Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for SanDisk SDDR-09 SmartMedia reader
   4 *
   5 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   6 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   7 * Developed with the assistance of:
   8 *   (c) 2002 Alan Stern <stern@rowland.org>
   9 *
  10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  11 * This chip is a programmable USB controller. In the SDDR-09, it has
  12 * been programmed to obey a certain limited set of SCSI commands.
  13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  14 * commands.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 */
  16
  17/*
  18 * Known vendor commands: 12 bytes, first byte is opcode
  19 *
  20 * E7: read scatter gather
  21 * E8: read
  22 * E9: write
  23 * EA: erase
  24 * EB: reset
  25 * EC: read status
  26 * ED: read ID
  27 * EE: write CIS (?)
  28 * EF: compute checksum (?)
  29 */
  30
  31#include <linux/errno.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34
  35#include <scsi/scsi.h>
  36#include <scsi/scsi_cmnd.h>
  37#include <scsi/scsi_device.h>
  38
  39#include "usb.h"
  40#include "transport.h"
  41#include "protocol.h"
  42#include "debug.h"
  43#include "scsiglue.h"
  44
  45#define DRV_NAME "ums-sddr09"
  46
  47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  49MODULE_LICENSE("GPL");
  50MODULE_IMPORT_NS("USB_STORAGE");
  51
  52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  54static int usb_stor_sddr09_init(struct us_data *us);
  55
  56
  57/*
  58 * The table of devices
  59 */
  60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  61		    vendorName, productName, useProtocol, useTransport, \
  62		    initFunction, flags) \
  63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  64  .driver_info = (flags) }
  65
  66static const struct usb_device_id sddr09_usb_ids[] = {
  67#	include "unusual_sddr09.h"
  68	{ }		/* Terminating entry */
  69};
  70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  71
  72#undef UNUSUAL_DEV
  73
  74/*
  75 * The flags table
  76 */
  77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  78		    vendor_name, product_name, use_protocol, use_transport, \
  79		    init_function, Flags) \
  80{ \
  81	.vendorName = vendor_name,	\
  82	.productName = product_name,	\
  83	.useProtocol = use_protocol,	\
  84	.useTransport = use_transport,	\
  85	.initFunction = init_function,	\
  86}
  87
  88static const struct us_unusual_dev sddr09_unusual_dev_list[] = {
  89#	include "unusual_sddr09.h"
  90	{ }		/* Terminating entry */
  91};
  92
  93#undef UNUSUAL_DEV
  94
  95
  96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
  97#define LSB_of(s) ((s)&0xFF)
  98#define MSB_of(s) ((s)>>8)
  99
 
 
 100/*
 101 * First some stuff that does not belong here:
 102 * data on SmartMedia and other cards, completely
 103 * unrelated to this driver.
 104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 105 */
 106
 107struct nand_flash_dev {
 108	int model_id;
 109	int chipshift;		/* 1<<cs bytes total capacity */
 110	char pageshift;		/* 1<<ps bytes in a page */
 111	char blockshift;	/* 1<<bs pages in an erase block */
 112	char zoneshift;		/* 1<<zs blocks in a zone */
 113				/* # of logical blocks is 125/128 of this */
 114	char pageadrlen;	/* length of an address in bytes - 1 */
 115};
 116
 117/*
 118 * NAND Flash Manufacturer ID Codes
 119 */
 120#define NAND_MFR_AMD		0x01
 121#define NAND_MFR_NATSEMI	0x8f
 122#define NAND_MFR_TOSHIBA	0x98
 123#define NAND_MFR_SAMSUNG	0xec
 124
 125static inline char *nand_flash_manufacturer(int manuf_id) {
 126	switch(manuf_id) {
 127	case NAND_MFR_AMD:
 128		return "AMD";
 129	case NAND_MFR_NATSEMI:
 130		return "NATSEMI";
 131	case NAND_MFR_TOSHIBA:
 132		return "Toshiba";
 133	case NAND_MFR_SAMSUNG:
 134		return "Samsung";
 135	default:
 136		return "unknown";
 137	}
 138}
 139
 140/*
 141 * It looks like it is unnecessary to attach manufacturer to the
 142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 143 *
 144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 145 */
 146
 147static struct nand_flash_dev nand_flash_ids[] = {
 148	/* NAND flash */
 149	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 150	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 151	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 152	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 153	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 154	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 155	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 156	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 157	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 158	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 159	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 160	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 161	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 162
 163	/* MASK ROM */
 164	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 165	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 167	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 168	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 169	{ 0,}
 170};
 171
 172static struct nand_flash_dev *
 173nand_find_id(unsigned char id) {
 174	int i;
 175
 176	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 177		if (nand_flash_ids[i].model_id == id)
 178			return &(nand_flash_ids[i]);
 179	return NULL;
 180}
 181
 182/*
 183 * ECC computation.
 184 */
 185static unsigned char parity[256];
 186static unsigned char ecc2[256];
 187
 188static void nand_init_ecc(void) {
 189	int i, j, a;
 190
 191	parity[0] = 0;
 192	for (i = 1; i < 256; i++)
 193		parity[i] = (parity[i&(i-1)] ^ 1);
 194
 195	for (i = 0; i < 256; i++) {
 196		a = 0;
 197		for (j = 0; j < 8; j++) {
 198			if (i & (1<<j)) {
 199				if ((j & 1) == 0)
 200					a ^= 0x04;
 201				if ((j & 2) == 0)
 202					a ^= 0x10;
 203				if ((j & 4) == 0)
 204					a ^= 0x40;
 205			}
 206		}
 207		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 208	}
 209}
 210
 211/* compute 3-byte ecc on 256 bytes */
 212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 213	int i, j, a;
 214	unsigned char par = 0, bit, bits[8] = {0};
 
 
 
