Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22#include "block-group.h"
  23
  24static struct kmem_cache *btrfs_ordered_extent_cache;
  25
  26static u64 entry_end(struct btrfs_ordered_extent *entry)
  27{
  28	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  29		return (u64)-1;
  30	return entry->file_offset + entry->num_bytes;
  31}
  32
  33/* returns NULL if the insertion worked, or it returns the node it did find
  34 * in the tree
  35 */
  36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37				   struct rb_node *node)
  38{
  39	struct rb_node **p = &root->rb_node;
  40	struct rb_node *parent = NULL;
  41	struct btrfs_ordered_extent *entry;
  42
  43	while (*p) {
  44		parent = *p;
  45		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46
  47		if (file_offset < entry->file_offset)
  48			p = &(*p)->rb_left;
  49		else if (file_offset >= entry_end(entry))
  50			p = &(*p)->rb_right;
  51		else
  52			return parent;
  53	}
  54
  55	rb_link_node(node, parent, p);
  56	rb_insert_color(node, root);
  57	return NULL;
  58}
  59
 
 
 
 
 
 
 
 
  60/*
  61 * look for a given offset in the tree, and if it can't be found return the
  62 * first lesser offset
  63 */
  64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  65				     struct rb_node **prev_ret)
  66{
  67	struct rb_node *n = root->rb_node;
  68	struct rb_node *prev = NULL;
  69	struct rb_node *test;
  70	struct btrfs_ordered_extent *entry;
  71	struct btrfs_ordered_extent *prev_entry = NULL;
  72
  73	while (n) {
  74		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  75		prev = n;
  76		prev_entry = entry;
  77
  78		if (file_offset < entry->file_offset)
  79			n = n->rb_left;
  80		else if (file_offset >= entry_end(entry))
  81			n = n->rb_right;
  82		else
  83			return n;
  84	}
  85	if (!prev_ret)
  86		return NULL;
  87
  88	while (prev && file_offset >= entry_end(prev_entry)) {
  89		test = rb_next(prev);
  90		if (!test)
  91			break;
  92		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93				      rb_node);
  94		if (file_offset < entry_end(prev_entry))
  95			break;
  96
  97		prev = test;
  98	}
  99	if (prev)
 100		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 101				      rb_node);
 102	while (prev && file_offset < entry_end(prev_entry)) {
 103		test = rb_prev(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		prev = test;
 109	}
 110	*prev_ret = prev;
 111	return NULL;
 112}
 113
 114static int btrfs_range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 115				u64 len)
 
 
 
 
 
 
 
 
 
 
 
 116{
 117	if (file_offset + len <= entry->file_offset ||
 118	    entry->file_offset + entry->num_bytes <= file_offset)
 119		return 0;
 120	return 1;
 121}
 122
 123/*
 124 * look find the first ordered struct that has this offset, otherwise
 125 * the first one less than this offset
 126 */
 127static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
 128						  u64 file_offset)
 129{
 
 130	struct rb_node *prev = NULL;
 131	struct rb_node *ret;
 132	struct btrfs_ordered_extent *entry;
 133
 134	if (inode->ordered_tree_last) {
 135		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
 136				 rb_node);
 137		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 138			return inode->ordered_tree_last;
 139	}
 140	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
 141	if (!ret)
 142		ret = prev;
 143	if (ret)
 144		inode->ordered_tree_last = ret;
 145	return ret;
 146}
 147
 148static struct btrfs_ordered_extent *alloc_ordered_extent(
 149			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
 150			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
 151			u64 offset, unsigned long flags, int compress_type)
 
 
 
 
 
 
 
 
 
 
 152{
 
 
 
 153	struct btrfs_ordered_extent *entry;
 154	int ret;
 155	u64 qgroup_rsv = 0;
 156
 157	if (flags &
 158	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 159		/* For nocow write, we can release the qgroup rsv right now */
 160		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
 161		if (ret < 0)
 162			return ERR_PTR(ret);
 163	} else {
 164		/*
 165		 * The ordered extent has reserved qgroup space, release now
 166		 * and pass the reserved number for qgroup_record to free.
 167		 */
 168		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
 169		if (ret < 0)
 170			return ERR_PTR(ret);
 171	}
 172	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 173	if (!entry)
 174		return ERR_PTR(-ENOMEM);
 175
 176	entry->file_offset = file_offset;
 177	entry->num_bytes = num_bytes;
 178	entry->ram_bytes = ram_bytes;
 179	entry->disk_bytenr = disk_bytenr;
 180	entry->disk_num_bytes = disk_num_bytes;
 181	entry->offset = offset;
 182	entry->bytes_left = num_bytes;
 183	entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
 
 184	entry->compress_type = compress_type;
 185	entry->truncated_len = (u64)-1;
 186	entry->qgroup_rsv = qgroup_rsv;
 187	entry->flags = flags;
 188	refcount_set(&entry->refs, 1);
 
 
 
 
 
 189	init_waitqueue_head(&entry->wait);
 190	INIT_LIST_HEAD(&entry->list);
 191	INIT_LIST_HEAD(&entry->log_list);
 192	INIT_LIST_HEAD(&entry->root_extent_list);
 193	INIT_LIST_HEAD(&entry->work_list);
 194	INIT_LIST_HEAD(&entry->bioc_list);
 195	init_completion(&entry->completion);
 196
 197	/*
 198	 * We don't need the count_max_extents here, we can assume that all of
 199	 * that work has been done at higher layers, so this is truly the
 200	 * smallest the extent is going to get.
 201	 */
 202	spin_lock(&inode->lock);
 203	btrfs_mod_outstanding_extents(inode, 1);
 204	spin_unlock(&inode->lock);
 205
 206	return entry;
 207}
 208
 209static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
 210{
 211	struct btrfs_inode *inode = entry->inode;
 212	struct btrfs_root *root = inode->root;
 213	struct btrfs_fs_info *fs_info = root->fs_info;
 214	struct rb_node *node;
 215
 216	trace_btrfs_ordered_extent_add(inode, entry);
 217
 218	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
 219				 fs_info->delalloc_batch);
 220
 221	/* One ref for the tree. */
 222	refcount_inc(&entry->refs);
 223
 224	spin_lock_irq(&inode->ordered_tree_lock);
 225	node = tree_insert(&inode->ordered_tree, entry->file_offset,
 226			   &entry->rb_node);
 227	if (unlikely(node))
 228		btrfs_panic(fs_info, -EEXIST,
 229				"inconsistency in ordered tree at offset %llu",
 230				entry->file_offset);
 231	spin_unlock_irq(&inode->ordered_tree_lock);
 232
 233	spin_lock(&root->ordered_extent_lock);
 234	list_add_tail(&entry->root_extent_list,
 235		      &root->ordered_extents);
 236	root->nr_ordered_extents++;
 237	if (root->nr_ordered_extents == 1) {
 238		spin_lock(&fs_info->ordered_root_lock);
 239		BUG_ON(!list_empty(&root->ordered_root));
 240		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 241		spin_unlock(&fs_info->ordered_root_lock);
 
 242	}
 243	spin_unlock(&root->ordered_extent_lock);
 
 
 244}
 245
 246/*
 247 * Add an ordered extent to the per-inode tree.
 248 *
 249 * @inode:           Inode that this extent is for.
 250 * @file_offset:     Logical offset in file where the extent starts.
 251 * @num_bytes:       Logical length of extent in file.
 252 * @ram_bytes:       Full length of unencoded data.
 253 * @disk_bytenr:     Offset of extent on disk.
 254 * @disk_num_bytes:  Size of extent on disk.
 255 * @offset:          Offset into unencoded data where file data starts.
 256 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 257 * @compress_type:   Compression algorithm used for data.
 258 *
 259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 260 * tree is given a single reference on the ordered extent that was inserted, and
 261 * the returned pointer is given a second reference.
 262 *
 263 * Return: the new ordered extent or error pointer.
 264 */
 265struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
 266			struct btrfs_inode *inode, u64 file_offset,
 267			const struct btrfs_file_extent *file_extent, unsigned long flags)
 268{
 269	struct btrfs_ordered_extent *entry;
 
 
 
 270
 271	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 
 
 
 
 
 
 272
 273	/*
 274	 * For regular writes, we just use the members in @file_extent.
 275	 *
 276	 * For NOCOW, we don't really care about the numbers except @start and
 277	 * file_extent->num_bytes, as we won't insert a file extent item at all.
 278	 *
 279	 * For PREALLOC, we do not use ordered extent members, but
 280	 * btrfs_mark_extent_written() handles everything.
 281	 *
 282	 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
 283	 * or btrfs_split_ordered_extent() cannot handle it correctly.
 284	 */
 285	if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
 286		entry = alloc_ordered_extent(inode, file_offset,
 287					     file_extent->num_bytes,
 288					     file_extent->num_bytes,
 289					     file_extent->disk_bytenr + file_extent->offset,
 290					     file_extent->num_bytes, 0, flags,
 291					     file_extent->compression);
 292	else
 293		entry = alloc_ordered_extent(inode, file_offset,
 294					     file_extent->num_bytes,
 295					     file_extent->ram_bytes,
 296					     file_extent->disk_bytenr,
 297					     file_extent->disk_num_bytes,
 298					     file_extent->offset, flags,
 299					     file_extent->compression);
 300	if (!IS_ERR(entry))
 301		insert_ordered_extent(entry);
 302	return entry;
 303}
 304
 305/*
 306 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 307 * when an ordered extent is finished.  If the list covers more than one
 308 * ordered extent, it is split across multiples.
 309 */
 310void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
 311			   struct btrfs_ordered_sum *sum)
 312{
 313	struct btrfs_inode *inode = entry->inode;
 314
 315	spin_lock_irq(&inode->ordered_tree_lock);
 
