Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/spinlock.h>
3#include <linux/slab.h>
4#include <linux/list.h>
5#include <linux/list_bl.h>
6#include <linux/module.h>
7#include <linux/sched.h>
8#include <linux/workqueue.h>
9#include <linux/mbcache.h>
10
11/*
12 * Mbcache is a simple key-value store. Keys need not be unique, however
13 * key-value pairs are expected to be unique (we use this fact in
14 * mb_cache_entry_delete_or_get()).
15 *
16 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
17 * Ext4 also uses it for deduplication of xattr values stored in inodes.
18 * They use hash of data as a key and provide a value that may represent a
19 * block or inode number. That's why keys need not be unique (hash of different
20 * data may be the same). However user provided value always uniquely
21 * identifies a cache entry.
22 *
23 * We provide functions for creation and removal of entries, search by key,
24 * and a special "delete entry with given key-value pair" operation. Fixed
25 * size hash table is used for fast key lookups.
26 */
27
28struct mb_cache {
29 /* Hash table of entries */
30 struct hlist_bl_head *c_hash;
31 /* log2 of hash table size */
32 int c_bucket_bits;
33 /* Maximum entries in cache to avoid degrading hash too much */
34 unsigned long c_max_entries;
35 /* Protects c_list, c_entry_count */
36 spinlock_t c_list_lock;
37 struct list_head c_list;
38 /* Number of entries in cache */
39 unsigned long c_entry_count;
40 struct shrinker *c_shrink;
41 /* Work for shrinking when the cache has too many entries */
42 struct work_struct c_shrink_work;
43};
44
45static struct kmem_cache *mb_entry_cache;
46
47static unsigned long mb_cache_shrink(struct mb_cache *cache,
48 unsigned long nr_to_scan);
49
50static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
51 u32 key)
52{
53 return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
54}
55
56/*
57 * Number of entries to reclaim synchronously when there are too many entries
58 * in cache
59 */
60#define SYNC_SHRINK_BATCH 64
61
62/*
63 * mb_cache_entry_create - create entry in cache
64 * @cache - cache where the entry should be created
65 * @mask - gfp mask with which the entry should be allocated
66 * @key - key of the entry
67 * @value - value of the entry
68 * @reusable - is the entry reusable by others?
69 *
70 * Creates entry in @cache with key @key and value @value. The function returns
71 * -EBUSY if entry with the same key and value already exists in cache.
72 * Otherwise 0 is returned.
73 */
74int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
75 u64 value, bool reusable)
76{
77 struct mb_cache_entry *entry, *dup;
78 struct hlist_bl_node *dup_node;
79 struct hlist_bl_head *head;
80
81 /* Schedule background reclaim if there are too many entries */
82 if (cache->c_entry_count >= cache->c_max_entries)
83 schedule_work(&cache->c_shrink_work);
84 /* Do some sync reclaim if background reclaim cannot keep up */
85 if (cache->c_entry_count >= 2*cache->c_max_entries)
86 mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
87
88 entry = kmem_cache_alloc(mb_entry_cache, mask);
89 if (!entry)
90 return -ENOMEM;
91
92 INIT_LIST_HEAD(&entry->e_list);
93 /*
94 * We create entry with two references. One reference is kept by the
95 * hash table, the other reference is used to protect us from
96 * mb_cache_entry_delete_or_get() until the entry is fully setup. This
97 * avoids nesting of cache->c_list_lock into hash table bit locks which
98 * is problematic for RT.