 
 215
 216	/* collect 16 checksum bits */
 217	for (i = 0; i < 256; i++) {
 218		par ^= data[i];
 219		bit = parity[data[i]];
 220		for (j = 0; j < 8; j++)
 221			if ((i & (1<<j)) == 0)
 222				bits[j] ^= bit;
 223	}
 224
 225	/* put 4+4+4 = 12 bits in the ecc */
 226	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 227	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 228
 229	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 230	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 231
 232	ecc[2] = ecc2[par];
 233}
 234
 235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 236	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 237}
 238
 239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 240	memcpy(data, ecc, 3);
 241}
 242
 243/*
 244 * The actual driver starts here.
 245 */
 246
 247struct sddr09_card_info {
 248	unsigned long	capacity;	/* Size of card in bytes */
 249	int		pagesize;	/* Size of page in bytes */
 250	int		pageshift;	/* log2 of pagesize */
 251	int		blocksize;	/* Size of block in pages */
 252	int		blockshift;	/* log2 of blocksize */
 253	int		blockmask;	/* 2^blockshift - 1 */
 254	int		*lba_to_pba;	/* logical to physical map */
 255	int		*pba_to_lba;	/* physical to logical map */
 256	int		lbact;		/* number of available pages */
 257	int		flags;
 258#define	SDDR09_WP	1		/* write protected */
 259};
 260
 261/*
 262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 264 * so the reader makes up the remaining 48. Don't know whether these numbers
 265 * depend on the card. For now a constant.
 266 */
 267#define CONTROL_SHIFT 6
 268
 269/*
 270 * On my Combo CF/SM reader, the SM reader has LUN 1.
 271 * (and things fail with LUN 0).
 272 * It seems LUN is irrelevant for others.
 273 */
 274#define LUN	1
 275#define	LUNBITS	(LUN << 5)
 276
 277/*
 278 * LBA and PBA are unsigned ints. Special values.
 279 */
 280#define UNDEF    0xffffffff
 281#define SPARE    0xfffffffe
 282#define UNUSABLE 0xfffffffd
 283
 284static const int erase_bad_lba_entries = 0;
 285
 286/* send vendor interface command (0x41) */
 287/* called for requests 0, 1, 8 */
 288static int
 289sddr09_send_command(struct us_data *us,
 290		    unsigned char request,
 291		    unsigned char direction,
 292		    unsigned char *xfer_data,
 293		    unsigned int xfer_len) {
 294	unsigned int pipe;
 295	unsigned char requesttype = (0x41 | direction);
 296	int rc;
 297
 298	// Get the receive or send control pipe number
 299
 300	if (direction == USB_DIR_IN)
 301		pipe = us->recv_ctrl_pipe;
 302	else
 303		pipe = us->send_ctrl_pipe;
 304
 305	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 306				   0, 0, xfer_data, xfer_len);
 307	switch (rc) {
 308		case USB_STOR_XFER_GOOD:	return 0;
 309		case USB_STOR_XFER_STALLED:	return -EPIPE;
 310		default:			return -EIO;
 311	}
 312}
 313
 314static int
 315sddr09_send_scsi_command(struct us_data *us,
 316			 unsigned char *command,
 317			 unsigned int command_len) {
 318	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 319}
 320
 321#if 0
 322/*
 323 * Test Unit Ready Command: 12 bytes.
 324 * byte 0: opcode: 00
 325 */
 326static int
 327sddr09_test_unit_ready(struct us_data *us) {
 328	unsigned char *command = us->iobuf;
 329	int result;
 330
 331	memset(command, 0, 6);
 332	command[1] = LUNBITS;
 333
 334	result = sddr09_send_scsi_command(us, command, 6);
 335
 336	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 337
 338	return result;
 339}
 340#endif
 341
 342/*
 343 * Request Sense Command: 12 bytes.
 344 * byte 0: opcode: 03
 345 * byte 4: data length
 346 */
 347static int
 348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 349	unsigned char *command = us->iobuf;
 350	int result;
 351
 352	memset(command, 0, 12);
 353	command[0] = 0x03;
 354	command[1] = LUNBITS;
 355	command[4] = buflen;
 356
 357	result = sddr09_send_scsi_command(us, command, 12);
 358	if (result)
 359		return result;
 360
 361	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 362			sensebuf, buflen, NULL);
 363	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 364}
 365
 366/*
 367 * Read Command: 12 bytes.
 368 * byte 0: opcode: E8
 369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 370 *			10: read both, 11: read pagewise control.
 371 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 372 * bytes 2-5: address (interpretation depends on byte 1, see below)
 373 * bytes 10-11: count (idem)
 374 *
 375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 376 * A read data command gets data in 512-byte pages.
 377 * A read control command gets control in 64-byte chunks.
 378 * A read both command gets data+control in 576-byte chunks.
 379 *
 380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 381 * next block, while read pagewise control jumps to the next page after
 382 * reading a group of 64 control bytes.
 383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 384 *
 385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 386 */
 387
 388static int
 389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 390	     int nr_of_pages, int bulklen, unsigned char *buf,
 391	     int use_sg) {
 392
 393	unsigned char *command = us->iobuf;
 394	int result;
 395
 396	command[0] = 0xE8;
 397	command[1] = LUNBITS | x;
 398	command[2] = MSB_of(fromaddress>>16);
 399	command[3] = LSB_of(fromaddress>>16); 
 400	command[4] = MSB_of(fromaddress & 0xFFFF);
 401	command[5] = LSB_of(fromaddress & 0xFFFF); 
 402	command[6] = 0;
 403	command[7] = 0;
 404	command[8] = 0;
 405	command[9] = 0;
 406	command[10] = MSB_of(nr_of_pages);
 407	command[11] = LSB_of(nr_of_pages);
 408
 409	result = sddr09_send_scsi_command(us, command, 12);
 410
 411	if (result) {
 412		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 413			     x, result);
 414		return result;
 415	}
 416
 417	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 418				       buf, bulklen, use_sg, NULL);
 419
 420	if (result != USB_STOR_XFER_GOOD) {
 421		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 422			     x, result);
 423		return -EIO;
 424	}
 425	return 0;
 426}
 427
 428/*
 429 * Read Data
 430 *
 431 * fromaddress counts data shorts:
 432 * increasing it by 256 shifts the bytestream by 512 bytes;
 433 * the last 8 bits are ignored.
 434 *
 435 * nr_of_pages counts pages of size (1 << pageshift).
 436 */
 437static int
 438sddr09_read20(struct us_data *us, unsigned long fromaddress,
 439	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 440	int bulklen = nr_of_pages << pageshift;
 441
 442	/* The last 8 bits of fromaddress are ignored. */
 443	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 444			    buf, use_sg);
 445}
 446
 447/*
 448 * Read Blockwise Control
 449 *
 450 * fromaddress gives the starting position (as in read data;
 451 * the last 8 bits are ignored); increasing it by 32*256 shifts
 452 * the output stream by 64 bytes.
 453 *
 454 * count counts control groups of size (1 << controlshift).
 455 * For me, controlshift = 6. Is this constant?
 456 *
 457 * After getting one control group, jump to the next block
 458 * (fromaddress += 8192).
 459 */
 460static int
 461sddr09_read21(struct us_data *us, unsigned long fromaddress,
 462	      int count, int controlshift, unsigned char *buf, int use_sg) {
 463
 464	int bulklen = (count << controlshift);
 465	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 466			    buf, use_sg);
 467}
 468
 469/*
 470 * Read both Data and Control
 471 *
 472 * fromaddress counts data shorts, ignoring control:
 473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 474 * the last 8 bits are ignored.
 475 *
 476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 477 */
 478static int
 479sddr09_read22(struct us_data *us, unsigned long fromaddress,
 480	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 481
 482	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 483	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 
 484	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 485			    buf, use_sg);
 486}
 487
 488#if 0
 489/*
 490 * Read Pagewise Control
 491 *
 492 * fromaddress gives the starting position (as in read data;
 493 * the last 8 bits are ignored); increasing it by 256 shifts
 494 * the output stream by 64 bytes.
 495 *
 496 * count counts control groups of size (1 << controlshift).
 497 * For me, controlshift = 6. Is this constant?
 498 *
 499 * After getting one control group, jump to the next page
 500 * (fromaddress += 256).
 501 */
 502static int
 503sddr09_read23(struct us_data *us, unsigned long fromaddress,
 504	      int count, int controlshift, unsigned char *buf, int use_sg) {
 505
 506	int bulklen = (count << controlshift);
 507	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 508			    buf, use_sg);
 509}
 510#endif
 511
 512/*
 513 * Erase Command: 12 bytes.
 514 * byte 0: opcode: EA
 515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 516 * 
 517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 518 * The byte address being erased is 2*Eaddress.
 519 * The CIS cannot be erased.
 520 */
 521static int
 522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 523	unsigned char *command = us->iobuf;
 524	int result;
 525
 526	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 527
 528	memset(command, 0, 12);
 529	command[0] = 0xEA;
 530	command[1] = LUNBITS;
 531	command[6] = MSB_of(Eaddress>>16);
 532	command[7] = LSB_of(Eaddress>>16);
 533	command[8] = MSB_of(Eaddress & 0xFFFF);
 534	command[9] = LSB_of(Eaddress & 0xFFFF);
 535
 536	result = sddr09_send_scsi_command(us, command, 12);
 537
 538	if (result)
 539		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 540			     result);
 541
 542	return result;
 543}
 544
 545/*
 546 * Write CIS Command: 12 bytes.
 547 * byte 0: opcode: EE
 548 * bytes 2-5: write address in shorts
 549 * bytes 10-11: sector count
 550 *
 551 * This writes at the indicated address. Don't know how it differs
 552 * from E9. Maybe it does not erase? However, it will also write to
 553 * the CIS.
 554 *
 555 * When two such commands on the same page follow each other directly,
 556 * the second one is not done.
 557 */
 558
 559/*
 560 * Write Command: 12 bytes.
 561 * byte 0: opcode: E9
 562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 565 *
 566 * If write address equals erase address, the erase is done first,
 567 * otherwise the write is done first. When erase address equals zero
 568 * no erase is done?
 569 */
 570static int
 571sddr09_writeX(struct us_data *us,
 572	      unsigned long Waddress, unsigned long Eaddress,
 573	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 574
 575	unsigned char *command = us->iobuf;
 576	int result;
 577
 578	command[0] = 0xE9;
 579	command[1] = LUNBITS;
 580
 581	command[2] = MSB_of(Waddress>>16);
 582	command[3] = LSB_of(Waddress>>16);
 583	command[4] = MSB_of(Waddress & 0xFFFF);
 584	command[5] = LSB_of(Waddress & 0xFFFF);
 585
 586	command[6] = MSB_of(Eaddress>>16);
 587	command[7] = LSB_of(Eaddress>>16);
 588	command[8] = MSB_of(Eaddress & 0xFFFF);
 589	command[9] = LSB_of(Eaddress & 0xFFFF);
 590
 591	command[10] = MSB_of(nr_of_pages);
 592	command[11] = LSB_of(nr_of_pages);
 593
 594	result = sddr09_send_scsi_command(us, command, 12);
 595
 596	if (result) {
 597		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 598			     result);
 599		return result;
 600	}
 601
 602	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 603				       buf, bulklen, use_sg, NULL);
 604
 605	if (result != USB_STOR_XFER_GOOD) {
 606		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 607			     result);
 608		return -EIO;
 609	}
 610	return 0;
 611}
 612
 613/* erase address, write same address */
 614static int
 615sddr09_write_inplace(struct us_data *us, unsigned long address,
 616		     int nr_of_pages, int pageshift, unsigned char *buf,
 617		     int use_sg) {
 618	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 619	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 620			     buf, use_sg);
 621}
 622
 623#if 0
 624/*
 625 * Read Scatter Gather Command: 3+4n bytes.
 626 * byte 0: opcode E7
 627 * byte 2: n
 628 * bytes 4i-1,4i,4i+1: page address
 629 * byte 4i+2: page count
 630 * (i=1..n)
 631 *
 632 * This reads several pages from the card to a single memory buffer.
 633 * The last two bits of byte 1 have the same meaning as for E8.
 634 */
 635static int
 636sddr09_read_sg_test_only(struct us_data *us) {
 637	unsigned char *command = us->iobuf;
 638	int result, bulklen, nsg, ct;
 639	unsigned char *buf;
 640	unsigned long address;
 641
 642	nsg = bulklen = 0;
 643	command[0] = 0xE7;
 644	command[1] = LUNBITS;
 645	command[2] = 0;
 646	address = 040000; ct = 1;
 647	nsg++;
 648	bulklen += (ct << 9);
 649	command[4*nsg+2] = ct;
 650	command[4*nsg+1] = ((address >> 9) & 0xFF);
 651	command[4*nsg+0] = ((address >> 17) & 0xFF);
 652	command[4*nsg-1] = ((address >> 25) & 0xFF);
 653
 654	address = 0340000; ct = 1;
 655	nsg++;
 656	bulklen += (ct << 9);
 657	command[4*nsg+2] = ct;
 658	command[4*nsg+1] = ((address >> 9) & 0xFF);
 659	command[4*nsg+0] = ((address >> 17) & 0xFF);
 660	command[4*nsg-1] = ((address >> 25) & 0xFF);
 661
 662	address = 01000000; ct = 2;
 663	nsg++;
 664	bulklen += (ct << 9);
 665	command[4*nsg+2] = ct;
 666	command[4*nsg+1] = ((address >> 9) & 0xFF);
 667	command[4*nsg+0] = ((address >> 17) & 0xFF);
 668	command[4*nsg-1] = ((address >> 25) & 0xFF);
 669
 670	command[2] = nsg;
 671
 672	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 673
 674	if (result) {
 675		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 676			     result);
 677		return result;
 678	}
 679
 680	buf = kmalloc(bulklen, GFP_NOIO);
 681	if (!buf)
 682		return -ENOMEM;
 683
 684	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 685				       buf, bulklen, NULL);
 686	kfree(buf);
 687	if (result != USB_STOR_XFER_GOOD) {
 688		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 689			     result);
 690		return -EIO;
 691	}
 692
 693	return 0;
 694}
 695#endif
 696
 697/*
 698 * Read Status Command: 12 bytes.
 699 * byte 0: opcode: EC
 700 *
 701 * Returns 64 bytes, all zero except for the first.
 702 * bit 0: 1: Error
 703 * bit 5: 1: Suspended
 704 * bit 6: 1: Ready
 705 * bit 7: 1: Not write-protected
 706 */
 707
 708static int
 709sddr09_read_status(struct us_data *us, unsigned char *status) {
 710
 711	unsigned char *command = us->iobuf;
 712	unsigned char *data = us->iobuf;
 713	int result;
 714
 715	usb_stor_dbg(us, "Reading status...\n");
 716
 717	memset(command, 0, 12);
 718	command[0] = 0xEC;
 719	command[1] = LUNBITS;
 720
 721	result = sddr09_send_scsi_command(us, command, 12);
 722	if (result)
 723		return result;
 724
 725	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 726				       data, 64, NULL);
 727	*status = data[0];
 728	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 729}
 730
 731static int
 732sddr09_read_data(struct us_data *us,
 733		 unsigned long address,
 734		 unsigned int sectors) {
 735
 736	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 737	unsigned char *buffer;
 738	unsigned int lba, maxlba, pba;
 739	unsigned int page, pages;
 740	unsigned int len, offset;
 741	struct scatterlist *sg;
 742	int result;
 743
 744	// Figure out the initial LBA and page
 745	lba = address >> info->blockshift;
 746	page = (address & info->blockmask);
 747	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 748	if (lba >= maxlba)
 749		return -EIO;
 750
 751	// Since we only read in one block at a time, we have to create
 752	// a bounce buffer and move the data a piece at a time between the
 753	// bounce buffer and the actual transfer buffer.
 754
 755	len = min_t(unsigned int, sectors, info->blocksize) * info->pagesize;
 756	buffer = kmalloc(len, GFP_NOIO);
 757	if (!buffer)
 
 758		return -ENOMEM;
 
 759
 760	// This could be made much more efficient by checking for
 761	// contiguous LBA's. Another exercise left to the student.
 762
 763	result = 0;
 764	offset = 0;
 765	sg = NULL;
 766
 767	while (sectors > 0) {
 768
 769		/* Find number of pages we can read in this block */
 770		pages = min(sectors, info->blocksize - page);
 771		len = pages << info->pageshift;
 772
 773		/* Not overflowing capacity? */
 774		if (lba >= maxlba) {
 775			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 776				     lba, maxlba);
 777			result = -EIO;
 778			break;
 779		}
 780
 781		/* Find where this lba lives on disk */
 782		pba = info->lba_to_pba[lba];
 783
 784		if (pba == UNDEF) {	/* this lba was never written */
 785
 786			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 787				     pages, lba, page);
 788
 789			/*
 790			 * This is not really an error. It just means
 791			 * that the block has never been written.
 792			 * Instead of returning an error
 793			 * it is better to return all zero data.
 794			 */
 795
 796			memset(buffer, 0, len);
 797
 798		} else {
 799			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 800				     pages, pba, lba, page);
 
 801
 802			address = ((pba << info->blockshift) + page) << 
 803				info->pageshift;
 804
 805			result = sddr09_read20(us, address>>1,
 806					pages, info->pageshift, buffer, 0);
 807			if (result)
 808				break;
 809		}
 810
 811		// Store the data in the transfer buffer
 812		usb_stor_access_xfer_buf(buffer, len, us->srb,
 813				&sg, &offset, TO_XFER_BUF);
 814
 815		page = 0;
 816		lba++;
 817		sectors -= pages;
 818	}
 819
 820	kfree(buffer);
 821	return result;
 822}
 823
 824static unsigned int
 825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 826	static unsigned int lastpba = 1;
 827	int zonestart, end, i;
 828
 829	zonestart = (lba/1000) << 10;
 830	end = info->capacity >> (info->blockshift + info->pageshift);
 831	end -= zonestart;
 832	if (end > 1024)
 833		end = 1024;
 834
 835	for (i = lastpba+1; i < end; i++) {
 836		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 837			lastpba = i;
 838			return zonestart+i;
 839		}
 840	}
 841	for (i = 0; i <= lastpba; i++) {
 842		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 843			lastpba = i;
 844			return zonestart+i;
 845		}
 846	}
 847	return 0;
 848}
 849
 850static int
 851sddr09_write_lba(struct us_data *us, unsigned int lba,
 852		 unsigned int page, unsigned int pages,
 853		 unsigned char *ptr, unsigned char *blockbuffer) {
 854
 855	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 856	unsigned long address;
 857	unsigned int pba, lbap;
 858	unsigned int pagelen;
 859	unsigned char *bptr, *cptr, *xptr;
 860	unsigned char ecc[3];
 861	int i, result;
 862
 863	lbap = ((lba % 1000) << 1) | 0x1000;
 864	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 865		lbap ^= 1;
 866	pba = info->lba_to_pba[lba];
 
 867
 868	if (pba == UNDEF) {
 869		pba = sddr09_find_unused_pba(info, lba);
 870		if (!pba) {
 871			printk(KERN_WARNING
 872			       "sddr09_write_lba: Out of unused blocks\n");
 873			return -ENOSPC;
 874		}
 875		info->pba_to_lba[pba] = lba;
 876		info->lba_to_pba[lba] = pba;
 