 316	list_add_tail(&sum->list, &entry->list);
 317	spin_unlock_irq(&inode->ordered_tree_lock);
 318}
 319
 320void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
 321{
 322	if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 323		mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
 324}
 325
 326static void finish_ordered_fn(struct btrfs_work *work)
 327{
 328	struct btrfs_ordered_extent *ordered_extent;
 329
 330	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 331	btrfs_finish_ordered_io(ordered_extent);
 332}
 333
 334static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 335				      struct folio *folio, u64 file_offset,
 336				      u64 len, bool uptodate)
 337{
 338	struct btrfs_inode *inode = ordered->inode;
 339	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 340
 341	lockdep_assert_held(&inode->ordered_tree_lock);
 342
 343	if (folio) {
 344		ASSERT(folio->mapping);
 345		ASSERT(folio_pos(folio) <= file_offset);
 346		ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
 347
 348		/*
 349		 * Ordered flag indicates whether we still have
 350		 * pending io unfinished for the ordered extent.
 351		 *
 352		 * If it's not set, we need to skip to next range.
 353		 */
 354		if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
 355			return false;
 356		btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
 357	}
 358
 359	/* Now we're fine to update the accounting. */
 360	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
 361		btrfs_crit(fs_info,
 362"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
 363			   btrfs_root_id(inode->root), btrfs_ino(inode),
 364			   ordered->file_offset, ordered->num_bytes,
 365			   len, ordered->bytes_left);
 366		ordered->bytes_left = 0;
 367	} else {
 368		ordered->bytes_left -= len;
 369	}
 370
 371	if (!uptodate)
 372		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 373
 374	if (ordered->bytes_left)
 375		return false;
 376
 377	/*
 378	 * All the IO of the ordered extent is finished, we need to queue
 379	 * the finish_func to be executed.
 380	 */
 381	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
 382	cond_wake_up(&ordered->wait);
 383	refcount_inc(&ordered->refs);
 384	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
 385	return true;
 386}
 387
 388static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
 389{
 390	struct btrfs_inode *inode = ordered->inode;
 391	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 392	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
 393		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
 394
 395	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
 396	btrfs_queue_work(wq, &ordered->work);
 397}
 398
 399void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 400				 struct folio *folio, u64 file_offset, u64 len,
 401				 bool uptodate)
 402{
 403	struct btrfs_inode *inode = ordered->inode;
 404	unsigned long flags;
 405	bool ret;
 406
 407	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
 408
 409	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 410	ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
 411					uptodate);
 412	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 413
 414	/*
 415	 * If this is a COW write it means we created new extent maps for the
 416	 * range and they point to unwritten locations if we got an error either
 417	 * before submitting a bio or during IO.
 418	 *
 419	 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
 420	 * are queuing its completion below. During completion, at
 421	 * btrfs_finish_one_ordered(), we will drop the extent maps for the
 422	 * unwritten extents.
 423	 *
 424	 * However because completion runs in a work queue we can end up having
 425	 * a fast fsync running before that. In the case of direct IO, once we
 426	 * unlock the inode the fsync might start, and we queue the completion
 427	 * before unlocking the inode. In the case of buffered IO when writeback
 428	 * finishes (end_bbio_data_write()) we queue the completion, so if the
 429	 * writeback was triggered by a fast fsync, the fsync might start
 430	 * logging before ordered extent completion runs in the work queue.
 431	 *
 432	 * The fast fsync will log file extent items based on the extent maps it
 433	 * finds, so if by the time it collects extent maps the ordered extent
 434	 * completion didn't happen yet, it will log file extent items that
 435	 * point to unwritten extents, resulting in a corruption if a crash
 436	 * happens and the log tree is replayed. Note that a fast fsync does not
 437	 * wait for completion of ordered extents in order to reduce latency.
 438	 *
 439	 * Set a flag in the inode so that the next fast fsync will wait for
 440	 * ordered extents to complete before starting to log.
 441	 */
 442	if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
 443		set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
 444
 445	if (ret)
 446		btrfs_queue_ordered_fn(ordered);
 447}
 448
 449/*
 450 * Mark all ordered extents io inside the specified range finished.
 
 
 
 451 *
 452 * @folio:	 The involved folio for the operation.
 453 *		 For uncompressed buffered IO, the folio status also needs to be
 454 *		 updated to indicate whether the pending ordered io is finished.
 455 *		 Can be NULL for direct IO and compressed write.
 456 *		 For these cases, callers are ensured they won't execute the
 457 *		 endio function twice.
 458 *
 459 * This function is called for endio, thus the range must have ordered
 460 * extent(s) covering it.
 461 */
 462void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 463				    struct folio *folio, u64 file_offset,
 464				    u64 num_bytes, bool uptodate)
 465{
 
 466	struct rb_node *node;
 467	struct btrfs_ordered_extent *entry = NULL;
 
 468	unsigned long flags;
 469	u64 cur = file_offset;
 470
 471	trace_btrfs_writepage_end_io_hook(inode, file_offset,
 472					  file_offset + num_bytes - 1,
 473					  uptodate);
 474
 475	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 476	while (cur < file_offset + num_bytes) {
 477		u64 entry_end;
 478		u64 end;
 479		u32 len;
 480
 481		node = ordered_tree_search(inode, cur);
 482		/* No ordered extents at all */
 483		if (!node)
 484			break;
 485
 486		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 487		entry_end = entry->file_offset + entry->num_bytes;
 488		/*
 489		 * |<-- OE --->|  |
 490		 *		  cur
 491		 * Go to next OE.
 492		 */
 493		if (cur >= entry_end) {
 494			node = rb_next(node);
 495			/* No more ordered extents, exit */
 496			if (!node)
 497				break;
 498			entry = rb_entry(node, struct btrfs_ordered_extent,
 499					 rb_node);
 500
 501			/* Go to next ordered extent and continue */
 502			cur = entry->file_offset;
 503			continue;
 504		}
 505		/*
 506		 * |	|<--- OE --->|
 507		 * cur
 508		 * Go to the start of OE.
 509		 */
 510		if (cur < entry->file_offset) {
 511			cur = entry->file_offset;
 512			continue;
 513		}
 
 
 
 
 514
 515		/*
 516		 * Now we are definitely inside one ordered extent.
 517		 *
 518		 * |<--- OE --->|
 519		 *	|
 520		 *	cur
 521		 */
 522		end = min(entry->file_offset + entry->num_bytes,
 523			  file_offset + num_bytes) - 1;
 524		ASSERT(end + 1 - cur < U32_MAX);
 525		len = end + 1 - cur;
 526
 527		if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
 528			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 529			btrfs_queue_ordered_fn(entry);
 530			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 531		}
 532		cur += len;
 533	}
 534	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 
 535}
 536
 537/*
 538 * Finish IO for one ordered extent across a given range.  The range can only
 539 * contain one ordered extent.
 540 *
 541 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 542 *               search and use the ordered extent directly.
 543 * 		 Will be also used to store the finished ordered extent.
 544 * @file_offset: File offset for the finished IO
 545 * @io_size:	 Length of the finish IO range
 546 *
 547 * Return true if the ordered extent is finished in the range, and update
 548 * @cached.
 549 * Return false otherwise.
 550 *
 551 * NOTE: The range can NOT cross multiple ordered extents.
 552 * Thus caller should ensure the range doesn't cross ordered extents.
 553 */
 554bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 555				    struct btrfs_ordered_extent **cached,
 556				    u64 file_offset, u64 io_size)
 557{
 
 558	struct rb_node *node;
 559	struct btrfs_ordered_extent *entry = NULL;
 560	unsigned long flags;
 561	bool finished = false;
 562
 563	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 
 564	if (cached && *cached) {
 565		entry = *cached;
 566		goto have_entry;
 567	}
 568
 569	node = ordered_tree_search(inode, file_offset);
 570	if (!node)
 
 571		goto out;
 
 572
 573	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 574have_entry:
 575	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 
 576		goto out;
 
 577
 578	if (io_size > entry->bytes_left)
 579		btrfs_crit(inode->root->fs_info,
 580			   "bad ordered accounting left %llu size %llu",
 581		       entry->bytes_left, io_size);
 582
 583	entry->bytes_left -= io_size;
 
 
 584
 585	if (entry->bytes_left == 0) {
 586		/*
 587		 * Ensure only one caller can set the flag and finished_ret
 588		 * accordingly
 589		 */
 590		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 591		/* test_and_set_bit implies a barrier */
 592		cond_wake_up_nomb(&entry->wait);
 593	}
 594out:
 595	if (finished && cached && entry) {
 596		*cached = entry;
 597		refcount_inc(&entry->refs);
 598		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599	}
 600	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 601	return finished;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602}
 603
 604/*
 605 * used to drop a reference on an ordered extent.  This will free
 606 * the extent if the last reference is dropped
 607 */
 608void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 609{
 610	struct list_head *cur;
 611	struct btrfs_ordered_sum *sum;
 612
 613	trace_btrfs_ordered_extent_put(entry->inode, entry);
 614
 615	if (refcount_dec_and_test(&entry->refs)) {
 616		ASSERT(list_empty(&entry->root_extent_list));
 617		ASSERT(list_empty(&entry->log_list));
 618		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 619		if (entry->inode)
 620			btrfs_add_delayed_iput(entry->inode);
 621		while (!list_empty(&entry->list)) {
 622			cur = entry->list.next;
 623			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 624			list_del(&sum->list);
 625			kvfree(sum);
 626		}
 627		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 628	}
 629}
 630
 631/*
 632 * remove an ordered extent from the tree.  No references are dropped
 633 * and waiters are woken up.
 634 */
 635void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 636				 struct btrfs_ordered_extent *entry)
 637{
 638	struct btrfs_root *root = btrfs_inode->root;
 639	struct btrfs_fs_info *fs_info = root->fs_info;
 640	struct rb_node *node;
 641	bool pending;
 642	bool freespace_inode;
 643
 644	/*
 645	 * If this is a free space inode the thread has not acquired the ordered
 646	 * extents lockdep map.
 647	 */
 648	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 649
 650	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 651	/* This is paired with alloc_ordered_extent(). */
 652	spin_lock(&btrfs_inode->lock);
 653	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 654	spin_unlock(&btrfs_inode->lock);
 655	if (root != fs_info->tree_root) {
 656		u64 release;
 657
 658		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 659			release = entry->disk_num_bytes;
 660		else
 661			release = entry->num_bytes;
 662		btrfs_delalloc_release_metadata(btrfs_inode, release,
 663						test_bit(BTRFS_ORDERED_IOERR,
 664							 &entry->flags));
 665	}
 666
 667	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 668				 fs_info->delalloc_batch);
 669
 670	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
 
