue_pending(qup->btx.dma);
 771
 772	if (rx_cnt) {
 773		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 774					      rx_cnt, DMA_DEV_TO_MEM,
 775					      DMA_PREP_INTERRUPT);
 776		if (!rxd) {
 777			dev_err(qup->dev, "failed to get rx desc\n");
 778			ret = -EINVAL;
 779
 780			/* abort TX descriptors */
 781			dmaengine_terminate_sync(qup->btx.dma);
 782			goto desc_err;
 783		}
 784
 785		rxd->callback = qup_i2c_bam_cb;
 786		rxd->callback_param = qup;
 787		cookie_rx = dmaengine_submit(rxd);
 788		if (dma_submit_error(cookie_rx)) {
 789			ret = -EINVAL;
 790			goto desc_err;
 791		}
 792
 793		dma_async_issue_pending(qup->brx.dma);
 794	}
 795
 796	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout))
 
 797		ret = -ETIMEDOUT;
 
 798
 799	if (ret || qup->bus_err || qup->qup_err) {
 800		reinit_completion(&qup->xfer);
 801
 802		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 803		if (ret) {
 804			dev_err(qup->dev, "change to run state timed out");
 805			goto desc_err;
 806		}
 807
 808		qup_i2c_flush(qup);
 809
 810		/* wait for remaining interrupts to occur */
 811		if (!wait_for_completion_timeout(&qup->xfer, HZ))
 812			dev_err(qup->dev, "flush timed out\n");
 813
 814		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 815	}
 816
 817desc_err:
 818	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 819
 820	if (rx_cnt)
 821		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 822			     DMA_FROM_DEVICE);
 823
 824	return ret;
 825}
 826
 827static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 828{
 829	qup->btx.sg_cnt = 0;
 830	qup->brx.sg_cnt = 0;
 831	qup->tag_buf_pos = 0;
 832}
 833
 834static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 835			    int num)
 836{
 837	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 838	int ret = 0;
 839	int idx = 0;
 840
 841	enable_irq(qup->irq);
 842	ret = qup_i2c_req_dma(qup);
 843
 844	if (ret)
 845		goto out;
 846
 847	writel(0, qup->base + QUP_MX_INPUT_CNT);
 848	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 849
 850	/* set BAM mode */
 851	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 852
 853	/* mask fifo irqs */
 854	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 855
 856	/* set RUN STATE */
 857	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 858	if (ret)
 859		goto out;
 860
 861	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 862	qup_i2c_bam_clear_tag_buffers(qup);
 863
 864	for (idx = 0; idx < num; idx++) {
 865		qup->msg = msg + idx;
 866		qup->is_last = idx == (num - 1);
 867
 868		ret = qup_i2c_bam_make_desc(qup, qup->msg);
 869		if (ret)
 870			break;
 871
 872		/*
 873		 * Make DMA descriptor and schedule the BAM transfer if its
 874		 * already crossed the maximum length. Since the memory for all
 875		 * tags buffers have been taken for 2 maximum possible
 876		 * transfers length so it will never cross the buffer actual
 877		 * length.
 878		 */
 879		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 880		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 881		    qup->is_last) {
 882			ret = qup_i2c_bam_schedule_desc(qup);
 883			if (ret)
 884				break;
 885
 886			qup_i2c_bam_clear_tag_buffers(qup);
 887		}
 888	}
 889
 890out:
 891	disable_irq(qup->irq);
 892
 893	qup->msg = NULL;
 894	return ret;
 895}
 896
 897static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 898				     struct i2c_msg *msg)
 899{
 900	unsigned long left;
 901	int ret = 0;
 902
 903	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 904	if (!left) {
 905		writel(1, qup->base + QUP_SW_RESET);
 906		ret = -ETIMEDOUT;
 907	}
 908
 909	if (qup->bus_err || qup->qup_err)
 910		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 911
 912	return ret;
 913}
 914
 915static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 916{
 917	struct qup_i2c_block *blk = &qup->blk;
 918	struct i2c_msg *msg = qup->msg;
 919	u32 val = 0;
 920	int idx = 0;
 921
 922	while (blk->fifo_available && qup->pos < msg->len) {
 923		if ((idx & 1) == 0) {
 924			/* Reading 2 words at time */
 925			val = readl(qup->base + QUP_IN_FIFO_BASE);
 926			msg->buf[qup->pos++] = val & 0xFF;
 927		} else {
 928			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 929		}
 930		idx++;
 931		blk->fifo_available--;
 932	}
 933
 934	if (qup->pos == msg->len)
 935		blk->rx_bytes_read = true;
 936}
 937
 938static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 939{
 940	struct i2c_msg *msg = qup->msg;
 941	u32 addr, len, val;
 942
 943	addr = i2c_8bit_addr_from_msg(msg);
 944
 945	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 946	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 947
 948	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 949	writel(val, qup->base + QUP_OUT_FIFO_BASE);
 950}
 951
 952static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 953{
 954	struct qup_i2c_block *blk = &qup->blk;
 955	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 956	u32 io_mode = QUP_REPACK_EN;
 957
 958	blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
 959	blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
 