 877	}
 878
 879	if (pba == 1) {
 880		/*
 881		 * Maybe it is impossible to write to PBA 1.
 882		 * Fake success, but don't do anything.
 883		 */
 884		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 885		return 0;
 886	}
 887
 888	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 889
 890	/* read old contents */
 891	address = (pba << (info->pageshift + info->blockshift));
 892	result = sddr09_read22(us, address>>1, info->blocksize,
 893			       info->pageshift, blockbuffer, 0);
 894	if (result)
 895		return result;
 896
 897	/* check old contents and fill lba */
 898	for (i = 0; i < info->blocksize; i++) {
 899		bptr = blockbuffer + i*pagelen;
 900		cptr = bptr + info->pagesize;
 901		nand_compute_ecc(bptr, ecc);
 902		if (!nand_compare_ecc(cptr+13, ecc)) {
 903			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 904				     i, pba);
 905			nand_store_ecc(cptr+13, ecc);
 906		}
 907		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 908		if (!nand_compare_ecc(cptr+8, ecc)) {
 909			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 910				     i, pba);
 911			nand_store_ecc(cptr+8, ecc);
 912		}
 913		cptr[6] = cptr[11] = MSB_of(lbap);
 914		cptr[7] = cptr[12] = LSB_of(lbap);
 915	}
 916
 917	/* copy in new stuff and compute ECC */
 918	xptr = ptr;
 919	for (i = page; i < page+pages; i++) {
 920		bptr = blockbuffer + i*pagelen;
 921		cptr = bptr + info->pagesize;
 922		memcpy(bptr, xptr, info->pagesize);
 923		xptr += info->pagesize;
 924		nand_compute_ecc(bptr, ecc);
 925		nand_store_ecc(cptr+13, ecc);
 926		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 927		nand_store_ecc(cptr+8, ecc);
 928	}
 929
 930	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 931
 932	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 933				      info->pageshift, blockbuffer, 0);
 934
 935	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 936
 937#if 0
 938	{
 939		unsigned char status = 0;
 940		int result2 = sddr09_read_status(us, &status);
 941		if (result2)
 942			usb_stor_dbg(us, "cannot read status\n");
 943		else if (status != 0xc0)
 944			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 
 945	}
 946#endif
 947
 948#if 0
 949	{
 950		int result2 = sddr09_test_unit_ready(us);
 951	}
 952#endif
 953
 954	return result;
 955}
 956
 957static int
 958sddr09_write_data(struct us_data *us,
 959		  unsigned long address,
 960		  unsigned int sectors) {
 961
 962	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 963	unsigned int lba, maxlba, page, pages;
 964	unsigned int pagelen, blocklen;
 965	unsigned char *blockbuffer;
 966	unsigned char *buffer;
 967	unsigned int len, offset;
 968	struct scatterlist *sg;
 969	int result;
 970
 971	/* Figure out the initial LBA and page */
 972	lba = address >> info->blockshift;
 973	page = (address & info->blockmask);
 974	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 975	if (lba >= maxlba)
 976		return -EIO;
 977
 978	/*
 979	 * blockbuffer is used for reading in the old data, overwriting
 980	 * with the new data, and performing ECC calculations
 981	 */
 982
 983	/*
 984	 * TODO: instead of doing kmalloc/kfree for each write,
 985	 * add a bufferpointer to the info structure
 986	 */
 987
 988	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 989	blocklen = (pagelen << info->blockshift);
 990	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 991	if (!blockbuffer)
 
 992		return -ENOMEM;
 
 993
 994	/*
 995	 * Since we don't write the user data directly to the device,
 996	 * we have to create a bounce buffer and move the data a piece
 997	 * at a time between the bounce buffer and the actual transfer buffer.
 998	 */
 999
1000	len = min_t(unsigned int, sectors, info->blocksize) * info->pagesize;
1001	buffer = kmalloc(len, GFP_NOIO);
1002	if (!buffer) {
 
1003		kfree(blockbuffer);
1004		return -ENOMEM;
1005	}
1006
1007	result = 0;
1008	offset = 0;
1009	sg = NULL;
1010
1011	while (sectors > 0) {
1012
1013		/* Write as many sectors as possible in this block */
1014
1015		pages = min(sectors, info->blocksize - page);
1016		len = (pages << info->pageshift);
1017
1018		/* Not overflowing capacity? */
1019		if (lba >= maxlba) {
1020			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1021				     lba, maxlba);
1022			result = -EIO;
1023			break;
1024		}
1025
1026		/* Get the data from the transfer buffer */
1027		usb_stor_access_xfer_buf(buffer, len, us->srb,
1028				&sg, &offset, FROM_XFER_BUF);
1029
1030		result = sddr09_write_lba(us, lba, page, pages,
1031				buffer, blockbuffer);
1032		if (result)
1033			break;
1034
1035		page = 0;
1036		lba++;
1037		sectors -= pages;
1038	}
1039
1040	kfree(buffer);
1041	kfree(blockbuffer);
1042
1043	return result;
1044}
1045
1046static int
1047sddr09_read_control(struct us_data *us,
1048		unsigned long address,
1049		unsigned int blocks,
1050		unsigned char *content,
1051		int use_sg) {
1052
1053	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1054		     address, blocks);
1055
1056	return sddr09_read21(us, address, blocks,
1057			     CONTROL_SHIFT, content, use_sg);
1058}
1059
1060/*
1061 * Read Device ID Command: 12 bytes.
1062 * byte 0: opcode: ED
1063 *
1064 * Returns 2 bytes: Manufacturer ID and Device ID.
1065 * On more recent cards 3 bytes: the third byte is an option code A5
1066 * signifying that the secret command to read an 128-bit ID is available.
1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
1068 * a second read ID cmd is available.
1069 */
1070static int
1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1072	unsigned char *command = us->iobuf;
1073	unsigned char *content = us->iobuf;
1074	int result, i;
1075
1076	memset(command, 0, 12);
1077	command[0] = 0xED;
1078	command[1] = LUNBITS;
1079
1080	result = sddr09_send_scsi_command(us, command, 12);
1081	if (result)
1082		return result;
1083
1084	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085			content, 64, NULL);
1086
1087	for (i = 0; i < 4; i++)
1088		deviceID[i] = content[i];
1089
1090	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1091}
1092
1093static int
1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1095	int result;
1096	unsigned char status;
1097	const char *wp_fmt;
1098
1099	result = sddr09_read_status(us, &status);
1100	if (result) {
1101		usb_stor_dbg(us, "read_status fails\n");
1102		return result;
1103	}
 
1104	if ((status & 0x80) == 0) {
1105		info->flags |= SDDR09_WP;	/* write protected */
1106		wp_fmt = " WP";
1107	} else {
1108		wp_fmt = "";
1109	}
1110	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1111		     status & 0x40 ? " Ready" : "",
1112		     status & LUNBITS ? " Suspended" : "",
1113		     status & 0x01 ? " Error" : "");
1114
 
 
1115	return 0;
1116}
1117
1118#if 0
1119/*
1120 * Reset Command: 12 bytes.
1121 * byte 0: opcode: EB
1122 */
1123static int
1124sddr09_reset(struct us_data *us) {
1125
1126	unsigned char *command = us->iobuf;
1127
1128	memset(command, 0, 12);
1129	command[0] = 0xEB;
1130	command[1] = LUNBITS;
1131
1132	return sddr09_send_scsi_command(us, command, 12);
1133}
1134#endif
1135
1136static struct nand_flash_dev *
1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1138	struct nand_flash_dev *cardinfo;
1139	unsigned char deviceID[4];
1140	char blurbtxt[256];
1141	int result;
1142
1143	usb_stor_dbg(us, "Reading capacity...\n");
1144
1145	result = sddr09_read_deviceID(us, deviceID);
1146
1147	if (result) {
1148		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1149		printk(KERN_WARNING "sddr09: could not read card info\n");
1150		return NULL;
1151	}
1152
1153	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
 
1154
1155	/* Byte 0 is the manufacturer */
1156	sprintf(blurbtxt + strlen(blurbtxt),
1157		": Manuf. %s",
1158		nand_flash_manufacturer(deviceID[0]));
1159
1160	/* Byte 1 is the device type */
1161	cardinfo = nand_find_id(deviceID[1]);
1162	if (cardinfo) {
1163		/*
1164		 * MB or MiB? It is neither. A 16 MB card has
1165		 * 17301504 raw bytes, of which 16384000 are
1166		 * usable for user data.
1167		 */
1168		sprintf(blurbtxt + strlen(blurbtxt),
1169			", %d MB", 1<<(cardinfo->chipshift - 20));
1170	} else {
1171		sprintf(blurbtxt + strlen(blurbtxt),
1172			", type unrecognized");
1173	}
1174
1175	/* Byte 2 is code to signal availability of 128-bit ID */
1176	if (deviceID[2] == 0xa5) {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", 128-bit ID");
1179	}
1180
1181	/* Byte 3 announces the availability of another read ID command */
1182	if (deviceID[3] == 0xc0) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", extra cmd");
1185	}
1186
1187	if (flags & SDDR09_WP)
1188		sprintf(blurbtxt + strlen(blurbtxt),
1189			", WP");
1190
1191	printk(KERN_WARNING "%s\n", blurbtxt);
1192
1193	return cardinfo;
1194}
1195
1196static int
1197sddr09_read_map(struct us_data *us) {
1198
1199	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1200	int numblocks, alloc_len, alloc_blocks;
1201	int i, j, result;
1202	unsigned char *buffer, *buffer_end, *ptr;
1203	unsigned int lba, lbact;
1204
1205	if (!info->capacity)
1206		return -1;
1207
1208	/*
1209	 * size of a block is 1 << (blockshift + pageshift) bytes
1210	 * divide into the total capacity to get the number of blocks
1211	 */
1212
1213	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1214
1215	/*
1216	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217	 * but only use a 64 KB buffer
1218	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219	 */
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224	buffer = kmalloc(alloc_len, GFP_NOIO);
1225	if (!buffer) {
 
