Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/filter.h>
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/delay.h>
  14#include <linux/notifier.h>
  15#include <linux/ip.h>
  16#include <linux/tcp.h>
  17#include <linux/in.h>
  18#include <linux/ethtool.h>
  19#include <linux/topology.h>
  20#include <linux/gfp.h>
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include <net/gre.h>
  24#include <net/udp_tunnel.h>
  25#include <net/netdev_queues.h>
  26#include "efx.h"
  27#include "efx_common.h"
  28#include "efx_channels.h"
  29#include "ef100.h"
  30#include "rx_common.h"
  31#include "tx_common.h"
  32#include "nic.h"
  33#include "io.h"
  34#include "selftest.h"
  35#include "sriov.h"
  36#include "efx_devlink.h"
  37
  38#include "mcdi_port_common.h"
  39#include "mcdi_pcol.h"
  40#include "workarounds.h"
  41
  42/**************************************************************************
  43 *
  44 * Configurable values
  45 *
  46 *************************************************************************/
  47
  48module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
  49MODULE_PARM_DESC(interrupt_mode,
  50		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  51
  52module_param(rss_cpus, uint, 0444);
  53MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  54
  55/*
  56 * Use separate channels for TX and RX events
  57 *
  58 * Set this to 1 to use separate channels for TX and RX. It allows us
  59 * to control interrupt affinity separately for TX and RX.
  60 *
  61 * This is only used in MSI-X interrupt mode
  62 */
  63bool efx_separate_tx_channels;
  64module_param(efx_separate_tx_channels, bool, 0444);
  65MODULE_PARM_DESC(efx_separate_tx_channels,
  66		 "Use separate channels for TX and RX");
  67
  68/* Initial interrupt moderation settings.  They can be modified after
  69 * module load with ethtool.
  70 *
  71 * The default for RX should strike a balance between increasing the
  72 * round-trip latency and reducing overhead.
  73 */
  74static unsigned int rx_irq_mod_usec = 60;
  75
  76/* Initial interrupt moderation settings.  They can be modified after
  77 * module load with ethtool.
  78 *
  79 * This default is chosen to ensure that a 10G link does not go idle
  80 * while a TX queue is stopped after it has become full.  A queue is
  81 * restarted when it drops below half full.  The time this takes (assuming
  82 * worst case 3 descriptors per packet and 1024 descriptors) is
  83 *   512 / 3 * 1.2 = 205 usec.
  84 */
  85static unsigned int tx_irq_mod_usec = 150;
  86
  87static bool phy_flash_cfg;
  88module_param(phy_flash_cfg, bool, 0644);
  89MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  90
  91static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  92			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  93			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  94			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  95module_param(debug, uint, 0);
  96MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  97
  98/**************************************************************************
  99 *
 100 * Utility functions and prototypes
 101 *
 102 *************************************************************************/
 103
 104static void efx_remove_port(struct efx_nic *efx);
 105static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
 106static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
 107static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 108			u32 flags);
 109
 110/**************************************************************************
 111 *
 112 * Port handling
 113 *
 114 **************************************************************************/
 115
 116static void efx_fini_port(struct efx_nic *efx);
 117
 118static int efx_probe_port(struct efx_nic *efx)
 119{
 120	int rc;
 121
 122	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 123
 124	if (phy_flash_cfg)
 125		efx->phy_mode = PHY_MODE_SPECIAL;
 126
 127	/* Connect up MAC/PHY operations table */
 128	rc = efx->type->probe_port(efx);
 129	if (rc)
 130		return rc;
 131
 132	/* Initialise MAC address to permanent address */
 133	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
 134
 135	return 0;
 136}
 137
 138static int efx_init_port(struct efx_nic *efx)
 139{
 140	int rc;
 141
 142	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 143
 144	mutex_lock(&efx->mac_lock);
 145
 146	efx->port_initialized = true;
 147
 148	/* Ensure the PHY advertises the correct flow control settings */
 149	rc = efx_mcdi_port_reconfigure(efx);
 150	if (rc && rc != -EPERM)
 151		goto fail;
 152
 153	mutex_unlock(&efx->mac_lock);
 154	return 0;
 155
 156fail:
 157	mutex_unlock(&efx->mac_lock);
 158	return rc;
 159}
 160
 161static void efx_fini_port(struct efx_nic *efx)
 162{
 163	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
 164
 165	if (!efx->port_initialized)
 166		return;
 167
 168	efx->port_initialized = false;
 169
 170	efx->link_state.up = false;
 171	efx_link_status_changed(efx);
 172}
 173
 174static void efx_remove_port(struct efx_nic *efx)
 175{
 176	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
 177
 178	efx->type->remove_port(efx);
 179}
 180
 181/**************************************************************************
 182 *
 183 * NIC handling
 184 *
 185 **************************************************************************/
 186
 187static LIST_HEAD(efx_primary_list);
 188static LIST_HEAD(efx_unassociated_list);
 189
 190static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
 191{
 192	return left->type == right->type &&
 193		left->vpd_sn && right->vpd_sn &&
 194		!strcmp(left->vpd_sn, right->vpd_sn);
 195}
 196
 197static void efx_associate(struct efx_nic *efx)
 198{
 199	struct efx_nic *other, *next;
 200
 201	if (efx->primary == efx) {
 202		/* Adding primary function; look for secondaries */
 203
 204		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
 205		list_add_tail(&efx->node, &efx_primary_list);
 206
 207		list_for_each_entry_safe(other, next, &efx_unassociated_list,
 208					 node) {
 209			if (efx_same_controller(efx, other)) {
 210				list_del(&other->node);
 211				netif_dbg(other, probe, other->net_dev,
 212					  "moving to secondary list of %s %s\n",
 213					  pci_name(efx->pci_dev),
 214					  efx->net_dev->name);
 215				list_add_tail(&other->node,
 216					      &efx->secondary_list);
 217				other->primary = efx;
 218			}
 219		}
 220	} else {
 221		/* Adding secondary function; look for primary */
 222
 223		list_for_each_entry(other, &efx_primary_list, node) {