99 */
100 atomic_set(&entry->e_refcnt, 2);
101 entry->e_key = key;
102 entry->e_value = value;
103 entry->e_flags = 0;
104 if (reusable)
105 set_bit(MBE_REUSABLE_B, &entry->e_flags);
106 head = mb_cache_entry_head(cache, key);
107 hlist_bl_lock(head);
108 hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
109 if (dup->e_key == key && dup->e_value == value) {
110 hlist_bl_unlock(head);
111 kmem_cache_free(mb_entry_cache, entry);
112 return -EBUSY;
113 }
114 }
115 hlist_bl_add_head(&entry->e_hash_list, head);
116 hlist_bl_unlock(head);
117 spin_lock(&cache->c_list_lock);
118 list_add_tail(&entry->e_list, &cache->c_list);
119 cache->c_entry_count++;
120 spin_unlock(&cache->c_list_lock);
121 mb_cache_entry_put(cache, entry);
122
123 return 0;
124}
125EXPORT_SYMBOL(mb_cache_entry_create);
126
127void __mb_cache_entry_free(struct mb_cache *cache, struct mb_cache_entry *entry)
128{
129 struct hlist_bl_head *head;
130
131 head = mb_cache_entry_head(cache, entry->e_key);
132 hlist_bl_lock(head);
133 hlist_bl_del(&entry->e_hash_list);
134 hlist_bl_unlock(head);
135 kmem_cache_free(mb_entry_cache, entry);
136}
137EXPORT_SYMBOL(__mb_cache_entry_free);
138
139/*
140 * mb_cache_entry_wait_unused - wait to be the last user of the entry
141 *
142 * @entry - entry to work on
143 *
144 * Wait to be the last user of the entry.
145 */
146void mb_cache_entry_wait_unused(struct mb_cache_entry *entry)
147{
148 wait_var_event(&entry->e_refcnt, atomic_read(&entry->e_refcnt) <= 2);
149}
150EXPORT_SYMBOL(mb_cache_entry_wait_unused);
151
152static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
153 struct mb_cache_entry *entry,
154 u32 key)
155{
156 struct mb_cache_entry *old_entry = entry;
157 struct hlist_bl_node *node;
158 struct hlist_bl_head *head;
159
160 head = mb_cache_entry_head(cache, key);
161 hlist_bl_lock(head);
162 if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
163 node = entry->e_hash_list.next;
164 else
165 node = hlist_bl_first(head);
166 while (node) {
167 entry = hlist_bl_entry(node, struct mb_cache_entry,
168 e_hash_list);
169 if (entry->e_key == key &&
170 test_bit(MBE_REUSABLE_B, &entry->e_flags) &&
171 atomic_inc_not_zero(&entry->e_refcnt))
172 goto out;
173 node = node->next;
174 }
175 entry = NULL;
176out:
177 hlist_bl_unlock(head);
178 if (old_entry)
179 mb_cache_entry_put(cache, old_entry);
180
181 return entry;
182}
183
184/*
185 * mb_cache_entry_find_first - find the first reusable entry with the given key
186 * @cache: cache where we should search
187 * @key: key to look for
188 *
189 * Search in @cache for a reusable entry with key @key. Grabs reference to the
190 * first reusable entry found and returns the entry.
191 */
192struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
193 u32 key)
194{
195 return __entry_find(cache, NULL, key);
196}
197EXPORT_SYMBOL(mb_cache_entry_find_first);
198
199/*
200 * mb_cache_entry_find_next - find next reusable entry with the same key
201 * @cache: cache where we should search
202 * @entry: entry to start search from
203 *
204 * Finds next reusable entry in the hash chain which has the same key as @entry.
205 * If @entry is unhashed (which can happen when deletion of entry races with the
206 * search), finds the first reusable entry in the hash chain. The function drops
207 * reference to @entry and returns with a reference to the found entry.
208 */
209struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
210 struct mb_cache_entry *entry)
211{
212 return __entry_find(cache, entry, entry->e_key);
213}
214EXPORT_SYMBOL(mb_cache_entry_find_next);
215
216/*
217 * mb_cache_entry_get - get a cache entry by value (and key)
218 * @cache - cache we work with
219 * @key - key
220 * @value - value
221 */
222struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
223 u64 value)
224{
225 struct hlist_bl_node *node;
226 struct hlist_bl_head *head;
227 struct mb_cache_entry *entry;
228
229 head = mb_cache_entry_head(cache, key);
230 hlist_bl_lock(head);
231 hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
232 if (entry->e_key == key && entry->e_value == value &&
233 atomic_inc_not_zero(&entry->e_refcnt))
234 goto out;
235 }
236 entry = NULL;
237out:
238 hlist_bl_unlock(head);
239 return entry;
240}
241EXPORT_SYMBOL(mb_cache_entry_get);
242
243/* mb_cache_entry_delete_or_get - remove a cache entry if it has no users
244 * @cache - cache we work with
245 * @key - key
246 * @value - value
247 *
248 * Remove entry from cache @cache with key @key and value @value. The removal
249 * happens only if the entry is unused. The function returns NULL in case the
250 * entry was successfully removed or there's no entry in cache. Otherwise the
251 * function grabs reference of the entry that we failed to delete because it
252 * still has users and return it.