 
 960
 961	if (blk->is_tx_blk_mode) {
 962		io_mode |= QUP_OUTPUT_BLK_MODE;
 963		writel(0, qup->base + QUP_MX_WRITE_CNT);
 964		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 965	} else {
 966		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 967		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 968	}
 969
 970	if (blk->total_rx_len) {
 971		if (blk->is_rx_blk_mode) {
 972			io_mode |= QUP_INPUT_BLK_MODE;
 973			writel(0, qup->base + QUP_MX_READ_CNT);
 974			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 975		} else {
 976			writel(0, qup->base + QUP_MX_INPUT_CNT);
 977			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 978		}
 979	} else {
 980		qup_config |= QUP_NO_INPUT;
 981	}
 982
 983	writel(qup_config, qup->base + QUP_CONFIG);
 984	writel(io_mode, qup->base + QUP_IO_MODE);
 985}
 986
 987static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 988{
 989	blk->tx_fifo_free = 0;
 990	blk->fifo_available = 0;
 991	blk->rx_bytes_read = false;
 992}
 993
 994static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
 995{
 996	struct qup_i2c_block *blk = &qup->blk;
 997	int ret;
 998
 999	qup_i2c_clear_blk_v1(blk);
1000	qup_i2c_conf_v1(qup);
1001	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1002	if (ret)
1003		return ret;
1004
1005	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1006
1007	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1008	if (ret)
1009		return ret;
1010
1011	reinit_completion(&qup->xfer);
1012	enable_irq(qup->irq);
1013	if (!blk->is_tx_blk_mode) {
1014		blk->tx_fifo_free = qup->out_fifo_sz;
1015
1016		if (is_rx)
1017			qup_i2c_write_rx_tags_v1(qup);
1018		else
1019			qup_i2c_write_tx_fifo_v1(qup);
1020	}
1021
1022	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1023	if (ret)
1024		goto err;
1025
1026	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1027	if (ret)
1028		goto err;
1029
1030	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1031
1032err:
1033	disable_irq(qup->irq);
1034	return ret;
1035}
1036
1037static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1038{
1039	struct i2c_msg *msg = qup->msg;
1040	struct qup_i2c_block *blk = &qup->blk;
1041
1042	qup->pos = 0;
1043	blk->total_tx_len = msg->len + 1;
1044	blk->total_rx_len = 0;
1045
1046	return qup_i2c_conf_xfer_v1(qup, false);
1047}
1048
1049static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1050{
1051	struct qup_i2c_block *blk = &qup->blk;
1052
1053	qup->pos = 0;
1054	blk->total_tx_len = 2;
1055	blk->total_rx_len = qup->msg->len;
1056
1057	return qup_i2c_conf_xfer_v1(qup, true);
1058}
1059
1060static int qup_i2c_xfer(struct i2c_adapter *adap,
1061			struct i2c_msg msgs[],
1062			int num)
1063{
1064	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1065	int ret, idx;
1066
1067	ret = pm_runtime_get_sync(qup->dev);
1068	if (ret < 0)
1069		goto out;
1070
1071	qup->bus_err = 0;
1072	qup->qup_err = 0;
1073
1074	writel(1, qup->base + QUP_SW_RESET);
1075	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1076	if (ret)
1077		goto out;
1078
1079	/* Configure QUP as I2C mini core */
1080	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1081
1082	for (idx = 0; idx < num; idx++) {
1083		if (qup_i2c_poll_state_i2c_master(qup)) {
1084			ret = -EIO;
1085			goto out;
1086		}
1087
1088		if (qup_i2c_check_msg_len(&msgs[idx])) {
1089			ret = -EINVAL;
1090			goto out;
1091		}
1092
1093		qup->msg = &msgs[idx];
1094		if (msgs[idx].flags & I2C_M_RD)
1095			ret = qup_i2c_read_one(qup);
1096		else
1097			ret = qup_i2c_write_one(qup);
1098
1099		if (ret)
1100			break;
1101
1102		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1103		if (ret)
1104			break;
1105	}
1106
1107	if (ret == 0)
1108		ret = num;
1109out:
1110
1111	pm_runtime_mark_last_busy(qup->dev);
1112	pm_runtime_put_autosuspend(qup->dev);
1113
1114	return ret;
1115}
1116
1117/*
1118 * Configure registers related with reconfiguration during run and call it
1119 * before each i2c sub transfer.
1120 */
1121static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1122{
1123	struct qup_i2c_block *blk = &qup->blk;
1124	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1125
1126	if (blk->is_tx_blk_mode)
1127		writel(qup->config_run | blk->total_tx_len,
1128		       qup->base + QUP_MX_OUTPUT_CNT);
1129	else
1130		writel(qup->config_run | blk->total_tx_len,
1131		       qup->base + QUP_MX_WRITE_CNT);
1132
1133	if (blk->total_rx_len) {
1134		if (blk->is_rx_blk_mode)
1135			writel(qup->config_run | blk->total_rx_len,
1136			       qup->base + QUP_MX_INPUT_CNT);
1137		else
1138			writel(qup->config_run | blk->total_rx_len,
1139			       qup->base + QUP_MX_READ_CNT);
1140	} else {
1141		qup_config |= QUP_NO_INPUT;
1142	}
1143
1144	writel(qup_config, qup->base + QUP_CONFIG);
1145}
1146
1147/*
1148 * Configure registers related with transfer mode (FIFO/Block)
1149 * before starting of i2c transfer. It will be called only once in
1150 * QUP RESET state.
1151 */
1152static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1153{
1154	struct qup_i2c_block *blk = &qup->blk;
1155	u32 io_mode = QUP_REPACK_EN;
1156
1157	if (blk->is_tx_blk_mode) {
1158		io_mode |= QUP_OUTPUT_BLK_MODE;
1159		writel(0, qup->base + QUP_MX_WRITE_CNT);
1160	} else {
1161		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1162	}
1163
1164	if (blk->is_rx_blk_mode) {
1165		io_mode |= QUP_INPUT_BLK_MODE;
1166		writel(0, qup->base + QUP_MX_READ_CNT);
1167	} else {
1168		writel(0, qup->base + QUP_MX_INPUT_CNT);
1169	}
1170
1171	writel(io_mode, qup->base + QUP_IO_MODE);
1172}
1173
1174/* Clear required variables before starting of any QUP v2 sub transfer. */
1175static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1176{
1177	blk->send_last_word = false;
1178	blk->tx_tags_sent = false;
1179	blk->tx_fifo_data = 0;
1180	blk->tx_fifo_data_pos = 0;
1181	blk->tx_fifo_free = 0;
1182
1183	blk->rx_tags_fetched = false;
1184	blk->rx_bytes_read = false;
1185	blk->rx_fifo_data = 0;
1186	blk->rx_fifo_data_pos = 0;
1187	blk->fifo_available = 0;
1188}
1189
1190/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1191static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1192{
1193	struct qup_i2c_block *blk = &qup->blk;
1194	int j;
1195
1196	for (j = blk->rx_fifo_data_pos;
1197	     blk->cur_blk_len && blk->fifo_available;
1198	     blk->cur_blk_len--, blk->fifo_available--) {
1199		if (j == 0)
1200			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1201
1202		*(blk->cur_data++) = blk->rx_fifo_data;
1203		blk->rx_fifo_data >>= 8;
1204
1205		if (j == 3)
1206			j = 0;
1207		else
1208			j++;
1209	}
1210
1211	blk->rx_fifo_data_pos = j;
1212}
1213
1214/* Receive tags for read message in QUP v2 i2c transfer. */
1215static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1216{
1217	struct qup_i2c_block *blk = &qup->blk;
1218
1219	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1220	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1221	blk->rx_fifo_data_pos = blk->rx_tag_len;
1222	blk->fifo_available -= blk->rx_tag_len;
1223}
1224
1225/*
1226 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1227 * preceded by received data bytes so
1228 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1229 *    all tag bytes and discard that.
1230 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1231 *    set rx_bytes_read to true.
1232 */
1233static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1234{
1235	struct qup_i2c_block *blk = &qup->blk;
1236
1237	if (!blk->rx_tags_fetched) {
1238		qup_i2c_recv_tags(qup);
1239		blk->rx_tags_fetched = true;
1240	}
1241
1242	qup_i2c_recv_data(qup);
1243	if (!blk->cur_blk_len)
1244		blk->rx_bytes_read = true;
1245}
1246
1247/*
1248 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1249 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1250 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1251 */
1252static void
1253qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1254{
1255	struct qup_i2c_block *blk = &qup->blk;
1256	unsigned int j;
1257
1258	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1259	     (*len)--, blk->tx_fifo_free--) {
1260		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1261		if (j == 3) {
1262			writel(blk->tx_fifo_data,
1263			       qup->base + QUP_OUT_FIFO_BASE);
1264			blk->tx_fifo_data = 0x0;
1265			j = 0;
1266		} else {
1267			j++;
1268		}
1269	}
1270
1271	blk->tx_fifo_data_pos = j;
1272}
1273
1274/* Transfer tags for read message in QUP v2 i2c transfer. */
1275static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1276{
1277	struct qup_i2c_block *blk = &qup->blk;
1278
1279	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1280	if (blk->tx_fifo_data_pos)
1281		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1282}
1283
1284/*
1285 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1286 * need to be written and QUP write tags can have maximum 256 data length, so
1287 *
1288 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1289 *    tags to TX FIFO and set tx_tags_sent to true.
1290 * 2. Check if send_last_word is true. It will be set when last few data bytes
1291 *    (less than 4 bytes) are remaining to be written in FIFO because of no FIFO
1292 *    space. All this data bytes are available in tx_fifo_data so write this
1293 *    in FIFO.
1294 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1295 *    then more data is pending otherwise following 3 cases can be possible
1296 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1297 *       have been written in TX FIFO so nothing else is required.
1298 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1299 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1300 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1301 *       will be always greater than or equal to 4 bytes.
1302 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1303 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1304 *       FIFO full so make send_last_word true.
1305 */
1306static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1307{
1308	struct qup_i2c_block *blk = &qup->blk;
1309
1310	if (!blk->tx_tags_sent) {
1311		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1312				       &blk->tx_tag_len);
1313		blk->tx_tags_sent = true;
1314	}
1315
1316	if (blk->send_last_word)
1317		goto send_last_word;
1318
1319	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1320	if (!blk->cur_blk_len) {
1321		if (!blk->tx_fifo_data_pos)
1322			return;
1323
1324		if (blk->tx_fifo_free)
1325			goto send_last_word;
1326
1327		blk->send_last_word = true;
1328	}
1329
1330	return;
1331
1332send_last_word:
1333	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1334}
1335
1336/*
1337 * Main transfer function which read or write i2c data.
1338 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1339 * transfers can be scheduled.
1340 */
1341static int
1342qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1343		     bool change_pause_state)
1344{
1345	struct qup_i2c_block *blk = &qup->blk;
1346	struct i2c_msg *msg = qup->msg;
1347	int ret;
1348
1349	/*
1350	 * Check if its SMBus Block read for which the top level read will be
1351	 * done into 2 QUP reads. One with message length 1 while other one is
1352	 * with actual length.
1353	 */
1354	if (qup_i2c_check_msg_len(msg)) {
1355		if (qup->is_smbus_read) {
1356			/*
1357			 * If the message length is already read in
1358			 * the first byte of the buffer, account for
1359			 * that by setting the offset
1360			 */
1361			blk->cur_data += 1;
1362			is_first = false;
1363		} else {
1364			change_pause_state = false;
1365		}
1366	}
1367
1368	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1369
1370	qup_i2c_clear_blk_v2(blk);
1371	qup_i2c_conf_count_v2(qup);
1372
1373	/* If it is first sub transfer, then configure i2c bus clocks */
1374	if (is_first) {
1375		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1376		if (ret)
1377			return ret;
1378
1379		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1380
1381		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1382		if (ret)
1383			return ret;
1384	}
1385
1386	reinit_completion(&qup->xfer);
1387	enable_irq(qup->irq);
1388	/*
1389	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1390	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1391	 */
1392	if (!blk->is_tx_blk_mode) {
1393		blk->tx_fifo_free = qup->out_fifo_sz;
1394
1395		if (is_rx)
1396			qup_i2c_write_rx_tags_v2(qup);
1397		else
1398			qup_i2c_write_tx_fifo_v2(qup);
1399	}
1400
1401	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1402	if (ret)
1403		goto err;
1404
1405	ret = qup_i2c_wait_for_complete(qup, msg);
1406	if (ret)
1407		goto err;
1408
1409	/* Move to pause state for all the transfers, except last one */
1410	if (change_pause_state) {
1411		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1412		if (ret)
1413			goto err;
1414	}
1415
1416err:
1417	disable_irq(qup->irq);
1418	return ret;
1419}
1420
1421/*
1422 * Transfer one read/write message in i2c transfer. It splits the message into
1423 * multiple of blk_xfer_limit data length blocks and schedule each
1424 * QUP block individually.
1425 */
1426static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1427{
1428	int ret = 0;
1429	unsigned int data_len, i;
1430	struct i2c_msg *msg = qup->msg;
1431	struct qup_i2c_block *blk = &qup->blk;
1432	u8 *msg_buf = msg->buf;
1433
1434	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1435	qup_i2c_set_blk_data(qup, msg);
1436
1437	for (i = 0; i < blk->count; i++) {
1438		data_len =  qup_i2c_get_data_len(qup);
1439		blk->pos = i;
1440		blk->cur_tx_tags = blk->tags;
1441		blk->cur_blk_len = data_len;
1442		blk->tx_tag_len =
1443			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1444
1445		blk->cur_data = msg_buf;
1446
1447		if (is_rx) {
1448			blk->total_tx_len = blk->tx_tag_len;
1449			blk->rx_tag_len = 2;
1450			blk->total_rx_len = blk->rx_tag_len + data_len;
1451		} else {
1452			blk->total_tx_len = blk->tx_tag_len + data_len;
1453			blk->total_rx_len = 0;
1454		}
1455
1456		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1457					   !qup->is_last || i < blk->count - 1);
1458		if (ret)
1459			return ret;
1460
1461		/* Handle SMBus block read length */
1462		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1463		    !qup->is_smbus_read) {
1464			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1465				return -EPROTO;
1466
1467			msg->len = msg->buf[0];
1468			qup->is_smbus_read = true;
1469			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1470			qup->is_smbus_read = false;
1471			if (ret)
1472				return ret;
1473
1474			msg->len += 1;
1475		}
1476
1477		msg_buf += data_len;
1478		blk->data_len -= qup->blk_xfer_limit;
1479	}
1480
1481	return ret;
1482}
1483
1484/*
1485 * QUP v2 supports 3 modes
1486 * Programmed IO using FIFO mode : Less than FIFO size
1487 * Programmed IO using Block mode : Greater than FIFO size
1488 * DMA using BAM : Appropriate for any transaction size but the address should
1489 *		   be DMA applicable
1490 *
1491 * This function determines the mode which will be used for this transfer. An
1492 * i2c transfer contains multiple message. Following are the rules to determine
1493 * the mode used.
1494 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1495 * 2. If complete transfer length is greater than fifo size then use the DMA
1496 *    mode.
1497 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1498 *    for maximum tx and rx length to determine mode.
1499 */
1500static int
1501qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1502			  struct i2c_msg msgs[], int num)
1503{
1504	int idx;
1505	bool no_dma = false;
1506	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1507
1508	/* All i2c_msgs should be transferred using either dma or cpu */
1509	for (idx = 0; idx < num; idx++) {
1510		if (msgs[idx].flags & I2C_M_RD)
1511			max_rx_len = max_t(unsigned int, max_rx_len,
1512					   msgs[idx].len);
1513		else
1514			max_tx_len = max_t(unsigned int, max_tx_len,
1515					   msgs[idx].len);
1516
1517		if (is_vmalloc_addr(msgs[idx].buf))
1518			no_dma = true;
1519
1520		total_len += msgs[idx].len;
1521	}
1522
1523	if (!no_dma && qup->is_dma &&
1524	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1525		qup->use_dma = true;
1526	} else {
1527		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1528			QUP_MAX_TAGS_LEN;
1529		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1530			READ_RX_TAGS_LEN;
1531	}
1532
1533	return 0;
1534}
1535
1536static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1537			   struct i2c_msg msgs[],
1538			   int num)
1539{
1540	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1541	int ret, idx = 0;
1542
1543	qup->bus_err = 0;
1544	qup->qup_err = 0;
1545
1546	ret = pm_runtime_get_sync(qup->dev);
1547	if (ret < 0)
1548		goto out;
1549
1550	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1551	if (ret)
1552		goto out;
1553
1554	writel(1, qup->base + QUP_SW_RESET);
1555	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1556	if (ret)
1557		goto out;
1558
1559	/* Configure QUP as I2C mini core */
1560	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1561	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1562
1563	if (qup_i2c_poll_state_i2c_master(qup)) {
1564		ret = -EIO;
1565		goto out;
1566	}
1567
1568	if (qup->use_dma) {
1569		reinit_completion(&qup->xfer);
1570		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1571		qup->use_dma = false;
1572	} else {
1573		qup_i2c_conf_mode_v2(qup);
1574
1575		for (idx = 0; idx < num; idx++) {
1576			qup->msg = &msgs[idx];
1577			qup->is_last = idx == (num - 1);
1578
1579			ret = qup_i2c_xfer_v2_msg(qup, idx,
1580					!!(msgs[idx].flags & I2C_M_RD));
1581			if (ret)
1582				break;
1583		}
1584		qup->msg = NULL;
1585	}
1586
1587	if (!ret)
1588		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1589
1590	if (!ret)
1591		qup_i2c_change_state(qup, QUP_RESET_STATE);
1592
1593	if (ret == 0)
1594		ret = num;
1595out:
1596	pm_runtime_mark_last_busy(qup->dev);
1597	pm_runtime_put_autosuspend(qup->dev);
1598
1599	return ret;
1600}
1601
1602static u32 qup_i2c_func(struct i2c_adapter *adap)
1603{
1604	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
1605}
1606
1607static const struct i2c_algorithm qup_i2c_algo = {
1608	.master_xfer	= qup_i2c_xfer,
1609	.functionality	= qup_i2c_func,
1610};
1611
1612static const struct i2c_algorithm qup_i2c_algo_v2 = {
1613	.master_xfer	= qup_i2c_xfer_v2,
1614	.functionality	= qup_i2c_func,
1615};
1616
1617/*
1618 * The QUP block will issue a NACK and STOP on the bus when reaching
1619 * the end of the read, the length of the read is specified as one byte
1620 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1621 */
1622static const struct i2c_adapter_quirks qup_i2c_quirks = {
1623	.flags = I2C_AQ_NO_ZERO_LEN,
1624	.max_read_len = QUP_READ_LIMIT,
1625};
1626
1627static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1628	.flags = I2C_AQ_NO_ZERO_LEN,
1629};
1630
1631static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1632{
1633	clk_prepare_enable(qup->clk);
1634	clk_prepare_enable(qup->pclk);
1635}
1636
1637static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1638{
1639	u32 config;
1640
1641	qup_i2c_change_state(qup, QUP_RESET_STATE);
1642	clk_disable_unprepare(qup->clk);
1643	config = readl(qup->base + QUP_CONFIG);
1644	config |= QUP_CLOCK_AUTO_GATE;
1645	writel(config, qup->base + QUP_CONFIG);
1646	clk_disable_unprepare(qup->pclk);
1647}
1648
1649static const struct acpi_device_id qup_i2c_acpi_match[] = {
1650	{ "QCOM8010"},
1651	{ }
1652};
1653MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1654
1655static int qup_i2c_probe(struct platform_device *pdev)
1656{
1657	static const int blk_sizes[] = {4, 16, 32};
1658	struct qup_i2c_dev *qup;
1659	unsigned long one_bit_t;
 
