Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
 
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		unsigned long start, unsigned long end);
  82
  83/* description of effects of mapping type and prot in current implementation.
  84 * this is due to the limited x86 page protection hardware.  The expected
  85 * behavior is in parens:
  86 *
  87 * map_type	prot
  88 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  89 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  90 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  91 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  92 *
  93 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  94 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  95 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  96 */
  97pgprot_t protection_map[16] __ro_after_init = {
  98	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  99	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 100};
 101
 102#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 103static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 104{
 105	return prot;
 106}
 107#endif
 108
 109pgprot_t vm_get_page_prot(unsigned long vm_flags)
 110{
 111	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 112				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 113			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 114
 115	return arch_filter_pgprot(ret);
 116}
 117EXPORT_SYMBOL(vm_get_page_prot);
 118
 119static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 120{
 121	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 122}
 123
 124/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 125void vma_set_page_prot(struct vm_area_struct *vma)
 126{
 127	unsigned long vm_flags = vma->vm_flags;
 128	pgprot_t vm_page_prot;
 129
 130	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 131	if (vma_wants_writenotify(vma, vm_page_prot)) {
 132		vm_flags &= ~VM_SHARED;
 133		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 134	}
 135	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 136	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 137}
 138
 139/*
 140 * Requires inode->i_mapping->i_mmap_rwsem
 141 */
 142static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 143		struct file *file, struct address_space *mapping)
 144{
 145	if (vma->vm_flags & VM_DENYWRITE)
 146		atomic_inc(&file_inode(file)->i_writecount);
 147	if (vma->vm_flags & VM_SHARED)
 148		mapping_unmap_writable(mapping);
 149
 150	flush_dcache_mmap_lock(mapping);
 151	vma_interval_tree_remove(vma, &mapping->i_mmap);
 152	flush_dcache_mmap_unlock(mapping);
 153}
 154
 155/*
 156 * Unlink a file-based vm structure from its interval tree, to hide
 157 * vma from rmap and vmtruncate before freeing its page tables.
 158 */
 159void unlink_file_vma(struct vm_area_struct *vma)
 160{
 161	struct file *file = vma->vm_file;
 162
 163	if (file) {
 164		struct address_space *mapping = file->f_mapping;
 165		i_mmap_lock_write(mapping);
 166		__remove_shared_vm_struct(vma, file, mapping);
 167		i_mmap_unlock_write(mapping);
 168	}
 169}
 170
 171/*
 172 * Close a vm structure and free it, returning the next.
 173 */
 174static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 175{
 176	struct vm_area_struct *next = vma->vm_next;
 177
 178	might_sleep();
 179	if (vma->vm_ops && vma->vm_ops->close)
 180		vma->vm_ops->close(vma);
 181	if (vma->vm_file)
 182		fput(vma->vm_file);
 183	mpol_put(vma_policy(vma));
 184	vm_area_free(vma);
 185	return next;
 
 
 186}
 187
 188static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 189		struct list_head *uf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190SYSCALL_DEFINE1(brk, unsigned long, brk)
 191{
 192	unsigned long retval;
 193	unsigned long newbrk, oldbrk, origbrk;
 194	struct mm_struct *mm = current->mm;
 195	struct vm_area_struct *next;
 196	unsigned long min_brk;
 197	bool populate;
 198	bool downgraded = false;
 199	LIST_HEAD(uf);
 
 200
 201	if (mmap_write_lock_killable(mm))
 202		return -EINTR;
 203
 204	origbrk = mm->brk;
 205
 206#ifdef CONFIG_COMPAT_BRK
 207	/*
 208	 * CONFIG_COMPAT_BRK can still be overridden by setting
 209	 * randomize_va_space to 2, which will still cause mm->start_brk
 210	 * to be arbitrarily shifted
 211	 */
 212	if (current->brk_randomized)
 213		min_brk = mm->start_brk;
 214	else
 215		min_brk = mm->end_data;
 216#else
 217	min_brk = mm->start_brk;
 218#endif
 219	if (brk < min_brk)
 220		goto out;
 221
 222	/*
 223	 * Check against rlimit here. If this check is done later after the test
 224	 * of oldbrk with newbrk then it can escape the test and let the data
 225	 * segment grow beyond its set limit the in case where the limit is
 226	 * not page aligned -Ram Gupta
 227	 */
 228	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 229			      mm->end_data, mm->start_data))
 230		goto out;
 231
 232	newbrk = PAGE_ALIGN(brk);
 233	oldbrk = PAGE_ALIGN(mm->brk);
 234	if (oldbrk == newbrk) {
 235		mm->brk = brk;
 236		goto success;
 237	}
 238
 239	/*
 240	 * Always allow shrinking brk.
 241	 * __do_munmap() may downgrade mmap_lock to read.
 242	 */
 243	if (brk <= mm->brk) {
 244		int ret;
 245
 
 
 
 246		/*
 247		 * mm->brk must to be protected by write mmap_lock so update it
 248		 * before downgrading mmap_lock. When __do_munmap() fails,
 249		 * mm->brk will be restored from origbrk.
 250		 */
 251		mm->brk = brk;
 252		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 253		if (ret < 0) {
 254			mm->brk = origbrk;
 255			goto out;
 256		} else if (ret == 1) {
 257			downgraded = true;
 258		}
 259		goto success;
 260	}
 261
 262	/* Check against existing mmap mappings. */
 263	next = find_vma(mm, oldbrk);
 
 
 
 
 
 
 
 264	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 265		goto out;
 266
 
 267	/* Ok, looks good - let it rip. */
 268	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 269		goto out;
 
 270	mm->brk = brk;
 
 
 271
 272success:
 273	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 274	if (downgraded)
 275		mmap_read_unlock(mm);
 276	else
 277		mmap_write_unlock(mm);
 278	userfaultfd_unmap_complete(mm, &uf);
 279	if (populate)
 280		mm_populate(oldbrk, newbrk - oldbrk);
 281	return brk;
 282
 283out:
 284	retval = origbrk;
 285	mmap_write_unlock(mm);
 286	return retval;
 287}
 288
 289static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 290{
 291	unsigned long gap, prev_end;
 292
 293	/*
 294	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 295	 * allow two stack_guard_gaps between them here, and when choosing
 296	 * an unmapped area; whereas when expanding we only require one.
 297	 * That's a little inconsistent, but keeps the code here simpler.
 298	 */
 299	gap = vm_start_gap(vma);
 300	if (vma->vm_prev) {
 301		prev_end = vm_end_gap(vma->vm_prev);
 302		if (gap > prev_end)
 303			gap -= prev_end;
 304		else
 305			gap = 0;
 306	}
 307	return gap;
 308}
 309
 310#ifdef CONFIG_DEBUG_VM_RB
 311static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 312{
 313	unsigned long max = vma_compute_gap(vma), subtree_gap;
 314	if (vma->vm_rb.rb_left) {
 315		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 316				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 317		if (subtree_gap > max)
 318			max = subtree_gap;
 319	}
 320	if (vma->vm_rb.rb_right) {
 321		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 322				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 323		if (subtree_gap > max)
 324			max = subtree_gap;
 325	}
 326	return max;
 327}
 328
 329static int browse_rb(struct mm_struct *mm)
 330{
 331	struct rb_root *root = &mm->mm_rb;
 332	int i = 0, j, bug = 0;
 333	struct rb_node *nd, *pn = NULL;
 334	unsigned long prev = 0, pend = 0;
 335
 336	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 337		struct vm_area_struct *vma;
 338		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 339		if (vma->vm_start < prev) {
 340			pr_emerg("vm_start %lx < prev %lx\n",
 341				  vma->vm_start, prev);
 342			bug = 1;
 343		}
 344		if (vma->vm_start < pend) {
 345			pr_emerg("vm_start %lx < pend %lx\n",
 346				  vma->vm_start, pend);
 347			bug = 1;
 348		}
 349		if (vma->vm_start > vma->vm_end) {
 350			pr_emerg("vm_start %lx > vm_end %lx\n",
 351				  vma->vm_start, vma->vm_end);
 352			bug = 1;
 353		}
 354		spin_lock(&mm->page_table_lock);
 355		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 356			pr_emerg("free gap %lx, correct %lx\n",
 357			       vma->rb_subtree_gap,
 358			       vma_compute_subtree_gap(vma));
 359			bug = 1;
 360		}
 361		spin_unlock(&mm->page_table_lock);
 362		i++;
 363		pn = nd;
 364		prev = vma->vm_start;
 365		pend = vma->vm_end;
 366	}
 367	j = 0;
 368	for (nd = pn; nd; nd = rb_prev(nd))
 369		j++;
 370	if (i != j) {
 371		pr_emerg("backwards %d, forwards %d\n", j, i);
 372		bug = 1;
 373	}
 374	return bug ? -1 : i;
 375}
 376
 377static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 378{
 379	struct rb_node *nd;
 380
 381	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 382		struct vm_area_struct *vma;
 383		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 384		VM_BUG_ON_VMA(vma != ignore &&
 385			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 386			vma);
 387	}
 388}
 389
 
 390static void validate_mm(struct mm_struct *mm)
 391{
 392	int bug = 0;
 393	int i = 0;
 394	unsigned long highest_address = 0;
 395	struct vm_area_struct *vma = mm->mmap;
 396
 397	while (vma) {
 
 
 398		struct anon_vma *anon_vma = vma->anon_vma;
 399		struct anon_vma_chain *avc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400
 
 401		if (anon_vma) {
 402			anon_vma_lock_read(anon_vma);
 403			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 404				anon_vma_interval_tree_verify(avc);
 405			anon_vma_unlock_read(anon_vma);
 406		}
 407
 408		highest_address = vm_end_gap(vma);
 409		vma = vma->vm_next;
 410		i++;
 411	}
 412	if (i != mm->map_count) {
 413		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 414		bug = 1;
 415	}
 416	if (highest_address != mm->highest_vm_end) {
 417		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 418			  mm->highest_vm_end, highest_address);
 419		bug = 1;
 420	}
 421	i = browse_rb(mm);
 422	if (i != mm->map_count) {
 423		if (i != -1)
 424			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 425		bug = 1;
 426	}
 427	VM_BUG_ON_MM(bug, mm);
 428}
 429#else
 430#define validate_mm_rb(root, ignore) do { } while (0)
 431#define validate_mm(mm) do { } while (0)
 432#endif
 433
 434RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 435			 struct vm_area_struct, vm_rb,
 436			 unsigned long, rb_subtree_gap, vma_compute_gap)
 437
 438/*
 439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 441 * in the rbtree.
 442 */
 443static void vma_gap_update(struct vm_area_struct *vma)
 444{
 445	/*
 446	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 447	 * a callback function that does exactly what we want.
 448	 */
 449	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 450}
 451
 452static inline void vma_rb_insert(struct vm_area_struct *vma,
 453				 struct rb_root *root)
 454{
 455	/* All rb_subtree_gap values must be consistent prior to insertion */
 456	validate_mm_rb(root, NULL);
 457
 458	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 459}
 460
 461static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 462{
 463	/*
 464	 * Note rb_erase_augmented is a fairly large inline function,
 465	 * so make sure we instantiate it only once with our desired
 466	 * augmented rbtree callbacks.
 467	 */
 468	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 469}
 470
 471static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 472						struct rb_root *root,
 473						struct vm_area_struct *ignore)
 474{
 475	/*
 476	 * All rb_subtree_gap values must be consistent prior to erase,
 477	 * with the possible exception of the "next" vma being erased if
 478	 * next->vm_start was reduced.
 479	 */
 480	validate_mm_rb(root, ignore);
 481
 482	__vma_rb_erase(vma, root);
 483}
 484
 485static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 486					 struct rb_root *root)
 487{
 488	/*
 489	 * All rb_subtree_gap values must be consistent prior to erase,
 490	 * with the possible exception of the vma being erased.
 491	 */
 492	validate_mm_rb(root, vma);
 493
 494	__vma_rb_erase(vma, root);
 495}
 496
 497/*
 498 * vma has some anon_vma assigned, and is already inserted on that
 499 * anon_vma's interval trees.
 500 *
 501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 502 * vma must be removed from the anon_vma's interval trees using
 503 * anon_vma_interval_tree_pre_update_vma().
 504 *
 505 * After the update, the vma will be reinserted using
 506 * anon_vma_interval_tree_post_update_vma().
 507 *
 508 * The entire update must be protected by exclusive mmap_lock and by
 509 * the root anon_vma's mutex.
 510 */
 511static inline void
 512anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 513{
 514	struct anon_vma_chain *avc;
 515
 516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static inline void
 521anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 522{
 523	struct anon_vma_chain *avc;
 524
 525	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 526		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 527}
 528
 529static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 530		unsigned long end, struct vm_area_struct **pprev,
 531		struct rb_node ***rb_link, struct rb_node **rb_parent)
 532{
 533	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 534
 535	__rb_link = &mm->mm_rb.rb_node;
 536	rb_prev = __rb_parent = NULL;
 537
 538	while (*__rb_link) {
 539		struct vm_area_struct *vma_tmp;
 540
 541		__rb_parent = *__rb_link;
 542		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 543
 544		if (vma_tmp->vm_end > addr) {
 545			/* Fail if an existing vma overlaps the area */
 546			if (vma_tmp->vm_start < end)
 547				return -ENOMEM;
 548			__rb_link = &__rb_parent->rb_left;
 549		} else {
 550			rb_prev = __rb_parent;
 551			__rb_link = &__rb_parent->rb_right;
 552		}
 553	}
 554
 555	*pprev = NULL;
 556	if (rb_prev)
 557		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 558	*rb_link = __rb_link;
 559	*rb_parent = __rb_parent;
 560	return 0;
 561}
 562
 563static unsigned long count_vma_pages_range(struct mm_struct *mm,
 564		unsigned long addr, unsigned long end)
 565{
 566	unsigned long nr_pages = 0;
 567	struct vm_area_struct *vma;
 
 568
 569	/* Find first overlaping mapping */
 570	vma = find_vma_intersection(mm, addr, end);
 571	if (!vma)
 572		return 0;
 573
 574	nr_pages = (min(end, vma->vm_end) -
 575		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 576
 577	/* Iterate over the rest of the overlaps */
 578	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 579		unsigned long overlap_len;
 580
 581		if (vma->vm_start > end)
 582			break;
 583
 584		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 585		nr_pages += overlap_len >> PAGE_SHIFT;
 586	}
 587
 588	return nr_pages;
 589}
 590
 591void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 592		struct rb_node **rb_link, struct rb_node *rb_parent)
 593{
 594	/* Update tracking information for the gap following the new vma. */
 595	if (vma->vm_next)
 596		vma_gap_update(vma->vm_next);
 597	else
 598		mm->highest_vm_end = vm_end_gap(vma);
 599
 600	/*
 601	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 602	 * correct insertion point for that vma. As a result, we could not
 603	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 604	 * So, we first insert the vma with a zero rb_subtree_gap value
 605	 * (to be consistent with what we did on the way down), and then
 606	 * immediately update the gap to the correct value. Finally we
 607	 * rebalance the rbtree after all augmented values have been set.
 608	 */
 609	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 610	vma->rb_subtree_gap = 0;
 611	vma_gap_update(vma);
 612	vma_rb_insert(vma, &mm->mm_rb);
 613}
 614
 615static void __vma_link_file(struct vm_area_struct *vma)
 616{
 617	struct file *file;
 
 618
 619	file = vma->vm_file;
 620	if (file) {
 621		struct address_space *mapping = file->f_mapping;
 622
 623		if (vma->vm_flags & VM_DENYWRITE)
 624			atomic_dec(&file_inode(file)->i_writecount);
 625		if (vma->vm_flags & VM_SHARED)
 626			atomic_inc(&mapping->i_mmap_writable);
 627
 628		flush_dcache_mmap_lock(mapping);
 629		vma_interval_tree_insert(vma, &mapping->i_mmap);
 630		flush_dcache_mmap_unlock(mapping);
 631	}
 632}
 633
 634static void
 635__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 636	struct vm_area_struct *prev, struct rb_node **rb_link,
 637	struct rb_node *rb_parent)
 638{
 639	__vma_link_list(mm, vma, prev);
 640	__vma_link_rb(mm, vma, rb_link, rb_parent);
 641}
 642
 643static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 644			struct vm_area_struct *prev, struct rb_node **rb_link,
 645			struct rb_node *rb_parent)
 646{
 647	struct address_space *mapping = NULL;
 648
 649	if (vma->vm_file) {
 650		mapping = vma->vm_file->f_mapping;
 651		i_mmap_lock_write(mapping);
 652	}
 653
 654	__vma_link(mm, vma, prev, rb_link, rb_parent);
 655	__vma_link_file(vma);
 656
 657	if (mapping)
 658		i_mmap_unlock_write(mapping);
 659
 
 
 
 660	mm->map_count++;
 661	validate_mm(mm);
 
 662}
 663
 664/*
 665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 666 * mm's list and rbtree.  It has already been inserted into the interval tree.
 
 
 
 
 667 */
 668static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 
 
 669{
 670	struct vm_area_struct *prev;
 671	struct rb_node **rb_link, *rb_parent;
 
 
 
 
 
 
 672
 673	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 674			   &prev, &rb_link, &rb_parent))
 675		BUG();
 676	__vma_link(mm, vma, prev, rb_link, rb_parent);
 677	mm->map_count++;
 678}
 679
 680static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 681						struct vm_area_struct *vma,
 682						struct vm_area_struct *ignore)
 683{
 684	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 685	__vma_unlink_list(mm, vma);
 686	/* Kill the cache */
 687	vmacache_invalidate(mm);
 688}
 689
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 699	struct vm_area_struct *expand)
 700{
 701	struct mm_struct *mm = vma->vm_mm;
 702	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 703	struct address_space *mapping = NULL;
 704	struct rb_root_cached *root = NULL;
 705	struct anon_vma *anon_vma = NULL;
 706	struct file *file = vma->vm_file;
 707	bool start_changed = false, end_changed = false;
 708	long adjust_next = 0;
 709	int remove_next = 0;
 710
 711	if (next && !insert) {
 712		struct vm_area_struct *exporter = NULL, *importer = NULL;
 713
 714		if (end >= next->vm_end) {
 715			/*
 716			 * vma expands, overlapping all the next, and
 717			 * perhaps the one after too (mprotect case 6).
 718			 * The only other cases that gets here are
 719			 * case 1, case 7 and case 8.
 720			 */
 721			if (next == expand) {
 722				/*
 723				 * The only case where we don't expand "vma"
 724				 * and we expand "next" instead is case 8.
 725				 */
 726				VM_WARN_ON(end != next->vm_end);
 727				/*
 728				 * remove_next == 3 means we're
 729				 * removing "vma" and that to do so we
 730				 * swapped "vma" and "next".
 731				 */
 732				remove_next = 3;
 733				VM_WARN_ON(file != next->vm_file);
 734				swap(vma, next);
 735			} else {
 736				VM_WARN_ON(expand != vma);
 737				/*
 738				 * case 1, 6, 7, remove_next == 2 is case 6,
 739				 * remove_next == 1 is case 1 or 7.
 740				 */
 741				remove_next = 1 + (end > next->vm_end);
 742				VM_WARN_ON(remove_next == 2 &&
 743					   end != next->vm_next->vm_end);
 744				/* trim end to next, for case 6 first pass */
 745				end = next->vm_end;
 746			}
 747
 748			exporter = next;
 749			importer = vma;
 750
 751			/*
 752			 * If next doesn't have anon_vma, import from vma after
 753			 * next, if the vma overlaps with it.
 754			 */
 755			if (remove_next == 2 && !next->anon_vma)
 756				exporter = next->vm_next;
 757
 758		} else if (end > next->vm_start) {
 759			/*
 760			 * vma expands, overlapping part of the next:
 761			 * mprotect case 5 shifting the boundary up.
 762			 */
 763			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 764			exporter = next;
 765			importer = vma;
 766			VM_WARN_ON(expand != importer);
 767		} else if (end < vma->vm_end) {
 768			/*
 769			 * vma shrinks, and !insert tells it's not
 770			 * split_vma inserting another: so it must be
 771			 * mprotect case 4 shifting the boundary down.
 772			 */
 773			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 774			exporter = vma;
 775			importer = next;
 776			VM_WARN_ON(expand != importer);
 777		}
 778
 779		/*
 780		 * Easily overlooked: when mprotect shifts the boundary,
 781		 * make sure the expanding vma has anon_vma set if the
 782		 * shrinking vma had, to cover any anon pages imported.
 783		 */
 784		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 785			int error;
 786
 787			importer->anon_vma = exporter->anon_vma;
 788			error = anon_vma_clone(importer, exporter);
 789			if (error)
 790				return error;
 791		}
 792	}
 793again:
 794	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 795
 796	if (file) {
 797		mapping = file->f_mapping;
 798		root = &mapping->i_mmap;
 799		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 
 