 224			if (efx_same_controller(efx, other)) {
 225				netif_dbg(efx, probe, efx->net_dev,
 226					  "adding to secondary list of %s %s\n",
 227					  pci_name(other->pci_dev),
 228					  other->net_dev->name);
 229				list_add_tail(&efx->node,
 230					      &other->secondary_list);
 231				efx->primary = other;
 232				return;
 233			}
 234		}
 235
 236		netif_dbg(efx, probe, efx->net_dev,
 237			  "adding to unassociated list\n");
 238		list_add_tail(&efx->node, &efx_unassociated_list);
 239	}
 240}
 241
 242static void efx_dissociate(struct efx_nic *efx)
 243{
 244	struct efx_nic *other, *next;
 245
 246	list_del(&efx->node);
 247	efx->primary = NULL;
 248
 249	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
 250		list_del(&other->node);
 251		netif_dbg(other, probe, other->net_dev,
 252			  "moving to unassociated list\n");
 253		list_add_tail(&other->node, &efx_unassociated_list);
 254		other->primary = NULL;
 255	}
 256}
 257
 258static int efx_probe_nic(struct efx_nic *efx)
 259{
 260	int rc;
 261
 262	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
 263
 264	/* Carry out hardware-type specific initialisation */
 265	rc = efx->type->probe(efx);
 266	if (rc)
 267		return rc;
 268
 269	do {
 270		if (!efx->max_channels || !efx->max_tx_channels) {
 271			netif_err(efx, drv, efx->net_dev,
 272				  "Insufficient resources to allocate"
 273				  " any channels\n");
 274			rc = -ENOSPC;
 275			goto fail1;
 276		}
 277
 278		/* Determine the number of channels and queues by trying
 279		 * to hook in MSI-X interrupts.
 280		 */
 281		rc = efx_probe_interrupts(efx);
 282		if (rc)
 283			goto fail1;
 284
 285		rc = efx_set_channels(efx);
 286		if (rc)
 287			goto fail1;
 288
 289		/* dimension_resources can fail with EAGAIN */
 290		rc = efx->type->dimension_resources(efx);
 291		if (rc != 0 && rc != -EAGAIN)
 292			goto fail2;
 293
 294		if (rc == -EAGAIN)
 295			/* try again with new max_channels */
 296			efx_remove_interrupts(efx);
 297
 298	} while (rc == -EAGAIN);
 299
 300	if (efx->n_channels > 1)
 301		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
 302				    sizeof(efx->rss_context.rx_hash_key));
 303	efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
 304
 305	/* Initialise the interrupt moderation settings */
 306	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
 307	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
 308				true);
 309
 310	return 0;
 311
 312fail2:
 313	efx_remove_interrupts(efx);
 314fail1:
 315	efx->type->remove(efx);
 316	return rc;
 317}
 318
 319static void efx_remove_nic(struct efx_nic *efx)
 320{
 321	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
 322
 323	efx_remove_interrupts(efx);
 324	efx->type->remove(efx);
 325}
 326
 327/**************************************************************************
 328 *
 329 * NIC startup/shutdown
 330 *
 331 *************************************************************************/
 332
 333static int efx_probe_all(struct efx_nic *efx)
 334{
 335	int rc;
 336
 337	rc = efx_probe_nic(efx);
 338	if (rc) {
 339		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
 340		goto fail1;
 341	}
 342
 343	rc = efx_probe_port(efx);
 344	if (rc) {
 345		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
 346		goto fail2;
 347	}
 348
 349	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
 350	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
 351		rc = -EINVAL;
 352		goto fail3;
 353	}
 354
 355#ifdef CONFIG_SFC_SRIOV
 356	rc = efx->type->vswitching_probe(efx);
 357	if (rc) /* not fatal; the PF will still work fine */
 358		netif_warn(efx, probe, efx->net_dev,
 359			   "failed to setup vswitching rc=%d;"
 360			   " VFs may not function\n", rc);
 361#endif
 362
 363	rc = efx_probe_filters(efx);
 364	if (rc) {
 365		netif_err(efx, probe, efx->net_dev,
 366			  "failed to create filter tables\n");
 367		goto fail4;
 368	}
 369
 370	rc = efx_probe_channels(efx);
 371	if (rc)
 372		goto fail5;
 373
 374	efx->state = STATE_NET_DOWN;
 375
 376	return 0;
 377
 378 fail5:
 379	efx_remove_filters(efx);
 380 fail4:
 381#ifdef CONFIG_SFC_SRIOV
 382	efx->type->vswitching_remove(efx);
 383#endif
 384 fail3:
 385	efx_remove_port(efx);
 386 fail2:
 387	efx_remove_nic(efx);
 388 fail1:
 389	return rc;
 390}
 391
 392static void efx_remove_all(struct efx_nic *efx)
 393{
 394	rtnl_lock();
 395	efx_xdp_setup_prog(efx, NULL);
 396	rtnl_unlock();
 397
 398	efx_remove_channels(efx);
 399	efx_remove_filters(efx);
 400#ifdef CONFIG_SFC_SRIOV
 401	efx->type->vswitching_remove(efx);
 402#endif
 403	efx_remove_port(efx);
 404	efx_remove_nic(efx);
 405}
 406
 407/**************************************************************************
 408 *
 409 * Interrupt moderation
 410 *
 411 **************************************************************************/
 412unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
 413{
 414	if (usecs == 0)
 415		return 0;
 416	if (usecs * 1000 < efx->timer_quantum_ns)
 417		return 1; /* never round down to 0 */
 418	return usecs * 1000 / efx->timer_quantum_ns;
 419}
 420
 421/* Set interrupt moderation parameters */
 422int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
 423			    unsigned int rx_usecs, bool rx_adaptive,
 424			    bool rx_may_override_tx)
 425{
 426	struct efx_channel *channel;
 427	unsigned int timer_max_us;
 428
 429	EFX_ASSERT_RESET_SERIALISED(efx);
 430
 431	timer_max_us = efx->timer_max_ns / 1000;
 432
 433	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
 434		return -EINVAL;
 435
 436	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
 437	    !rx_may_override_tx) {
 438		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
 439			  "RX and TX IRQ moderation must be equal\n");
 440		return -EINVAL;
 441	}
 442
 443	efx->irq_rx_adaptive = rx_adaptive;
 444	efx->irq_rx_moderation_us = rx_usecs;
 445	efx_for_each_channel(channel, efx) {
 446		if (efx_channel_has_rx_queue(channel))
 447			channel->irq_moderation_us = rx_usecs;
 448		else if (efx_channel_has_tx_queues(channel))
 449			channel->irq_moderation_us = tx_usecs;
 450		else if (efx_channel_is_xdp_tx(channel))
 451			channel->irq_moderation_us = tx_usecs;
 452	}
 453
 454	return 0;
 455}
 456
 457void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
 458			    unsigned int *rx_usecs, bool *rx_adaptive)
 459{
 460	*rx_adaptive = efx->irq_rx_adaptive;
 461	*rx_usecs = efx->irq_rx_moderation_us;
 462
 463	/* If channels are shared between RX and TX, so is IRQ
 464	 * moderation.  Otherwise, IRQ moderation is the same for all
 465	 * TX channels and is not adaptive.
