Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CPU Microcode Update Driver for Linux
  4 *
  5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
  6 *	      2006	Shaohua Li <shaohua.li@intel.com>
  7 *	      2013-2016	Borislav Petkov <bp@alien8.de>
  8 *
  9 * X86 CPU microcode early update for Linux:
 10 *
 11 *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
 12 *			   H Peter Anvin" <hpa@zytor.com>
 13 *		  (C) 2015 Borislav Petkov <bp@alien8.de>
 14 *
 15 * This driver allows to upgrade microcode on x86 processors.
 16 */
 17
 18#define pr_fmt(fmt) "microcode: " fmt
 19
 20#include <linux/platform_device.h>
 21#include <linux/stop_machine.h>
 22#include <linux/syscore_ops.h>
 23#include <linux/miscdevice.h>
 24#include <linux/capability.h>
 25#include <linux/firmware.h>
 26#include <linux/cpumask.h>
 27#include <linux/kernel.h>
 28#include <linux/delay.h>
 29#include <linux/mutex.h>
 30#include <linux/cpu.h>
 31#include <linux/nmi.h>
 32#include <linux/fs.h>
 33#include <linux/mm.h>
 34
 35#include <asm/apic.h>
 36#include <asm/cpu_device_id.h>
 
 37#include <asm/perf_event.h>
 
 38#include <asm/processor.h>
 39#include <asm/cmdline.h>
 40#include <asm/setup.h>
 41
 42#include "internal.h"
 43
 44static struct microcode_ops	*microcode_ops;
 45bool dis_ucode_ldr = true;
 46
 47bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
 48module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
 
 49
 50/*
 51 * Synchronization.
 52 *
 53 * All non cpu-hotplug-callback call sites use:
 54 *
 55 * - cpus_read_lock/unlock() to synchronize with
 
 56 *   the cpu-hotplug-callback call sites.
 57 *
 58 * We guarantee that only a single cpu is being
 59 * updated at any particular moment of time.
 60 */
 
 
 61struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
 62
 
 
 
 
 
 63/*
 64 * Those patch levels cannot be updated to newer ones and thus should be final.
 65 */
 66static u32 final_levels[] = {
 67	0x01000098,
 68	0x0100009f,
 69	0x010000af,
 70	0, /* T-101 terminator */
 71};
 72
 73struct early_load_data early_data;
 74
 75/*
 76 * Check the current patch level on this CPU.
 77 *
 78 * Returns:
 79 *  - true: if update should stop
 80 *  - false: otherwise
 81 */
 82static bool amd_check_current_patch_level(void)
 83{
 84	u32 lvl, dummy, i;
 85	u32 *levels;
 86
 87	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
 88
 89	levels = final_levels;
 
 
 
 90
 91	for (i = 0; levels[i]; i++) {
 92		if (lvl == levels[i])
 93			return true;
 94	}
 95	return false;
 96}
 97
 98static bool __init check_loader_disabled_bsp(void)
 99{
100	static const char *__dis_opt_str = "dis_ucode_ldr";
 
 
 
 
 
 
 
101	const char *cmdline = boot_command_line;
102	const char *option  = __dis_opt_str;
 
 
103
104	/*
105	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
106	 * completely accurate as xen pv guests don't see that CPUID bit set but
107	 * that's good enough as they don't land on the BSP path anyway.
108	 */
109	if (native_cpuid_ecx(1) & BIT(31))
110		return true;
111
112	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
113		if (amd_check_current_patch_level())
114			return true;
115	}
116
117	if (cmdline_find_option_bool(cmdline, option) <= 0)
118		dis_ucode_ldr = false;
119
120	return dis_ucode_ldr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121}
122
123void __init load_ucode_bsp(void)
124{
125	unsigned int cpuid_1_eax;
126	bool intel = true;
127
128	if (!have_cpuid_p())
129		return;
130
131	cpuid_1_eax = native_cpuid_eax(1);
132
133	switch (x86_cpuid_vendor()) {
134	case X86_VENDOR_INTEL:
135		if (x86_family(cpuid_1_eax) < 6)
136			return;
137		break;
138
139	case X86_VENDOR_AMD:
140		if (x86_family(cpuid_1_eax) < 0x10)
141			return;
142		intel = false;
143		break;
144
145	default:
146		return;
147	}
148
149	if (check_loader_disabled_bsp())
150		return;
151
152	if (intel)
153		load_ucode_intel_bsp(&early_data);
154	else
155		load_ucode_amd_bsp(&early_data, cpuid_1_eax);
 
 
 
 
 
 
 
 
 
156}
157
158void load_ucode_ap(void)
159{
160	unsigned int cpuid_1_eax;
161
162	if (dis_ucode_ldr)
163		return;
164
165	cpuid_1_eax = native_cpuid_eax(1);
166
167	switch (x86_cpuid_vendor()) {
168	case X86_VENDOR_INTEL:
169		if (x86_family(cpuid_1_eax) >= 6)
170			load_ucode_intel_ap();
171		break;
172	case X86_VENDOR_AMD:
173		if (x86_family(cpuid_1_eax) >= 0x10)
174			load_ucode_amd_ap(cpuid_1_eax);
175		break;
176	default:
177		break;
178	}
179}
180
181struct cpio_data __init find_microcode_in_initrd(const char *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182{
183#ifdef CONFIG_BLK_DEV_INITRD
184	unsigned long start = 0;
185	size_t size;
186
187#ifdef CONFIG_X86_32
188	size = boot_params.hdr.ramdisk_size;
189	/* Early load on BSP has a temporary mapping. */
 
 
 
 
 
 
 
 
 
 
 
190	if (size)
191		start = initrd_start_early;
192
193#else /* CONFIG_X86_64 */
194	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
195	size |= boot_params.hdr.ramdisk_size;
196
197	if (size) {
198		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
199		start |= boot_params.hdr.ramdisk_image;
 
200		start += PAGE_OFFSET;
201	}
202#endif
203
204	/*
205	 * Fixup the start address: after reserve_initrd() runs, initrd_start
206	 * has the virtual address of the beginning of the initrd. It also
207	 * possibly relocates the ramdisk. In either case, initrd_start contains
208	 * the updated address so use that instead.
 