1226		result = -1;
1227		goto done;
1228	}
1229	buffer_end = buffer + alloc_len;
1230
1231#undef SDDR09_READ_MAP_BUFSZ
1232
1233	kfree(info->lba_to_pba);
1234	kfree(info->pba_to_lba);
1235	info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1236	info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1237
1238	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240		result = -1;
1241		goto done;
1242	}
1243
1244	for (i = 0; i < numblocks; i++)
1245		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246
1247	/*
1248	 * Define lba-pba translation table
1249	 */
1250
1251	ptr = buffer_end;
1252	for (i = 0; i < numblocks; i++) {
1253		ptr += (1 << CONTROL_SHIFT);
1254		if (ptr >= buffer_end) {
1255			unsigned long address;
1256
1257			address = i << (info->pageshift + info->blockshift);
1258			result = sddr09_read_control(
1259				us, address>>1,
1260				min(alloc_blocks, numblocks - i),
1261				buffer, 0);
1262			if (result) {
1263				result = -1;
1264				goto done;
1265			}
1266			ptr = buffer;
1267		}
1268
1269		if (i == 0 || i == 1) {
1270			info->pba_to_lba[i] = UNUSABLE;
1271			continue;
1272		}
1273
1274		/* special PBAs have control field 0^16 */
1275		for (j = 0; j < 16; j++)
1276			if (ptr[j] != 0)
1277				goto nonz;
1278		info->pba_to_lba[i] = UNUSABLE;
1279		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280		       i);
1281		continue;
1282
1283	nonz:
1284		/* unwritten PBAs have control field FF^16 */
1285		for (j = 0; j < 16; j++)
1286			if (ptr[j] != 0xff)
1287				goto nonff;
1288		continue;
1289
1290	nonff:
1291		/* normal PBAs start with six FFs */
1292		if (j < 6) {
1293			printk(KERN_WARNING
1294			       "sddr09: PBA %d has no logical mapping: "
1295			       "reserved area = %02X%02X%02X%02X "
1296			       "data status %02X block status %02X\n",
1297			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1298			       ptr[4], ptr[5]);
1299			info->pba_to_lba[i] = UNUSABLE;
1300			continue;
1301		}
1302
1303		if ((ptr[6] >> 4) != 0x01) {
1304			printk(KERN_WARNING
1305			       "sddr09: PBA %d has invalid address field "
1306			       "%02X%02X/%02X%02X\n",
1307			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308			info->pba_to_lba[i] = UNUSABLE;
1309			continue;
1310		}
1311
1312		/* check even parity */
1313		if (parity[ptr[6] ^ ptr[7]]) {
1314			printk(KERN_WARNING
1315			       "sddr09: Bad parity in LBA for block %d"
1316			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317			info->pba_to_lba[i] = UNUSABLE;
1318			continue;
1319		}
1320
1321		lba = short_pack(ptr[7], ptr[6]);
1322		lba = (lba & 0x07FF) >> 1;
1323
1324		/*
1325		 * Every 1024 physical blocks ("zone"), the LBA numbers
1326		 * go back to zero, but are within a higher block of LBA's.
1327		 * Also, there is a maximum of 1000 LBA's per zone.
1328		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329		 * which are really LBA 1000-1999. This allows for 24 bad
1330		 * or special physical blocks per zone.
1331		 */
1332
1333		if (lba >= 1000) {
1334			printk(KERN_WARNING
1335			       "sddr09: Bad low LBA %d for block %d\n",
1336			       lba, i);
1337			goto possibly_erase;
1338		}
1339
1340		lba += 1000*(i/0x400);
1341
1342		if (info->lba_to_pba[lba] != UNDEF) {
1343			printk(KERN_WARNING
1344			       "sddr09: LBA %d seen for PBA %d and %d\n",
1345			       lba, info->lba_to_pba[lba], i);
1346			goto possibly_erase;
1347		}
1348
1349		info->pba_to_lba[i] = lba;
1350		info->lba_to_pba[lba] = i;
1351		continue;
1352
1353	possibly_erase:
1354		if (erase_bad_lba_entries) {
1355			unsigned long address;
1356
1357			address = (i << (info->pageshift + info->blockshift));
1358			sddr09_erase(us, address>>1);
1359			info->pba_to_lba[i] = UNDEF;
1360		} else
1361			info->pba_to_lba[i] = UNUSABLE;
1362	}
1363
1364	/*
1365	 * Approximate capacity. This is not entirely correct yet,
1366	 * since a zone with less than 1000 usable pages leads to
1367	 * missing LBAs. Especially if it is the last zone, some
1368	 * LBAs can be past capacity.
1369	 */
1370	lbact = 0;
1371	for (i = 0; i < numblocks; i += 1024) {
1372		int ct = 0;
1373
1374		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375			if (info->pba_to_lba[i+j] != UNUSABLE) {
1376				if (ct >= 1000)
1377					info->pba_to_lba[i+j] = SPARE;
1378				else
1379					ct++;
1380			}
1381		}
1382		lbact += ct;
1383	}
1384	info->lbact = lbact;
1385	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386	result = 0;
1387
1388 done:
1389	if (result != 0) {
1390		kfree(info->lba_to_pba);
1391		kfree(info->pba_to_lba);
1392		info->lba_to_pba = NULL;
1393		info->pba_to_lba = NULL;
1394	}
1395	kfree(buffer);
1396	return result;
1397}
1398
1399static void
1400sddr09_card_info_destructor(void *extra) {
1401	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402
1403	if (!info)
1404		return;
1405
1406	kfree(info->lba_to_pba);
1407	kfree(info->pba_to_lba);
1408}
1409
1410static int
1411sddr09_common_init(struct us_data *us) {
1412	int result;
1413
1414	/* set the configuration -- STALL is an acceptable response here */
1415	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1418		return -EINVAL;
1419	}
1420
1421	result = usb_reset_configuration(us->pusb_dev);
1422	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423	if (result == -EPIPE) {
1424		usb_stor_dbg(us, "-- stall on control interface\n");
1425	} else if (result != 0) {
1426		/* it's not a stall, but another error -- time to bail */
1427		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1428		return -EINVAL;
1429	}
1430
1431	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432	if (!us->extra)
1433		return -ENOMEM;
1434	us->extra_destructor = sddr09_card_info_destructor;
1435
1436	nand_init_ecc();
1437	return 0;
1438}
1439
1440
1441/*
1442 * This is needed at a very early stage. If this is not listed in the
1443 * unusual devices list but called from here then LUN 0 of the combo reader
1444 * is not recognized. But I do not know what precisely these calls do.
1445 */
1446static int
1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448	int result;
1449	unsigned char *data = us->iobuf;
1450
1451	result = sddr09_common_init(us);
1452	if (result)
1453		return result;
1454
1455	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456	if (result) {
1457		usb_stor_dbg(us, "send_command fails\n");
1458		return result;
1459	}
1460
1461	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462	// get 07 02
1463
1464	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465	if (result) {
1466		usb_stor_dbg(us, "2nd send_command fails\n");
1467		return result;
1468	}
1469
1470	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471	// get 07 00
1472
1473	result = sddr09_request_sense(us, data, 18);
1474	if (result == 0 && data[2] != 0) {
1475		int j;
1476		for (j=0; j<18; j++)
1477			printk(" %02X", data[j]);
1478		printk("\n");
1479		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480		// 70: current command
1481		// sense key 0, sense code 0, extd sense code 0
1482		// additional transfer length * = sizeof(data) - 7
1483		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484		// sense key 06, sense code 28: unit attention,
1485		// not ready to ready transition
1486	}
1487
1488	// test unit ready
1489
1490	return 0;		/* not result */
1491}
1492
1493/*
1494 * Transport for the Microtech DPCM-USB
1495 */
1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497{
1498	int ret;
1499
1500	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501
1502	switch (srb->device->lun) {
1503	case 0:
1504
1505		/*
1506		 * LUN 0 corresponds to the CompactFlash card reader.
1507		 */
1508		ret = usb_stor_CB_transport(srb, us);
1509		break;
1510
1511	case 1:
1512
1513		/*
1514		 * LUN 1 corresponds to the SmartMedia card reader.
1515		 */
1516
1517		/*
1518		 * Set the LUN to 0 (just in case).
1519		 */
1520		srb->device->lun = 0;
1521		ret = sddr09_transport(srb, us);
1522		srb->device->lun = 1;
1523		break;
1524
1525	default:
1526	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
 
1527		ret = USB_STOR_TRANSPORT_ERROR;
1528		break;
1529	}
1530	return ret;
1531}
1532
1533
1534/*
1535 * Transport for the Sandisk SDDR-09
1536 */
1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538{
1539	static unsigned char sensekey = 0, sensecode = 0;
1540	static unsigned char havefakesense = 0;
1541	int result, i;
1542	unsigned char *ptr = us->iobuf;
1543	unsigned long capacity;
1544	unsigned int page, pages;
1545
1546	struct sddr09_card_info *info;
1547
1548	static unsigned char inquiry_response[8] = {
1549		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550	};
1551
1552	/* note: no block descriptor support */
1553	static unsigned char mode_page_01[19] = {
1554		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555		0x01, 0x0A,
1556		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557	};
1558
1559	info = (struct sddr09_card_info *)us->extra;
1560
1561	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562		/* for a faked command, we have to follow with a faked sense */
1563		memset(ptr, 0, 18);
1564		ptr[0] = 0x70;
1565		ptr[2] = sensekey;
1566		ptr[7] = 11;
1567		ptr[12] = sensecode;
1568		usb_stor_set_xfer_buf(ptr, 18, srb);
1569		sensekey = sensecode = havefakesense = 0;
1570		return USB_STOR_TRANSPORT_GOOD;
1571	}
1572
1573	havefakesense = 1;
1574
1575	/*
1576	 * Dummy up a response for INQUIRY since SDDR09 doesn't
1577	 * respond to INQUIRY commands
1578	 */
1579
1580	if (srb->cmnd[0] == INQUIRY) {
1581		memcpy(ptr, inquiry_response, 8);
1582		fill_inquiry_response(us, ptr, 36);
1583		return USB_STOR_TRANSPORT_GOOD;
1584	}
1585
1586	if (srb->cmnd[0] == READ_CAPACITY) {
1587		struct nand_flash_dev *cardinfo;
1588
1589		sddr09_get_wp(us, info);	/* read WP bit */
1590
1591		cardinfo = sddr09_get_cardinfo(us, info->flags);
1592		if (!cardinfo) {
1593			/* probably no media */
1594		init_error:
1595			sensekey = 0x02;	/* not ready */
1596			sensecode = 0x3a;	/* medium not present */
1597			return USB_STOR_TRANSPORT_FAILED;
1598		}
1599
1600		info->capacity = (1 << cardinfo->chipshift);
1601		info->pageshift = cardinfo->pageshift;
1602		info->pagesize = (1 << info->pageshift);
1603		info->blockshift = cardinfo->blockshift;
1604		info->blocksize = (1 << info->blockshift);
1605		info->blockmask = info->blocksize - 1;
1606
1607		// map initialization, must follow get_cardinfo()
1608		if (sddr09_read_map(us)) {
1609			/* probably out of memory */
1610			goto init_error;
1611		}
1612
1613		// Report capacity
1614
1615		capacity = (info->lbact << info->blockshift) - 1;
1616
1617		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1618
1619		// Report page size
1620
1621		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1622		usb_stor_set_xfer_buf(ptr, 8, srb);
1623
1624		return USB_STOR_TRANSPORT_GOOD;
1625	}
1626
1627	if (srb->cmnd[0] == MODE_SENSE_10) {
1628		int modepage = (srb->cmnd[2] & 0x3F);
1629
1630		/*
1631		 * They ask for the Read/Write error recovery page,
1632		 * or for all pages.
1633		 */
1634		/* %% We should check DBD %% */
1635		if (modepage == 0x01 || modepage == 0x3F) {
1636			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1637				     modepage);
1638
1639			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1640			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1641			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1642			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1643			return USB_STOR_TRANSPORT_GOOD;
1644		}
1645
1646		sensekey = 0x05;	/* illegal request */
1647		sensecode = 0x24;	/* invalid field in CDB */
1648		return USB_STOR_TRANSPORT_FAILED;
1649	}
1650
1651	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1652		return USB_STOR_TRANSPORT_GOOD;
1653
1654	havefakesense = 0;
1655
1656	if (srb->cmnd[0] == READ_10) {
1657
1658		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1659		page <<= 16;
1660		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1661		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662
1663		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1664			     page, pages);
1665
1666		result = sddr09_read_data(us, page, pages);
1667		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1668				USB_STOR_TRANSPORT_ERROR);
1669	}
1670
1671	if (srb->cmnd[0] == WRITE_10) {
1672
1673		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1674		page <<= 16;
1675		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1676		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677
1678		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1679			     page, pages);
1680
1681		result = sddr09_write_data(us, page, pages);
1682		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1683				USB_STOR_TRANSPORT_ERROR);
1684	}
1685
1686	/*
1687	 * catch-all for all other commands, except
1688	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1689	 */
1690	if (srb->cmnd[0] != TEST_UNIT_READY &&
1691	    srb->cmnd[0] != REQUEST_SENSE) {
1692		sensekey = 0x05;	/* illegal request */
1693		sensecode = 0x20;	/* invalid command */
1694		havefakesense = 1;
1695		return USB_STOR_TRANSPORT_FAILED;
1696	}
1697
1698	for (; srb->cmd_len<12; srb->cmd_len++)
1699		srb->cmnd[srb->cmd_len] = 0;
1700
1701	srb->cmnd[1] = LUNBITS;
1702
1703	ptr[0] = 0;
1704	for (i=0; i<12; i++)
1705		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1706
1707	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1708
1709	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1710	if (result) {
1711		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1712			     result);
1713		return USB_STOR_TRANSPORT_ERROR;
1714	}
1715
1716	if (scsi_bufflen(srb) == 0)
1717		return USB_STOR_TRANSPORT_GOOD;
1718
1719	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1720	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1721		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1722				? us->send_bulk_pipe : us->recv_bulk_pipe;
1723
1724		usb_stor_dbg(us, "%s %d bytes\n",
1725			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1726			     "sending" : "receiving",
1727			     scsi_bufflen(srb));
1728
1729		result = usb_stor_bulk_srb(us, pipe, srb);
1730
1731		return (result == USB_STOR_XFER_GOOD ?
1732			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733	} 
1734
1735	return USB_STOR_TRANSPORT_GOOD;
1736}
1737
1738/*
1739 * Initialization routine for the sddr09 subdriver
1740 */
1741static int
1742usb_stor_sddr09_init(struct us_data *us) {
1743	return sddr09_common_init(us);
1744}
1745
1746static struct scsi_host_template sddr09_host_template;
1747
1748static int sddr09_probe(struct usb_interface *intf,
1749			 const struct usb_device_id *id)
1750{
1751	struct us_data *us;
1752	int result;
1753
1754	result = usb_stor_probe1(&us, intf, id,
1755			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1756			&sddr09_host_template);
1757	if (result)
1758		return result;
1759
1760	if (us->protocol == USB_PR_DPCM_USB) {
1761		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762		us->transport = dpcm_transport;
1763		us->transport_reset = usb_stor_CB_reset;
1764		us->max_lun = 1;
1765	} else {
1766		us->transport_name = "EUSB/SDDR09";
1767		us->transport = sddr09_transport;
1768		us->transport_reset = usb_stor_CB_reset;
1769		us->max_lun = 0;
1770	}
1771
1772	result = usb_stor_probe2(us);
1773	return result;
1774}
1775
1776static struct usb_driver sddr09_driver = {
1777	.name =		DRV_NAME,
1778	.probe =	sddr09_probe,
1779	.disconnect =	usb_stor_disconnect,
1780	.suspend =	usb_stor_suspend,
1781	.resume =	usb_stor_resume,
1782	.reset_resume =	usb_stor_reset_resume,
1783	.pre_reset =	usb_stor_pre_reset,
1784	.post_reset =	usb_stor_post_reset,
1785	.id_table =	sddr09_usb_ids,
1786	.soft_unbind =	1,
1787	.no_dynamic_id = 1,
1788};
1789
1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
 
