Loading...
Note: File does not exist in v6.13.7.
1/*
2 * Copyright (C) 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
22 *
23 */
24
25#include <linux/dma-mapping.h>
26#include <linux/slab.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/platform_device.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/partitions.h>
33
34#include <linux/dmaengine.h>
35#include <linux/gpio.h>
36#include <linux/io.h>
37
38#include <mach/board.h>
39#include <mach/cpu.h>
40
41#ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW
42#define hard_ecc 1
43#else
44#define hard_ecc 0
45#endif
46
47#ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE
48#define no_ecc 1
49#else
50#define no_ecc 0
51#endif
52
53static int use_dma = 1;
54module_param(use_dma, int, 0);
55
56static int on_flash_bbt = 0;
57module_param(on_flash_bbt, int, 0);
58
59/* Register access macros */
60#define ecc_readl(add, reg) \
61 __raw_readl(add + ATMEL_ECC_##reg)
62#define ecc_writel(add, reg, value) \
63 __raw_writel((value), add + ATMEL_ECC_##reg)
64
65#include "atmel_nand_ecc.h" /* Hardware ECC registers */
66
67/* oob layout for large page size
68 * bad block info is on bytes 0 and 1
69 * the bytes have to be consecutives to avoid
70 * several NAND_CMD_RNDOUT during read
71 */
72static struct nand_ecclayout atmel_oobinfo_large = {
73 .eccbytes = 4,
74 .eccpos = {60, 61, 62, 63},
75 .oobfree = {
76 {2, 58}
77 },
78};
79
80/* oob layout for small page size
81 * bad block info is on bytes 4 and 5
82 * the bytes have to be consecutives to avoid
83 * several NAND_CMD_RNDOUT during read
84 */
85static struct nand_ecclayout atmel_oobinfo_small = {
86 .eccbytes = 4,
87 .eccpos = {0, 1, 2, 3},
88 .oobfree = {
89 {6, 10}
90 },
91};
92
93struct atmel_nand_host {
94 struct nand_chip nand_chip;
95 struct mtd_info mtd;
96 void __iomem *io_base;
97 dma_addr_t io_phys;
98 struct atmel_nand_data *board;
99 struct device *dev;
100 void __iomem *ecc;
101
102 struct completion comp;
103 struct dma_chan *dma_chan;
104};
105
106static int cpu_has_dma(void)
107{
108 return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
109}
110
111/*
112 * Enable NAND.
113 */
114static void atmel_nand_enable(struct atmel_nand_host *host)
115{
116 if (host->board->enable_pin)
117 gpio_set_value(host->board->enable_pin, 0);
118}
119
120/*
121 * Disable NAND.
122 */
123static void atmel_nand_disable(struct atmel_nand_host *host)
124{
125 if (host->board->enable_pin)
126 gpio_set_value(host->board->enable_pin, 1);
127}
128
129/*
130 * Hardware specific access to control-lines
131 */
132static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
133{
134 struct nand_chip *nand_chip = mtd->priv;
135 struct atmel_nand_host *host = nand_chip->priv;
136
137 if (ctrl & NAND_CTRL_CHANGE) {
138 if (ctrl & NAND_NCE)
139 atmel_nand_enable(host);
140 else
141 atmel_nand_disable(host);
142 }
143 if (cmd == NAND_CMD_NONE)
144 return;
145
146 if (ctrl & NAND_CLE)
147 writeb(cmd, host->io_base + (1 << host->board->cle));
148 else
149 writeb(cmd, host->io_base + (1 << host->board->ale));
150}
151
152/*
153 * Read the Device Ready pin.
154 */
155static int atmel_nand_device_ready(struct mtd_info *mtd)
156{
157 struct nand_chip *nand_chip = mtd->priv;
158 struct atmel_nand_host *host = nand_chip->priv;
159
160 return gpio_get_value(host->board->rdy_pin) ^
161 !!host->board->rdy_pin_active_low;
162}
163
164/*
165 * Minimal-overhead PIO for data access.
