Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CPU Microcode Update Driver for Linux
  4 *
  5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
  6 *	      2006	Shaohua Li <shaohua.li@intel.com>
  7 *	      2013-2016	Borislav Petkov <bp@alien8.de>
  8 *
  9 * X86 CPU microcode early update for Linux:
 10 *
 11 *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
 12 *			   H Peter Anvin" <hpa@zytor.com>
 13 *		  (C) 2015 Borislav Petkov <bp@alien8.de>
 14 *
 15 * This driver allows to upgrade microcode on x86 processors.
 16 */
 17
 18#define pr_fmt(fmt) "microcode: " fmt
 19
 20#include <linux/platform_device.h>
 21#include <linux/stop_machine.h>
 22#include <linux/syscore_ops.h>
 23#include <linux/miscdevice.h>
 24#include <linux/capability.h>
 25#include <linux/firmware.h>
 26#include <linux/cpumask.h>
 27#include <linux/kernel.h>
 28#include <linux/delay.h>
 29#include <linux/mutex.h>
 30#include <linux/cpu.h>
 31#include <linux/nmi.h>
 32#include <linux/fs.h>
 33#include <linux/mm.h>
 34
 35#include <asm/apic.h>
 36#include <asm/cpu_device_id.h>
 37#include <asm/perf_event.h>
 38#include <asm/processor.h>
 39#include <asm/cmdline.h>
 40#include <asm/setup.h>
 41
 42#include "internal.h"
 43
 44static struct microcode_ops	*microcode_ops;
 45bool dis_ucode_ldr = true;
 46
 47bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
 48module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
 49
 50/*
 51 * Synchronization.
 52 *
 53 * All non cpu-hotplug-callback call sites use:
 54 *
 55 * - cpus_read_lock/unlock() to synchronize with
 56 *   the cpu-hotplug-callback call sites.
 57 *
 58 * We guarantee that only a single cpu is being
 59 * updated at any particular moment of time.
 60 */
 61struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
 62
 63/*
 64 * Those patch levels cannot be updated to newer ones and thus should be final.
 65 */
 66static u32 final_levels[] = {
 67	0x01000098,
 68	0x0100009f,
 69	0x010000af,
 70	0, /* T-101 terminator */
 71};
 72
 73struct early_load_data early_data;
 74
 75/*
 76 * Check the current patch level on this CPU.
 77 *
 78 * Returns:
 79 *  - true: if update should stop
 80 *  - false: otherwise
 81 */
 82static bool amd_check_current_patch_level(void)
 83{
 84	u32 lvl, dummy, i;
 85	u32 *levels;
 86
 87	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
 88
 89	levels = final_levels;
 90
 91	for (i = 0; levels[i]; i++) {
 92		if (lvl == levels[i])
 93			return true;
 94	}
 95	return false;
 96}
 97
 98static bool __init check_loader_disabled_bsp(void)
 99{
100	static const char *__dis_opt_str = "dis_ucode_ldr";
101	const char *cmdline = boot_command_line;
102	const char *option  = __dis_opt_str;
103
104	/*
105	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
106	 * completely accurate as xen pv guests don't see that CPUID bit set but
107	 * that's good enough as they don't land on the BSP path anyway.