 466	 */
 467	if (efx->tx_channel_offset == 0) {
 468		*tx_usecs = *rx_usecs;
 469	} else {
 470		struct efx_channel *tx_channel;
 471
 472		tx_channel = efx->channel[efx->tx_channel_offset];
 473		*tx_usecs = tx_channel->irq_moderation_us;
 474	}
 475}
 476
 477/**************************************************************************
 478 *
 479 * ioctls
 480 *
 481 *************************************************************************/
 482
 483/* Net device ioctl
 484 * Context: process, rtnl_lock() held.
 485 */
 486static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 487{
 488	struct efx_nic *efx = efx_netdev_priv(net_dev);
 489	struct mii_ioctl_data *data = if_mii(ifr);
 490
 491	/* Convert phy_id from older PRTAD/DEVAD format */
 492	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 493	    (data->phy_id & 0xfc00) == 0x0400)
 494		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 495
 496	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 497}
 498
 499/**************************************************************************
 500 *
 501 * Kernel net device interface
 502 *
 503 *************************************************************************/
 504
 505/* Context: process, rtnl_lock() held. */
 506int efx_net_open(struct net_device *net_dev)
 507{
 508	struct efx_nic *efx = efx_netdev_priv(net_dev);
 509	int rc;
 510
 511	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
 512		  raw_smp_processor_id());
 513
 514	rc = efx_check_disabled(efx);
 515	if (rc)
 516		return rc;
 517	if (efx->phy_mode & PHY_MODE_SPECIAL)
 518		return -EBUSY;
 519	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
 520		return -EIO;
 521
 522	/* Notify the kernel of the link state polled during driver load,
 523	 * before the monitor starts running */
 524	efx_link_status_changed(efx);
 525
 526	efx_start_all(efx);
 527	if (efx->state == STATE_DISABLED || efx->reset_pending)
 528		netif_device_detach(efx->net_dev);
 529	else
 530		efx->state = STATE_NET_UP;
 531
 532	return 0;
 533}
 534
 535/* Context: process, rtnl_lock() held.
 536 * Note that the kernel will ignore our return code; this method
 537 * should really be a void.
 538 */
 539int efx_net_stop(struct net_device *net_dev)
 540{
 541	struct efx_nic *efx = efx_netdev_priv(net_dev);
 542
 543	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
 544		  raw_smp_processor_id());
 545
 546	/* Stop the device and flush all the channels */
 547	efx_stop_all(efx);
 548
 549	return 0;
 550}
 551
 552static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 553{
 554	struct efx_nic *efx = efx_netdev_priv(net_dev);
 555
 556	if (efx->type->vlan_rx_add_vid)
 557		return efx->type->vlan_rx_add_vid(efx, proto, vid);
 558	else
 559		return -EOPNOTSUPP;
 560}
 561
 562static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 563{
 564	struct efx_nic *efx = efx_netdev_priv(net_dev);
 565
 566	if (efx->type->vlan_rx_kill_vid)
 567		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
 568	else
 569		return -EOPNOTSUPP;
 570}
 571
 572static int efx_hwtstamp_set(struct net_device *net_dev,
 573			    struct kernel_hwtstamp_config *config,
 574			    struct netlink_ext_ack *extack)
 575{
 576	struct efx_nic *efx = efx_netdev_priv(net_dev);
 577
 578	return efx_ptp_set_ts_config(efx, config, extack);
 579}
 580
 581static int efx_hwtstamp_get(struct net_device *net_dev,
 582			    struct kernel_hwtstamp_config *config)
 583{
 584	struct efx_nic *efx = efx_netdev_priv(net_dev);
 585
 586	return efx_ptp_get_ts_config(efx, config);
 587}
 588
 589static const struct net_device_ops efx_netdev_ops = {
 590	.ndo_open		= efx_net_open,
 591	.ndo_stop		= efx_net_stop,
 592	.ndo_get_stats64	= efx_net_stats,
 593	.ndo_tx_timeout		= efx_watchdog,
 594	.ndo_start_xmit		= efx_hard_start_xmit,
 595	.ndo_validate_addr	= eth_validate_addr,
 596	.ndo_eth_ioctl		= efx_ioctl,
 597	.ndo_change_mtu		= efx_change_mtu,
 598	.ndo_set_mac_address	= efx_set_mac_address,
 599	.ndo_set_rx_mode	= efx_set_rx_mode,
 600	.ndo_set_features	= efx_set_features,
 601	.ndo_features_check	= efx_features_check,
 602	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
 603	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 604	.ndo_hwtstamp_set	= efx_hwtstamp_set,
 605	.ndo_hwtstamp_get	= efx_hwtstamp_get,
 606#ifdef CONFIG_SFC_SRIOV
 607	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
 608	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
 609	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
 610	.ndo_get_vf_config	= efx_sriov_get_vf_config,
 611	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
 612#endif
 613	.ndo_get_phys_port_id   = efx_get_phys_port_id,
 614	.ndo_get_phys_port_name	= efx_get_phys_port_name,
 615#ifdef CONFIG_RFS_ACCEL
 616	.ndo_rx_flow_steer	= efx_filter_rfs,
 617#endif
 618	.ndo_xdp_xmit		= efx_xdp_xmit,
 619	.ndo_bpf		= efx_xdp
 620};
 621
 622static void efx_get_queue_stats_rx(struct net_device *net_dev, int idx,
 623				   struct netdev_queue_stats_rx *stats)
 624{
 625	struct efx_nic *efx = efx_netdev_priv(net_dev);
 626	struct efx_rx_queue *rx_queue;
 627	struct efx_channel *channel;
 628
 629	channel = efx_get_channel(efx, idx);
 630	rx_queue = efx_channel_get_rx_queue(channel);
 631	/* Count only packets since last time datapath was started */
 632	stats->packets = rx_queue->rx_packets - rx_queue->old_rx_packets;