 
 
 800
 801		if (adjust_next)
 802			uprobe_munmap(next, next->vm_start, next->vm_end);
 
 803
 804		i_mmap_lock_write(mapping);
 805		if (insert) {
 806			/*
 807			 * Put into interval tree now, so instantiated pages
 808			 * are visible to arm/parisc __flush_dcache_page
 809			 * throughout; but we cannot insert into address
 810			 * space until vma start or end is updated.
 811			 */
 812			__vma_link_file(insert);
 
 813		}
 814	}
 815
 816	anon_vma = vma->anon_vma;
 817	if (!anon_vma && adjust_next)
 818		anon_vma = next->anon_vma;
 819	if (anon_vma) {
 820		VM_WARN_ON(adjust_next && next->anon_vma &&
 821			   anon_vma != next->anon_vma);
 822		anon_vma_lock_write(anon_vma);
 823		anon_vma_interval_tree_pre_update_vma(vma);
 824		if (adjust_next)
 825			anon_vma_interval_tree_pre_update_vma(next);
 826	}
 827
 828	if (root) {
 829		flush_dcache_mmap_lock(mapping);
 830		vma_interval_tree_remove(vma, root);
 831		if (adjust_next)
 832			vma_interval_tree_remove(next, root);
 
 833	}
 834
 835	if (start != vma->vm_start) {
 836		vma->vm_start = start;
 837		start_changed = true;
 838	}
 839	if (end != vma->vm_end) {
 840		vma->vm_end = end;
 841		end_changed = true;
 842	}
 843	vma->vm_pgoff = pgoff;
 844	if (adjust_next) {
 845		next->vm_start += adjust_next << PAGE_SHIFT;
 846		next->vm_pgoff += adjust_next;
 847	}
 848
 849	if (root) {
 850		if (adjust_next)
 851			vma_interval_tree_insert(next, root);
 852		vma_interval_tree_insert(vma, root);
 853		flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 854	}
 855
 856	if (remove_next) {
 857		/*
 858		 * vma_merge has merged next into vma, and needs
 859		 * us to remove next before dropping the locks.
 860		 */
 861		if (remove_next != 3)
 862			__vma_unlink_common(mm, next, next);
 863		else
 864			/*
 865			 * vma is not before next if they've been
 866			 * swapped.
 867			 *
 868			 * pre-swap() next->vm_start was reduced so
 869			 * tell validate_mm_rb to ignore pre-swap()
 870			 * "next" (which is stored in post-swap()
 871			 * "vma").
 872			 */
 873			__vma_unlink_common(mm, next, vma);
 874		if (file)
 875			__remove_shared_vm_struct(next, file, mapping);
 876	} else if (insert) {
 877		/*
 878		 * split_vma has split insert from vma, and needs
 879		 * us to insert it before dropping the locks
 880		 * (it may either follow vma or precede it).
 881		 */
 882		__insert_vm_struct(mm, insert);
 883	} else {
 884		if (start_changed)
 885			vma_gap_update(vma);
 886		if (end_changed) {
 887			if (!next)
 888				mm->highest_vm_end = vm_end_gap(vma);
 889			else if (!adjust_next)
 890				vma_gap_update(next);
 891		}
 892	}
 893
 894	if (anon_vma) {
 895		anon_vma_interval_tree_post_update_vma(vma);
 896		if (adjust_next)
 897			anon_vma_interval_tree_post_update_vma(next);
 898		anon_vma_unlock_write(anon_vma);
 899	}
 900	if (mapping)
 901		i_mmap_unlock_write(mapping);
 902
 903	if (root) {
 904		uprobe_mmap(vma);
 
 905
 906		if (adjust_next)
 907			uprobe_mmap(next);
 908	}
 909
 910	if (remove_next) {
 911		if (file) {
 912			uprobe_munmap(next, next->vm_start, next->vm_end);
 913			fput(file);
 
 
 
 914		}
 915		if (next->anon_vma)
 916			anon_vma_merge(vma, next);
 917		mm->map_count--;
 918		mpol_put(vma_policy(next));
 919		vm_area_free(next);
 
 
 
 920		/*
 921		 * In mprotect's case 6 (see comments on vma_merge),
 922		 * we must remove another next too. It would clutter
 923		 * up the code too much to do both in one go.
 924		 */
 925		if (remove_next != 3) {
 926			/*
 927			 * If "next" was removed and vma->vm_end was
 928			 * expanded (up) over it, in turn
 929			 * "next->vm_prev->vm_end" changed and the
 930			 * "vma->vm_next" gap must be updated.
 931			 */
 932			next = vma->vm_next;
 933		} else {
 934			/*
 935			 * For the scope of the comment "next" and
 936			 * "vma" considered pre-swap(): if "vma" was
 937			 * removed, next->vm_start was expanded (down)
 938			 * over it and the "next" gap must be updated.
 939			 * Because of the swap() the post-swap() "vma"
 940			 * actually points to pre-swap() "next"
 941			 * (post-swap() "next" as opposed is now a
 942			 * dangling pointer).
 943			 */
 944			next = vma;
 945		}
 946		if (remove_next == 2) {
 947			remove_next = 1;
 948			end = next->vm_end;
 949			goto again;
 950		}
 951		else if (next)
 952			vma_gap_update(next);
 953		else {
 954			/*
 955			 * If remove_next == 2 we obviously can't
 956			 * reach this path.
 957			 *
 958			 * If remove_next == 3 we can't reach this
 959			 * path because pre-swap() next is always not
 960			 * NULL. pre-swap() "next" is not being
 961			 * removed and its next->vm_end is not altered
 962			 * (and furthermore "end" already matches
 963			 * next->vm_end in remove_next == 3).
 964			 *
 965			 * We reach this only in the remove_next == 1
 966			 * case if the "next" vma that was removed was
 967			 * the highest vma of the mm. However in such
 968			 * case next->vm_end == "end" and the extended
 969			 * "vma" has vma->vm_end == next->vm_end so
 970			 * mm->highest_vm_end doesn't need any update
 971			 * in remove_next == 1 case.
 972			 */
 973			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
 974		}
 975	}
 976	if (insert && file)
 977		uprobe_mmap(insert);
 978
 979	validate_mm(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 
 
 
 981	return 0;
 982}
 983
 984/*
 985 * If the vma has a ->close operation then the driver probably needs to release
 986 * per-vma resources, so we don't attempt to merge those.
 
 987 */
 988static inline int is_mergeable_vma(struct vm_area_struct *vma,
 989				struct file *file, unsigned long vm_flags,
 990				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 
 991{
 992	/*
 993	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 994	 * match the flags but dirty bit -- the caller should mark
 995	 * merged VMA as dirty. If dirty bit won't be excluded from
 996	 * comparison, we increase pressure on the memory system forcing
 997	 * the kernel to generate new VMAs when old one could be
 998	 * extended instead.
 999	 */
1000	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001		return 0;
1002	if (vma->vm_file != file)
1003		return 0;
1004	if (vma->vm_ops && vma->vm_ops->close)
1005		return 0;
1006	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007		return 0;
1008	return 1;
 
 
1009}
1010
1011static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012					struct anon_vma *anon_vma2,
1013					struct vm_area_struct *vma)
1014{
1015	/*
1016	 * The list_is_singular() test is to avoid merging VMA cloned from
1017	 * parents. This can improve scalability caused by anon_vma lock.
1018	 */
1019	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020		list_is_singular(&vma->anon_vma_chain)))
1021		return 1;
1022	return anon_vma1 == anon_vma2;
1023}
1024
1025/*
1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027 * in front of (at a lower virtual address and file offset than) the vma.
1028 *
1029 * We cannot merge two vmas if they have differently assigned (non-NULL)
1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031 *
1032 * We don't check here for the merged mmap wrapping around the end of pagecache
1033 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1034 * wrap, nor mmaps which cover the final page at index -1UL.
 
 
1035 */
1036static int
1037can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038		     struct anon_vma *anon_vma, struct file *file,
1039		     pgoff_t vm_pgoff,
1040		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041{
1042	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044		if (vma->vm_pgoff == vm_pgoff)
1045			return 1;
1046	}
1047	return 0;
1048}
1049
1050/*
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * beyond (at a higher virtual address and file offset than) the vma.
1053 *
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 
 
1056 */
1057static int
1058can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059		    struct anon_vma *anon_vma, struct file *file,
1060		    pgoff_t vm_pgoff,
1061		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062{
1063	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065		pgoff_t vm_pglen;
1066		vm_pglen = vma_pages(vma);
1067		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068			return 1;
1069	}
1070	return 0;
1071}
1072
1073/*
1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075 * whether that can be merged with its predecessor or its successor.
1076 * Or both (it neatly fills a hole).
1077 *
1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079 * certain not to be mapped by the time vma_merge is called; but when
1080 * called for mprotect, it is certain to be already mapped (either at
1081 * an offset within prev, or at the start of next), and the flags of
1082 * this area are about to be changed to vm_flags - and the no-change
1083 * case has already been eliminated.
1084 *
1085 * The following mprotect cases have to be considered, where AAAA is
1086 * the area passed down from mprotect_fixup, never extending beyond one
1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 
 
1088 *
1089 *     AAAA             AAAA                   AAAA
1090 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1091 *    cannot merge    might become       might become
1092 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1093 *    mmap, brk or    case 4 below       case 5 below
1094 *    mremap move:
1095 *                        AAAA               AAAA
1096 *                    PPPP    NNNN       PPPPNNNNXXXX
1097 *                    might become       might become
1098 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1099 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1100 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1101 *
1102 * It is important for case 8 that the vma NNNN overlapping the
1103 * region AAAA is never going to extended over XXXX. Instead XXXX must
1104 * be extended in region AAAA and NNNN must be removed. This way in
1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106 * rmap_locks, the properties of the merged vma will be already
1107 * correct for the whole merged range. Some of those properties like
1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109 * be correct for the whole merged range immediately after the
1110 * rmap_locks are released. Otherwise if XXXX would be removed and
1111 * NNNN would be extended over the XXXX range, remove_migration_ptes
1112 * or other rmap walkers (if working on addresses beyond the "end"
1113 * parameter) may establish ptes with the wrong permissions of NNNN
1114 * instead of the right permissions of XXXX.
1115 */
1116struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117			struct vm_area_struct *prev, unsigned long addr,
1118			unsigned long end, unsigned long vm_flags,
1119			struct anon_vma *anon_vma, struct file *file,
1120			pgoff_t pgoff, struct mempolicy *policy,
1121			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124	struct vm_area_struct *area, *next;
1125	int err;
1126
1127	/*
1128	 * We later require that vma->vm_flags == vm_flags,
1129	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1130	 */
1131	if (vm_flags & VM_SPECIAL)
1132		return NULL;
1133
1134	if (prev)
1135		next = prev->vm_next;
 
 
 
 
1136	else
1137		next = mm->mmap;
1138	area = next;
1139	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1140		next = next->vm_next;
 
1141
1142	/* verify some invariant that must be enforced by the caller */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143	VM_WARN_ON(prev && addr <= prev->vm_start);
1144	VM_WARN_ON(area && end > area->vm_end);
1145	VM_WARN_ON(addr >= end);
1146
1147	/*
1148	 * Can it merge with the predecessor?
1149	 */
1150	if (prev && prev->vm_end == addr &&
1151			mpol_equal(vma_policy(prev), policy) &&
1152			can_vma_merge_after(prev, vm_flags,
1153					    anon_vma, file, pgoff,
1154					    vm_userfaultfd_ctx)) {
1155		/*
1156		 * OK, it can.  Can we now merge in the successor as well?
1157		 */
1158		if (next && end == next->vm_start &&
1159				mpol_equal(policy, vma_policy(next)) &&
1160				can_vma_merge_before(next, vm_flags,
1161						     anon_vma, file,
1162						     pgoff+pglen,
1163						     vm_userfaultfd_ctx) &&
1164				is_mergeable_anon_vma(prev->anon_vma,
1165						      next->anon_vma, NULL)) {
1166							/* cases 1, 6 */
1167			err = __vma_adjust(prev, prev->vm_start,
1168					 next->vm_end, prev->vm_pgoff, NULL,
1169					 prev);
1170		} else					/* cases 2, 5, 7 */
1171			err = __vma_adjust(prev, prev->vm_start,
1172					 end, prev->vm_pgoff, NULL, prev);
1173		if (err)
1174			return NULL;
1175		khugepaged_enter_vma_merge(prev, vm_flags);
1176		return prev;
1177	}
1178
1179	/*
1180	 * Can this new request be merged in front of next?
1181	 */
1182	if (next && end == next->vm_start &&
1183			mpol_equal(policy, vma_policy(next)) &&
1184			can_vma_merge_before(next, vm_flags,
1185					     anon_vma, file, pgoff+pglen,
1186					     vm_userfaultfd_ctx)) {
1187		if (prev && addr < prev->vm_end)	/* case 4 */
1188			err = __vma_adjust(prev, prev->vm_start,
1189					 addr, prev->vm_pgoff, NULL, next);
1190		else {					/* cases 3, 8 */
1191			err = __vma_adjust(area, addr, next->vm_end,
1192					 next->vm_pgoff - pglen, NULL, next);
 
 
 
1193			/*
1194			 * In case 3 area is already equal to next and
1195			 * this is a noop, but in case 8 "area" has
1196			 * been removed and next was expanded over it.
1197			 */
1198			area = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199		}
1200		if (err)
1201			return NULL;
1202		khugepaged_enter_vma_merge(area, vm_flags);
1203		return area;
1204	}
1205
 
 
 
 
 
 
 
 
 
 
 
1206	return NULL;
1207}
1208
1209/*
1210 * Rough compatibility check to quickly see if it's even worth looking
1211 * at sharing an anon_vma.
1212 *
1213 * They need to have the same vm_file, and the flags can only differ
1214 * in things that mprotect may change.
1215 *
1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217 * we can merge the two vma's. For example, we refuse to merge a vma if
1218 * there is a vm_ops->close() function, because that indicates that the
1219 * driver is doing some kind of reference counting. But that doesn't
1220 * really matter for the anon_vma sharing case.
1221 */
1222static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223{
1224	return a->vm_end == b->vm_start &&
1225		mpol_equal(vma_policy(a), vma_policy(b)) &&
1226		a->vm_file == b->vm_file &&
1227		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229}
1230
1231/*
1232 * Do some basic sanity checking to see if we can re-use the anon_vma
1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234 * the same as 'old', the other will be the new one that is trying
1235 * to share the anon_vma.
1236 *
1237 * NOTE! This runs with mm_sem held for reading, so it is possible that
1238 * the anon_vma of 'old' is concurrently in the process of being set up
1239 * by another page fault trying to merge _that_. But that's ok: if it
1240 * is being set up, that automatically means that it will be a singleton
1241 * acceptable for merging, so we can do all of this optimistically. But
1242 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243 *
1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246 * is to return an anon_vma that is "complex" due to having gone through
1247 * a fork).
1248 *
1249 * We also make sure that the two vma's are compatible (adjacent,
1250 * and with the same memory policies). That's all stable, even with just
1251 * a read lock on the mm_sem.
1252 */
1253static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254{
1255	if (anon_vma_compatible(a, b)) {
1256		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257
1258		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259			return anon_vma;
1260	}
1261	return NULL;
1262}
1263
1264/*
1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266 * neighbouring vmas for a suitable anon_vma, before it goes off
1267 * to allocate a new anon_vma.  It checks because a repetitive
1268 * sequence of mprotects and faults may otherwise lead to distinct
1269 * anon_vmas being allocated, preventing vma merge in subsequent
1270 * mprotect.
1271 */
1272struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273{
 
1274	struct anon_vma *anon_vma = NULL;
 
1275
1276	/* Try next first. */
1277	if (vma->vm_next) {
1278		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
 
1279		if (anon_vma)
1280			return anon_vma;
1281	}
1282
 
 
 
1283	/* Try prev next. */
1284	if (vma->vm_prev)
1285		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286
1287	/*
1288	 * We might reach here with anon_vma == NULL if we can't find
1289	 * any reusable anon_vma.
1290	 * There's no absolute need to look only at touching neighbours:
1291	 * we could search further afield for "compatible" anon_vmas.
1292	 * But it would probably just be a waste of time searching,
1293	 * or lead to too many vmas hanging off the same anon_vma.
1294	 * We're trying to allow mprotect remerging later on,
1295	 * not trying to minimize memory used for anon_vmas.
1296	 */
1297	return anon_vma;
1298}
1299
1300/*
1301 * If a hint addr is less than mmap_min_addr change hint to be as
1302 * low as possible but still greater than mmap_min_addr
1303 */
1304static inline unsigned long round_hint_to_min(unsigned long hint)
1305{
1306	hint &= PAGE_MASK;
1307	if (((void *)hint != NULL) &&
1308	    (hint < mmap_min_addr))
1309		return PAGE_ALIGN(mmap_min_addr);
1310	return hint;
1311}
1312
1313static inline int mlock_future_check(struct mm_struct *mm,
1314				     unsigned long flags,
1315				     unsigned long len)
1316{
1317	unsigned long locked, lock_limit;
1318
1319	/*  mlock MCL_FUTURE? */
1320	if (flags & VM_LOCKED) {
1321		locked = len >> PAGE_SHIFT;
1322		locked += mm->locked_vm;
1323		lock_limit = rlimit(RLIMIT_MEMLOCK);
1324		lock_limit >>= PAGE_SHIFT;
1325		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326			return -EAGAIN;
1327	}
1328	return 0;
1329}
1330
1331static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332{
1333	if (S_ISREG(inode->i_mode))
1334		return MAX_LFS_FILESIZE;
1335
1336	if (S_ISBLK(inode->i_mode))
1337		return MAX_LFS_FILESIZE;
1338
1339	if (S_ISSOCK(inode->i_mode))
1340		return MAX_LFS_FILESIZE;
1341
1342	/* Special "we do even unsigned file positions" case */
1343	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344		return 0;
1345
1346	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347	return ULONG_MAX;
1348}
1349
1350static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351				unsigned long pgoff, unsigned long len)
1352{
1353	u64 maxsize = file_mmap_size_max(file, inode);
1354
1355	if (maxsize && len > maxsize)
1356		return false;
1357	maxsize -= len;
1358	if (pgoff > maxsize >> PAGE_SHIFT)
1359		return false;
1360	return true;
1361}
1362
1363/*
1364 * The caller must write-lock current->mm->mmap_lock.
1365 */
1366unsigned long do_mmap(struct file *file, unsigned long addr,
1367			unsigned long len, unsigned long prot,
1368			unsigned long flags, unsigned long pgoff,
1369			unsigned long *populate, struct list_head *uf)
 