 
 
 
 
 
 
 
 
 
 
v3.1
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
 
 
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
 
 
 
  55
  56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  58MODULE_LICENSE("GPL");
 
  59
  60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  62static int usb_stor_sddr09_init(struct us_data *us);
  63
  64
  65/*
  66 * The table of devices
  67 */
  68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  69		    vendorName, productName, useProtocol, useTransport, \
  70		    initFunction, flags) \
  71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  72  .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
  73
  74struct usb_device_id sddr09_usb_ids[] = {
  75#	include "unusual_sddr09.h"
  76	{ }		/* Terminating entry */
  77};
  78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  79
  80#undef UNUSUAL_DEV
  81
  82/*
  83 * The flags table
  84 */
  85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  86		    vendor_name, product_name, use_protocol, use_transport, \
  87		    init_function, Flags) \
  88{ \
  89	.vendorName = vendor_name,	\
  90	.productName = product_name,	\
  91	.useProtocol = use_protocol,	\
  92	.useTransport = use_transport,	\
  93	.initFunction = init_function,	\
  94}
  95
  96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  97#	include "unusual_sddr09.h"
  98	{ }		/* Terminating entry */
  99};
 100
 101#undef UNUSUAL_DEV
 102
 103
 104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 105#define LSB_of(s) ((s)&0xFF)
 106#define MSB_of(s) ((s)>>8)
 107
 108/* #define US_DEBUGP printk */
 109
 110/*
 111 * First some stuff that does not belong here:
 112 * data on SmartMedia and other cards, completely
 113 * unrelated to this driver.
 114 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 115 */
 116
 117struct nand_flash_dev {
 118	int model_id;
 119	int chipshift;		/* 1<<cs bytes total capacity */
 120	char pageshift;		/* 1<<ps bytes in a page */
 121	char blockshift;	/* 1<<bs pages in an erase block */
 122	char zoneshift;		/* 1<<zs blocks in a zone */
 123				/* # of logical blocks is 125/128 of this */
 124	char pageadrlen;	/* length of an address in bytes - 1 */
 125};
 126
 127/*
 128 * NAND Flash Manufacturer ID Codes
 129 */
 130#define NAND_MFR_AMD		0x01
 131#define NAND_MFR_NATSEMI	0x8f
 132#define NAND_MFR_TOSHIBA	0x98
 133#define NAND_MFR_SAMSUNG	0xec
 134
 135static inline char *nand_flash_manufacturer(int manuf_id) {
 136	switch(manuf_id) {
 137	case NAND_MFR_AMD:
 138		return "AMD";
 139	case NAND_MFR_NATSEMI:
 140		return "NATSEMI";
 141	case NAND_MFR_TOSHIBA:
 142		return "Toshiba";
 143	case NAND_MFR_SAMSUNG:
 144		return "Samsung";
 145	default:
 146		return "unknown";
 147	}
 148}
 149
 150/*
 151 * It looks like it is unnecessary to attach manufacturer to the
 152 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 153 *
 154 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 155 */
 156
 157static struct nand_flash_dev nand_flash_ids[] = {
 158	/* NAND flash */
 159	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 160	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 161	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 162	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 163	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 164	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 165	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 167	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 168	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 169	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 170	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 171	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 172
 173	/* MASK ROM */
 174	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 175	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 176	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 177	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 178	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 179	{ 0,}
 180};
 181
 182static struct nand_flash_dev *
 183nand_find_id(unsigned char id) {
 184	int i;
 185
 186	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 187		if (nand_flash_ids[i].model_id == id)
 188			return &(nand_flash_ids[i]);
 189	return NULL;
 190}
 191
 192/*
 193 * ECC computation.
 194 */
 195static unsigned char parity[256];
 196static unsigned char ecc2[256];
 197
 198static void nand_init_ecc(void) {
 199	int i, j, a;
 200
 201	parity[0] = 0;
 202	for (i = 1; i < 256; i++)
 203		parity[i] = (parity[i&(i-1)] ^ 1);
 204
 205	for (i = 0; i < 256; i++) {
 206		a = 0;
 207		for (j = 0; j < 8; j++) {
 208			if (i & (1<<j)) {
 209				if ((j & 1) == 0)
 210					a ^= 0x04;
 211				if ((j & 2) == 0)
 212					a ^= 0x10;
 213				if ((j & 4) == 0)
 214					a ^= 0x40;
 215			}
 216		}
 217		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 218	}
 219}
 220
 221/* compute 3-byte ecc on 256 bytes */
 222static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 223	int i, j, a;
 224	unsigned char par, bit, bits[8];
 225
 226	par = 0;
 227	for (j = 0; j < 8; j++)
 228		bits[j] = 0;
 229
 230	/* collect 16 checksum bits */
 231	for (i = 0; i < 256; i++) {
 232		par ^= data[i];
 233		bit = parity[data[i]];
 234		for (j = 0; j < 8; j++)
 235			if ((i & (1<<j)) == 0)
 236				bits[j] ^= bit;
 237	}
 238
 239	/* put 4+4+4 = 12 bits in the ecc */
 240	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 241	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 242
 243	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 244	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 245
 246	ecc[2] = ecc2[par];
 247}
 248
 249static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 250	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 251}
 252
 253static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 254	memcpy(data, ecc, 3);
 255}
 256
 257/*
 258 * The actual driver starts here.
 259 */
 260
 261struct sddr09_card_info {
 262	unsigned long	capacity;	/* Size of card in bytes */
 263	int		pagesize;	/* Size of page in bytes */
 264	int		pageshift;	/* log2 of pagesize */
 265	int		blocksize;	/* Size of block in pages */
 266	int		blockshift;	/* log2 of blocksize */
 267	int		blockmask;	/* 2^blockshift - 1 */
 268	int		*lba_to_pba;	/* logical to physical map */
 269	int		*pba_to_lba;	/* physical to logical map */
 270	int		lbact;		/* number of available pages */
 271	int		flags;
 272#define	SDDR09_WP	1		/* write protected */
 273};
 274
 275/*
 276 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 277 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 278 * so the reader makes up the remaining 48. Don't know whether these numbers
 279 * depend on the card. For now a constant.
 280 */
 281#define CONTROL_SHIFT 6
 282
 283/*
 284 * On my Combo CF/SM reader, the SM reader has LUN 1.
 285 * (and things fail with LUN 0).
 286 * It seems LUN is irrelevant for others.
 287 */
 288#define LUN	1
 289#define	LUNBITS	(LUN << 5)
 290
 291/*
 292 * LBA and PBA are unsigned ints. Special values.
 293 */
 294#define UNDEF    0xffffffff
 295#define SPARE    0xfffffffe
 296#define UNUSABLE 0xfffffffd
 297
 298static const int erase_bad_lba_entries = 0;
 299
 300/* send vendor interface command (0x41) */
 301/* called for requests 0, 1, 8 */
 302static int
 303sddr09_send_command(struct us_data *us,
 304		    unsigned char request,
 305		    unsigned char direction,
 306		    unsigned char *xfer_data,
 307		    unsigned int xfer_len) {
 308	unsigned int pipe;
 309	unsigned char requesttype = (0x41 | direction);
 310	int rc;
 311
 312	// Get the receive or send control pipe number
 313
 314	if (direction == USB_DIR_IN)
 315		pipe = us->recv_ctrl_pipe;
 316	else
 317		pipe = us->send_ctrl_pipe;
 318
 319	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 320				   0, 0, xfer_data, xfer_len);
 321	switch (rc) {
 322		case USB_STOR_XFER_GOOD:	return 0;
 323		case USB_STOR_XFER_STALLED:	return -EPIPE;
 324		default:			return -EIO;
 325	}
 326}
 327
 328static int
 329sddr09_send_scsi_command(struct us_data *us,
 330			 unsigned char *command,
 331			 unsigned int command_len) {
 332	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 333}
 334
 335#if 0
 336/*
 337 * Test Unit Ready Command: 12 bytes.
 338 * byte 0: opcode: 00
 339 */
 340static int
 341sddr09_test_unit_ready(struct us_data *us) {
 342	unsigned char *command = us->iobuf;
 343	int result;
 344
 345	memset(command, 0, 6);
 346	command[1] = LUNBITS;
 347
 348	result = sddr09_send_scsi_command(us, command, 6);
 349
 350	US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
 351
 352	return result;
 353}
 354#endif
 355
 356/*
 357 * Request Sense Command: 12 bytes.
 358 * byte 0: opcode: 03
 359 * byte 4: data length
 360 */
 361static int
 362sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 363	unsigned char *command = us->iobuf;
 364	int result;
 365
 366	memset(command, 0, 12);
 367	command[0] = 0x03;
 368	command[1] = LUNBITS;
 369	command[4] = buflen;
 370
 371	result = sddr09_send_scsi_command(us, command, 12);
 372	if (result)
 373		return result;
 374
 375	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 376			sensebuf, buflen, NULL);
 377	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 378}
 379
 380/*
 381 * Read Command: 12 bytes.
 382 * byte 0: opcode: E8
 383 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 384 *			10: read both, 11: read pagewise control.
 385 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 386 * bytes 2-5: address (interpretation depends on byte 1, see below)
 387 * bytes 10-11: count (idem)
 388 *
 389 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 390 * A read data command gets data in 512-byte pages.
 391 * A read control command gets control in 64-byte chunks.
 392 * A read both command gets data+control in 576-byte chunks.
 393 *
 394 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 395 * next block, while read pagewise control jumps to the next page after
 396 * reading a group of 64 control bytes.
 397 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 398 *
 399 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 400 */
 401
 402static int
 403sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 404	     int nr_of_pages, int bulklen, unsigned char *buf,
 405	     int use_sg) {
 406
 407	unsigned char *command = us->iobuf;
 408	int result;
 409
 410	command[0] = 0xE8;
 411	command[1] = LUNBITS | x;
 412	command[2] = MSB_of(fromaddress>>16);
 413	command[3] = LSB_of(fromaddress>>16); 
 414	command[4] = MSB_of(fromaddress & 0xFFFF);
 415	command[5] = LSB_of(fromaddress & 0xFFFF); 
 416	command[6] = 0;
 417	command[7] = 0;
 418	command[8] = 0;
 419	command[9] = 0;
 420	command[10] = MSB_of(nr_of_pages);
 421	command[11] = LSB_of(nr_of_pages);
 422
 423	result = sddr09_send_scsi_command(us, command, 12);
 424
 425	if (result) {
 426		US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
 427			  x, result);
 428		return result;
 429	}
 430
 431	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 432				       buf, bulklen, use_sg, NULL);
 433
 434	if (result != USB_STOR_XFER_GOOD) {
 435		US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
 436			  x, result);
 437		return -EIO;
 438	}
 439	return 0;
 440}
 441
 442/*
 443 * Read Data
 444 *
 445 * fromaddress counts data shorts:
 446 * increasing it by 256 shifts the bytestream by 512 bytes;
 447 * the last 8 bits are ignored.
 448 *
 449 * nr_of_pages counts pages of size (1 << pageshift).
 450 */
 451static int
 452sddr09_read20(struct us_data *us, unsigned long fromaddress,
 453	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 454	int bulklen = nr_of_pages << pageshift;
 455
 456	/* The last 8 bits of fromaddress are ignored. */
 457	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 458			    buf, use_sg);
 459}
 460
 461/*
 462 * Read Blockwise Control
 463 *
 464 * fromaddress gives the starting position (as in read data;
 465 * the last 8 bits are ignored); increasing it by 32*256 shifts
 466 * the output stream by 64 bytes.
 467 *
 468 * count counts control groups of size (1 << controlshift).
 469 * For me, controlshift = 6. Is this constant?
 470 *
 471 * After getting one control group, jump to the next block
 472 * (fromaddress += 8192).
 473 */
 474static int
 475sddr09_read21(struct us_data *us, unsigned long fromaddress,
 476	      int count, int controlshift, unsigned char *buf, int use_sg) {
 477
 478	int bulklen = (count << controlshift);
 479	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 480			    buf, use_sg);
 481}
 482
 483/*
 484 * Read both Data and Control
 485 *
 486 * fromaddress counts data shorts, ignoring control:
 487 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 488 * the last 8 bits are ignored.
 489 *
 490 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 491 */
 492static int
 493sddr09_read22(struct us_data *us, unsigned long fromaddress,
 494	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 495
 496	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 497	US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
 498		  nr_of_pages, bulklen);
 499	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 500			    buf, use_sg);
 501}
 502
 503#if 0
 504/*
 505 * Read Pagewise Control
 506 *
 507 * fromaddress gives the starting position (as in read data;
 508 * the last 8 bits are ignored); increasing it by 256 shifts
 509 * the output stream by 64 bytes.
 510 *
 511 * count counts control groups of size (1 << controlshift).
 512 * For me, controlshift = 6. Is this constant?
 513 *
 514 * After getting one control group, jump to the next page
 515 * (fromaddress += 256).
 516 */
 517static int
 518sddr09_read23(struct us_data *us, unsigned long fromaddress,
 519	      int count, int controlshift, unsigned char *buf, int use_sg) {
 520
 521	int bulklen = (count << controlshift);
 522	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 523			    buf, use_sg);
 524}
 525#endif
 526
 527/*
 528 * Erase Command: 12 bytes.
 529 * byte 0: opcode: EA
 530 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 531 * 
 532 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 533 * The byte address being erased is 2*Eaddress.
 534 * The CIS cannot be erased.
 535 */
 536static int
 537sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 538	unsigned char *command = us->iobuf;
 539	int result;
 540
 541	US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
 542
 543	memset(command, 0, 12);
 544	command[0] = 0xEA;
 545	command[1] = LUNBITS;
 546	command[6] = MSB_of(Eaddress>>16);
 547	command[7] = LSB_of(Eaddress>>16);
 548	command[8] = MSB_of(Eaddress & 0xFFFF);
 549	command[9] = LSB_of(Eaddress & 0xFFFF);
 550
 551	result = sddr09_send_scsi_command(us, command, 12);
 552
 553	if (result)
 554		US_DEBUGP("Result for send_control in sddr09_erase %d\n",
 555			  result);
 556
 557	return result;
 558}
 559
 560/*
 561 * Write CIS Command: 12 bytes.
 562 * byte 0: opcode: EE
 563 * bytes 2-5: write address in shorts
 564 * bytes 10-11: sector count
 565 *
 566 * This writes at the indicated address. Don't know how it differs
 567 * from E9. Maybe it does not erase? However, it will also write to
 568 * the CIS.
 569 *
 570 * When two such commands on the same page follow each other directly,
 571 * the second one is not done.
 572 */
 573
 574/*
 575 * Write Command: 12 bytes.
 576 * byte 0: opcode: E9
 577 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 578 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 579 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 580 *
 581 * If write address equals erase address, the erase is done first,
 582 * otherwise the write is done first. When erase address equals zero
 583 * no erase is done?
 584 */
 585static int
 586sddr09_writeX(struct us_data *us,
 587	      unsigned long Waddress, unsigned long Eaddress,
 588	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 589
 590	unsigned char *command = us->iobuf;
 591	int result;
 592
 593	command[0] = 0xE9;
 594	command[1] = LUNBITS;
 595
 596	command[2] = MSB_of(Waddress>>16);
 597	command[3] = LSB_of(Waddress>>16);
 598	command[4] = MSB_of(Waddress & 0xFFFF);
 599	command[5] = LSB_of(Waddress & 0xFFFF);
 600
 601	command[6] = MSB_of(Eaddress>>16);
 602	command[7] = LSB_of(Eaddress>>16);
 603	command[8] = MSB_of(Eaddress & 0xFFFF);
 604	command[9] = LSB_of(Eaddress & 0xFFFF);
 605
 606	command[10] = MSB_of(nr_of_pages);
 607	command[11] = LSB_of(nr_of_pages);
 608
 609	result = sddr09_send_scsi_command(us, command, 12);
 610
 611	if (result) {
 612		US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
 613			  result);
 614		return result;
 615	}
 616
 617	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 618				       buf, bulklen, use_sg, NULL);
 619
 620	if (result != USB_STOR_XFER_GOOD) {
 621		US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
 622			  result);
 623		return -EIO;
 624	}
 625	return 0;
 626}
 627
 628/* erase address, write same address */
 629static int
 630sddr09_write_inplace(struct us_data *us, unsigned long address,
 631		     int nr_of_pages, int pageshift, unsigned char *buf,
 632		     int use_sg) {
 633	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 634	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 635			     buf, use_sg);
 636}
 637
 638#if 0
 639/*
 640 * Read Scatter Gather Command: 3+4n bytes.
 641 * byte 0: opcode E7
 642 * byte 2: n
 643 * bytes 4i-1,4i,4i+1: page address
 644 * byte 4i+2: page count
 645 * (i=1..n)
 646 *
 647 * This reads several pages from the card to a single memory buffer.
 648 * The last two bits of byte 1 have the same meaning as for E8.
 649 */
 650static int
 651sddr09_read_sg_test_only(struct us_data *us) {
 652	unsigned char *command = us->iobuf;
 653	int result, bulklen, nsg, ct;
 654	unsigned char *buf;
 655	unsigned long address;
 656
 657	nsg = bulklen = 0;
 658	command[0] = 0xE7;
 659	command[1] = LUNBITS;
 660	command[2] = 0;
 661	address = 040000; ct = 1;
 662	nsg++;
 663	bulklen += (ct << 9);
 664	command[4*nsg+2] = ct;
 665	command[4*nsg+1] = ((address >> 9) & 0xFF);
 666	command[4*nsg+0] = ((address >> 17) & 0xFF);
 667	command[4*nsg-1] = ((address >> 25) & 0xFF);
 668
 669	address = 0340000; ct = 1;
 670	nsg++;
 671	bulklen += (ct << 9);
 672	command[4*nsg+2] = ct;
 673	command[4*nsg+1] = ((address >> 9) & 0xFF);
 674	command[4*nsg+0] = ((address >> 17) & 0xFF);
 675	command[4*nsg-1] = ((address >> 25) & 0xFF);
 676
 677	address = 01000000; ct = 2;
 678	nsg++;
 679	bulklen += (ct << 9);
 680	command[4*nsg+2] = ct;
 681	command[4*nsg+1] = ((address >> 9) & 0xFF);
 682	command[4*nsg+0] = ((address >> 17) & 0xFF);
 683	command[4*nsg-1] = ((address >> 25) & 0xFF);
 684
 685	command[2] = nsg;
 686
 687	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 688
 689	if (result) {
 690		US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
 691			  result);
 692		return result;
 693	}
 694
 695	buf = kmalloc(bulklen, GFP_NOIO);
 696	if (!buf)
 697		return -ENOMEM;
 698
 699	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 700				       buf, bulklen, NULL);
 701	kfree(buf);
 702	if (result != USB_STOR_XFER_GOOD) {
 703		US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
 704			  result);
 705		return -EIO;
 706	}
 707
 708	return 0;
 709}
 710#endif
 711
 712/*
 713 * Read Status Command: 12 bytes.
 714 * byte 0: opcode: EC
 715 *
 716 * Returns 64 bytes, all zero except for the first.
 717 * bit 0: 1: Error
 718 * bit 5: 1: Suspended
 719 * bit 6: 1: Ready
 720 * bit 7: 1: Not write-protected
 721 */
 722
 723static int
 724sddr09_read_status(struct us_data *us, unsigned char *status) {
 725
 726	unsigned char *command = us->iobuf;
 727	unsigned char *data = us->iobuf;
 728	int result;
 729
 730	US_DEBUGP("Reading status...\n");
 731
 732	memset(command, 0, 12);
 733	command[0] = 0xEC;
 734	command[1] = LUNBITS;
 735
 736	result = sddr09_send_scsi_command(us, command, 12);
 737	if (result)
 738		return result;
 739
 740	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 741				       data, 64, NULL);
 742	*status = data[0];
 743	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 744}
 745
 746static int
 747sddr09_read_data(struct us_data *us,
 748		 unsigned long address,
 749		 unsigned int sectors) {
 750
 751	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 752	unsigned char *buffer;
 753	unsigned int lba, maxlba, pba;
 754	unsigned int page, pages;
 755	unsigned int len, offset;
 756	struct scatterlist *sg;
 757	int result;
 758
 759	// Figure out the initial LBA and page
 760	lba = address >> info->blockshift;
 761	page = (address & info->blockmask);
 762	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 763	if (lba >= maxlba)
 764		return -EIO;
 765
 766	// Since we only read in one block at a time, we have to create
 767	// a bounce buffer and move the data a piece at a time between the
 768	// bounce buffer and the actual transfer buffer.
 769
 770	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 771	buffer = kmalloc(len, GFP_NOIO);
 772	if (buffer == NULL) {
 773		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 774		return -ENOMEM;
 775	}
 776
 777	// This could be made much more efficient by checking for
 778	// contiguous LBA's. Another exercise left to the student.
 779
 780	result = 0;
 781	offset = 0;
 782	sg = NULL;
 783
 784	while (sectors > 0) {
 785
 786		/* Find number of pages we can read in this block */
 787		pages = min(sectors, info->blocksize - page);
 788		len = pages << info->pageshift;
 789
 790		/* Not overflowing capacity? */
 791		if (lba >= maxlba) {
 792			US_DEBUGP("Error: Requested lba %u exceeds "
 793				  "maximum %u\n", lba, maxlba);
 794			result = -EIO;
 795			break;
 796		}
 797
 798		/* Find where this lba lives on disk */
 799		pba = info->lba_to_pba[lba];
 800
 801		if (pba == UNDEF) {	/* this lba was never written */
 802
 803			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
 804				  pages, lba, page);
 805
 806			/* This is not really an error. It just means
 807			   that the block has never been written.
 808			   Instead of returning an error
 809			   it is better to return all zero data. */
 
