Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/spinlock.h>
  3#include <linux/slab.h>
  4#include <linux/list.h>
  5#include <linux/list_bl.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6#include <linux/module.h>
 
 
 
 
 
  7#include <linux/sched.h>
  8#include <linux/workqueue.h>
  9#include <linux/mbcache.h>
 
 
 10
 11/*
 12 * Mbcache is a simple key-value store. Keys need not be unique, however
 13 * key-value pairs are expected to be unique (we use this fact in
 14 * mb_cache_entry_delete_or_get()).
 15 *
 16 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
 17 * Ext4 also uses it for deduplication of xattr values stored in inodes.
 18 * They use hash of data as a key and provide a value that may represent a
 19 * block or inode number. That's why keys need not be unique (hash of different
 20 * data may be the same). However user provided value always uniquely
 21 * identifies a cache entry.
 22 *
 23 * We provide functions for creation and removal of entries, search by key,
 24 * and a special "delete entry with given key-value pair" operation. Fixed
 25 * size hash table is used for fast key lookups.
 26 */
 27
 28struct mb_cache {
 29	/* Hash table of entries */
 30	struct hlist_bl_head	*c_hash;
 31	/* log2 of hash table size */
 32	int			c_bucket_bits;
 33	/* Maximum entries in cache to avoid degrading hash too much */
 34	unsigned long		c_max_entries;
 35	/* Protects c_list, c_entry_count */
 36	spinlock_t		c_list_lock;
 37	struct list_head	c_list;
 38	/* Number of entries in cache */
 39	unsigned long		c_entry_count;
 40	struct shrinker		*c_shrink;
 41	/* Work for shrinking when the cache has too many entries */
 42	struct work_struct	c_shrink_work;
 43};
 44
 45static struct kmem_cache *mb_entry_cache;
 46
 47static unsigned long mb_cache_shrink(struct mb_cache *cache,
 48				     unsigned long nr_to_scan);
 
 49
 50static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
 51							u32 key)
 52{
 53	return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
 54}
 
 
 
 
 
 
 
 55
 56/*
 57 * Number of entries to reclaim synchronously when there are too many entries
 58 * in cache
 
 59 */
 60#define SYNC_SHRINK_BATCH 64
 61
 62/*
 63 * mb_cache_entry_create - create entry in cache
 64 * @cache - cache where the entry should be created
 65 * @mask - gfp mask with which the entry should be allocated
 66 * @key - key of the entry
 67 * @value - value of the entry
 68 * @reusable - is the entry reusable by others?
 69 *
 70 * Creates entry in @cache with key @key and value @value. The function returns
 71 * -EBUSY if entry with the same key and value already exists in cache.
 72 * Otherwise 0 is returned.
 73 */
 74int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
 75			  u64 value, bool reusable)
 76{
 77	struct mb_cache_entry *entry, *dup;
 78	struct hlist_bl_node *dup_node;
 79	struct hlist_bl_head *head;
 80
 81	/* Schedule background reclaim if there are too many entries */
 82	if (cache->c_entry_count >= cache->c_max_entries)
 83		schedule_work(&cache->c_shrink_work);
 84	/* Do some sync reclaim if background reclaim cannot keep up */
 85	if (cache->c_entry_count >= 2*cache->c_max_entries)
 86		mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
 87
 88	entry = kmem_cache_alloc(mb_entry_cache, mask);
 89	if (!entry)
 90		return -ENOMEM;
 
 
 91
 92	INIT_LIST_HEAD(&entry->e_list);
 93	/*
 94	 * We create entry with two references. One reference is kept by the
 95	 * hash table, the other reference is used to protect us from
 96	 * mb_cache_entry_delete_or_get() until the entry is fully setup. This
 97	 * avoids nesting of cache->c_list_lock into hash table bit locks which
 98	 * is problematic for RT.
 99	 */
100	atomic_set(&entry->e_refcnt, 2);
101	entry->e_key = key;
102	entry->e_value = value;
103	entry->e_flags = 0;
104	if (reusable)
105		set_bit(MBE_REUSABLE_B, &entry->e_flags);
106	head = mb_cache_entry_head(cache, key);
107	hlist_bl_lock(head);
108	hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
109		if (dup->e_key == key && dup->e_value == value) {
110			hlist_bl_unlock(head);
111			kmem_cache_free(mb_entry_cache, entry);
112			return -EBUSY;
113		}
114	}
115	hlist_bl_add_head(&entry->e_hash_list, head);
116	hlist_bl_unlock(head);
117	spin_lock(&cache->c_list_lock);
118	list_add_tail(&entry->e_list, &cache->c_list);
119	cache->c_entry_count++;
120	spin_unlock(&cache->c_list_lock);
121	mb_cache_entry_put(cache, entry);
122
123	return 0;
 
 
 
 
124}
125EXPORT_SYMBOL(mb_cache_entry_create);
126
127void __mb_cache_entry_free(struct mb_cache *cache, struct mb_cache_entry *entry)
 
128{
129	struct hlist_bl_head *head;
 
130
131	head = mb_cache_entry_head(cache, entry->e_key);
132	hlist_bl_lock(head);
133	hlist_bl_del(&entry->e_hash_list);
134	hlist_bl_unlock(head);
135	kmem_cache_free(mb_entry_cache, entry);
136}
137EXPORT_SYMBOL(__mb_cache_entry_free);
138
139/*
140 * mb_cache_entry_wait_unused - wait to be the last user of the entry
141 *
142 * @entry - entry to work on
143 *
144 * Wait to be the last user of the entry.
 