 671	node = &entry->rb_node;
 672	rb_erase(node, &btrfs_inode->ordered_tree);
 673	RB_CLEAR_NODE(node);
 674	if (btrfs_inode->ordered_tree_last == node)
 675		btrfs_inode->ordered_tree_last = NULL;
 676	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 677	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 678	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
 679
 680	/*
 681	 * The current running transaction is waiting on us, we need to let it
 682	 * know that we're complete and wake it up.
 683	 */
 684	if (pending) {
 685		struct btrfs_transaction *trans;
 686
 687		/*
 688		 * The checks for trans are just a formality, it should be set,
 689		 * but if it isn't we don't want to deref/assert under the spin
 690		 * lock, so be nice and check if trans is set, but ASSERT() so
 691		 * if it isn't set a developer will notice.
 692		 */
 693		spin_lock(&fs_info->trans_lock);
 694		trans = fs_info->running_transaction;
 695		if (trans)
 696			refcount_inc(&trans->use_count);
 697		spin_unlock(&fs_info->trans_lock);
 698
 699		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
 700		if (trans) {
 701			if (atomic_dec_and_test(&trans->pending_ordered))
 702				wake_up(&trans->pending_wait);
 703			btrfs_put_transaction(trans);
 704		}
 705	}
 706
 707	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 708
 709	spin_lock(&root->ordered_extent_lock);
 710	list_del_init(&entry->root_extent_list);
 711	root->nr_ordered_extents--;
 712
 713	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 714
 715	if (!root->nr_ordered_extents) {
 716		spin_lock(&fs_info->ordered_root_lock);
 717		BUG_ON(list_empty(&root->ordered_root));
 718		list_del_init(&root->ordered_root);
 719		spin_unlock(&fs_info->ordered_root_lock);
 720	}
 721	spin_unlock(&root->ordered_extent_lock);
 722	wake_up(&entry->wait);
 723	if (!freespace_inode)
 724		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 725}
 726
 727static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 728{
 729	struct btrfs_ordered_extent *ordered;
 730
 731	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 732	btrfs_start_ordered_extent(ordered);
 733	complete(&ordered->completion);
 734}
 735
 736/*
 737 * Wait for all the ordered extents in a root. Use @bg as range or do whole
 738 * range if it's NULL.
 739 */
 740u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 741			       const struct btrfs_block_group *bg)
 742{
 743	struct btrfs_fs_info *fs_info = root->fs_info;
 744	LIST_HEAD(splice);
 745	LIST_HEAD(skipped);
 746	LIST_HEAD(works);
 747	struct btrfs_ordered_extent *ordered, *next;
 748	u64 count = 0;
 749	u64 range_start, range_len;
 750	u64 range_end;
 751
 752	if (bg) {
 753		range_start = bg->start;
 754		range_len = bg->length;
 755	} else {
 756		range_start = 0;
 757		range_len = U64_MAX;
 758	}
 759	range_end = range_start + range_len;
 760
 761	mutex_lock(&root->ordered_extent_mutex);
 762	spin_lock(&root->ordered_extent_lock);
 763	list_splice_init(&root->ordered_extents, &splice);
 764	while (!list_empty(&splice) && nr) {
 765		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 766					   root_extent_list);
 767
 768		if (range_end <= ordered->disk_bytenr ||
 769		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 770			list_move_tail(&ordered->root_extent_list, &skipped);
 771			cond_resched_lock(&root->ordered_extent_lock);
 772			continue;
 773		}
 774
 775		list_move_tail(&ordered->root_extent_list,
 776			       &root->ordered_extents);
 777		refcount_inc(&ordered->refs);
 778		spin_unlock(&root->ordered_extent_lock);
 779
 780		btrfs_init_work(&ordered->flush_work,
 781				btrfs_run_ordered_extent_work, NULL);
 782		list_add_tail(&ordered->work_list, &works);
 783		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 784
 785		cond_resched();
 786		if (nr != U64_MAX)
 
 787			nr--;
 788		count++;
 789		spin_lock(&root->ordered_extent_lock);
 790	}
 791	list_splice_tail(&skipped, &root->ordered_extents);
 792	list_splice_tail(&splice, &root->ordered_extents);
 793	spin_unlock(&root->ordered_extent_lock);
 794
 795	list_for_each_entry_safe(ordered, next, &works, work_list) {
 796		list_del_init(&ordered->work_list);
 797		wait_for_completion(&ordered->completion);
 798		btrfs_put_ordered_extent(ordered);
 799		cond_resched();
 800	}
 801	mutex_unlock(&root->ordered_extent_mutex);
 802
 803	return count;
 804}
 805
 806/*
 807 * Wait for @nr ordered extents that intersect the @bg, or the whole range of
 808 * the filesystem if @bg is NULL.
 809 */
 810void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 811			      const struct btrfs_block_group *bg)
 812{
 813	struct btrfs_root *root;
 814	LIST_HEAD(splice);
 815	u64 done;
 
 
 816
 817	mutex_lock(&fs_info->ordered_operations_mutex);
 818	spin_lock(&fs_info->ordered_root_lock);
 819	list_splice_init(&fs_info->ordered_roots, &splice);
 820	while (!list_empty(&splice) && nr) {
 821		root = list_first_entry(&splice, struct btrfs_root,
 822					ordered_root);
 823		root = btrfs_grab_root(root);
 824		BUG_ON(!root);
 825		list_move_tail(&root->ordered_root,
 826			       &fs_info->ordered_roots);
 827		spin_unlock(&fs_info->ordered_root_lock);
 828
 829		done = btrfs_wait_ordered_extents(root, nr, bg);
 830		btrfs_put_root(root);
 831
 832		if (nr != U64_MAX)
 833			nr -= done;
 834
 835		spin_lock(&fs_info->ordered_root_lock);
 
 
 
 
 836	}
 837	list_splice_tail(&splice, &fs_info->ordered_roots);
 838	spin_unlock(&fs_info->ordered_root_lock);
 839	mutex_unlock(&fs_info->ordered_operations_mutex);
 840}
 841
 842/*
 843 * Start IO and wait for a given ordered extent to finish.
 
 
 844 *
 845 * Wait on page writeback for all the pages in the extent and the IO completion
 846 * code to insert metadata into the btree corresponding to the extent.
 847 */
 848void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849{
 850	u64 start = entry->file_offset;
 851	u64 end = start + entry->num_bytes - 1;
 852	struct btrfs_inode *inode = entry->inode;
 853	bool freespace_inode;
 854
 855	trace_btrfs_ordered_extent_start(inode, entry);
 856
 857	/*
 858	 * If this is a free space inode do not take the ordered extents lockdep
 859	 * map.
 860	 */
 861	freespace_inode = btrfs_is_free_space_inode(inode);
 862
 863	/*
 864	 * pages in the range can be dirty, clean or writeback.  We
 865	 * start IO on any dirty ones so the wait doesn't stall waiting
 866	 * for the flusher thread to find them
 867	 */
 868	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 869		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 870
 871	if (!freespace_inode)
 872		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 873	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
 874}
 875
 876/*
 877 * Used to wait on ordered extents across a large range of bytes.
 878 */
 879int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
 880{
 881	int ret = 0;
 882	int ret_wb = 0;
 883	u64 end;
 884	u64 orig_end;
 885	struct btrfs_ordered_extent *ordered;
 886
 887	if (start + len < start) {
 888		orig_end = OFFSET_MAX;
 889	} else {
 890		orig_end = start + len - 1;
 891		if (orig_end > OFFSET_MAX)
 892			orig_end = OFFSET_MAX;
 893	}
 894
 895	/* start IO across the range first to instantiate any delalloc
 896	 * extents
 897	 */
 898	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 899	if (ret)
 900		return ret;
 901
 902	/*
 903	 * If we have a writeback error don't return immediately. Wait first
 904	 * for any ordered extents that haven't completed yet. This is to make
 905	 * sure no one can dirty the same page ranges and call writepages()
 906	 * before the ordered extents complete - to avoid failures (-EEXIST)
 907	 * when adding the new ordered extents to the ordered tree.
 