1660	u32 io_mode, hw_ver, size;
1661	int ret, fs_div, hs_div;
1662	u32 src_clk_freq = DEFAULT_SRC_CLK;
1663	u32 clk_freq = DEFAULT_CLK_FREQ;
1664	int blocks;
1665	bool is_qup_v1;
1666
1667	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1668	if (!qup)
1669		return -ENOMEM;
1670
1671	qup->dev = &pdev->dev;
1672	init_completion(&qup->xfer);
1673	platform_set_drvdata(pdev, qup);
1674
1675	if (scl_freq) {
1676		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1677		clk_freq = scl_freq;
1678	} else {
1679		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1680		if (ret) {
1681			dev_notice(qup->dev, "using default clock-frequency %d",
1682				DEFAULT_CLK_FREQ);
1683		}
1684	}
1685
1686	if (device_is_compatible(&pdev->dev, "qcom,i2c-qup-v1.1.1")) {
1687		qup->adap.algo = &qup_i2c_algo;
1688		qup->adap.quirks = &qup_i2c_quirks;
1689		is_qup_v1 = true;
1690	} else {
1691		qup->adap.algo = &qup_i2c_algo_v2;
1692		qup->adap.quirks = &qup_i2c_quirks_v2;
1693		is_qup_v1 = false;
1694		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1695			goto nodma;
1696		else
1697			ret = qup_i2c_req_dma(qup);
1698
1699		if (ret == -EPROBE_DEFER)
1700			goto fail_dma;
1701		else if (ret != 0)
1702			goto nodma;
1703
1704		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1705		blocks = (MX_DMA_BLOCKS << 1) + 1;
1706		qup->btx.sg = devm_kcalloc(&pdev->dev,
1707					   blocks, sizeof(*qup->btx.sg),
1708					   GFP_KERNEL);
1709		if (!qup->btx.sg) {
1710			ret = -ENOMEM;
1711			goto fail_dma;
1712		}
1713		sg_init_table(qup->btx.sg, blocks);
1714
1715		qup->brx.sg = devm_kcalloc(&pdev->dev,
1716					   blocks, sizeof(*qup->brx.sg),
1717					   GFP_KERNEL);
1718		if (!qup->brx.sg) {
1719			ret = -ENOMEM;
1720			goto fail_dma;
1721		}
1722		sg_init_table(qup->brx.sg, blocks);
1723
1724		/* 2 tag bytes for each block + 5 for start, stop tags */
1725		size = blocks * 2 + 5;
1726
1727		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1728						    size, GFP_KERNEL);
1729		if (!qup->start_tag.start) {
1730			ret = -ENOMEM;
1731			goto fail_dma;
1732		}
1733
1734		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1735		if (!qup->brx.tag.start) {
1736			ret = -ENOMEM;
1737			goto fail_dma;
1738		}
1739
1740		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1741		if (!qup->btx.tag.start) {
1742			ret = -ENOMEM;
1743			goto fail_dma;
1744		}
1745		qup->is_dma = true;
1746	}
1747
1748nodma:
1749	/* We support frequencies up to FAST Mode Plus (1MHz) */
1750	if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1751		dev_err(qup->dev, "clock frequency not supported %d\n",
1752			clk_freq);
1753		ret = -EINVAL;
1754		goto fail_dma;
1755	}
1756
1757	qup->base = devm_platform_ioremap_resource(pdev, 0);
1758	if (IS_ERR(qup->base)) {
1759		ret = PTR_ERR(qup->base);
1760		goto fail_dma;
1761	}
1762
1763	qup->irq = platform_get_irq(pdev, 0);
1764	if (qup->irq < 0) {
1765		ret = qup->irq;
1766		goto fail_dma;
1767	}
1768
1769	if (has_acpi_companion(qup->dev)) {
1770		ret = device_property_read_u32(qup->dev,
1771				"src-clock-hz", &src_clk_freq);
1772		if (ret) {
1773			dev_notice(qup->dev, "using default src-clock-hz %d",
1774				DEFAULT_SRC_CLK);
1775		}
1776		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1777	} else {
1778		qup->clk = devm_clk_get(qup->dev, "core");
1779		if (IS_ERR(qup->clk)) {
1780			dev_err(qup->dev, "Could not get core clock\n");
1781			ret = PTR_ERR(qup->clk);
1782			goto fail_dma;
1783		}
1784
1785		qup->pclk = devm_clk_get(qup->dev, "iface");
1786		if (IS_ERR(qup->pclk)) {
1787			dev_err(qup->dev, "Could not get iface clock\n");
1788			ret = PTR_ERR(qup->pclk);
1789			goto fail_dma;
1790		}
1791		qup_i2c_enable_clocks(qup);
1792		src_clk_freq = clk_get_rate(qup->clk);
1793	}
1794
1795	/*
1796	 * Bootloaders might leave a pending interrupt on certain QUP's,
1797	 * so we reset the core before registering for interrupts.
1798	 */
1799	writel(1, qup->base + QUP_SW_RESET);
1800	ret = qup_i2c_poll_state_valid(qup);
1801	if (ret)
1802		goto fail;
1803
1804	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1805			       IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1806			       "i2c_qup", qup);
1807	if (ret) {
1808		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1809		goto fail;
1810	}
 
1811
1812	hw_ver = readl(qup->base + QUP_HW_VERSION);
1813	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1814
1815	io_mode = readl(qup->base + QUP_IO_MODE);
1816
1817	/*
1818	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1819	 * associated with each byte written/received
1820	 */
1821	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1822	if (size >= ARRAY_SIZE(blk_sizes)) {
1823		ret = -EIO;
1824		goto fail;
1825	}
1826	qup->out_blk_sz = blk_sizes[size];
1827
1828	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1829	if (size >= ARRAY_SIZE(blk_sizes)) {
1830		ret = -EIO;
1831		goto fail;
1832	}
1833	qup->in_blk_sz = blk_sizes[size];
1834
1835	if (is_qup_v1) {
1836		/*
1837		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1838		 * single transfer but the block size is in bytes so divide the
1839		 * in_blk_sz and out_blk_sz by 2
1840		 */
1841		qup->in_blk_sz /= 2;
1842		qup->out_blk_sz /= 2;
1843		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1844		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1845		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1846	} else {
1847		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1848		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1849		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1850	}
1851
1852	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1853	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1854
1855	size = QUP_INPUT_FIFO_SIZE(io_mode);
1856	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1857
1858	hs_div = 3;
1859	if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1860		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1861		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1862	} else {
1863		/* 33%/66% duty cycle */
1864		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1865		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1866	}
1867
1868	/*
1869	 * Time it takes for a byte to be clocked out on the bus.
1870	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1871	 */
1872	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1873	qup->one_byte_t = one_bit_t * 9;
1874	qup->xfer_timeout = TOUT_MIN * HZ +
1875		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1876
1877	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1878		qup->in_blk_sz, qup->in_fifo_sz,
1879		qup->out_blk_sz, qup->out_fifo_sz);
1880
1881	i2c_set_adapdata(&qup->adap, qup);
1882	qup->adap.dev.parent = qup->dev;
1883	qup->adap.dev.of_node = pdev->dev.of_node;
1884	qup->is_last = true;
1885
1886	strscpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1887
1888	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1889	pm_runtime_use_autosuspend(qup->dev);
1890	pm_runtime_set_active(qup->dev);
1891	pm_runtime_enable(qup->dev);
1892
1893	ret = i2c_add_adapter(&qup->adap);
1894	if (ret)
1895		goto fail_runtime;
1896
1897	return 0;
1898
1899fail_runtime:
1900	pm_runtime_disable(qup->dev);
1901	pm_runtime_set_suspended(qup->dev);
1902fail:
1903	qup_i2c_disable_clocks(qup);
1904fail_dma:
1905	if (qup->btx.dma)
1906		dma_release_channel(qup->btx.dma);
1907	if (qup->brx.dma)
1908		dma_release_channel(qup->brx.dma);
1909	return ret;
1910}
1911
1912static void qup_i2c_remove(struct platform_device *pdev)
1913{
1914	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1915
1916	if (qup->is_dma) {
1917		dma_release_channel(qup->btx.dma);
1918		dma_release_channel(qup->brx.dma);
1919	}
1920
1921	disable_irq(qup->irq);
1922	qup_i2c_disable_clocks(qup);
1923	i2c_del_adapter(&qup->adap);
1924	pm_runtime_disable(qup->dev);
1925	pm_runtime_set_suspended(qup->dev);
 
1926}
1927
 
1928static int qup_i2c_pm_suspend_runtime(struct device *device)
1929{
1930	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1931
1932	dev_dbg(device, "pm_runtime: suspending...\n");
1933	qup_i2c_disable_clocks(qup);
1934	return 0;
1935}
1936
1937static int qup_i2c_pm_resume_runtime(struct device *device)
1938{
1939	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1940
1941	dev_dbg(device, "pm_runtime: resuming...\n");
1942	qup_i2c_enable_clocks(qup);
1943	return 0;
1944}
 
1945
 
1946static int qup_i2c_suspend(struct device *device)
1947{
1948	if (!pm_runtime_suspended(device))
1949		return qup_i2c_pm_suspend_runtime(device);
1950	return 0;
1951}
1952
1953static int qup_i2c_resume(struct device *device)
1954{
1955	qup_i2c_pm_resume_runtime(device);
1956	pm_runtime_mark_last_busy(device);
1957	pm_request_autosuspend(device);
1958	return 0;
1959}
 
1960
1961static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1962	SYSTEM_SLEEP_PM_OPS(qup_i2c_suspend, qup_i2c_resume)
1963	RUNTIME_PM_OPS(qup_i2c_pm_suspend_runtime,
1964		       qup_i2c_pm_resume_runtime, NULL)
 
 
 
 
1965};
1966
1967static const struct of_device_id qup_i2c_dt_match[] = {
1968	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1969	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1970	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1971	{}
1972};
1973MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1974
1975static struct platform_driver qup_i2c_driver = {
1976	.probe  = qup_i2c_probe,
1977	.remove = qup_i2c_remove,
1978	.driver = {
1979		.name = "i2c_qup",
1980		.pm = pm_ptr(&qup_i2c_qup_pm_ops),
1981		.of_match_table = qup_i2c_dt_match,
1982		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1983	},
1984};
1985
1986module_platform_driver(qup_i2c_driver);
1987
1988MODULE_DESCRIPTION("Qualcomm QUP based I2C controller");
1989MODULE_LICENSE("GPL v2");
1990MODULE_ALIAS("platform:i2c_qup");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2014, Sony Mobile Communications AB.
   5 *
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/atomic.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dmapool.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/i2c.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
 