 633	stats->bytes = rx_queue->rx_bytes - rx_queue->old_rx_bytes;
 634	stats->hw_drops = efx_get_queue_stat_rx_hw_drops(channel) -
 635			  channel->old_n_rx_hw_drops;
 636	stats->hw_drop_overruns = channel->n_rx_nodesc_trunc -
 637				  channel->old_n_rx_hw_drop_overruns;
 638}
 639
 640static void efx_get_queue_stats_tx(struct net_device *net_dev, int idx,
 641				   struct netdev_queue_stats_tx *stats)
 642{
 643	struct efx_nic *efx = efx_netdev_priv(net_dev);
 644	struct efx_tx_queue *tx_queue;
 645	struct efx_channel *channel;
 646
 647	channel = efx_get_tx_channel(efx, idx);
 648	stats->packets = 0;
 649	stats->bytes = 0;
 650	stats->hw_gso_packets = 0;
 651	stats->hw_gso_wire_packets = 0;
 652	efx_for_each_channel_tx_queue(tx_queue, channel) {
 653		stats->packets += tx_queue->complete_packets -
 654				  tx_queue->old_complete_packets;
 655		stats->bytes += tx_queue->complete_bytes -
 656				tx_queue->old_complete_bytes;
 657		/* Note that, unlike stats->packets and stats->bytes,
 658		 * these count TXes enqueued, rather than completed,
 659		 * which may not be what users expect.
 660		 */
 661		stats->hw_gso_packets += tx_queue->tso_bursts -
 662					 tx_queue->old_tso_bursts;
 663		stats->hw_gso_wire_packets += tx_queue->tso_packets -
 664					      tx_queue->old_tso_packets;
 665	}
 666}
 667
 668static void efx_get_base_stats(struct net_device *net_dev,
 669			       struct netdev_queue_stats_rx *rx,
 670			       struct netdev_queue_stats_tx *tx)
 671{
 672	struct efx_nic *efx = efx_netdev_priv(net_dev);
 673	struct efx_tx_queue *tx_queue;
 674	struct efx_rx_queue *rx_queue;
 675	struct efx_channel *channel;
 676
 677	rx->packets = 0;
 678	rx->bytes = 0;
 679	rx->hw_drops = 0;
 680	rx->hw_drop_overruns = 0;
 681	tx->packets = 0;
 682	tx->bytes = 0;
 683	tx->hw_gso_packets = 0;
 684	tx->hw_gso_wire_packets = 0;
 685
 686	/* Count all packets on non-core queues, and packets before last
 687	 * datapath start on core queues.
 688	 */
 689	efx_for_each_channel(channel, efx) {
 690		rx_queue = efx_channel_get_rx_queue(channel);
 691		if (channel->channel >= net_dev->real_num_rx_queues) {
 692			rx->packets += rx_queue->rx_packets;
 693			rx->bytes += rx_queue->rx_bytes;
 694			rx->hw_drops += efx_get_queue_stat_rx_hw_drops(channel);
 695			rx->hw_drop_overruns += channel->n_rx_nodesc_trunc;
 696		} else {
 697			rx->packets += rx_queue->old_rx_packets;
 698			rx->bytes += rx_queue->old_rx_bytes;
 699			rx->hw_drops += channel->old_n_rx_hw_drops;
 700			rx->hw_drop_overruns += channel->old_n_rx_hw_drop_overruns;
 701		}
 702		efx_for_each_channel_tx_queue(tx_queue, channel) {
 703			if (channel->channel < efx->tx_channel_offset ||
 704			    channel->channel >= efx->tx_channel_offset +
 705						net_dev->real_num_tx_queues) {
 706				tx->packets += tx_queue->complete_packets;
 707				tx->bytes += tx_queue->complete_bytes;
 708				tx->hw_gso_packets += tx_queue->tso_bursts;
 709				tx->hw_gso_wire_packets += tx_queue->tso_packets;
 710			} else {
 711				tx->packets += tx_queue->old_complete_packets;
 712				tx->bytes += tx_queue->old_complete_bytes;
 713				tx->hw_gso_packets += tx_queue->old_tso_bursts;
 714				tx->hw_gso_wire_packets += tx_queue->old_tso_packets;
 715			}
 716			/* Include XDP TX in device-wide stats */
 717			tx->packets += tx_queue->complete_xdp_packets;
 718			tx->bytes += tx_queue->complete_xdp_bytes;
 719		}
 720	}
 721}
 722
 723static const struct netdev_stat_ops efx_stat_ops = {
 724	.get_queue_stats_rx	= efx_get_queue_stats_rx,
 725	.get_queue_stats_tx	= efx_get_queue_stats_tx,
 726	.get_base_stats		= efx_get_base_stats,
 727};
 728
 729static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
 730{
 731	struct bpf_prog *old_prog;
 732
 733	if (efx->xdp_rxq_info_failed) {
 734		netif_err(efx, drv, efx->net_dev,
 735			  "Unable to bind XDP program due to previous failure of rxq_info\n");
 736		return -EINVAL;
 737	}
 738
 739	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
 740		netif_err(efx, drv, efx->net_dev,
 741			  "Unable to configure XDP with MTU of %d (max: %d)\n",
 742			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
 743		return -EINVAL;
 744	}
 745
 746	old_prog = rtnl_dereference(efx->xdp_prog);
 747	rcu_assign_pointer(efx->xdp_prog, prog);
 748	/* Release the reference that was originally passed by the caller. */
 749	if (old_prog)
 750		bpf_prog_put(old_prog);
 751
 752	return 0;
 753}
 754
 755/* Context: process, rtnl_lock() held. */
 756static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 757{
 758	struct efx_nic *efx = efx_netdev_priv(dev);
 759
 760	switch (xdp->command) {
 761	case XDP_SETUP_PROG:
 762		return efx_xdp_setup_prog(efx, xdp->prog);
 763	default:
 764		return -EINVAL;
 765	}
 766}
 767
 768static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 769			u32 flags)
 770{
 771	struct efx_nic *efx = efx_netdev_priv(dev);
 772
 773	if (!netif_running(dev))
 774		return -EINVAL;
 775
 776	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
 777}
 778
 779static void efx_update_name(struct efx_nic *efx)
 780{
 781	strcpy(efx->name, efx->net_dev->name);
 782	efx_mtd_rename(efx);
 783	efx_set_channel_names(efx);
 784}
 785
 786static int efx_netdev_event(struct notifier_block *this,
 787			    unsigned long event, void *ptr)
 788{
 789	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
 790
 791	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