 
 
 
 
 
 
 908	 */
 909	ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
 
 
 
 
 
 
 
 
 
 910
 911	end = orig_end;
 912	while (1) {
 913		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 914		if (!ordered)
 915			break;
 916		if (ordered->file_offset > orig_end) {
 917			btrfs_put_ordered_extent(ordered);
 918			break;
 919		}
 920		if (ordered->file_offset + ordered->num_bytes <= start) {
 921			btrfs_put_ordered_extent(ordered);
 922			break;
 923		}
 924		btrfs_start_ordered_extent(ordered);
 925		end = ordered->file_offset;
 926		/*
 927		 * If the ordered extent had an error save the error but don't
 928		 * exit without waiting first for all other ordered extents in
 929		 * the range to complete.
 930		 */
 931		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 932			ret = -EIO;
 933		btrfs_put_ordered_extent(ordered);
 934		if (end == 0 || end == start)
 935			break;
 936		end--;
 937	}
 938	return ret_wb ? ret_wb : ret;
 939}
 940
 941/*
 942 * find an ordered extent corresponding to file_offset.  return NULL if
 943 * nothing is found, otherwise take a reference on the extent and return it
 944 */
 945struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 946							 u64 file_offset)
 947{
 
 948	struct rb_node *node;
 949	struct btrfs_ordered_extent *entry = NULL;
 950	unsigned long flags;
 951
 952	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 953	node = ordered_tree_search(inode, file_offset);
 
 954	if (!node)
 955		goto out;
 956
 957	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 958	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 959		entry = NULL;
 960	if (entry) {
 961		refcount_inc(&entry->refs);
 962		trace_btrfs_ordered_extent_lookup(inode, entry);
 963	}
 964out:
 965	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 966	return entry;
 967}
 968
 969/* Since the DIO code tries to lock a wide area we need to look for any ordered
 970 * extents that exist in the range, rather than just the start of the range.
 971 */
 972struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 973		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 974{
 
 975	struct rb_node *node;
 976	struct btrfs_ordered_extent *entry = NULL;
 977
 978	spin_lock_irq(&inode->ordered_tree_lock);
 979	node = ordered_tree_search(inode, file_offset);
 
 980	if (!node) {
 981		node = ordered_tree_search(inode, file_offset + len);
 982		if (!node)
 983			goto out;
 984	}
 985
 986	while (1) {
 987		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 988		if (btrfs_range_overlaps(entry, file_offset, len))
 989			break;
 990
 991		if (entry->file_offset >= file_offset + len) {
 992			entry = NULL;
 993			break;
 994		}
 995		entry = NULL;
 996		node = rb_next(node);
 997		if (!node)
 998			break;
 999	}
1000out:
1001	if (entry) {
1002		refcount_inc(&entry->refs);
1003		trace_btrfs_ordered_extent_lookup_range(inode, entry);
1004	}
1005	spin_unlock_irq(&inode->ordered_tree_lock);
1006	return entry;
1007}
1008
1009/*
1010 * Adds all ordered extents to the given list. The list ends up sorted by the
1011 * file_offset of the ordered extents.
1012 */
1013void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1014					   struct list_head *list)
1015{
1016	struct rb_node *n;
1017
1018	btrfs_assert_inode_locked(inode);
1019
1020	spin_lock_irq(&inode->ordered_tree_lock);
1021	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1022		struct btrfs_ordered_extent *ordered;
1023
1024		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1025
1026		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1027			continue;
1028
1029		ASSERT(list_empty(&ordered->log_list));
1030		list_add_tail(&ordered->log_list, list);
1031		refcount_inc(&ordered->refs);
1032		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1033	}
1034	spin_unlock_irq(&inode->ordered_tree_lock);
1035}
1036
1037/*
1038 * lookup and return any extent before 'file_offset'.  NULL is returned
1039 * if none is found
1040 */
1041struct btrfs_ordered_extent *
1042btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1043{
 
1044	struct rb_node *node;
1045	struct btrfs_ordered_extent *entry = NULL;
1046
1047	spin_lock_irq(&inode->ordered_tree_lock);
1048	node = ordered_tree_search(inode, file_offset);
 
1049	if (!node)
1050		goto out;
1051
1052	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1053	refcount_inc(&entry->refs);
1054	trace_btrfs_ordered_extent_lookup_first(inode, entry);
1055out:
1056	spin_unlock_irq(&inode->ordered_tree_lock);
1057	return entry;
1058}
1059
1060/*
1061 * Lookup the first ordered extent that overlaps the range
1062 * [@file_offset, @file_offset + @len).
1063 *
1064 * The difference between this and btrfs_lookup_first_ordered_extent() is
1065 * that this one won't return any ordered extent that does not overlap the range.
1066 * And the difference against btrfs_lookup_ordered_extent() is, this function
1067 * ensures the first ordered extent gets returned.
1068 */
1069struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1070			struct btrfs_inode *inode, u64 file_offset, u64 len)
1071{
 
 
 
 
1072	struct rb_node *node;
1073	struct rb_node *cur;
1074	struct rb_node *prev;
1075	struct rb_node *next;
1076	struct btrfs_ordered_extent *entry = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078	spin_lock_irq(&inode->ordered_tree_lock);
1079	node = inode->ordered_tree.rb_node;
1080	/*
1081	 * Here we don't want to use tree_search() which will use tree->last
1082	 * and screw up the search order.
1083	 * And __tree_search() can't return the adjacent ordered extents
1084	 * either, thus here we do our own search.
1085	 */
1086	while (node) {
1087		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1088
1089		if (file_offset < entry->file_offset) {
1090			node = node->rb_left;
1091		} else if (file_offset >= entry_end(entry)) {
1092			node = node->rb_right;
1093		} else {
1094			/*
1095			 * Direct hit, got an ordered extent that starts at
1096			 * @file_offset
1097			 */
1098			goto out;
1099		}
1100	}
1101	if (!entry) {
1102		/* Empty tree */
1103		goto out;
1104	}
1105
1106	cur = &entry->rb_node;
1107	/* We got an entry around @file_offset, check adjacent entries */
1108	if (entry->file_offset < file_offset) {
1109		prev = cur;
1110		next = rb_next(cur);
 
 
1111	} else {
1112		prev = rb_prev(cur);
1113		next = cur;
1114	}
1115	if (prev) {
1116		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1117		if (btrfs_range_overlaps(entry, file_offset, len))
1118			goto out;
 
 
 
 
1119	}
1120	if (next) {
1121		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1122		if (btrfs_range_overlaps(entry, file_offset, len))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123			goto out;
 
1124	}
1125	/* No ordered extent in the range */
1126	entry = NULL;
1127out:
1128	if (entry) {
1129		refcount_inc(&entry->refs);
1130		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1131	}
1132
1133	spin_unlock_irq(&inode->ordered_tree_lock);
1134	return entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135}
1136
1137/*
1138 * Lock the passed range and ensures all pending ordered extents in it are run
1139 * to completion.
1140 *
1141 * @inode:        Inode whose ordered tree is to be searched
1142 * @start:        Beginning of range to flush
1143 * @end:          Last byte of range to lock
1144 * @cached_state: If passed, will return the extent state responsible for the
1145 *                locked range. It's the caller's responsibility to free the
1146 *                cached state.
1147 *
1148 * Always return with the given range locked, ensuring after it's called no
1149 * order extent can be pending.
1150 */
1151void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1152					u64 end,
1153					struct extent_state **cached_state)
1154{
 
1155	struct btrfs_ordered_extent *ordered;
1156	struct extent_state *cache = NULL;
1157	struct extent_state **cachedp = &cache;
 
 
 
1158
1159	if (cached_state)
1160		cachedp = cached_state;
 
1161
1162	while (1) {
1163		lock_extent(&inode->io_tree, start, end, cachedp);
1164		ordered = btrfs_lookup_ordered_range(inode, start,
1165						     end - start + 1);
1166		if (!ordered) {
1167			/*
1168			 * If no external cached_state has been passed then
1169			 * decrement the extra ref taken for cachedp since we
1170			 * aren't exposing it outside of this function
1171			 */
1172			if (!cached_state)
1173				refcount_dec(&cache->refs);
1174			break;
 
 
 
1175		}
1176		unlock_extent(&inode->io_tree, start, end, cachedp);
1177		btrfs_start_ordered_extent(ordered);
1178		btrfs_put_ordered_extent(ordered);
1179	}
 
 
 
 
1180}
1181
 
1182/*
1183 * Lock the passed range and ensure all pending ordered extents in it are run
1184 * to completion in nowait mode.
 
 
 
1185 *
1186 * Return true if btrfs_lock_ordered_range does not return any extents,
1187 * otherwise false.
 
 
1188 */
1189bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1190				  struct extent_state **cached_state)
1191{
1192	struct btrfs_ordered_extent *ordered;
1193
1194	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1195		return false;
1196
1197	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1198	if (!ordered)
1199		return true;
1200
1201	btrfs_put_ordered_extent(ordered);
1202	unlock_extent(&inode->io_tree, start, end, cached_state);
1203
1204	return false;
1205}
1206
1207/* Split out a new ordered extent for this first @len bytes of @ordered. */
1208struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1209			struct btrfs_ordered_extent *ordered, u64 len)
1210{
1211	struct btrfs_inode *inode = ordered->inode;
1212	struct btrfs_root *root = inode->root;
1213	struct btrfs_fs_info *fs_info = root->fs_info;
1214	u64 file_offset = ordered->file_offset;
1215	u64 disk_bytenr = ordered->disk_bytenr;
1216	unsigned long flags = ordered->flags;
1217	struct btrfs_ordered_sum *sum, *tmpsum;
1218	struct btrfs_ordered_extent *new;
1219	struct rb_node *node;
1220	u64 offset = 0;
1221
1222	trace_btrfs_ordered_extent_split(inode, ordered);
1223
1224	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1225
1226	/*
1227	 * The entire bio must be covered by the ordered extent, but we can't
1228	 * reduce the original extent to a zero length either.
1229	 */
1230	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1231		return ERR_PTR(-EINVAL);
1232	/*
1233	 * If our ordered extent had an error there's no point in continuing.
1234	 * The error may have come from a transaction abort done either by this
1235	 * task or some other concurrent task, and the transaction abort path
1236	 * iterates over all existing ordered extents and sets the flag
1237	 * BTRFS_ORDERED_IOERR on them.
1238	 */
1239	if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1240		const int fs_error = BTRFS_FS_ERROR(fs_info);
1241
1242		return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
 
 
 