108	 */
109	if (native_cpuid_ecx(1) & BIT(31))
110		return true;
111
112	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
113		if (amd_check_current_patch_level())
114			return true;
115	}
116
117	if (cmdline_find_option_bool(cmdline, option) <= 0)
118		dis_ucode_ldr = false;
119
120	return dis_ucode_ldr;
121}
122
123void __init load_ucode_bsp(void)
124{
125	unsigned int cpuid_1_eax;
126	bool intel = true;
127
128	if (!have_cpuid_p())
129		return;
130
131	cpuid_1_eax = native_cpuid_eax(1);
132
133	switch (x86_cpuid_vendor()) {
134	case X86_VENDOR_INTEL:
135		if (x86_family(cpuid_1_eax) < 6)
136			return;
137		break;
138
139	case X86_VENDOR_AMD:
140		if (x86_family(cpuid_1_eax) < 0x10)
141			return;
142		intel = false;
143		break;
144
145	default:
146		return;
147	}
148
149	if (check_loader_disabled_bsp())
150		return;
151
152	if (intel)
153		load_ucode_intel_bsp(&early_data);
154	else
155		load_ucode_amd_bsp(&early_data, cpuid_1_eax);
156}
157
158void load_ucode_ap(void)
159{
160	unsigned int cpuid_1_eax;
161
162	if (dis_ucode_ldr)
163		return;
164
165	cpuid_1_eax = native_cpuid_eax(1);
166
167	switch (x86_cpuid_vendor()) {
168	case X86_VENDOR_INTEL:
169		if (x86_family(cpuid_1_eax) >= 6)
170			load_ucode_intel_ap();
171		break;
172	case X86_VENDOR_AMD:
173		if (x86_family(cpuid_1_eax) >= 0x10)
174			load_ucode_amd_ap(cpuid_1_eax);
175		break;
176	default:
177		break;
178	}
179}
180
181struct cpio_data __init find_microcode_in_initrd(const char *path)
182{
183#ifdef CONFIG_BLK_DEV_INITRD
184	unsigned long start = 0;
185	size_t size;
186
187#ifdef CONFIG_X86_32
188	size = boot_params.hdr.ramdisk_size;
189	/* Early load on BSP has a temporary mapping. */
190	if (size)
191		start = initrd_start_early;
192
193#else /* CONFIG_X86_64 */
194	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
195	size |= boot_params.hdr.ramdisk_size;
196
197	if (size) {
198		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
199		start |= boot_params.hdr.ramdisk_image;
200		start += PAGE_OFFSET;
201	}
202#endif
203
204	/*
205	 * Fixup the start address: after reserve_initrd() runs, initrd_start
206	 * has the virtual address of the beginning of the initrd. It also
207	 * possibly relocates the ramdisk. In either case, initrd_start contains
208	 * the updated address so use that instead.
209	 */
210	if (initrd_start)
211		start = initrd_start;
212
213	return find_cpio_data(path, (void *)start, size, NULL);
214#else /* !CONFIG_BLK_DEV_INITRD */
215	return (struct cpio_data){ NULL, 0, "" };
216#endif
217}
218
219static void reload_early_microcode(unsigned int cpu)
220{
221	int vendor, family;
222
223	vendor = x86_cpuid_vendor();
224	family = x86_cpuid_family();
225
226	switch (vendor) {
227	case X86_VENDOR_INTEL:
228		if (family >= 6)
229			reload_ucode_intel();
230		break;
231	case X86_VENDOR_AMD:
232		if (family >= 0x10)
233			reload_ucode_amd(cpu);
234		break;
235	default:
236		break;
237	}
238}
239
240/* fake device for request_firmware */
241static struct platform_device	*microcode_pdev;
242
243#ifdef CONFIG_MICROCODE_LATE_LOADING
244/*
245 * Late loading dance. Why the heavy-handed stomp_machine effort?
246 *
247 * - HT siblings must be idle and not execute other code while the other sibling
248 *   is loading microcode in order to avoid any negative interactions caused by
249 *   the loading.
250 *
251 * - In addition, microcode update on the cores must be serialized until this
252 *   requirement can be relaxed in the future. Right now, this is conservative
253 *   and good.