 
 
145 */
146void mb_cache_entry_wait_unused(struct mb_cache_entry *entry)
 
147{
148	wait_var_event(&entry->e_refcnt, atomic_read(&entry->e_refcnt) <= 2);
 
 
 
149}
150EXPORT_SYMBOL(mb_cache_entry_wait_unused);
151
152static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
153					   struct mb_cache_entry *entry,
154					   u32 key)
155{
156	struct mb_cache_entry *old_entry = entry;
157	struct hlist_bl_node *node;
158	struct hlist_bl_head *head;
159
160	head = mb_cache_entry_head(cache, key);
161	hlist_bl_lock(head);
162	if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
163		node = entry->e_hash_list.next;
164	else
165		node = hlist_bl_first(head);
166	while (node) {
167		entry = hlist_bl_entry(node, struct mb_cache_entry,
168				       e_hash_list);
169		if (entry->e_key == key &&
170		    test_bit(MBE_REUSABLE_B, &entry->e_flags) &&
171		    atomic_inc_not_zero(&entry->e_refcnt))
172			goto out;
173		node = node->next;
174	}
175	entry = NULL;
176out:
177	hlist_bl_unlock(head);
178	if (old_entry)
179		mb_cache_entry_put(cache, old_entry);
180
181	return entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182}
183
184/*
185 * mb_cache_entry_find_first - find the first reusable entry with the given key
186 * @cache: cache where we should search
187 * @key: key to look for
188 *
189 * Search in @cache for a reusable entry with key @key. Grabs reference to the
190 * first reusable entry found and returns the entry.
191 */
192struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
193						 u32 key)
194{
195	return __entry_find(cache, NULL, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196}
197EXPORT_SYMBOL(mb_cache_entry_find_first);
198
199/*
200 * mb_cache_entry_find_next - find next reusable entry with the same key
201 * @cache: cache where we should search
202 * @entry: entry to start search from
203 *
204 * Finds next reusable entry in the hash chain which has the same key as @entry.
205 * If @entry is unhashed (which can happen when deletion of entry races with the
206 * search), finds the first reusable entry in the hash chain. The function drops
207 * reference to @entry and returns with a reference to the found entry.
208 */
209struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
210						struct mb_cache_entry *entry)
211{
212	return __entry_find(cache, entry, entry->e_key);
213}
214EXPORT_SYMBOL(mb_cache_entry_find_next);
215
216/*
217 * mb_cache_entry_get - get a cache entry by value (and key)
218 * @cache - cache we work with
219 * @key - key
220 * @value - value
221 */
222struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
223					  u64 value)
224{
225	struct hlist_bl_node *node;
226	struct hlist_bl_head *head;
227	struct mb_cache_entry *entry;
228
229	head = mb_cache_entry_head(cache, key);
230	hlist_bl_lock(head);
231	hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
232		if (entry->e_key == key && entry->e_value == value &&
233		    atomic_inc_not_zero(&entry->e_refcnt))
234			goto out;
235	}
236	entry = NULL;
237out:
238	hlist_bl_unlock(head);
239	return entry;
240}
241EXPORT_SYMBOL(mb_cache_entry_get);
242
243/* mb_cache_entry_delete_or_get - remove a cache entry if it has no users
244 * @cache - cache we work with
245 * @key - key
246 * @value - value
247 *
248 * Remove entry from cache @cache with key @key and value @value. The removal
249 * happens only if the entry is unused. The function returns NULL in case the
250 * entry was successfully removed or there's no entry in cache. Otherwise the
251 * function grabs reference of the entry that we failed to delete because it
252 * still has users and return it.
253 */
254struct mb_cache_entry *mb_cache_entry_delete_or_get(struct mb_cache *cache,
255						    u32 key, u64 value)
256{
257	struct mb_cache_entry *entry;
258
259	entry = mb_cache_entry_get(cache, key, value);
260	if (!entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
263	/*
264	 * Drop the ref we got from mb_cache_entry_get() and the initial hash
265	 * ref if we are the last user
266	 */
267	if (atomic_cmpxchg(&entry->e_refcnt, 2, 0) != 2)
268		return entry;
269
270	spin_lock(&cache->c_list_lock);
271	if (!list_empty(&entry->e_list))
272		list_del_init(&entry->e_list);
273	cache->c_entry_count--;
274	spin_unlock(&cache->c_list_lock);
275	__mb_cache_entry_free(cache, entry);
 
 
 
 
 
276	return NULL;
277}
278EXPORT_SYMBOL(mb_cache_entry_delete_or_get);
279
280/* mb_cache_entry_touch - cache entry got used
281 * @cache - cache the entry belongs to
282 * @entry - entry that got used
283 *
284 * Marks entry as used to give hit higher chances of surviving in cache.
285 */
286void mb_cache_entry_touch(struct mb_cache *cache,
287			  struct mb_cache_entry *entry)
288{
289	set_bit(MBE_REFERENCED_B, &entry->e_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
291EXPORT_SYMBOL(mb_cache_entry_touch);
292
293static unsigned long mb_cache_count(struct shrinker *shrink,
294				    struct shrink_control *sc)
295{
296	struct mb_cache *cache = shrink->private_data;
297
298	return cache->c_entry_count;
299}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300
301/* Shrink number of entries in cache */
302static unsigned long mb_cache_shrink(struct mb_cache *cache,
303				     unsigned long nr_to_scan)
304{
305	struct mb_cache_entry *entry;
306	unsigned long shrunk = 0;
 
 
 
 
 