 
 
209	 */
210	if (initrd_start)
211		start = initrd_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	return find_cpio_data(path, (void *)start, size, NULL);
214#else /* !CONFIG_BLK_DEV_INITRD */
215	return (struct cpio_data){ NULL, 0, "" };
216#endif
217}
218
219static void reload_early_microcode(unsigned int cpu)
220{
221	int vendor, family;
222
223	vendor = x86_cpuid_vendor();
224	family = x86_cpuid_family();
225
226	switch (vendor) {
227	case X86_VENDOR_INTEL:
228		if (family >= 6)
229			reload_ucode_intel();
230		break;
231	case X86_VENDOR_AMD:
232		if (family >= 0x10)
233			reload_ucode_amd(cpu);
234		break;
235	default:
236		break;
237	}
238}
239
240/* fake device for request_firmware */
241static struct platform_device	*microcode_pdev;
242
243#ifdef CONFIG_MICROCODE_LATE_LOADING
244/*
245 * Late loading dance. Why the heavy-handed stomp_machine effort?
246 *
247 * - HT siblings must be idle and not execute other code while the other sibling
248 *   is loading microcode in order to avoid any negative interactions caused by
249 *   the loading.
250 *
251 * - In addition, microcode update on the cores must be serialized until this
252 *   requirement can be relaxed in the future. Right now, this is conservative
253 *   and good.
254 */
255enum sibling_ctrl {
256	/* Spinwait with timeout */
257	SCTRL_WAIT,
258	/* Invoke the microcode_apply() callback */
259	SCTRL_APPLY,
260	/* Proceed without invoking the microcode_apply() callback */
261	SCTRL_DONE,
262};
263
264struct microcode_ctrl {
265	enum sibling_ctrl	ctrl;
266	enum ucode_state	result;
267	unsigned int		ctrl_cpu;
268	bool			nmi_enabled;
269};
270
271DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
272static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
273static atomic_t late_cpus_in, offline_in_nmi;
274static unsigned int loops_per_usec;
275static cpumask_t cpu_offline_mask;
276
277static noinstr bool wait_for_cpus(atomic_t *cnt)
278{
279	unsigned int timeout, loops;
280
281	WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
 
 
282
283	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
284		if (!raw_atomic_read(cnt))
285			return true;
 
286
287		for (loops = 0; loops < loops_per_usec; loops++)
288			cpu_relax();
 
289
290		/* If invoked directly, tickle the NMI watchdog */
291		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
292			instrumentation_begin();
293			touch_nmi_watchdog();
294			instrumentation_end();
295		}
296	}
297	/* Prevent the late comers from making progress and let them time out */
298	raw_atomic_inc(cnt);
299	return false;
300}
301
302static noinstr bool wait_for_ctrl(void)
303{
304	unsigned int timeout, loops;
 
305
306	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
307		if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
308			return true;
309
310		for (loops = 0; loops < loops_per_usec; loops++)
311			cpu_relax();
 
312
313		/* If invoked directly, tickle the NMI watchdog */
314		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
315			instrumentation_begin();
316			touch_nmi_watchdog();
317			instrumentation_end();
318		}
319	}
320	return false;
321}
322
323/*
324 * Protected against instrumentation up to the point where the primary
325 * thread completed the update. See microcode_nmi_handler() for details.
326 */
327static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
328{
329	/* Initial rendezvous to ensure that all CPUs have arrived */
330	if (!wait_for_cpus(&late_cpus_in)) {
331		raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
332		return false;
333	}
334
335	/*
336	 * Wait for primary threads to complete. If one of them hangs due
337	 * to the update, there is no way out. This is non-recoverable
338	 * because the CPU might hold locks or resources and confuse the
339	 * scheduler, watchdogs etc. There is no way to safely evacuate the
340	 * machine.
341	 */
342	if (wait_for_ctrl())
343		return true;
344
345	instrumentation_begin();
346	panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
347	instrumentation_end();
348}
349
350/*
351 * Protected against instrumentation up to the point where the primary
352 * thread completed the update. See microcode_nmi_handler() for details.
353 */
354static noinstr void load_secondary(unsigned int cpu)
355{
356	unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
357	enum ucode_state ret;
358
359	if (!load_secondary_wait(ctrl_cpu)) {
360		instrumentation_begin();
361		pr_err_once("load: %d CPUs timed out\n",
362			    atomic_read(&late_cpus_in) - 1);
363		instrumentation_end();
364		return;
365	}
366
367	/* Primary thread completed. Allow to invoke instrumentable code */
368	instrumentation_begin();
369	/*
370	 * If the primary succeeded then invoke the apply() callback,
371	 * otherwise copy the state from the primary thread.
372	 */
373	if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
374		ret = microcode_ops->apply_microcode(cpu);
375	else
376		ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
377
378	this_cpu_write(ucode_ctrl.result, ret);
379	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
380	instrumentation_end();
381}
382
383static void __load_primary(unsigned int cpu)
 
384{
385	struct cpumask *secondaries = topology_sibling_cpumask(cpu);
386	enum sibling_ctrl ctrl;
387	enum ucode_state ret;
388	unsigned int sibling;
389
390	/* Initial rendezvous to ensure that all CPUs have arrived */
391	if (!wait_for_cpus(&late_cpus_in)) {
392		this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
393		pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
394		return;
395	}
396
397	ret = microcode_ops->apply_microcode(cpu);
398	this_cpu_write(ucode_ctrl.result, ret);
399	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
400
401	/*
402	 * If the update was successful, let the siblings run the apply()
403	 * callback. If not, tell them it's done. This also covers the
404	 * case where the CPU has uniform loading at package or system
405	 * scope implemented but does not advertise it.
406	 */
407	if (ret == UCODE_UPDATED || ret == UCODE_OK)
408		ctrl = SCTRL_APPLY;
409	else
410		ctrl = SCTRL_DONE;
411
412	for_each_cpu(sibling, secondaries) {
413		if (sibling != cpu)
414			per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
 
 
 
 
415	}
 
 
416}
417
418static bool kick_offline_cpus(unsigned int nr_offl)
419{
420	unsigned int cpu, timeout;
421
422	for_each_cpu(cpu, &cpu_offline_mask) {
423		/* Enable the rendezvous handler and send NMI */
424		per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
425		apic_send_nmi_to_offline_cpu(cpu);
426	}
427
428	/* Wait for them to arrive */
429	for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
430		if (atomic_read(&offline_in_nmi) == nr_offl)
431			return true;
432		udelay(1);
433	}
434	/* Let the others time out */
435	return false;
436}
437
438static void release_offline_cpus(void)
 
439{
440	unsigned int cpu;
 
441
442	for_each_cpu(cpu, &cpu_offline_mask)
443		per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
444}
 