254 */
255enum sibling_ctrl {
256	/* Spinwait with timeout */
257	SCTRL_WAIT,
258	/* Invoke the microcode_apply() callback */
259	SCTRL_APPLY,
260	/* Proceed without invoking the microcode_apply() callback */
261	SCTRL_DONE,
262};
263
264struct microcode_ctrl {
265	enum sibling_ctrl	ctrl;
266	enum ucode_state	result;
267	unsigned int		ctrl_cpu;
268	bool			nmi_enabled;
269};
270
271DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
272static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
273static atomic_t late_cpus_in, offline_in_nmi;
274static unsigned int loops_per_usec;
275static cpumask_t cpu_offline_mask;
276
277static noinstr bool wait_for_cpus(atomic_t *cnt)
278{
279	unsigned int timeout, loops;
280
281	WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
282
283	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
284		if (!raw_atomic_read(cnt))
285			return true;
286
287		for (loops = 0; loops < loops_per_usec; loops++)
288			cpu_relax();
289
290		/* If invoked directly, tickle the NMI watchdog */
291		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
292			instrumentation_begin();
293			touch_nmi_watchdog();
294			instrumentation_end();
295		}
296	}
297	/* Prevent the late comers from making progress and let them time out */
298	raw_atomic_inc(cnt);
299	return false;
300}
301
302static noinstr bool wait_for_ctrl(void)
303{
304	unsigned int timeout, loops;
305
306	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
307		if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
308			return true;
309
310		for (loops = 0; loops < loops_per_usec; loops++)
311			cpu_relax();
312
313		/* If invoked directly, tickle the NMI watchdog */
314		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
315			instrumentation_begin();
316			touch_nmi_watchdog();
317			instrumentation_end();
318		}
319	}
320	return false;
321}
322
323/*
324 * Protected against instrumentation up to the point where the primary
325 * thread completed the update. See microcode_nmi_handler() for details.
326 */
327static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
328{
329	/* Initial rendezvous to ensure that all CPUs have arrived */
330	if (!wait_for_cpus(&late_cpus_in)) {
331		raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
332		return false;
333	}
334
335	/*
336	 * Wait for primary threads to complete. If one of them hangs due
337	 * to the update, there is no way out. This is non-recoverable
338	 * because the CPU might hold locks or resources and confuse the
339	 * scheduler, watchdogs etc. There is no way to safely evacuate the
340	 * machine.
341	 */
342	if (wait_for_ctrl())
343		return true;
344
345	instrumentation_begin();
346	panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
347	instrumentation_end();
348}
349
350/*
351 * Protected against instrumentation up to the point where the primary
352 * thread completed the update. See microcode_nmi_handler() for details.
353 */
354static noinstr void load_secondary(unsigned int cpu)
355{
356	unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
357	enum ucode_state ret;
358
359	if (!load_secondary_wait(ctrl_cpu)) {
360		instrumentation_begin();
361		pr_err_once("load: %d CPUs timed out\n",
362			    atomic_read(&late_cpus_in) - 1);
363		instrumentation_end();
364		return;
365	}
366
367	/* Primary thread completed. Allow to invoke instrumentable code */
368	instrumentation_begin();
369	/*
370	 * If the primary succeeded then invoke the apply() callback,
371	 * otherwise copy the state from the primary thread.
372	 */
373	if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
374		ret = microcode_ops->apply_microcode(cpu);
375	else
376		ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
377
378	this_cpu_write(ucode_ctrl.result, ret);
379	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
380	instrumentation_end();
381}
382
383static void __load_primary(unsigned int cpu)
384{
385	struct cpumask *secondaries = topology_sibling_cpumask(cpu);
386	enum sibling_ctrl ctrl;
387	enum ucode_state ret;
388	unsigned int sibling;
389
390	/* Initial rendezvous to ensure that all CPUs have arrived */
391	if (!wait_for_cpus(&late_cpus_in)) {
392		this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
393		pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
394		return;
395	}
396
397	ret = microcode_ops->apply_microcode(cpu);
398	this_cpu_write(ucode_ctrl.result, ret);
399	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
400
401	/*
402	 * If the update was successful, let the siblings run the apply()
403	 * callback. If not, tell them it's done. This also covers the
404	 * case where the CPU has uniform loading at package or system
405	 * scope implemented but does not advertise it.