  23#include <linux/scatterlist.h>
  24
  25/* QUP Registers */
  26#define QUP_CONFIG		0x000
  27#define QUP_STATE		0x004
  28#define QUP_IO_MODE		0x008
  29#define QUP_SW_RESET		0x00c
  30#define QUP_OPERATIONAL		0x018
  31#define QUP_ERROR_FLAGS		0x01c
  32#define QUP_ERROR_FLAGS_EN	0x020
  33#define QUP_OPERATIONAL_MASK	0x028
  34#define QUP_HW_VERSION		0x030
  35#define QUP_MX_OUTPUT_CNT	0x100
  36#define QUP_OUT_FIFO_BASE	0x110
  37#define QUP_MX_WRITE_CNT	0x150
  38#define QUP_MX_INPUT_CNT	0x200
  39#define QUP_MX_READ_CNT		0x208
  40#define QUP_IN_FIFO_BASE	0x218
  41#define QUP_I2C_CLK_CTL		0x400
  42#define QUP_I2C_STATUS		0x404
  43#define QUP_I2C_MASTER_GEN	0x408
  44
  45/* QUP States and reset values */
  46#define QUP_RESET_STATE		0
  47#define QUP_RUN_STATE		1
  48#define QUP_PAUSE_STATE		3
  49#define QUP_STATE_MASK		3
  50
  51#define QUP_STATE_VALID		BIT(2)
  52#define QUP_I2C_MAST_GEN	BIT(4)
  53#define QUP_I2C_FLUSH		BIT(6)
  54
  55#define QUP_OPERATIONAL_RESET	0x000ff0
  56#define QUP_I2C_STATUS_RESET	0xfffffc
  57
  58/* QUP OPERATIONAL FLAGS */
  59#define QUP_I2C_NACK_FLAG	BIT(3)
  60#define QUP_OUT_NOT_EMPTY	BIT(4)
  61#define QUP_IN_NOT_EMPTY	BIT(5)
  62#define QUP_OUT_FULL		BIT(6)
  63#define QUP_OUT_SVC_FLAG	BIT(8)
  64#define QUP_IN_SVC_FLAG		BIT(9)
  65#define QUP_MX_OUTPUT_DONE	BIT(10)
  66#define QUP_MX_INPUT_DONE	BIT(11)
  67#define OUT_BLOCK_WRITE_REQ	BIT(12)
  68#define IN_BLOCK_READ_REQ	BIT(13)
  69
  70/* I2C mini core related values */
  71#define QUP_NO_INPUT		BIT(7)
  72#define QUP_CLOCK_AUTO_GATE	BIT(13)
  73#define I2C_MINI_CORE		(2 << 8)
  74#define I2C_N_VAL		15
  75#define I2C_N_VAL_V2		7
  76
  77/* Most significant word offset in FIFO port */
  78#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
  79
  80/* Packing/Unpacking words in FIFOs, and IO modes */
  81#define QUP_OUTPUT_BLK_MODE	(1 << 10)
  82#define QUP_OUTPUT_BAM_MODE	(3 << 10)
  83#define QUP_INPUT_BLK_MODE	(1 << 12)
  84#define QUP_INPUT_BAM_MODE	(3 << 12)
  85#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86#define QUP_UNPACK_EN		BIT(14)
  87#define QUP_PACK_EN		BIT(15)
  88
  89#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
  90#define QUP_V2_TAGS_EN		1
  91
  92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
  94#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
  95#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
  96
  97/* QUP tags */
  98#define QUP_TAG_START		(1 << 8)
  99#define QUP_TAG_DATA		(2 << 8)
 100#define QUP_TAG_STOP		(3 << 8)
 101#define QUP_TAG_REC		(4 << 8)
 102#define QUP_BAM_INPUT_EOT		0x93
 103#define QUP_BAM_FLUSH_STOP		0x96
 104
 105/* QUP v2 tags */
 106#define QUP_TAG_V2_START               0x81
 107#define QUP_TAG_V2_DATAWR              0x82
 108#define QUP_TAG_V2_DATAWR_STOP         0x83
 109#define QUP_TAG_V2_DATARD              0x85
 110#define QUP_TAG_V2_DATARD_NACK         0x86
 111#define QUP_TAG_V2_DATARD_STOP         0x87
 112
 113/* Status, Error flags */
 114#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
 115#define I2C_STATUS_BUS_ACTIVE		BIT(8)
 116#define I2C_STATUS_ERROR_MASK		0x38000fc
 117#define QUP_STATUS_ERROR_FLAGS		0x7c
 118
 119#define QUP_READ_LIMIT			256
 120#define SET_BIT				0x1
 121#define RESET_BIT			0x0
 122#define ONE_BYTE			0x1
 123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124
 125/* Maximum transfer length for single DMA descriptor */
 126#define MX_TX_RX_LEN			SZ_64K
 127#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
 128/* Maximum transfer length for all DMA descriptors */
 129#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
 130#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131
 132/*
 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134 * the top of maximum transfer time calculated from i2c bus speed to compensate
 135 * the overheads.
 136 */
 137#define TOUT_MIN			2
 138
 139/* I2C Frequency Modes */
 140#define I2C_STANDARD_FREQ		100000
 141#define I2C_FAST_MODE_FREQ		400000
 142#define I2C_FAST_MODE_PLUS_FREQ		1000000
 143
 144/* Default values. Use these if FW query fails */
 145#define DEFAULT_CLK_FREQ I2C_STANDARD_FREQ
 146#define DEFAULT_SRC_CLK 20000000
 147
 148/*
 149 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 150 * data transfer
 151 */
 152#define QUP_MAX_TAGS_LEN		4
 153/* Max data length for each DATARD tags */
 154#define RECV_MAX_DATA_LEN		254
 155/* TAG length for DATA READ in RX FIFO  */
 156#define READ_RX_TAGS_LEN		2
 157
 158static unsigned int scl_freq;
 159module_param_named(scl_freq, scl_freq, uint, 0444);
 160MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 161
 162/*
 163 * count: no of blocks
 164 * pos: current block number
 165 * tx_tag_len: tx tag length for current block
 166 * rx_tag_len: rx tag length for current block
 167 * data_len: remaining data length for current message
 168 * cur_blk_len: data length for current block
 169 * total_tx_len: total tx length including tag bytes for current QUP transfer
 170 * total_rx_len: total rx length including tag bytes for current QUP transfer
 171 * tx_fifo_data_pos: current byte number in TX FIFO word
 172 * tx_fifo_free: number of free bytes in current QUP block write.
 173 * rx_fifo_data_pos: current byte number in RX FIFO word
 174 * fifo_available: number of available bytes in RX FIFO for current
 175 *		   QUP block read
 176 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 177 *		 to TX FIFO will be appended in this data and will be written to
 178 *		 TX FIFO when all the 4 bytes are available.
 179 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 180 *		 contains the 4 bytes of RX data.
 181 * cur_data: pointer to tell cur data position for current message
 182 * cur_tx_tags: pointer to tell cur position in tags
 183 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 184 * send_last_word: for tx FIFO, last word send is pending in current block
 185 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 186 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 187 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 188 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 189 * tags: contains tx tag bytes for current QUP transfer
 190 */
 191struct qup_i2c_block {
 192	int		count;
 193	int		pos;
 194	int		tx_tag_len;
 195	int		rx_tag_len;
 196	int		data_len;
 197	int		cur_blk_len;
 198	int		total_tx_len;
 199	int		total_rx_len;
 200	int		tx_fifo_data_pos;
 201	int		tx_fifo_free;
 202	int		rx_fifo_data_pos;
 203	int		fifo_available;
 204	u32		tx_fifo_data;
 205	u32		rx_fifo_data;
 206	u8		*cur_data;
 207	u8		*cur_tx_tags;
 208	bool		tx_tags_sent;
 209	bool		send_last_word;
 210	bool		rx_tags_fetched;
 211	bool		rx_bytes_read;
 212	bool		is_tx_blk_mode;
 213	bool		is_rx_blk_mode;
 214	u8		tags[6];
 215};
 216
 217struct qup_i2c_tag {
 218	u8 *start;
 219	dma_addr_t addr;
 220};
 221
 222struct qup_i2c_bam {
 223	struct	qup_i2c_tag tag;
 224	struct	dma_chan *dma;
 225	struct	scatterlist *sg;
 226	unsigned int sg_cnt;
 227};
 228
 229struct qup_i2c_dev {
 230	struct device		*dev;
 231	void __iomem		*base;
 232	int			irq;
 233	struct clk		*clk;
 234	struct clk		*pclk;
 235	struct i2c_adapter	adap;
 236
 237	int			clk_ctl;
 238	int			out_fifo_sz;
 239	int			in_fifo_sz;
 240	int			out_blk_sz;
 241	int			in_blk_sz;
 242
 243	int			blk_xfer_limit;
 244	unsigned long		one_byte_t;
 245	unsigned long		xfer_timeout;
 246	struct qup_i2c_block	blk;
 247
 248	struct i2c_msg		*msg;
 249	/* Current posion in user message buffer */
 250	int			pos;
 251	/* I2C protocol errors */
 252	u32			bus_err;
 253	/* QUP core errors */
 254	u32			qup_err;
 255
 256	/* To check if this is the last msg */
 257	bool			is_last;
 258	bool			is_smbus_read;
 259
 260	/* To configure when bus is in run state */
 261	u32			config_run;
 262
 263	/* dma parameters */
 264	bool			is_dma;
 265	/* To check if the current transfer is using DMA */
 266	bool			use_dma;
 267	unsigned int		max_xfer_sg_len;
 268	unsigned int		tag_buf_pos;
 269	/* The threshold length above which block mode will be used */
 270	unsigned int		blk_mode_threshold;
 271	struct			dma_pool *dpool;
 272	struct			qup_i2c_tag start_tag;
 273	struct			qup_i2c_bam brx;
 274	struct			qup_i2c_bam btx;
 275
 276	struct completion	xfer;
 277	/* function to write data in tx fifo */
 278	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 279	/* function to read data from rx fifo */
 280	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 281	/* function to write tags in tx fifo for i2c read transfer */
 282	void (*write_rx_tags)(struct qup_i2c_dev *qup);
 283};
 284
 285static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 286{
 287	struct qup_i2c_dev *qup = dev;
 288	struct qup_i2c_block *blk = &qup->blk;
 289	u32 bus_err;
 290	u32 qup_err;
 291	u32 opflags;
 292
 293	bus_err = readl(qup->base + QUP_I2C_STATUS);
 294	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 295	opflags = readl(qup->base + QUP_OPERATIONAL);
 296
 297	if (!qup->msg) {
 298		/* Clear Error interrupt */
 299		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 300		return IRQ_HANDLED;
 301	}
 302
 303	bus_err &= I2C_STATUS_ERROR_MASK;
 304	qup_err &= QUP_STATUS_ERROR_FLAGS;
 305
 306	/* Clear the error bits in QUP_ERROR_FLAGS */
 307	if (qup_err)
 308		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 309
 310	/* Clear the error bits in QUP_I2C_STATUS */
 311	if (bus_err)
 312		writel(bus_err, qup->base + QUP_I2C_STATUS);
 313
 314	/*
 315	 * Check for BAM mode and returns if already error has come for current
 316	 * transfer. In Error case, sometimes, QUP generates more than one
 317	 * interrupt.
 318	 */
 319	if (qup->use_dma && (qup->qup_err || qup->bus_err))
 320		return IRQ_HANDLED;
 321
 322	/* Reset the QUP State in case of error */
 323	if (qup_err || bus_err) {
 324		/*
 325		 * Don’t reset the QUP state in case of BAM mode. The BAM
 326		 * flush operation needs to be scheduled in transfer function
 327		 * which will clear the remaining schedule descriptors in BAM
 328		 * HW FIFO and generates the BAM interrupt.
 329		 */
 330		if (!qup->use_dma)
 331			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 332		goto done;
 333	}
 334
 335	if (opflags & QUP_OUT_SVC_FLAG) {
 336		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 337
 338		if (opflags & OUT_BLOCK_WRITE_REQ) {
 339			blk->tx_fifo_free += qup->out_blk_sz;
 340			if (qup->msg->flags & I2C_M_RD)
 341				qup->write_rx_tags(qup);
 342			else
 343				qup->write_tx_fifo(qup);
 344		}
 345	}
 346
 347	if (opflags & QUP_IN_SVC_FLAG) {
 348		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 349
 350		if (!blk->is_rx_blk_mode) {
 351			blk->fifo_available += qup->in_fifo_sz;
 352			qup->read_rx_fifo(qup);
 353		} else if (opflags & IN_BLOCK_READ_REQ) {
 354			blk->fifo_available += qup->in_blk_sz;
 355			qup->read_rx_fifo(qup);
 356		}
 357	}
 358
 359	if (qup->msg->flags & I2C_M_RD) {
 360		if (!blk->rx_bytes_read)
 361			return IRQ_HANDLED;
 362	} else {
 363		/*
 364		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 365		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 366		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 367		 * of interrupt for write message in FIFO mode is
 368		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