445
446static void load_primary(unsigned int cpu)
447{
448	unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
449	bool proceed = true;
450
451	/* Kick soft-offlined SMT siblings if required */
452	if (!cpu && nr_offl)
453		proceed = kick_offline_cpus(nr_offl);
454
455	/* If the soft-offlined CPUs did not respond, abort */
456	if (proceed)
457		__load_primary(cpu);
458
459	/* Unconditionally release soft-offlined SMT siblings if required */
460	if (!cpu && nr_offl)
461		release_offline_cpus();
462}
463
464/*
465 * Minimal stub rendezvous handler for soft-offlined CPUs which participate
466 * in the NMI rendezvous to protect against a concurrent NMI on affected
467 * CPUs.
468 */
469void noinstr microcode_offline_nmi_handler(void)
470{
471	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
472		return;
473	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
474	raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
475	raw_atomic_inc(&offline_in_nmi);
476	wait_for_ctrl();
477}
478
479static noinstr bool microcode_update_handler(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480{
481	unsigned int cpu = raw_smp_processor_id();
482
483	if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
484		instrumentation_begin();
485		load_primary(cpu);
486		instrumentation_end();
487	} else {
488		load_secondary(cpu);
489	}
490
491	instrumentation_begin();
492	touch_nmi_watchdog();
493	instrumentation_end();
494
495	return true;
 
 
496}
 
 
 
 
 
 
 
497
498/*
499 * Protection against instrumentation is required for CPUs which are not
500 * safe against an NMI which is delivered to the secondary SMT sibling
501 * while the primary thread updates the microcode. Instrumentation can end
502 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
503 * which is the opposite of what the NMI rendezvous is trying to achieve.
504 *
505 * The primary thread is safe versus instrumentation as the actual
506 * microcode update handles this correctly. It's only the sibling code
507 * path which must be NMI safe until the primary thread completed the
508 * update.
 
 
 
509 */
510bool noinstr microcode_nmi_handler(void)
 
 
511{
512	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
513		return false;
514
515	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
516	return microcode_update_handler();
 
 
 
 
 
 
 
 
 
 
517}
518
519static int load_cpus_stopped(void *unused)
 
 
 
520{
521	if (microcode_ops->use_nmi) {
522		/* Enable the NMI handler and raise NMI */
523		this_cpu_write(ucode_ctrl.nmi_enabled, true);
524		apic->send_IPI(smp_processor_id(), NMI_VECTOR);
525	} else {
526		/* Just invoke the handler directly */
527		microcode_update_handler();
 
 
 
 
 
 
 
 
528	}
529	return 0;
530}
531
532static int load_late_stop_cpus(bool is_safe)
 
 
 
 
 
533{
534	unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
535	unsigned int nr_offl, offline = 0;
536	int old_rev = boot_cpu_data.microcode;
537	struct cpuinfo_x86 prev_info;
538
539	if (!is_safe) {
540		pr_err("Late microcode loading without minimal revision check.\n");
541		pr_err("You should switch to early loading, if possible.\n");
542	}
543
544	atomic_set(&late_cpus_in, num_online_cpus());
545	atomic_set(&offline_in_nmi, 0);
546	loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
 
 
 
547
548	/*
549	 * Take a snapshot before the microcode update in order to compare and
550	 * check whether any bits changed after an update.
 
 
 
551	 */
552	store_cpu_caps(&prev_info);
553
554	if (microcode_ops->use_nmi)
555		static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
556
557	stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
558
559	if (microcode_ops->use_nmi)
560		static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
561
562	/* Analyze the results */
563	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
564		switch (per_cpu(ucode_ctrl.result, cpu)) {
565		case UCODE_UPDATED:	updated++; break;
566		case UCODE_TIMEOUT:	timedout++; break;
567		case UCODE_OK:		siblings++; break;
568		case UCODE_OFFLINE:	offline++; break;
569		default:		failed++; break;
570		}
571	}
572
573	if (microcode_ops->finalize_late_load)
574		microcode_ops->finalize_late_load(!updated);
 
575
576	if (!updated) {
577		/* Nothing changed. */
578		if (!failed && !timedout)
579			return 0;
580
581		nr_offl = cpumask_weight(&cpu_offline_mask);
582		if (offline < nr_offl) {
583			pr_warn("%u offline siblings did not respond.\n",
584				nr_offl - atomic_read(&offline_in_nmi));
585			return -EIO;
586		}
587		pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
588		       failed, timedout);
589		return -EIO;
590	}
591
592	if (!is_safe || failed || timedout)
593		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 
594
595	pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
596	if (failed || timedout) {
597		pr_err("load incomplete. %u CPUs timed out or failed\n",
598		       num_online_cpus() - (updated + siblings));
599	}
600	pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
601	microcode_check(&prev_info);
 
602
603	return updated + siblings == num_online_cpus() ? 0 : -EIO;
604}
605
606/*
607 * This function does two things:
608 *
609 * 1) Ensure that all required CPUs which are present and have been booted
610 *    once are online.
611 *
612 *    To pass this check, all primary threads must be online.
613 *
614 *    If the microcode load is not safe against NMI then all SMT threads
615 *    must be online as well because they still react to NMIs when they are
616 *    soft-offlined and parked in one of the play_dead() variants. So if a
617 *    NMI hits while the primary thread updates the microcode the resulting
618 *    behaviour is undefined. The default play_dead() implementation on
619 *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
620 *    against a microcode update which affects MWAIT.
621 *
622 *    As soft-offlined CPUs still react on NMIs, the SMT sibling
623 *    restriction can be lifted when the vendor driver signals to use NMI
624 *    for rendezvous and the APIC provides a mechanism to send an NMI to a
625 *    soft-offlined CPU. The soft-offlined CPUs are then able to
626 *    participate in the rendezvous in a trivial stub handler.
627 *
628 * 2) Initialize the per CPU control structure and create a cpumask
629 *    which contains "offline"; secondary threads, so they can be handled
630 *    correctly by a control CPU.
631 */
632static bool setup_cpus(void)
633{
634	struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
635	bool allow_smt_offline;
636	unsigned int cpu;
637
638	allow_smt_offline = microcode_ops->nmi_safe ||
639		(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
640
641	cpumask_clear(&cpu_offline_mask);
642
643	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
644		/*
645		 * Offline CPUs sit in one of the play_dead() functions
646		 * with interrupts disabled, but they still react on NMIs
647		 * and execute arbitrary code. Also MWAIT being updated
648		 * while the offline CPU sits there is not necessarily safe
649		 * on all CPU variants.
650		 *
651		 * Mark them in the offline_cpus mask which will be handled
652		 * by CPU0 later in the update process.
653		 *
654		 * Ensure that the primary thread is online so that it is
655		 * guaranteed that all cores are updated.
656		 */
657		if (!cpu_online(cpu)) {
658			if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
659				pr_err("CPU %u not online, loading aborted\n", cpu);
660				return false;
661			}
662			cpumask_set_cpu(cpu, &cpu_offline_mask);
663			per_cpu(ucode_ctrl, cpu) = ctrl;
664			continue;
665		}
666
667		/*
668		 * Initialize the per CPU state. This is core scope for now,
669		 * but prepared to take package or system scope into account.
670		 */
671		ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
672		per_cpu(ucode_ctrl, cpu) = ctrl;
673	}
674	return true;
675}
676
677static int load_late_locked(void)
678{
679	if (!setup_cpus())
680		return -EBUSY;
681
682	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
683	case UCODE_NEW:
684		return load_late_stop_cpus(false);
685	case UCODE_NEW_SAFE:
686		return load_late_stop_cpus(true);
687	case UCODE_NFOUND:
688		return -ENOENT;
689	default:
690		return -EBADFD;
691	}
692}
693
694static ssize_t reload_store(struct device *dev,
695			    struct device_attribute *attr,
696			    const char *buf, size_t size)
697{
 