1370{
1371	struct mm_struct *mm = current->mm;
1372	vm_flags_t vm_flags;
1373	int pkey = 0;
1374
1375	*populate = 0;
1376
1377	if (!len)
1378		return -EINVAL;
1379
1380	/*
1381	 * Does the application expect PROT_READ to imply PROT_EXEC?
1382	 *
1383	 * (the exception is when the underlying filesystem is noexec
1384	 *  mounted, in which case we dont add PROT_EXEC.)
1385	 */
1386	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387		if (!(file && path_noexec(&file->f_path)))
1388			prot |= PROT_EXEC;
1389
1390	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1391	if (flags & MAP_FIXED_NOREPLACE)
1392		flags |= MAP_FIXED;
1393
1394	if (!(flags & MAP_FIXED))
1395		addr = round_hint_to_min(addr);
1396
1397	/* Careful about overflows.. */
1398	len = PAGE_ALIGN(len);
1399	if (!len)
1400		return -ENOMEM;
1401
1402	/* offset overflow? */
1403	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404		return -EOVERFLOW;
1405
1406	/* Too many mappings? */
1407	if (mm->map_count > sysctl_max_map_count)
1408		return -ENOMEM;
1409
1410	/* Obtain the address to map to. we verify (or select) it and ensure
1411	 * that it represents a valid section of the address space.
1412	 */
1413	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414	if (IS_ERR_VALUE(addr))
1415		return addr;
1416
1417	if (flags & MAP_FIXED_NOREPLACE) {
1418		struct vm_area_struct *vma = find_vma(mm, addr);
1419
1420		if (vma && vma->vm_start < addr + len)
1421			return -EEXIST;
1422	}
1423
1424	if (prot == PROT_EXEC) {
1425		pkey = execute_only_pkey(mm);
1426		if (pkey < 0)
1427			pkey = 0;
1428	}
1429
1430	/* Do simple checking here so the lower-level routines won't have
1431	 * to. we assume access permissions have been handled by the open
1432	 * of the memory object, so we don't do any here.
1433	 */
1434	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436
1437	if (flags & MAP_LOCKED)
1438		if (!can_do_mlock())
1439			return -EPERM;
1440
1441	if (mlock_future_check(mm, vm_flags, len))
1442		return -EAGAIN;
1443
1444	if (file) {
1445		struct inode *inode = file_inode(file);
1446		unsigned long flags_mask;
1447
1448		if (!file_mmap_ok(file, inode, pgoff, len))
1449			return -EOVERFLOW;
1450
1451		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452
1453		switch (flags & MAP_TYPE) {
1454		case MAP_SHARED:
1455			/*
1456			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1457			 * flags. E.g. MAP_SYNC is dangerous to use with
1458			 * MAP_SHARED as you don't know which consistency model
1459			 * you will get. We silently ignore unsupported flags
1460			 * with MAP_SHARED to preserve backward compatibility.
1461			 */
1462			flags &= LEGACY_MAP_MASK;
1463			fallthrough;
1464		case MAP_SHARED_VALIDATE:
1465			if (flags & ~flags_mask)
1466				return -EOPNOTSUPP;
1467			if (prot & PROT_WRITE) {
1468				if (!(file->f_mode & FMODE_WRITE))
1469					return -EACCES;
1470				if (IS_SWAPFILE(file->f_mapping->host))
1471					return -ETXTBSY;
1472			}
1473
1474			/*
1475			 * Make sure we don't allow writing to an append-only
1476			 * file..
1477			 */
1478			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479				return -EACCES;
1480
1481			/*
1482			 * Make sure there are no mandatory locks on the file.
1483			 */
1484			if (locks_verify_locked(file))
1485				return -EAGAIN;
1486
1487			vm_flags |= VM_SHARED | VM_MAYSHARE;
1488			if (!(file->f_mode & FMODE_WRITE))
1489				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490			fallthrough;
1491		case MAP_PRIVATE:
1492			if (!(file->f_mode & FMODE_READ))
1493				return -EACCES;
1494			if (path_noexec(&file->f_path)) {
1495				if (vm_flags & VM_EXEC)
1496					return -EPERM;
1497				vm_flags &= ~VM_MAYEXEC;
1498			}
1499
1500			if (!file->f_op->mmap)
1501				return -ENODEV;
1502			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503				return -EINVAL;
1504			break;
1505
1506		default:
1507			return -EINVAL;
1508		}
1509	} else {
1510		switch (flags & MAP_TYPE) {
1511		case MAP_SHARED:
1512			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513				return -EINVAL;
1514			/*
1515			 * Ignore pgoff.
1516			 */
1517			pgoff = 0;
1518			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519			break;
1520		case MAP_PRIVATE:
1521			/*
1522			 * Set pgoff according to addr for anon_vma.
1523			 */
1524			pgoff = addr >> PAGE_SHIFT;
1525			break;
1526		default:
1527			return -EINVAL;
1528		}
1529	}
1530
1531	/*
1532	 * Set 'VM_NORESERVE' if we should not account for the
1533	 * memory use of this mapping.
1534	 */
1535	if (flags & MAP_NORESERVE) {
1536		/* We honor MAP_NORESERVE if allowed to overcommit */
1537		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538			vm_flags |= VM_NORESERVE;
1539
1540		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541		if (file && is_file_hugepages(file))
1542			vm_flags |= VM_NORESERVE;
1543	}
1544
1545	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546	if (!IS_ERR_VALUE(addr) &&
1547	    ((vm_flags & VM_LOCKED) ||
1548	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549		*populate = len;
1550	return addr;
1551}
1552
1553unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554			      unsigned long prot, unsigned long flags,
1555			      unsigned long fd, unsigned long pgoff)
1556{
1557	struct file *file = NULL;
1558	unsigned long retval;
1559
1560	if (!(flags & MAP_ANONYMOUS)) {
1561		audit_mmap_fd(fd, flags);
1562		file = fget(fd);
1563		if (!file)
1564			return -EBADF;
1565		if (is_file_hugepages(file)) {
1566			len = ALIGN(len, huge_page_size(hstate_file(file)));
1567		} else if (unlikely(flags & MAP_HUGETLB)) {
1568			retval = -EINVAL;
1569			goto out_fput;
1570		}
1571	} else if (flags & MAP_HUGETLB) {
1572		struct user_struct *user = NULL;
1573		struct hstate *hs;
1574
1575		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1576		if (!hs)
1577			return -EINVAL;
1578
1579		len = ALIGN(len, huge_page_size(hs));
1580		/*
1581		 * VM_NORESERVE is used because the reservations will be
1582		 * taken when vm_ops->mmap() is called
1583		 * A dummy user value is used because we are not locking
1584		 * memory so no accounting is necessary
1585		 */
1586		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1587				VM_NORESERVE,
1588				&user, HUGETLB_ANONHUGE_INODE,
1589				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590		if (IS_ERR(file))
1591			return PTR_ERR(file);
1592	}
1593
1594	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1595
1596	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1597out_fput:
1598	if (file)
1599		fput(file);
1600	return retval;
1601}
1602
1603SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1604		unsigned long, prot, unsigned long, flags,
1605		unsigned long, fd, unsigned long, pgoff)
1606{
1607	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1608}
1609
1610#ifdef __ARCH_WANT_SYS_OLD_MMAP
1611struct mmap_arg_struct {
1612	unsigned long addr;
1613	unsigned long len;
1614	unsigned long prot;
1615	unsigned long flags;
1616	unsigned long fd;
1617	unsigned long offset;
1618};
1619
1620SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1621{
1622	struct mmap_arg_struct a;
1623
1624	if (copy_from_user(&a, arg, sizeof(a)))
1625		return -EFAULT;
1626	if (offset_in_page(a.offset))
1627		return -EINVAL;
1628
1629	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1630			       a.offset >> PAGE_SHIFT);
1631}
1632#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634/*
1635 * Some shared mappings will want the pages marked read-only
1636 * to track write events. If so, we'll downgrade vm_page_prot
1637 * to the private version (using protection_map[] without the
1638 * VM_SHARED bit).
1639 */
1640int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1641{
1642	vm_flags_t vm_flags = vma->vm_flags;
1643	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1644
1645	/* If it was private or non-writable, the write bit is already clear */
1646	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1647		return 0;
1648
1649	/* The backer wishes to know when pages are first written to? */
1650	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1651		return 1;
1652
1653	/* The open routine did something to the protections that pgprot_modify
1654	 * won't preserve? */
1655	if (pgprot_val(vm_page_prot) !=
1656	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1657		return 0;
1658
1659	/* Do we need to track softdirty? */
1660	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
 
 
 
1661		return 1;
1662
1663	/* Specialty mapping? */
1664	if (vm_flags & VM_PFNMAP)
1665		return 0;
1666
1667	/* Can the mapping track the dirty pages? */
1668	return vma->vm_file && vma->vm_file->f_mapping &&
1669		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1670}
1671
1672/*
1673 * We account for memory if it's a private writeable mapping,
1674 * not hugepages and VM_NORESERVE wasn't set.
1675 */
1676static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1677{
1678	/*
1679	 * hugetlb has its own accounting separate from the core VM
1680	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681	 */
1682	if (file && is_file_hugepages(file))
1683		return 0;
1684
1685	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1686}
1687
1688unsigned long mmap_region(struct file *file, unsigned long addr,
1689		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1690		struct list_head *uf)
1691{
1692	struct mm_struct *mm = current->mm;
1693	struct vm_area_struct *vma, *prev, *merge;
1694	int error;
1695	struct rb_node **rb_link, *rb_parent;
1696	unsigned long charged = 0;
1697
1698	/* Check against address space limit. */
1699	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1700		unsigned long nr_pages;
1701
1702		/*
1703		 * MAP_FIXED may remove pages of mappings that intersects with
1704		 * requested mapping. Account for the pages it would unmap.
1705		 */
1706		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1707
1708		if (!may_expand_vm(mm, vm_flags,
1709					(len >> PAGE_SHIFT) - nr_pages))
1710			return -ENOMEM;
1711	}
1712
1713	/* Clear old maps */
1714	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1715			      &rb_parent)) {
1716		if (do_munmap(mm, addr, len, uf))
1717			return -ENOMEM;
1718	}
1719
1720	/*
1721	 * Private writable mapping: check memory availability
1722	 */
1723	if (accountable_mapping(file, vm_flags)) {
1724		charged = len >> PAGE_SHIFT;
1725		if (security_vm_enough_memory_mm(mm, charged))
1726			return -ENOMEM;
1727		vm_flags |= VM_ACCOUNT;
1728	}
1729
1730	/*
1731	 * Can we just expand an old mapping?
1732	 */
1733	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1734			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1735	if (vma)
1736		goto out;
1737
1738	/*
1739	 * Determine the object being mapped and call the appropriate
1740	 * specific mapper. the address has already been validated, but
1741	 * not unmapped, but the maps are removed from the list.
1742	 */
1743	vma = vm_area_alloc(mm);
1744	if (!vma) {
1745		error = -ENOMEM;
1746		goto unacct_error;
1747	}
1748
1749	vma->vm_start = addr;
1750	vma->vm_end = addr + len;
1751	vma->vm_flags = vm_flags;
1752	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1753	vma->vm_pgoff = pgoff;
1754
1755	if (file) {
1756		if (vm_flags & VM_DENYWRITE) {
1757			error = deny_write_access(file);
1758			if (error)
1759				goto free_vma;
1760		}
1761		if (vm_flags & VM_SHARED) {
1762			error = mapping_map_writable(file->f_mapping);
1763			if (error)
1764				goto allow_write_and_free_vma;
1765		}
1766
1767		/* ->mmap() can change vma->vm_file, but must guarantee that
1768		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1769		 * and map writably if VM_SHARED is set. This usually means the
1770		 * new file must not have been exposed to user-space, yet.
1771		 */
1772		vma->vm_file = get_file(file);
1773		error = call_mmap(file, vma);
1774		if (error)
1775			goto unmap_and_free_vma;
1776
1777		/* If vm_flags changed after call_mmap(), we should try merge vma again
1778		 * as we may succeed this time.
1779		 */
1780		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1781			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1782				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1783			if (merge) {
1784				/* ->mmap() can change vma->vm_file and fput the original file. So
1785				 * fput the vma->vm_file here or we would add an extra fput for file
1786				 * and cause general protection fault ultimately.
1787				 */
1788				fput(vma->vm_file);
1789				vm_area_free(vma);
1790				vma = merge;
1791				/* Update vm_flags and possible addr to pick up the change. We don't
1792				 * warn here if addr changed as the vma is not linked by vma_link().
1793				 */
1794				addr = vma->vm_start;
1795				vm_flags = vma->vm_flags;
1796				goto unmap_writable;
1797			}
1798		}
1799
1800		/* Can addr have changed??
1801		 *
1802		 * Answer: Yes, several device drivers can do it in their
1803		 *         f_op->mmap method. -DaveM
1804		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1805		 *      be updated for vma_link()
1806		 */
1807		WARN_ON_ONCE(addr != vma->vm_start);
1808
1809		addr = vma->vm_start;
1810		vm_flags = vma->vm_flags;
1811	} else if (vm_flags & VM_SHARED) {
1812		error = shmem_zero_setup(vma);
1813		if (error)
1814			goto free_vma;
1815	} else {
1816		vma_set_anonymous(vma);
1817	}
1818
1819	vma_link(mm, vma, prev, rb_link, rb_parent);
1820	/* Once vma denies write, undo our temporary denial count */
1821	if (file) {
1822unmap_writable:
1823		if (vm_flags & VM_SHARED)
1824			mapping_unmap_writable(file->f_mapping);
1825		if (vm_flags & VM_DENYWRITE)
1826			allow_write_access(file);
1827	}
1828	file = vma->vm_file;
1829out:
1830	perf_event_mmap(vma);
1831
1832	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1833	if (vm_flags & VM_LOCKED) {
1834		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1835					is_vm_hugetlb_page(vma) ||
1836					vma == get_gate_vma(current->mm))
1837			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1838		else
1839			mm->locked_vm += (len >> PAGE_SHIFT);
1840	}
1841
1842	if (file)
1843		uprobe_mmap(vma);
1844
1845	/*
1846	 * New (or expanded) vma always get soft dirty status.
1847	 * Otherwise user-space soft-dirty page tracker won't
1848	 * be able to distinguish situation when vma area unmapped,
1849	 * then new mapped in-place (which must be aimed as
1850	 * a completely new data area).
1851	 */
1852	vma->vm_flags |= VM_SOFTDIRTY;
1853
1854	vma_set_page_prot(vma);
1855
1856	return addr;
1857
1858unmap_and_free_vma:
1859	vma->vm_file = NULL;
1860	fput(file);
1861
1862	/* Undo any partial mapping done by a device driver. */
1863	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1864	charged = 0;
1865	if (vm_flags & VM_SHARED)
1866		mapping_unmap_writable(file->f_mapping);
1867allow_write_and_free_vma:
1868	if (vm_flags & VM_DENYWRITE)
1869		allow_write_access(file);
1870free_vma:
1871	vm_area_free(vma);
1872unacct_error:
1873	if (charged)
1874		vm_unacct_memory(charged);
1875	return error;
1876}
1877
1878static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1879{
1880	/*
1881	 * We implement the search by looking for an rbtree node that
1882	 * immediately follows a suitable gap. That is,
1883	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1884	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1885	 * - gap_end - gap_start >= length
1886	 */
1887
1888	struct mm_struct *mm = current->mm;
1889	struct vm_area_struct *vma;
1890	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1891
1892	/* Adjust search length to account for worst case alignment overhead */
1893	length = info->length + info->align_mask;
1894	if (length < info->length)
1895		return -ENOMEM;
1896
1897	/* Adjust search limits by the desired length */
1898	if (info->high_limit < length)
1899		return -ENOMEM;
1900	high_limit = info->high_limit - length;
1901
1902	if (info->low_limit > high_limit)
1903		return -ENOMEM;
1904	low_limit = info->low_limit + length;
1905
1906	/* Check if rbtree root looks promising */
1907	if (RB_EMPTY_ROOT(&mm->mm_rb))
1908		goto check_highest;
1909	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1910	if (vma->rb_subtree_gap < length)
1911		goto check_highest;
1912
1913	while (true) {
1914		/* Visit left subtree if it looks promising */
1915		gap_end = vm_start_gap(vma);
1916		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1917			struct vm_area_struct *left =
1918				rb_entry(vma->vm_rb.rb_left,
1919					 struct vm_area_struct, vm_rb);
1920			if (left->rb_subtree_gap >= length) {
1921				vma = left;
1922				continue;
1923			}
1924		}
1925
1926		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1927check_current:
1928		/* Check if current node has a suitable gap */
1929		if (gap_start > high_limit)
1930			return -ENOMEM;
1931		if (gap_end >= low_limit &&
1932		    gap_end > gap_start && gap_end - gap_start >= length)
1933			goto found;
1934
1935		/* Visit right subtree if it looks promising */
1936		if (vma->vm_rb.rb_right) {
1937			struct vm_area_struct *right =
1938				rb_entry(vma->vm_rb.rb_right,
1939					 struct vm_area_struct, vm_rb);
1940			if (right->rb_subtree_gap >= length) {
1941				vma = right;
1942				continue;
1943			}
1944		}
1945
1946		/* Go back up the rbtree to find next candidate node */
1947		while (true) {
1948			struct rb_node *prev = &vma->vm_rb;
1949			if (!rb_parent(prev))
1950				goto check_highest;
1951			vma = rb_entry(rb_parent(prev),
1952				       struct vm_area_struct, vm_rb);
1953			if (prev == vma->vm_rb.rb_left) {
1954				gap_start = vm_end_gap(vma->vm_prev);
1955				gap_end = vm_start_gap(vma);
1956				goto check_current;
1957			}
1958		}
1959	}
1960
1961check_highest:
1962	/* Check highest gap, which does not precede any rbtree node */
1963	gap_start = mm->highest_vm_end;
1964	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1965	if (gap_start > high_limit)
1966		return -ENOMEM;
1967
1968found:
1969	/* We found a suitable gap. Clip it with the original low_limit. */
1970	if (gap_start < info->low_limit)
1971		gap_start = info->low_limit;
1972
1973	/* Adjust gap address to the desired alignment */
1974	gap_start += (info->align_offset - gap_start) & info->align_mask;
1975
1976	VM_BUG_ON(gap_start + info->length > info->high_limit);
1977	VM_BUG_ON(gap_start + info->length > gap_end);
1978	return gap_start;
1979}
1980
 
 
 
 
 
 
 
 
 
 
1981static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1982{
1983	struct mm_struct *mm = current->mm;
1984	struct vm_area_struct *vma;
1985	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1986
 
1987	/* Adjust search length to account for worst case alignment overhead */
1988	length = info->length + info->align_mask;
1989	if (length < info->length)
1990		return -ENOMEM;
1991
1992	/*
1993	 * Adjust search limits by the desired length.
1994	 * See implementation comment at top of unmapped_area().
1995	 */
1996	gap_end = info->high_limit;
1997	if (gap_end < length)
1998		return -ENOMEM;
1999	high_limit = gap_end - length;
2000
2001	if (info->low_limit > high_limit)
2002		return -ENOMEM;
2003	low_limit = info->low_limit + length;
2004
2005	/* Check highest gap, which does not precede any rbtree node */
2006	gap_start = mm->highest_vm_end;
2007	if (gap_start <= high_limit)
2008		goto found_highest;
2009
2010	/* Check if rbtree root looks promising */
2011	if (RB_EMPTY_ROOT(&mm->mm_rb))
2012		return -ENOMEM;
2013	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2014	if (vma->rb_subtree_gap < length)
2015		return -ENOMEM;
2016
2017	while (true) {
2018		/* Visit right subtree if it looks promising */
2019		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2020		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2021			struct vm_area_struct *right =
2022				rb_entry(vma->vm_rb.rb_right,
2023					 struct vm_area_struct, vm_rb);
2024			if (right->rb_subtree_gap >= length) {
2025				vma = right;
2026				continue;
2027			}
2028		}
2029
2030check_current:
2031		/* Check if current node has a suitable gap */
2032		gap_end = vm_start_gap(vma);
2033		if (gap_end < low_limit)
2034			return -ENOMEM;
2035		if (gap_start <= high_limit &&
2036		    gap_end > gap_start && gap_end - gap_start >= length)
2037			goto found;
2038
2039		/* Visit left subtree if it looks promising */
2040		if (vma->vm_rb.rb_left) {
2041			struct vm_area_struct *left =
2042				rb_entry(vma->vm_rb.rb_left,
2043					 struct vm_area_struct, vm_rb);
2044			if (left->rb_subtree_gap >= length) {
2045				vma = left;
2046				continue;
2047			}
2048		}
2049
2050		/* Go back up the rbtree to find next candidate node */
2051		while (true) {
2052			struct rb_node *prev = &vma->vm_rb;
2053			if (!rb_parent(prev))
2054				return -ENOMEM;
2055			vma = rb_entry(rb_parent(prev),
2056				       struct vm_area_struct, vm_rb);
2057			if (prev == vma->vm_rb.rb_right) {
2058				gap_start = vma->vm_prev ?
2059					vm_end_gap(vma->vm_prev) : 0;
2060				goto check_current;
2061			}
2062		}
2063	}
2064
2065found:
2066	/* We found a suitable gap. Clip it with the original high_limit. */
2067	if (gap_end > info->high_limit)
2068		gap_end = info->high_limit;
2069
2070found_highest:
2071	/* Compute highest gap address at the desired alignment */
2072	gap_end -= info->length;
2073	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2074
2075	VM_BUG_ON(gap_end < info->low_limit);
2076	VM_BUG_ON(gap_end < gap_start);
2077	return gap_end;
2078}
2079
2080/*
2081 * Search for an unmapped address range.
2082 *
2083 * We are looking for a range that:
2084 * - does not intersect with any VMA;
2085 * - is contained within the [low_limit, high_limit) interval;
2086 * - is at least the desired size.
2087 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2088 */
2089unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2090{
2091	unsigned long addr;
2092
2093	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2094		addr = unmapped_area_topdown(info);
2095	else
2096		addr = unmapped_area(info);
2097
2098	trace_vm_unmapped_area(addr, info);
2099	return addr;
2100}
2101
2102#ifndef arch_get_mmap_end
2103#define arch_get_mmap_end(addr)	(TASK_SIZE)
2104#endif
2105
2106#ifndef arch_get_mmap_base
2107#define arch_get_mmap_base(addr, base) (base)
2108#endif
2109
2110/* Get an address range which is currently unmapped.
2111 * For shmat() with addr=0.
2112 *
2113 * Ugly calling convention alert:
2114 * Return value with the low bits set means error value,
2115 * ie
2116 *	if (ret & ~PAGE_MASK)
2117 *		error = ret;
2118 *
2119 * This function "knows" that -ENOMEM has the bits set.
2120 */
2121#ifndef HAVE_ARCH_UNMAPPED_AREA
2122unsigned long
2123arch_get_unmapped_area(struct file *filp, unsigned long addr,
2124		unsigned long len, unsigned long pgoff, unsigned long flags)
 