 369		 */
 370		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 371			return IRQ_HANDLED;
 372	}
 373
 374done:
 375	qup->qup_err = qup_err;
 376	qup->bus_err = bus_err;
 377	complete(&qup->xfer);
 378	return IRQ_HANDLED;
 379}
 380
 381static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 382				   u32 req_state, u32 req_mask)
 383{
 384	int retries = 1;
 385	u32 state;
 386
 387	/*
 388	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 389	 * cycles. So retry once after a 1uS delay.
 390	 */
 391	do {
 392		state = readl(qup->base + QUP_STATE);
 393
 394		if (state & QUP_STATE_VALID &&
 395		    (state & req_mask) == req_state)
 396			return 0;
 397
 398		udelay(1);
 399	} while (retries--);
 400
 401	return -ETIMEDOUT;
 402}
 403
 404static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 405{
 406	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 407}
 408
 409static void qup_i2c_flush(struct qup_i2c_dev *qup)
 410{
 411	u32 val = readl(qup->base + QUP_STATE);
 412
 413	val |= QUP_I2C_FLUSH;
 414	writel(val, qup->base + QUP_STATE);
 415}
 416
 417static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 418{
 419	return qup_i2c_poll_state_mask(qup, 0, 0);
 420}
 421
 422static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 423{
 424	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 425}
 426
 427static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 428{
 429	if (qup_i2c_poll_state_valid(qup) != 0)
 430		return -EIO;
 431
 432	writel(state, qup->base + QUP_STATE);
 433
 434	if (qup_i2c_poll_state(qup, state) != 0)
 435		return -EIO;
 436	return 0;
 437}
 438
 439/* Check if I2C bus returns to IDLE state */
 440static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 441{
 442	unsigned long timeout;
 443	u32 status;
 444	int ret = 0;
 445
 446	timeout = jiffies + len * 4;
 447	for (;;) {
 448		status = readl(qup->base + QUP_I2C_STATUS);
 449		if (!(status & I2C_STATUS_BUS_ACTIVE))
 450			break;
 451
 452		if (time_after(jiffies, timeout))
 453			ret = -ETIMEDOUT;
 454
 455		usleep_range(len, len * 2);
 456	}
 457
 458	return ret;
 459}
 460
 461static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 462{
 463	struct qup_i2c_block *blk = &qup->blk;
 464	struct i2c_msg *msg = qup->msg;
 465	u32 addr = i2c_8bit_addr_from_msg(msg);
 466	u32 qup_tag;
 467	int idx;
 468	u32 val;
 469
 470	if (qup->pos == 0) {
 471		val = QUP_TAG_START | addr;
 472		idx = 1;
 473		blk->tx_fifo_free--;
 474	} else {
 475		val = 0;
 476		idx = 0;
 477	}
 478
 479	while (blk->tx_fifo_free && qup->pos < msg->len) {
 480		if (qup->pos == msg->len - 1)
 481			qup_tag = QUP_TAG_STOP;
 482		else
 483			qup_tag = QUP_TAG_DATA;
 484
 485		if (idx & 1)
 486			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 487		else
 488			val = qup_tag | msg->buf[qup->pos];
 489
 490		/* Write out the pair and the last odd value */
 491		if (idx & 1 || qup->pos == msg->len - 1)
 492			writel(val, qup->base + QUP_OUT_FIFO_BASE);
 493
 494		qup->pos++;
 495		idx++;
 496		blk->tx_fifo_free--;
 497	}
 498}
 499
 500static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 501				 struct i2c_msg *msg)
 502{
 503	qup->blk.pos = 0;
 504	qup->blk.data_len = msg->len;
 505	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 506}
 507
 508static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 509{
 510	int data_len;
 511
 512	if (qup->blk.data_len > qup->blk_xfer_limit)
 513		data_len = qup->blk_xfer_limit;
 514	else
 515		data_len = qup->blk.data_len;
 516
 517	return data_len;
 518}
 519
 520static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 521{
 522	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 523}
 524
 525static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 526			struct i2c_msg *msg)
 527{
 528	int len = 0;
 529
 530	if (qup->is_smbus_read) {
 531		tags[len++] = QUP_TAG_V2_DATARD_STOP;
 532		tags[len++] = qup_i2c_get_data_len(qup);
 533	} else {
 534		tags[len++] = QUP_TAG_V2_START;
 535		tags[len++] = addr & 0xff;
 536
 537		if (msg->flags & I2C_M_TEN)
 538			tags[len++] = addr >> 8;
 539
 540		tags[len++] = QUP_TAG_V2_DATARD;
 541		/* Read 1 byte indicating the length of the SMBus message */
 542		tags[len++] = 1;
 543	}
 544	return len;
 545}
 546
 547static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 548			    struct i2c_msg *msg)
 549{
 550	u16 addr = i2c_8bit_addr_from_msg(msg);
 551	int len = 0;
 552	int data_len;
 553
 554	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 555
 556	/* Handle tags for SMBus block read */
 557	if (qup_i2c_check_msg_len(msg))
 558		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 559
 560	if (qup->blk.pos == 0) {
 561		tags[len++] = QUP_TAG_V2_START;
 562		tags[len++] = addr & 0xff;
 563
 564		if (msg->flags & I2C_M_TEN)
 565			tags[len++] = addr >> 8;
 566	}
 567
 568	/* Send _STOP commands for the last block */
 569	if (last) {
 570		if (msg->flags & I2C_M_RD)
 571			tags[len++] = QUP_TAG_V2_DATARD_STOP;
 572		else
 573			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 574	} else {
 575		if (msg->flags & I2C_M_RD)
 576			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 577				      QUP_TAG_V2_DATARD_NACK :
 578				      QUP_TAG_V2_DATARD;
 579		else
 580			tags[len++] = QUP_TAG_V2_DATAWR;
 581	}
 582
 583	data_len = qup_i2c_get_data_len(qup);
 584
 585	/* 0 implies 256 bytes */
 586	if (data_len == QUP_READ_LIMIT)
 587		tags[len++] = 0;
 588	else
 589		tags[len++] = data_len;
 590
 591	return len;
 592}
 593
 594
 595static void qup_i2c_bam_cb(void *data)
 596{
 597	struct qup_i2c_dev *qup = data;
 598
 599	complete(&qup->xfer);
 600}
 601
 602static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 603			  unsigned int buflen, struct qup_i2c_dev *qup,
 604			  int dir)
 605{
 606	int ret;
 607
 608	sg_set_buf(sg, buf, buflen);
 609	ret = dma_map_sg(qup->dev, sg, 1, dir);
 610	if (!ret)
 611		return -EINVAL;
 612
 613	return 0;
 614}
 615
 616static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 617{
 618	if (qup->btx.dma)
 619		dma_release_channel(qup->btx.dma);
 620	if (qup->brx.dma)
 621		dma_release_channel(qup->brx.dma);
 622	qup->btx.dma = NULL;
 623	qup->brx.dma = NULL;
 624}
 625
 626static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 627{
 628	int err;
 629
 630	if (!qup->btx.dma) {
 631		qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
 632		if (IS_ERR(qup->btx.dma)) {
 633			err = PTR_ERR(qup->btx.dma);
 634			qup->btx.dma = NULL;
 635			dev_err(qup->dev, "\n tx channel not available");
 636			return err;
 637		}
 638	}
 639
 640	if (!qup->brx.dma) {
 641		qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
 642		if (IS_ERR(qup->brx.dma)) {
 643			dev_err(qup->dev, "\n rx channel not available");
 644			err = PTR_ERR(qup->brx.dma);
 645			qup->brx.dma = NULL;
 646			qup_i2c_rel_dma(qup);
 647			return err;
 648		}
 649	}
 650	return 0;
 651}
 652
 653static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 654{
 655	int ret = 0, limit = QUP_READ_LIMIT;
 656	u32 len = 0, blocks, rem;
 657	u32 i = 0, tlen, tx_len = 0;
 658	u8 *tags;
 659
 660	qup->blk_xfer_limit = QUP_READ_LIMIT;
 661	qup_i2c_set_blk_data(qup, msg);
 662
 663	blocks = qup->blk.count;
 664	rem = msg->len - (blocks - 1) * limit;
 665
 666	if (msg->flags & I2C_M_RD) {
 667		while (qup->blk.pos < blocks) {
 668			tlen = (i == (blocks - 1)) ? rem : limit;
 669			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 670			len += qup_i2c_set_tags(tags, qup, msg);
 671			qup->blk.data_len -= tlen;
 672
 673			/* scratch buf to read the start and len tags */
 674			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 675					     &qup->brx.tag.start[0],
 676					     2, qup, DMA_FROM_DEVICE);
 677
 678			if (ret)
 679				return ret;
 680
 681			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 682					     &msg->buf[limit * i],
 683					     tlen, qup,
 684					     DMA_FROM_DEVICE);
 685			if (ret)
 686				return ret;
 687
 688			i++;
 689			qup->blk.pos = i;
 690		}
 691		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 692				     &qup->start_tag.start[qup->tag_buf_pos],
 693				     len, qup, DMA_TO_DEVICE);
 694		if (ret)
 695			return ret;
 696
 697		qup->tag_buf_pos += len;
 698	} else {
 699		while (qup->blk.pos < blocks) {
 700			tlen = (i == (blocks - 1)) ? rem : limit;
 701			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 702			len = qup_i2c_set_tags(tags, qup, msg);
 703			qup->blk.data_len -= tlen;
 704
 705			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 706					     tags, len,
 707					     qup, DMA_TO_DEVICE);
 708			if (ret)
 709				return ret;
 710
 711			tx_len += len;
 712			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 713					     &msg->buf[limit * i],
 714					     tlen, qup, DMA_TO_DEVICE);
 715			if (ret)
 716				return ret;
 717			i++;
 718			qup->blk.pos = i;
 719		}
 720
 721		qup->tag_buf_pos += tx_len;
 722	}
 723
 724	return 0;
 725}
 726
 727static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 728{
 729	struct dma_async_tx_descriptor *txd, *rxd = NULL;
 730	int ret = 0;
 731	dma_cookie_t cookie_rx, cookie_tx;
 732	u32 len = 0;
 733	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 734
 735	/* schedule the EOT and FLUSH I2C tags */
 736	len = 1;
 737	if (rx_cnt) {
 738		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 739		len++;
 740
 741		/* scratch buf to read the BAM EOT FLUSH tags */
 742		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 743				     &qup->brx.tag.start[0],
 744				     1, qup, DMA_FROM_DEVICE);
 745		if (ret)
 746			return ret;
 747	}
 748
 749	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 750	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 751			     len, qup, DMA_TO_DEVICE);
 752	if (ret)
 753		return ret;
 754
 755	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 756				      DMA_MEM_TO_DEV,
 757				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 758	if (!txd) {
 759		dev_err(qup->dev, "failed to get tx desc\n");
 760		ret = -EINVAL;
 761		goto desc_err;
 762	}
 763
 764	if (!rx_cnt) {
 765		txd->callback = qup_i2c_bam_cb;
 766		txd->callback_param = qup;
 767	}
 768
 769	cookie_tx = dmaengine_submit(txd);
 770	if (dma_submit_error(cookie_tx)) {
 771		ret = -EINVAL;
 772		goto desc_err;
 773	}
 774
 775	dma_async_issue_pending(qup->btx.dma);
 776
 777	if (rx_cnt) {
 778		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 779					      rx_cnt, DMA_DEV_TO_MEM,
 780					      DMA_PREP_INTERRUPT);
 781		if (!rxd) {
 782			dev_err(qup->dev, "failed to get rx desc\n");
 783			ret = -EINVAL;
 784
 785			/* abort TX descriptors */
 786			dmaengine_terminate_all(qup->btx.dma);
 787			goto desc_err;
 788		}
 789
 790		rxd->callback = qup_i2c_bam_cb;
 791		rxd->callback_param = qup;
 792		cookie_rx = dmaengine_submit(rxd);
 793		if (dma_submit_error(cookie_rx)) {
 794			ret = -EINVAL;
 795			goto desc_err;
 796		}
 797
 798		dma_async_issue_pending(qup->brx.dma);
 799	}
 800
 801	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
 802		dev_err(qup->dev, "normal trans timed out\n");
 803		ret = -ETIMEDOUT;
 804	}
 805
 806	if (ret || qup->bus_err || qup->qup_err) {
 807		reinit_completion(&qup->xfer);
 808
 809		if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
 
