Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
 
 
 
 
 
  11 * Fixes:
  12 *		Alan Cox	:	Removed the Ethernet assumptions in
  13 *					Florian's code
  14 *		Alan Cox	:	Fixed some small errors in the ARP
  15 *					logic
  16 *		Alan Cox	:	Allow >4K in /proc
  17 *		Alan Cox	:	Make ARP add its own protocol entry
  18 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  20 *		Alan Cox	:	Drop data when a device is downed.
  21 *		Alan Cox	:	Use init_timer().
  22 *		Alan Cox	:	Double lock fixes.
  23 *		Martin Seine	:	Move the arphdr structure
  24 *					to if_arp.h for compatibility.
  25 *					with BSD based programs.
  26 *		Andrew Tridgell :       Added ARP netmask code and
  27 *					re-arranged proxy handling.
  28 *		Alan Cox	:	Changed to use notifiers.
  29 *		Niibe Yutaka	:	Reply for this device or proxies only.
  30 *		Alan Cox	:	Don't proxy across hardware types!
  31 *		Jonathan Naylor :	Added support for NET/ROM.
  32 *		Mike Shaver     :       RFC1122 checks.
  33 *		Jonathan Naylor :	Only lookup the hardware address for
  34 *					the correct hardware type.
  35 *		Germano Caronni	:	Assorted subtle races.
  36 *		Craig Schlenter :	Don't modify permanent entry
  37 *					during arp_rcv.
  38 *		Russ Nelson	:	Tidied up a few bits.
  39 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  40 *					eg intelligent arp probing and
  41 *					generation
  42 *					of host down events.
  43 *		Alan Cox	:	Missing unlock in device events.
  44 *		Eckes		:	ARP ioctl control errors.
  45 *		Alexey Kuznetsov:	Arp free fix.
  46 *		Manuel Rodriguez:	Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  50 *		Mike McLagan    :	Routing by source
  51 *		Stuart Cheshire	:	Metricom and grat arp fixes
  52 *					*** FOR 2.1 clean this up ***
  53 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  55 *					folded into the mainstream FDDI code.
  56 *					Ack spit, Linus how did you allow that
  57 *					one in...
  58 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  59 *					clean up the APFDDI & gen. FDDI bits.
  60 *		Alexey Kuznetsov:	new arp state machine;
  61 *					now it is in net/core/neighbour.c.
  62 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  63 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  64 *		Shmulik Hen:		Split arp_send to arp_create and
  65 *					arp_xmit so intermediate drivers like
  66 *					bonding can change the skb before
  67 *					sending (e.g. insert 8021q tag).
  68 *		Harald Welte	:	convert to make use of jenkins hash
  69 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
 
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 
 
 
 114
 
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *	Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 
 
 
 
 
 
 
 
 152struct neigh_table arp_tbl = {
 153	.family		= AF_INET,
 
 154	.key_len	= 4,
 155	.protocol	= cpu_to_be16(ETH_P_IP),
 156	.hash		= arp_hash,
 157	.key_eq		= arp_key_eq,
 158	.constructor	= arp_constructor,
 159	.proxy_redo	= parp_redo,
 160	.is_multicast	= arp_is_multicast,
 161	.id		= "arp_cache",
 162	.parms		= {
 163		.tbl			= &arp_tbl,
 
 
 
 164		.reachable_time		= 30 * HZ,
 165		.data	= {
 166			[NEIGH_VAR_MCAST_PROBES] = 3,
 167			[NEIGH_VAR_UCAST_PROBES] = 3,
 168			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
 172			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 173			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 174			[NEIGH_VAR_PROXY_QLEN] = 64,
 175			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 176			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 177			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 178		},
 179	},
 180	.gc_interval	= 30 * HZ,
 181	.gc_thresh1	= 128,
 182	.gc_thresh2	= 512,
 183	.gc_thresh3	= 1024,
 184};
 185EXPORT_SYMBOL(arp_tbl);
 186
 187int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 188{
 189	switch (dev->type) {
 190	case ARPHRD_ETHER:
 191	case ARPHRD_FDDI:
 192	case ARPHRD_IEEE802:
 193		ip_eth_mc_map(addr, haddr);
 194		return 0;
 
 
 