166 */
167static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
168{
169 struct nand_chip *nand_chip = mtd->priv;
170
171 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
172}
173
174static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
175{
176 struct nand_chip *nand_chip = mtd->priv;
177
178 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
179}
180
181static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
182{
183 struct nand_chip *nand_chip = mtd->priv;
184
185 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
186}
187
188static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
189{
190 struct nand_chip *nand_chip = mtd->priv;
191
192 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
193}
194
195static void dma_complete_func(void *completion)
196{
197 complete(completion);
198}
199
200static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
201 int is_read)
202{
203 struct dma_device *dma_dev;
204 enum dma_ctrl_flags flags;
205 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
206 struct dma_async_tx_descriptor *tx = NULL;
207 dma_cookie_t cookie;
208 struct nand_chip *chip = mtd->priv;
209 struct atmel_nand_host *host = chip->priv;
210 void *p = buf;
211 int err = -EIO;
212 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
213
214 if (buf >= high_memory)
215 goto err_buf;
216
217 dma_dev = host->dma_chan->device;
218
219 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
220 DMA_COMPL_SKIP_DEST_UNMAP;
221
222 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
223 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
224 dev_err(host->dev, "Failed to dma_map_single\n");
225 goto err_buf;
226 }
227
228 if (is_read) {
229 dma_src_addr = host->io_phys;
230 dma_dst_addr = phys_addr;
231 } else {
232 dma_src_addr = phys_addr;
233 dma_dst_addr = host->io_phys;
234 }
235
236 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
237 dma_src_addr, len, flags);
238 if (!tx) {
239 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
240 goto err_dma;
241 }
242
243 init_completion(&host->comp);
244 tx->callback = dma_complete_func;
245 tx->callback_param = &host->comp;
246
247 cookie = tx->tx_submit(tx);
248 if (dma_submit_error(cookie)) {
249 dev_err(host->dev, "Failed to do DMA tx_submit\n");
250 goto err_dma;
251 }
252
253 dma_async_issue_pending(host->dma_chan);
254 wait_for_completion(&host->comp);
255
256 err = 0;
257
258err_dma:
259 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
260err_buf:
261 if (err != 0)
262 dev_warn(host->dev, "Fall back to CPU I/O\n");
263 return err;
264}
265
266static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
267{
268 struct nand_chip *chip = mtd->priv;
269 struct atmel_nand_host *host = chip->priv;
270
271 if (use_dma && len > mtd->oobsize)
272 /* only use DMA for bigger than oob size: better performances */
273 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
274 return;
275
276 if (host->board->bus_width_16)
277 atmel_read_buf16(mtd, buf, len);
278 else
279 atmel_read_buf8(mtd, buf, len);
280}
281
282static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
283{
284 struct nand_chip *chip = mtd->priv;
285 struct atmel_nand_host *host = chip->priv;
286
287 if (use_dma && len > mtd->oobsize)
288 /* only use DMA for bigger than oob size: better performances */
289 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
290 return;
291
292 if (host->board->bus_width_16)
293 atmel_write_buf16(mtd, buf, len);
294 else
295 atmel_write_buf8(mtd, buf, len);
296}
297
298/*
299 * Calculate HW ECC
300 *
301 * function called after a write
302 *
303 * mtd: MTD block structure
304 * dat: raw data (unused)
305 * ecc_code: buffer for ECC
306 */
307static int atmel_nand_calculate(struct mtd_info *mtd,
308 const u_char *dat, unsigned char *ecc_code)
309{
310 struct nand_chip *nand_chip = mtd->priv;
311 struct atmel_nand_host *host = nand_chip->priv;
312 unsigned int ecc_value;
313
314 /* get the first 2 ECC bytes */
315 ecc_value = ecc_readl(host->ecc, PR);
316
317 ecc_code[0] = ecc_value & 0xFF;
318 ecc_code[1] = (ecc_value >> 8) & 0xFF;
319
320 /* get the last 2 ECC bytes */
321 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
322
323 ecc_code[2] = ecc_value & 0xFF;
324 ecc_code[3] = (ecc_value >> 8) & 0xFF;
325
326 return 0;
327}
328
329/*
330 * HW ECC read page function
331 *
332 * mtd: mtd info structure
333 * chip: nand chip info structure
334 * buf: buffer to store read data
335 */
336static int atmel_nand_read_page(struct mtd_info *mtd,
337 struct nand_chip *chip, uint8_t *buf, int page)
338{
339 int eccsize = chip->ecc.size;
340 int eccbytes = chip->ecc.bytes;
341 uint32_t *eccpos = chip->ecc.layout->eccpos;
342 uint8_t *p = buf;
343 uint8_t *oob = chip->oob_poi;
344 uint8_t *ecc_pos;
345 int stat;
346
347 /*
348 * Errata: ALE is incorrectly wired up to the ECC controller
349 * on the AP7000, so it will include the address cycles in the
350 * ECC calculation.