 810			dev_err(qup->dev, "change to run state timed out");
 811			goto desc_err;
 812		}
 813
 814		qup_i2c_flush(qup);
 815
 816		/* wait for remaining interrupts to occur */
 817		if (!wait_for_completion_timeout(&qup->xfer, HZ))
 818			dev_err(qup->dev, "flush timed out\n");
 819
 820		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 821	}
 822
 823desc_err:
 824	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 825
 826	if (rx_cnt)
 827		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 828			     DMA_FROM_DEVICE);
 829
 830	return ret;
 831}
 832
 833static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 834{
 835	qup->btx.sg_cnt = 0;
 836	qup->brx.sg_cnt = 0;
 837	qup->tag_buf_pos = 0;
 838}
 839
 840static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 841			    int num)
 842{
 843	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 844	int ret = 0;
 845	int idx = 0;
 846
 847	enable_irq(qup->irq);
 848	ret = qup_i2c_req_dma(qup);
 849
 850	if (ret)
 851		goto out;
 852
 853	writel(0, qup->base + QUP_MX_INPUT_CNT);
 854	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 855
 856	/* set BAM mode */
 857	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 858
 859	/* mask fifo irqs */
 860	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 861
 862	/* set RUN STATE */
 863	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 864	if (ret)
 865		goto out;
 866
 867	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 868	qup_i2c_bam_clear_tag_buffers(qup);
 869
 870	for (idx = 0; idx < num; idx++) {
 871		qup->msg = msg + idx;
 872		qup->is_last = idx == (num - 1);
 873
 874		ret = qup_i2c_bam_make_desc(qup, qup->msg);
 875		if (ret)
 876			break;
 877
 878		/*
 879		 * Make DMA descriptor and schedule the BAM transfer if its
 880		 * already crossed the maximum length. Since the memory for all
 881		 * tags buffers have been taken for 2 maximum possible
 882		 * transfers length so it will never cross the buffer actual
 883		 * length.
 884		 */
 885		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 886		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 887		    qup->is_last) {
 888			ret = qup_i2c_bam_schedule_desc(qup);
 889			if (ret)
 890				break;
 891
 892			qup_i2c_bam_clear_tag_buffers(qup);
 893		}
 894	}
 895
 896out:
 897	disable_irq(qup->irq);
 898
 899	qup->msg = NULL;
 900	return ret;
 901}
 902
 903static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 904				     struct i2c_msg *msg)
 905{
 906	unsigned long left;
 907	int ret = 0;
 908
 909	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 910	if (!left) {
 911		writel(1, qup->base + QUP_SW_RESET);
 912		ret = -ETIMEDOUT;
 913	}
 914
 915	if (qup->bus_err || qup->qup_err)
 916		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 917
 918	return ret;
 919}
 920
 921static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 922{
 923	struct qup_i2c_block *blk = &qup->blk;
 924	struct i2c_msg *msg = qup->msg;
 925	u32 val = 0;
 926	int idx = 0;
 927
 928	while (blk->fifo_available && qup->pos < msg->len) {
 929		if ((idx & 1) == 0) {
 930			/* Reading 2 words at time */
 931			val = readl(qup->base + QUP_IN_FIFO_BASE);
 932			msg->buf[qup->pos++] = val & 0xFF;
 933		} else {
 934			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 935		}
 936		idx++;
 937		blk->fifo_available--;
 938	}
 939
 940	if (qup->pos == msg->len)
 941		blk->rx_bytes_read = true;
 942}
 943
 944static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 945{
 946	struct i2c_msg *msg = qup->msg;
 947	u32 addr, len, val;
 948
 949	addr = i2c_8bit_addr_from_msg(msg);
 950
 951	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 952	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 953
 954	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 955	writel(val, qup->base + QUP_OUT_FIFO_BASE);
 956}
 957
 958static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 959{
 960	struct qup_i2c_block *blk = &qup->blk;
 961	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 962	u32 io_mode = QUP_REPACK_EN;
 963
 964	blk->is_tx_blk_mode =
 965		blk->total_tx_len > qup->out_fifo_sz ? true : false;
 966	blk->is_rx_blk_mode =
 967		blk->total_rx_len > qup->in_fifo_sz ? true : false;
 968
 969	if (blk->is_tx_blk_mode) {
 970		io_mode |= QUP_OUTPUT_BLK_MODE;
 971		writel(0, qup->base + QUP_MX_WRITE_CNT);
 972		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 973	} else {
 974		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 975		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 976	}
 977
 978	if (blk->total_rx_len) {
 979		if (blk->is_rx_blk_mode) {
 980			io_mode |= QUP_INPUT_BLK_MODE;
 981			writel(0, qup->base + QUP_MX_READ_CNT);
 982			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 983		} else {
 984			writel(0, qup->base + QUP_MX_INPUT_CNT);
 985			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 986		}
 987	} else {
 988		qup_config |= QUP_NO_INPUT;
 989	}
 990
 991	writel(qup_config, qup->base + QUP_CONFIG);
 992	writel(io_mode, qup->base + QUP_IO_MODE);
 993}
 994
 995static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 996{
 997	blk->tx_fifo_free = 0;
 998	blk->fifo_available = 0;
 999	blk->rx_bytes_read = false;
1000}
1001
1002static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
1003{
1004	struct qup_i2c_block *blk = &qup->blk;
1005	int ret;
1006
1007	qup_i2c_clear_blk_v1(blk);
1008	qup_i2c_conf_v1(qup);
1009	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1010	if (ret)
1011		return ret;
1012
1013	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1014
1015	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1016	if (ret)
1017		return ret;
1018
1019	reinit_completion(&qup->xfer);
1020	enable_irq(qup->irq);
1021	if (!blk->is_tx_blk_mode) {
1022		blk->tx_fifo_free = qup->out_fifo_sz;
1023
1024		if (is_rx)
1025			qup_i2c_write_rx_tags_v1(qup);
1026		else
1027			qup_i2c_write_tx_fifo_v1(qup);
1028	}
1029
1030	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1031	if (ret)
1032		goto err;
1033
1034	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1035	if (ret)
1036		goto err;
1037
1038	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1039
1040err:
1041	disable_irq(qup->irq);
1042	return ret;
1043}
1044
1045static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1046{
1047	struct i2c_msg *msg = qup->msg;
1048	struct qup_i2c_block *blk = &qup->blk;
1049
1050	qup->pos = 0;
1051	blk->total_tx_len = msg->len + 1;
1052	blk->total_rx_len = 0;
1053
1054	return qup_i2c_conf_xfer_v1(qup, false);
1055}
1056
1057static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1058{
1059	struct qup_i2c_block *blk = &qup->blk;
1060
1061	qup->pos = 0;
1062	blk->total_tx_len = 2;
1063	blk->total_rx_len = qup->msg->len;
1064
1065	return qup_i2c_conf_xfer_v1(qup, true);
1066}
1067
1068static int qup_i2c_xfer(struct i2c_adapter *adap,
1069			struct i2c_msg msgs[],
1070			int num)
1071{
1072	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1073	int ret, idx;
1074
1075	ret = pm_runtime_get_sync(qup->dev);
1076	if (ret < 0)
1077		goto out;
1078
1079	qup->bus_err = 0;
1080	qup->qup_err = 0;
1081
1082	writel(1, qup->base + QUP_SW_RESET);
1083	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1084	if (ret)
1085		goto out;
1086
1087	/* Configure QUP as I2C mini core */
1088	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1089
1090	for (idx = 0; idx < num; idx++) {
1091		if (qup_i2c_poll_state_i2c_master(qup)) {
1092			ret = -EIO;
1093			goto out;
1094		}
1095
1096		if (qup_i2c_check_msg_len(&msgs[idx])) {
1097			ret = -EINVAL;
1098			goto out;
1099		}
1100
1101		qup->msg = &msgs[idx];
1102		if (msgs[idx].flags & I2C_M_RD)
1103			ret = qup_i2c_read_one(qup);
1104		else
1105			ret = qup_i2c_write_one(qup);
1106
1107		if (ret)
1108			break;
1109
1110		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1111		if (ret)
1112			break;
1113	}
1114
1115	if (ret == 0)
1116		ret = num;
1117out:
1118
1119	pm_runtime_mark_last_busy(qup->dev);
1120	pm_runtime_put_autosuspend(qup->dev);
1121
1122	return ret;
1123}
1124
1125/*
1126 * Configure registers related with reconfiguration during run and call it
1127 * before each i2c sub transfer.
1128 */
1129static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1130{
1131	struct qup_i2c_block *blk = &qup->blk;
1132	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1133
1134	if (blk->is_tx_blk_mode)
1135		writel(qup->config_run | blk->total_tx_len,
1136		       qup->base + QUP_MX_OUTPUT_CNT);
1137	else
1138		writel(qup->config_run | blk->total_tx_len,
1139		       qup->base + QUP_MX_WRITE_CNT);
1140
1141	if (blk->total_rx_len) {
1142		if (blk->is_rx_blk_mode)
1143			writel(qup->config_run | blk->total_rx_len,
1144			       qup->base + QUP_MX_INPUT_CNT);
1145		else
1146			writel(qup->config_run | blk->total_rx_len,
1147			       qup->base + QUP_MX_READ_CNT);
1148	} else {
1149		qup_config |= QUP_NO_INPUT;
1150	}
1151
1152	writel(qup_config, qup->base + QUP_CONFIG);
1153}
1154
1155/*
1156 * Configure registers related with transfer mode (FIFO/Block)
1157 * before starting of i2c transfer. It will be called only once in
1158 * QUP RESET state.
1159 */
1160static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1161{
1162	struct qup_i2c_block *blk = &qup->blk;
1163	u32 io_mode = QUP_REPACK_EN;
1164
1165	if (blk->is_tx_blk_mode) {
1166		io_mode |= QUP_OUTPUT_BLK_MODE;
1167		writel(0, qup->base + QUP_MX_WRITE_CNT);
1168	} else {
1169		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1170	}
1171
1172	if (blk->is_rx_blk_mode) {
1173		io_mode |= QUP_INPUT_BLK_MODE;
1174		writel(0, qup->base + QUP_MX_READ_CNT);
1175	} else {
1176		writel(0, qup->base + QUP_MX_INPUT_CNT);
1177	}
1178
1179	writel(io_mode, qup->base + QUP_IO_MODE);
1180}
1181
1182/* Clear required variables before starting of any QUP v2 sub transfer. */
1183static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1184{
1185	blk->send_last_word = false;
1186	blk->tx_tags_sent = false;
1187	blk->tx_fifo_data = 0;
1188	blk->tx_fifo_data_pos = 0;
1189	blk->tx_fifo_free = 0;
1190
1191	blk->rx_tags_fetched = false;
1192	blk->rx_bytes_read = false;
1193	blk->rx_fifo_data = 0;
1194	blk->rx_fifo_data_pos = 0;
1195	blk->fifo_available = 0;
1196}
1197
1198/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1199static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1200{
1201	struct qup_i2c_block *blk = &qup->blk;
1202	int j;
1203
1204	for (j = blk->rx_fifo_data_pos;
1205	     blk->cur_blk_len && blk->fifo_available;
1206	     blk->cur_blk_len--, blk->fifo_available--) {
1207		if (j == 0)
1208			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1209
1210		*(blk->cur_data++) = blk->rx_fifo_data;
1211		blk->rx_fifo_data >>= 8;
1212
1213		if (j == 3)
1214			j = 0;
1215		else
1216			j++;
1217	}
1218
1219	blk->rx_fifo_data_pos = j;
1220}
1221
1222/* Receive tags for read message in QUP v2 i2c transfer. */
1223static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1224{
1225	struct qup_i2c_block *blk = &qup->blk;
1226
1227	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1228	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1229	blk->rx_fifo_data_pos = blk->rx_tag_len;
1230	blk->fifo_available -= blk->rx_tag_len;
1231}
1232
1233/*
1234 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1235 * preceded by received data bytes so
1236 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1237 *    all tag bytes and discard that.
1238 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1239 *    set rx_bytes_read to true.
1240 */
1241static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1242{
1243	struct qup_i2c_block *blk = &qup->blk;
1244
1245	if (!blk->rx_tags_fetched) {
1246		qup_i2c_recv_tags(qup);
1247		blk->rx_tags_fetched = true;
1248	}
1249
1250	qup_i2c_recv_data(qup);
1251	if (!blk->cur_blk_len)
1252		blk->rx_bytes_read = true;
1253}
1254
1255/*
1256 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1257 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1258 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1259 */
1260static void
1261qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1262{
1263	struct qup_i2c_block *blk = &qup->blk;
1264	unsigned int j;
1265
1266	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1267	     (*len)--, blk->tx_fifo_free--) {
1268		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1269		if (j == 3) {
1270			writel(blk->tx_fifo_data,
1271			       qup->base + QUP_OUT_FIFO_BASE);
1272			blk->tx_fifo_data = 0x0;
1273			j = 0;
1274		} else {
1275			j++;
1276		}
1277	}
1278
1279	blk->tx_fifo_data_pos = j;
1280}
1281
1282/* Transfer tags for read message in QUP v2 i2c transfer. */
1283static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1284{
1285	struct qup_i2c_block *blk = &qup->blk;
1286
1287	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1288	if (blk->tx_fifo_data_pos)
1289		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1290}
1291
1292/*
1293 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1294 * need to be written and QUP write tags can have maximum 256 data length, so
1295 *
1296 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1297 *    tags to TX FIFO and set tx_tags_sent to true.
1298 * 2. Check if send_last_word is true. It will be set when last few data bytes