 
307
308	spin_lock(&cache->c_list_lock);
309	while (nr_to_scan-- && !list_empty(&cache->c_list)) {
310		entry = list_first_entry(&cache->c_list,
311					 struct mb_cache_entry, e_list);
312		/* Drop initial hash reference if there is no user */
313		if (test_bit(MBE_REFERENCED_B, &entry->e_flags) ||
314		    atomic_cmpxchg(&entry->e_refcnt, 1, 0) != 1) {
315			clear_bit(MBE_REFERENCED_B, &entry->e_flags);
316			list_move_tail(&entry->e_list, &cache->c_list);
317			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318		}
319		list_del_init(&entry->e_list);
320		cache->c_entry_count--;
321		spin_unlock(&cache->c_list_lock);
322		__mb_cache_entry_free(cache, entry);
323		shrunk++;
324		cond_resched();
325		spin_lock(&cache->c_list_lock);
326	}
327	spin_unlock(&cache->c_list_lock);
328
329	return shrunk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330}
331
332static unsigned long mb_cache_scan(struct shrinker *shrink,
333				   struct shrink_control *sc)
334{
335	struct mb_cache *cache = shrink->private_data;
336	return mb_cache_shrink(cache, sc->nr_to_scan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337}
338
339/* We shrink 1/X of the cache when we have too many entries in it */
340#define SHRINK_DIVISOR 16
341
342static void mb_cache_shrink_worker(struct work_struct *work)
 
 
 
 
 
 
 
 
343{
344	struct mb_cache *cache = container_of(work, struct mb_cache,
345					      c_shrink_work);
346	mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
347}
348
 
349/*
350 * mb_cache_create - create cache
351 * @bucket_bits: log2 of the hash table size
352 *
353 * Create cache for keys with 2^bucket_bits hash entries.
354 */
355struct mb_cache *mb_cache_create(int bucket_bits)
 
356{
357	struct mb_cache *cache;
358	unsigned long bucket_count = 1UL << bucket_bits;
359	unsigned long i;
360
361	cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
362	if (!cache)
363		goto err_out;
364	cache->c_bucket_bits = bucket_bits;
365	cache->c_max_entries = bucket_count << 4;
366	INIT_LIST_HEAD(&cache->c_list);
367	spin_lock_init(&cache->c_list_lock);
368	cache->c_hash = kmalloc_array(bucket_count,
369				      sizeof(struct hlist_bl_head),
370				      GFP_KERNEL);
371	if (!cache->c_hash) {
372		kfree(cache);
373		goto err_out;
374	}
375	for (i = 0; i < bucket_count; i++)
376		INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
377
378	cache->c_shrink = shrinker_alloc(0, "mbcache-shrinker");
379	if (!cache->c_shrink) {
380		kfree(cache->c_hash);
381		kfree(cache);
382		goto err_out;
383	}
384
385	cache->c_shrink->count_objects = mb_cache_count;
386	cache->c_shrink->scan_objects = mb_cache_scan;
387	cache->c_shrink->private_data = cache;
388
389	shrinker_register(cache->c_shrink);
390
391	INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392
393	return cache;
394
395err_out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396	return NULL;
397}
398EXPORT_SYMBOL(mb_cache_create);
399
400/*
401 * mb_cache_destroy - destroy cache
402 * @cache: the cache to destroy
403 *
404 * Free all entries in cache and cache itself. Caller must make sure nobody
405 * (except shrinker) can reach @cache when calling this.
406 */
407void mb_cache_destroy(struct mb_cache *cache)
408{
409	struct mb_cache_entry *entry, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
411	shrinker_free(cache->c_shrink);
412
413	/*
414	 * We don't bother with any locking. Cache must not be used at this
415	 * point.
416	 */
417	list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
418		list_del(&entry->e_list);
419		WARN_ON(atomic_read(&entry->e_refcnt) != 1);
420		mb_cache_entry_put(cache, entry);
421	}
422	kfree(cache->c_hash);
423	kfree(cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424}
425EXPORT_SYMBOL(mb_cache_destroy);
426
427static int __init mbcache_init(void)
 
 
428{
429	mb_entry_cache = KMEM_CACHE(mb_cache_entry, SLAB_RECLAIM_ACCOUNT);
430	if (!mb_entry_cache)
431		return -ENOMEM;
432	return 0;
433}
434
435static void __exit mbcache_exit(void)
436{
437	kmem_cache_destroy(mb_entry_cache);
438}
439
440module_init(mbcache_init)
441module_exit(mbcache_exit)
442
443MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
444MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
445MODULE_LICENSE("GPL");
v3.15
  1/*
  2 * linux/fs/mbcache.c
  3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
  4 */
  5
  6/*
  7 * Filesystem Meta Information Block Cache (mbcache)
  8 *
  9 * The mbcache caches blocks of block devices that need to be located
 10 * by their device/block number, as well as by other criteria (such
 11 * as the block's contents).
 12 *
 13 * There can only be one cache entry in a cache per device and block number.
 14 * Additional indexes need not be unique in this sense. The number of
 15 * additional indexes (=other criteria) can be hardwired at compile time
 16 * or specified at cache create time.
 17 *
 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
 19 * in the cache. A valid entry is in the main hash tables of the cache,
 20 * and may also be in the lru list. An invalid entry is not in any hashes
 21 * or lists.
 22 *
 23 * A valid cache entry is only in the lru list if no handles refer to it.
 24 * Invalid cache entries will be freed when the last handle to the cache
 25 * entry is released. Entries that cannot be freed immediately are put
 26 * back on the lru list.
 27 */
 28
 29/*
 30 * Lock descriptions and usage:
 31 *
 32 * Each hash chain of both the block and index hash tables now contains
 33 * a built-in lock used to serialize accesses to the hash chain.
 34 *
 35 * Accesses to global data structures mb_cache_list and mb_cache_lru_list
 36 * are serialized via the global spinlock mb_cache_spinlock.
 37 *
 38 * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize
 39 * accesses to its local data, such as e_used and e_queued.
 40 *
 41 * Lock ordering:
 42 *
 43 * Each block hash chain's lock has the highest lock order, followed by an
 44 * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's
 45 * lock), and mb_cach_spinlock, with the lowest order.  While holding
 46 * either a block or index hash chain lock, a thread can acquire an
 47 * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock.
 48 *
 49 * Synchronization:
 50 *
 51 * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and
 52 * index hash chian, it needs to lock the corresponding hash chain.  For each
 53 * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to
 54 * prevent either any simultaneous release or free on the entry and also
 55 * to serialize accesses to either the e_used or e_queued member of the entry.
 56 *
 57 * To avoid having a dangling reference to an already freed
 58 * mb_cache_entry, an mb_cache_entry is only freed when it is not on a
 59 * block hash chain and also no longer being referenced, both e_used,
 60 * and e_queued are 0's.  When an mb_cache_entry is explicitly freed it is
 61 * first removed from a block hash chain.
 62 */
 63
 64#include <linux/kernel.h>
 65#include <linux/module.h>
 66
 67#include <linux/hash.h>
 68#include <linux/fs.h>
 69#include <linux/mm.h>
 70#include <linux/slab.h>
 71#include <linux/sched.h>
 72#include <linux/list_bl.h>
 73#include <linux/mbcache.h>
 74#include <linux/init.h>
 75#include <linux/blockgroup_lock.h>
 76
 77#ifdef MB_CACHE_DEBUG
 78# define mb_debug(f...) do { \
 79		printk(KERN_DEBUG f); \
 80		printk("\n"); \
 81	} while (0)
 82#define mb_assert(c) do { if (!(c)) \
 83		printk(KERN_ERR "assertion " #c " failed\n"); \
 84	} while(0)
 85#else
 86# define mb_debug(f...) do { } while(0)
 87# define mb_assert(c) do { } while(0)
 88#endif
 89#define mb_error(f...) do { \
 90		printk(KERN_ERR f); \
 91		printk("\n"); \
 92	} while(0)
 93
 94#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
 95
 96#define MB_CACHE_ENTRY_LOCK_BITS	__builtin_log2(NR_BG_LOCKS)
 97#define	MB_CACHE_ENTRY_LOCK_INDEX(ce)			\
 98	(hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS))
 99
100static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
101static struct blockgroup_lock *mb_cache_bg_lock;
102static struct kmem_cache *mb_cache_kmem_cache;
 