 
698	unsigned long val;
699	ssize_t ret;
700
701	ret = kstrtoul(buf, 0, &val);
702	if (ret || val != 1)
703		return -EINVAL;
704
705	cpus_read_lock();
706	ret = load_late_locked();
707	cpus_read_unlock();
708
709	return ret ? : size;
710}
711
712static DEVICE_ATTR_WO(reload);
713#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714
715static ssize_t version_show(struct device *dev,
716			struct device_attribute *attr, char *buf)
717{
718	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
719
720	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
721}
722
723static ssize_t processor_flags_show(struct device *dev,
724			struct device_attribute *attr, char *buf)
725{
726	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
727
728	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
729}
730
731static DEVICE_ATTR_RO(version);
732static DEVICE_ATTR_RO(processor_flags);
 
733
734static struct attribute *mc_default_attrs[] = {
735	&dev_attr_version.attr,
736	&dev_attr_processor_flags.attr,
737	NULL
738};
739
740static const struct attribute_group mc_attr_group = {
741	.attrs			= mc_default_attrs,
742	.name			= "microcode",
743};
744
745static void microcode_fini_cpu(int cpu)
746{
747	if (microcode_ops->microcode_fini_cpu)
748		microcode_ops->microcode_fini_cpu(cpu);
749}
750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751/**
752 * microcode_bsp_resume - Update boot CPU microcode during resume.
753 */
754void microcode_bsp_resume(void)
755{
756	int cpu = smp_processor_id();
757	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
758
759	if (uci->mc)
760		microcode_ops->apply_microcode(cpu);
761	else
762		reload_early_microcode(cpu);
763}
764
765static struct syscore_ops mc_syscore_ops = {
766	.resume	= microcode_bsp_resume,
767};
768
 
 
 
 
 
 
 
769static int mc_cpu_online(unsigned int cpu)
770{
771	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
772	struct device *dev = get_cpu_device(cpu);
773
774	memset(uci, 0, sizeof(*uci));
775
776	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
777	cpu_data(cpu).microcode = uci->cpu_sig.rev;
778	if (!cpu)
779		boot_cpu_data.microcode = uci->cpu_sig.rev;
780
781	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
782		pr_err("Failed to create group for CPU%d\n", cpu);
783	return 0;
784}
785
786static int mc_cpu_down_prep(unsigned int cpu)
787{
788	struct device *dev = get_cpu_device(cpu);
789
790	microcode_fini_cpu(cpu);
 
791	sysfs_remove_group(&dev->kobj, &mc_attr_group);
 
 
792	return 0;
793}
794
795static struct attribute *cpu_root_microcode_attrs[] = {
796#ifdef CONFIG_MICROCODE_LATE_LOADING
797	&dev_attr_reload.attr,
798#endif
799	NULL
800};
801
802static const struct attribute_group cpu_root_microcode_group = {
803	.name  = "microcode",
804	.attrs = cpu_root_microcode_attrs,
805};
806
807static int __init microcode_init(void)
808{
809	struct device *dev_root;
810	struct cpuinfo_x86 *c = &boot_cpu_data;
811	int error;
812
813	if (dis_ucode_ldr)
814		return -EINVAL;
815
816	if (c->x86_vendor == X86_VENDOR_INTEL)
817		microcode_ops = init_intel_microcode();
818	else if (c->x86_vendor == X86_VENDOR_AMD)
819		microcode_ops = init_amd_microcode();
820	else
821		pr_err("no support for this CPU vendor\n");
822
823	if (!microcode_ops)
824		return -ENODEV;
825
826	pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
827
828	if (early_data.new_rev)
829		pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
830
831	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
832	if (IS_ERR(microcode_pdev))
833		return PTR_ERR(microcode_pdev);
834
835	dev_root = bus_get_dev_root(&cpu_subsys);
836	if (dev_root) {
837		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
838		put_device(dev_root);
839		if (error) {
840			pr_err("Error creating microcode group!\n");
841			goto out_pdev;
842		}
 
 
 
 
 
 
 
 
 
 
843	}
844
 
 
 
 
845	register_syscore_ops(&mc_syscore_ops);
846	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
847			  mc_cpu_online, mc_cpu_down_prep);
 
 
 
 
848
849	return 0;
850
 
 
 
 
 
 
 
 
 
 
 
 
 
851 out_pdev:
852	platform_device_unregister(microcode_pdev);
853	return error;
854
855}
 
856late_initcall(microcode_init);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CPU Microcode Update Driver for Linux
  4 *
  5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
  6 *	      2006	Shaohua Li <shaohua.li@intel.com>
  7 *	      2013-2016	Borislav Petkov <bp@alien8.de>
  8 *
  9 * X86 CPU microcode early update for Linux:
 10 *
 11 *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
 12 *			   H Peter Anvin" <hpa@zytor.com>
 13 *		  (C) 2015 Borislav Petkov <bp@alien8.de>
 14 *
 15 * This driver allows to upgrade microcode on x86 processors.
 16 */
 17
 18#define pr_fmt(fmt) "microcode: " fmt
 19
 20#include <linux/platform_device.h>
 21#include <linux/stop_machine.h>
 22#include <linux/syscore_ops.h>
 23#include <linux/miscdevice.h>
 24#include <linux/capability.h>
 25#include <linux/firmware.h>
 