2125{
2126	struct mm_struct *mm = current->mm;
2127	struct vm_area_struct *vma, *prev;
2128	struct vm_unmapped_area_info info;
2129	const unsigned long mmap_end = arch_get_mmap_end(addr);
2130
2131	if (len > mmap_end - mmap_min_addr)
2132		return -ENOMEM;
2133
2134	if (flags & MAP_FIXED)
2135		return addr;
2136
2137	if (addr) {
2138		addr = PAGE_ALIGN(addr);
2139		vma = find_vma_prev(mm, addr, &prev);
2140		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2141		    (!vma || addr + len <= vm_start_gap(vma)) &&
2142		    (!prev || addr >= vm_end_gap(prev)))
2143			return addr;
2144	}
2145
2146	info.flags = 0;
2147	info.length = len;
2148	info.low_limit = mm->mmap_base;
2149	info.high_limit = mmap_end;
2150	info.align_mask = 0;
2151	info.align_offset = 0;
2152	return vm_unmapped_area(&info);
2153}
 
 
 
 
 
 
 
 
 
2154#endif
2155
2156/*
2157 * This mmap-allocator allocates new areas top-down from below the
2158 * stack's low limit (the base):
2159 */
2160#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2161unsigned long
2162arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2163			  unsigned long len, unsigned long pgoff,
2164			  unsigned long flags)
2165{
2166	struct vm_area_struct *vma, *prev;
2167	struct mm_struct *mm = current->mm;
2168	struct vm_unmapped_area_info info;
2169	const unsigned long mmap_end = arch_get_mmap_end(addr);
2170
2171	/* requested length too big for entire address space */
2172	if (len > mmap_end - mmap_min_addr)
2173		return -ENOMEM;
2174
2175	if (flags & MAP_FIXED)
2176		return addr;
2177
2178	/* requesting a specific address */
2179	if (addr) {
2180		addr = PAGE_ALIGN(addr);
2181		vma = find_vma_prev(mm, addr, &prev);
2182		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2183				(!vma || addr + len <= vm_start_gap(vma)) &&
2184				(!prev || addr >= vm_end_gap(prev)))
2185			return addr;
2186	}
2187
2188	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2189	info.length = len;
2190	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2191	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2192	info.align_mask = 0;
2193	info.align_offset = 0;
2194	addr = vm_unmapped_area(&info);
2195
2196	/*
2197	 * A failed mmap() very likely causes application failure,
2198	 * so fall back to the bottom-up function here. This scenario
2199	 * can happen with large stack limits and large mmap()
2200	 * allocations.
2201	 */
2202	if (offset_in_page(addr)) {
2203		VM_BUG_ON(addr != -ENOMEM);
2204		info.flags = 0;
2205		info.low_limit = TASK_UNMAPPED_BASE;
2206		info.high_limit = mmap_end;
2207		addr = vm_unmapped_area(&info);
2208	}
2209
2210	return addr;
2211}
 
 
 
 
 
 
 
 
 
2212#endif
2213
2214unsigned long
2215get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2216		unsigned long pgoff, unsigned long flags)
2217{
2218	unsigned long (*get_area)(struct file *, unsigned long,
2219				  unsigned long, unsigned long, unsigned long);
2220
2221	unsigned long error = arch_mmap_check(addr, len, flags);
2222	if (error)
2223		return error;
2224
2225	/* Careful about overflows.. */
2226	if (len > TASK_SIZE)
2227		return -ENOMEM;
2228
2229	get_area = current->mm->get_unmapped_area;
2230	if (file) {
2231		if (file->f_op->get_unmapped_area)
2232			get_area = file->f_op->get_unmapped_area;
2233	} else if (flags & MAP_SHARED) {
2234		/*
2235		 * mmap_region() will call shmem_zero_setup() to create a file,
2236		 * so use shmem's get_unmapped_area in case it can be huge.
2237		 * do_mmap() will clear pgoff, so match alignment.
2238		 */
2239		pgoff = 0;
2240		get_area = shmem_get_unmapped_area;
 
 
 
2241	}
2242
 
 
 
 
2243	addr = get_area(file, addr, len, pgoff, flags);
2244	if (IS_ERR_VALUE(addr))
2245		return addr;
2246
2247	if (addr > TASK_SIZE - len)
2248		return -ENOMEM;
2249	if (offset_in_page(addr))
2250		return -EINVAL;
2251
2252	error = security_mmap_addr(addr);
2253	return error ? error : addr;
2254}
2255
2256EXPORT_SYMBOL(get_unmapped_area);
2257
2258/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2259struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
2260{
2261	struct rb_node *rb_node;
2262	struct vm_area_struct *vma;
2263
2264	/* Check the cache first. */
2265	vma = vmacache_find(mm, addr);
2266	if (likely(vma))
2267		return vma;
2268
2269	rb_node = mm->mm_rb.rb_node;
2270
2271	while (rb_node) {
2272		struct vm_area_struct *tmp;
2273
2274		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 
 
 
2275
2276		if (tmp->vm_end > addr) {
2277			vma = tmp;
2278			if (tmp->vm_start <= addr)
2279				break;
2280			rb_node = rb_node->rb_left;
2281		} else
2282			rb_node = rb_node->rb_right;
2283	}
 
 
 
2284
2285	if (vma)
2286		vmacache_update(addr, vma);
2287	return vma;
2288}
2289
2290EXPORT_SYMBOL(find_vma);
2291
2292/*
2293 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 
 
 
 
 
 
 
 
 
 
2294 */
2295struct vm_area_struct *
2296find_vma_prev(struct mm_struct *mm, unsigned long addr,
2297			struct vm_area_struct **pprev)
2298{
2299	struct vm_area_struct *vma;
 
2300
2301	vma = find_vma(mm, addr);
2302	if (vma) {
2303		*pprev = vma->vm_prev;
2304	} else {
2305		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2306
2307		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2308	}
2309	return vma;
2310}
2311
2312/*
2313 * Verify that the stack growth is acceptable and
2314 * update accounting. This is shared with both the
2315 * grow-up and grow-down cases.
2316 */
2317static int acct_stack_growth(struct vm_area_struct *vma,
2318			     unsigned long size, unsigned long grow)
2319{
2320	struct mm_struct *mm = vma->vm_mm;
2321	unsigned long new_start;
2322
2323	/* address space limit tests */
2324	if (!may_expand_vm(mm, vma->vm_flags, grow))
2325		return -ENOMEM;
2326
2327	/* Stack limit test */
2328	if (size > rlimit(RLIMIT_STACK))
2329		return -ENOMEM;
2330
2331	/* mlock limit tests */
2332	if (vma->vm_flags & VM_LOCKED) {
2333		unsigned long locked;
2334		unsigned long limit;
2335		locked = mm->locked_vm + grow;
2336		limit = rlimit(RLIMIT_MEMLOCK);
2337		limit >>= PAGE_SHIFT;
2338		if (locked > limit && !capable(CAP_IPC_LOCK))
2339			return -ENOMEM;
2340	}
2341
2342	/* Check to ensure the stack will not grow into a hugetlb-only region */
2343	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2344			vma->vm_end - size;
2345	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2346		return -EFAULT;
2347
2348	/*
2349	 * Overcommit..  This must be the final test, as it will
2350	 * update security statistics.
2351	 */
2352	if (security_vm_enough_memory_mm(mm, grow))
2353		return -ENOMEM;
2354
2355	return 0;
2356}
2357
2358#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2359/*
2360 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2361 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2362 */
2363int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2364{
2365	struct mm_struct *mm = vma->vm_mm;
2366	struct vm_area_struct *next;
2367	unsigned long gap_addr;
2368	int error = 0;
 
2369
2370	if (!(vma->vm_flags & VM_GROWSUP))
2371		return -EFAULT;
2372
2373	/* Guard against exceeding limits of the address space. */
2374	address &= PAGE_MASK;
2375	if (address >= (TASK_SIZE & PAGE_MASK))
2376		return -ENOMEM;
2377	address += PAGE_SIZE;
2378
2379	/* Enforce stack_guard_gap */
2380	gap_addr = address + stack_guard_gap;
2381
2382	/* Guard against overflow */
2383	if (gap_addr < address || gap_addr > TASK_SIZE)
2384		gap_addr = TASK_SIZE;
2385
2386	next = vma->vm_next;
2387	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2388		if (!(next->vm_flags & VM_GROWSUP))
2389			return -ENOMEM;
2390		/* Check that both stack segments have the same anon_vma? */
2391	}
2392
 
 
 
 
 
 
 
2393	/* We must make sure the anon_vma is allocated. */
2394	if (unlikely(anon_vma_prepare(vma)))
 
2395		return -ENOMEM;
 
2396
 
 
2397	/*
2398	 * vma->vm_start/vm_end cannot change under us because the caller
2399	 * is required to hold the mmap_lock in read mode.  We need the
2400	 * anon_vma lock to serialize against concurrent expand_stacks.
2401	 */
2402	anon_vma_lock_write(vma->anon_vma);
2403
2404	/* Somebody else might have raced and expanded it already */
2405	if (address > vma->vm_end) {
2406		unsigned long size, grow;
2407
2408		size = address - vma->vm_start;
2409		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2410
2411		error = -ENOMEM;
2412		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2413			error = acct_stack_growth(vma, size, grow);
2414			if (!error) {
2415				/*
2416				 * vma_gap_update() doesn't support concurrent
2417				 * updates, but we only hold a shared mmap_lock
2418				 * lock here, so we need to protect against
2419				 * concurrent vma expansions.
2420				 * anon_vma_lock_write() doesn't help here, as
2421				 * we don't guarantee that all growable vmas
2422				 * in a mm share the same root anon vma.
2423				 * So, we reuse mm->page_table_lock to guard
2424				 * against concurrent vma expansions.
2425				 */
2426				spin_lock(&mm->page_table_lock);
2427				if (vma->vm_flags & VM_LOCKED)
2428					mm->locked_vm += grow;
2429				vm_stat_account(mm, vma->vm_flags, grow);
2430				anon_vma_interval_tree_pre_update_vma(vma);
2431				vma->vm_end = address;
 
 
2432				anon_vma_interval_tree_post_update_vma(vma);
2433				if (vma->vm_next)
2434					vma_gap_update(vma->vm_next);
2435				else
2436					mm->highest_vm_end = vm_end_gap(vma);
2437				spin_unlock(&mm->page_table_lock);
2438
2439				perf_event_mmap(vma);
2440			}
2441		}
2442	}
2443	anon_vma_unlock_write(vma->anon_vma);
2444	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2445	validate_mm(mm);
2446	return error;
2447}
2448#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2449
2450/*
2451 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
2452 */
2453int expand_downwards(struct vm_area_struct *vma,
2454				   unsigned long address)
2455{
2456	struct mm_struct *mm = vma->vm_mm;
 
2457	struct vm_area_struct *prev;
2458	int error = 0;
2459
 
 
 
2460	address &= PAGE_MASK;
2461	if (address < mmap_min_addr)
2462		return -EPERM;
2463
2464	/* Enforce stack_guard_gap */
2465	prev = vma->vm_prev;
2466	/* Check that both stack segments have the same anon_vma? */
2467	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2468			vma_is_accessible(prev)) {
2469		if (address - prev->vm_end < stack_guard_gap)
 
2470			return -ENOMEM;
2471	}
2472
 
 
 
 
 
 
 
2473	/* We must make sure the anon_vma is allocated. */
2474	if (unlikely(anon_vma_prepare(vma)))
 
2475		return -ENOMEM;
 
2476
 
 
2477	/*
2478	 * vma->vm_start/vm_end cannot change under us because the caller
2479	 * is required to hold the mmap_lock in read mode.  We need the
2480	 * anon_vma lock to serialize against concurrent expand_stacks.
2481	 */
2482	anon_vma_lock_write(vma->anon_vma);
2483
2484	/* Somebody else might have raced and expanded it already */
2485	if (address < vma->vm_start) {
2486		unsigned long size, grow;
2487
2488		size = vma->vm_end - address;
2489		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2490
2491		error = -ENOMEM;
2492		if (grow <= vma->vm_pgoff) {
2493			error = acct_stack_growth(vma, size, grow);
2494			if (!error) {
2495				/*
2496				 * vma_gap_update() doesn't support concurrent
2497				 * updates, but we only hold a shared mmap_lock
2498				 * lock here, so we need to protect against
2499				 * concurrent vma expansions.
2500				 * anon_vma_lock_write() doesn't help here, as
2501				 * we don't guarantee that all growable vmas
2502				 * in a mm share the same root anon vma.
2503				 * So, we reuse mm->page_table_lock to guard
2504				 * against concurrent vma expansions.
2505				 */
2506				spin_lock(&mm->page_table_lock);
2507				if (vma->vm_flags & VM_LOCKED)
2508					mm->locked_vm += grow;
2509				vm_stat_account(mm, vma->vm_flags, grow);
2510				anon_vma_interval_tree_pre_update_vma(vma);
2511				vma->vm_start = address;
2512				vma->vm_pgoff -= grow;
 
 
2513				anon_vma_interval_tree_post_update_vma(vma);
2514				vma_gap_update(vma);
2515				spin_unlock(&mm->page_table_lock);
2516
2517				perf_event_mmap(vma);
2518			}
2519		}
2520	}
2521	anon_vma_unlock_write(vma->anon_vma);
2522	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2523	validate_mm(mm);
2524	return error;
2525}
2526
2527/* enforced gap between the expanding stack and other mappings. */
2528unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2529
2530static int __init cmdline_parse_stack_guard_gap(char *p)
2531{
2532	unsigned long val;
2533	char *endptr;
2534
2535	val = simple_strtoul(p, &endptr, 10);
2536	if (!*endptr)
2537		stack_guard_gap = val << PAGE_SHIFT;
2538
2539	return 0;
2540}
2541__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2542
2543#ifdef CONFIG_STACK_GROWSUP
2544int expand_stack(struct vm_area_struct *vma, unsigned long address)
2545{
2546	return expand_upwards(vma, address);
2547}
2548
2549struct vm_area_struct *
2550find_extend_vma(struct mm_struct *mm, unsigned long addr)
2551{
2552	struct vm_area_struct *vma, *prev;
2553
2554	addr &= PAGE_MASK;
2555	vma = find_vma_prev(mm, addr, &prev);
2556	if (vma && (vma->vm_start <= addr))
2557		return vma;
2558	/* don't alter vm_end if the coredump is running */
2559	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
 
2560		return NULL;
2561	if (prev->vm_flags & VM_LOCKED)
2562		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2563	return prev;
2564}
2565#else
2566int expand_stack(struct vm_area_struct *vma, unsigned long address)
2567{
2568	return expand_downwards(vma, address);
2569}
2570
2571struct vm_area_struct *
2572find_extend_vma(struct mm_struct *mm, unsigned long addr)
2573{
2574	struct vm_area_struct *vma;
2575	unsigned long start;
2576
2577	addr &= PAGE_MASK;
2578	vma = find_vma(mm, addr);
2579	if (!vma)
2580		return NULL;
2581	if (vma->vm_start <= addr)
2582		return vma;
2583	if (!(vma->vm_flags & VM_GROWSDOWN))
2584		return NULL;
2585	/* don't alter vm_start if the coredump is running */
2586	if (!mmget_still_valid(mm))
2587		return NULL;
2588	start = vma->vm_start;
2589	if (expand_stack(vma, addr))
2590		return NULL;
2591	if (vma->vm_flags & VM_LOCKED)
2592		populate_vma_page_range(vma, addr, start, NULL);
2593	return vma;
2594}
2595#endif
2596
2597EXPORT_SYMBOL_GPL(find_extend_vma);
 
 
 
 
 
 
 
 
 
 
2598
2599/*
2600 * Ok - we have the memory areas we should free on the vma list,
2601 * so release them, and do the vma updates.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602 *
2603 * Called with the mm semaphore held.
2604 */
2605static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2606{
2607	unsigned long nr_accounted = 0;
 
2608
2609	/* Update high watermark before we lower total_vm */
2610	update_hiwater_vm(mm);
2611	do {
2612		long nrpages = vma_pages(vma);
2613
2614		if (vma->vm_flags & VM_ACCOUNT)
2615			nr_accounted += nrpages;
2616		vm_stat_account(mm, vma->vm_flags, -nrpages);
2617		vma = remove_vma(vma);
2618	} while (vma);
2619	vm_unacct_memory(nr_accounted);
2620	validate_mm(mm);
2621}
2622
2623/*
2624 * Get rid of page table information in the indicated region.
2625 *
2626 * Called with the mm semaphore held.
2627 */
2628static void unmap_region(struct mm_struct *mm,
2629		struct vm_area_struct *vma, struct vm_area_struct *prev,
2630		unsigned long start, unsigned long end)
 
2631{
2632	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2633	struct mmu_gather tlb;
 
2634
2635	lru_add_drain();
2636	tlb_gather_mmu(&tlb, mm, start, end);
2637	update_hiwater_rss(mm);
2638	unmap_vmas(&tlb, vma, start, end);
2639	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2640				 next ? next->vm_start : USER_PGTABLES_CEILING);
2641	tlb_finish_mmu(&tlb, start, end);
2642}
2643
2644/*
2645 * Create a list of vma's touched by the unmap, removing them from the mm's
2646 * vma list as we go..
2647 */
2648static bool
2649detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2650	struct vm_area_struct *prev, unsigned long end)
2651{
2652	struct vm_area_struct **insertion_point;
2653	struct vm_area_struct *tail_vma = NULL;
2654
2655	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2656	vma->vm_prev = NULL;
2657	do {
2658		vma_rb_erase(vma, &mm->mm_rb);
2659		mm->map_count--;
2660		tail_vma = vma;
2661		vma = vma->vm_next;
2662	} while (vma && vma->vm_start < end);
2663	*insertion_point = vma;
2664	if (vma) {
2665		vma->vm_prev = prev;
2666		vma_gap_update(vma);
2667	} else
2668		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2669	tail_vma->vm_next = NULL;
2670
2671	/* Kill the cache */
2672	vmacache_invalidate(mm);
2673
2674	/*
2675	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2676	 * VM_GROWSUP VMA. Such VMAs can change their size under
2677	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2678	 */
2679	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2680		return false;
2681	if (prev && (prev->vm_flags & VM_GROWSUP))
2682		return false;
2683	return true;
2684}
2685
2686/*
2687 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2688 * has already been checked or doesn't make sense to fail.
 