1299 *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1300 *    space. All this data bytes are available in tx_fifo_data so write this
1301 *    in FIFO.
1302 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1303 *    then more data is pending otherwise following 3 cases can be possible
1304 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1305 *       have been written in TX FIFO so nothing else is required.
1306 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1307 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1308 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1309 *       will be always greater than or equal to 4 bytes.
1310 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1311 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1312 *       FIFO full so make send_last_word true.
1313 */
1314static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1315{
1316	struct qup_i2c_block *blk = &qup->blk;
1317
1318	if (!blk->tx_tags_sent) {
1319		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1320				       &blk->tx_tag_len);
1321		blk->tx_tags_sent = true;
1322	}
1323
1324	if (blk->send_last_word)
1325		goto send_last_word;
1326
1327	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1328	if (!blk->cur_blk_len) {
1329		if (!blk->tx_fifo_data_pos)
1330			return;
1331
1332		if (blk->tx_fifo_free)
1333			goto send_last_word;
1334
1335		blk->send_last_word = true;
1336	}
1337
1338	return;
1339
1340send_last_word:
1341	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1342}
1343
1344/*
1345 * Main transfer function which read or write i2c data.
1346 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1347 * transfers can be scheduled.
1348 */
1349static int
1350qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1351		     bool change_pause_state)
1352{
1353	struct qup_i2c_block *blk = &qup->blk;
1354	struct i2c_msg *msg = qup->msg;
1355	int ret;
1356
1357	/*
1358	 * Check if its SMBus Block read for which the top level read will be
1359	 * done into 2 QUP reads. One with message length 1 while other one is
1360	 * with actual length.
1361	 */
1362	if (qup_i2c_check_msg_len(msg)) {
1363		if (qup->is_smbus_read) {
1364			/*
1365			 * If the message length is already read in
1366			 * the first byte of the buffer, account for
1367			 * that by setting the offset
1368			 */
1369			blk->cur_data += 1;
1370			is_first = false;
1371		} else {
1372			change_pause_state = false;
1373		}
1374	}
1375
1376	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1377
1378	qup_i2c_clear_blk_v2(blk);
1379	qup_i2c_conf_count_v2(qup);
1380
1381	/* If it is first sub transfer, then configure i2c bus clocks */
1382	if (is_first) {
1383		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1384		if (ret)
1385			return ret;
1386
1387		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1388
1389		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1390		if (ret)
1391			return ret;
1392	}
1393
1394	reinit_completion(&qup->xfer);
1395	enable_irq(qup->irq);
1396	/*
1397	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1398	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1399	 */
1400	if (!blk->is_tx_blk_mode) {
1401		blk->tx_fifo_free = qup->out_fifo_sz;
1402
1403		if (is_rx)
1404			qup_i2c_write_rx_tags_v2(qup);
1405		else
1406			qup_i2c_write_tx_fifo_v2(qup);
1407	}
1408
1409	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1410	if (ret)
1411		goto err;
1412
1413	ret = qup_i2c_wait_for_complete(qup, msg);
1414	if (ret)
1415		goto err;
1416
1417	/* Move to pause state for all the transfers, except last one */
1418	if (change_pause_state) {
1419		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1420		if (ret)
1421			goto err;
1422	}
1423
1424err:
1425	disable_irq(qup->irq);
1426	return ret;
1427}
1428
1429/*
1430 * Transfer one read/write message in i2c transfer. It splits the message into
1431 * multiple of blk_xfer_limit data length blocks and schedule each
1432 * QUP block individually.
1433 */
1434static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1435{
1436	int ret = 0;
1437	unsigned int data_len, i;
1438	struct i2c_msg *msg = qup->msg;
1439	struct qup_i2c_block *blk = &qup->blk;
1440	u8 *msg_buf = msg->buf;
1441
1442	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1443	qup_i2c_set_blk_data(qup, msg);
1444
1445	for (i = 0; i < blk->count; i++) {
1446		data_len =  qup_i2c_get_data_len(qup);
1447		blk->pos = i;
1448		blk->cur_tx_tags = blk->tags;
1449		blk->cur_blk_len = data_len;
1450		blk->tx_tag_len =
1451			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1452
1453		blk->cur_data = msg_buf;
1454
1455		if (is_rx) {
1456			blk->total_tx_len = blk->tx_tag_len;
1457			blk->rx_tag_len = 2;
1458			blk->total_rx_len = blk->rx_tag_len + data_len;
1459		} else {
1460			blk->total_tx_len = blk->tx_tag_len + data_len;
1461			blk->total_rx_len = 0;
1462		}
1463
1464		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1465					   !qup->is_last || i < blk->count - 1);
1466		if (ret)
1467			return ret;
1468
1469		/* Handle SMBus block read length */
1470		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1471		    !qup->is_smbus_read) {
1472			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1473				return -EPROTO;
1474
1475			msg->len = msg->buf[0];
1476			qup->is_smbus_read = true;
1477			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1478			qup->is_smbus_read = false;
1479			if (ret)
1480				return ret;
1481
1482			msg->len += 1;
1483		}
1484
1485		msg_buf += data_len;
1486		blk->data_len -= qup->blk_xfer_limit;
1487	}
1488
1489	return ret;
1490}
1491
1492/*
1493 * QUP v2 supports 3 modes
1494 * Programmed IO using FIFO mode : Less than FIFO size
1495 * Programmed IO using Block mode : Greater than FIFO size
1496 * DMA using BAM : Appropriate for any transaction size but the address should
1497 *		   be DMA applicable
1498 *
1499 * This function determines the mode which will be used for this transfer. An
1500 * i2c transfer contains multiple message. Following are the rules to determine
1501 * the mode used.
1502 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1503 * 2. If complete transfer length is greater than fifo size then use the DMA
1504 *    mode.
1505 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1506 *    for maximum tx and rx length to determine mode.
1507 */
1508static int
1509qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1510			  struct i2c_msg msgs[], int num)
1511{
1512	int idx;
1513	bool no_dma = false;
1514	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1515
1516	/* All i2c_msgs should be transferred using either dma or cpu */
1517	for (idx = 0; idx < num; idx++) {
1518		if (msgs[idx].flags & I2C_M_RD)
1519			max_rx_len = max_t(unsigned int, max_rx_len,
1520					   msgs[idx].len);
1521		else
1522			max_tx_len = max_t(unsigned int, max_tx_len,
1523					   msgs[idx].len);
1524
1525		if (is_vmalloc_addr(msgs[idx].buf))
1526			no_dma = true;
1527
1528		total_len += msgs[idx].len;
1529	}
1530
1531	if (!no_dma && qup->is_dma &&
1532	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1533		qup->use_dma = true;
1534	} else {
1535		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1536			QUP_MAX_TAGS_LEN ? true : false;
1537		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1538			READ_RX_TAGS_LEN ? true : false;
1539	}
1540
1541	return 0;
1542}
1543
1544static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1545			   struct i2c_msg msgs[],
1546			   int num)
1547{
1548	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1549	int ret, idx = 0;
1550
1551	qup->bus_err = 0;
1552	qup->qup_err = 0;
1553
1554	ret = pm_runtime_get_sync(qup->dev);
1555	if (ret < 0)
1556		goto out;
1557
1558	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1559	if (ret)
1560		goto out;
1561
1562	writel(1, qup->base + QUP_SW_RESET);
1563	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1564	if (ret)
1565		goto out;
1566
1567	/* Configure QUP as I2C mini core */
1568	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1569	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1570
1571	if (qup_i2c_poll_state_i2c_master(qup)) {
1572		ret = -EIO;
1573		goto out;
1574	}
1575
1576	if (qup->use_dma) {
1577		reinit_completion(&qup->xfer);
1578		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1579		qup->use_dma = false;
1580	} else {
1581		qup_i2c_conf_mode_v2(qup);
1582
1583		for (idx = 0; idx < num; idx++) {
1584			qup->msg = &msgs[idx];
1585			qup->is_last = idx == (num - 1);
1586
1587			ret = qup_i2c_xfer_v2_msg(qup, idx,
1588					!!(msgs[idx].flags & I2C_M_RD));
1589			if (ret)
1590				break;
1591		}
1592		qup->msg = NULL;
1593	}
1594
1595	if (!ret)
1596		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1597
1598	if (!ret)
1599		qup_i2c_change_state(qup, QUP_RESET_STATE);
1600
1601	if (ret == 0)
1602		ret = num;
1603out:
1604	pm_runtime_mark_last_busy(qup->dev);
1605	pm_runtime_put_autosuspend(qup->dev);
1606
1607	return ret;
1608}
1609
1610static u32 qup_i2c_func(struct i2c_adapter *adap)
1611{
1612	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1613}
1614
1615static const struct i2c_algorithm qup_i2c_algo = {
1616	.master_xfer	= qup_i2c_xfer,
1617	.functionality	= qup_i2c_func,
1618};
1619
1620static const struct i2c_algorithm qup_i2c_algo_v2 = {
1621	.master_xfer	= qup_i2c_xfer_v2,
1622	.functionality	= qup_i2c_func,
1623};
1624
1625/*
1626 * The QUP block will issue a NACK and STOP on the bus when reaching
1627 * the end of the read, the length of the read is specified as one byte
1628 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1629 */
1630static const struct i2c_adapter_quirks qup_i2c_quirks = {
1631	.flags = I2C_AQ_NO_ZERO_LEN,
1632	.max_read_len = QUP_READ_LIMIT,
1633};
1634
1635static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1636	.flags = I2C_AQ_NO_ZERO_LEN,
1637};
1638
1639static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1640{
1641	clk_prepare_enable(qup->clk);
1642	clk_prepare_enable(qup->pclk);
1643}
1644
1645static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1646{
1647	u32 config;
1648
1649	qup_i2c_change_state(qup, QUP_RESET_STATE);
1650	clk_disable_unprepare(qup->clk);
1651	config = readl(qup->base + QUP_CONFIG);
1652	config |= QUP_CLOCK_AUTO_GATE;
1653	writel(config, qup->base + QUP_CONFIG);
1654	clk_disable_unprepare(qup->pclk);
1655}
1656
1657static const struct acpi_device_id qup_i2c_acpi_match[] = {
1658	{ "QCOM8010"},
1659	{ },
1660};
1661MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1662
1663static int qup_i2c_probe(struct platform_device *pdev)
1664{
1665	static const int blk_sizes[] = {4, 16, 32};
1666	struct qup_i2c_dev *qup;
1667	unsigned long one_bit_t;
1668	struct resource *res;
1669	u32 io_mode, hw_ver, size;
1670	int ret, fs_div, hs_div;
1671	u32 src_clk_freq = DEFAULT_SRC_CLK;
1672	u32 clk_freq = DEFAULT_CLK_FREQ;
1673	int blocks;
1674	bool is_qup_v1;
1675
1676	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1677	if (!qup)
1678		return -ENOMEM;
1679
1680	qup->dev = &pdev->dev;
1681	init_completion(&qup->xfer);
1682	platform_set_drvdata(pdev, qup);
1683
1684	if (scl_freq) {
1685		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1686		clk_freq = scl_freq;
1687	} else {
1688		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1689		if (ret) {
1690			dev_notice(qup->dev, "using default clock-frequency %d",
1691				DEFAULT_CLK_FREQ);
1692		}
1693	}
1694
1695	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1696		qup->adap.algo = &qup_i2c_algo;
1697		qup->adap.quirks = &qup_i2c_quirks;
1698		is_qup_v1 = true;
1699	} else {
1700		qup->adap.algo = &qup_i2c_algo_v2;
1701		qup->adap.quirks = &qup_i2c_quirks_v2;
1702		is_qup_v1 = false;
1703		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1704			goto nodma;
1705		else
1706			ret = qup_i2c_req_dma(qup);
1707
1708		if (ret == -EPROBE_DEFER)
1709			goto fail_dma;
1710		else if (ret != 0)
1711			goto nodma;
1712
1713		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1714		blocks = (MX_DMA_BLOCKS << 1) + 1;
1715		qup->btx.sg = devm_kcalloc(&pdev->dev,
1716					   blocks, sizeof(*qup->btx.sg),
1717					   GFP_KERNEL);
1718		if (!qup->btx.sg) {
1719			ret = -ENOMEM;
1720			goto fail_dma;
1721		}
1722		sg_init_table(qup->btx.sg, blocks);
1723
1724		qup->brx.sg = devm_kcalloc(&pdev->dev,
1725					   blocks, sizeof(*qup->brx.sg),
1726					   GFP_KERNEL);
1727		if (!qup->brx.sg) {
1728			ret = -ENOMEM;
1729			goto fail_dma;
1730		}
1731		sg_init_table(qup->brx.sg, blocks);
1732
1733		/* 2 tag bytes for each block + 5 for start, stop tags */
1734		size = blocks * 2 + 5;
1735
1736		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1737						    size, GFP_KERNEL);
1738		if (!qup->start_tag.start) {
1739			ret = -ENOMEM;
1740			goto fail_dma;
1741		}
1742
1743		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1744		if (!qup->brx.tag.start) {
1745			ret = -ENOMEM;
1746			goto fail_dma;
1747		}
1748
1749		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1750		if (!qup->btx.tag.start) {
1751			ret = -ENOMEM;
1752			goto fail_dma;
1753		}
1754		qup->is_dma = true;
1755	}
1756
1757nodma:
1758	/* We support frequencies up to FAST Mode Plus (1MHz) */
1759	if (!clk_freq || clk_freq > I2C_FAST_MODE_PLUS_FREQ) {
1760		dev_err(qup->dev, "clock frequency not supported %d\n",
1761			clk_freq);
1762		return -EINVAL;
 