 195	case ARPHRD_INFINIBAND:
 196		ip_ib_mc_map(addr, dev->broadcast, haddr);
 197		return 0;
 198	case ARPHRD_IPGRE:
 199		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 200		return 0;
 201	default:
 202		if (dir) {
 203			memcpy(haddr, dev->broadcast, dev->addr_len);
 204			return 0;
 205		}
 206	}
 207	return -EINVAL;
 208}
 209
 210
 211static u32 arp_hash(const void *pkey,
 212		    const struct net_device *dev,
 213		    __u32 *hash_rnd)
 214{
 215	return arp_hashfn(pkey, dev, hash_rnd);
 216}
 217
 218static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 219{
 220	return neigh_key_eq32(neigh, pkey);
 221}
 222
 223static int arp_constructor(struct neighbour *neigh)
 224{
 225	__be32 addr;
 226	struct net_device *dev = neigh->dev;
 227	struct in_device *in_dev;
 228	struct neigh_parms *parms;
 229	u32 inaddr_any = INADDR_ANY;
 230
 231	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 232		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 233
 234	addr = *(__be32 *)neigh->primary_key;
 235	rcu_read_lock();
 236	in_dev = __in_dev_get_rcu(dev);
 237	if (!in_dev) {
 238		rcu_read_unlock();
 239		return -EINVAL;
 240	}
 241
 242	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 243
 244	parms = in_dev->arp_parms;
 245	__neigh_parms_put(neigh->parms);
 246	neigh->parms = neigh_parms_clone(parms);
 247	rcu_read_unlock();
 248
 249	if (!dev->header_ops) {
 250		neigh->nud_state = NUD_NOARP;
 251		neigh->ops = &arp_direct_ops;
 252		neigh->output = neigh_direct_output;
 253	} else {
 254		/* Good devices (checked by reading texts, but only Ethernet is
 255		   tested)
 256
 257		   ARPHRD_ETHER: (ethernet, apfddi)
 258		   ARPHRD_FDDI: (fddi)
 259		   ARPHRD_IEEE802: (tr)
 260		   ARPHRD_METRICOM: (strip)
 261		   ARPHRD_ARCNET:
 262		   etc. etc. etc.
 263
 264		   ARPHRD_IPDDP will also work, if author repairs it.
 265		   I did not it, because this driver does not work even
 266		   in old paradigm.
 267		 */
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269		if (neigh->type == RTN_MULTICAST) {
 270			neigh->nud_state = NUD_NOARP;
 271			arp_mc_map(addr, neigh->ha, dev, 1);
 272		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 275		} else if (neigh->type == RTN_BROADCAST ||
 276			   (dev->flags & IFF_POINTOPOINT)) {
 277			neigh->nud_state = NUD_NOARP;
 278			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 279		}
 280
 281		if (dev->header_ops->cache)
 282			neigh->ops = &arp_hh_ops;
 283		else
 284			neigh->ops = &arp_generic_ops;
 285
 286		if (neigh->nud_state & NUD_VALID)
 287			neigh->output = neigh->ops->connected_output;
 288		else
 289			neigh->output = neigh->ops->output;
 290	}
 291	return 0;
 292}
 293
 294static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 295{
 296	dst_link_failure(skb);
 297	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
 298}
 299
 300/* Create and send an arp packet. */
 301static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 302			 struct net_device *dev, __be32 src_ip,
 303			 const unsigned char *dest_hw,
 304			 const unsigned char *src_hw,
 305			 const unsigned char *target_hw,
 306			 struct dst_entry *dst)
 307{
 308	struct sk_buff *skb;
 309
 310	/* arp on this interface. */
 311	if (dev->flags & IFF_NOARP)
 312		return;
 313
 314	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 315			 dest_hw, src_hw, target_hw);
 316	if (!skb)
 317		return;
 318
 319	skb_dst_set(skb, dst_clone(dst));
 320	arp_xmit(skb);
 321}
 322
 323void arp_send(int type, int ptype, __be32 dest_ip,
 324	      struct net_device *dev, __be32 src_ip,
 325	      const unsigned char *dest_hw, const unsigned char *src_hw,
 326	      const unsigned char *target_hw)
 327{
 328	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 329		     target_hw, NULL);
 330}
 331EXPORT_SYMBOL(arp_send);
 332
 333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 334{
 335	__be32 saddr = 0;
 336	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 337	struct net_device *dev = neigh->dev;
 338	__be32 target = *(__be32 *)neigh->primary_key;
 339	int probes = atomic_read(&neigh->probes);
 340	struct in_device *in_dev;
 341	struct dst_entry *dst = NULL;
 342
 343	rcu_read_lock();
 344	in_dev = __in_dev_get_rcu(dev);
 345	if (!in_dev) {
 346		rcu_read_unlock();
 347		return;
 348	}
 349	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 350	default:
 351	case 0:		/* By default announce any local IP */
 352		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 353					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 354			saddr = ip_hdr(skb)->saddr;
 355		break;
 356	case 1:		/* Restrict announcements of saddr in same subnet */
 357		if (!skb)
 358			break;
 359		saddr = ip_hdr(skb)->saddr;
 360		if (inet_addr_type_dev_table(dev_net(dev), dev,
 361					     saddr) == RTN_LOCAL) {
 362			/* saddr should be known to target */
 363			if (inet_addr_onlink(in_dev, target, saddr))
 364				break;
 365		}
 366		saddr = 0;
 367		break;
 368	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 369		break;
 370	}
 371	rcu_read_unlock();
 372
 373	if (!saddr)
 374		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 375
 376	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 377	if (probes < 0) {
 378		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
 379			pr_debug("trying to ucast probe in NUD_INVALID\n");
 380		neigh_ha_snapshot(dst_ha, neigh, dev);
 381		dst_hw = dst_ha;
 
 382	} else {
 383		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 384		if (probes < 0) {
 
 385			neigh_app_ns(neigh);
 