2689 */
2690int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2691		unsigned long addr, int new_below)
2692{
 
2693	struct vm_area_struct *new;
2694	int err;
2695
2696	if (vma->vm_ops && vma->vm_ops->split) {
2697		err = vma->vm_ops->split(vma, addr);
 
 
 
2698		if (err)
2699			return err;
2700	}
2701
2702	new = vm_area_dup(vma);
2703	if (!new)
2704		return -ENOMEM;
2705
2706	if (new_below)
2707		new->vm_end = addr;
2708	else {
2709		new->vm_start = addr;
2710		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2711	}
2712
 
 
 
 
 
2713	err = vma_dup_policy(vma, new);
2714	if (err)
2715		goto out_free_vma;
2716
2717	err = anon_vma_clone(new, vma);
2718	if (err)
2719		goto out_free_mpol;
2720
2721	if (new->vm_file)
2722		get_file(new->vm_file);
2723
2724	if (new->vm_ops && new->vm_ops->open)
2725		new->vm_ops->open(new);
2726
2727	if (new_below)
2728		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2729			((addr - new->vm_start) >> PAGE_SHIFT), new);
2730	else
2731		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
 
 
 
 
 
 
 
 
 
 
 
 
2732
2733	/* Success. */
2734	if (!err)
2735		return 0;
 
2736
2737	/* Clean everything up if vma_adjust failed. */
2738	if (new->vm_ops && new->vm_ops->close)
2739		new->vm_ops->close(new);
2740	if (new->vm_file)
2741		fput(new->vm_file);
2742	unlink_anon_vmas(new);
2743 out_free_mpol:
2744	mpol_put(vma_policy(new));
2745 out_free_vma:
 
 
2746	vm_area_free(new);
2747	return err;
2748}
2749
2750/*
2751 * Split a vma into two pieces at address 'addr', a new vma is allocated
2752 * either for the first part or the tail.
2753 */
2754int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2755	      unsigned long addr, int new_below)
2756{
2757	if (mm->map_count >= sysctl_max_map_count)
2758		return -ENOMEM;
2759
2760	return __split_vma(mm, vma, addr, new_below);
2761}
2762
2763/* Munmap is split into 2 main parts -- this part which finds
2764 * what needs doing, and the areas themselves, which do the
2765 * work.  This now handles partial unmappings.
2766 * Jeremy Fitzhardinge <jeremy@goop.org>
 
 
 
 
 
 
 
 
2767 */
2768int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2769		struct list_head *uf, bool downgrade)
 
 
 
 
 
 
2770{
2771	unsigned long end;
2772	struct vm_area_struct *vma, *prev, *last;
2773
2774	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2775		return -EINVAL;
 
 
2776
2777	len = PAGE_ALIGN(len);
2778	end = start + len;
2779	if (len == 0)
2780		return -EINVAL;
2781
2782	/*
2783	 * arch_unmap() might do unmaps itself.  It must be called
2784	 * and finish any rbtree manipulation before this code
2785	 * runs and also starts to manipulate the rbtree.
2786	 */
2787	arch_unmap(mm, start, end);
2788
2789	/* Find the first overlapping VMA */
2790	vma = find_vma(mm, start);
2791	if (!vma)
2792		return 0;
2793	prev = vma->vm_prev;
2794	/* we have  start < vma->vm_end  */
2795
2796	/* if it doesn't overlap, we have nothing.. */
2797	if (vma->vm_start >= end)
2798		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799
2800	/*
2801	 * If we need to split any vma, do it now to save pain later.
2802	 *
2803	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2804	 * unmapped vm_area_struct will remain in use: so lower split_vma
2805	 * places tmp vma above, and higher split_vma places tmp vma below.
2806	 */
 
 
2807	if (start > vma->vm_start) {
2808		int error;
2809
2810		/*
2811		 * Make sure that map_count on return from munmap() will
2812		 * not exceed its limit; but let map_count go just above
2813		 * its limit temporarily, to help free resources as expected.
2814		 */
2815		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2816			return -ENOMEM;
2817
2818		error = __split_vma(mm, vma, start, 0);
2819		if (error)
2820			return error;
2821		prev = vma;
2822	}
2823
2824	/* Does it split the last one? */
2825	last = find_vma(mm, end);
2826	if (last && end > last->vm_start) {
2827		int error = __split_vma(mm, last, end, 1);
 
 
 
 
 
 
 
 
 
 
 
2828		if (error)
2829			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830	}
2831	vma = prev ? prev->vm_next : mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832
2833	if (unlikely(uf)) {
2834		/*
2835		 * If userfaultfd_unmap_prep returns an error the vmas
2836		 * will remain splitted, but userland will get a
2837		 * highly unexpected error anyway. This is no
2838		 * different than the case where the first of the two
2839		 * __split_vma fails, but we don't undo the first
2840		 * split, despite we could. This is unlikely enough
2841		 * failure that it's not worth optimizing it for.
2842		 */
2843		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2844		if (error)
2845			return error;
 
 
2846	}
2847
 
 
 
 
2848	/*
2849	 * unlock any mlock()ed ranges before detaching vmas
2850	 */
2851	if (mm->locked_vm) {
2852		struct vm_area_struct *tmp = vma;
2853		while (tmp && tmp->vm_start < end) {
2854			if (tmp->vm_flags & VM_LOCKED) {
2855				mm->locked_vm -= vma_pages(tmp);
2856				munlock_vma_pages_all(tmp);
2857			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2858
2859			tmp = tmp->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2860		}
 
 
 
 
 
 
 
 
2861	}
2862
2863	/* Detach vmas from rbtree */
2864	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2865		downgrade = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866
2867	if (downgrade)
2868		mmap_write_downgrade(mm);
 
 
 
 
 
 
 
 
 
 
 
 
2869
2870	unmap_region(mm, vma, prev, start, end);
 
 
 
 
 
 
 
 
2871
2872	/* Fix up all other VM information */
2873	remove_vma_list(mm, vma);
2874
2875	return downgrade ? 1 : 0;
2876}
 
 
 
 
 
 
2877
2878int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2879	      struct list_head *uf)
2880{
2881	return __do_munmap(mm, start, len, uf, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2882}
2883
2884static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2885{
2886	int ret;
2887	struct mm_struct *mm = current->mm;
2888	LIST_HEAD(uf);
 
2889
2890	if (mmap_write_lock_killable(mm))
2891		return -EINTR;
2892
2893	ret = __do_munmap(mm, start, len, &uf, downgrade);
2894	/*
2895	 * Returning 1 indicates mmap_lock is downgraded.
2896	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2897	 * it to 0 before return.
2898	 */
2899	if (ret == 1) {
2900		mmap_read_unlock(mm);
2901		ret = 0;
2902	} else
2903		mmap_write_unlock(mm);
2904
2905	userfaultfd_unmap_complete(mm, &uf);
2906	return ret;
2907}
2908
2909int vm_munmap(unsigned long start, size_t len)
2910{
2911	return __vm_munmap(start, len, false);
2912}
2913EXPORT_SYMBOL(vm_munmap);
2914
2915SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2916{
2917	addr = untagged_addr(addr);
2918	profile_munmap(addr);
2919	return __vm_munmap(addr, len, true);
2920}
2921
2922
2923/*
2924 * Emulation of deprecated remap_file_pages() syscall.
2925 */
2926SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2927		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2928{
2929
2930	struct mm_struct *mm = current->mm;
2931	struct vm_area_struct *vma;
2932	unsigned long populate = 0;
2933	unsigned long ret = -EINVAL;
2934	struct file *file;
2935
2936	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2937		     current->comm, current->pid);
2938
2939	if (prot)
2940		return ret;
2941	start = start & PAGE_MASK;
2942	size = size & PAGE_MASK;
2943
2944	if (start + size <= start)
2945		return ret;
2946
2947	/* Does pgoff wrap? */
2948	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2949		return ret;
2950
2951	if (mmap_write_lock_killable(mm))
2952		return -EINTR;
2953
2954	vma = find_vma(mm, start);
2955
2956	if (!vma || !(vma->vm_flags & VM_SHARED))
2957		goto out;
2958
2959	if (start < vma->vm_start)
2960		goto out;
2961
2962	if (start + size > vma->vm_end) {
2963		struct vm_area_struct *next;
 
2964
2965		for (next = vma->vm_next; next; next = next->vm_next) {
2966			/* hole between vmas ? */
2967			if (next->vm_start != next->vm_prev->vm_end)
2968				goto out;
2969
2970			if (next->vm_file != vma->vm_file)
2971				goto out;
2972
2973			if (next->vm_flags != vma->vm_flags)
2974				goto out;
2975
2976			if (start + size <= next->vm_end)
2977				break;
 
 
2978		}
2979
2980		if (!next)
2981			goto out;
2982	}
2983
2984	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2985	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2986	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2987
2988	flags &= MAP_NONBLOCK;
2989	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2990	if (vma->vm_flags & VM_LOCKED) {
2991		struct vm_area_struct *tmp;
2992		flags |= MAP_LOCKED;
2993
2994		/* drop PG_Mlocked flag for over-mapped range */
2995		for (tmp = vma; tmp->vm_start >= start + size;
2996				tmp = tmp->vm_next) {
2997			/*
2998			 * Split pmd and munlock page on the border
2999			 * of the range.
3000			 */
3001			vma_adjust_trans_huge(tmp, start, start + size, 0);
3002
3003			munlock_vma_pages_range(tmp,
3004					max(tmp->vm_start, start),
3005					min(tmp->vm_end, start + size));
3006		}
3007	}
3008
3009	file = get_file(vma->vm_file);
3010	ret = do_mmap(vma->vm_file, start, size,
3011			prot, flags, pgoff, &populate, NULL);
3012	fput(file);
3013out:
3014	mmap_write_unlock(mm);
3015	if (populate)
3016		mm_populate(ret, populate);
3017	if (!IS_ERR_VALUE(ret))
3018		ret = 0;
3019	return ret;
3020}
3021
3022/*
3023 *  this is really a simplified "do_mmap".  it only handles
3024 *  anonymous maps.  eventually we may be able to do some
3025 *  brk-specific accounting here.
3026 */
3027static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
 
 
 
 
 
 
 
 
 
 
 
 
3028{
3029	struct mm_struct *mm = current->mm;
3030	struct vm_area_struct *vma, *prev;
3031	struct rb_node **rb_link, *rb_parent;
3032	pgoff_t pgoff = addr >> PAGE_SHIFT;
3033	int error;
3034	unsigned long mapped_addr;
3035
3036	/* Until we need other flags, refuse anything except VM_EXEC. */
3037	if ((flags & (~VM_EXEC)) != 0)
3038		return -EINVAL;
3039	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3040
3041	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3042	if (IS_ERR_VALUE(mapped_addr))
3043		return mapped_addr;
3044
3045	error = mlock_future_check(mm, mm->def_flags, len);
3046	if (error)
3047		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048
3049	/*
3050	 * Clear old maps.  this also does some error checking for us
 
3051	 */
3052	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3053			      &rb_parent)) {
3054		if (do_munmap(mm, addr, len, uf))
3055			return -ENOMEM;
3056	}
3057
3058	/* Check against address space limits *after* clearing old maps... */
3059	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3060		return -ENOMEM;
3061
3062	if (mm->map_count > sysctl_max_map_count)
3063		return -ENOMEM;
3064
3065	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3066		return -ENOMEM;
3067
3068	/* Can we just expand an old private anonymous mapping? */
3069	vma = vma_merge(mm, prev, addr, addr + len, flags,
3070			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3071	if (vma)
3072		goto out;
3073
3074	/*
3075	 * create a vma struct for an anonymous mapping
 
3076	 */
3077	vma = vm_area_alloc(mm);
3078	if (!vma) {
3079		vm_unacct_memory(len >> PAGE_SHIFT);
3080		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081	}
3082
 
 
 
 
 
 
 
3083	vma_set_anonymous(vma);
3084	vma->vm_start = addr;
3085	vma->vm_end = addr + len;
3086	vma->vm_pgoff = pgoff;
3087	vma->vm_flags = flags;
3088	vma->vm_page_prot = vm_get_page_prot(flags);
3089	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
3090out:
3091	perf_event_mmap(vma);
3092	mm->total_vm += len >> PAGE_SHIFT;
3093	mm->data_vm += len >> PAGE_SHIFT;
3094	if (flags & VM_LOCKED)
3095		mm->locked_vm += (len >> PAGE_SHIFT);
3096	vma->vm_flags |= VM_SOFTDIRTY;
3097	return 0;
 
 
 
 
 
 
3098}
3099
3100int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3101{
3102	struct mm_struct *mm = current->mm;
 
3103	unsigned long len;
3104	int ret;
3105	bool populate;
3106	LIST_HEAD(uf);
 
3107
3108	len = PAGE_ALIGN(request);
3109	if (len < request)
3110		return -ENOMEM;
3111	if (!len)
3112		return 0;
3113
 
 
 
 
3114	if (mmap_write_lock_killable(mm))
3115		return -EINTR;
3116
3117	ret = do_brk_flags(addr, len, flags, &uf);
 
 
 
 
 
 
 
 
 
3118	populate = ((mm->def_flags & VM_LOCKED) != 0);
3119	mmap_write_unlock(mm);
3120	userfaultfd_unmap_complete(mm, &uf);
3121	if (populate && !ret)
3122		mm_populate(addr, len);
3123	return ret;
3124}
3125EXPORT_SYMBOL(vm_brk_flags);
3126
3127int vm_brk(unsigned long addr, unsigned long len)
3128{
3129	return vm_brk_flags(addr, len, 0);
 
3130}
3131EXPORT_SYMBOL(vm_brk);
3132
3133/* Release all mmaps. */
3134void exit_mmap(struct mm_struct *mm)
3135{
3136	struct mmu_gather tlb;
3137	struct vm_area_struct *vma;
3138	unsigned long nr_accounted = 0;
 
 
3139
3140	/* mm's last user has gone, and its about to be pulled down */
3141	mmu_notifier_release(mm);
3142
3143	if (unlikely(mm_is_oom_victim(mm))) {
3144		/*
3145		 * Manually reap the mm to free as much memory as possible.
3146		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3147		 * this mm from further consideration.  Taking mm->mmap_lock for
3148		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3149		 * reaper will not run on this mm again after mmap_lock is
3150		 * dropped.
3151		 *
3152		 * Nothing can be holding mm->mmap_lock here and the above call
3153		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3154		 * __oom_reap_task_mm() will not block.
3155		 *
3156		 * This needs to be done before calling munlock_vma_pages_all(),
3157		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3158		 * reliably test it.
3159		 */
3160		(void)__oom_reap_task_mm(mm);
3161
3162		set_bit(MMF_OOM_SKIP, &mm->flags);
 
 
 
3163		mmap_write_lock(mm);
3164		mmap_write_unlock(mm);
3165	}
3166
3167	if (mm->locked_vm) {
3168		vma = mm->mmap;
3169		while (vma) {
3170			if (vma->vm_flags & VM_LOCKED)
3171				munlock_vma_pages_all(vma);
3172			vma = vma->vm_next;
3173		}
3174	}
3175
3176	arch_exit_mmap(mm);
3177
3178	vma = mm->mmap;
3179	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3180		return;
3181
3182	lru_add_drain();
3183	flush_cache_mm(mm);
3184	tlb_gather_mmu(&tlb, mm, 0, -1);
3185	/* update_hiwater_rss(mm) here? but nobody should be looking */
3186	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3187	unmap_vmas(&tlb, vma, 0, -1);
3188	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3189	tlb_finish_mmu(&tlb, 0, -1);
3190
3191	/*
3192	 * Walk the list again, actually closing and freeing it,
3193	 * with preemption enabled, without holding any MM locks.
3194	 */
3195	while (vma) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3196		if (vma->vm_flags & VM_ACCOUNT)
3197			nr_accounted += vma_pages(vma);
3198		vma = remove_vma(vma);
 
3199		cond_resched();
3200	}
 
 
 
 
 
 
 
 
3201	vm_unacct_memory(nr_accounted);
3202}
3203
3204/* Insert vm structure into process list sorted by address
3205 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3206 * then i_mmap_rwsem is taken here.
3207 */
3208int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3209{
3210	struct vm_area_struct *prev;
3211	struct rb_node **rb_link, *rb_parent;
3212
3213	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3214			   &prev, &rb_link, &rb_parent))
3215		return -ENOMEM;
 
3216	if ((vma->vm_flags & VM_ACCOUNT) &&
3217	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3218		return -ENOMEM;
3219
3220	/*
3221	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3222	 * until its first write fault, when page's anon_vma and index
3223	 * are set.  But now set the vm_pgoff it will almost certainly
3224	 * end up with (unless mremap moves it elsewhere before that
3225	 * first wfault), so /proc/pid/maps tells a consistent story.
3226	 *
3227	 * By setting it to reflect the virtual start address of the
3228	 * vma, merges and splits can happen in a seamless way, just
3229	 * using the existing file pgoff checks and manipulations.
3230	 * Similarly in do_mmap and in do_brk.
3231	 */
3232	if (vma_is_anonymous(vma)) {
3233		BUG_ON(vma->anon_vma);
3234		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3235	}
3236
3237	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
3238	return 0;
3239}
3240
3241/*
3242 * Copy the vma structure to a new location in the same mm,
3243 * prior to moving page table entries, to effect an mremap move.
3244 */
3245struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3246	unsigned long addr, unsigned long len, pgoff_t pgoff,
3247	bool *need_rmap_locks)
3248{
3249	struct vm_area_struct *vma = *vmap;
3250	unsigned long vma_start = vma->vm_start;
3251	struct mm_struct *mm = vma->vm_mm;
3252	struct vm_area_struct *new_vma, *prev;
3253	struct rb_node **rb_link, *rb_parent;
3254	bool faulted_in_anon_vma = true;
 
3255
3256	/*
3257	 * If anonymous vma has not yet been faulted, update new pgoff
3258	 * to match new location, to increase its chance of merging.
3259	 */
3260	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3261		pgoff = addr >> PAGE_SHIFT;
3262		faulted_in_anon_vma = false;
3263	}
3264
3265	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
 
3266		return NULL;	/* should never get here */
3267	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3268			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3269			    vma->vm_userfaultfd_ctx);
3270	if (new_vma) {
3271		/*
3272		 * Source vma may have been merged into new_vma
3273		 */
3274		if (unlikely(vma_start >= new_vma->vm_start &&
3275			     vma_start < new_vma->vm_end)) {
3276			/*
3277			 * The only way we can get a vma_merge with
3278			 * self during an mremap is if the vma hasn't
3279			 * been faulted in yet and we were allowed to
3280			 * reset the dst vma->vm_pgoff to the
3281			 * destination address of the mremap to allow
3282			 * the merge to happen. mremap must change the
3283			 * vm_pgoff linearity between src and dst vmas
3284			 * (in turn preventing a vma_merge) to be
3285			 * safe. It is only safe to keep the vm_pgoff
3286			 * linear if there are no pages mapped yet.
3287			 */
3288			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3289			*vmap = vma = new_vma;
3290		}
3291		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3292	} else {
3293		new_vma = vm_area_dup(vma);
3294		if (!new_vma)
3295			goto out;
3296		new_vma->vm_start = addr;
3297		new_vma->vm_end = addr + len;
3298		new_vma->vm_pgoff = pgoff;
3299		if (vma_dup_policy(vma, new_vma))
3300			goto out_free_vma;
3301		if (anon_vma_clone(new_vma, vma))
3302			goto out_free_mempol;
3303		if (new_vma->vm_file)
3304			get_file(new_vma->vm_file);
3305		if (new_vma->vm_ops && new_vma->vm_ops->open)
3306			new_vma->vm_ops->open(new_vma);
3307		vma_link(mm, new_vma, prev, rb_link, rb_parent);
 
3308		*need_rmap_locks = false;
3309	}
3310	return new_vma;
3311
 
 
 
 
 
 
 