 26#include <linux/kernel.h>
 27#include <linux/delay.h>
 28#include <linux/mutex.h>
 29#include <linux/cpu.h>
 30#include <linux/nmi.h>
 31#include <linux/fs.h>
 32#include <linux/mm.h>
 33
 34#include <asm/microcode_intel.h>
 35#include <asm/cpu_device_id.h>
 36#include <asm/microcode_amd.h>
 37#include <asm/perf_event.h>
 38#include <asm/microcode.h>
 39#include <asm/processor.h>
 40#include <asm/cmdline.h>
 41#include <asm/setup.h>
 42
 43#define DRIVER_VERSION	"2.2"
 44
 45static struct microcode_ops	*microcode_ops;
 46static bool dis_ucode_ldr = true;
 47
 48bool initrd_gone;
 49
 50LIST_HEAD(microcode_cache);
 51
 52/*
 53 * Synchronization.
 54 *
 55 * All non cpu-hotplug-callback call sites use:
 56 *
 57 * - microcode_mutex to synchronize with each other;
 58 * - get/put_online_cpus() to synchronize with
 59 *   the cpu-hotplug-callback call sites.
 60 *
 61 * We guarantee that only a single cpu is being
 62 * updated at any particular moment of time.
 63 */
 64static DEFINE_MUTEX(microcode_mutex);
 65
 66struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
 67
 68struct cpu_info_ctx {
 69	struct cpu_signature	*cpu_sig;
 70	int			err;
 71};
 72
 73/*
 74 * Those patch levels cannot be updated to newer ones and thus should be final.
 75 */
 76static u32 final_levels[] = {
 77	0x01000098,
 78	0x0100009f,
 79	0x010000af,
 80	0, /* T-101 terminator */
 81};
 82
 
 
 83/*
 84 * Check the current patch level on this CPU.
 85 *
 86 * Returns:
 87 *  - true: if update should stop
 88 *  - false: otherwise
 89 */
 90static bool amd_check_current_patch_level(void)
 91{
 92	u32 lvl, dummy, i;
 93	u32 *levels;
 94
 95	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
 96
 97	if (IS_ENABLED(CONFIG_X86_32))
 98		levels = (u32 *)__pa_nodebug(&final_levels);
 99	else
100		levels = final_levels;
101
102	for (i = 0; levels[i]; i++) {
103		if (lvl == levels[i])
104			return true;
105	}
106	return false;
107}
108
109static bool __init check_loader_disabled_bsp(void)
110{
111	static const char *__dis_opt_str = "dis_ucode_ldr";
112
113#ifdef CONFIG_X86_32
114	const char *cmdline = (const char *)__pa_nodebug(boot_command_line);
115	const char *option  = (const char *)__pa_nodebug(__dis_opt_str);
116	bool *res = (bool *)__pa_nodebug(&dis_ucode_ldr);
117
118#else /* CONFIG_X86_64 */
119	const char *cmdline = boot_command_line;
120	const char *option  = __dis_opt_str;
121	bool *res = &dis_ucode_ldr;
122#endif
123
124	/*
125	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
126	 * completely accurate as xen pv guests don't see that CPUID bit set but
127	 * that's good enough as they don't land on the BSP path anyway.
128	 */
129	if (native_cpuid_ecx(1) & BIT(31))
130		return *res;
131
132	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
133		if (amd_check_current_patch_level())
134			return *res;
135	}
136
137	if (cmdline_find_option_bool(cmdline, option) <= 0)
138		*res = false;
139
140	return *res;
141}
142
143extern struct builtin_fw __start_builtin_fw[];
144extern struct builtin_fw __end_builtin_fw[];
145
146bool get_builtin_firmware(struct cpio_data *cd, const char *name)
147{
148	struct builtin_fw *b_fw;
149
150	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
151		if (!strcmp(name, b_fw->name)) {
152			cd->size = b_fw->size;
153			cd->data = b_fw->data;
154			return true;
155		}
156	}
157	return false;
158}
159
160void __init load_ucode_bsp(void)
161{
162	unsigned int cpuid_1_eax;
163	bool intel = true;
164
165	if (!have_cpuid_p())
166		return;
167
168	cpuid_1_eax = native_cpuid_eax(1);
169
170	switch (x86_cpuid_vendor()) {
171	case X86_VENDOR_INTEL:
172		if (x86_family(cpuid_1_eax) < 6)
173			return;
174		break;
175
176	case X86_VENDOR_AMD:
177		if (x86_family(cpuid_1_eax) < 0x10)
178			return;
179		intel = false;
180		break;
181
182	default:
183		return;
184	}
185
186	if (check_loader_disabled_bsp())
187		return;
188
189	if (intel)
190		load_ucode_intel_bsp();
191	else
192		load_ucode_amd_bsp(cpuid_1_eax);
193}
194
195static bool check_loader_disabled_ap(void)
196{
197#ifdef CONFIG_X86_32
198	return *((bool *)__pa_nodebug(&dis_ucode_ldr));
199#else
200	return dis_ucode_ldr;
201#endif
202}
203
204void load_ucode_ap(void)
205{
206	unsigned int cpuid_1_eax;
207
208	if (check_loader_disabled_ap())
209		return;
210
211	cpuid_1_eax = native_cpuid_eax(1);
212
213	switch (x86_cpuid_vendor()) {
214	case X86_VENDOR_INTEL:
215		if (x86_family(cpuid_1_eax) >= 6)
216			load_ucode_intel_ap();
217		break;
218	case X86_VENDOR_AMD:
219		if (x86_family(cpuid_1_eax) >= 0x10)
220			load_ucode_amd_ap(cpuid_1_eax);
221		break;
222	default:
223		break;
224	}
225}
226
227static int __init save_microcode_in_initrd(void)
228{
229	struct cpuinfo_x86 *c = &boot_cpu_data;
230	int ret = -EINVAL;
231
232	switch (c->x86_vendor) {
233	case X86_VENDOR_INTEL:
234		if (c->x86 >= 6)
235			ret = save_microcode_in_initrd_intel();
236		break;
237	case X86_VENDOR_AMD:
238		if (c->x86 >= 0x10)
239			ret = save_microcode_in_initrd_amd(cpuid_eax(1));
240		break;
241	default:
242		break;
243	}
244
245	initrd_gone = true;
246
247	return ret;
248}
249
250struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa)
251{
252#ifdef CONFIG_BLK_DEV_INITRD
253	unsigned long start = 0;
254	size_t size;
255
256#ifdef CONFIG_X86_32
257	struct boot_params *params;
258
259	if (use_pa)
260		params = (struct boot_params *)__pa_nodebug(&boot_params);
261	else
262		params = &boot_params;
263
264	size = params->hdr.ramdisk_size;
265
266	/*
267	 * Set start only if we have an initrd image. We cannot use initrd_start
268	 * because it is not set that early yet.
269	 */
270	if (size)
271		start = params->hdr.ramdisk_image;
272
273# else /* CONFIG_X86_64 */
274	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
275	size |= boot_params.hdr.ramdisk_size;
276
277	if (size) {
278		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
279		start |= boot_params.hdr.ramdisk_image;
280
281		start += PAGE_OFFSET;
282	}
283# endif
284
285	/*
286	 * Fixup the start address: after reserve_initrd() runs, initrd_start
287	 * has the virtual address of the beginning of the initrd. It also
288	 * possibly relocates the ramdisk. In either case, initrd_start contains
289	 * the updated address so use that instead.
290	 *
291	 * initrd_gone is for the hotplug case where we've thrown out initrd
292	 * already.
293	 */
294	if (!use_pa) {
295		if (initrd_gone)
296			return (struct cpio_data){ NULL, 0, "" };
297		if (initrd_start)
298			start = initrd_start;
299	} else {
300		/*
301		 * The picture with physical addresses is a bit different: we
302		 * need to get the *physical* address to which the ramdisk was
303		 * relocated, i.e., relocated_ramdisk (not initrd_start) and
304		 * since we're running from physical addresses, we need to access
305		 * relocated_ramdisk through its *physical* address too.
306		 */
307		u64 *rr = (u64 *)__pa_nodebug(&relocated_ramdisk);
308		if (*rr)
309			start = *rr;
310	}
311
312	return find_cpio_data(path, (void *)start, size, NULL);
313#else /* !CONFIG_BLK_DEV_INITRD */
314	return (struct cpio_data){ NULL, 0, "" };
315#endif
316}
317
318void reload_early_microcode(void)
319{
320	int vendor, family;
321
322	vendor = x86_cpuid_vendor();
323	family = x86_cpuid_family();
324
325	switch (vendor) {
326	case X86_VENDOR_INTEL:
327		if (family >= 6)
328			reload_ucode_intel();
329		break;
330	case X86_VENDOR_AMD:
331		if (family >= 0x10)
332			reload_ucode_amd();
333		break;
334	default:
335		break;
336	}
337}
338
339static void collect_cpu_info_local(void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340{
341	struct cpu_info_ctx *ctx = arg;
342
343	ctx->err = microcode_ops->collect_cpu_info(smp_processor_id(),
344						   ctx->cpu_sig);
345}
346
347static int collect_cpu_info_on_target(int cpu, struct cpu_signature *cpu_sig)
348{
349	struct cpu_info_ctx ctx = { .cpu_sig = cpu_sig, .err = 0 };
350	int ret;
351
352	ret = smp_call_function_single(cpu, collect_cpu_info_local, &ctx, 1);
353	if (!ret)
354		ret = ctx.err;
355
356	return ret;
 