 386			return;
 387		}
 388	}
 389
 390	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 391		dst = skb_dst(skb);
 392	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 393		     dst_hw, dev->dev_addr, NULL, dst);
 394}
 395
 396static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 397{
 398	struct net *net = dev_net(in_dev->dev);
 399	int scope;
 400
 401	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 402	case 0:	/* Reply, the tip is already validated */
 403		return 0;
 404	case 1:	/* Reply only if tip is configured on the incoming interface */
 405		sip = 0;
 406		scope = RT_SCOPE_HOST;
 407		break;
 408	case 2:	/*
 409		 * Reply only if tip is configured on the incoming interface
 410		 * and is in same subnet as sip
 411		 */
 412		scope = RT_SCOPE_HOST;
 413		break;
 414	case 3:	/* Do not reply for scope host addresses */
 415		sip = 0;
 416		scope = RT_SCOPE_LINK;
 417		in_dev = NULL;
 418		break;
 419	case 4:	/* Reserved */
 420	case 5:
 421	case 6:
 422	case 7:
 423		return 0;
 424	case 8:	/* Do not reply */
 425		return 1;
 426	default:
 427		return 0;
 428	}
 429	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 430}
 431
 432static int arp_accept(struct in_device *in_dev, __be32 sip)
 433{
 434	struct net *net = dev_net(in_dev->dev);
 435	int scope = RT_SCOPE_LINK;
 436
 437	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
 438	case 0: /* Don't create new entries from garp */
 439		return 0;
 440	case 1: /* Create new entries from garp */
 441		return 1;
 442	case 2: /* Create a neighbor in the arp table only if sip
 443		 * is in the same subnet as an address configured
 444		 * on the interface that received the garp message
 445		 */
 446		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
 447	default:
 448		return 0;
 449	}
 450}
 451
 452static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 453{
 454	struct rtable *rt;
 455	int flag = 0;
 456	/*unsigned long now; */
 457	struct net *net = dev_net(dev);
 458
 459	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev),
 460			     RT_SCOPE_UNIVERSE);
 461	if (IS_ERR(rt))
 462		return 1;
 463	if (rt->dst.dev != dev) {
 464		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 465		flag = 1;
 466	}
 467	ip_rt_put(rt);
 468	return flag;
 469}
 470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471/*
 472 * Check if we can use proxy ARP for this path
 473 */
 474static inline int arp_fwd_proxy(struct in_device *in_dev,
 475				struct net_device *dev,	struct rtable *rt)
 476{
 477	struct in_device *out_dev;
 478	int imi, omi = -1;
 479
 480	if (rt->dst.dev == dev)
 481		return 0;
 482
 483	if (!IN_DEV_PROXY_ARP(in_dev))
 484		return 0;
 485	imi = IN_DEV_MEDIUM_ID(in_dev);
 486	if (imi == 0)
 487		return 1;
 488	if (imi == -1)
 489		return 0;
 490
 491	/* place to check for proxy_arp for routes */
 492
 493	out_dev = __in_dev_get_rcu(rt->dst.dev);
 494	if (out_dev)
 495		omi = IN_DEV_MEDIUM_ID(out_dev);
 496
 497	return omi != imi && omi != -1;
 498}
 499
 500/*
 501 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 502 *
 503 * RFC3069 supports proxy arp replies back to the same interface.  This
 504 * is done to support (ethernet) switch features, like RFC 3069, where
 505 * the individual ports are not allowed to communicate with each
 506 * other, BUT they are allowed to talk to the upstream router.  As
 507 * described in RFC 3069, it is possible to allow these hosts to
 508 * communicate through the upstream router, by proxy_arp'ing.
 509 *
 510 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 511 *
 512 *  This technology is known by different names:
 513 *    In RFC 3069 it is called VLAN Aggregation.
 514 *    Cisco and Allied Telesyn call it Private VLAN.
 515 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 516 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 517 *
 518 */
 519static inline int arp_fwd_pvlan(struct in_device *in_dev,
 520				struct net_device *dev,	struct rtable *rt,
 521				__be32 sip, __be32 tip)
 522{
 523	/* Private VLAN is only concerned about the same ethernet segment */
 524	if (rt->dst.dev != dev)
 525		return 0;
 526
 527	/* Don't reply on self probes (often done by windowz boxes)*/
 528	if (sip == tip)
 529		return 0;
 530
 531	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 532		return 1;
 533	else
 534		return 0;
 535}
 536
 537/*
 538 *	Interface to link layer: send routine and receive handler.
 539 */
 540
 541/*
 542 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 543 *	message.
 544 */
 545struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 546			   struct net_device *dev, __be32 src_ip,
 547			   const unsigned char *dest_hw,
 548			   const unsigned char *src_hw,
 549			   const unsigned char *target_hw)
 550{
 551	struct sk_buff *skb;
 552	struct arphdr *arp;
 553	unsigned char *arp_ptr;
 554	int hlen = LL_RESERVED_SPACE(dev);
 555	int tlen = dev->needed_tailroom;
 556
 557	/*
 558	 *	Allocate a buffer
 559	 */
 560
 561	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 562	if (!skb)
 563		return NULL;
 564
 565	skb_reserve(skb, hlen);
 566	skb_reset_network_header(skb);
 567	arp = skb_put(skb, arp_hdr_len(dev));
 568	skb->dev = dev;
 569	skb->protocol = htons(ETH_P_ARP);
 570	if (!src_hw)
 571		src_hw = dev->dev_addr;
 572	if (!dest_hw)
 573		dest_hw = dev->broadcast;
 574
 575	/*
 576	 *	Fill the device header for the ARP frame
 577	 */
 578	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 579		goto out;
 580
 581	/*
 582	 * Fill out the arp protocol part.
 583	 *
 584	 * The arp hardware type should match the device type, except for FDDI,
 585	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 586	 */
 587	/*
 588	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 589	 *	DIX code for the protocol. Make these device structure fields.
 590	 */
 591	switch (dev->type) {
 592	default:
 593		arp->ar_hrd = htons(dev->type);
 594		arp->ar_pro = htons(ETH_P_IP);
 595		break;
 596
 597#if IS_ENABLED(CONFIG_AX25)
 598	case ARPHRD_AX25:
 599		arp->ar_hrd = htons(ARPHRD_AX25);
 600		arp->ar_pro = htons(AX25_P_IP);
 601		break;
 602
 603#if IS_ENABLED(CONFIG_NETROM)
 604	case ARPHRD_NETROM:
 605		arp->ar_hrd = htons(ARPHRD_NETROM);
 606		arp->ar_pro = htons(AX25_P_IP);
 607		break;
 608#endif
 609#endif
 610
 611#if IS_ENABLED(CONFIG_FDDI)
 612	case ARPHRD_FDDI:
 613		arp->ar_hrd = htons(ARPHRD_ETHER);
 614		arp->ar_pro = htons(ETH_P_IP);
 615		break;
 616#endif
 