1763	}
1764
1765	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1766	qup->base = devm_ioremap_resource(qup->dev, res);
1767	if (IS_ERR(qup->base))
1768		return PTR_ERR(qup->base);
 
1769
1770	qup->irq = platform_get_irq(pdev, 0);
1771	if (qup->irq < 0) {
1772		dev_err(qup->dev, "No IRQ defined\n");
1773		return qup->irq;
1774	}
1775
1776	if (has_acpi_companion(qup->dev)) {
1777		ret = device_property_read_u32(qup->dev,
1778				"src-clock-hz", &src_clk_freq);
1779		if (ret) {
1780			dev_notice(qup->dev, "using default src-clock-hz %d",
1781				DEFAULT_SRC_CLK);
1782		}
1783		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1784	} else {
1785		qup->clk = devm_clk_get(qup->dev, "core");
1786		if (IS_ERR(qup->clk)) {
1787			dev_err(qup->dev, "Could not get core clock\n");
1788			return PTR_ERR(qup->clk);
 
1789		}
1790
1791		qup->pclk = devm_clk_get(qup->dev, "iface");
1792		if (IS_ERR(qup->pclk)) {
1793			dev_err(qup->dev, "Could not get iface clock\n");
1794			return PTR_ERR(qup->pclk);
 
1795		}
1796		qup_i2c_enable_clocks(qup);
1797		src_clk_freq = clk_get_rate(qup->clk);
1798	}
1799
1800	/*
1801	 * Bootloaders might leave a pending interrupt on certain QUP's,
1802	 * so we reset the core before registering for interrupts.
1803	 */
1804	writel(1, qup->base + QUP_SW_RESET);
1805	ret = qup_i2c_poll_state_valid(qup);
1806	if (ret)
1807		goto fail;
1808
1809	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1810			       IRQF_TRIGGER_HIGH, "i2c_qup", qup);
 
1811	if (ret) {
1812		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1813		goto fail;
1814	}
1815	disable_irq(qup->irq);
1816
1817	hw_ver = readl(qup->base + QUP_HW_VERSION);
1818	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1819
1820	io_mode = readl(qup->base + QUP_IO_MODE);
1821
1822	/*
1823	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1824	 * associated with each byte written/received
1825	 */
1826	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1827	if (size >= ARRAY_SIZE(blk_sizes)) {
1828		ret = -EIO;
1829		goto fail;
1830	}
1831	qup->out_blk_sz = blk_sizes[size];
1832
1833	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1834	if (size >= ARRAY_SIZE(blk_sizes)) {
1835		ret = -EIO;
1836		goto fail;
1837	}
1838	qup->in_blk_sz = blk_sizes[size];
1839
1840	if (is_qup_v1) {
1841		/*
1842		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1843		 * single transfer but the block size is in bytes so divide the
1844		 * in_blk_sz and out_blk_sz by 2
1845		 */
1846		qup->in_blk_sz /= 2;
1847		qup->out_blk_sz /= 2;
1848		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1849		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1850		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1851	} else {
1852		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1853		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1854		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1855	}
1856
1857	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1858	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1859
1860	size = QUP_INPUT_FIFO_SIZE(io_mode);
1861	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1862
1863	hs_div = 3;
1864	if (clk_freq <= I2C_STANDARD_FREQ) {
1865		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1866		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1867	} else {
1868		/* 33%/66% duty cycle */
1869		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1870		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1871	}
1872
1873	/*
1874	 * Time it takes for a byte to be clocked out on the bus.
1875	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1876	 */
1877	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1878	qup->one_byte_t = one_bit_t * 9;
1879	qup->xfer_timeout = TOUT_MIN * HZ +
1880		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1881
1882	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1883		qup->in_blk_sz, qup->in_fifo_sz,
1884		qup->out_blk_sz, qup->out_fifo_sz);
1885
1886	i2c_set_adapdata(&qup->adap, qup);
1887	qup->adap.dev.parent = qup->dev;
1888	qup->adap.dev.of_node = pdev->dev.of_node;
1889	qup->is_last = true;
1890
1891	strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1892
1893	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1894	pm_runtime_use_autosuspend(qup->dev);
1895	pm_runtime_set_active(qup->dev);
1896	pm_runtime_enable(qup->dev);
1897
1898	ret = i2c_add_adapter(&qup->adap);
1899	if (ret)
1900		goto fail_runtime;
1901
1902	return 0;
1903
1904fail_runtime:
1905	pm_runtime_disable(qup->dev);
1906	pm_runtime_set_suspended(qup->dev);
1907fail:
1908	qup_i2c_disable_clocks(qup);
1909fail_dma:
1910	if (qup->btx.dma)
1911		dma_release_channel(qup->btx.dma);
1912	if (qup->brx.dma)
1913		dma_release_channel(qup->brx.dma);
1914	return ret;
1915}
1916
1917static int qup_i2c_remove(struct platform_device *pdev)
1918{
1919	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1920
1921	if (qup->is_dma) {
1922		dma_release_channel(qup->btx.dma);
1923		dma_release_channel(qup->brx.dma);
1924	}
1925
1926	disable_irq(qup->irq);
1927	qup_i2c_disable_clocks(qup);
1928	i2c_del_adapter(&qup->adap);
1929	pm_runtime_disable(qup->dev);
1930	pm_runtime_set_suspended(qup->dev);
1931	return 0;
1932}
1933
1934#ifdef CONFIG_PM
1935static int qup_i2c_pm_suspend_runtime(struct device *device)
1936{
1937	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1938
1939	dev_dbg(device, "pm_runtime: suspending...\n");
1940	qup_i2c_disable_clocks(qup);
1941	return 0;
1942}
1943
1944static int qup_i2c_pm_resume_runtime(struct device *device)
1945{
1946	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1947
1948	dev_dbg(device, "pm_runtime: resuming...\n");
1949	qup_i2c_enable_clocks(qup);
1950	return 0;
1951}
1952#endif
1953
1954#ifdef CONFIG_PM_SLEEP
1955static int qup_i2c_suspend(struct device *device)
1956{
1957	if (!pm_runtime_suspended(device))
1958		return qup_i2c_pm_suspend_runtime(device);
1959	return 0;
1960}
1961
1962static int qup_i2c_resume(struct device *device)
1963{
1964	qup_i2c_pm_resume_runtime(device);
1965	pm_runtime_mark_last_busy(device);
1966	pm_request_autosuspend(device);
1967	return 0;
1968}
1969#endif
1970
1971static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1972	SET_SYSTEM_SLEEP_PM_OPS(
1973		qup_i2c_suspend,
1974		qup_i2c_resume)
1975	SET_RUNTIME_PM_OPS(
1976		qup_i2c_pm_suspend_runtime,
1977		qup_i2c_pm_resume_runtime,
1978		NULL)
1979};
1980
1981static const struct of_device_id qup_i2c_dt_match[] = {
1982	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1983	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1984	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1985	{}
1986};
1987MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1988
1989static struct platform_driver qup_i2c_driver = {
1990	.probe  = qup_i2c_probe,
1991	.remove = qup_i2c_remove,
1992	.driver = {
1993		.name = "i2c_qup",
1994		.pm = &qup_i2c_qup_pm_ops,
1995		.of_match_table = qup_i2c_dt_match,
1996		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1997	},
1998};
1999
2000module_platform_driver(qup_i2c_driver);
2001
 
2002MODULE_LICENSE("GPL v2");
2003MODULE_ALIAS("platform:i2c_qup");