 
 810
 811			memset(buffer, 0, len);
 812
 813		} else {
 814			US_DEBUGP("Read %d pages, from PBA %d"
 815				  " (LBA %d) page %d\n",
 816				  pages, pba, lba, page);
 817
 818			address = ((pba << info->blockshift) + page) << 
 819				info->pageshift;
 820
 821			result = sddr09_read20(us, address>>1,
 822					pages, info->pageshift, buffer, 0);
 823			if (result)
 824				break;
 825		}
 826
 827		// Store the data in the transfer buffer
 828		usb_stor_access_xfer_buf(buffer, len, us->srb,
 829				&sg, &offset, TO_XFER_BUF);
 830
 831		page = 0;
 832		lba++;
 833		sectors -= pages;
 834	}
 835
 836	kfree(buffer);
 837	return result;
 838}
 839
 840static unsigned int
 841sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 842	static unsigned int lastpba = 1;
 843	int zonestart, end, i;
 844
 845	zonestart = (lba/1000) << 10;
 846	end = info->capacity >> (info->blockshift + info->pageshift);
 847	end -= zonestart;
 848	if (end > 1024)
 849		end = 1024;
 850
 851	for (i = lastpba+1; i < end; i++) {
 852		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 853			lastpba = i;
 854			return zonestart+i;
 855		}
 856	}
 857	for (i = 0; i <= lastpba; i++) {
 858		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 859			lastpba = i;
 860			return zonestart+i;
 861		}
 862	}
 863	return 0;
 864}
 865
 866static int
 867sddr09_write_lba(struct us_data *us, unsigned int lba,
 868		 unsigned int page, unsigned int pages,
 869		 unsigned char *ptr, unsigned char *blockbuffer) {
 870
 871	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 872	unsigned long address;
 873	unsigned int pba, lbap;
 874	unsigned int pagelen;
 875	unsigned char *bptr, *cptr, *xptr;
 876	unsigned char ecc[3];
 877	int i, result, isnew;
 878
 879	lbap = ((lba % 1000) << 1) | 0x1000;
 880	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 881		lbap ^= 1;
 882	pba = info->lba_to_pba[lba];
 883	isnew = 0;
 884
 885	if (pba == UNDEF) {
 886		pba = sddr09_find_unused_pba(info, lba);
 887		if (!pba) {
 888			printk(KERN_WARNING
 889			       "sddr09_write_lba: Out of unused blocks\n");
 890			return -ENOSPC;
 891		}
 892		info->pba_to_lba[pba] = lba;
 893		info->lba_to_pba[lba] = pba;
 894		isnew = 1;
 895	}
 896
 897	if (pba == 1) {
 898		/* Maybe it is impossible to write to PBA 1.
 899		   Fake success, but don't do anything. */
 