 
 
 
 
 
 617	}
 618
 619	arp->ar_hln = dev->addr_len;
 620	arp->ar_pln = 4;
 621	arp->ar_op = htons(type);
 622
 623	arp_ptr = (unsigned char *)(arp + 1);
 624
 625	memcpy(arp_ptr, src_hw, dev->addr_len);
 626	arp_ptr += dev->addr_len;
 627	memcpy(arp_ptr, &src_ip, 4);
 628	arp_ptr += 4;
 629
 630	switch (dev->type) {
 631#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 632	case ARPHRD_IEEE1394:
 633		break;
 634#endif
 635	default:
 636		if (target_hw)
 637			memcpy(arp_ptr, target_hw, dev->addr_len);
 638		else
 639			memset(arp_ptr, 0, dev->addr_len);
 640		arp_ptr += dev->addr_len;
 641	}
 642	memcpy(arp_ptr, &dest_ip, 4);
 643
 644	return skb;
 645
 646out:
 647	kfree_skb(skb);
 648	return NULL;
 649}
 650EXPORT_SYMBOL(arp_create);
 651
 652static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 653{
 654	return dev_queue_xmit(skb);
 655}
 656
 657/*
 658 *	Send an arp packet.
 659 */
 660void arp_xmit(struct sk_buff *skb)
 661{
 662	rcu_read_lock();
 663	/* Send it off, maybe filter it using firewalling first.  */
 664	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 665		dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev,
 666		arp_xmit_finish);
 667	rcu_read_unlock();
 668}
 669EXPORT_SYMBOL(arp_xmit);
 670
 671static bool arp_is_garp(struct net *net, struct net_device *dev,
 672			int *addr_type, __be16 ar_op,
 673			__be32 sip, __be32 tip,
 674			unsigned char *sha, unsigned char *tha)
 
 
 
 675{
 676	bool is_garp = tip == sip;
 677
 678	/* Gratuitous ARP _replies_ also require target hwaddr to be
 679	 * the same as source.
 680	 */
 681	if (is_garp && ar_op == htons(ARPOP_REPLY))
 682		is_garp =
 683			/* IPv4 over IEEE 1394 doesn't provide target
 684			 * hardware address field in its ARP payload.
 685			 */
 686			tha &&
 687			!memcmp(tha, sha, dev->addr_len);
 688
 689	if (is_garp) {
 690		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 691		if (*addr_type != RTN_UNICAST)
 692			is_garp = false;
 693	}
 694	return is_garp;
 695}
 
 696
 697/*
 698 *	Process an arp request.
 699 */
 700
 701static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 702{
 703	struct net_device *dev = skb->dev;
 704	struct in_device *in_dev = __in_dev_get_rcu(dev);
 705	struct arphdr *arp;
 706	unsigned char *arp_ptr;
 707	struct rtable *rt;
 708	unsigned char *sha;
 709	unsigned char *tha = NULL;
 710	__be32 sip, tip;
 711	u16 dev_type = dev->type;
 712	int addr_type;
 713	struct neighbour *n;
 714	struct dst_entry *reply_dst = NULL;
 715	bool is_garp = false;
 716
 717	/* arp_rcv below verifies the ARP header and verifies the device
 718	 * is ARP'able.
 719	 */
 720
 721	if (!in_dev)
 722		goto out_free_skb;
 723
 724	arp = arp_hdr(skb);
 725
 726	switch (dev_type) {
 727	default:
 728		if (arp->ar_pro != htons(ETH_P_IP) ||
 729		    htons(dev_type) != arp->ar_hrd)
 730			goto out_free_skb;
 731		break;
 732	case ARPHRD_ETHER:
 