406	 */
407	if (ret == UCODE_UPDATED || ret == UCODE_OK)
408		ctrl = SCTRL_APPLY;
409	else
410		ctrl = SCTRL_DONE;
411
412	for_each_cpu(sibling, secondaries) {
413		if (sibling != cpu)
414			per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
415	}
416}
417
418static bool kick_offline_cpus(unsigned int nr_offl)
419{
420	unsigned int cpu, timeout;
421
422	for_each_cpu(cpu, &cpu_offline_mask) {
423		/* Enable the rendezvous handler and send NMI */
424		per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
425		apic_send_nmi_to_offline_cpu(cpu);
426	}
427
428	/* Wait for them to arrive */
429	for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
430		if (atomic_read(&offline_in_nmi) == nr_offl)
431			return true;
432		udelay(1);
433	}
434	/* Let the others time out */
435	return false;
436}
437
438static void release_offline_cpus(void)
439{
440	unsigned int cpu;
441
442	for_each_cpu(cpu, &cpu_offline_mask)
443		per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
444}
445
446static void load_primary(unsigned int cpu)
447{
448	unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
449	bool proceed = true;
450
451	/* Kick soft-offlined SMT siblings if required */
452	if (!cpu && nr_offl)
453		proceed = kick_offline_cpus(nr_offl);
454
455	/* If the soft-offlined CPUs did not respond, abort */
456	if (proceed)
457		__load_primary(cpu);
458
459	/* Unconditionally release soft-offlined SMT siblings if required */
460	if (!cpu && nr_offl)
461		release_offline_cpus();
462}
463
464/*
465 * Minimal stub rendezvous handler for soft-offlined CPUs which participate
466 * in the NMI rendezvous to protect against a concurrent NMI on affected
467 * CPUs.
468 */
469void noinstr microcode_offline_nmi_handler(void)
470{
471	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
472		return;
473	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
474	raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
475	raw_atomic_inc(&offline_in_nmi);
476	wait_for_ctrl();
477}
478
479static noinstr bool microcode_update_handler(void)
480{
481	unsigned int cpu = raw_smp_processor_id();
482
483	if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
484		instrumentation_begin();
485		load_primary(cpu);
486		instrumentation_end();
487	} else {
488		load_secondary(cpu);
489	}
490
491	instrumentation_begin();
492	touch_nmi_watchdog();
493	instrumentation_end();
494
495	return true;
496}
497
498/*
499 * Protection against instrumentation is required for CPUs which are not
500 * safe against an NMI which is delivered to the secondary SMT sibling
501 * while the primary thread updates the microcode. Instrumentation can end
502 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
503 * which is the opposite of what the NMI rendezvous is trying to achieve.
504 *
505 * The primary thread is safe versus instrumentation as the actual
506 * microcode update handles this correctly. It's only the sibling code
507 * path which must be NMI safe until the primary thread completed the
508 * update.
509 */
510bool noinstr microcode_nmi_handler(void)
511{
512	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
513		return false;
514
515	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
516	return microcode_update_handler();
517}
518
519static int load_cpus_stopped(void *unused)
520{
521	if (microcode_ops->use_nmi) {
522		/* Enable the NMI handler and raise NMI */
523		this_cpu_write(ucode_ctrl.nmi_enabled, true);
524		apic->send_IPI(smp_processor_id(), NMI_VECTOR);
525	} else {
526		/* Just invoke the handler directly */
527		microcode_update_handler();
528	}
529	return 0;
530}
531
532static int load_late_stop_cpus(bool is_safe)
533{
534	unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
535	unsigned int nr_offl, offline = 0;
536	int old_rev = boot_cpu_data.microcode;
537	struct cpuinfo_x86 prev_info;
538
539	if (!is_safe) {
540		pr_err("Late microcode loading without minimal revision check.\n");
541		pr_err("You should switch to early loading, if possible.\n");
542	}
543
544	atomic_set(&late_cpus_in, num_online_cpus());
545	atomic_set(&offline_in_nmi, 0);
546	loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
547
548	/*
549	 * Take a snapshot before the microcode update in order to compare and
550	 * check whether any bits changed after an update.