351 *
352 * Workaround: Reset the parity registers before reading the
353 * actual data.
354 */
355 if (cpu_is_at32ap7000()) {
356 struct atmel_nand_host *host = chip->priv;
357 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
358 }
359
360 /* read the page */
361 chip->read_buf(mtd, p, eccsize);
362
363 /* move to ECC position if needed */
364 if (eccpos[0] != 0) {
365 /* This only works on large pages
366 * because the ECC controller waits for
367 * NAND_CMD_RNDOUTSTART after the
368 * NAND_CMD_RNDOUT.
369 * anyway, for small pages, the eccpos[0] == 0
370 */
371 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
372 mtd->writesize + eccpos[0], -1);
373 }
374
375 /* the ECC controller needs to read the ECC just after the data */
376 ecc_pos = oob + eccpos[0];
377 chip->read_buf(mtd, ecc_pos, eccbytes);
378
379 /* check if there's an error */
380 stat = chip->ecc.correct(mtd, p, oob, NULL);
381
382 if (stat < 0)
383 mtd->ecc_stats.failed++;
384 else
385 mtd->ecc_stats.corrected += stat;
386
387 /* get back to oob start (end of page) */
388 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
389
390 /* read the oob */
391 chip->read_buf(mtd, oob, mtd->oobsize);
392
393 return 0;
394}
395
396/*
397 * HW ECC Correction
398 *
399 * function called after a read
400 *
401 * mtd: MTD block structure
402 * dat: raw data read from the chip
403 * read_ecc: ECC from the chip (unused)
404 * isnull: unused
405 *
406 * Detect and correct a 1 bit error for a page
407 */
408static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
409 u_char *read_ecc, u_char *isnull)
410{
411 struct nand_chip *nand_chip = mtd->priv;
412 struct atmel_nand_host *host = nand_chip->priv;
413 unsigned int ecc_status;
414 unsigned int ecc_word, ecc_bit;
415
416 /* get the status from the Status Register */
417 ecc_status = ecc_readl(host->ecc, SR);
418
419 /* if there's no error */
420 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
421 return 0;
422
423 /* get error bit offset (4 bits) */
424 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
425 /* get word address (12 bits) */
426 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
427 ecc_word >>= 4;
428
429 /* if there are multiple errors */
430 if (ecc_status & ATMEL_ECC_MULERR) {
431 /* check if it is a freshly erased block
432 * (filled with 0xff) */
433 if ((ecc_bit == ATMEL_ECC_BITADDR)
434 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
435 /* the block has just been erased, return OK */
436 return 0;
437 }
438 /* it doesn't seems to be a freshly
439 * erased block.
440 * We can't correct so many errors */
441 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
442 " Unable to correct.\n");
443 return -EIO;
444 }
445
446 /* if there's a single bit error : we can correct it */
447 if (ecc_status & ATMEL_ECC_ECCERR) {
448 /* there's nothing much to do here.
449 * the bit error is on the ECC itself.
450 */
451 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
452 " Nothing to correct\n");
453 return 0;
454 }
455
456 dev_dbg(host->dev, "atmel_nand : one bit error on data."
457 " (word offset in the page :"
458 " 0x%x bit offset : 0x%x)\n",
459 ecc_word, ecc_bit);
460 /* correct the error */
461 if (nand_chip->options & NAND_BUSWIDTH_16) {
462 /* 16 bits words */
463 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
464 } else {
465 /* 8 bits words */
466 dat[ecc_word] ^= (1 << ecc_bit);
467 }
468 dev_dbg(host->dev, "atmel_nand : error corrected\n");
469 return 1;
470}
471
472/*
473 * Enable HW ECC : unused on most chips
474 */
475static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
476{
477 if (cpu_is_at32ap7000()) {
478 struct nand_chip *nand_chip = mtd->priv;
479 struct atmel_nand_host *host = nand_chip->priv;
480 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
481 }
482}
483
484#ifdef CONFIG_MTD_CMDLINE_PARTS
485static const char *part_probes[] = { "cmdlinepart", NULL };
486#endif
487
488/*
489 * Probe for the NAND device.