 
 
 
 
 
 
 
 
103
104MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
105MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
106MODULE_LICENSE("GPL");
107
108EXPORT_SYMBOL(mb_cache_create);
109EXPORT_SYMBOL(mb_cache_shrink);
110EXPORT_SYMBOL(mb_cache_destroy);
111EXPORT_SYMBOL(mb_cache_entry_alloc);
112EXPORT_SYMBOL(mb_cache_entry_insert);
113EXPORT_SYMBOL(mb_cache_entry_release);
114EXPORT_SYMBOL(mb_cache_entry_free);
115EXPORT_SYMBOL(mb_cache_entry_get);
116#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
117EXPORT_SYMBOL(mb_cache_entry_find_first);
118EXPORT_SYMBOL(mb_cache_entry_find_next);
119#endif
120
121/*
122 * Global data: list of all mbcache's, lru list, and a spinlock for
123 * accessing cache data structures on SMP machines. The lru list is
124 * global across all mbcaches.
125 */
 
126
127static LIST_HEAD(mb_cache_list);
128static LIST_HEAD(mb_cache_lru_list);
129static DEFINE_SPINLOCK(mb_cache_spinlock);
130
131static inline void
132__spin_lock_mb_cache_entry(struct mb_cache_entry *ce)
 
 
 
 
 
 
 
 
133{
134	spin_lock(bgl_lock_ptr(mb_cache_bg_lock,
135		MB_CACHE_ENTRY_LOCK_INDEX(ce)));
136}
137
138static inline void
139__spin_unlock_mb_cache_entry(struct mb_cache_entry *ce)
140{
141	spin_unlock(bgl_lock_ptr(mb_cache_bg_lock,
142		MB_CACHE_ENTRY_LOCK_INDEX(ce)));
143}
144
145static inline int
146__mb_cache_entry_is_block_hashed(struct mb_cache_entry *ce)
147{
148	return !hlist_bl_unhashed(&ce->e_block_list);
149}
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
152static inline void
153__mb_cache_entry_unhash_block(struct mb_cache_entry *ce)
154{
155	if (__mb_cache_entry_is_block_hashed(ce))
156		hlist_bl_del_init(&ce->e_block_list);
157}
 
158
159static inline int
160__mb_cache_entry_is_index_hashed(struct mb_cache_entry *ce)
161{
162	return !hlist_bl_unhashed(&ce->e_index.o_list);
163}
164
165static inline void
166__mb_cache_entry_unhash_index(struct mb_cache_entry *ce)
167{
168	if (__mb_cache_entry_is_index_hashed(ce))
169		hlist_bl_del_init(&ce->e_index.o_list);
170}
 
171
172/*
173 * __mb_cache_entry_unhash_unlock()
 
 
174 *
175 * This function is called to unhash both the block and index hash
176 * chain.
177 * It assumes both the block and index hash chain is locked upon entry.
178 * It also unlock both hash chains both exit
179 */
180static inline void
181__mb_cache_entry_unhash_unlock(struct mb_cache_entry *ce)
182{
183	__mb_cache_entry_unhash_index(ce);
184	hlist_bl_unlock(ce->e_index_hash_p);
185	__mb_cache_entry_unhash_block(ce);
186	hlist_bl_unlock(ce->e_block_hash_p);
187}
 
188
189static void
190__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
 
191{
192	struct mb_cache *cache = ce->e_cache;
 