1243	}
1244	/* We cannot split partially completed ordered extents. */
1245	if (ordered->bytes_left) {
1246		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1247		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1248			return ERR_PTR(-EINVAL);
1249	}
1250	/* We cannot split a compressed ordered extent. */
1251	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1252		return ERR_PTR(-EINVAL);
1253
1254	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1255				   len, 0, flags, ordered->compress_type);
1256	if (IS_ERR(new))
1257		return new;
1258
1259	/* One ref for the tree. */
1260	refcount_inc(&new->refs);
1261
1262	/*
1263	 * Take the root's ordered_extent_lock to avoid a race with
1264	 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1265	 * disk_num_bytes fields of the ordered extent below. And we disable
1266	 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1267	 * elsewhere.
1268	 *
1269	 * There's no concern about a previous caller of
1270	 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1271	 * before we insert the new one, because even if it gets the ordered
1272	 * extent before it's trimmed and the new one inserted, right before it
1273	 * uses it or during its use, the ordered extent might have been
1274	 * trimmed in the meanwhile, and it missed the new ordered extent.
1275	 * There's no way around this and it's harmless for current use cases,
1276	 * so we take the root's ordered_extent_lock to fix that race during
1277	 * trimming and silence tools like KCSAN.
1278	 */
1279	spin_lock_irq(&root->ordered_extent_lock);
1280	spin_lock(&inode->ordered_tree_lock);
1281
1282	/*
1283	 * We don't have overlapping ordered extents (that would imply double
1284	 * allocation of extents) and we checked above that the split length
1285	 * does not cross the ordered extent's num_bytes field, so there's
1286	 * no need to remove it and re-insert it in the tree.
1287	 */
1288	ordered->file_offset += len;
1289	ordered->disk_bytenr += len;
1290	ordered->num_bytes -= len;
1291	ordered->disk_num_bytes -= len;
1292	ordered->ram_bytes -= len;
1293
1294	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1295		ASSERT(ordered->bytes_left == 0);
1296		new->bytes_left = 0;
1297	} else {
1298		ordered->bytes_left -= len;
1299	}
1300
1301	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1302		if (ordered->truncated_len > len) {
1303			ordered->truncated_len -= len;
1304		} else {
1305			new->truncated_len = ordered->truncated_len;
1306			ordered->truncated_len = 0;
1307		}
1308	}
1309
1310	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1311		if (offset == len)
1312			break;
1313		list_move_tail(&sum->list, &new->list);
1314		offset += sum->len;
1315	}
1316
1317	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1318	if (unlikely(node))
1319		btrfs_panic(fs_info, -EEXIST,
1320			"inconsistency in ordered tree at offset %llu after split",
1321			new->file_offset);
1322	spin_unlock(&inode->ordered_tree_lock);
1323
1324	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1325	root->nr_ordered_extents++;
1326	spin_unlock_irq(&root->ordered_extent_lock);
1327	return new;
1328}
1329
1330int __init ordered_data_init(void)
1331{
1332	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
 
 
 
1333	if (!btrfs_ordered_extent_cache)
1334		return -ENOMEM;
1335
1336	return 0;
1337}
1338
1339void __cold ordered_data_exit(void)
1340{
1341	kmem_cache_destroy(btrfs_ordered_extent_cache);
 
1342}
v3.15
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
 
 
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
 
 
 
 
 
 
  28
  29static struct kmem_cache *btrfs_ordered_extent_cache;
  30
  31static u64 entry_end(struct btrfs_ordered_extent *entry)
  32{
  33	if (entry->file_offset + entry->len < entry->file_offset)
  34		return (u64)-1;
  35	return entry->file_offset + entry->len;
  36}
  37
  38/* returns NULL if the insertion worked, or it returns the node it did find
  39 * in the tree
  40 */
  41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  42				   struct rb_node *node)
  43{
  44	struct rb_node **p = &root->rb_node;
  45	struct rb_node *parent = NULL;
  46	struct btrfs_ordered_extent *entry;
  47
  48	while (*p) {
  49		parent = *p;
  50		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  51
  52		if (file_offset < entry->file_offset)
  53			p = &(*p)->rb_left;
  54		else if (file_offset >= entry_end(entry))
  55			p = &(*p)->rb_right;
  56		else
  57			return parent;
  58	}
  59
  60	rb_link_node(node, parent, p);
  61	rb_insert_color(node, root);
  62	return NULL;
  63}
  64
  65static void ordered_data_tree_panic(struct inode *inode, int errno,
  66					       u64 offset)
  67{
  68	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  69	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  70		    "%llu\n", offset);
  71}
  72
  73/*
  74 * look for a given offset in the tree, and if it can't be found return the
  75 * first lesser offset
  76 */
  77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  78				     struct rb_node **prev_ret)
  79{
  80	struct rb_node *n = root->rb_node;
  81	struct rb_node *prev = NULL;
  82	struct rb_node *test;
  83	struct btrfs_ordered_extent *entry;
  84	struct btrfs_ordered_extent *prev_entry = NULL;
  85
  86	while (n) {
  87		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  88		prev = n;
  89		prev_entry = entry;
  90
  91		if (file_offset < entry->file_offset)
  92			n = n->rb_left;
  93		else if (file_offset >= entry_end(entry))
  94			n = n->rb_right;
  95		else
  96			return n;
  97	}
  98	if (!prev_ret)
  99		return NULL;
 100
 101	while (prev && file_offset >= entry_end(prev_entry)) {
 102		test = rb_next(prev);
 103		if (!test)
 104			break;
 105		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106				      rb_node);
 107		if (file_offset < entry_end(prev_entry))
 108			break;
 109
 110		prev = test;
 111	}
 112	if (prev)
 113		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 114				      rb_node);
 115	while (prev && file_offset < entry_end(prev_entry)) {
 116		test = rb_prev(prev);
 117		if (!test)
 118			break;
 119		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 120				      rb_node);
 121		prev = test;
 122	}
 123	*prev_ret = prev;
 124	return NULL;
 125}
 126
 127/*
 128 * helper to check if a given offset is inside a given entry
 129 */
 130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 131{
 132	if (file_offset < entry->file_offset ||
 133	    entry->file_offset + entry->len <= file_offset)
 134		return 0;
 135	return 1;
 136}
 137
 138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 139			  u64 len)
 140{
 141	if (file_offset + len <= entry->file_offset ||
 142	    entry->file_offset + entry->len <= file_offset)
 143		return 0;
 144	return 1;
 145}
 146
 147/*
 148 * look find the first ordered struct that has this offset, otherwise
 149 * the first one less than this offset
 150 */
 151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 152					  u64 file_offset)
 153{
 154	struct rb_root *root = &tree->tree;
 155	struct rb_node *prev = NULL;
 156	struct rb_node *ret;
 157	struct btrfs_ordered_extent *entry;
 158
 159	if (tree->last) {
 160		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 161				 rb_node);
 162		if (offset_in_entry(entry, file_offset))
 163			return tree->last;
 164	}
 165	ret = __tree_search(root, file_offset, &prev);
 166	if (!ret)
 167		ret = prev;
 168	if (ret)
 169		tree->last = ret;
 170	return ret;
 171}
 172
 173/* allocate and add a new ordered_extent into the per-inode tree.
 174 * file_offset is the logical offset in the file
 175 *
 176 * start is the disk block number of an extent already reserved in the
 177 * extent allocation tree
 178 *
 179 * len is the length of the extent
 180 *
 181 * The tree is given a single reference on the ordered extent that was
 182 * inserted.
 183 */
 184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 185				      u64 start, u64 len, u64 disk_len,
 186				      int type, int dio, int compress_type)
 187{
 188	struct btrfs_root *root = BTRFS_I(inode)->root;
 189	struct btrfs_ordered_inode_tree *tree;
 190	struct rb_node *node;
 191	struct btrfs_ordered_extent *entry;
 
 
 192
 193	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 195	if (!entry)
 196		return -ENOMEM;
 197
 198	entry->file_offset = file_offset;
 199	entry->start = start;
 200	entry->len = len;
 201	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
 202	    !(type == BTRFS_ORDERED_NOCOW))
 203		entry->csum_bytes_left = disk_len;
 204	entry->disk_len = disk_len;
 205	entry->bytes_left = len;
 206	entry->inode = igrab(inode);
 207	entry->compress_type = compress_type;
 208	entry->truncated_len = (u64)-1;
 209	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 210		set_bit(type, &entry->flags);
 211
 212	if (dio)
 213		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 214
 215	/* one ref for the tree */
 216	atomic_set(&entry->refs, 1);
 217	init_waitqueue_head(&entry->wait);
 218	INIT_LIST_HEAD(&entry->list);
 
 219	INIT_LIST_HEAD(&entry->root_extent_list);
 220	INIT_LIST_HEAD(&entry->work_list);
 
 221	init_completion(&entry->completion);
 222	INIT_LIST_HEAD(&entry->log_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	trace_btrfs_ordered_extent_add(inode, entry);
 225
 226	spin_lock_irq(&tree->lock);
 227	node = tree_insert(&tree->tree, file_offset,
 
 
 
 
 
 
 228			   &entry->rb_node);
 229	if (node)
 230		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231	spin_unlock_irq(&tree->lock);
 