 
 
 
 
 
 
 
 
357}
358
359static int collect_cpu_info(int cpu)
360{
361	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
362	int ret;
363
364	memset(uci, 0, sizeof(*uci));
 
 
365
366	ret = collect_cpu_info_on_target(cpu, &uci->cpu_sig);
367	if (!ret)
368		uci->valid = 1;
369
370	return ret;
 
 
 
 
 
 
 
371}
372
373static void apply_microcode_local(void *arg)
 
 
 
 
374{
375	enum ucode_state *err = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376
377	*err = microcode_ops->apply_microcode(smp_processor_id());
 
 
378}
379
380static int apply_microcode_on_target(int cpu)
 
 
 
 
381{
382	enum ucode_state err;
383	int ret;
384
385	ret = smp_call_function_single(cpu, apply_microcode_local, &err, 1);
386	if (!ret) {
387		if (err == UCODE_ERROR)
388			ret = 1;
 
 
389	}
390	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391}
392
393#ifdef CONFIG_MICROCODE_OLD_INTERFACE
394static int do_microcode_update(const void __user *buf, size_t size)
395{
396	int error = 0;
397	int cpu;
 
 
398
399	for_each_online_cpu(cpu) {
400		struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
401		enum ucode_state ustate;
 
 
 
402
403		if (!uci->valid)
404			continue;
 
 
 
 
 
 
 
 
 
 
 
 
405
406		ustate = microcode_ops->request_microcode_user(cpu, buf, size);
407		if (ustate == UCODE_ERROR) {
408			error = -1;
409			break;
410		} else if (ustate == UCODE_NEW) {
411			apply_microcode_on_target(cpu);
412		}
413	}
414
415	return error;
416}
417
418static int microcode_open(struct inode *inode, struct file *file)
419{
420	return capable(CAP_SYS_RAWIO) ? stream_open(inode, file) : -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421}
422
423static ssize_t microcode_write(struct file *file, const char __user *buf,
424			       size_t len, loff_t *ppos)
425{
426	ssize_t ret = -EINVAL;
427	unsigned long nr_pages = totalram_pages();
428
429	if ((len >> PAGE_SHIFT) > nr_pages) {
430		pr_err("too much data (max %ld pages)\n", nr_pages);
431		return ret;
432	}
433
434	get_online_cpus();
435	mutex_lock(&microcode_mutex);
 
 
436
437	if (do_microcode_update(buf, len) == 0)
438		ret = (ssize_t)len;
 
439
440	if (ret > 0)
441		perf_check_microcode();
 
442
443	mutex_unlock(&microcode_mutex);
444	put_online_cpus();
 
 
445
446	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449static const struct file_operations microcode_fops = {
450	.owner			= THIS_MODULE,
451	.write			= microcode_write,
452	.open			= microcode_open,
453	.llseek		= no_llseek,
454};
455
456static struct miscdevice microcode_dev = {
457	.minor			= MICROCODE_MINOR,
458	.name			= "microcode",
459	.nodename		= "cpu/microcode",
460	.fops			= &microcode_fops,
461};
462
463static int __init microcode_dev_init(void)
464{
465	int error;
466
467	error = misc_register(&microcode_dev);
468	if (error) {
469		pr_err("can't misc_register on minor=%d\n", MICROCODE_MINOR);
470		return error;
 
 
471	}
472
473	return 0;
474}
 
475
476static void __exit microcode_dev_exit(void)
477{
478	misc_deregister(&microcode_dev);
479}
480#else
481#define microcode_dev_init()	0
482#define microcode_dev_exit()	do { } while (0)
483#endif
484
485/* fake device for request_firmware */
486static struct platform_device	*microcode_pdev;
487
488/*
489 * Late loading dance. Why the heavy-handed stomp_machine effort?
 