 
193
194	mb_assert(!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt)));
195	kmem_cache_free(cache->c_entry_cache, ce);
196	atomic_dec(&cache->c_entry_count);
197}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199static void
200__mb_cache_entry_release(struct mb_cache_entry *ce)
201{
202	/* First lock the entry to serialize access to its local data. */
203	__spin_lock_mb_cache_entry(ce);
204	/* Wake up all processes queuing for this cache entry. */
205	if (ce->e_queued)
206		wake_up_all(&mb_cache_queue);
207	if (ce->e_used >= MB_CACHE_WRITER)
208		ce->e_used -= MB_CACHE_WRITER;
209	/*
210	 * Make sure that all cache entries on lru_list have
211	 * both e_used and e_qued of 0s.
212	 */
213	ce->e_used--;
214	if (!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))) {
215		if (!__mb_cache_entry_is_block_hashed(ce)) {
216			__spin_unlock_mb_cache_entry(ce);
217			goto forget;
218		}
219		/*
220		 * Need access to lru list, first drop entry lock,
221		 * then reacquire the lock in the proper order.
222		 */
223		spin_lock(&mb_cache_spinlock);
224		if (list_empty(&ce->e_lru_list))
225			list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
226		spin_unlock(&mb_cache_spinlock);
227	}
228	__spin_unlock_mb_cache_entry(ce);
229	return;
230forget:
231	mb_assert(list_empty(&ce->e_lru_list));
232	__mb_cache_entry_forget(ce, GFP_KERNEL);
233}
234
235/*
236 * mb_cache_shrink_scan()  memory pressure callback
 
 
237 *
238 * This function is called by the kernel memory management when memory
239 * gets low.
240 *
241 * @shrink: (ignored)
242 * @sc: shrink_control passed from reclaim
243 *
244 * Returns the number of objects freed.
245 */
246static unsigned long
247mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
248{
249	LIST_HEAD(free_list);
250	struct mb_cache_entry *entry, *tmp;
251	int nr_to_scan = sc->nr_to_scan;
252	gfp_t gfp_mask = sc->gfp_mask;
253	unsigned long freed = 0;
254
255	mb_debug("trying to free %d entries", nr_to_scan);
256	spin_lock(&mb_cache_spinlock);
257	while ((nr_to_scan-- > 0) && !list_empty(&mb_cache_lru_list)) {
258		struct mb_cache_entry *ce =
259			list_entry(mb_cache_lru_list.next,
260				struct mb_cache_entry, e_lru_list);
261		list_del_init(&ce->e_lru_list);
262		if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))
263			continue;
264		spin_unlock(&mb_cache_spinlock);
265		/* Prevent any find or get operation on the entry */
266		hlist_bl_lock(ce->e_block_hash_p);
267		hlist_bl_lock(ce->e_index_hash_p);
268		/* Ignore if it is touched by a find/get */
269		if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt) ||
270			!list_empty(&ce->e_lru_list)) {
271			hlist_bl_unlock(ce->e_index_hash_p);
272			hlist_bl_unlock(ce->e_block_hash_p);
273			spin_lock(&mb_cache_spinlock);
274			continue;
275		}
276		__mb_cache_entry_unhash_unlock(ce);
277		list_add_tail(&ce->e_lru_list, &free_list);
278		spin_lock(&mb_cache_spinlock);
279	}
280	spin_unlock(&mb_cache_spinlock);
281
282	list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
283		__mb_cache_entry_forget(entry, gfp_mask);
284		freed++;
285	}
286	return freed;
287}
 
288
289static unsigned long
290mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 
 
 
 
 
 
 
 
 
 
291{
292	struct mb_cache *cache;
293	unsigned long count = 0;
 
294
295	spin_lock(&mb_cache_spinlock);
296	list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
297		mb_debug("cache %s (%d)", cache->c_name,
298			  atomic_read(&cache->c_entry_count));
299		count += atomic_read(&cache->c_entry_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300	}
301	spin_unlock(&mb_cache_spinlock);
302
303	return vfs_pressure_ratio(count);
 
304}
 
305
306static struct shrinker mb_cache_shrinker = {
307	.count_objects = mb_cache_shrink_count,
308	.scan_objects = mb_cache_shrink_scan,
309	.seeks = DEFAULT_SEEKS,
310};
 
 
 
 
 
 
 
 
 
 
311
312/*
313 * mb_cache_create()  create a new cache
314 *
315 * All entries in one cache are equal size. Cache entries may be from
316 * multiple devices. If this is the first mbcache created, registers
317 * the cache with kernel memory management. Returns NULL if no more
318 * memory was available.
319 *
320 * @name: name of the cache (informal)
321 * @bucket_bits: log2(number of hash buckets)
322 */
323struct mb_cache *
324mb_cache_create(const char *name, int bucket_bits)
325{
326	int n, bucket_count = 1 << bucket_bits;
327	struct mb_cache *cache = NULL;
328
329	if (!mb_cache_bg_lock) {
330		mb_cache_bg_lock = kmalloc(sizeof(struct blockgroup_lock),
331			GFP_KERNEL);
332		if (!mb_cache_bg_lock)
333			return NULL;
334		bgl_lock_init(mb_cache_bg_lock);
335	}
336
337	cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
338	if (!cache)
339		return NULL;
340	cache->c_name = name;
341	atomic_set(&cache->c_entry_count, 0);
342	cache->c_bucket_bits = bucket_bits;
343	cache->c_block_hash = kmalloc(bucket_count *
344		sizeof(struct hlist_bl_head), GFP_KERNEL);
345	if (!cache->c_block_hash)
346		goto fail;
347	for (n=0; n<bucket_count; n++)
348		INIT_HLIST_BL_HEAD(&cache->c_block_hash[n]);
349	cache->c_index_hash = kmalloc(bucket_count *
350		sizeof(struct hlist_bl_head), GFP_KERNEL);
351	if (!cache->c_index_hash)
352		goto fail;
353	for (n=0; n<bucket_count; n++)
354		INIT_HLIST_BL_HEAD(&cache->c_index_hash[n]);
355	if (!mb_cache_kmem_cache) {
356		mb_cache_kmem_cache = kmem_cache_create(name,
357			sizeof(struct mb_cache_entry), 0,
358			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
359		if (!mb_cache_kmem_cache)
360			goto fail2;
361	}
362	cache->c_entry_cache = mb_cache_kmem_cache;
363
364	/*
365	 * Set an upper limit on the number of cache entries so that the hash
366	 * chains won't grow too long.
367	 */
368	cache->c_max_entries = bucket_count << 4;
 