490 */
491static int __init atmel_nand_probe(struct platform_device *pdev)
492{
493 struct atmel_nand_host *host;
494 struct mtd_info *mtd;
495 struct nand_chip *nand_chip;
496 struct resource *regs;
497 struct resource *mem;
498 int res;
499 struct mtd_partition *partitions = NULL;
500 int num_partitions = 0;
501
502 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
503 if (!mem) {
504 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
505 return -ENXIO;
506 }
507
508 /* Allocate memory for the device structure (and zero it) */
509 host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
510 if (!host) {
511 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
512 return -ENOMEM;
513 }
514
515 host->io_phys = (dma_addr_t)mem->start;
516
517 host->io_base = ioremap(mem->start, resource_size(mem));
518 if (host->io_base == NULL) {
519 printk(KERN_ERR "atmel_nand: ioremap failed\n");
520 res = -EIO;
521 goto err_nand_ioremap;
522 }
523
524 mtd = &host->mtd;
525 nand_chip = &host->nand_chip;
526 host->board = pdev->dev.platform_data;
527 host->dev = &pdev->dev;
528
529 nand_chip->priv = host; /* link the private data structures */
530 mtd->priv = nand_chip;
531 mtd->owner = THIS_MODULE;
532
533 /* Set address of NAND IO lines */
534 nand_chip->IO_ADDR_R = host->io_base;
535 nand_chip->IO_ADDR_W = host->io_base;
536 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
537
538 if (host->board->rdy_pin)
539 nand_chip->dev_ready = atmel_nand_device_ready;
540
541 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
542 if (!regs && hard_ecc) {
543 printk(KERN_ERR "atmel_nand: can't get I/O resource "
544 "regs\nFalling back on software ECC\n");
545 }
546
547 nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */
548 if (no_ecc)
549 nand_chip->ecc.mode = NAND_ECC_NONE;
550 if (hard_ecc && regs) {
551 host->ecc = ioremap(regs->start, resource_size(regs));
552 if (host->ecc == NULL) {
553 printk(KERN_ERR "atmel_nand: ioremap failed\n");
554 res = -EIO;
555 goto err_ecc_ioremap;
556 }
557 nand_chip->ecc.mode = NAND_ECC_HW;
558 nand_chip->ecc.calculate = atmel_nand_calculate;
559 nand_chip->ecc.correct = atmel_nand_correct;
560 nand_chip->ecc.hwctl = atmel_nand_hwctl;
561 nand_chip->ecc.read_page = atmel_nand_read_page;
562 nand_chip->ecc.bytes = 4;
563 }
564
565 nand_chip->chip_delay = 20; /* 20us command delay time */
566
567 if (host->board->bus_width_16) /* 16-bit bus width */
568 nand_chip->options |= NAND_BUSWIDTH_16;
569
570 nand_chip->read_buf = atmel_read_buf;
571 nand_chip->write_buf = atmel_write_buf;
572
573 platform_set_drvdata(pdev, host);
574 atmel_nand_enable(host);
575
576 if (host->board->det_pin) {
577 if (gpio_get_value(host->board->det_pin)) {
578 printk(KERN_INFO "No SmartMedia card inserted.\n");
579 res = -ENXIO;
580 goto err_no_card;
581 }
582 }
583
584 if (on_flash_bbt) {
585 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
586 nand_chip->options |= NAND_USE_FLASH_BBT;
587 }
588
589 if (!cpu_has_dma())
590 use_dma = 0;
591
592 if (use_dma) {
593 dma_cap_mask_t mask;
594
595 dma_cap_zero(mask);
596 dma_cap_set(DMA_MEMCPY, mask);
597 host->dma_chan = dma_request_channel(mask, 0, NULL);
598 if (!host->dma_chan) {
599 dev_err(host->dev, "Failed to request DMA channel\n");
600 use_dma = 0;
601 }
602 }
603 if (use_dma)
604 dev_info(host->dev, "Using %s for DMA transfers.\n",
605 dma_chan_name(host->dma_chan));
606 else
607 dev_info(host->dev, "No DMA support for NAND access.\n");
608