 
3312out_free_mempol:
3313	mpol_put(vma_policy(new_vma));
3314out_free_vma:
3315	vm_area_free(new_vma);
3316out:
3317	return NULL;
3318}
3319
3320/*
3321 * Return true if the calling process may expand its vm space by the passed
3322 * number of pages
3323 */
3324bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3325{
3326	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3327		return false;
3328
3329	if (is_data_mapping(flags) &&
3330	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3331		/* Workaround for Valgrind */
3332		if (rlimit(RLIMIT_DATA) == 0 &&
3333		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3334			return true;
3335
3336		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3337			     current->comm, current->pid,
3338			     (mm->data_vm + npages) << PAGE_SHIFT,
3339			     rlimit(RLIMIT_DATA),
3340			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3341
3342		if (!ignore_rlimit_data)
3343			return false;
3344	}
3345
3346	return true;
3347}
3348
3349void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3350{
3351	mm->total_vm += npages;
3352
3353	if (is_exec_mapping(flags))
3354		mm->exec_vm += npages;
3355	else if (is_stack_mapping(flags))
3356		mm->stack_vm += npages;
3357	else if (is_data_mapping(flags))
3358		mm->data_vm += npages;
3359}
3360
3361static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3362
3363/*
3364 * Having a close hook prevents vma merging regardless of flags.
3365 */
3366static void special_mapping_close(struct vm_area_struct *vma)
3367{
3368}
3369
3370static const char *special_mapping_name(struct vm_area_struct *vma)
3371{
3372	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3373}
3374
3375static int special_mapping_mremap(struct vm_area_struct *new_vma)
3376{
3377	struct vm_special_mapping *sm = new_vma->vm_private_data;
3378
3379	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3380		return -EFAULT;
3381
3382	if (sm->mremap)
3383		return sm->mremap(sm, new_vma);
3384
3385	return 0;
3386}
3387
 
 
 
 
 
 
 
 
 
 
 
3388static const struct vm_operations_struct special_mapping_vmops = {
3389	.close = special_mapping_close,
3390	.fault = special_mapping_fault,
3391	.mremap = special_mapping_mremap,
3392	.name = special_mapping_name,
3393	/* vDSO code relies that VVAR can't be accessed remotely */
3394	.access = NULL,
 
3395};
3396
3397static const struct vm_operations_struct legacy_special_mapping_vmops = {
3398	.close = special_mapping_close,
3399	.fault = special_mapping_fault,
3400};
3401
3402static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3403{
3404	struct vm_area_struct *vma = vmf->vma;
3405	pgoff_t pgoff;
3406	struct page **pages;
3407
3408	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3409		pages = vma->vm_private_data;
3410	} else {
3411		struct vm_special_mapping *sm = vma->vm_private_data;
3412
3413		if (sm->fault)
3414			return sm->fault(sm, vmf->vma, vmf);
3415
3416		pages = sm->pages;
3417	}
3418
3419	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3420		pgoff--;
3421
3422	if (*pages) {
3423		struct page *page = *pages;
3424		get_page(page);
3425		vmf->page = page;
3426		return 0;
3427	}
3428
3429	return VM_FAULT_SIGBUS;
3430}
3431
3432static struct vm_area_struct *__install_special_mapping(
3433	struct mm_struct *mm,
3434	unsigned long addr, unsigned long len,
3435	unsigned long vm_flags, void *priv,
3436	const struct vm_operations_struct *ops)
3437{
3438	int ret;
3439	struct vm_area_struct *vma;
3440
3441	vma = vm_area_alloc(mm);
3442	if (unlikely(vma == NULL))
3443		return ERR_PTR(-ENOMEM);
3444
3445	vma->vm_start = addr;
3446	vma->vm_end = addr + len;
3447
3448	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3449	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3450
3451	vma->vm_ops = ops;
3452	vma->vm_private_data = priv;
3453
3454	ret = insert_vm_struct(mm, vma);
3455	if (ret)
3456		goto out;
3457
3458	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3459
3460	perf_event_mmap(vma);
3461
3462	return vma;
3463
3464out:
3465	vm_area_free(vma);
3466	return ERR_PTR(ret);
3467}
3468
3469bool vma_is_special_mapping(const struct vm_area_struct *vma,
3470	const struct vm_special_mapping *sm)
3471{
3472	return vma->vm_private_data == sm &&
3473		(vma->vm_ops == &special_mapping_vmops ||
3474		 vma->vm_ops == &legacy_special_mapping_vmops);
3475}
3476
3477/*
3478 * Called with mm->mmap_lock held for writing.
3479 * Insert a new vma covering the given region, with the given flags.
3480 * Its pages are supplied by the given array of struct page *.
3481 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3482 * The region past the last page supplied will always produce SIGBUS.
3483 * The array pointer and the pages it points to are assumed to stay alive
3484 * for as long as this mapping might exist.
3485 */
3486struct vm_area_struct *_install_special_mapping(
3487	struct mm_struct *mm,
3488	unsigned long addr, unsigned long len,
3489	unsigned long vm_flags, const struct vm_special_mapping *spec)
3490{
3491	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3492					&special_mapping_vmops);
3493}
3494
3495int install_special_mapping(struct mm_struct *mm,
3496			    unsigned long addr, unsigned long len,
3497			    unsigned long vm_flags, struct page **pages)
3498{
3499	struct vm_area_struct *vma = __install_special_mapping(
3500		mm, addr, len, vm_flags, (void *)pages,
3501		&legacy_special_mapping_vmops);
3502
3503	return PTR_ERR_OR_ZERO(vma);
3504}
3505
3506static DEFINE_MUTEX(mm_all_locks_mutex);
3507
3508static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3509{
3510	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3511		/*
3512		 * The LSB of head.next can't change from under us
3513		 * because we hold the mm_all_locks_mutex.
3514		 */
3515		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3516		/*
3517		 * We can safely modify head.next after taking the
3518		 * anon_vma->root->rwsem. If some other vma in this mm shares
3519		 * the same anon_vma we won't take it again.
3520		 *
3521		 * No need of atomic instructions here, head.next
3522		 * can't change from under us thanks to the
3523		 * anon_vma->root->rwsem.
3524		 */
3525		if (__test_and_set_bit(0, (unsigned long *)
3526				       &anon_vma->root->rb_root.rb_root.rb_node))
3527			BUG();
3528	}
3529}
3530
3531static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3532{
3533	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3534		/*
3535		 * AS_MM_ALL_LOCKS can't change from under us because
3536		 * we hold the mm_all_locks_mutex.
3537		 *
3538		 * Operations on ->flags have to be atomic because
3539		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3540		 * mm_all_locks_mutex, there may be other cpus
3541		 * changing other bitflags in parallel to us.
3542		 */
3543		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3544			BUG();
3545		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3546	}
3547}
3548
3549/*
3550 * This operation locks against the VM for all pte/vma/mm related
3551 * operations that could ever happen on a certain mm. This includes
3552 * vmtruncate, try_to_unmap, and all page faults.
3553 *
3554 * The caller must take the mmap_lock in write mode before calling
3555 * mm_take_all_locks(). The caller isn't allowed to release the
3556 * mmap_lock until mm_drop_all_locks() returns.
3557 *
3558 * mmap_lock in write mode is required in order to block all operations
3559 * that could modify pagetables and free pages without need of
3560 * altering the vma layout. It's also needed in write mode to avoid new
3561 * anon_vmas to be associated with existing vmas.
3562 *
3563 * A single task can't take more than one mm_take_all_locks() in a row
3564 * or it would deadlock.
3565 *
3566 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3567 * mapping->flags avoid to take the same lock twice, if more than one
3568 * vma in this mm is backed by the same anon_vma or address_space.
3569 *
3570 * We take locks in following order, accordingly to comment at beginning
3571 * of mm/rmap.c:
3572 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3573 *     hugetlb mapping);
 
3574 *   - all i_mmap_rwsem locks;
3575 *   - all anon_vma->rwseml
3576 *
3577 * We can take all locks within these types randomly because the VM code
3578 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3579 * mm_all_locks_mutex.
3580 *
3581 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3582 * that may have to take thousand of locks.
3583 *
3584 * mm_take_all_locks() can fail if it's interrupted by signals.
3585 */
3586int mm_take_all_locks(struct mm_struct *mm)
3587{
3588	struct vm_area_struct *vma;
3589	struct anon_vma_chain *avc;
 
3590
3591	BUG_ON(mmap_read_trylock(mm));
3592
3593	mutex_lock(&mm_all_locks_mutex);
3594
3595	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3596		if (signal_pending(current))
3597			goto out_unlock;
3598		if (vma->vm_file && vma->vm_file->f_mapping &&
3599				is_vm_hugetlb_page(vma))
3600			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3601	}
3602
3603	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
3604		if (signal_pending(current))
3605			goto out_unlock;
3606		if (vma->vm_file && vma->vm_file->f_mapping &&
3607				!is_vm_hugetlb_page(vma))
3608			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3609	}
3610
3611	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
3612		if (signal_pending(current))
3613			goto out_unlock;
3614		if (vma->anon_vma)
3615			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3616				vm_lock_anon_vma(mm, avc->anon_vma);
3617	}
3618
3619	return 0;
3620
3621out_unlock:
3622	mm_drop_all_locks(mm);
3623	return -EINTR;
3624}
3625
3626static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3627{
3628	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3629		/*
3630		 * The LSB of head.next can't change to 0 from under
3631		 * us because we hold the mm_all_locks_mutex.
3632		 *
3633		 * We must however clear the bitflag before unlocking
3634		 * the vma so the users using the anon_vma->rb_root will
3635		 * never see our bitflag.
3636		 *
3637		 * No need of atomic instructions here, head.next
3638		 * can't change from under us until we release the
3639		 * anon_vma->root->rwsem.
3640		 */
3641		if (!__test_and_clear_bit(0, (unsigned long *)
3642					  &anon_vma->root->rb_root.rb_root.rb_node))
3643			BUG();
3644		anon_vma_unlock_write(anon_vma);
3645	}
3646}
3647
3648static void vm_unlock_mapping(struct address_space *mapping)
3649{
3650	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3651		/*
3652		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3653		 * because we hold the mm_all_locks_mutex.
3654		 */
3655		i_mmap_unlock_write(mapping);
3656		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3657					&mapping->flags))
3658			BUG();
3659	}
3660}
3661
3662/*
3663 * The mmap_lock cannot be released by the caller until
3664 * mm_drop_all_locks() returns.
3665 */
3666void mm_drop_all_locks(struct mm_struct *mm)
3667{
3668	struct vm_area_struct *vma;
3669	struct anon_vma_chain *avc;
 
3670
3671	BUG_ON(mmap_read_trylock(mm));
3672	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3673
3674	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3675		if (vma->anon_vma)
3676			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3677				vm_unlock_anon_vma(avc->anon_vma);
3678		if (vma->vm_file && vma->vm_file->f_mapping)
3679			vm_unlock_mapping(vma->vm_file->f_mapping);
3680	}
3681
3682	mutex_unlock(&mm_all_locks_mutex);
3683}
3684
3685/*
3686 * initialise the percpu counter for VM
3687 */
3688void __init mmap_init(void)
3689{
3690	int ret;
3691
3692	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3693	VM_BUG_ON(ret);
3694}
3695
3696/*
3697 * Initialise sysctl_user_reserve_kbytes.
3698 *
3699 * This is intended to prevent a user from starting a single memory hogging
3700 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3701 * mode.
3702 *
3703 * The default value is min(3% of free memory, 128MB)
3704 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3705 */
3706static int init_user_reserve(void)
3707{
3708	unsigned long free_kbytes;
3709
3710	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3711
3712	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3713	return 0;
3714}
3715subsys_initcall(init_user_reserve);
3716
3717/*
3718 * Initialise sysctl_admin_reserve_kbytes.
3719 *
3720 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3721 * to log in and kill a memory hogging process.
3722 *
3723 * Systems with more than 256MB will reserve 8MB, enough to recover
3724 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3725 * only reserve 3% of free pages by default.
3726 */
3727static int init_admin_reserve(void)
3728{
3729	unsigned long free_kbytes;
3730
3731	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3732
3733	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3734	return 0;
3735}
3736subsys_initcall(init_admin_reserve);
3737
3738/*
3739 * Reinititalise user and admin reserves if memory is added or removed.
3740 *
3741 * The default user reserve max is 128MB, and the default max for the
3742 * admin reserve is 8MB. These are usually, but not always, enough to
3743 * enable recovery from a memory hogging process using login/sshd, a shell,
3744 * and tools like top. It may make sense to increase or even disable the
3745 * reserve depending on the existence of swap or variations in the recovery
3746 * tools. So, the admin may have changed them.
3747 *
3748 * If memory is added and the reserves have been eliminated or increased above
3749 * the default max, then we'll trust the admin.
3750 *
3751 * If memory is removed and there isn't enough free memory, then we
3752 * need to reset the reserves.
3753 *
3754 * Otherwise keep the reserve set by the admin.
3755 */
3756static int reserve_mem_notifier(struct notifier_block *nb,
3757			     unsigned long action, void *data)
3758{
3759	unsigned long tmp, free_kbytes;
3760
3761	switch (action) {
3762	case MEM_ONLINE:
3763		/* Default max is 128MB. Leave alone if modified by operator. */
3764		tmp = sysctl_user_reserve_kbytes;
3765		if (0 < tmp && tmp < (1UL << 17))
3766			init_user_reserve();
3767
3768		/* Default max is 8MB.  Leave alone if modified by operator. */
3769		tmp = sysctl_admin_reserve_kbytes;
3770		if (0 < tmp && tmp < (1UL << 13))
3771			init_admin_reserve();
3772
3773		break;
3774	case MEM_OFFLINE:
3775		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3776
3777		if (sysctl_user_reserve_kbytes > free_kbytes) {
3778			init_user_reserve();
3779			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3780				sysctl_user_reserve_kbytes);
3781		}
3782
3783		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3784			init_admin_reserve();
3785			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3786				sysctl_admin_reserve_kbytes);
3787		}
3788		break;
3789	default:
3790		break;
3791	}
3792	return NOTIFY_OK;
3793}
3794
3795static struct notifier_block reserve_mem_nb = {
3796	.notifier_call = reserve_mem_notifier,
3797};
3798
3799static int __meminit init_reserve_notifier(void)
3800{
3801	if (register_hotmemory_notifier(&reserve_mem_nb))
3802		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3803
3804	return 0;
3805}
3806subsys_initcall(init_reserve_notifier);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		struct vm_area_struct *next, unsigned long start,
  82		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83
  84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
  85{
  86	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
  87}
  88
  89/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  90void vma_set_page_prot(struct vm_area_struct *vma)
  91{
  92	unsigned long vm_flags = vma->vm_flags;
  93	pgprot_t vm_page_prot;
  94
  95	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  96	if (vma_wants_writenotify(vma, vm_page_prot)) {
  97		vm_flags &= ~VM_SHARED;
  98		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
  99	}
 100	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 101	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 102}
 103
 104/*
 105 * Requires inode->i_mapping->i_mmap_rwsem
 106 */
 107static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 108				      struct address_space *mapping)
 109{
 110	if (vma_is_shared_maywrite(vma))
 
 
 111		mapping_unmap_writable(mapping);
 112
 113	flush_dcache_mmap_lock(mapping);
 114	vma_interval_tree_remove(vma, &mapping->i_mmap);
 115	flush_dcache_mmap_unlock(mapping);
 116}
 117
 118/*
 119 * Unlink a file-based vm structure from its interval tree, to hide
 120 * vma from rmap and vmtruncate before freeing its page tables.
 121 */
 122void unlink_file_vma(struct vm_area_struct *vma)
 123{
 124	struct file *file = vma->vm_file;
 125
 126	if (file) {
 127		struct address_space *mapping = file->f_mapping;
 128		i_mmap_lock_write(mapping);
 129		__remove_shared_vm_struct(vma, mapping);
 130		i_mmap_unlock_write(mapping);
 131	}
 132}
 133
 134/*
 135 * Close a vm structure and free it.
 136 */
 137static void remove_vma(struct vm_area_struct *vma, bool unreachable)
 138{
 
 
 139	might_sleep();
 140	if (vma->vm_ops && vma->vm_ops->close)
 141		vma->vm_ops->close(vma);
 142	if (vma->vm_file)
 143		fput(vma->vm_file);
 144	mpol_put(vma_policy(vma));
 145	if (unreachable)
 146		__vm_area_free(vma);
 147	else
 148		vm_area_free(vma);
 149}
 150
 151static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
 152						    unsigned long min)
 153{
 154	return mas_prev(&vmi->mas, min);
 155}
 156
 157/*
 158 * check_brk_limits() - Use platform specific check of range & verify mlock
 159 * limits.
 160 * @addr: The address to check
 161 * @len: The size of increase.
 162 *
 163 * Return: 0 on success.
 164 */
 165static int check_brk_limits(unsigned long addr, unsigned long len)
 166{
 167	unsigned long mapped_addr;
 168
 169	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 170	if (IS_ERR_VALUE(mapped_addr))
 171		return mapped_addr;
 172
 173	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 174		? 0 : -EAGAIN;
 175}
 176static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 177		unsigned long addr, unsigned long request, unsigned long flags);
 178SYSCALL_DEFINE1(brk, unsigned long, brk)
 179{
 
 180	unsigned long newbrk, oldbrk, origbrk;
 181	struct mm_struct *mm = current->mm;
 182	struct vm_area_struct *brkvma, *next = NULL;
 183	unsigned long min_brk;
 184	bool populate = false;
 
 185	LIST_HEAD(uf);
 186	struct vma_iterator vmi;
 187
 188	if (mmap_write_lock_killable(mm))
 189		return -EINTR;
 190
 191	origbrk = mm->brk;
 192
 193#ifdef CONFIG_COMPAT_BRK
 194	/*
 195	 * CONFIG_COMPAT_BRK can still be overridden by setting
 196	 * randomize_va_space to 2, which will still cause mm->start_brk
 197	 * to be arbitrarily shifted
 198	 */
 199	if (current->brk_randomized)
 200		min_brk = mm->start_brk;
 201	else
 202		min_brk = mm->end_data;
 203#else
 204	min_brk = mm->start_brk;
 205#endif
 206	if (brk < min_brk)
 207		goto out;
 208
 209	/*
 210	 * Check against rlimit here. If this check is done later after the test
 211	 * of oldbrk with newbrk then it can escape the test and let the data
 212	 * segment grow beyond its set limit the in case where the limit is
 213	 * not page aligned -Ram Gupta
 214	 */
 215	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 216			      mm->end_data, mm->start_data))
 217		goto out;
 218
 219	newbrk = PAGE_ALIGN(brk);
 220	oldbrk = PAGE_ALIGN(mm->brk);
 221	if (oldbrk == newbrk) {
 222		mm->brk = brk;
 223		goto success;
 224	}
 225
 226	/* Always allow shrinking brk. */
 
 
 
 227	if (brk <= mm->brk) {
 228		/* Search one past newbrk */
 229		vma_iter_init(&vmi, mm, newbrk);
 230		brkvma = vma_find(&vmi, oldbrk);
 231		if (!brkvma || brkvma->vm_start >= oldbrk)
 232			goto out; /* mapping intersects with an existing non-brk vma. */
 233		/*
 234		 * mm->brk must be protected by write mmap_lock.
 235		 * do_vma_munmap() will drop the lock on success,  so update it
 236		 * before calling do_vma_munmap().
 237		 */
 238		mm->brk = brk;
 239		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
 
 
 240			goto out;
 241
 242		goto success_unlocked;
 
 
 243	}
 244
 245	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 246		goto out;
 247
 248	/*
 249	 * Only check if the next VMA is within the stack_guard_gap of the
 250	 * expansion area
 251	 */
 252	vma_iter_init(&vmi, mm, oldbrk);
 253	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 254	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 255		goto out;
 256
 257	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 258	/* Ok, looks good - let it rip. */
 259	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 260		goto out;
 261
 262	mm->brk = brk;
 263	if (mm->def_flags & VM_LOCKED)
 264		populate = true;
 265
 266success:
 267	mmap_write_unlock(mm);
 268success_unlocked:
 
 
 