253 */
254struct mb_cache_entry *mb_cache_entry_delete_or_get(struct mb_cache *cache,
255 u32 key, u64 value)
256{
257 struct mb_cache_entry *entry;
258
259 entry = mb_cache_entry_get(cache, key, value);
260 if (!entry)
261 return NULL;
262
263 /*
264 * Drop the ref we got from mb_cache_entry_get() and the initial hash
265 * ref if we are the last user
266 */
267 if (atomic_cmpxchg(&entry->e_refcnt, 2, 0) != 2)
268 return entry;
269
270 spin_lock(&cache->c_list_lock);
271 if (!list_empty(&entry->e_list))
272 list_del_init(&entry->e_list);
273 cache->c_entry_count--;
274 spin_unlock(&cache->c_list_lock);
275 __mb_cache_entry_free(cache, entry);
276 return NULL;
277}
278EXPORT_SYMBOL(mb_cache_entry_delete_or_get);
279
280/* mb_cache_entry_touch - cache entry got used
281 * @cache - cache the entry belongs to
282 * @entry - entry that got used
283 *
284 * Marks entry as used to give hit higher chances of surviving in cache.
285 */
286void mb_cache_entry_touch(struct mb_cache *cache,
287 struct mb_cache_entry *entry)
288{
289 set_bit(MBE_REFERENCED_B, &entry->e_flags);
290}
291EXPORT_SYMBOL(mb_cache_entry_touch);
292
293static unsigned long mb_cache_count(struct shrinker *shrink,
294 struct shrink_control *sc)
295{
296 struct mb_cache *cache = shrink->private_data;
297
298 return cache->c_entry_count;
299}
300
301/* Shrink number of entries in cache */
302static unsigned long mb_cache_shrink(struct mb_cache *cache,
303 unsigned long nr_to_scan)
304{
305 struct mb_cache_entry *entry;
306 unsigned long shrunk = 0;
307
308 spin_lock(&cache->c_list_lock);
309 while (nr_to_scan-- && !list_empty(&cache->c_list)) {
310 entry = list_first_entry(&cache->c_list,
311 struct mb_cache_entry, e_list);
312 /* Drop initial hash reference if there is no user */
313 if (test_bit(MBE_REFERENCED_B, &entry->e_flags) ||
314 atomic_cmpxchg(&entry->e_refcnt, 1, 0) != 1) {
315 clear_bit(MBE_REFERENCED_B, &entry->e_flags);
316 list_move_tail(&entry->e_list, &cache->c_list);
317 continue;
318 }
319 list_del_init(&entry->e_list);
320 cache->c_entry_count--;
321 spin_unlock(&cache->c_list_lock);
322 __mb_cache_entry_free(cache, entry);
323 shrunk++;
324 cond_resched();
325 spin_lock(&cache->c_list_lock);
326 }
327 spin_unlock(&cache->c_list_lock);
328
329 return shrunk;
330}
331
332static unsigned long mb_cache_scan(struct shrinker *shrink,
333 struct shrink_control *sc)
334{
335 struct mb_cache *cache = shrink->private_data;
336 return mb_cache_shrink(cache, sc->nr_to_scan);
337}
338
339/* We shrink 1/X of the cache when we have too many entries in it */
340#define SHRINK_DIVISOR 16
341
342static void mb_cache_shrink_worker(struct work_struct *work)
343{
344 struct mb_cache *cache = container_of(work, struct mb_cache,
345 c_shrink_work);
346 mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
347}
348
349/*
350 * mb_cache_create - create cache
351 * @bucket_bits: log2 of the hash table size
352 *
353 * Create cache for keys with 2^bucket_bits hash entries.