 733	case ARPHRD_FDDI:
 734	case ARPHRD_IEEE802:
 735		/*
 736		 * ETHERNET, and Fibre Channel (which are IEEE 802
 737		 * devices, according to RFC 2625) devices will accept ARP
 738		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 739		 * This is the case also of FDDI, where the RFC 1390 says that
 740		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 741		 * however, to be more robust, we'll accept both 1 (Ethernet)
 742		 * or 6 (IEEE 802.2)
 743		 */
 744		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 745		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 746		    arp->ar_pro != htons(ETH_P_IP))
 747			goto out_free_skb;
 748		break;
 749	case ARPHRD_AX25:
 750		if (arp->ar_pro != htons(AX25_P_IP) ||
 751		    arp->ar_hrd != htons(ARPHRD_AX25))
 752			goto out_free_skb;
 753		break;
 754	case ARPHRD_NETROM:
 755		if (arp->ar_pro != htons(AX25_P_IP) ||
 756		    arp->ar_hrd != htons(ARPHRD_NETROM))
 757			goto out_free_skb;
 758		break;
 759	}
 760
 761	/* Understand only these message types */
 762
 763	if (arp->ar_op != htons(ARPOP_REPLY) &&
 764	    arp->ar_op != htons(ARPOP_REQUEST))
 765		goto out_free_skb;
 766
 767/*
 768 *	Extract fields
 769 */
 770	arp_ptr = (unsigned char *)(arp + 1);
 771	sha	= arp_ptr;
 772	arp_ptr += dev->addr_len;
 773	memcpy(&sip, arp_ptr, 4);
 774	arp_ptr += 4;
 775	switch (dev_type) {
 776#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 777	case ARPHRD_IEEE1394:
 778		break;
 779#endif
 780	default:
 781		tha = arp_ptr;
 782		arp_ptr += dev->addr_len;
 783	}
 784	memcpy(&tip, arp_ptr, 4);
 785/*
 786 *	Check for bad requests for 127.x.x.x and requests for multicast
 787 *	addresses.  If this is one such, delete it.
 788 */
 789	if (ipv4_is_multicast(tip) ||
 790	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 791		goto out_free_skb;
 792
 793 /*
 794  *	For some 802.11 wireless deployments (and possibly other networks),
 795  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 796  *	and thus should not be accepted.
 797  */
 798	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 799		goto out_free_skb;
 800
 801/*
 802 *     Special case: We must set Frame Relay source Q.922 address
 803 */
 804	if (dev_type == ARPHRD_DLCI)
 805		sha = dev->broadcast;
 806
 807/*
 808 *  Process entry.  The idea here is we want to send a reply if it is a
 809 *  request for us or if it is a request for someone else that we hold
 810 *  a proxy for.  We want to add an entry to our cache if it is a reply
 811 *  to us or if it is a request for our address.
 812 *  (The assumption for this last is that if someone is requesting our
 813 *  address, they are probably intending to talk to us, so it saves time
 814 *  if we cache their address.  Their address is also probably not in
 815 *  our cache, since ours is not in their cache.)
 816 *
 817 *  Putting this another way, we only care about replies if they are to
 818 *  us, in which case we add them to the cache.  For requests, we care
 819 *  about those for us and those for our proxies.  We reply to both,
 820 *  and in the case of requests for us we add the requester to the arp
 821 *  cache.
 822 */
 823
 824	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 825		reply_dst = (struct dst_entry *)
 826			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 827						    GFP_ATOMIC);
 828
 829	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 830	if (sip == 0) {
 831		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 832		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 833		    !arp_ignore(in_dev, sip, tip))
 834			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 835				     sha, dev->dev_addr, sha, reply_dst);
 836		goto out_consume_skb;
 837	}
 838
 839	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 840	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 841
 842		rt = skb_rtable(skb);
 843		addr_type = rt->rt_type;
 844
 845		if (addr_type == RTN_LOCAL) {
 846			int dont_send;
 847
 848			dont_send = arp_ignore(in_dev, sip, tip);
 849			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 850				dont_send = arp_filter(sip, tip, dev);
 851			if (!dont_send) {
 852				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 853				if (n) {
 854					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 855						     sip, dev, tip, sha,
 856						     dev->dev_addr, sha,
 857						     reply_dst);
 858					neigh_release(n);
 859				}
 860			}
 861			goto out_consume_skb;
 862		} else if (IN_DEV_FORWARD(in_dev)) {
 863			if (addr_type == RTN_UNICAST  &&
 864			    (arp_fwd_proxy(in_dev, dev, rt) ||
 865			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 866			     (rt->dst.dev != dev &&
 867			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 868				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 869				if (n)
 870					neigh_release(n);
 871
 872				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 873				    skb->pkt_type == PACKET_HOST ||
 874				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 875					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 876						     sip, dev, tip, sha,
 877						     dev->dev_addr, sha,
 878						     reply_dst);
 879				} else {
 880					pneigh_enqueue(&arp_tbl,
 881						       in_dev->arp_parms, skb);
 882					goto out_free_dst;
 883				}
 884				goto out_consume_skb;
 885			}
 886		}
 887	}
 888
 889	/* Update our ARP tables */
 890
 891	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 892
 893	addr_type = -1;
 894	if (n || arp_accept(in_dev, sip)) {
 895		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 896				      sip, tip, sha, tha);
 897	}
 898
 899	if (arp_accept(in_dev, sip)) {
 900		/* Unsolicited ARP is not accepted by default.
 901		   It is possible, that this option should be enabled for some
 902		   devices (strip is candidate)
 903		 */
 904		if (!n &&
 905		    (is_garp ||
 906		     (arp->ar_op == htons(ARPOP_REPLY) &&
 907		      (addr_type == RTN_UNICAST ||
 908		       (addr_type < 0 &&
 909			/* postpone calculation to as late as possible */
 910			inet_addr_type_dev_table(net, dev, sip) ==
 911				RTN_UNICAST)))))
 912			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 913	}
 914
 915	if (n) {
 916		int state = NUD_REACHABLE;
 917		int override;
 918
 919		/* If several different ARP replies follows back-to-back,
 920		   use the FIRST one. It is possible, if several proxy
 921		   agents are active. Taking the first reply prevents
 922		   arp trashing and chooses the fastest router.
 923		 */
 924		override = time_after(jiffies,
 925				      n->updated +
 926				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 927			   is_garp;
 928
 929		/* Broadcast replies and request packets
 930		   do not assert neighbour reachability.
 931		 */
 932		if (arp->ar_op != htons(ARPOP_REPLY) ||
 933		    skb->pkt_type != PACKET_HOST)
 934			state = NUD_STALE;
 935		neigh_update(n, sha, state,
 936			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 937		neigh_release(n);
 938	}
 939
 940out_consume_skb:
 941	consume_skb(skb);
 942
 943out_free_dst:
 944	dst_release(reply_dst);
 945	return NET_RX_SUCCESS;
 946
 947out_free_skb:
 948	kfree_skb(skb);
 949	return NET_RX_DROP;
 950}
 951
 952static void parp_redo(struct sk_buff *skb)
 953{
 954	arp_process(dev_net(skb->dev), NULL, skb);
 955}
 956
 957static int arp_is_multicast(const void *pkey)
 958{
 959	return ipv4_is_multicast(*((__be32 *)pkey));
 960}
 961
 962/*
 963 *	Receive an arp request from the device layer.
 964 */
 965
 966static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 967		   struct packet_type *pt, struct net_device *orig_dev)
 968{
 969	const struct arphdr *arp;
 970
 971	/* do not tweak dropwatch on an ARP we will ignore */
 972	if (dev->flags & IFF_NOARP ||
 973	    skb->pkt_type == PACKET_OTHERHOST ||
 974	    skb->pkt_type == PACKET_LOOPBACK)
 975		goto consumeskb;
 976
 977	skb = skb_share_check(skb, GFP_ATOMIC);
 978	if (!skb)
 979		goto out_of_mem;
 980
 981	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 982	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 983		goto freeskb;
 984
 985	arp = arp_hdr(skb);
 986	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 987		goto freeskb;
 988
 