 
 232
 233	spin_lock(&root->ordered_extent_lock);
 234	list_add_tail(&entry->root_extent_list,
 235		      &root->ordered_extents);
 236	root->nr_ordered_extents++;
 237	if (root->nr_ordered_extents == 1) {
 238		spin_lock(&root->fs_info->ordered_root_lock);
 239		BUG_ON(!list_empty(&root->ordered_root));
 240		list_add_tail(&root->ordered_root,
 241			      &root->fs_info->ordered_roots);
 242		spin_unlock(&root->fs_info->ordered_root_lock);
 243	}
 244	spin_unlock(&root->ordered_extent_lock);
 245
 246	return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250			     u64 start, u64 len, u64 disk_len, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251{
 252	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253					  disk_len, type, 0,
 254					  BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258				 u64 start, u64 len, u64 disk_len, int type)
 259{
 260	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261					  disk_len, type, 1,
 262					  BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266				      u64 start, u64 len, u64 disk_len,
 267				      int type, int compress_type)
 268{
 269	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270					  disk_len, type, 0,
 271					  compress_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct inode *inode,
 280			   struct btrfs_ordered_extent *entry,
 281			   struct btrfs_ordered_sum *sum)
 282{
 283	struct btrfs_ordered_inode_tree *tree;
 284
 285	tree = &BTRFS_I(inode)->ordered_tree;
 286	spin_lock_irq(&tree->lock);
 287	list_add_tail(&sum->list, &entry->list);
 288	WARN_ON(entry->csum_bytes_left < sum->len);
 289	entry->csum_bytes_left -= sum->len;
 290	if (entry->csum_bytes_left == 0)
 291		wake_up(&entry->wait);
 292	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293}
 294
 295/*
 296 * this is used to account for finished IO across a given range
 297 * of the file.  The IO may span ordered extents.  If
 298 * a given ordered_extent is completely done, 1 is returned, otherwise
 299 * 0.
 300 *
 301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 302 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 303 *
 304 * file_offset is updated to one byte past the range that is recorded as
 305 * complete.  This allows you to walk forward in the file.
 306 */
 307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 308				   struct btrfs_ordered_extent **cached,
 309				   u64 *file_offset, u64 io_size, int uptodate)
 310{
 311	struct btrfs_ordered_inode_tree *tree;
 312	struct rb_node *node;
 313	struct btrfs_ordered_extent *entry = NULL;
 314	int ret;
 315	unsigned long flags;
 316	u64 dec_end;
 317	u64 dec_start;
 318	u64 to_dec;
 319
 320	tree = &BTRFS_I(inode)->ordered_tree;
 321	spin_lock_irqsave(&tree->lock, flags);
 322	node = tree_search(tree, *file_offset);
 323	if (!node) {
 324		ret = 1;
 325		goto out;
 326	}
 
 
 
 
 
 327
 328	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 329	if (!offset_in_entry(entry, *file_offset)) {
 330		ret = 1;
 331		goto out;
 332	}
 
 
 
 
 
 
 
 
 
 333
 334	dec_start = max(*file_offset, entry->file_offset);
 335	dec_end = min(*file_offset + io_size, entry->file_offset +
 336		      entry->len);
 337	*file_offset = dec_end;
 338	if (dec_start > dec_end) {
 339		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 340			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
 341	}
 342	to_dec = dec_end - dec_start;
 343	if (to_dec > entry->bytes_left) {
 344		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 345			"bad ordered accounting left %llu size %llu",
 346			entry->bytes_left, to_dec);
 347	}
 348	entry->bytes_left -= to_dec;
 349	if (!uptodate)
 350		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 351
 352	if (entry->bytes_left == 0) {
 353		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 354		if (waitqueue_active(&entry->wait))
 355			wake_up(&entry->wait);
 356	} else {
 357		ret = 1;
 358	}
 359out:
 360	if (!ret && cached && entry) {
 361		*cached = entry;
 362		atomic_inc(&entry->refs);
 
 
 
 
 
 
 
 363	}
 364	spin_unlock_irqrestore(&tree->lock, flags);
 365	return ret == 0;
 366}
 367
 368/*
 369 * this is used to account for finished IO across a given range
 370 * of the file.  The IO should not span ordered extents.  If
 371 * a given ordered_extent is completely done, 1 is returned, otherwise
 372 * 0.
 
 
 
 
 373 *
 374 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 375 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 376 */
 377int btrfs_dec_test_ordered_pending(struct inode *inode,
 378				   struct btrfs_ordered_extent **cached,
 379				   u64 file_offset, u64 io_size, int uptodate)
 380{
 381	struct btrfs_ordered_inode_tree *tree;
 382	struct rb_node *node;
 383	struct btrfs_ordered_extent *entry = NULL;
 384	unsigned long flags;
 385	int ret;
 386
 387	tree = &BTRFS_I(inode)->ordered_tree;
 388	spin_lock_irqsave(&tree->lock, flags);
 389	if (cached && *cached) {
 390		entry = *cached;
 391		goto have_entry;
 392	}
 393
 394	node = tree_search(tree, file_offset);
 395	if (!node) {
 396		ret = 1;
 397		goto out;
 398	}
 399
 400	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 401have_entry:
 402	if (!offset_in_entry(entry, file_offset)) {
 403		ret = 1;
 404		goto out;
 405	}
 406
 407	if (io_size > entry->bytes_left) {
 408		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 409			   "bad ordered accounting left %llu size %llu",
 410		       entry->bytes_left, io_size);
 411	}
 412	entry->bytes_left -= io_size;
 413	if (!uptodate)
 414		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 415
 416	if (entry->bytes_left == 0) {
 417		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 418		if (waitqueue_active(&entry->wait))
 419			wake_up(&entry->wait);
 420	} else {
 421		ret = 1;
 
 
 422	}
 423out:
 424	if (!ret && cached && entry) {
 425		*cached = entry;
 426		atomic_inc(&entry->refs);
 427	}
 428	spin_unlock_irqrestore(&tree->lock, flags);
 429	return ret == 0;
 430}
 431
 432/* Needs to either be called under a log transaction or the log_mutex */
 433void btrfs_get_logged_extents(struct inode *inode,
 434			      struct list_head *logged_list)
 435{
 436	struct btrfs_ordered_inode_tree *tree;
 437	struct btrfs_ordered_extent *ordered;
 438	struct rb_node *n;
 439
 440	tree = &BTRFS_I(inode)->ordered_tree;
 441	spin_lock_irq(&tree->lock);
 442	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 443		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 444		if (!list_empty(&ordered->log_list))
 445			continue;
 446		list_add_tail(&ordered->log_list, logged_list);
 447		atomic_inc(&ordered->refs);
 448	}
 449	spin_unlock_irq(&tree->lock);
 450}
 451
 452void btrfs_put_logged_extents(struct list_head *logged_list)
 453{
 454	struct btrfs_ordered_extent *ordered;
 455
 456	while (!list_empty(logged_list)) {
 457		ordered = list_first_entry(logged_list,
 458					   struct btrfs_ordered_extent,
 459					   log_list);
 460		list_del_init(&ordered->log_list);
 461		btrfs_put_ordered_extent(ordered);
 462	}
 463}
 464
 465void btrfs_submit_logged_extents(struct list_head *logged_list,
 466				 struct btrfs_root *log)
 467{
 468	int index = log->log_transid % 2;
 469
 470	spin_lock_irq(&log->log_extents_lock[index]);
 471	list_splice_tail(logged_list, &log->logged_list[index]);
 472	spin_unlock_irq(&log->log_extents_lock[index]);
 473}
 474
 475void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
 476{
 477	struct btrfs_ordered_extent *ordered;
 478	int index = transid % 2;
 479
 480	spin_lock_irq(&log->log_extents_lock[index]);
 481	while (!list_empty(&log->logged_list[index])) {
 482		ordered = list_first_entry(&log->logged_list[index],
 483					   struct btrfs_ordered_extent,
 484					   log_list);
 485		list_del_init(&ordered->log_list);
 486		spin_unlock_irq(&log->log_extents_lock[index]);
 487		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 488						   &ordered->flags));
 489		btrfs_put_ordered_extent(ordered);
 490		spin_lock_irq(&log->log_extents_lock[index]);
 491	}
 492	spin_unlock_irq(&log->log_extents_lock[index]);
 493}
 494
 495void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 496{
 497	struct btrfs_ordered_extent *ordered;
 498	int index = transid % 2;
 499
 500	spin_lock_irq(&log->log_extents_lock[index]);
 501	while (!list_empty(&log->logged_list[index])) {
 502		ordered = list_first_entry(&log->logged_list[index],
 503					   struct btrfs_ordered_extent,
 504					   log_list);
 505		list_del_init(&ordered->log_list);
 506		spin_unlock_irq(&log->log_extents_lock[index]);
 507		btrfs_put_ordered_extent(ordered);
 508		spin_lock_irq(&log->log_extents_lock[index]);
 509	}
 510	spin_unlock_irq(&log->log_extents_lock[index]);
 511}
 512
 513/*
 514 * used to drop a reference on an ordered extent.  This will free
 515 * the extent if the last reference is dropped
 516 */
 517void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 518{
 519	struct list_head *cur;
 520	struct btrfs_ordered_sum *sum;
 521
 522	trace_btrfs_ordered_extent_put(entry->inode, entry);
 523
 524	if (atomic_dec_and_test(&entry->refs)) {
 
 
 
 525		if (entry->inode)
 526			btrfs_add_delayed_iput(entry->inode);
 527		while (!list_empty(&entry->list)) {
 528			cur = entry->list.next;
 529			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 530			list_del(&sum->list);
 531			kfree(sum);
 532		}
 533		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 534	}
 535}
 536
 537/*
 538 * remove an ordered extent from the tree.  No references are dropped
 539 * and waiters are woken up.
 540 */
 541void btrfs_remove_ordered_extent(struct inode *inode,
 542				 struct btrfs_ordered_extent *entry)
 543{
 544	struct btrfs_ordered_inode_tree *tree;
 545	struct btrfs_root *root = BTRFS_I(inode)->root;
 546	struct rb_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	tree = &BTRFS_I(inode)->ordered_tree;
 549	spin_lock_irq(&tree->lock);
 550	node = &entry->rb_node;
 551	rb_erase(node, &tree->tree);
 552	if (tree->last == node)
 553		tree->last = NULL;
 
 554	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 555	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557	spin_lock(&root->ordered_extent_lock);
 558	list_del_init(&entry->root_extent_list);
 559	root->nr_ordered_extents--;
 560
 561	trace_btrfs_ordered_extent_remove(inode, entry);
 562
 563	/*
 564	 * we have no more ordered extents for this inode and
 565	 * no dirty pages.  We can safely remove it from the
 566	 * list of ordered extents
 567	 */
 568	if (RB_EMPTY_ROOT(&tree->tree) &&
 569	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 570		spin_lock(&root->fs_info->ordered_root_lock);
 571		list_del_init(&BTRFS_I(inode)->ordered_operations);
 572		spin_unlock(&root->fs_info->ordered_root_lock);
 573	}
 574
 575	if (!root->nr_ordered_extents) {
 576		spin_lock(&root->fs_info->ordered_root_lock);
 577		BUG_ON(list_empty(&root->ordered_root));
 578		list_del_init(&root->ordered_root);
 579		spin_unlock(&root->fs_info->ordered_root_lock);
 580	}
 581	spin_unlock(&root->ordered_extent_lock);
 582	wake_up(&entry->wait);
 