354 */
355struct mb_cache *mb_cache_create(int bucket_bits)
356{
357 struct mb_cache *cache;
358 unsigned long bucket_count = 1UL << bucket_bits;
359 unsigned long i;
360
361 cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
362 if (!cache)
363 goto err_out;
364 cache->c_bucket_bits = bucket_bits;
365 cache->c_max_entries = bucket_count << 4;
366 INIT_LIST_HEAD(&cache->c_list);
367 spin_lock_init(&cache->c_list_lock);
368 cache->c_hash = kmalloc_array(bucket_count,
369 sizeof(struct hlist_bl_head),
370 GFP_KERNEL);
371 if (!cache->c_hash) {
372 kfree(cache);
373 goto err_out;
374 }
375 for (i = 0; i < bucket_count; i++)
376 INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
377
378 cache->c_shrink = shrinker_alloc(0, "mbcache-shrinker");
379 if (!cache->c_shrink) {
380 kfree(cache->c_hash);
381 kfree(cache);
382 goto err_out;
383 }
384
385 cache->c_shrink->count_objects = mb_cache_count;
386 cache->c_shrink->scan_objects = mb_cache_scan;
387 cache->c_shrink->private_data = cache;
388
389 shrinker_register(cache->c_shrink);
390
391 INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
392
393 return cache;
394
395err_out:
396 return NULL;
397}
398EXPORT_SYMBOL(mb_cache_create);
399
400/*
401 * mb_cache_destroy - destroy cache
402 * @cache: the cache to destroy
403 *
404 * Free all entries in cache and cache itself. Caller must make sure nobody
405 * (except shrinker) can reach @cache when calling this.
406 */
407void mb_cache_destroy(struct mb_cache *cache)
408{
409 struct mb_cache_entry *entry, *next;
410
411 shrinker_free(cache->c_shrink);
412
413 /*
414 * We don't bother with any locking. Cache must not be used at this
415 * point.
416 */
417 list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
418 list_del(&entry->e_list);
419 WARN_ON(atomic_read(&entry->e_refcnt) != 1);
420 mb_cache_entry_put(cache, entry);
421 }
422 kfree(cache->c_hash);
423 kfree(cache);
424}
425EXPORT_SYMBOL(mb_cache_destroy);
426
427static int __init mbcache_init(void)
428{
429 mb_entry_cache = KMEM_CACHE(mb_cache_entry, SLAB_RECLAIM_ACCOUNT);
430 if (!mb_entry_cache)
431 return -ENOMEM;
432 return 0;
433}
434
435static void __exit mbcache_exit(void)
436{
437 kmem_cache_destroy(mb_entry_cache);
438}
439
440module_init(mbcache_init)
441module_exit(mbcache_exit)
442
443MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
444MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
445MODULE_LICENSE("GPL");
1/*
2 * linux/fs/mbcache.c
3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4 */
5
6/*
7 * Filesystem Meta Information Block Cache (mbcache)
8 *
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
12 *
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
17 *
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
21 * or lists.
22 *
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
27 */
28
29#include <linux/kernel.h>
30#include <linux/module.h>
31
32#include <linux/hash.h>
33#include <linux/fs.h>
34#include <linux/mm.h>
35#include <linux/slab.h>
36#include <linux/sched.h>
37#include <linux/init.h>
38#include <linux/mbcache.h>
39
40
41#ifdef MB_CACHE_DEBUG
42# define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
44 printk("\n"); \
45 } while (0)
46#define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
48 } while(0)
49#else
50# define mb_debug(f...) do { } while(0)
51# define mb_assert(c) do { } while(0)
52#endif
53#define mb_error(f...) do { \
54 printk(KERN_ERR f); \
55 printk("\n"); \
56 } while(0)
57
58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59
60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61
62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64MODULE_LICENSE("GPL");
65
66EXPORT_SYMBOL(mb_cache_create);
67EXPORT_SYMBOL(mb_cache_shrink);
68EXPORT_SYMBOL(mb_cache_destroy);
69EXPORT_SYMBOL(mb_cache_entry_alloc);
70EXPORT_SYMBOL(mb_cache_entry_insert);
71EXPORT_SYMBOL(mb_cache_entry_release);
72EXPORT_SYMBOL(mb_cache_entry_free);
73EXPORT_SYMBOL(mb_cache_entry_get);
74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75EXPORT_SYMBOL(mb_cache_entry_find_first);
76EXPORT_SYMBOL(mb_cache_entry_find_next);
77#endif
78
79/*
80 * Global data: list of all mbcache's, lru list, and a spinlock for
81 * accessing cache data structures on SMP machines. The lru list is
82 * global across all mbcaches.