369
370	spin_lock(&mb_cache_spinlock);
371	list_add(&cache->c_cache_list, &mb_cache_list);
372	spin_unlock(&mb_cache_spinlock);
373	return cache;
374
375fail2:
376	kfree(cache->c_index_hash);
377
378fail:
379	kfree(cache->c_block_hash);
380	kfree(cache);
381	return NULL;
382}
 
383
384
385/*
386 * mb_cache_shrink()
387 *
388 * Removes all cache entries of a device from the cache. All cache entries
389 * currently in use cannot be freed, and thus remain in the cache. All others
390 * are freed.
391 *
392 * @bdev: which device's cache entries to shrink
393 */
394void
395mb_cache_shrink(struct block_device *bdev)
396{
397	LIST_HEAD(free_list);
398	struct list_head *l;
399	struct mb_cache_entry *ce, *tmp;
400
401	l = &mb_cache_lru_list;
402	spin_lock(&mb_cache_spinlock);
403	while (!list_is_last(l, &mb_cache_lru_list)) {
404		l = l->next;
405		ce = list_entry(l, struct mb_cache_entry, e_lru_list);
406		if (ce->e_bdev == bdev) {
407			list_del_init(&ce->e_lru_list);
408			if (ce->e_used || ce->e_queued ||
409				atomic_read(&ce->e_refcnt))
410				continue;
411			spin_unlock(&mb_cache_spinlock);
412			/*
413			 * Prevent any find or get operation on the entry.
414			 */
415			hlist_bl_lock(ce->e_block_hash_p);
416			hlist_bl_lock(ce->e_index_hash_p);
417			/* Ignore if it is touched by a find/get */
418			if (ce->e_used || ce->e_queued ||
419				atomic_read(&ce->e_refcnt) ||
420				!list_empty(&ce->e_lru_list)) {
421				hlist_bl_unlock(ce->e_index_hash_p);
422				hlist_bl_unlock(ce->e_block_hash_p);
423				l = &mb_cache_lru_list;
424				spin_lock(&mb_cache_spinlock);
425				continue;
426			}
427			__mb_cache_entry_unhash_unlock(ce);
428			mb_assert(!(ce->e_used || ce->e_queued ||
429				atomic_read(&ce->e_refcnt)));
430			list_add_tail(&ce->e_lru_list, &free_list);
431			l = &mb_cache_lru_list;
432			spin_lock(&mb_cache_spinlock);
433		}
434	}
435	spin_unlock(&mb_cache_spinlock);
436
437	list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
438		__mb_cache_entry_forget(ce, GFP_KERNEL);
439	}
440}
 
441
 
 
 
 
442
443/*
444 * mb_cache_destroy()
445 *
446 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
447 * and then destroys it. If this was the last mbcache, un-registers the
448 * mbcache from kernel memory management.
449 */
450void
451mb_cache_destroy(struct mb_cache *cache)
452{
453	LIST_HEAD(free_list);
454	struct mb_cache_entry *ce, *tmp;
455
456	spin_lock(&mb_cache_spinlock);
457	list_for_each_entry_safe(ce, tmp, &mb_cache_lru_list, e_lru_list) {
458		if (ce->e_cache == cache)
459			list_move_tail(&ce->e_lru_list, &free_list);
460	}
461	list_del(&cache->c_cache_list);
462	spin_unlock(&mb_cache_spinlock);
463
464	list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
465		list_del_init(&ce->e_lru_list);
466		/*
467		 * Prevent any find or get operation on the entry.
468		 */
469		hlist_bl_lock(ce->e_block_hash_p);
470		hlist_bl_lock(ce->e_index_hash_p);
471		mb_assert(!(ce->e_used || ce->e_queued ||
472			atomic_read(&ce->e_refcnt)));
473		__mb_cache_entry_unhash_unlock(ce);
474		__mb_cache_entry_forget(ce, GFP_KERNEL);
475	}
476
477	if (atomic_read(&cache->c_entry_count) > 0) {
478		mb_error("cache %s: %d orphaned entries",
479			  cache->c_name,
480			  atomic_read(&cache->c_entry_count));
481	}
482
483	if (list_empty(&mb_cache_list)) {
484		kmem_cache_destroy(mb_cache_kmem_cache);
485		mb_cache_kmem_cache = NULL;
486	}
487	kfree(cache->c_index_hash);
488	kfree(cache->c_block_hash);
489	kfree(cache);
490}
491
492/*
493 * mb_cache_entry_alloc()
494 *
495 * Allocates a new cache entry. The new entry will not be valid initially,
496 * and thus cannot be looked up yet. It should be filled with data, and
497 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
498 * if no more memory was available.
499 */
500struct mb_cache_entry *
501mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
502{
503	struct mb_cache_entry *ce;
504
505	if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
506		struct list_head *l;
507
508		l = &mb_cache_lru_list;
509		spin_lock(&mb_cache_spinlock);
510		while (!list_is_last(l, &mb_cache_lru_list)) {
511			l = l->next;
512			ce = list_entry(l, struct mb_cache_entry, e_lru_list);
513			if (ce->e_cache == cache) {
514				list_del_init(&ce->e_lru_list);
515				if (ce->e_used || ce->e_queued ||
516					atomic_read(&ce->e_refcnt))
517					continue;
518				spin_unlock(&mb_cache_spinlock);
519				/*
520				 * Prevent any find or get operation on the
521				 * entry.
522				 */
523				hlist_bl_lock(ce->e_block_hash_p);
524				hlist_bl_lock(ce->e_index_hash_p);
525				/* Ignore if it is touched by a find/get */
526				if (ce->e_used || ce->e_queued ||
527					atomic_read(&ce->e_refcnt) ||
528					!list_empty(&ce->e_lru_list)) {
529					hlist_bl_unlock(ce->e_index_hash_p);
530					hlist_bl_unlock(ce->e_block_hash_p);
531					l = &mb_cache_lru_list;
532					spin_lock(&mb_cache_spinlock);
533					continue;
534				}
535				mb_assert(list_empty(&ce->e_lru_list));
536				mb_assert(!(ce->e_used || ce->e_queued ||
537					atomic_read(&ce->e_refcnt)));
538				__mb_cache_entry_unhash_unlock(ce);
539				goto found;
540			}
541		}
542		spin_unlock(&mb_cache_spinlock);
 