 792	    event == NETDEV_CHANGENAME)
 793		efx_update_name(efx_netdev_priv(net_dev));
 794
 795	return NOTIFY_DONE;
 796}
 797
 798static struct notifier_block efx_netdev_notifier = {
 799	.notifier_call = efx_netdev_event,
 800};
 801
 802static ssize_t phy_type_show(struct device *dev,
 803			     struct device_attribute *attr, char *buf)
 804{
 805	struct efx_nic *efx = dev_get_drvdata(dev);
 806	return sprintf(buf, "%d\n", efx->phy_type);
 807}
 808static DEVICE_ATTR_RO(phy_type);
 809
 810static int efx_register_netdev(struct efx_nic *efx)
 811{
 812	struct net_device *net_dev = efx->net_dev;
 813	struct efx_channel *channel;
 814	int rc;
 815
 816	net_dev->watchdog_timeo = 5 * HZ;
 817	net_dev->irq = efx->pci_dev->irq;
 818	net_dev->netdev_ops = &efx_netdev_ops;
 819	net_dev->stat_ops = &efx_stat_ops;
 820	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 821		net_dev->priv_flags |= IFF_UNICAST_FLT;
 822	net_dev->ethtool_ops = &efx_ethtool_ops;
 823	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
 824	net_dev->min_mtu = EFX_MIN_MTU;
 825	net_dev->max_mtu = EFX_MAX_MTU;
 826
 827	rtnl_lock();
 828
 829	/* Enable resets to be scheduled and check whether any were
 830	 * already requested.  If so, the NIC is probably hosed so we
 831	 * abort.
 832	 */
 833	if (efx->reset_pending) {
 834		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
 835		rc = -EIO;
 836		goto fail_locked;
 837	}
 838
 839	rc = dev_alloc_name(net_dev, net_dev->name);
 840	if (rc < 0)
 841		goto fail_locked;
 842	efx_update_name(efx);
 843
 844	/* Always start with carrier off; PHY events will detect the link */
 845	netif_carrier_off(net_dev);
 846
 847	rc = register_netdevice(net_dev);
 848	if (rc)
 849		goto fail_locked;
 850
 851	efx_for_each_channel(channel, efx) {
 852		struct efx_tx_queue *tx_queue;
 853		efx_for_each_channel_tx_queue(tx_queue, channel)
 854			efx_init_tx_queue_core_txq(tx_queue);
 855	}
 856
 857	efx_associate(efx);
 858
 859	efx->state = STATE_NET_DOWN;
 860
 861	rtnl_unlock();
 862
 863	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 864	if (rc) {
 865		netif_err(efx, drv, efx->net_dev,
 866			  "failed to init net dev attributes\n");
 867		goto fail_registered;
 868	}
 869
 870	efx_init_mcdi_logging(efx);
 871
 872	return 0;
 873
 874fail_registered:
 875	rtnl_lock();
 876	efx_dissociate(efx);
 877	unregister_netdevice(net_dev);
 878fail_locked:
 879	efx->state = STATE_UNINIT;
 880	rtnl_unlock();
 881	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
 882	return rc;
 883}
 884
 885static void efx_unregister_netdev(struct efx_nic *efx)
 886{
 887	if (!efx->net_dev)
 888		return;
 889
 890	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
 891		return;
 892
 893	if (efx_dev_registered(efx)) {
 894		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 895		efx_fini_mcdi_logging(efx);
 896		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 897		unregister_netdev(efx->net_dev);
 898	}
 899}
 900
 901/**************************************************************************
 902 *
 903 * List of NICs we support
 904 *
 905 **************************************************************************/
 906
 907/* PCI device ID table */
 908static const struct pci_device_id efx_pci_table[] = {
 909	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
 910	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 911	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
 912	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 913	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
 914	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 915	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
 916	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 917	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
 918	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 919	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
 920	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 921	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
 922	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 923	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
 924	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 925	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0c03),  /* X4 PF (FF/LL) */
 926	 .driver_data = (unsigned long)&efx_x4_nic_type},
 927	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x2c03),  /* X4 PF (FF only) */
 928	 .driver_data = (unsigned long)&efx_x4_nic_type},
 929	{0}			/* end of list */
 930};
 931
 932/**************************************************************************
 933 *
 934 * Data housekeeping
 935 *
 936 **************************************************************************/
 937
 938void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
 939{
 940	u64 n_rx_nodesc_trunc = 0;
 941	struct efx_channel *channel;
 942
 943	efx_for_each_channel(channel, efx)
 944		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
 945	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
 946	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
 947}
 948
 949/**************************************************************************
 950 *
 951 * PCI interface
 952 *
 953 **************************************************************************/
 954
 955/* Main body of final NIC shutdown code
 956 * This is called only at module unload (or hotplug removal).