83 */
84
85static LIST_HEAD(mb_cache_list);
86static LIST_HEAD(mb_cache_lru_list);
87static DEFINE_SPINLOCK(mb_cache_spinlock);
88
89/*
90 * What the mbcache registers as to get shrunk dynamically.
91 */
92
93static int mb_cache_shrink_fn(struct shrinker *shrink,
94 struct shrink_control *sc);
95
96static struct shrinker mb_cache_shrinker = {
97 .shrink = mb_cache_shrink_fn,
98 .seeks = DEFAULT_SEEKS,
99};
100
101static inline int
102__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
103{
104 return !list_empty(&ce->e_block_list);
105}
106
107
108static void
109__mb_cache_entry_unhash(struct mb_cache_entry *ce)
110{
111 if (__mb_cache_entry_is_hashed(ce)) {
112 list_del_init(&ce->e_block_list);
113 list_del(&ce->e_index.o_list);
114 }
115}
116
117
118static void
119__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
120{
121 struct mb_cache *cache = ce->e_cache;
122
123 mb_assert(!(ce->e_used || ce->e_queued));
124 kmem_cache_free(cache->c_entry_cache, ce);
125 atomic_dec(&cache->c_entry_count);
126}
127
128
129static void
130__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
131 __releases(mb_cache_spinlock)
132{
133 /* Wake up all processes queuing for this cache entry. */
134 if (ce->e_queued)
135 wake_up_all(&mb_cache_queue);
136 if (ce->e_used >= MB_CACHE_WRITER)
137 ce->e_used -= MB_CACHE_WRITER;
138 ce->e_used--;
139 if (!(ce->e_used || ce->e_queued)) {
140 if (!__mb_cache_entry_is_hashed(ce))
141 goto forget;
142 mb_assert(list_empty(&ce->e_lru_list));
143 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
144 }
145 spin_unlock(&mb_cache_spinlock);
146 return;
147forget:
148 spin_unlock(&mb_cache_spinlock);
149 __mb_cache_entry_forget(ce, GFP_KERNEL);
150}
151
152
153/*
154 * mb_cache_shrink_fn() memory pressure callback
155 *
156 * This function is called by the kernel memory management when memory
157 * gets low.
158 *
159 * @shrink: (ignored)
160 * @sc: shrink_control passed from reclaim
161 *
162 * Returns the number of objects which are present in the cache.
163 */
164static int
165mb_cache_shrink_fn(struct shrinker *shrink, struct shrink_control *sc)
166{
167 LIST_HEAD(free_list);
168 struct mb_cache *cache;
169 struct mb_cache_entry *entry, *tmp;
170 int count = 0;
171 int nr_to_scan = sc->nr_to_scan;
172 gfp_t gfp_mask = sc->gfp_mask;
173
174 mb_debug("trying to free %d entries", nr_to_scan);
175 spin_lock(&mb_cache_spinlock);
176 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
177 struct mb_cache_entry *ce =
178 list_entry(mb_cache_lru_list.next,
179 struct mb_cache_entry, e_lru_list);
180 list_move_tail(&ce->e_lru_list, &free_list);
181 __mb_cache_entry_unhash(ce);
182 }
183 list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
184 mb_debug("cache %s (%d)", cache->c_name,
185 atomic_read(&cache->c_entry_count));
186 count += atomic_read(&cache->c_entry_count);
187 }
188 spin_unlock(&mb_cache_spinlock);
189 list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
190 __mb_cache_entry_forget(entry, gfp_mask);
191 }
192 return (count / 100) * sysctl_vfs_cache_pressure;
193}
194
195
196/*
197 * mb_cache_create() create a new cache
198 *
199 * All entries in one cache are equal size. Cache entries may be from
200 * multiple devices. If this is the first mbcache created, registers
201 * the cache with kernel memory management. Returns NULL if no more
202 * memory was available.