 
 
 
 
 
543	}
 
544
545	ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
546	if (!ce)
547		return NULL;
548	atomic_inc(&cache->c_entry_count);
549	INIT_LIST_HEAD(&ce->e_lru_list);
550	INIT_HLIST_BL_NODE(&ce->e_block_list);
551	INIT_HLIST_BL_NODE(&ce->e_index.o_list);
552	ce->e_cache = cache;
553	ce->e_queued = 0;
554	atomic_set(&ce->e_refcnt, 0);
555found:
556	ce->e_block_hash_p = &cache->c_block_hash[0];
557	ce->e_index_hash_p = &cache->c_index_hash[0];
558	ce->e_used = 1 + MB_CACHE_WRITER;
559	return ce;
560}
561
562
563/*
564 * mb_cache_entry_insert()
565 *
566 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
567 * the cache. After this, the cache entry can be looked up, but is not yet
568 * in the lru list as the caller still holds a handle to it. Returns 0 on
569 * success, or -EBUSY if a cache entry for that device + inode exists
570 * already (this may happen after a failed lookup, but when another process
571 * has inserted the same cache entry in the meantime).
572 *
573 * @bdev: device the cache entry belongs to
574 * @block: block number
575 * @key: lookup key
576 */
577int
578mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
579		      sector_t block, unsigned int key)
580{
581	struct mb_cache *cache = ce->e_cache;
582	unsigned int bucket;
583	struct hlist_bl_node *l;
584	struct hlist_bl_head *block_hash_p;
585	struct hlist_bl_head *index_hash_p;
586	struct mb_cache_entry *lce;
587
588	mb_assert(ce);
589	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
590			   cache->c_bucket_bits);
591	block_hash_p = &cache->c_block_hash[bucket];
592	hlist_bl_lock(block_hash_p);
593	hlist_bl_for_each_entry(lce, l, block_hash_p, e_block_list) {
594		if (lce->e_bdev == bdev && lce->e_block == block) {
595			hlist_bl_unlock(block_hash_p);
596			return -EBUSY;
597		}
598	}
599	mb_assert(!__mb_cache_entry_is_block_hashed(ce));
600	__mb_cache_entry_unhash_block(ce);
601	__mb_cache_entry_unhash_index(ce);
602	ce->e_bdev = bdev;
603	ce->e_block = block;
604	ce->e_block_hash_p = block_hash_p;
605	ce->e_index.o_key = key;
606	hlist_bl_add_head(&ce->e_block_list, block_hash_p);
607	hlist_bl_unlock(block_hash_p);
608	bucket = hash_long(key, cache->c_bucket_bits);
609	index_hash_p = &cache->c_index_hash[bucket];
610	hlist_bl_lock(index_hash_p);
611	ce->e_index_hash_p = index_hash_p;
612	hlist_bl_add_head(&ce->e_index.o_list, index_hash_p);
613	hlist_bl_unlock(index_hash_p);
614	return 0;
615}
616
 
 
617
618/*
619 * mb_cache_entry_release()
620 *
621 * Release a handle to a cache entry. When the last handle to a cache entry
622 * is released it is either freed (if it is invalid) or otherwise inserted
623 * in to the lru list.
624 */
625void
626mb_cache_entry_release(struct mb_cache_entry *ce)
627{
628	__mb_cache_entry_release(ce);
 
 
629}
630
631
632/*
633 * mb_cache_entry_free()
 
634 *
 
635 */
636void
637mb_cache_entry_free(struct mb_cache_entry *ce)
638{
639	mb_assert(ce);
640	mb_assert(list_empty(&ce->e_lru_list));
641	hlist_bl_lock(ce->e_index_hash_p);
642	__mb_cache_entry_unhash_index(ce);
643	hlist_bl_unlock(ce->e_index_hash_p);
644	hlist_bl_lock(ce->e_block_hash_p);
645	__mb_cache_entry_unhash_block(ce);
646	hlist_bl_unlock(ce->e_block_hash_p);
647	__mb_cache_entry_release(ce);
648}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649
 