 
 
 
 989	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 990
 991	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 992		       dev_net(dev), NULL, skb, dev, NULL,
 993		       arp_process);
 994
 995consumeskb:
 996	consume_skb(skb);
 997	return NET_RX_SUCCESS;
 998freeskb:
 999	kfree_skb(skb);
1000out_of_mem:
1001	return NET_RX_DROP;
1002}
1003
1004/*
1005 *	User level interface (ioctl)
1006 */
1007
1008static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r,
1009					      bool getarp)
1010{
1011	struct net_device *dev;
1012
1013	if (getarp)
1014		dev = dev_get_by_name_rcu(net, r->arp_dev);
1015	else
1016		dev = __dev_get_by_name(net, r->arp_dev);
1017	if (!dev)
1018		return ERR_PTR(-ENODEV);
1019
1020	/* Mmmm... It is wrong... ARPHRD_NETROM == 0 */
1021	if (!r->arp_ha.sa_family)
1022		r->arp_ha.sa_family = dev->type;
1023
1024	if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type)
1025		return ERR_PTR(-EINVAL);
1026
1027	return dev;
1028}
1029
1030static struct net_device *arp_req_dev(struct net *net, struct arpreq *r)
1031{
1032	struct net_device *dev;
1033	struct rtable *rt;
1034	__be32 ip;
1035
1036	if (r->arp_dev[0])
1037		return arp_req_dev_by_name(net, r, false);
1038
1039	if (r->arp_flags & ATF_PUBL)
1040		return NULL;
1041
1042	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1043
1044	rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK);
1045	if (IS_ERR(rt))
1046		return ERR_CAST(rt);
1047
1048	dev = rt->dst.dev;
1049	ip_rt_put(rt);
1050
1051	if (!dev)
1052		return ERR_PTR(-EINVAL);
1053
1054	return dev;
1055}
1056
1057/*
1058 *	Set (create) an ARP cache entry.
1059 */
1060
1061static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1062{
1063	if (!dev) {
1064		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1065		return 0;
1066	}
1067	if (__in_dev_get_rtnl(dev)) {
1068		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1069		return 0;
1070	}
1071	return -ENXIO;
1072}
1073
1074static int arp_req_set_public(struct net *net, struct arpreq *r,
1075		struct net_device *dev)
1076{
 
1077	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1078
 
 
1079	if (!dev && (r->arp_flags & ATF_COM)) {
1080		dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1081				      r->arp_ha.sa_data);
1082		if (!dev)
1083			return -ENODEV;
1084	}
1085	if (mask) {
1086		__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1087
1088		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1089			return -ENOBUFS;
1090		return 0;
1091	}
1092
1093	return arp_req_set_proxy(net, dev, 1);
1094}
1095
1096static int arp_req_set(struct net *net, struct arpreq *r)
 
1097{
1098	struct neighbour *neigh;
1099	struct net_device *dev;
1100	__be32 ip;
 
1101	int err;
1102
1103	dev = arp_req_dev(net, r);
1104	if (IS_ERR(dev))
1105		return PTR_ERR(dev);
1106
1107	if (r->arp_flags & ATF_PUBL)
1108		return arp_req_set_public(net, r, dev);
1109
 
 
 
 
 
 
 
 
 
 
 
 
 
1110	switch (dev->type) {
1111#if IS_ENABLED(CONFIG_FDDI)
1112	case ARPHRD_FDDI:
1113		/*
1114		 * According to RFC 1390, FDDI devices should accept ARP
1115		 * hardware types of 1 (Ethernet).  However, to be more
1116		 * robust, we'll accept hardware types of either 1 (Ethernet)
1117		 * or 6 (IEEE 802.2).
1118		 */
1119		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1120		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1121		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1122			return -EINVAL;
1123		break;
1124#endif
1125	default:
1126		if (r->arp_ha.sa_family != dev->type)
1127			return -EINVAL;
1128		break;
1129	}
1130
1131	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1132
1133	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1134	err = PTR_ERR(neigh);
1135	if (!IS_ERR(neigh)) {
1136		unsigned int state = NUD_STALE;
1137
1138		if (r->arp_flags & ATF_PERM) {
1139			r->arp_flags |= ATF_COM;
1140			state = NUD_PERMANENT;
1141		}
1142
1143		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1144				   r->arp_ha.sa_data : NULL, state,
1145				   NEIGH_UPDATE_F_OVERRIDE |
1146				   NEIGH_UPDATE_F_ADMIN, 0);
1147		neigh_release(neigh);
1148	}
1149	return err;
1150}
1151
1152static unsigned int arp_state_to_flags(struct neighbour *neigh)
1153{
1154	if (neigh->nud_state&NUD_PERMANENT)
1155		return ATF_PERM | ATF_COM;
1156	else if (neigh->nud_state&NUD_VALID)
1157		return ATF_COM;
1158	else
1159		return 0;
1160}
1161
1162/*
1163 *	Get an ARP cache entry.
1164 */
1165
1166static int arp_req_get(struct net *net, struct arpreq *r)
1167{
1168	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1169	struct neighbour *neigh;
1170	struct net_device *dev;
1171
1172	if (!r->arp_dev[0])
1173		return -ENODEV;
1174
1175	dev = arp_req_dev_by_name(net, r, true);
1176	if (IS_ERR(dev))
1177		return PTR_ERR(dev);
1178
1179	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1180	if (!neigh)
1181		return -ENXIO;
1182
1183	if (READ_ONCE(neigh->nud_state) & NUD_NOARP) {
 