203 *
204 * @name: name of the cache (informal)
205 * @bucket_bits: log2(number of hash buckets)
206 */
207struct mb_cache *
208mb_cache_create(const char *name, int bucket_bits)
209{
210 int n, bucket_count = 1 << bucket_bits;
211 struct mb_cache *cache = NULL;
212
213 cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
214 if (!cache)
215 return NULL;
216 cache->c_name = name;
217 atomic_set(&cache->c_entry_count, 0);
218 cache->c_bucket_bits = bucket_bits;
219 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
220 GFP_KERNEL);
221 if (!cache->c_block_hash)
222 goto fail;
223 for (n=0; n<bucket_count; n++)
224 INIT_LIST_HEAD(&cache->c_block_hash[n]);
225 cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
226 GFP_KERNEL);
227 if (!cache->c_index_hash)
228 goto fail;
229 for (n=0; n<bucket_count; n++)
230 INIT_LIST_HEAD(&cache->c_index_hash[n]);
231 cache->c_entry_cache = kmem_cache_create(name,
232 sizeof(struct mb_cache_entry), 0,
233 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
234 if (!cache->c_entry_cache)
235 goto fail2;
236
237 /*
238 * Set an upper limit on the number of cache entries so that the hash
239 * chains won't grow too long.
240 */
241 cache->c_max_entries = bucket_count << 4;
242
243 spin_lock(&mb_cache_spinlock);
244 list_add(&cache->c_cache_list, &mb_cache_list);
245 spin_unlock(&mb_cache_spinlock);
246 return cache;
247
248fail2:
249 kfree(cache->c_index_hash);
250
251fail:
252 kfree(cache->c_block_hash);
253 kfree(cache);
254 return NULL;
255}
256
257
258/*
259 * mb_cache_shrink()
260 *
261 * Removes all cache entries of a device from the cache. All cache entries
262 * currently in use cannot be freed, and thus remain in the cache. All others
263 * are freed.
264 *
265 * @bdev: which device's cache entries to shrink
266 */
267void
268mb_cache_shrink(struct block_device *bdev)
269{
270 LIST_HEAD(free_list);
271 struct list_head *l, *ltmp;
272
273 spin_lock(&mb_cache_spinlock);
274 list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
275 struct mb_cache_entry *ce =
276 list_entry(l, struct mb_cache_entry, e_lru_list);
277 if (ce->e_bdev == bdev) {
278 list_move_tail(&ce->e_lru_list, &free_list);
279 __mb_cache_entry_unhash(ce);
280 }
281 }
282 spin_unlock(&mb_cache_spinlock);
283 list_for_each_safe(l, ltmp, &free_list) {
284 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
285 e_lru_list), GFP_KERNEL);
286 }
287}
288
289
290/*
291 * mb_cache_destroy()
292 *
293 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
294 * and then destroys it. If this was the last mbcache, un-registers the
295 * mbcache from kernel memory management.
296 */
297void
298mb_cache_destroy(struct mb_cache *cache)
299{
300 LIST_HEAD(free_list);
301 struct list_head *l, *ltmp;
302
303 spin_lock(&mb_cache_spinlock);
304 list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
305 struct mb_cache_entry *ce =
306 list_entry(l, struct mb_cache_entry, e_lru_list);
307 if (ce->e_cache == cache) {
308 list_move_tail(&ce->e_lru_list, &free_list);
309 __mb_cache_entry_unhash(ce);
310 }
311 }
312 list_del(&cache->c_cache_list);
313 spin_unlock(&mb_cache_spinlock);
314
315 list_for_each_safe(l, ltmp, &free_list) {
316 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
317 e_lru_list), GFP_KERNEL);
318 }
319
320 if (atomic_read(&cache->c_entry_count) > 0) {
321 mb_error("cache %s: %d orphaned entries",
322 cache->c_name,
323 atomic_read(&cache->c_entry_count));
324 }
325
326 kmem_cache_destroy(cache->c_entry_cache);
327
328 kfree(cache->c_index_hash);
329 kfree(cache->c_block_hash);
330 kfree(cache);
331}
332
333/*
334 * mb_cache_entry_alloc()
335 *
336 * Allocates a new cache entry. The new entry will not be valid initially,
337 * and thus cannot be looked up yet. It should be filled with data, and
338 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
339 * if no more memory was available.