 269	userfaultfd_unmap_complete(mm, &uf);
 270	if (populate)
 271		mm_populate(oldbrk, newbrk - oldbrk);
 272	return brk;
 273
 274out:
 275	mm->brk = origbrk;
 276	mmap_write_unlock(mm);
 277	return origbrk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
 281static void validate_mm(struct mm_struct *mm)
 282{
 283	int bug = 0;
 284	int i = 0;
 285	struct vm_area_struct *vma;
 286	VMA_ITERATOR(vmi, mm, 0);
 287
 288	mt_validate(&mm->mm_mt);
 289	for_each_vma(vmi, vma) {
 290#ifdef CONFIG_DEBUG_VM_RB
 291		struct anon_vma *anon_vma = vma->anon_vma;
 292		struct anon_vma_chain *avc;
 293#endif
 294		unsigned long vmi_start, vmi_end;
 295		bool warn = 0;
 296
 297		vmi_start = vma_iter_addr(&vmi);
 298		vmi_end = vma_iter_end(&vmi);
 299		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
 300			warn = 1;
 301
 302		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
 303			warn = 1;
 304
 305		if (warn) {
 306			pr_emerg("issue in %s\n", current->comm);
 307			dump_stack();
 308			dump_vma(vma);
 309			pr_emerg("tree range: %px start %lx end %lx\n", vma,
 310				 vmi_start, vmi_end - 1);
 311			vma_iter_dump_tree(&vmi);
 312		}
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315		if (anon_vma) {
 316			anon_vma_lock_read(anon_vma);
 317			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 318				anon_vma_interval_tree_verify(avc);
 319			anon_vma_unlock_read(anon_vma);
 320		}
 321#endif
 
 
 322		i++;
 323	}
 324	if (i != mm->map_count) {
 325		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
 
 
 
 
 
 
 
 
 
 
 
 326		bug = 1;
 327	}
 328	VM_BUG_ON_MM(bug, mm);
 329}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
 332#define validate_mm(mm) do { } while (0)
 333#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335/*
 336 * vma has some anon_vma assigned, and is already inserted on that
 337 * anon_vma's interval trees.
 338 *
 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 340 * vma must be removed from the anon_vma's interval trees using
 341 * anon_vma_interval_tree_pre_update_vma().
 342 *
 343 * After the update, the vma will be reinserted using
 344 * anon_vma_interval_tree_post_update_vma().
 345 *
 346 * The entire update must be protected by exclusive mmap_lock and by
 347 * the root anon_vma's mutex.
 348 */
 349static inline void
 350anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 351{
 352	struct anon_vma_chain *avc;
 353
 354	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 355		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 356}
 357
 358static inline void
 359anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 360{
 361	struct anon_vma_chain *avc;
 362
 363	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 364		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367static unsigned long count_vma_pages_range(struct mm_struct *mm,
 368		unsigned long addr, unsigned long end)
 369{
 370	VMA_ITERATOR(vmi, mm, addr);
 371	struct vm_area_struct *vma;
 372	unsigned long nr_pages = 0;
 373
 374	for_each_vma_range(vmi, vma, end) {
 375		unsigned long vm_start = max(addr, vma->vm_start);
 376		unsigned long vm_end = min(end, vma->vm_end);
 
 
 
 
 
 
 
 
 
 
 
 377
 378		nr_pages += PHYS_PFN(vm_end - vm_start);
 
 379	}
 380
 381	return nr_pages;
 382}
 383
 384static void __vma_link_file(struct vm_area_struct *vma,
 385			    struct address_space *mapping)
 386{
 387	if (vma_is_shared_maywrite(vma))
 388		mapping_allow_writable(mapping);
 
 
 
 389
 390	flush_dcache_mmap_lock(mapping);
 391	vma_interval_tree_insert(vma, &mapping->i_mmap);
 392	flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395static void vma_link_file(struct vm_area_struct *vma)
 396{
 397	struct file *file = vma->vm_file;
 398	struct address_space *mapping;
 399
 
 400	if (file) {
 401		mapping = file->f_mapping;
 402		i_mmap_lock_write(mapping);
 403		__vma_link_file(vma, mapping);
 404		i_mmap_unlock_write(mapping);
 
 
 
 
 
 
 405	}
 406}
 407
 408static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
 
 
 
 409{
 410	VMA_ITERATOR(vmi, mm, 0);
 
 
 
 
 
 
 
 
 411
 412	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
 413	if (vma_iter_prealloc(&vmi, vma))
 414		return -ENOMEM;
 
 
 
 
 
 
 
 415
 416	vma_start_write(vma);
 417	vma_iter_store(&vmi, vma);
 418	vma_link_file(vma);
 419	mm->map_count++;
 420	validate_mm(mm);
 421	return 0;
 422}
 423
 424/*
 425 * init_multi_vma_prep() - Initializer for struct vma_prepare
 426 * @vp: The vma_prepare struct
 427 * @vma: The vma that will be altered once locked
 428 * @next: The next vma if it is to be adjusted
 429 * @remove: The first vma to be removed
 430 * @remove2: The second vma to be removed
 431 */
 432static inline void init_multi_vma_prep(struct vma_prepare *vp,
 433		struct vm_area_struct *vma, struct vm_area_struct *next,
 434		struct vm_area_struct *remove, struct vm_area_struct *remove2)
 435{
 436	memset(vp, 0, sizeof(struct vma_prepare));
 437	vp->vma = vma;
 438	vp->anon_vma = vma->anon_vma;
 439	vp->remove = remove;
 440	vp->remove2 = remove2;
 441	vp->adj_next = next;
 442	if (!vp->anon_vma && next)
 443		vp->anon_vma = next->anon_vma;
 444
 445	vp->file = vma->vm_file;
 446	if (vp->file)
 447		vp->mapping = vma->vm_file->f_mapping;
 
 
 
 448
 
 
 
 
 
 
 
 
 449}
 450
 451/*
 452 * init_vma_prep() - Initializer wrapper for vma_prepare struct
 453 * @vp: The vma_prepare struct
 454 * @vma: The vma that will be altered once locked
 455 */
 456static inline void init_vma_prep(struct vma_prepare *vp,
 457				 struct vm_area_struct *vma)
 
 
 
 458{
 459	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
 460}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 
 
 
 
 
 
 
 
 462
 463/*
 464 * vma_prepare() - Helper function for handling locking VMAs prior to altering
 465 * @vp: The initialized vma_prepare struct
 466 */
 467static inline void vma_prepare(struct vma_prepare *vp)
 468{
 469	if (vp->file) {
 470		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
 471
 472		if (vp->adj_next)
 473			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
 474				      vp->adj_next->vm_end);
 475
 476		i_mmap_lock_write(vp->mapping);
 477		if (vp->insert && vp->insert->vm_file) {
 478			/*
 479			 * Put into interval tree now, so instantiated pages
 480			 * are visible to arm/parisc __flush_dcache_page
 481			 * throughout; but we cannot insert into address
 482			 * space until vma start or end is updated.
 483			 */
 484			__vma_link_file(vp->insert,
 485					vp->insert->vm_file->f_mapping);
 486		}
 487	}
 488
 489	if (vp->anon_vma) {
 490		anon_vma_lock_write(vp->anon_vma);
 491		anon_vma_interval_tree_pre_update_vma(vp->vma);
 492		if (vp->adj_next)
 493			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
 
 
 
 
 
 494	}
 495
 496	if (vp->file) {
 497		flush_dcache_mmap_lock(vp->mapping);
 498		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
 499		if (vp->adj_next)
 500			vma_interval_tree_remove(vp->adj_next,
 501						 &vp->mapping->i_mmap);
 502	}
 503
 504}
 
 
 
 
 
 
 
 
 
 
 
 
 505
 506/*
 507 * vma_complete- Helper function for handling the unlocking after altering VMAs,
 508 * or for inserting a VMA.
 509 *
 510 * @vp: The vma_prepare struct
 511 * @vmi: The vma iterator
 512 * @mm: The mm_struct
 513 */
 514static inline void vma_complete(struct vma_prepare *vp,
 515				struct vma_iterator *vmi, struct mm_struct *mm)
 516{
 517	if (vp->file) {
 518		if (vp->adj_next)
 519			vma_interval_tree_insert(vp->adj_next,
 520						 &vp->mapping->i_mmap);
 521		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
 522		flush_dcache_mmap_unlock(vp->mapping);
 523	}
 524
 525	if (vp->remove && vp->file) {
 526		__remove_shared_vm_struct(vp->remove, vp->mapping);
 527		if (vp->remove2)
 528			__remove_shared_vm_struct(vp->remove2, vp->mapping);
 529	} else if (vp->insert) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530		/*
 531		 * split_vma has split insert from vma, and needs
 532		 * us to insert it before dropping the locks
 533		 * (it may either follow vma or precede it).
 534		 */
 535		vma_iter_store(vmi, vp->insert);
 536		mm->map_count++;
 
 
 
 
 
 
 
 
 537	}
 538
 539	if (vp->anon_vma) {
 540		anon_vma_interval_tree_post_update_vma(vp->vma);
 541		if (vp->adj_next)
 542			anon_vma_interval_tree_post_update_vma(vp->adj_next);
 543		anon_vma_unlock_write(vp->anon_vma);
 544	}
 
 
 545
 546	if (vp->file) {
 547		i_mmap_unlock_write(vp->mapping);
 548		uprobe_mmap(vp->vma);
 549
 550		if (vp->adj_next)
 551			uprobe_mmap(vp->adj_next);
 552	}
 553
 554	if (vp->remove) {
 555again:
 556		vma_mark_detached(vp->remove, true);
 557		if (vp->file) {
 558			uprobe_munmap(vp->remove, vp->remove->vm_start,
 559				      vp->remove->vm_end);
 560			fput(vp->file);
 561		}
 562		if (vp->remove->anon_vma)
 563			anon_vma_merge(vp->vma, vp->remove);
 564		mm->map_count--;
 565		mpol_put(vma_policy(vp->remove));
 566		if (!vp->remove2)
 567			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
 568		vm_area_free(vp->remove);
 569
 570		/*
 571		 * In mprotect's case 6 (see comments on vma_merge),
 572		 * we are removing both mid and next vmas
 
 573		 */
 574		if (vp->remove2) {
 575			vp->remove = vp->remove2;
 576			vp->remove2 = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577			goto again;
 578		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579	}
 580	if (vp->insert && vp->file)
 581		uprobe_mmap(vp->insert);
 
 582	validate_mm(mm);
 583}
 584
 585/*
 586 * dup_anon_vma() - Helper function to duplicate anon_vma
 587 * @dst: The destination VMA
 588 * @src: The source VMA
 589 * @dup: Pointer to the destination VMA when successful.
 590 *
 591 * Returns: 0 on success.
 592 */
 593static inline int dup_anon_vma(struct vm_area_struct *dst,
 594		struct vm_area_struct *src, struct vm_area_struct **dup)
 595{
 596	/*
 597	 * Easily overlooked: when mprotect shifts the boundary, make sure the
 598	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
 599	 * anon pages imported.
 600	 */
 601	if (src->anon_vma && !dst->anon_vma) {
 602		int ret;
 603
 604		vma_assert_write_locked(dst);
 605		dst->anon_vma = src->anon_vma;
 606		ret = anon_vma_clone(dst, src);
 607		if (ret)
 608			return ret;
 609
 610		*dup = dst;
 611	}
 612
 613	return 0;
 614}
 615
 616/*
 617 * vma_expand - Expand an existing VMA
 618 *
 619 * @vmi: The vma iterator
 620 * @vma: The vma to expand
 621 * @start: The start of the vma
 622 * @end: The exclusive end of the vma
 623 * @pgoff: The page offset of vma
 624 * @next: The current of next vma.
 625 *
 626 * Expand @vma to @start and @end.  Can expand off the start and end.  Will
 627 * expand over @next if it's different from @vma and @end == @next->vm_end.
 628 * Checking if the @vma can expand and merge with @next needs to be handled by
 629 * the caller.
 630 *
 631 * Returns: 0 on success
 632 */
 633int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
 634	       unsigned long start, unsigned long end, pgoff_t pgoff,
 635	       struct vm_area_struct *next)
 636{
 637	struct vm_area_struct *anon_dup = NULL;
 638	bool remove_next = false;
 639	struct vma_prepare vp;
 640
 641	vma_start_write(vma);
 642	if (next && (vma != next) && (end == next->vm_end)) {
 643		int ret;
 644
 645		remove_next = true;
 646		vma_start_write(next);
 647		ret = dup_anon_vma(vma, next, &anon_dup);
 648		if (ret)
 649			return ret;
 650	}
 651
 652	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
 653	/* Not merging but overwriting any part of next is not handled. */
 654	VM_WARN_ON(next && !vp.remove &&
 655		  next != vma && end > next->vm_start);
 656	/* Only handles expanding */
 657	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
 658
 659	/* Note: vma iterator must be pointing to 'start' */
 660	vma_iter_config(vmi, start, end);
 661	if (vma_iter_prealloc(vmi, vma))
 662		goto nomem;
 663
 664	vma_prepare(&vp);
 665	vma_adjust_trans_huge(vma, start, end, 0);
 666	vma_set_range(vma, start, end, pgoff);
 667	vma_iter_store(vmi, vma);
 668
 669	vma_complete(&vp, vmi, vma->vm_mm);
 670	return 0;
 671
 672nomem:
 673	if (anon_dup)
 674		unlink_anon_vmas(anon_dup);
 675	return -ENOMEM;
 676}
 677
 678/*
 679 * vma_shrink() - Reduce an existing VMAs memory area
 680 * @vmi: The vma iterator
 681 * @vma: The VMA to modify
 682 * @start: The new start
 683 * @end: The new end
 684 *
 685 * Returns: 0 on success, -ENOMEM otherwise
 686 */
 687int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
 688	       unsigned long start, unsigned long end, pgoff_t pgoff)
 689{
 690	struct vma_prepare vp;
 691
 692	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
 693
 694	if (vma->vm_start < start)
 695		vma_iter_config(vmi, vma->vm_start, start);
 696	else
 697		vma_iter_config(vmi, end, vma->vm_end);
 698
 699	if (vma_iter_prealloc(vmi, NULL))
 700		return -ENOMEM;
 701
 702	vma_start_write(vma);
 703
 704	init_vma_prep(&vp, vma);
 705	vma_prepare(&vp);
 706	vma_adjust_trans_huge(vma, start, end, 0);
 707
 708	vma_iter_clear(vmi);
 709	vma_set_range(vma, start, end, pgoff);
 710	vma_complete(&vp, vmi, vma->vm_mm);
 711	return 0;
 712}
 713
 714/*
 715 * If the vma has a ->close operation then the driver probably needs to release
 716 * per-vma resources, so we don't attempt to merge those if the caller indicates
 717 * the current vma may be removed as part of the merge.
 718 */
 719static inline bool is_mergeable_vma(struct vm_area_struct *vma,
 720		struct file *file, unsigned long vm_flags,
 721		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 722		struct anon_vma_name *anon_name, bool may_remove_vma)
 723{
 724	/*
 725	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 726	 * match the flags but dirty bit -- the caller should mark
 727	 * merged VMA as dirty. If dirty bit won't be excluded from
 728	 * comparison, we increase pressure on the memory system forcing
 729	 * the kernel to generate new VMAs when old one could be
 730	 * extended instead.
 731	 */
 732	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 733		return false;
 734	if (vma->vm_file != file)
 735		return false;
 736	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
 737		return false;
 738	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 739		return false;
 740	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
 741		return false;
 742	return true;
 743}
 744
 745static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 746		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
 
 747{
 748	/*
 749	 * The list_is_singular() test is to avoid merging VMA cloned from
 750	 * parents. This can improve scalability caused by anon_vma lock.
 751	 */
 752	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 753		list_is_singular(&vma->anon_vma_chain)))
 754		return true;
 755	return anon_vma1 == anon_vma2;
 756}
 757
 758/*
 759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 760 * in front of (at a lower virtual address and file offset than) the vma.
 761 *
 762 * We cannot merge two vmas if they have differently assigned (non-NULL)
 763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 764 *
 765 * We don't check here for the merged mmap wrapping around the end of pagecache
 766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
 767 * wrap, nor mmaps which cover the final page at index -1UL.
 768 *
 769 * We assume the vma may be removed as part of the merge.
 770 */
 771static bool
 772can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 773		struct anon_vma *anon_vma, struct file *file,
 774		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 775		struct anon_vma_name *anon_name)
 776{
 777	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
 778	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 779		if (vma->vm_pgoff == vm_pgoff)
 780			return true;
 781	}
 782	return false;
 783}
 784
 785/*
 786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 787 * beyond (at a higher virtual address and file offset than) the vma.
 788 *
 789 * We cannot merge two vmas if they have differently assigned (non-NULL)
 790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 791 *
 792 * We assume that vma is not removed as part of the merge.
 793 */
 794static bool
 795can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 796		struct anon_vma *anon_vma, struct file *file,
 797		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 798		struct anon_vma_name *anon_name)
 799{
 800	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
 801	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 802		pgoff_t vm_pglen;
 803		vm_pglen = vma_pages(vma);
 804		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 805			return true;
 806	}
 807	return false;
 808}
 809
 810/*
 811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
 812 * figure out whether that can be merged with its predecessor or its
 813 * successor.  Or both (it neatly fills a hole).
 814 *
 815 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 816 * certain not to be mapped by the time vma_merge is called; but when
 817 * called for mprotect, it is certain to be already mapped (either at
 818 * an offset within prev, or at the start of next), and the flags of
 819 * this area are about to be changed to vm_flags - and the no-change
 820 * case has already been eliminated.
 821 *
 822 * The following mprotect cases have to be considered, where **** is
 823 * the area passed down from mprotect_fixup, never extending beyond one
 824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
 825 * at the same address as **** and is of the same or larger span, and
 826 * NNNN the next vma after ****:
 827 *
 828 *     ****             ****                   ****
 829 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
 830 *    cannot merge    might become       might become
 831 *                    PPNNNNNNNNNN       PPPPPPPPPPCC
 832 *    mmap, brk or    case 4 below       case 5 below
 833 *    mremap move:
 834 *                        ****               ****
 835 *                    PPPP    NNNN       PPPPCCCCNNNN
 836 *                    might become       might become
 837 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
 838 *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
 839 *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
 840 *
 841 * It is important for case 8 that the vma CCCC overlapping the
 842 * region **** is never going to extended over NNNN. Instead NNNN must
 843 * be extended in region **** and CCCC must be removed. This way in
 844 * all cases where vma_merge succeeds, the moment vma_merge drops the
 845 * rmap_locks, the properties of the merged vma will be already
 846 * correct for the whole merged range. Some of those properties like
 847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
 848 * be correct for the whole merged range immediately after the
 849 * rmap_locks are released. Otherwise if NNNN would be removed and
 850 * CCCC would be extended over the NNNN range, remove_migration_ptes
 851 * or other rmap walkers (if working on addresses beyond the "end"
 852 * parameter) may establish ptes with the wrong permissions of CCCC
 853 * instead of the right permissions of NNNN.
 854 *
 855 * In the code below:
 856 * PPPP is represented by *prev
 857 * CCCC is represented by *curr or not represented at all (NULL)
 858 * NNNN is represented by *next or not represented at all (NULL)
 859 * **** is not represented - it will be merged and the vma containing the
 860 *      area is returned, or the function will return NULL
 861 */
 862static struct vm_area_struct
 863*vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
 864	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
 865	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
 866	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 867	   struct anon_vma_name *anon_name)
 868{
 869	struct mm_struct *mm = src->vm_mm;
 870	struct anon_vma *anon_vma = src->anon_vma;
 871	struct file *file = src->vm_file;
 872	struct vm_area_struct *curr, *next, *res;
 873	struct vm_area_struct *vma, *adjust, *remove, *remove2;
 874	struct vm_area_struct *anon_dup = NULL;
 875	struct vma_prepare vp;
 876	pgoff_t vma_pgoff;
 877	int err = 0;
 878	bool merge_prev = false;
 879	bool merge_next = false;
 880	bool vma_expanded = false;
 881	unsigned long vma_start = addr;
 882	unsigned long vma_end = end;
 883	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 884	long adj_start = 0;
 