 
 583}
 584
 585static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 586{
 587	struct btrfs_ordered_extent *ordered;
 588
 589	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 590	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 591	complete(&ordered->completion);
 592}
 593
 594/*
 595 * wait for all the ordered extents in a root.  This is done when balancing
 596 * space between drives.
 597 */
 598int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 
 599{
 600	struct list_head splice, works;
 
 
 
 601	struct btrfs_ordered_extent *ordered, *next;
 602	int count = 0;
 603
 604	INIT_LIST_HEAD(&splice);
 605	INIT_LIST_HEAD(&works);
 
 
 
 
 
 
 
 
 606
 607	mutex_lock(&root->ordered_extent_mutex);
 608	spin_lock(&root->ordered_extent_lock);
 609	list_splice_init(&root->ordered_extents, &splice);
 610	while (!list_empty(&splice) && nr) {
 611		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 612					   root_extent_list);
 
 
 
 
 
 
 
 
 613		list_move_tail(&ordered->root_extent_list,
 614			       &root->ordered_extents);
 615		atomic_inc(&ordered->refs);
 616		spin_unlock(&root->ordered_extent_lock);
 617
 618		btrfs_init_work(&ordered->flush_work,
 619				btrfs_run_ordered_extent_work, NULL, NULL);
 620		list_add_tail(&ordered->work_list, &works);
 621		btrfs_queue_work(root->fs_info->flush_workers,
 622				 &ordered->flush_work);
 623
 624		cond_resched();
 625		spin_lock(&root->ordered_extent_lock);
 626		if (nr != -1)
 627			nr--;
 628		count++;
 
 629	}
 
 630	list_splice_tail(&splice, &root->ordered_extents);
 631	spin_unlock(&root->ordered_extent_lock);
 632
 633	list_for_each_entry_safe(ordered, next, &works, work_list) {
 634		list_del_init(&ordered->work_list);
 635		wait_for_completion(&ordered->completion);
 636		btrfs_put_ordered_extent(ordered);
 637		cond_resched();
 638	}
 639	mutex_unlock(&root->ordered_extent_mutex);
 640
 641	return count;
 642}
 643
 644void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 
 
 
 
 
 645{
 646	struct btrfs_root *root;
 647	struct list_head splice;
 648	int done;
 649
 650	INIT_LIST_HEAD(&splice);
 651
 652	mutex_lock(&fs_info->ordered_operations_mutex);
 653	spin_lock(&fs_info->ordered_root_lock);
 654	list_splice_init(&fs_info->ordered_roots, &splice);
 655	while (!list_empty(&splice) && nr) {
 656		root = list_first_entry(&splice, struct btrfs_root,
 657					ordered_root);
 658		root = btrfs_grab_fs_root(root);
 659		BUG_ON(!root);
 660		list_move_tail(&root->ordered_root,
 661			       &fs_info->ordered_roots);
 662		spin_unlock(&fs_info->ordered_root_lock);
 663
 664		done = btrfs_wait_ordered_extents(root, nr);
 665		btrfs_put_fs_root(root);
 
 
 
 666
 667		spin_lock(&fs_info->ordered_root_lock);
 668		if (nr != -1) {
 669			nr -= done;
 670			WARN_ON(nr < 0);
 671		}
 672	}
 673	list_splice_tail(&splice, &fs_info->ordered_roots);
 674	spin_unlock(&fs_info->ordered_root_lock);
 675	mutex_unlock(&fs_info->ordered_operations_mutex);
 676}
 677
 678/*
 679 * this is used during transaction commit to write all the inodes
 680 * added to the ordered operation list.  These files must be fully on
 681 * disk before the transaction commits.
 682 *
 683 * we have two modes here, one is to just start the IO via filemap_flush
 684 * and the other is to wait for all the io.  When we wait, we have an
 685 * extra check to make sure the ordered operation list really is empty
 686 * before we return
 687 */
 688int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
 689				 struct btrfs_root *root, int wait)
 690{
 691	struct btrfs_inode *btrfs_inode;
 692	struct inode *inode;
 693	struct btrfs_transaction *cur_trans = trans->transaction;
 694	struct list_head splice;
 695	struct list_head works;
 696	struct btrfs_delalloc_work *work, *next;
 697	int ret = 0;
 698
 699	INIT_LIST_HEAD(&splice);
 700	INIT_LIST_HEAD(&works);
 701
 702	mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
 703	spin_lock(&root->fs_info->ordered_root_lock);
 704	list_splice_init(&cur_trans->ordered_operations, &splice);
 705	while (!list_empty(&splice)) {
 706		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
 707				   ordered_operations);
 708		inode = &btrfs_inode->vfs_inode;
 709
 710		list_del_init(&btrfs_inode->ordered_operations);
 711
 712		/*
 713		 * the inode may be getting freed (in sys_unlink path).
 714		 */
 715		inode = igrab(inode);
 716		if (!inode)
 717			continue;
 718
 719		if (!wait)
 720			list_add_tail(&BTRFS_I(inode)->ordered_operations,
 721				      &cur_trans->ordered_operations);
 722		spin_unlock(&root->fs_info->ordered_root_lock);
 723
 724		work = btrfs_alloc_delalloc_work(inode, wait, 1);
 725		if (!work) {
 726			spin_lock(&root->fs_info->ordered_root_lock);
 727			if (list_empty(&BTRFS_I(inode)->ordered_operations))
 728				list_add_tail(&btrfs_inode->ordered_operations,
 729					      &splice);
 730			list_splice_tail(&splice,
 731					 &cur_trans->ordered_operations);
 732			spin_unlock(&root->fs_info->ordered_root_lock);
 733			ret = -ENOMEM;
 734			goto out;
 735		}
 736		list_add_tail(&work->list, &works);
 737		btrfs_queue_work(root->fs_info->flush_workers,
 738				 &work->work);
 739
 740		cond_resched();
 741		spin_lock(&root->fs_info->ordered_root_lock);
 742	}
 743	spin_unlock(&root->fs_info->ordered_root_lock);
 744out:
 745	list_for_each_entry_safe(work, next, &works, list) {
 746		list_del_init(&work->list);
 747		btrfs_wait_and_free_delalloc_work(work);
 748	}
 749	mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
 750	return ret;
 751}
 752
 753/*
 754 * Used to start IO or wait for a given ordered extent to finish.
 755 *
 756 * If wait is one, this effectively waits on page writeback for all the pages
 757 * in the extent, and it waits on the io completion code to insert
 758 * metadata into the btree corresponding to the extent
 759 */
 760void btrfs_start_ordered_extent(struct inode *inode,
 761				       struct btrfs_ordered_extent *entry,
 762				       int wait)
 763{
 764	u64 start = entry->file_offset;
 765	u64 end = start + entry->len - 1;
 
 
 766
 767	trace_btrfs_ordered_extent_start(inode, entry);
 768
 769	/*
 
 
 
 
 
 
 770	 * pages in the range can be dirty, clean or writeback.  We
 771	 * start IO on any dirty ones so the wait doesn't stall waiting
 772	 * for the flusher thread to find them
 773	 */
 774	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 775		filemap_fdatawrite_range(inode->i_mapping, start, end);
 776	if (wait) {
 777		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 778						 &entry->flags));
 779	}
 780}
 781
 782/*
 783 * Used to wait on ordered extents across a large range of bytes.
 784 */
 785int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 786{
 787	int ret = 0;
 
 788	u64 end;
 789	u64 orig_end;
 790	struct btrfs_ordered_extent *ordered;
 791
 792	if (start + len < start) {
 793		orig_end = INT_LIMIT(loff_t);
 794	} else {
 795		orig_end = start + len - 1;
 796		if (orig_end > INT_LIMIT(loff_t))
 797			orig_end = INT_LIMIT(loff_t);
 798	}
 799
 800	/* start IO across the range first to instantiate any delalloc
 801	 * extents
 802	 */
 803	ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 804	if (ret)
 805		return ret;
 
 806	/*
 807	 * So with compression we will find and lock a dirty page and clear the
 808	 * first one as dirty, setup an async extent, and immediately return
 809	 * with the entire range locked but with nobody actually marked with
 810	 * writeback.  So we can't just filemap_write_and_wait_range() and
 811	 * expect it to work since it will just kick off a thread to do the
 812	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 813	 * since it will wait on the page lock, which won't be unlocked until
 814	 * after the pages have been marked as writeback and so we're good to go
 815	 * from there.  We have to do this otherwise we'll miss the ordered
 816	 * extents and that results in badness.  Please Josef, do not think you
 817	 * know better and pull this out at some point in the future, it is
 818	 * right and you are wrong.
 819	 */
 820	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 821		     &BTRFS_I(inode)->runtime_flags)) {
 822		ret = filemap_fdatawrite_range(inode->i_mapping, start,
 823					       orig_end);
 824		if (ret)
 825			return ret;
 826	}
 827	ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 828	if (ret)
 829		return ret;
 830
 831	end = orig_end;
 832	while (1) {
 833		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 834		if (!ordered)
 835			break;
 836		if (ordered->file_offset > orig_end) {
 837			btrfs_put_ordered_extent(ordered);
 838			break;
 839		}
 840		if (ordered->file_offset + ordered->len <= start) {
 841			btrfs_put_ordered_extent(ordered);
 842			break;
 843		}
 844		btrfs_start_ordered_extent(inode, ordered, 1);
 845		end = ordered->file_offset;
 
 
 
 
 