340 */
341struct mb_cache_entry *
342mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
343{
344 struct mb_cache_entry *ce = NULL;
345
346 if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
347 spin_lock(&mb_cache_spinlock);
348 if (!list_empty(&mb_cache_lru_list)) {
349 ce = list_entry(mb_cache_lru_list.next,
350 struct mb_cache_entry, e_lru_list);
351 list_del_init(&ce->e_lru_list);
352 __mb_cache_entry_unhash(ce);
353 }
354 spin_unlock(&mb_cache_spinlock);
355 }
356 if (!ce) {
357 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
358 if (!ce)
359 return NULL;
360 atomic_inc(&cache->c_entry_count);
361 INIT_LIST_HEAD(&ce->e_lru_list);
362 INIT_LIST_HEAD(&ce->e_block_list);
363 ce->e_cache = cache;
364 ce->e_queued = 0;
365 }
366 ce->e_used = 1 + MB_CACHE_WRITER;
367 return ce;
368}
369
370
371/*
372 * mb_cache_entry_insert()
373 *
374 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
375 * the cache. After this, the cache entry can be looked up, but is not yet
376 * in the lru list as the caller still holds a handle to it. Returns 0 on
377 * success, or -EBUSY if a cache entry for that device + inode exists
378 * already (this may happen after a failed lookup, but when another process
379 * has inserted the same cache entry in the meantime).
380 *
381 * @bdev: device the cache entry belongs to
382 * @block: block number
383 * @key: lookup key
384 */
385int
386mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
387 sector_t block, unsigned int key)
388{
389 struct mb_cache *cache = ce->e_cache;
390 unsigned int bucket;
391 struct list_head *l;
392 int error = -EBUSY;
393
394 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
395 cache->c_bucket_bits);
396 spin_lock(&mb_cache_spinlock);
397 list_for_each_prev(l, &cache->c_block_hash[bucket]) {
398 struct mb_cache_entry *ce =
399 list_entry(l, struct mb_cache_entry, e_block_list);
400 if (ce->e_bdev == bdev && ce->e_block == block)
401 goto out;
402 }
403 __mb_cache_entry_unhash(ce);
404 ce->e_bdev = bdev;
405 ce->e_block = block;
406 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
407 ce->e_index.o_key = key;
408 bucket = hash_long(key, cache->c_bucket_bits);
409 list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
410 error = 0;
411out:
412 spin_unlock(&mb_cache_spinlock);
413 return error;
414}
415
416
417/*
418 * mb_cache_entry_release()
419 *
420 * Release a handle to a cache entry. When the last handle to a cache entry
421 * is released it is either freed (if it is invalid) or otherwise inserted
422 * in to the lru list.
423 */
424void
425mb_cache_entry_release(struct mb_cache_entry *ce)
426{
427 spin_lock(&mb_cache_spinlock);
428 __mb_cache_entry_release_unlock(ce);
429}
430
431
432/*
433 * mb_cache_entry_free()
434 *
435 * This is equivalent to the sequence mb_cache_entry_takeout() --
436 * mb_cache_entry_release().
437 */
438void
439mb_cache_entry_free(struct mb_cache_entry *ce)
440{
441 spin_lock(&mb_cache_spinlock);
442 mb_assert(list_empty(&ce->e_lru_list));
443 __mb_cache_entry_unhash(ce);
444 __mb_cache_entry_release_unlock(ce);
445}
446
447
448/*
449 * mb_cache_entry_get()
450 *
451 * Get a cache entry by device / block number. (There can only be one entry
452 * in the cache per device and block.) Returns NULL if no such cache entry
453 * exists. The returned cache entry is locked for exclusive access ("single
454 * writer").