650
651/*
652 * mb_cache_entry_get()
653 *
654 * Get a cache entry  by device / block number. (There can only be one entry
655 * in the cache per device and block.) Returns NULL if no such cache entry
656 * exists. The returned cache entry is locked for exclusive access ("single
657 * writer").
658 */
659struct mb_cache_entry *
660mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
661		   sector_t block)
662{
663	unsigned int bucket;
664	struct hlist_bl_node *l;
665	struct mb_cache_entry *ce;
666	struct hlist_bl_head *block_hash_p;
667
668	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
669			   cache->c_bucket_bits);
670	block_hash_p = &cache->c_block_hash[bucket];
671	/* First serialize access to the block corresponding hash chain. */
672	hlist_bl_lock(block_hash_p);
673	hlist_bl_for_each_entry(ce, l, block_hash_p, e_block_list) {
674		mb_assert(ce->e_block_hash_p == block_hash_p);
675		if (ce->e_bdev == bdev && ce->e_block == block) {
676			/*
677			 * Prevent a free from removing the entry.
678			 */
679			atomic_inc(&ce->e_refcnt);
680			hlist_bl_unlock(block_hash_p);
681			__spin_lock_mb_cache_entry(ce);
682			atomic_dec(&ce->e_refcnt);
683			if (ce->e_used > 0) {
684				DEFINE_WAIT(wait);
685				while (ce->e_used > 0) {
686					ce->e_queued++;
687					prepare_to_wait(&mb_cache_queue, &wait,
688							TASK_UNINTERRUPTIBLE);
689					__spin_unlock_mb_cache_entry(ce);
690					schedule();
691					__spin_lock_mb_cache_entry(ce);
692					ce->e_queued--;
693				}
694				finish_wait(&mb_cache_queue, &wait);
695			}
696			ce->e_used += 1 + MB_CACHE_WRITER;
697			__spin_unlock_mb_cache_entry(ce);
698
699			if (!list_empty(&ce->e_lru_list)) {
700				spin_lock(&mb_cache_spinlock);
701				list_del_init(&ce->e_lru_list);
702				spin_unlock(&mb_cache_spinlock);
703			}
704			if (!__mb_cache_entry_is_block_hashed(ce)) {
705				__mb_cache_entry_release(ce);
706				return NULL;
707			}
708			return ce;
709		}
710	}
711	hlist_bl_unlock(block_hash_p);
712	return NULL;
713}
714
715#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
716
717static struct mb_cache_entry *
718__mb_cache_entry_find(struct hlist_bl_node *l, struct hlist_bl_head *head,
719		      struct block_device *bdev, unsigned int key)
720{
721
722	/* The index hash chain is alredy acquire by caller. */
723	while (l != NULL) {
724		struct mb_cache_entry *ce =
725			hlist_bl_entry(l, struct mb_cache_entry,
726				e_index.o_list);
727		mb_assert(ce->e_index_hash_p == head);
728		if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
729			/*
730			 * Prevent a free from removing the entry.
731			 */
732			atomic_inc(&ce->e_refcnt);
733			hlist_bl_unlock(head);
734			__spin_lock_mb_cache_entry(ce);
735			atomic_dec(&ce->e_refcnt);
736			ce->e_used++;
737			/* Incrementing before holding the lock gives readers
738			   priority over writers. */
739			if (ce->e_used >= MB_CACHE_WRITER) {
740				DEFINE_WAIT(wait);
741
742				while (ce->e_used >= MB_CACHE_WRITER) {
743					ce->e_queued++;
744					prepare_to_wait(&mb_cache_queue, &wait,
745							TASK_UNINTERRUPTIBLE);
746					__spin_unlock_mb_cache_entry(ce);
747					schedule();
748					__spin_lock_mb_cache_entry(ce);
749					ce->e_queued--;
750				}
751				finish_wait(&mb_cache_queue, &wait);
752			}
753			__spin_unlock_mb_cache_entry(ce);
754			if (!list_empty(&ce->e_lru_list)) {
755				spin_lock(&mb_cache_spinlock);
756				list_del_init(&ce->e_lru_list);
757				spin_unlock(&mb_cache_spinlock);
758			}
759			if (!__mb_cache_entry_is_block_hashed(ce)) {
760				__mb_cache_entry_release(ce);
761				return ERR_PTR(-EAGAIN);
762			}
763			return ce;
764		}
765		l = l->next;
766	}
767	hlist_bl_unlock(head);
768	return NULL;
769}
770
771
772/*
773 * mb_cache_entry_find_first()
 
774 *
775 * Find the first cache entry on a given device with a certain key in
776 * an additional index. Additional matches can be found with
777 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
778 * returned cache entry is locked for shared access ("multiple readers").
779 *
780 * @cache: the cache to search
781 * @bdev: the device the cache entry should belong to
782 * @key: the key in the index
783 */
784struct mb_cache_entry *
785mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
786			  unsigned int key)
787{
788	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
789	struct hlist_bl_node *l;
790	struct mb_cache_entry *ce = NULL;
791	struct hlist_bl_head *index_hash_p;
792
793	index_hash_p = &cache->c_index_hash[bucket];
794	hlist_bl_lock(index_hash_p);
795	if (!hlist_bl_empty(index_hash_p)) {
796		l = hlist_bl_first(index_hash_p);
797		ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
798	} else
799		hlist_bl_unlock(index_hash_p);
800	return ce;
801}
802
 
803
804/*
805 * mb_cache_entry_find_next()
806 *
807 * Find the next cache entry on a given device with a certain key in an
808 * additional index. Returns NULL if no match could be found. The previous
809 * entry is atomatically released, so that mb_cache_entry_find_next() can
810 * be called like this:
811 *
812 * entry = mb_cache_entry_find_first();
813 * while (entry) {
814 * 	...
815 *	entry = mb_cache_entry_find_next(entry, ...);
816 * }
817 *
818 * @prev: The previous match
819 * @bdev: the device the cache entry should belong to
820 * @key: the key in the index
821 */
822struct mb_cache_entry *
823mb_cache_entry_find_next(struct mb_cache_entry *prev,
824			 struct block_device *bdev, unsigned int key)
825{
826	struct mb_cache *cache = prev->e_cache;
827	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
828	struct hlist_bl_node *l;
829	struct mb_cache_entry *ce;
830	struct hlist_bl_head *index_hash_p;
831
832	index_hash_p = &cache->c_index_hash[bucket];
833	mb_assert(prev->e_index_hash_p == index_hash_p);
834	hlist_bl_lock(index_hash_p);
835	mb_assert(!hlist_bl_empty(index_hash_p));
836	l = prev->e_index.o_list.next;
837	ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
838	__mb_cache_entry_release(prev);
839	return ce;
840}
 
841
842#endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
843
844static int __init init_mbcache(void)
845{
846	register_shrinker(&mb_cache_shrinker);
 
 
847	return 0;
848}
849
850static void __exit exit_mbcache(void)
851{
852	unregister_shrinker(&mb_cache_shrinker);
853}
854
855module_init(init_mbcache)
856module_exit(exit_mbcache)
857