 957 */
 958static void efx_pci_remove_main(struct efx_nic *efx)
 959{
 960	/* Flush reset_work. It can no longer be scheduled since we
 961	 * are not READY.
 962	 */
 963	WARN_ON(efx_net_active(efx->state));
 964	efx_flush_reset_workqueue(efx);
 965
 966	efx_disable_interrupts(efx);
 967	efx_clear_interrupt_affinity(efx);
 968	efx_nic_fini_interrupt(efx);
 969	efx_fini_port(efx);
 970	efx->type->fini(efx);
 971	efx_fini_napi(efx);
 972	efx_remove_all(efx);
 973}
 974
 975/* Final NIC shutdown
 976 * This is called only at module unload (or hotplug removal).  A PF can call
 977 * this on its VFs to ensure they are unbound first.
 978 */
 979static void efx_pci_remove(struct pci_dev *pci_dev)
 980{
 981	struct efx_probe_data *probe_data;
 982	struct efx_nic *efx;
 983
 984	efx = pci_get_drvdata(pci_dev);
 985	if (!efx)
 986		return;
 987
 988	/* Mark the NIC as fini, then stop the interface */
 989	rtnl_lock();
 990	efx_dissociate(efx);
 991	dev_close(efx->net_dev);
 992	efx_disable_interrupts(efx);
 993	efx->state = STATE_UNINIT;
 994	rtnl_unlock();
 995
 996	if (efx->type->sriov_fini)
 997		efx->type->sriov_fini(efx);
 998
 999	efx_fini_devlink_lock(efx);
1000	efx_unregister_netdev(efx);
1001
1002	efx_mtd_remove(efx);
1003
1004	efx_pci_remove_main(efx);
1005
1006	efx_fini_io(efx);
1007	pci_dbg(efx->pci_dev, "shutdown successful\n");
1008
1009	efx_fini_devlink_and_unlock(efx);
1010	efx_fini_struct(efx);
1011	free_netdev(efx->net_dev);
1012	probe_data = container_of(efx, struct efx_probe_data, efx);
1013	kfree(probe_data);
1014};
1015
1016/* NIC VPD information
1017 * Called during probe to display the part number of the
1018 * installed NIC.
1019 */
1020static void efx_probe_vpd_strings(struct efx_nic *efx)
1021{
1022	struct pci_dev *dev = efx->pci_dev;
1023	unsigned int vpd_size, kw_len;
1024	u8 *vpd_data;
1025	int start;
1026
1027	vpd_data = pci_vpd_alloc(dev, &vpd_size);
1028	if (IS_ERR(vpd_data)) {
1029		pci_warn(dev, "Unable to read VPD\n");
1030		return;
1031	}
1032
1033	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1034					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
1035	if (start < 0)
1036		pci_err(dev, "Part number not found or incomplete\n");
1037	else
1038		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
1039
1040	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1041					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
1042	if (start < 0)
1043		pci_err(dev, "Serial number not found or incomplete\n");
1044	else
1045		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
1046
1047	kfree(vpd_data);
1048}
1049
1050
1051/* Main body of NIC initialisation
1052 * This is called at module load (or hotplug insertion, theoretically).
1053 */
1054static int efx_pci_probe_main(struct efx_nic *efx)
1055{
1056	int rc;
1057
1058	/* Do start-of-day initialisation */
1059	rc = efx_probe_all(efx);
1060	if (rc)
1061		goto fail1;
1062
1063	efx_init_napi(efx);
1064
1065	down_write(&efx->filter_sem);
1066	rc = efx->type->init(efx);
1067	up_write(&efx->filter_sem);
1068	if (rc) {
1069		pci_err(efx->pci_dev, "failed to initialise NIC\n");
1070		goto fail3;
1071	}
1072
1073	rc = efx_init_port(efx);
1074	if (rc) {
1075		netif_err(efx, probe, efx->net_dev,
1076			  "failed to initialise port\n");
1077		goto fail4;
1078	}
1079
1080	rc = efx_nic_init_interrupt(efx);
1081	if (rc)
1082		goto fail5;
1083
1084	efx_set_interrupt_affinity(efx);
1085	rc = efx_enable_interrupts(efx);
1086	if (rc)
1087		goto fail6;
1088
1089	return 0;
1090
1091 fail6:
1092	efx_clear_interrupt_affinity(efx);
1093	efx_nic_fini_interrupt(efx);
1094 fail5:
1095	efx_fini_port(efx);
1096 fail4:
1097	efx->type->fini(efx);
1098 fail3:
1099	efx_fini_napi(efx);
1100	efx_remove_all(efx);
1101 fail1:
1102	return rc;
1103}
1104
1105static int efx_pci_probe_post_io(struct efx_nic *efx)
1106{
1107	struct net_device *net_dev = efx->net_dev;
1108	int rc = efx_pci_probe_main(efx);
1109
1110	if (rc)
1111		return rc;
1112
1113	if (efx->type->sriov_init) {
1114		rc = efx->type->sriov_init(efx);
1115		if (rc)
1116			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1117				rc);
1118	}
1119
1120	/* Determine netdevice features */
1121	net_dev->features |= efx->type->offload_features;
1122
1123	/* Add TSO features */
1124	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1125		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1126
1127	/* Mask for features that also apply to VLAN devices */
1128	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1129				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1130				   NETIF_F_RXCSUM);
1131
1132	/* Determine user configurable features */
1133	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1134
1135	/* Disable receiving frames with bad FCS, by default. */
1136	net_dev->features &= ~NETIF_F_RXALL;
1137
1138	/* Disable VLAN filtering by default.  It may be enforced if
1139	 * the feature is fixed (i.e. VLAN filters are required to
1140	 * receive VLAN tagged packets due to vPort restrictions).