455 */
456struct mb_cache_entry *
457mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
458 sector_t block)
459{
460 unsigned int bucket;
461 struct list_head *l;
462 struct mb_cache_entry *ce;
463
464 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
465 cache->c_bucket_bits);
466 spin_lock(&mb_cache_spinlock);
467 list_for_each(l, &cache->c_block_hash[bucket]) {
468 ce = list_entry(l, struct mb_cache_entry, e_block_list);
469 if (ce->e_bdev == bdev && ce->e_block == block) {
470 DEFINE_WAIT(wait);
471
472 if (!list_empty(&ce->e_lru_list))
473 list_del_init(&ce->e_lru_list);
474
475 while (ce->e_used > 0) {
476 ce->e_queued++;
477 prepare_to_wait(&mb_cache_queue, &wait,
478 TASK_UNINTERRUPTIBLE);
479 spin_unlock(&mb_cache_spinlock);
480 schedule();
481 spin_lock(&mb_cache_spinlock);
482 ce->e_queued--;
483 }
484 finish_wait(&mb_cache_queue, &wait);
485 ce->e_used += 1 + MB_CACHE_WRITER;
486
487 if (!__mb_cache_entry_is_hashed(ce)) {
488 __mb_cache_entry_release_unlock(ce);
489 return NULL;
490 }
491 goto cleanup;
492 }
493 }
494 ce = NULL;
495
496cleanup:
497 spin_unlock(&mb_cache_spinlock);
498 return ce;
499}
500
501#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
502
503static struct mb_cache_entry *
504__mb_cache_entry_find(struct list_head *l, struct list_head *head,
505 struct block_device *bdev, unsigned int key)
506{
507 while (l != head) {
508 struct mb_cache_entry *ce =
509 list_entry(l, struct mb_cache_entry, e_index.o_list);
510 if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
511 DEFINE_WAIT(wait);
512
513 if (!list_empty(&ce->e_lru_list))
514 list_del_init(&ce->e_lru_list);
515
516 /* Incrementing before holding the lock gives readers
517 priority over writers. */
518 ce->e_used++;
519 while (ce->e_used >= MB_CACHE_WRITER) {
520 ce->e_queued++;
521 prepare_to_wait(&mb_cache_queue, &wait,
522 TASK_UNINTERRUPTIBLE);
523 spin_unlock(&mb_cache_spinlock);
524 schedule();
525 spin_lock(&mb_cache_spinlock);
526 ce->e_queued--;
527 }
528 finish_wait(&mb_cache_queue, &wait);
529
530 if (!__mb_cache_entry_is_hashed(ce)) {
531 __mb_cache_entry_release_unlock(ce);
532 spin_lock(&mb_cache_spinlock);
533 return ERR_PTR(-EAGAIN);
534 }
535 return ce;
536 }
537 l = l->next;
538 }
539 return NULL;
540}
541
542
543/*
544 * mb_cache_entry_find_first()
545 *
546 * Find the first cache entry on a given device with a certain key in
547 * an additional index. Additional matches can be found with
548 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
549 * returned cache entry is locked for shared access ("multiple readers").
550 *
551 * @cache: the cache to search
552 * @bdev: the device the cache entry should belong to
553 * @key: the key in the index
554 */
555struct mb_cache_entry *
556mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
557 unsigned int key)
558{
559 unsigned int bucket = hash_long(key, cache->c_bucket_bits);
560 struct list_head *l;
561 struct mb_cache_entry *ce;
562
563 spin_lock(&mb_cache_spinlock);
564 l = cache->c_index_hash[bucket].next;
565 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
566 spin_unlock(&mb_cache_spinlock);
567 return ce;
568}
569
570
571/*
572 * mb_cache_entry_find_next()
573 *
574 * Find the next cache entry on a given device with a certain key in an
575 * additional index. Returns NULL if no match could be found. The previous
576 * entry is atomatically released, so that mb_cache_entry_find_next() can
577 * be called like this:
578 *
579 * entry = mb_cache_entry_find_first();
580 * while (entry) {
581 * ...
582 * entry = mb_cache_entry_find_next(entry, ...);
583 * }
584 *
585 * @prev: The previous match
586 * @bdev: the device the cache entry should belong to
587 * @key: the key in the index
588 */
589struct mb_cache_entry *
590mb_cache_entry_find_next(struct mb_cache_entry *prev,
591 struct block_device *bdev, unsigned int key)
592{
593 struct mb_cache *cache = prev->e_cache;
594 unsigned int bucket = hash_long(key, cache->c_bucket_bits);
595 struct list_head *l;
596 struct mb_cache_entry *ce;
597
598 spin_lock(&mb_cache_spinlock);
599 l = prev->e_index.o_list.next;
600 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
601 __mb_cache_entry_release_unlock(prev);
602 return ce;
603}
604
605#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
606
607static int __init init_mbcache(void)
608{
609 register_shrinker(&mb_cache_shrinker);
610 return 0;
611}
612
613static void __exit exit_mbcache(void)
614{
615 unregister_shrinker(&mb_cache_shrinker);
616}
617
618module_init(init_mbcache)
619module_exit(exit_mbcache)
620