 
 
1184		neigh_release(neigh);
1185		return -ENXIO;
1186	}
1187
1188	read_lock_bh(&neigh->lock);
1189	memcpy(r->arp_ha.sa_data, neigh->ha,
1190	       min(dev->addr_len, sizeof(r->arp_ha.sa_data_min)));
1191	r->arp_flags = arp_state_to_flags(neigh);
1192	read_unlock_bh(&neigh->lock);
1193
1194	neigh_release(neigh);
1195
1196	r->arp_ha.sa_family = dev->type;
1197	netdev_copy_name(dev, r->arp_dev);
1198
1199	return 0;
1200}
1201
1202int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1203{
1204	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1205	int err = -ENXIO;
1206	struct neigh_table *tbl = &arp_tbl;
1207
1208	if (neigh) {
1209		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1210			neigh_release(neigh);
1211			return 0;
1212		}
1213
1214		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1215			err = neigh_update(neigh, NULL, NUD_FAILED,
1216					   NEIGH_UPDATE_F_OVERRIDE|
1217					   NEIGH_UPDATE_F_ADMIN, 0);
1218		write_lock_bh(&tbl->lock);
1219		neigh_release(neigh);
1220		neigh_remove_one(neigh);
1221		write_unlock_bh(&tbl->lock);
1222	}
1223
1224	return err;
1225}
 
1226
1227static int arp_req_delete_public(struct net *net, struct arpreq *r,
1228		struct net_device *dev)
1229{
 
1230	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1231
1232	if (mask) {
1233		__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1234
1235		return pneigh_delete(&arp_tbl, net, &ip, dev);
1236	}
 
 
1237
1238	return arp_req_set_proxy(net, dev, 0);
1239}
1240
1241static int arp_req_delete(struct net *net, struct arpreq *r)
 
1242{
1243	struct net_device *dev;
1244	__be32 ip;
1245
1246	dev = arp_req_dev(net, r);
1247	if (IS_ERR(dev))
1248		return PTR_ERR(dev);
1249
1250	if (r->arp_flags & ATF_PUBL)
1251		return arp_req_delete_public(net, r, dev);
1252
1253	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1254
1255	return arp_invalidate(dev, ip, true);
 
 
 
 
 
 
 
 
1256}
1257
1258/*
1259 *	Handle an ARP layer I/O control request.
1260 */
1261
1262int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1263{
1264	struct arpreq r;
1265	__be32 *netmask;
1266	int err;
 
 
1267
1268	switch (cmd) {
1269	case SIOCDARP:
1270	case SIOCSARP:
1271		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1272			return -EPERM;
1273		fallthrough;
1274	case SIOCGARP:
1275		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1276		if (err)
1277			return -EFAULT;
1278		break;
1279	default:
1280		return -EINVAL;
1281	}
1282
1283	if (r.arp_pa.sa_family != AF_INET)
1284		return -EPFNOSUPPORT;
1285
1286	if (!(r.arp_flags & ATF_PUBL) &&
1287	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1288		return -EINVAL;
1289
1290	netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr;
1291	if (!(r.arp_flags & ATF_NETMASK))
1292		*netmask = htonl(0xFFFFFFFFUL);
1293	else if (*netmask && *netmask != htonl(0xFFFFFFFFUL))
1294		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295
1296	switch (cmd) {
1297	case SIOCDARP:
1298		rtnl_lock();
1299		err = arp_req_delete(net, &r);
1300		rtnl_unlock();
1301		break;
1302	case SIOCSARP:
1303		rtnl_lock();
1304		err = arp_req_set(net, &r);
1305		rtnl_unlock();
1306		break;
1307	case SIOCGARP:
1308		rcu_read_lock();
1309		err = arp_req_get(net, &r);
1310		rcu_read_unlock();
1311
1312		if (!err && copy_to_user(arg, &r, sizeof(r)))
1313			err = -EFAULT;
1314		break;
1315	}
1316
 
 
 
1317	return err;
1318}
1319
1320static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1321			    void *ptr)
1322{
1323	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1324	struct netdev_notifier_change_info *change_info;
1325	struct in_device *in_dev;
1326	bool evict_nocarrier;
1327
1328	switch (event) {
1329	case NETDEV_CHANGEADDR:
1330		neigh_changeaddr(&arp_tbl, dev);
1331		rt_cache_flush(dev_net(dev));
1332		break;
1333	case NETDEV_CHANGE:
1334		change_info = ptr;
1335		if (change_info->flags_changed & IFF_NOARP)
1336			neigh_changeaddr(&arp_tbl, dev);
1337
1338		in_dev = __in_dev_get_rtnl(dev);
1339		if (!in_dev)
1340			evict_nocarrier = true;
1341		else
1342			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1343
1344		if (evict_nocarrier && !netif_carrier_ok(dev))
1345			neigh_carrier_down(&arp_tbl, dev);
1346		break;
1347	default:
1348		break;
1349	}
1350
1351	return NOTIFY_DONE;
1352}
1353
1354static struct notifier_block arp_netdev_notifier = {
1355	.notifier_call = arp_netdev_event,
1356};
1357
1358/* Note, that it is not on notifier chain.
1359   It is necessary, that this routine was called after route cache will be
1360   flushed.
1361 */
1362void arp_ifdown(struct net_device *dev)
1363{
1364	neigh_ifdown(&arp_tbl, dev);
1365}
1366
1367
1368/*
1369 *	Called once on startup.
1370 */
1371
1372static struct packet_type arp_packet_type __read_mostly = {
1373	.type =	cpu_to_be16(ETH_P_ARP),
1374	.func =	arp_rcv,
1375};
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377#ifdef CONFIG_PROC_FS
1378#if IS_ENABLED(CONFIG_AX25)
1379
 