 
 900		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 901		return 0;
 902	}
 903
 904	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 905
 906	/* read old contents */
 907	address = (pba << (info->pageshift + info->blockshift));
 908	result = sddr09_read22(us, address>>1, info->blocksize,
 909			       info->pageshift, blockbuffer, 0);
 910	if (result)
 911		return result;
 912
 913	/* check old contents and fill lba */
 914	for (i = 0; i < info->blocksize; i++) {
 915		bptr = blockbuffer + i*pagelen;
 916		cptr = bptr + info->pagesize;
 917		nand_compute_ecc(bptr, ecc);
 918		if (!nand_compare_ecc(cptr+13, ecc)) {
 919			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
 920				  i, pba);
 921			nand_store_ecc(cptr+13, ecc);
 922		}
 923		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 924		if (!nand_compare_ecc(cptr+8, ecc)) {
 925			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
 926				  i, pba);
 927			nand_store_ecc(cptr+8, ecc);
 928		}
 929		cptr[6] = cptr[11] = MSB_of(lbap);
 930		cptr[7] = cptr[12] = LSB_of(lbap);
 931	}
 932
 933	/* copy in new stuff and compute ECC */
 934	xptr = ptr;
 935	for (i = page; i < page+pages; i++) {
 936		bptr = blockbuffer + i*pagelen;
 937		cptr = bptr + info->pagesize;
 938		memcpy(bptr, xptr, info->pagesize);
 939		xptr += info->pagesize;
 940		nand_compute_ecc(bptr, ecc);
 941		nand_store_ecc(cptr+13, ecc);
 942		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 943		nand_store_ecc(cptr+8, ecc);
 944	}
 945
 946	US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
 947
 948	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 949				      info->pageshift, blockbuffer, 0);
 950
 951	US_DEBUGP("sddr09_write_inplace returns %d\n", result);
 952
 953#if 0
 954	{
 955		unsigned char status = 0;
 956		int result2 = sddr09_read_status(us, &status);
 957		if (result2)
 958			US_DEBUGP("sddr09_write_inplace: cannot read status\n");
 959		else if (status != 0xc0)
 960			US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
 961				  status);
 962	}
 963#endif
 964
 965#if 0
 966	{
 967		int result2 = sddr09_test_unit_ready(us);
 968	}
 969#endif
 970
 971	return result;
 972}
 973
 974static int
 975sddr09_write_data(struct us_data *us,
 976		  unsigned long address,
 977		  unsigned int sectors) {
 978
 979	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 980	unsigned int lba, maxlba, page, pages;
 981	unsigned int pagelen, blocklen;
 982	unsigned char *blockbuffer;
 983	unsigned char *buffer;
 984	unsigned int len, offset;
 985	struct scatterlist *sg;
 986	int result;
 987
 988	// Figure out the initial LBA and page
 989	lba = address >> info->blockshift;
 990	page = (address & info->blockmask);
 991	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 992	if (lba >= maxlba)
 993		return -EIO;
 994
 995	// blockbuffer is used for reading in the old data, overwriting
 996	// with the new data, and performing ECC calculations
 
 
 997
 998	/* TODO: instead of doing kmalloc/kfree for each write,
 999	   add a bufferpointer to the info structure */
 
 
1000
1001	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1002	blocklen = (pagelen << info->blockshift);
1003	blockbuffer = kmalloc(blocklen, GFP_NOIO);
1004	if (!blockbuffer) {
1005		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006		return -ENOMEM;
1007	}
1008
1009	// Since we don't write the user data directly to the device,
1010	// we have to create a bounce buffer and move the data a piece
1011	// at a time between the bounce buffer and the actual transfer buffer.
 
 
1012
1013	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1014	buffer = kmalloc(len, GFP_NOIO);
1015	if (buffer == NULL) {
1016		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1017		kfree(blockbuffer);
1018		return -ENOMEM;
1019	}
1020
1021	result = 0;
1022	offset = 0;
1023	sg = NULL;
1024
1025	while (sectors > 0) {
1026
1027		// Write as many sectors as possible in this block
1028
1029		pages = min(sectors, info->blocksize - page);
1030		len = (pages << info->pageshift);
1031
1032		/* Not overflowing capacity? */
1033		if (lba >= maxlba) {
1034			US_DEBUGP("Error: Requested lba %u exceeds "
1035				  "maximum %u\n", lba, maxlba);
1036			result = -EIO;
1037			break;
1038		}
1039
1040		// Get the data from the transfer buffer
1041		usb_stor_access_xfer_buf(buffer, len, us->srb,
1042				&sg, &offset, FROM_XFER_BUF);
1043
1044		result = sddr09_write_lba(us, lba, page, pages,
1045				buffer, blockbuffer);
1046		if (result)
1047			break;
1048
1049		page = 0;
1050		lba++;
1051		sectors -= pages;
1052	}
1053
1054	kfree(buffer);
1055	kfree(blockbuffer);
1056
1057	return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062		unsigned long address,
1063		unsigned int blocks,
1064		unsigned char *content,
1065		int use_sg) {
1066
1067	US_DEBUGP("Read control address %lu, blocks %d\n",
1068		address, blocks);
1069
1070	return sddr09_read21(us, address, blocks,
1071			     CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086	unsigned char *command = us->iobuf;
1087	unsigned char *content = us->iobuf;
1088	int result, i;
1089
1090	memset(command, 0, 12);
1091	command[0] = 0xED;
1092	command[1] = LUNBITS;
1093
1094	result = sddr09_send_scsi_command(us, command, 12);
1095	if (result)
1096		return result;
1097
1098	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099			content, 64, NULL);
1100
1101	for (i = 0; i < 4; i++)
1102		deviceID[i] = content[i];
1103
1104	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109	int result;
1110	unsigned char status;
 
1111
1112	result = sddr09_read_status(us, &status);
1113	if (result) {
1114		US_DEBUGP("sddr09_get_wp: read_status fails\n");
1115		return result;
1116	}
1117	US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1118	if ((status & 0x80) == 0) {
1119		info->flags |= SDDR09_WP;	/* write protected */
1120		US_DEBUGP(" WP");
 
 
1121	}
1122	if (status & 0x40)
1123		US_DEBUGP(" Ready");
1124	if (status & LUNBITS)
1125		US_DEBUGP(" Suspended");
1126	if (status & 0x1)
1127		US_DEBUGP(" Error");
1128	US_DEBUGP("\n");
1129	return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140	unsigned char *command = us->iobuf;
1141
1142	memset(command, 0, 12);
1143	command[0] = 0xEB;
1144	command[1] = LUNBITS;
1145
1146	return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152	struct nand_flash_dev *cardinfo;
1153	unsigned char deviceID[4];
1154	char blurbtxt[256];
1155	int result;
1156
1157	US_DEBUGP("Reading capacity...\n");
1158
1159	result = sddr09_read_deviceID(us, deviceID);
1160
1161	if (result) {
1162		US_DEBUGP("Result of read_deviceID is %d\n", result);
1163		printk(KERN_WARNING "sddr09: could not read card info\n");
1164		return NULL;
1165	}
1166
1167	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1169
1170	/* Byte 0 is the manufacturer */
1171	sprintf(blurbtxt + strlen(blurbtxt),
1172		": Manuf. %s",
1173		nand_flash_manufacturer(deviceID[0]));
1174
1175	/* Byte 1 is the device type */
1176	cardinfo = nand_find_id(deviceID[1]);
1177	if (cardinfo) {
1178		/* MB or MiB? It is neither. A 16 MB card has
1179		   17301504 raw bytes, of which 16384000 are
1180		   usable for user data. */
 
 
1181		sprintf(blurbtxt + strlen(blurbtxt),
1182			", %d MB", 1<<(cardinfo->chipshift - 20));
1183	} else {
1184		sprintf(blurbtxt + strlen(blurbtxt),
1185			", type unrecognized");
1186	}
1187
1188	/* Byte 2 is code to signal availability of 128-bit ID */
1189	if (deviceID[2] == 0xa5) {
1190		sprintf(blurbtxt + strlen(blurbtxt),
1191			", 128-bit ID");
1192	}
1193
1194	/* Byte 3 announces the availability of another read ID command */
1195	if (deviceID[3] == 0xc0) {
1196		sprintf(blurbtxt + strlen(blurbtxt),
1197			", extra cmd");
1198	}
1199
1200	if (flags & SDDR09_WP)
1201		sprintf(blurbtxt + strlen(blurbtxt),
1202			", WP");
1203
1204	printk(KERN_WARNING "%s\n", blurbtxt);
1205
1206	return cardinfo;
1207}
1208
1209static int
1210sddr09_read_map(struct us_data *us) {
1211
1212	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1213	int numblocks, alloc_len, alloc_blocks;
1214	int i, j, result;
1215	unsigned char *buffer, *buffer_end, *ptr;
1216	unsigned int lba, lbact;
1217
1218	if (!info->capacity)
1219		return -1;
1220
1221	// size of a block is 1 << (blockshift + pageshift) bytes
1222	// divide into the total capacity to get the number of blocks
 
 
1223
1224	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1225
1226	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227	// but only use a 64 KB buffer
1228	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
 