 
 
 
490 *
491 * - HT siblings must be idle and not execute other code while the other sibling
492 *   is loading microcode in order to avoid any negative interactions caused by
493 *   the loading.
494 *
495 * - In addition, microcode update on the cores must be serialized until this
496 *   requirement can be relaxed in the future. Right now, this is conservative
497 *   and good.
498 */
499#define SPINUNIT 100 /* 100 nsec */
500
501static int check_online_cpus(void)
502{
503	unsigned int cpu;
 
504
505	/*
506	 * Make sure all CPUs are online.  It's fine for SMT to be disabled if
507	 * all the primary threads are still online.
508	 */
509	for_each_present_cpu(cpu) {
510		if (topology_is_primary_thread(cpu) && !cpu_online(cpu)) {
511			pr_err("Not all CPUs online, aborting microcode update.\n");
512			return -EINVAL;
513		}
514	}
515
516	return 0;
517}
518
519static atomic_t late_cpus_in;
520static atomic_t late_cpus_out;
521
522static int __wait_for_cpus(atomic_t *t, long long timeout)
523{
524	int all_cpus = num_online_cpus();
525
526	atomic_inc(t);
527
528	while (atomic_read(t) < all_cpus) {
529		if (timeout < SPINUNIT) {
530			pr_err("Timeout while waiting for CPUs rendezvous, remaining: %d\n",
531				all_cpus - atomic_read(t));
532			return 1;
533		}
534
535		ndelay(SPINUNIT);
536		timeout -= SPINUNIT;
537
538		touch_nmi_watchdog();
539	}
540	return 0;
541}
542
543/*
544 * Returns:
545 * < 0 - on error
546 *   0 - success (no update done or microcode was updated)
547 */
548static int __reload_late(void *info)
549{
550	int cpu = smp_processor_id();
551	enum ucode_state err;
552	int ret = 0;
 
 
 
 
 
 
553
554	/*
555	 * Wait for all CPUs to arrive. A load will not be attempted unless all
556	 * CPUs show up.
557	 * */
558	if (__wait_for_cpus(&late_cpus_in, NSEC_PER_SEC))
559		return -1;
560
561	/*
562	 * On an SMT system, it suffices to load the microcode on one sibling of
563	 * the core because the microcode engine is shared between the threads.
564	 * Synchronization still needs to take place so that no concurrent
565	 * loading attempts happen on multiple threads of an SMT core. See
566	 * below.
567	 */
568	if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu)
569		apply_microcode_local(&err);
570	else
571		goto wait_for_siblings;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572
573	if (err >= UCODE_NFOUND) {
574		if (err == UCODE_ERROR)
575			pr_warn("Error reloading microcode on CPU %d\n", cpu);
576
577		ret = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
578	}
579
580wait_for_siblings:
581	if (__wait_for_cpus(&late_cpus_out, NSEC_PER_SEC))
582		panic("Timeout during microcode update!\n");
583
584	/*
585	 * At least one thread has completed update on each core.
586	 * For others, simply call the update to make sure the
587	 * per-cpu cpuinfo can be updated with right microcode
588	 * revision.
589	 */
590	if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu)
591		apply_microcode_local(&err);
592
593	return ret;
594}
595
596/*
597 * Reload microcode late on all CPUs. Wait for a sec until they
598 * all gather together.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599 */
600static int microcode_reload_late(void)
601{
602	int ret;
 
 
 
 
 
603
604	atomic_set(&late_cpus_in,  0);
605	atomic_set(&late_cpus_out, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606
607	ret = stop_machine_cpuslocked(__reload_late, NULL, cpu_online_mask);
608	if (ret == 0)
609		microcode_check();
 
 
 
 
 
 
610
611	pr_info("Reload completed, microcode revision: 0x%x\n", boot_cpu_data.microcode);
 
 
 
612
613	return ret;
 
 
 
 
 
 
 
 
 
614}
615
616static ssize_t reload_store(struct device *dev,
617			    struct device_attribute *attr,
618			    const char *buf, size_t size)
619{
620	enum ucode_state tmp_ret = UCODE_OK;
621	int bsp = boot_cpu_data.cpu_index;
622	unsigned long val;
623	ssize_t ret = 0;
624
625	ret = kstrtoul(buf, 0, &val);
626	if (ret)
627		return ret;
628
629	if (val != 1)
630		return size;
 
631
632	get_online_cpus();
 