551	 */
552	store_cpu_caps(&prev_info);
553
554	if (microcode_ops->use_nmi)
555		static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
556
557	stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
558
559	if (microcode_ops->use_nmi)
560		static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
561
562	/* Analyze the results */
563	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
564		switch (per_cpu(ucode_ctrl.result, cpu)) {
565		case UCODE_UPDATED:	updated++; break;
566		case UCODE_TIMEOUT:	timedout++; break;
567		case UCODE_OK:		siblings++; break;
568		case UCODE_OFFLINE:	offline++; break;
569		default:		failed++; break;
570		}
571	}
572
573	if (microcode_ops->finalize_late_load)
574		microcode_ops->finalize_late_load(!updated);
575
576	if (!updated) {
577		/* Nothing changed. */
578		if (!failed && !timedout)
579			return 0;
580
581		nr_offl = cpumask_weight(&cpu_offline_mask);
582		if (offline < nr_offl) {
583			pr_warn("%u offline siblings did not respond.\n",
584				nr_offl - atomic_read(&offline_in_nmi));
585			return -EIO;
586		}
587		pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
588		       failed, timedout);
589		return -EIO;
590	}
591
592	if (!is_safe || failed || timedout)
593		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
594
595	pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
596	if (failed || timedout) {
597		pr_err("load incomplete. %u CPUs timed out or failed\n",
598		       num_online_cpus() - (updated + siblings));
599	}
600	pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
601	microcode_check(&prev_info);
602
603	return updated + siblings == num_online_cpus() ? 0 : -EIO;
604}
605
606/*
607 * This function does two things:
608 *
609 * 1) Ensure that all required CPUs which are present and have been booted
610 *    once are online.
611 *
612 *    To pass this check, all primary threads must be online.
613 *
614 *    If the microcode load is not safe against NMI then all SMT threads
615 *    must be online as well because they still react to NMIs when they are
616 *    soft-offlined and parked in one of the play_dead() variants. So if a
617 *    NMI hits while the primary thread updates the microcode the resulting
618 *    behaviour is undefined. The default play_dead() implementation on
619 *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
620 *    against a microcode update which affects MWAIT.
621 *
622 *    As soft-offlined CPUs still react on NMIs, the SMT sibling
623 *    restriction can be lifted when the vendor driver signals to use NMI
624 *    for rendezvous and the APIC provides a mechanism to send an NMI to a
625 *    soft-offlined CPU. The soft-offlined CPUs are then able to
626 *    participate in the rendezvous in a trivial stub handler.
627 *
628 * 2) Initialize the per CPU control structure and create a cpumask
629 *    which contains "offline"; secondary threads, so they can be handled
630 *    correctly by a control CPU.
631 */
632static bool setup_cpus(void)
633{
634	struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
635	bool allow_smt_offline;
636	unsigned int cpu;
637
638	allow_smt_offline = microcode_ops->nmi_safe ||
639		(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
640
641	cpumask_clear(&cpu_offline_mask);
642
643	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
644		/*
645		 * Offline CPUs sit in one of the play_dead() functions
646		 * with interrupts disabled, but they still react on NMIs
647		 * and execute arbitrary code. Also MWAIT being updated
648		 * while the offline CPU sits there is not necessarily safe
649		 * on all CPU variants.
650		 *
651		 * Mark them in the offline_cpus mask which will be handled
652		 * by CPU0 later in the update process.
653		 *
654		 * Ensure that the primary thread is online so that it is
655		 * guaranteed that all cores are updated.
656		 */
657		if (!cpu_online(cpu)) {
658			if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
659				pr_err("CPU %u not online, loading aborted\n", cpu);
660				return false;
661			}
662			cpumask_set_cpu(cpu, &cpu_offline_mask);
663			per_cpu(ucode_ctrl, cpu) = ctrl;
664			continue;
665		}
666
667		/*
668		 * Initialize the per CPU state. This is core scope for now,
669		 * but prepared to take package or system scope into account.