1141	 */
1142	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1143	net_dev->features |= efx->fixed_features;
1144
1145	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1146				NETDEV_XDP_ACT_REDIRECT |
1147				NETDEV_XDP_ACT_NDO_XMIT;
1148
1149	/* devlink creation, registration and lock */
1150	rc = efx_probe_devlink_and_lock(efx);
1151	if (rc)
1152		pci_err(efx->pci_dev, "devlink registration failed");
1153
1154	rc = efx_register_netdev(efx);
1155	efx_probe_devlink_unlock(efx);
1156	if (!rc)
1157		return 0;
1158
1159	efx_pci_remove_main(efx);
1160	return rc;
1161}
1162
1163/* NIC initialisation
1164 *
1165 * This is called at module load (or hotplug insertion,
1166 * theoretically).  It sets up PCI mappings, resets the NIC,
1167 * sets up and registers the network devices with the kernel and hooks
1168 * the interrupt service routine.  It does not prepare the device for
1169 * transmission; this is left to the first time one of the network
1170 * interfaces is brought up (i.e. efx_net_open).
1171 */
1172static int efx_pci_probe(struct pci_dev *pci_dev,
1173			 const struct pci_device_id *entry)
1174{
1175	struct efx_probe_data *probe_data, **probe_ptr;
1176	struct net_device *net_dev;
1177	struct efx_nic *efx;
1178	int rc;
1179
1180	/* Allocate probe data and struct efx_nic */
1181	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1182	if (!probe_data)
1183		return -ENOMEM;
1184	probe_data->pci_dev = pci_dev;
1185	efx = &probe_data->efx;
1186
1187	/* Allocate and initialise a struct net_device */
1188	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1189	if (!net_dev) {
1190		rc = -ENOMEM;
1191		goto fail0;
1192	}
1193	probe_ptr = netdev_priv(net_dev);
1194	*probe_ptr = probe_data;
1195	efx->net_dev = net_dev;
1196	efx->type = (const struct efx_nic_type *) entry->driver_data;
1197	efx->fixed_features |= NETIF_F_HIGHDMA;
1198
1199	pci_set_drvdata(pci_dev, efx);
1200	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1201	rc = efx_init_struct(efx, pci_dev);
1202	if (rc)
1203		goto fail1;
1204	efx->mdio.dev = net_dev;
1205
1206	pci_info(pci_dev, "Solarflare NIC detected\n");
1207
1208	if (!efx->type->is_vf)
1209		efx_probe_vpd_strings(efx);
1210
1211	/* Set up basic I/O (BAR mappings etc) */
1212	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1213			 efx->type->mem_map_size(efx));
1214	if (rc)
1215		goto fail2;
1216
1217	rc = efx_pci_probe_post_io(efx);
1218	if (rc) {
1219		/* On failure, retry once immediately.
1220		 * If we aborted probe due to a scheduled reset, dismiss it.
1221		 */
1222		efx->reset_pending = 0;
1223		rc = efx_pci_probe_post_io(efx);
1224		if (rc) {
1225			/* On another failure, retry once more
1226			 * after a 50-305ms delay.
1227			 */
1228			unsigned char r;
1229
1230			get_random_bytes(&r, 1);
1231			msleep((unsigned int)r + 50);
1232			efx->reset_pending = 0;
1233			rc = efx_pci_probe_post_io(efx);
1234		}
1235	}
1236	if (rc)
1237		goto fail3;
1238
1239	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1240
1241	/* Try to create MTDs, but allow this to fail */
1242	rtnl_lock();
1243	rc = efx_mtd_probe(efx);
1244	rtnl_unlock();
1245	if (rc && rc != -EPERM)
1246		netif_warn(efx, probe, efx->net_dev,
1247			   "failed to create MTDs (%d)\n", rc);
1248
1249	if (efx->type->udp_tnl_push_ports)
1250		efx->type->udp_tnl_push_ports(efx);
1251
1252	return 0;
1253
1254 fail3:
1255	efx_fini_io(efx);
1256 fail2:
1257	efx_fini_struct(efx);
1258 fail1:
1259	WARN_ON(rc > 0);
1260	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1261	free_netdev(net_dev);
1262 fail0:
1263	kfree(probe_data);
1264	return rc;
1265}
1266
1267/* efx_pci_sriov_configure returns the actual number of Virtual Functions
1268 * enabled on success
1269 */
1270#ifdef CONFIG_SFC_SRIOV
1271static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1272{
1273	int rc;
1274	struct efx_nic *efx = pci_get_drvdata(dev);
1275
1276	if (efx->type->sriov_configure) {
1277		rc = efx->type->sriov_configure(efx, num_vfs);
1278		if (rc)
1279			return rc;
1280		else
1281			return num_vfs;
1282	} else
1283		return -EOPNOTSUPP;
1284}
1285#endif
1286
1287static int efx_pm_freeze(struct device *dev)
1288{
1289	struct efx_nic *efx = dev_get_drvdata(dev);
1290
1291	rtnl_lock();
1292
1293	if (efx_net_active(efx->state)) {
1294		efx_device_detach_sync(efx);
1295
1296		efx_stop_all(efx);
1297		efx_disable_interrupts(efx);
1298
1299		efx->state = efx_freeze(efx->state);
1300	}
1301
1302	rtnl_unlock();