609 /* first scan to find the device and get the page size */
610 if (nand_scan_ident(mtd, 1, NULL)) {
611 res = -ENXIO;
612 goto err_scan_ident;
613 }
614
615 if (nand_chip->ecc.mode == NAND_ECC_HW) {
616 /* ECC is calculated for the whole page (1 step) */
617 nand_chip->ecc.size = mtd->writesize;
618
619 /* set ECC page size and oob layout */
620 switch (mtd->writesize) {
621 case 512:
622 nand_chip->ecc.layout = &atmel_oobinfo_small;
623 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
624 break;
625 case 1024:
626 nand_chip->ecc.layout = &atmel_oobinfo_large;
627 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
628 break;
629 case 2048:
630 nand_chip->ecc.layout = &atmel_oobinfo_large;
631 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
632 break;
633 case 4096:
634 nand_chip->ecc.layout = &atmel_oobinfo_large;
635 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
636 break;
637 default:
638 /* page size not handled by HW ECC */
639 /* switching back to soft ECC */
640 nand_chip->ecc.mode = NAND_ECC_SOFT;
641 nand_chip->ecc.calculate = NULL;
642 nand_chip->ecc.correct = NULL;
643 nand_chip->ecc.hwctl = NULL;
644 nand_chip->ecc.read_page = NULL;
645 nand_chip->ecc.postpad = 0;
646 nand_chip->ecc.prepad = 0;
647 nand_chip->ecc.bytes = 0;
648 break;
649 }
650 }
651
652 /* second phase scan */
653 if (nand_scan_tail(mtd)) {
654 res = -ENXIO;
655 goto err_scan_tail;
656 }
657
658#ifdef CONFIG_MTD_CMDLINE_PARTS
659 mtd->name = "atmel_nand";
660 num_partitions = parse_mtd_partitions(mtd, part_probes,
661 &partitions, 0);
662#endif
663 if (num_partitions <= 0 && host->board->partition_info)
664 partitions = host->board->partition_info(mtd->size,
665 &num_partitions);
666
667 if ((!partitions) || (num_partitions == 0)) {
668 printk(KERN_ERR "atmel_nand: No partitions defined, or unsupported device.\n");
669 res = -ENXIO;
670 goto err_no_partitions;
671 }
672
673 res = mtd_device_register(mtd, partitions, num_partitions);
674 if (!res)
675 return res;
676
677err_no_partitions:
678 nand_release(mtd);
679err_scan_tail:
680err_scan_ident:
681err_no_card:
682 atmel_nand_disable(host);
683 platform_set_drvdata(pdev, NULL);
684 if (host->dma_chan)
685 dma_release_channel(host->dma_chan);
686 if (host->ecc)
687 iounmap(host->ecc);
688err_ecc_ioremap:
689 iounmap(host->io_base);
690err_nand_ioremap:
691 kfree(host);
692 return res;
693}
694
695/*
696 * Remove a NAND device.
697 */
698static int __exit atmel_nand_remove(struct platform_device *pdev)
699{
700 struct atmel_nand_host *host = platform_get_drvdata(pdev);
701 struct mtd_info *mtd = &host->mtd;
702
703 nand_release(mtd);
704
705 atmel_nand_disable(host);
706
707 if (host->ecc)
708 iounmap(host->ecc);
709
710 if (host->dma_chan)
711 dma_release_channel(host->dma_chan);
712
713 iounmap(host->io_base);
714 kfree(host);
715
716 return 0;
717}
718
719static struct platform_driver atmel_nand_driver = {
720 .remove = __exit_p(atmel_nand_remove),
721 .driver = {
722 .name = "atmel_nand",
723 .owner = THIS_MODULE,
724 },
725};
726
727static int __init atmel_nand_init(void)
728{
729 return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
730}
731
732
733static void __exit atmel_nand_exit(void)
734{
735 platform_driver_unregister(&atmel_nand_driver);
736}
737
738
739module_init(atmel_nand_init);
740module_exit(atmel_nand_exit);
741
742MODULE_LICENSE("GPL");
743MODULE_AUTHOR("Rick Bronson");
744MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
745MODULE_ALIAS("platform:atmel_nand");