1380/*
1381 *	ax25 -> ASCII conversion
1382 */
1383static void ax2asc2(ax25_address *a, char *buf)
1384{
1385	char c, *s;
1386	int n;
1387
1388	for (n = 0, s = buf; n < 6; n++) {
1389		c = (a->ax25_call[n] >> 1) & 0x7F;
1390
1391		if (c != ' ')
1392			*s++ = c;
1393	}
1394
1395	*s++ = '-';
1396	n = (a->ax25_call[6] >> 1) & 0x0F;
1397	if (n > 9) {
1398		*s++ = '1';
1399		n -= 10;
1400	}
1401
1402	*s++ = n + '0';
1403	*s++ = '\0';
1404
1405	if (*buf == '\0' || *buf == '-') {
1406		buf[0] = '*';
1407		buf[1] = '\0';
1408	}
1409}
1410#endif /* CONFIG_AX25 */
1411
1412#define HBUFFERLEN 30
1413
1414static void arp_format_neigh_entry(struct seq_file *seq,
1415				   struct neighbour *n)
1416{
1417	char hbuffer[HBUFFERLEN];
1418	int k, j;
1419	char tbuf[16];
1420	struct net_device *dev = n->dev;
1421	int hatype = dev->type;
1422
1423	read_lock(&n->lock);
1424	/* Convert hardware address to XX:XX:XX:XX ... form. */
1425#if IS_ENABLED(CONFIG_AX25)
1426	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1427		ax2asc2((ax25_address *)n->ha, hbuffer);
1428	else {
1429#endif
1430	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1431		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1432		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1433		hbuffer[k++] = ':';
1434	}
1435	if (k != 0)
1436		--k;
1437	hbuffer[k] = 0;
1438#if IS_ENABLED(CONFIG_AX25)
1439	}
1440#endif
1441	sprintf(tbuf, "%pI4", n->primary_key);
1442	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1443		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1444	read_unlock(&n->lock);
1445}
1446
1447static void arp_format_pneigh_entry(struct seq_file *seq,
1448				    struct pneigh_entry *n)
1449{
1450	struct net_device *dev = n->dev;
1451	int hatype = dev ? dev->type : 0;
1452	char tbuf[16];
1453
1454	sprintf(tbuf, "%pI4", n->key);
1455	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1456		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1457		   dev ? dev->name : "*");
1458}
1459
1460static int arp_seq_show(struct seq_file *seq, void *v)
1461{
1462	if (v == SEQ_START_TOKEN) {
1463		seq_puts(seq, "IP address       HW type     Flags       "
1464			      "HW address            Mask     Device\n");
1465	} else {
1466		struct neigh_seq_state *state = seq->private;
1467
1468		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1469			arp_format_pneigh_entry(seq, v);
1470		else
1471			arp_format_neigh_entry(seq, v);
1472	}
1473
1474	return 0;
1475}
1476
1477static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1478{
1479	/* Don't want to confuse "arp -a" w/ magic entries,
1480	 * so we tell the generic iterator to skip NUD_NOARP.
1481	 */
1482	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1483}
1484
 
 
1485static const struct seq_operations arp_seq_ops = {
1486	.start	= arp_seq_start,
1487	.next	= neigh_seq_next,
1488	.stop	= neigh_seq_stop,
1489	.show	= arp_seq_show,
1490};
1491#endif /* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492
1493static int __net_init arp_net_init(struct net *net)
1494{
1495	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1496			sizeof(struct neigh_seq_state)))
1497		return -ENOMEM;
1498	return 0;
1499}
1500
1501static void __net_exit arp_net_exit(struct net *net)
1502{
1503	remove_proc_entry("arp", net->proc_net);
1504}
1505
1506static struct pernet_operations arp_net_ops = {
1507	.init = arp_net_init,
1508	.exit = arp_net_exit,
1509};
1510
1511void __init arp_init(void)
1512{
1513	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
 
1514
1515	dev_add_pack(&arp_packet_type);
1516	register_pernet_subsys(&arp_net_ops);
1517#ifdef CONFIG_SYSCTL
1518	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1519#endif
1520	register_netdevice_notifier(&arp_netdev_notifier);
1521}
v3.1
 
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 
 169	.hash		= arp_hash,
 
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 
 
 
 
 
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 
 
 
 
 235
 
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328}
 329
 
 
 
 
 
 
 
 
 
 
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 
 
 
 
 
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 
 
 
 
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 809		goto out;
 
 
 
 
 
 
 
 
 
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 
 
 
 
 
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 
 
 
 
 
 
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 
 
 
 
 
 
 
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 
 
 
 
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 968
 
 
 
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
 
 
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
 
 
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
 
 
 
 
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
 
 
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
 
 
1068			state = NUD_PERMANENT;
 
 
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
 
 
 
 
 
 
 
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
 
 
 
 
 
 
 
 
 
 
 
 
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
 
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
 
 
 
 
 
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
 
1122		neigh_release(neigh);
 
 
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
 
 
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
 
1147	__be32 ip;
1148
 
 
 
 
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
 
 
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
 
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
 
 
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
 
 
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
 
 
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
 
 
 
 
 
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
 
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
 
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
 
1448}
1449
1450#endif /* CONFIG_PROC_FS */