633
634	ret = check_online_cpus();
635	if (ret)
636		goto put;
637
638	tmp_ret = microcode_ops->request_microcode_fw(bsp, &microcode_pdev->dev, true);
639	if (tmp_ret != UCODE_NEW)
640		goto put;
641
642	mutex_lock(&microcode_mutex);
643	ret = microcode_reload_late();
644	mutex_unlock(&microcode_mutex);
645
646put:
647	put_online_cpus();
648
649	if (ret == 0)
650		ret = size;
651
652	return ret;
653}
654
655static ssize_t version_show(struct device *dev,
656			struct device_attribute *attr, char *buf)
657{
658	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
659
660	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
661}
662
663static ssize_t pf_show(struct device *dev,
664			struct device_attribute *attr, char *buf)
665{
666	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
667
668	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
669}
670
671static DEVICE_ATTR_WO(reload);
672static DEVICE_ATTR(version, 0444, version_show, NULL);
673static DEVICE_ATTR(processor_flags, 0444, pf_show, NULL);
674
675static struct attribute *mc_default_attrs[] = {
676	&dev_attr_version.attr,
677	&dev_attr_processor_flags.attr,
678	NULL
679};
680
681static const struct attribute_group mc_attr_group = {
682	.attrs			= mc_default_attrs,
683	.name			= "microcode",
684};
685
686static void microcode_fini_cpu(int cpu)
687{
688	if (microcode_ops->microcode_fini_cpu)
689		microcode_ops->microcode_fini_cpu(cpu);
690}
691
692static enum ucode_state microcode_resume_cpu(int cpu)
693{
694	if (apply_microcode_on_target(cpu))
695		return UCODE_ERROR;
696
697	pr_debug("CPU%d updated upon resume\n", cpu);
698
699	return UCODE_OK;
700}
701
702static enum ucode_state microcode_init_cpu(int cpu, bool refresh_fw)
703{
704	enum ucode_state ustate;
705	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
706
707	if (uci->valid)
708		return UCODE_OK;
709
710	if (collect_cpu_info(cpu))
711		return UCODE_ERROR;
712
713	/* --dimm. Trigger a delayed update? */
714	if (system_state != SYSTEM_RUNNING)
715		return UCODE_NFOUND;
716
717	ustate = microcode_ops->request_microcode_fw(cpu, &microcode_pdev->dev, refresh_fw);
718	if (ustate == UCODE_NEW) {
719		pr_debug("CPU%d updated upon init\n", cpu);
720		apply_microcode_on_target(cpu);
721	}
722
723	return ustate;
724}
725
726static enum ucode_state microcode_update_cpu(int cpu)
727{
728	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
729
730	/* Refresh CPU microcode revision after resume. */
731	collect_cpu_info(cpu);
732
733	if (uci->valid)
734		return microcode_resume_cpu(cpu);
735
736	return microcode_init_cpu(cpu, false);
737}
738
739static int mc_device_add(struct device *dev, struct subsys_interface *sif)
740{
741	int err, cpu = dev->id;
742
743	if (!cpu_online(cpu))
744		return 0;
745
746	pr_debug("CPU%d added\n", cpu);
747
748	err = sysfs_create_group(&dev->kobj, &mc_attr_group);
749	if (err)
750		return err;
751
752	if (microcode_init_cpu(cpu, true) == UCODE_ERROR)
753		return -EINVAL;
754
755	return err;
756}
757
758static void mc_device_remove(struct device *dev, struct subsys_interface *sif)
759{
760	int cpu = dev->id;
761
762	if (!cpu_online(cpu))
763		return;
764
765	pr_debug("CPU%d removed\n", cpu);
766	microcode_fini_cpu(cpu);
767	sysfs_remove_group(&dev->kobj, &mc_attr_group);
768}
769
770static struct subsys_interface mc_cpu_interface = {
771	.name			= "microcode",
772	.subsys			= &cpu_subsys,
773	.add_dev		= mc_device_add,
774	.remove_dev		= mc_device_remove,
775};
776
777/**
778 * mc_bp_resume - Update boot CPU microcode during resume.
779 */
780static void mc_bp_resume(void)
781{
782	int cpu = smp_processor_id();
783	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
784
785	if (uci->valid && uci->mc)
786		microcode_ops->apply_microcode(cpu);
787	else if (!uci->mc)
788		reload_early_microcode();
789}
790
791static struct syscore_ops mc_syscore_ops = {
792	.resume			= mc_bp_resume,
793};
794
795static int mc_cpu_starting(unsigned int cpu)
796{
797	microcode_update_cpu(cpu);
798	pr_debug("CPU%d added\n", cpu);
799	return 0;
800}
801
802static int mc_cpu_online(unsigned int cpu)
803{
 
804	struct device *dev = get_cpu_device(cpu);
805
 
 
 
 
 
 
 
806	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
807		pr_err("Failed to create group for CPU%d\n", cpu);
808	return 0;
809}
810
811static int mc_cpu_down_prep(unsigned int cpu)
812{
813	struct device *dev;
814
815	dev = get_cpu_device(cpu);
816	/* Suspend is in progress, only remove the interface */
817	sysfs_remove_group(&dev->kobj, &mc_attr_group);
818	pr_debug("CPU%d removed\n", cpu);
819
820	return 0;
821}
822
823static struct attribute *cpu_root_microcode_attrs[] = {
 
824	&dev_attr_reload.attr,
 
825	NULL
826};
827
828static const struct attribute_group cpu_root_microcode_group = {
829	.name  = "microcode",
830	.attrs = cpu_root_microcode_attrs,
831};
832
833static int __init microcode_init(void)
834{
 
835	struct cpuinfo_x86 *c = &boot_cpu_data;
836	int error;
837
838	if (dis_ucode_ldr)
839		return -EINVAL;
840
841	if (c->x86_vendor == X86_VENDOR_INTEL)
842		microcode_ops = init_intel_microcode();
843	else if (c->x86_vendor == X86_VENDOR_AMD)
844		microcode_ops = init_amd_microcode();
845	else
846		pr_err("no support for this CPU vendor\n");
847
848	if (!microcode_ops)
849		return -ENODEV;
850
851	microcode_pdev = platform_device_register_simple("microcode", -1,
852							 NULL, 0);
 
 
 
 
853	if (IS_ERR(microcode_pdev))
854		return PTR_ERR(microcode_pdev);
855
856	get_online_cpus();
857	mutex_lock(&microcode_mutex);
858
859	error = subsys_interface_register(&mc_cpu_interface);
860	if (!error)
861		perf_check_microcode();
862	mutex_unlock(&microcode_mutex);
863	put_online_cpus();
864
865	if (error)
866		goto out_pdev;
867
868	error = sysfs_create_group(&cpu_subsys.dev_root->kobj,
869				   &cpu_root_microcode_group);
870
871	if (error) {
872		pr_err("Error creating microcode group!\n");
873		goto out_driver;
874	}
875
876	error = microcode_dev_init();
877	if (error)
878		goto out_ucode_group;
879
880	register_syscore_ops(&mc_syscore_ops);
881	cpuhp_setup_state_nocalls(CPUHP_AP_MICROCODE_LOADER, "x86/microcode:starting",
882				  mc_cpu_starting, NULL);
883	cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
884				  mc_cpu_online, mc_cpu_down_prep);
885
886	pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION);
887
888	return 0;
889
890 out_ucode_group:
891	sysfs_remove_group(&cpu_subsys.dev_root->kobj,
892			   &cpu_root_microcode_group);
893
894 out_driver:
895	get_online_cpus();
896	mutex_lock(&microcode_mutex);
897
898	subsys_interface_unregister(&mc_cpu_interface);
899
900	mutex_unlock(&microcode_mutex);
901	put_online_cpus();
902
903 out_pdev:
904	platform_device_unregister(microcode_pdev);
905	return error;
906
907}
908fs_initcall(save_microcode_in_initrd);
909late_initcall(microcode_init);