 
1229#define SDDR09_READ_MAP_BUFSZ 65536
1230
1231	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1232	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1233	buffer = kmalloc(alloc_len, GFP_NOIO);
1234	if (buffer == NULL) {
1235		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236		result = -1;
1237		goto done;
1238	}
1239	buffer_end = buffer + alloc_len;
1240
1241#undef SDDR09_READ_MAP_BUFSZ
1242
1243	kfree(info->lba_to_pba);
1244	kfree(info->pba_to_lba);
1245	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1246	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1247
1248	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1249		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1250		result = -1;
1251		goto done;
1252	}
1253
1254	for (i = 0; i < numblocks; i++)
1255		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1256
1257	/*
1258	 * Define lba-pba translation table
1259	 */
1260
1261	ptr = buffer_end;
1262	for (i = 0; i < numblocks; i++) {
1263		ptr += (1 << CONTROL_SHIFT);
1264		if (ptr >= buffer_end) {
1265			unsigned long address;
1266
1267			address = i << (info->pageshift + info->blockshift);
1268			result = sddr09_read_control(
1269				us, address>>1,
1270				min(alloc_blocks, numblocks - i),
1271				buffer, 0);
1272			if (result) {
1273				result = -1;
1274				goto done;
1275			}
1276			ptr = buffer;
1277		}
1278
1279		if (i == 0 || i == 1) {
1280			info->pba_to_lba[i] = UNUSABLE;
1281			continue;
1282		}
1283
1284		/* special PBAs have control field 0^16 */
1285		for (j = 0; j < 16; j++)
1286			if (ptr[j] != 0)
1287				goto nonz;
1288		info->pba_to_lba[i] = UNUSABLE;
1289		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1290		       i);
1291		continue;
1292
1293	nonz:
1294		/* unwritten PBAs have control field FF^16 */
1295		for (j = 0; j < 16; j++)
1296			if (ptr[j] != 0xff)
1297				goto nonff;
1298		continue;
1299
1300	nonff:
1301		/* normal PBAs start with six FFs */
1302		if (j < 6) {
1303			printk(KERN_WARNING
1304			       "sddr09: PBA %d has no logical mapping: "
1305			       "reserved area = %02X%02X%02X%02X "
1306			       "data status %02X block status %02X\n",
1307			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1308			       ptr[4], ptr[5]);
1309			info->pba_to_lba[i] = UNUSABLE;
1310			continue;
1311		}
1312
1313		if ((ptr[6] >> 4) != 0x01) {
1314			printk(KERN_WARNING
1315			       "sddr09: PBA %d has invalid address field "
1316			       "%02X%02X/%02X%02X\n",
1317			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1318			info->pba_to_lba[i] = UNUSABLE;
1319			continue;
1320		}
1321
1322		/* check even parity */
1323		if (parity[ptr[6] ^ ptr[7]]) {
1324			printk(KERN_WARNING
1325			       "sddr09: Bad parity in LBA for block %d"
1326			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1327			info->pba_to_lba[i] = UNUSABLE;
1328			continue;
1329		}
1330
1331		lba = short_pack(ptr[7], ptr[6]);
1332		lba = (lba & 0x07FF) >> 1;
1333
1334		/*
1335		 * Every 1024 physical blocks ("zone"), the LBA numbers
1336		 * go back to zero, but are within a higher block of LBA's.
1337		 * Also, there is a maximum of 1000 LBA's per zone.
1338		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1339		 * which are really LBA 1000-1999. This allows for 24 bad
1340		 * or special physical blocks per zone.
1341		 */
1342
1343		if (lba >= 1000) {
1344			printk(KERN_WARNING
1345			       "sddr09: Bad low LBA %d for block %d\n",
1346			       lba, i);
1347			goto possibly_erase;
1348		}
1349
1350		lba += 1000*(i/0x400);
1351
1352		if (info->lba_to_pba[lba] != UNDEF) {
1353			printk(KERN_WARNING
1354			       "sddr09: LBA %d seen for PBA %d and %d\n",
1355			       lba, info->lba_to_pba[lba], i);
1356			goto possibly_erase;
1357		}
1358
1359		info->pba_to_lba[i] = lba;
1360		info->lba_to_pba[lba] = i;
1361		continue;
1362
1363	possibly_erase:
1364		if (erase_bad_lba_entries) {
1365			unsigned long address;
1366
1367			address = (i << (info->pageshift + info->blockshift));
1368			sddr09_erase(us, address>>1);
1369			info->pba_to_lba[i] = UNDEF;
1370		} else
1371			info->pba_to_lba[i] = UNUSABLE;
1372	}
1373
1374	/*
1375	 * Approximate capacity. This is not entirely correct yet,
1376	 * since a zone with less than 1000 usable pages leads to
1377	 * missing LBAs. Especially if it is the last zone, some
1378	 * LBAs can be past capacity.
1379	 */
1380	lbact = 0;
1381	for (i = 0; i < numblocks; i += 1024) {
1382		int ct = 0;
1383
1384		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1385			if (info->pba_to_lba[i+j] != UNUSABLE) {
1386				if (ct >= 1000)
1387					info->pba_to_lba[i+j] = SPARE;
1388				else
1389					ct++;
1390			}
1391		}
1392		lbact += ct;
1393	}
1394	info->lbact = lbact;
1395	US_DEBUGP("Found %d LBA's\n", lbact);
1396	result = 0;
1397
1398 done:
1399	if (result != 0) {
1400		kfree(info->lba_to_pba);
1401		kfree(info->pba_to_lba);
1402		info->lba_to_pba = NULL;
1403		info->pba_to_lba = NULL;
1404	}
1405	kfree(buffer);
1406	return result;
1407}
1408
1409static void
1410sddr09_card_info_destructor(void *extra) {
1411	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1412
1413	if (!info)
1414		return;
1415
1416	kfree(info->lba_to_pba);
1417	kfree(info->pba_to_lba);
1418}
1419
1420static int
1421sddr09_common_init(struct us_data *us) {
1422	int result;
1423
1424	/* set the configuration -- STALL is an acceptable response here */
1425	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1426		US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1427				->actconfig->desc.bConfigurationValue);
1428		return -EINVAL;
1429	}
1430
1431	result = usb_reset_configuration(us->pusb_dev);
1432	US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1433	if (result == -EPIPE) {
1434		US_DEBUGP("-- stall on control interface\n");
1435	} else if (result != 0) {
1436		/* it's not a stall, but another error -- time to bail */
1437		US_DEBUGP("-- Unknown error.  Rejecting device\n");
1438		return -EINVAL;
1439	}
1440
1441	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1442	if (!us->extra)
1443		return -ENOMEM;
1444	us->extra_destructor = sddr09_card_info_destructor;
1445
1446	nand_init_ecc();
1447	return 0;
1448}
1449
1450
1451/*
1452 * This is needed at a very early stage. If this is not listed in the
1453 * unusual devices list but called from here then LUN 0 of the combo reader
1454 * is not recognized. But I do not know what precisely these calls do.
1455 */
1456static int
1457usb_stor_sddr09_dpcm_init(struct us_data *us) {
1458	int result;
1459	unsigned char *data = us->iobuf;
1460
1461	result = sddr09_common_init(us);
1462	if (result)
1463		return result;
1464
1465	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1466	if (result) {
1467		US_DEBUGP("sddr09_init: send_command fails\n");
1468		return result;
1469	}
1470
1471	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1472	// get 07 02
1473
1474	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1475	if (result) {
1476		US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477		return result;
1478	}
1479
1480	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1481	// get 07 00
1482
1483	result = sddr09_request_sense(us, data, 18);
1484	if (result == 0 && data[2] != 0) {
1485		int j;
1486		for (j=0; j<18; j++)
1487			printk(" %02X", data[j]);
1488		printk("\n");
1489		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490		// 70: current command
1491		// sense key 0, sense code 0, extd sense code 0
1492		// additional transfer length * = sizeof(data) - 7
1493		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494		// sense key 06, sense code 28: unit attention,
1495		// not ready to ready transition
1496	}
1497
1498	// test unit ready
1499
1500	return 0;		/* not result */
1501}
1502
1503/*
1504 * Transport for the Microtech DPCM-USB
1505 */
1506static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507{
1508	int ret;
1509
1510	US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1511
1512	switch (srb->device->lun) {
1513	case 0:
1514
1515		/*
1516		 * LUN 0 corresponds to the CompactFlash card reader.
1517		 */
1518		ret = usb_stor_CB_transport(srb, us);
1519		break;
1520
1521	case 1:
1522
1523		/*
1524		 * LUN 1 corresponds to the SmartMedia card reader.
1525		 */
1526
1527		/*
1528		 * Set the LUN to 0 (just in case).
1529		 */
1530		srb->device->lun = 0;
1531		ret = sddr09_transport(srb, us);
1532		srb->device->lun = 1;
1533		break;
1534
1535	default:
1536		US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1537				srb->device->lun);
1538		ret = USB_STOR_TRANSPORT_ERROR;
1539		break;
1540	}
1541	return ret;
1542}
1543
1544
1545/*
1546 * Transport for the Sandisk SDDR-09
1547 */
1548static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1549{
1550	static unsigned char sensekey = 0, sensecode = 0;
1551	static unsigned char havefakesense = 0;
1552	int result, i;
1553	unsigned char *ptr = us->iobuf;
1554	unsigned long capacity;
1555	unsigned int page, pages;
1556
1557	struct sddr09_card_info *info;
1558
1559	static unsigned char inquiry_response[8] = {
1560		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1561	};
1562
1563	/* note: no block descriptor support */
1564	static unsigned char mode_page_01[19] = {
1565		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1566		0x01, 0x0A,
1567		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1568	};
1569
1570	info = (struct sddr09_card_info *)us->extra;
1571
1572	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1573		/* for a faked command, we have to follow with a faked sense */
1574		memset(ptr, 0, 18);
1575		ptr[0] = 0x70;
1576		ptr[2] = sensekey;
1577		ptr[7] = 11;
1578		ptr[12] = sensecode;
1579		usb_stor_set_xfer_buf(ptr, 18, srb);
1580		sensekey = sensecode = havefakesense = 0;
1581		return USB_STOR_TRANSPORT_GOOD;
1582	}
1583
1584	havefakesense = 1;
1585
1586	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1587	   respond to INQUIRY commands */
 
 
1588
1589	if (srb->cmnd[0] == INQUIRY) {
1590		memcpy(ptr, inquiry_response, 8);
1591		fill_inquiry_response(us, ptr, 36);
1592		return USB_STOR_TRANSPORT_GOOD;
1593	}
1594
1595	if (srb->cmnd[0] == READ_CAPACITY) {
1596		struct nand_flash_dev *cardinfo;
1597
1598		sddr09_get_wp(us, info);	/* read WP bit */
1599
1600		cardinfo = sddr09_get_cardinfo(us, info->flags);
1601		if (!cardinfo) {
1602			/* probably no media */
1603		init_error:
1604			sensekey = 0x02;	/* not ready */
1605			sensecode = 0x3a;	/* medium not present */
1606			return USB_STOR_TRANSPORT_FAILED;
1607		}
1608
1609		info->capacity = (1 << cardinfo->chipshift);
1610		info->pageshift = cardinfo->pageshift;
1611		info->pagesize = (1 << info->pageshift);
1612		info->blockshift = cardinfo->blockshift;
1613		info->blocksize = (1 << info->blockshift);
1614		info->blockmask = info->blocksize - 1;
1615
1616		// map initialization, must follow get_cardinfo()
1617		if (sddr09_read_map(us)) {
1618			/* probably out of memory */
1619			goto init_error;
1620		}
1621
1622		// Report capacity
1623
1624		capacity = (info->lbact << info->blockshift) - 1;
1625
1626		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627
1628		// Report page size
1629
1630		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1631		usb_stor_set_xfer_buf(ptr, 8, srb);
1632
1633		return USB_STOR_TRANSPORT_GOOD;
1634	}
1635
1636	if (srb->cmnd[0] == MODE_SENSE_10) {
1637		int modepage = (srb->cmnd[2] & 0x3F);
1638
1639		/* They ask for the Read/Write error recovery page,
1640		   or for all pages. */
 
 
1641		/* %% We should check DBD %% */
1642		if (modepage == 0x01 || modepage == 0x3F) {
1643			US_DEBUGP("SDDR09: Dummy up request for "
1644				  "mode page 0x%x\n", modepage);
1645
1646			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1647			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1648			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1649			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1650			return USB_STOR_TRANSPORT_GOOD;
1651		}
1652
1653		sensekey = 0x05;	/* illegal request */
1654		sensecode = 0x24;	/* invalid field in CDB */
1655		return USB_STOR_TRANSPORT_FAILED;
1656	}
1657
1658	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1659		return USB_STOR_TRANSPORT_GOOD;
1660
1661	havefakesense = 0;
1662
1663	if (srb->cmnd[0] == READ_10) {
1664
1665		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1666		page <<= 16;
1667		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1668		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1669
1670		US_DEBUGP("READ_10: read page %d pagect %d\n",
1671			  page, pages);
1672
1673		result = sddr09_read_data(us, page, pages);
1674		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1675				USB_STOR_TRANSPORT_ERROR);
1676	}
1677
1678	if (srb->cmnd[0] == WRITE_10) {
1679
1680		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1681		page <<= 16;
1682		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1683		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1684
1685		US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1686			  page, pages);
1687
1688		result = sddr09_write_data(us, page, pages);
1689		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1690				USB_STOR_TRANSPORT_ERROR);
1691	}
1692
1693	/* catch-all for all other commands, except
 
1694	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1695	 */
1696	if (srb->cmnd[0] != TEST_UNIT_READY &&
1697	    srb->cmnd[0] != REQUEST_SENSE) {
1698		sensekey = 0x05;	/* illegal request */
1699		sensecode = 0x20;	/* invalid command */
1700		havefakesense = 1;
1701		return USB_STOR_TRANSPORT_FAILED;
1702	}
1703
1704	for (; srb->cmd_len<12; srb->cmd_len++)
1705		srb->cmnd[srb->cmd_len] = 0;
1706
1707	srb->cmnd[1] = LUNBITS;
1708
1709	ptr[0] = 0;
1710	for (i=0; i<12; i++)
1711		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1712
1713	US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1714
1715	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1716	if (result) {
1717		US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718			  "returns %d\n", result);
1719		return USB_STOR_TRANSPORT_ERROR;
1720	}
1721
1722	if (scsi_bufflen(srb) == 0)
1723		return USB_STOR_TRANSPORT_GOOD;
1724
1725	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1726	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1727		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1728				? us->send_bulk_pipe : us->recv_bulk_pipe;
1729
1730		US_DEBUGP("SDDR09: %s %d bytes\n",
1731			  (srb->sc_data_direction == DMA_TO_DEVICE) ?
1732			  "sending" : "receiving",
1733			  scsi_bufflen(srb));
1734
1735		result = usb_stor_bulk_srb(us, pipe, srb);
1736
1737		return (result == USB_STOR_XFER_GOOD ?
1738			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1739	} 
1740
1741	return USB_STOR_TRANSPORT_GOOD;
1742}
1743
1744/*
1745 * Initialization routine for the sddr09 subdriver
1746 */
1747static int
1748usb_stor_sddr09_init(struct us_data *us) {
1749	return sddr09_common_init(us);
1750}
1751
 
 
1752static int sddr09_probe(struct usb_interface *intf,
1753			 const struct usb_device_id *id)
1754{
1755	struct us_data *us;
1756	int result;
1757
1758	result = usb_stor_probe1(&us, intf, id,
1759			(id - sddr09_usb_ids) + sddr09_unusual_dev_list);
 
1760	if (result)
1761		return result;
1762
1763	if (us->protocol == USB_PR_DPCM_USB) {
1764		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1765		us->transport = dpcm_transport;
1766		us->transport_reset = usb_stor_CB_reset;
1767		us->max_lun = 1;
1768	} else {
1769		us->transport_name = "EUSB/SDDR09";
1770		us->transport = sddr09_transport;
1771		us->transport_reset = usb_stor_CB_reset;
1772		us->max_lun = 0;
1773	}
1774
1775	result = usb_stor_probe2(us);
1776	return result;
1777}
1778
1779static struct usb_driver sddr09_driver = {
1780	.name =		"ums-sddr09",
1781	.probe =	sddr09_probe,
1782	.disconnect =	usb_stor_disconnect,
1783	.suspend =	usb_stor_suspend,
1784	.resume =	usb_stor_resume,
1785	.reset_resume =	usb_stor_reset_resume,
1786	.pre_reset =	usb_stor_pre_reset,
1787	.post_reset =	usb_stor_post_reset,
1788	.id_table =	sddr09_usb_ids,
1789	.soft_unbind =	1,
 
1790};
1791
1792static int __init sddr09_init(void)
1793{
1794	return usb_register(&sddr09_driver);
1795}
1796
1797static void __exit sddr09_exit(void)
1798{
1799	usb_deregister(&sddr09_driver);
1800}
1801
1802module_init(sddr09_init);
1803module_exit(sddr09_exit);