 846		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 847			ret = -EIO;
 848		btrfs_put_ordered_extent(ordered);
 849		if (ret || end == 0 || end == start)
 850			break;
 851		end--;
 852	}
 853	return ret;
 854}
 855
 856/*
 857 * find an ordered extent corresponding to file_offset.  return NULL if
 858 * nothing is found, otherwise take a reference on the extent and return it
 859 */
 860struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 861							 u64 file_offset)
 862{
 863	struct btrfs_ordered_inode_tree *tree;
 864	struct rb_node *node;
 865	struct btrfs_ordered_extent *entry = NULL;
 
 866
 867	tree = &BTRFS_I(inode)->ordered_tree;
 868	spin_lock_irq(&tree->lock);
 869	node = tree_search(tree, file_offset);
 870	if (!node)
 871		goto out;
 872
 873	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 874	if (!offset_in_entry(entry, file_offset))
 875		entry = NULL;
 876	if (entry)
 877		atomic_inc(&entry->refs);
 
 
 878out:
 879	spin_unlock_irq(&tree->lock);
 880	return entry;
 881}
 882
 883/* Since the DIO code tries to lock a wide area we need to look for any ordered
 884 * extents that exist in the range, rather than just the start of the range.
 885 */
 886struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 887							u64 file_offset,
 888							u64 len)
 889{
 890	struct btrfs_ordered_inode_tree *tree;
 891	struct rb_node *node;
 892	struct btrfs_ordered_extent *entry = NULL;
 893
 894	tree = &BTRFS_I(inode)->ordered_tree;
 895	spin_lock_irq(&tree->lock);
 896	node = tree_search(tree, file_offset);
 897	if (!node) {
 898		node = tree_search(tree, file_offset + len);
 899		if (!node)
 900			goto out;
 901	}
 902
 903	while (1) {
 904		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 905		if (range_overlaps(entry, file_offset, len))
 906			break;
 907
 908		if (entry->file_offset >= file_offset + len) {
 909			entry = NULL;
 910			break;
 911		}
 912		entry = NULL;
 913		node = rb_next(node);
 914		if (!node)
 915			break;
 916	}
 917out:
 918	if (entry)
 919		atomic_inc(&entry->refs);
 920	spin_unlock_irq(&tree->lock);
 
 
 921	return entry;
 922}
 923
 924/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925 * lookup and return any extent before 'file_offset'.  NULL is returned
 926 * if none is found
 927 */
 928struct btrfs_ordered_extent *
 929btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 930{
 931	struct btrfs_ordered_inode_tree *tree;
 932	struct rb_node *node;
 933	struct btrfs_ordered_extent *entry = NULL;
 934
 935	tree = &BTRFS_I(inode)->ordered_tree;
 936	spin_lock_irq(&tree->lock);
 937	node = tree_search(tree, file_offset);
 938	if (!node)
 939		goto out;
 940
 941	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 942	atomic_inc(&entry->refs);
 
 943out:
 944	spin_unlock_irq(&tree->lock);
 945	return entry;
 946}
 947
 948/*
 949 * After an extent is done, call this to conditionally update the on disk
 950 * i_size.  i_size is updated to cover any fully written part of the file.
 
 
 
 
 
 951 */
 952int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 953				struct btrfs_ordered_extent *ordered)
 954{
 955	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 956	u64 disk_i_size;
 957	u64 new_i_size;
 958	u64 i_size = i_size_read(inode);
 959	struct rb_node *node;
 960	struct rb_node *prev = NULL;
 961	struct btrfs_ordered_extent *test;
 962	int ret = 1;
 963
 964	spin_lock_irq(&tree->lock);
 965	if (ordered) {
 966		offset = entry_end(ordered);
 967		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 968			offset = min(offset,
 969				     ordered->file_offset +
 970				     ordered->truncated_len);
 971	} else {
 972		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 973	}
 974	disk_i_size = BTRFS_I(inode)->disk_i_size;
 975
 976	/* truncate file */
 977	if (disk_i_size > i_size) {
 978		BTRFS_I(inode)->disk_i_size = i_size;
 979		ret = 0;
 980		goto out;
 981	}
 982
 
 
 983	/*
 984	 * if the disk i_size is already at the inode->i_size, or
 985	 * this ordered extent is inside the disk i_size, we're done
 
 
 986	 */
 987	if (disk_i_size == i_size)
 988		goto out;
 989
 990	/*
 991	 * We still need to update disk_i_size if outstanding_isize is greater
 992	 * than disk_i_size.
 993	 */
 994	if (offset <= disk_i_size &&
 995	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 
 
 
 
 
 
 
 
 996		goto out;
 
 997
 998	/*
 999	 * walk backward from this ordered extent to disk_i_size.
1000	 * if we find an ordered extent then we can't update disk i_size
1001	 * yet
1002	 */
1003	if (ordered) {
1004		node = rb_prev(&ordered->rb_node);
1005	} else {
1006		prev = tree_search(tree, offset);
1007		/*
1008		 * we insert file extents without involving ordered struct,
1009		 * so there should be no ordered struct cover this offset
1010		 */
1011		if (prev) {
1012			test = rb_entry(prev, struct btrfs_ordered_extent,
1013					rb_node);
1014			BUG_ON(offset_in_entry(test, offset));
1015		}
1016		node = prev;
1017	}
1018	for (; node; node = rb_prev(node)) {
1019		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1020
1021		/* We treat this entry as if it doesnt exist */
1022		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1023			continue;
1024		if (test->file_offset + test->len <= disk_i_size)
1025			break;
1026		if (test->file_offset >= i_size)
1027			break;
1028		if (entry_end(test) > disk_i_size) {
1029			/*
1030			 * we don't update disk_i_size now, so record this
1031			 * undealt i_size. Or we will not know the real
1032			 * i_size.
1033			 */
1034			if (test->outstanding_isize < offset)
1035				test->outstanding_isize = offset;
1036			if (ordered &&
1037			    ordered->outstanding_isize >
1038			    test->outstanding_isize)
1039				test->outstanding_isize =
1040						ordered->outstanding_isize;
1041			goto out;
1042		}
1043	}
1044	new_i_size = min_t(u64, offset, i_size);
 
 
 
 
 
 
1045
1046	/*
1047	 * Some ordered extents may completed before the current one, and
1048	 * we hold the real i_size in ->outstanding_isize.
1049	 */
1050	if (ordered && ordered->outstanding_isize > new_i_size)
1051		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1052	BTRFS_I(inode)->disk_i_size = new_i_size;
1053	ret = 0;
1054out:
1055	/*
1056	 * We need to do this because we can't remove ordered extents until
1057	 * after the i_disk_size has been updated and then the inode has been
1058	 * updated to reflect the change, so we need to tell anybody who finds
1059	 * this ordered extent that we've already done all the real work, we
1060	 * just haven't completed all the other work.
1061	 */
1062	if (ordered)
1063		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1064	spin_unlock_irq(&tree->lock);
1065	return ret;
1066}
1067
1068/*
1069 * search the ordered extents for one corresponding to 'offset' and
1070 * try to find a checksum.  This is used because we allow pages to
1071 * be reclaimed before their checksum is actually put into the btree
 
 
 
 
 
 
 
 
 
1072 */
1073int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1074			   u32 *sum, int len)
 
1075{
1076	struct btrfs_ordered_sum *ordered_sum;
1077	struct btrfs_ordered_extent *ordered;
1078	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1079	unsigned long num_sectors;
1080	unsigned long i;
1081	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1082	int index = 0;
1083
1084	ordered = btrfs_lookup_ordered_extent(inode, offset);
1085	if (!ordered)
1086		return 0;
1087
1088	spin_lock_irq(&tree->lock);
1089	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1090		if (disk_bytenr >= ordered_sum->bytenr &&
1091		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1092			i = (disk_bytenr - ordered_sum->bytenr) >>
1093			    inode->i_sb->s_blocksize_bits;
1094			num_sectors = ordered_sum->len >>
1095				      inode->i_sb->s_blocksize_bits;
1096			num_sectors = min_t(int, len - index, num_sectors - i);
1097			memcpy(sum + index, ordered_sum->sums + i,
1098			       num_sectors);
1099
1100			index += (int)num_sectors;
1101			if (index == len)
1102				goto out;
1103			disk_bytenr += num_sectors * sectorsize;
1104		}
 
 
 
1105	}
1106out:
1107	spin_unlock_irq(&tree->lock);
1108	btrfs_put_ordered_extent(ordered);
1109	return index;
1110}
1111
1112
1113/*
1114 * add a given inode to the list of inodes that must be fully on
1115 * disk before a transaction commit finishes.
1116 *
1117 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1118 * used to make sure renamed files are fully on disk.
1119 *
1120 * It is a noop if the inode is already fully on disk.
1121 *
1122 * If trans is not null, we'll do a friendly check for a transaction that
1123 * is already flushing things and force the IO down ourselves.
1124 */
1125void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1126				 struct btrfs_root *root, struct inode *inode)
1127{
1128	struct btrfs_transaction *cur_trans = trans->transaction;
1129	u64 last_mod;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1132
 
 
 
 
 
 
 
 
1133	/*
1134	 * if this file hasn't been changed since the last transaction
1135	 * commit, we can safely return without doing anything
 
 
 
1136	 */
1137	if (last_mod <= root->fs_info->last_trans_committed)
1138		return;
1139
1140	spin_lock(&root->fs_info->ordered_root_lock);
1141	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1142		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1143			      &cur_trans->ordered_operations);
1144	}
1145	spin_unlock(&root->fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146}
1147
1148int __init ordered_data_init(void)
1149{
1150	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1151				     sizeof(struct btrfs_ordered_extent), 0,
1152				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1153				     NULL);
1154	if (!btrfs_ordered_extent_cache)
1155		return -ENOMEM;
1156
1157	return 0;
1158}
1159
1160void ordered_data_exit(void)
1161{
1162	if (btrfs_ordered_extent_cache)
1163		kmem_cache_destroy(btrfs_ordered_extent_cache);
1164}