670		 */
671		ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
672		per_cpu(ucode_ctrl, cpu) = ctrl;
673	}
674	return true;
675}
676
677static int load_late_locked(void)
678{
679	if (!setup_cpus())
680		return -EBUSY;
681
682	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
683	case UCODE_NEW:
684		return load_late_stop_cpus(false);
685	case UCODE_NEW_SAFE:
686		return load_late_stop_cpus(true);
687	case UCODE_NFOUND:
688		return -ENOENT;
689	default:
690		return -EBADFD;
691	}
692}
693
694static ssize_t reload_store(struct device *dev,
695			    struct device_attribute *attr,
696			    const char *buf, size_t size)
697{
698	unsigned long val;
699	ssize_t ret;
700
701	ret = kstrtoul(buf, 0, &val);
702	if (ret || val != 1)
703		return -EINVAL;
704
705	cpus_read_lock();
706	ret = load_late_locked();
707	cpus_read_unlock();
708
709	return ret ? : size;
710}
711
712static DEVICE_ATTR_WO(reload);
713#endif
714
715static ssize_t version_show(struct device *dev,
716			struct device_attribute *attr, char *buf)
717{
718	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
719
720	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
721}
722
723static ssize_t processor_flags_show(struct device *dev,
724			struct device_attribute *attr, char *buf)
725{
726	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
727
728	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
729}
730
731static DEVICE_ATTR_RO(version);
732static DEVICE_ATTR_RO(processor_flags);
733
734static struct attribute *mc_default_attrs[] = {
735	&dev_attr_version.attr,
736	&dev_attr_processor_flags.attr,
737	NULL
738};
739
740static const struct attribute_group mc_attr_group = {
741	.attrs			= mc_default_attrs,
742	.name			= "microcode",
743};
744
745static void microcode_fini_cpu(int cpu)
746{
747	if (microcode_ops->microcode_fini_cpu)
748		microcode_ops->microcode_fini_cpu(cpu);
749}
750
751/**
752 * microcode_bsp_resume - Update boot CPU microcode during resume.
753 */
754void microcode_bsp_resume(void)
755{
756	int cpu = smp_processor_id();
757	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
758
759	if (uci->mc)
760		microcode_ops->apply_microcode(cpu);
761	else
762		reload_early_microcode(cpu);
763}
764
765static struct syscore_ops mc_syscore_ops = {
766	.resume	= microcode_bsp_resume,
767};
768
769static int mc_cpu_online(unsigned int cpu)
770{
771	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
772	struct device *dev = get_cpu_device(cpu);
773
774	memset(uci, 0, sizeof(*uci));
775
776	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
777	cpu_data(cpu).microcode = uci->cpu_sig.rev;
778	if (!cpu)
779		boot_cpu_data.microcode = uci->cpu_sig.rev;
780
781	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
782		pr_err("Failed to create group for CPU%d\n", cpu);
783	return 0;
784}
785
786static int mc_cpu_down_prep(unsigned int cpu)
787{
788	struct device *dev = get_cpu_device(cpu);
789
790	microcode_fini_cpu(cpu);
791	sysfs_remove_group(&dev->kobj, &mc_attr_group);
792	return 0;
793}
794
795static struct attribute *cpu_root_microcode_attrs[] = {
796#ifdef CONFIG_MICROCODE_LATE_LOADING
797	&dev_attr_reload.attr,
798#endif
799	NULL
800};
801
802static const struct attribute_group cpu_root_microcode_group = {
803	.name  = "microcode",
804	.attrs = cpu_root_microcode_attrs,
805};
806
807static int __init microcode_init(void)
808{
809	struct device *dev_root;
810	struct cpuinfo_x86 *c = &boot_cpu_data;
811	int error;
812
813	if (dis_ucode_ldr)
814		return -EINVAL;
815
816	if (c->x86_vendor == X86_VENDOR_INTEL)
817		microcode_ops = init_intel_microcode();
818	else if (c->x86_vendor == X86_VENDOR_AMD)
819		microcode_ops = init_amd_microcode();
820	else
821		pr_err("no support for this CPU vendor\n");
822
823	if (!microcode_ops)
824		return -ENODEV;
825
826	pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
827
828	if (early_data.new_rev)
829		pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
830
831	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
832	if (IS_ERR(microcode_pdev))
833		return PTR_ERR(microcode_pdev);
834
835	dev_root = bus_get_dev_root(&cpu_subsys);
836	if (dev_root) {
837		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
838		put_device(dev_root);
839		if (error) {
840			pr_err("Error creating microcode group!\n");
841			goto out_pdev;
842		}
843	}
844
845	register_syscore_ops(&mc_syscore_ops);
846	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
847			  mc_cpu_online, mc_cpu_down_prep);
848
849	return 0;
850
851 out_pdev:
852	platform_device_unregister(microcode_pdev);
853	return error;
854
855}
856late_initcall(microcode_init);