1303
1304	return 0;
1305}
1306
1307static void efx_pci_shutdown(struct pci_dev *pci_dev)
1308{
1309	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1310
1311	if (!efx)
1312		return;
1313
1314	efx_pm_freeze(&pci_dev->dev);
1315	pci_disable_device(pci_dev);
1316}
1317
1318static int efx_pm_thaw(struct device *dev)
1319{
1320	int rc;
1321	struct efx_nic *efx = dev_get_drvdata(dev);
1322
1323	rtnl_lock();
1324
1325	if (efx_frozen(efx->state)) {
1326		rc = efx_enable_interrupts(efx);
1327		if (rc)
1328			goto fail;
1329
1330		mutex_lock(&efx->mac_lock);
1331		efx_mcdi_port_reconfigure(efx);
1332		mutex_unlock(&efx->mac_lock);
1333
1334		efx_start_all(efx);
1335
1336		efx_device_attach_if_not_resetting(efx);
1337
1338		efx->state = efx_thaw(efx->state);
1339
1340		efx->type->resume_wol(efx);
1341	}
1342
1343	rtnl_unlock();
1344
1345	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1346	efx_queue_reset_work(efx);
1347
1348	return 0;
1349
1350fail:
1351	rtnl_unlock();
1352
1353	return rc;
1354}
1355
1356static int efx_pm_poweroff(struct device *dev)
1357{
1358	struct pci_dev *pci_dev = to_pci_dev(dev);
1359	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1360
1361	efx->type->fini(efx);
1362
1363	efx->reset_pending = 0;
1364
1365	pci_save_state(pci_dev);
1366	return pci_set_power_state(pci_dev, PCI_D3hot);
1367}
1368
1369/* Used for both resume and restore */
1370static int efx_pm_resume(struct device *dev)
1371{
1372	struct pci_dev *pci_dev = to_pci_dev(dev);
1373	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1374	int rc;
1375
1376	rc = pci_set_power_state(pci_dev, PCI_D0);
1377	if (rc)
1378		return rc;
1379	pci_restore_state(pci_dev);
1380	rc = pci_enable_device(pci_dev);
1381	if (rc)
1382		return rc;
1383	pci_set_master(efx->pci_dev);
1384	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1385	if (rc)
1386		return rc;
1387	down_write(&efx->filter_sem);
1388	rc = efx->type->init(efx);
1389	up_write(&efx->filter_sem);
1390	if (rc)
1391		return rc;
1392	rc = efx_pm_thaw(dev);
1393	return rc;
1394}
1395
1396static int efx_pm_suspend(struct device *dev)
1397{
1398	int rc;
1399
1400	efx_pm_freeze(dev);
1401	rc = efx_pm_poweroff(dev);
1402	if (rc)
1403		efx_pm_resume(dev);
1404	return rc;
1405}
1406
1407static const struct dev_pm_ops efx_pm_ops = {
1408	.suspend	= efx_pm_suspend,
1409	.resume		= efx_pm_resume,
1410	.freeze		= efx_pm_freeze,
1411	.thaw		= efx_pm_thaw,
1412	.poweroff	= efx_pm_poweroff,
1413	.restore	= efx_pm_resume,
1414};
1415
1416static struct pci_driver efx_pci_driver = {
1417	.name		= KBUILD_MODNAME,
1418	.id_table	= efx_pci_table,
1419	.probe		= efx_pci_probe,
1420	.remove		= efx_pci_remove,
1421	.driver.pm	= &efx_pm_ops,
1422	.shutdown	= efx_pci_shutdown,
1423	.err_handler	= &efx_err_handlers,
1424#ifdef CONFIG_SFC_SRIOV
1425	.sriov_configure = efx_pci_sriov_configure,
1426#endif
1427};
1428
1429/**************************************************************************
1430 *
1431 * Kernel module interface
1432 *
1433 *************************************************************************/
1434
1435static int __init efx_init_module(void)
1436{
1437	int rc;
1438
1439	printk(KERN_INFO "Solarflare NET driver\n");
1440
1441	rc = register_netdevice_notifier(&efx_netdev_notifier);
1442	if (rc)
1443		goto err_notifier;
1444
1445	rc = efx_create_reset_workqueue();
1446	if (rc)
1447		goto err_reset;
1448
1449	rc = pci_register_driver(&efx_pci_driver);
1450	if (rc < 0)
1451		goto err_pci;
1452
1453	rc = pci_register_driver(&ef100_pci_driver);
1454	if (rc < 0)
1455		goto err_pci_ef100;
1456
1457	return 0;
1458
1459 err_pci_ef100:
1460	pci_unregister_driver(&efx_pci_driver);
1461 err_pci:
1462	efx_destroy_reset_workqueue();
1463 err_reset:
1464	unregister_netdevice_notifier(&efx_netdev_notifier);
1465 err_notifier:
1466	return rc;
1467}
1468
1469static void __exit efx_exit_module(void)
1470{
1471	printk(KERN_INFO "Solarflare NET driver unloading\n");
1472
1473	pci_unregister_driver(&ef100_pci_driver);
1474	pci_unregister_driver(&efx_pci_driver);
1475	efx_destroy_reset_workqueue();
1476	unregister_netdevice_notifier(&efx_netdev_notifier);
1477
1478}
1479
1480module_init(efx_init_module);
1481module_exit(efx_exit_module);
1482
1483MODULE_AUTHOR("Solarflare Communications and "
1484	      "Michael Brown <mbrown@fensystems.co.uk>");
1485MODULE_DESCRIPTION("Solarflare network driver");
1486MODULE_LICENSE("GPL");
1487MODULE_DEVICE_TABLE(pci, efx_pci_table);