 885
 886	/*
 887	 * We later require that vma->vm_flags == vm_flags,
 888	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 889	 */
 890	if (vm_flags & VM_SPECIAL)
 891		return NULL;
 892
 893	/* Does the input range span an existing VMA? (cases 5 - 8) */
 894	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
 895
 896	if (!curr ||			/* cases 1 - 4 */
 897	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
 898		next = vma_lookup(mm, end);
 899	else
 900		next = NULL;		/* case 5 */
 901
 902	if (prev) {
 903		vma_start = prev->vm_start;
 904		vma_pgoff = prev->vm_pgoff;
 905
 906		/* Can we merge the predecessor? */
 907		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
 908		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
 909					   pgoff, vm_userfaultfd_ctx, anon_name)) {
 910			merge_prev = true;
 911			vma_prev(vmi);
 912		}
 913	}
 914
 915	/* Can we merge the successor? */
 916	if (next && mpol_equal(policy, vma_policy(next)) &&
 917	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
 918				 vm_userfaultfd_ctx, anon_name)) {
 919		merge_next = true;
 920	}
 921
 922	/* Verify some invariant that must be enforced by the caller. */
 923	VM_WARN_ON(prev && addr <= prev->vm_start);
 924	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
 925	VM_WARN_ON(addr >= end);
 926
 927	if (!merge_prev && !merge_next)
 928		return NULL; /* Not mergeable. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930	if (merge_prev)
 931		vma_start_write(prev);
 932
 933	res = vma = prev;
 934	remove = remove2 = adjust = NULL;
 935
 936	/* Can we merge both the predecessor and the successor? */
 937	if (merge_prev && merge_next &&
 938	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
 939		vma_start_write(next);
 940		remove = next;				/* case 1 */
 941		vma_end = next->vm_end;
 942		err = dup_anon_vma(prev, next, &anon_dup);
 943		if (curr) {				/* case 6 */
 944			vma_start_write(curr);
 945			remove = curr;
 946			remove2 = next;
 947			/*
 948			 * Note that the dup_anon_vma below cannot overwrite err
 949			 * since the first caller would do nothing unless next
 950			 * has an anon_vma.
 951			 */
 952			if (!next->anon_vma)
 953				err = dup_anon_vma(prev, curr, &anon_dup);
 954		}
 955	} else if (merge_prev) {			/* case 2 */
 956		if (curr) {
 957			vma_start_write(curr);
 958			if (end == curr->vm_end) {	/* case 7 */
 959				/*
 960				 * can_vma_merge_after() assumed we would not be
 961				 * removing prev vma, so it skipped the check
 962				 * for vm_ops->close, but we are removing curr
 963				 */
 964				if (curr->vm_ops && curr->vm_ops->close)
 965					err = -EINVAL;
 966				remove = curr;
 967			} else {			/* case 5 */
 968				adjust = curr;
 969				adj_start = (end - curr->vm_start);
 970			}
 971			if (!err)
 972				err = dup_anon_vma(prev, curr, &anon_dup);
 973		}
 974	} else { /* merge_next */
 975		vma_start_write(next);
 976		res = next;
 977		if (prev && addr < prev->vm_end) {	/* case 4 */
 978			vma_start_write(prev);
 979			vma_end = addr;
 980			adjust = next;
 981			adj_start = -(prev->vm_end - addr);
 982			err = dup_anon_vma(next, prev, &anon_dup);
 983		} else {
 984			/*
 985			 * Note that cases 3 and 8 are the ONLY ones where prev
 986			 * is permitted to be (but is not necessarily) NULL.
 987			 */
 988			vma = next;			/* case 3 */
 989			vma_start = addr;
 990			vma_end = next->vm_end;
 991			vma_pgoff = next->vm_pgoff - pglen;
 992			if (curr) {			/* case 8 */
 993				vma_pgoff = curr->vm_pgoff;
 994				vma_start_write(curr);
 995				remove = curr;
 996				err = dup_anon_vma(next, curr, &anon_dup);
 997			}
 998		}
 999	}
1000
1001	/* Error in anon_vma clone. */
1002	if (err)
1003		goto anon_vma_fail;
1004
1005	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006		vma_expanded = true;
1007
1008	if (vma_expanded) {
1009		vma_iter_config(vmi, vma_start, vma_end);
1010	} else {
1011		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012				adjust->vm_end);
1013	}
1014
1015	if (vma_iter_prealloc(vmi, vma))
1016		goto prealloc_fail;
1017
1018	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020		   vp.anon_vma != adjust->anon_vma);
1021
1022	vma_prepare(&vp);
1023	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026	if (vma_expanded)
1027		vma_iter_store(vmi, vma);
1028
1029	if (adj_start) {
1030		adjust->vm_start += adj_start;
1031		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032		if (adj_start < 0) {
1033			WARN_ON(vma_expanded);
1034			vma_iter_store(vmi, next);
1035		}
 
 
 
 
1036	}
1037
1038	vma_complete(&vp, vmi, mm);
1039	khugepaged_enter_vma(res, vm_flags);
1040	return res;
1041
1042prealloc_fail:
1043	if (anon_dup)
1044		unlink_anon_vmas(anon_dup);
1045
1046anon_vma_fail:
1047	vma_iter_set(vmi, addr);
1048	vma_iter_load(vmi);
1049	return NULL;
1050}
1051
1052/*
1053 * Rough compatibility check to quickly see if it's even worth looking
1054 * at sharing an anon_vma.
1055 *
1056 * They need to have the same vm_file, and the flags can only differ
1057 * in things that mprotect may change.
1058 *
1059 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060 * we can merge the two vma's. For example, we refuse to merge a vma if
1061 * there is a vm_ops->close() function, because that indicates that the
1062 * driver is doing some kind of reference counting. But that doesn't
1063 * really matter for the anon_vma sharing case.
1064 */
1065static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066{
1067	return a->vm_end == b->vm_start &&
1068		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069		a->vm_file == b->vm_file &&
1070		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072}
1073
1074/*
1075 * Do some basic sanity checking to see if we can re-use the anon_vma
1076 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077 * the same as 'old', the other will be the new one that is trying
1078 * to share the anon_vma.
1079 *
1080 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081 * the anon_vma of 'old' is concurrently in the process of being set up
1082 * by another page fault trying to merge _that_. But that's ok: if it
1083 * is being set up, that automatically means that it will be a singleton
1084 * acceptable for merging, so we can do all of this optimistically. But
1085 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086 *
1087 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089 * is to return an anon_vma that is "complex" due to having gone through
1090 * a fork).
1091 *
1092 * We also make sure that the two vma's are compatible (adjacent,
1093 * and with the same memory policies). That's all stable, even with just
1094 * a read lock on the mmap_lock.
1095 */
1096static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097{
1098	if (anon_vma_compatible(a, b)) {
1099		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102			return anon_vma;
1103	}
1104	return NULL;
1105}
1106
1107/*
1108 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109 * neighbouring vmas for a suitable anon_vma, before it goes off
1110 * to allocate a new anon_vma.  It checks because a repetitive
1111 * sequence of mprotects and faults may otherwise lead to distinct
1112 * anon_vmas being allocated, preventing vma merge in subsequent
1113 * mprotect.
1114 */
1115struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116{
1117	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1118	struct anon_vma *anon_vma = NULL;
1119	struct vm_area_struct *prev, *next;
1120
1121	/* Try next first. */
1122	next = mas_walk(&mas);
1123	if (next) {
1124		anon_vma = reusable_anon_vma(next, vma, next);
1125		if (anon_vma)
1126			return anon_vma;
1127	}
1128
1129	prev = mas_prev(&mas, 0);
1130	VM_BUG_ON_VMA(prev != vma, vma);
1131	prev = mas_prev(&mas, 0);
1132	/* Try prev next. */
1133	if (prev)
1134		anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136	/*
1137	 * We might reach here with anon_vma == NULL if we can't find
1138	 * any reusable anon_vma.
1139	 * There's no absolute need to look only at touching neighbours:
1140	 * we could search further afield for "compatible" anon_vmas.
1141	 * But it would probably just be a waste of time searching,
1142	 * or lead to too many vmas hanging off the same anon_vma.
1143	 * We're trying to allow mprotect remerging later on,
1144	 * not trying to minimize memory used for anon_vmas.
1145	 */
1146	return anon_vma;
1147}
1148
1149/*
1150 * If a hint addr is less than mmap_min_addr change hint to be as
1151 * low as possible but still greater than mmap_min_addr
1152 */
1153static inline unsigned long round_hint_to_min(unsigned long hint)
1154{
1155	hint &= PAGE_MASK;
1156	if (((void *)hint != NULL) &&
1157	    (hint < mmap_min_addr))
1158		return PAGE_ALIGN(mmap_min_addr);
1159	return hint;
1160}
1161
1162bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163			unsigned long bytes)
1164{
1165	unsigned long locked_pages, limit_pages;
1166
1167	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168		return true;
1169
1170	locked_pages = bytes >> PAGE_SHIFT;
1171	locked_pages += mm->locked_vm;
1172
1173	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174	limit_pages >>= PAGE_SHIFT;
1175
1176	return locked_pages <= limit_pages;
 
1177}
1178
1179static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180{
1181	if (S_ISREG(inode->i_mode))
1182		return MAX_LFS_FILESIZE;
1183
1184	if (S_ISBLK(inode->i_mode))
1185		return MAX_LFS_FILESIZE;
1186
1187	if (S_ISSOCK(inode->i_mode))
1188		return MAX_LFS_FILESIZE;
1189
1190	/* Special "we do even unsigned file positions" case */
1191	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192		return 0;
1193
1194	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195	return ULONG_MAX;
1196}
1197
1198static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199				unsigned long pgoff, unsigned long len)
1200{
1201	u64 maxsize = file_mmap_size_max(file, inode);
1202
1203	if (maxsize && len > maxsize)
1204		return false;
1205	maxsize -= len;
1206	if (pgoff > maxsize >> PAGE_SHIFT)
1207		return false;
1208	return true;
1209}
1210
1211/*
1212 * The caller must write-lock current->mm->mmap_lock.
1213 */
1214unsigned long do_mmap(struct file *file, unsigned long addr,
1215			unsigned long len, unsigned long prot,
1216			unsigned long flags, vm_flags_t vm_flags,
1217			unsigned long pgoff, unsigned long *populate,
1218			struct list_head *uf)
1219{
1220	struct mm_struct *mm = current->mm;
 
1221	int pkey = 0;
1222
1223	*populate = 0;
1224
1225	if (!len)
1226		return -EINVAL;
1227
1228	/*
1229	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230	 *
1231	 * (the exception is when the underlying filesystem is noexec
1232	 *  mounted, in which case we don't add PROT_EXEC.)
1233	 */
1234	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235		if (!(file && path_noexec(&file->f_path)))
1236			prot |= PROT_EXEC;
1237
1238	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239	if (flags & MAP_FIXED_NOREPLACE)
1240		flags |= MAP_FIXED;
1241
1242	if (!(flags & MAP_FIXED))
1243		addr = round_hint_to_min(addr);
1244
1245	/* Careful about overflows.. */
1246	len = PAGE_ALIGN(len);
1247	if (!len)
1248		return -ENOMEM;
1249
1250	/* offset overflow? */
1251	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252		return -EOVERFLOW;
1253
1254	/* Too many mappings? */
1255	if (mm->map_count > sysctl_max_map_count)
1256		return -ENOMEM;
1257
1258	/* Obtain the address to map to. we verify (or select) it and ensure
1259	 * that it represents a valid section of the address space.
1260	 */
1261	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1262	if (IS_ERR_VALUE(addr))
1263		return addr;
1264
1265	if (flags & MAP_FIXED_NOREPLACE) {
1266		if (find_vma_intersection(mm, addr, addr + len))
 
 
1267			return -EEXIST;
1268	}
1269
1270	if (prot == PROT_EXEC) {
1271		pkey = execute_only_pkey(mm);
1272		if (pkey < 0)
1273			pkey = 0;
1274	}
1275
1276	/* Do simple checking here so the lower-level routines won't have
1277	 * to. we assume access permissions have been handled by the open
1278	 * of the memory object, so we don't do any here.
1279	 */
1280	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1281			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1282
1283	if (flags & MAP_LOCKED)
1284		if (!can_do_mlock())
1285			return -EPERM;
1286
1287	if (!mlock_future_ok(mm, vm_flags, len))
1288		return -EAGAIN;
1289
1290	if (file) {
1291		struct inode *inode = file_inode(file);
1292		unsigned long flags_mask;
1293
1294		if (!file_mmap_ok(file, inode, pgoff, len))
1295			return -EOVERFLOW;
1296
1297		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1298
1299		switch (flags & MAP_TYPE) {
1300		case MAP_SHARED:
1301			/*
1302			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1303			 * flags. E.g. MAP_SYNC is dangerous to use with
1304			 * MAP_SHARED as you don't know which consistency model
1305			 * you will get. We silently ignore unsupported flags
1306			 * with MAP_SHARED to preserve backward compatibility.
1307			 */
1308			flags &= LEGACY_MAP_MASK;
1309			fallthrough;
1310		case MAP_SHARED_VALIDATE:
1311			if (flags & ~flags_mask)
1312				return -EOPNOTSUPP;
1313			if (prot & PROT_WRITE) {
1314				if (!(file->f_mode & FMODE_WRITE))
1315					return -EACCES;
1316				if (IS_SWAPFILE(file->f_mapping->host))
1317					return -ETXTBSY;
1318			}
1319
1320			/*
1321			 * Make sure we don't allow writing to an append-only
1322			 * file..
1323			 */
1324			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1325				return -EACCES;
1326
 
 
 
 
 
 
1327			vm_flags |= VM_SHARED | VM_MAYSHARE;
1328			if (!(file->f_mode & FMODE_WRITE))
1329				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1330			fallthrough;
1331		case MAP_PRIVATE:
1332			if (!(file->f_mode & FMODE_READ))
1333				return -EACCES;
1334			if (path_noexec(&file->f_path)) {
1335				if (vm_flags & VM_EXEC)
1336					return -EPERM;
1337				vm_flags &= ~VM_MAYEXEC;
1338			}
1339
1340			if (!file->f_op->mmap)
1341				return -ENODEV;
1342			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1343				return -EINVAL;
1344			break;
1345
1346		default:
1347			return -EINVAL;
1348		}
1349	} else {
1350		switch (flags & MAP_TYPE) {
1351		case MAP_SHARED:
1352			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353				return -EINVAL;
1354			/*
1355			 * Ignore pgoff.
1356			 */
1357			pgoff = 0;
1358			vm_flags |= VM_SHARED | VM_MAYSHARE;
1359			break;
1360		case MAP_PRIVATE:
1361			/*
1362			 * Set pgoff according to addr for anon_vma.
1363			 */
1364			pgoff = addr >> PAGE_SHIFT;
1365			break;
1366		default:
1367			return -EINVAL;
1368		}
1369	}
1370
1371	/*
1372	 * Set 'VM_NORESERVE' if we should not account for the
1373	 * memory use of this mapping.
1374	 */
1375	if (flags & MAP_NORESERVE) {
1376		/* We honor MAP_NORESERVE if allowed to overcommit */
1377		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1378			vm_flags |= VM_NORESERVE;
1379
1380		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1381		if (file && is_file_hugepages(file))
1382			vm_flags |= VM_NORESERVE;
1383	}
1384
1385	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1386	if (!IS_ERR_VALUE(addr) &&
1387	    ((vm_flags & VM_LOCKED) ||
1388	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1389		*populate = len;
1390	return addr;
1391}
1392
1393unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1394			      unsigned long prot, unsigned long flags,
1395			      unsigned long fd, unsigned long pgoff)
1396{
1397	struct file *file = NULL;
1398	unsigned long retval;
1399
1400	if (!(flags & MAP_ANONYMOUS)) {
1401		audit_mmap_fd(fd, flags);
1402		file = fget(fd);
1403		if (!file)
1404			return -EBADF;
1405		if (is_file_hugepages(file)) {
1406			len = ALIGN(len, huge_page_size(hstate_file(file)));
1407		} else if (unlikely(flags & MAP_HUGETLB)) {
1408			retval = -EINVAL;
1409			goto out_fput;
1410		}
1411	} else if (flags & MAP_HUGETLB) {
 
1412		struct hstate *hs;
1413
1414		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415		if (!hs)
1416			return -EINVAL;
1417
1418		len = ALIGN(len, huge_page_size(hs));
1419		/*
1420		 * VM_NORESERVE is used because the reservations will be
1421		 * taken when vm_ops->mmap() is called
 
 
1422		 */
1423		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1424				VM_NORESERVE,
1425				HUGETLB_ANONHUGE_INODE,
1426				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427		if (IS_ERR(file))
1428			return PTR_ERR(file);
1429	}
1430
 
 
1431	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1432out_fput:
1433	if (file)
1434		fput(file);
1435	return retval;
1436}
1437
1438SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1439		unsigned long, prot, unsigned long, flags,
1440		unsigned long, fd, unsigned long, pgoff)
1441{
1442	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1443}
1444
1445#ifdef __ARCH_WANT_SYS_OLD_MMAP
1446struct mmap_arg_struct {
1447	unsigned long addr;
1448	unsigned long len;
1449	unsigned long prot;
1450	unsigned long flags;
1451	unsigned long fd;
1452	unsigned long offset;
1453};
1454
1455SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1456{
1457	struct mmap_arg_struct a;
1458
1459	if (copy_from_user(&a, arg, sizeof(a)))
1460		return -EFAULT;
1461	if (offset_in_page(a.offset))
1462		return -EINVAL;
1463
1464	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1465			       a.offset >> PAGE_SHIFT);
1466}
1467#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1468
1469static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1470{
1471	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1472}
1473
1474static bool vma_is_shared_writable(struct vm_area_struct *vma)
1475{
1476	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1477		(VM_WRITE | VM_SHARED);
1478}
1479
1480static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1481{
1482	/* No managed pages to writeback. */
1483	if (vma->vm_flags & VM_PFNMAP)
1484		return false;
1485
1486	return vma->vm_file && vma->vm_file->f_mapping &&
1487		mapping_can_writeback(vma->vm_file->f_mapping);
1488}
1489
1490/*
1491 * Does this VMA require the underlying folios to have their dirty state
1492 * tracked?
1493 */
1494bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1495{
1496	/* Only shared, writable VMAs require dirty tracking. */
1497	if (!vma_is_shared_writable(vma))
1498		return false;
1499
1500	/* Does the filesystem need to be notified? */
1501	if (vm_ops_needs_writenotify(vma->vm_ops))
1502		return true;
1503
1504	/*
1505	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1506	 * can writeback, dirty tracking is still required.
1507	 */
1508	return vma_fs_can_writeback(vma);
1509}
1510
1511/*
1512 * Some shared mappings will want the pages marked read-only
1513 * to track write events. If so, we'll downgrade vm_page_prot
1514 * to the private version (using protection_map[] without the
1515 * VM_SHARED bit).
1516 */
1517int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1518{
 
 
 
1519	/* If it was private or non-writable, the write bit is already clear */
1520	if (!vma_is_shared_writable(vma))
1521		return 0;
1522
1523	/* The backer wishes to know when pages are first written to? */
1524	if (vm_ops_needs_writenotify(vma->vm_ops))
1525		return 1;
1526
1527	/* The open routine did something to the protections that pgprot_modify
1528	 * won't preserve? */
1529	if (pgprot_val(vm_page_prot) !=
1530	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1531		return 0;
1532
1533	/*
1534	 * Do we need to track softdirty? hugetlb does not support softdirty
1535	 * tracking yet.
1536	 */
1537	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1538		return 1;
1539
1540	/* Do we need write faults for uffd-wp tracking? */
1541	if (userfaultfd_wp(vma))
1542		return 1;
1543
1544	/* Can the mapping track the dirty pages? */
1545	return vma_fs_can_writeback(vma);
 
1546}
1547
1548/*
1549 * We account for memory if it's a private writeable mapping,
1550 * not hugepages and VM_NORESERVE wasn't set.
1551 */
1552static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553{
1554	/*
1555	 * hugetlb has its own accounting separate from the core VM
1556	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1557	 */
1558	if (file && is_file_hugepages(file))
1559		return 0;
1560
1561	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562}
1563
1564/**
1565 * unmapped_area() - Find an area between the low_limit and the high_limit with
1566 * the correct alignment and offset, all from @info. Note: current->mm is used
1567 * for the search.
1568 *
1569 * @info: The unmapped area information including the range [low_limit -
1570 * high_limit), the alignment offset and mask.
1571 *
1572 * Return: A memory address or -ENOMEM.
1573 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1575{
1576	unsigned long length, gap;
1577	unsigned long low_limit, high_limit;
1578	struct vm_area_struct *tmp;
 
 
 
 
1579
1580	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
 
 
1581
1582	/* Adjust search length to account for worst case alignment overhead */
1583	length = info->length + info->align_mask;
1584	if (length < info->length)
1585		return -ENOMEM;
1586
1587	low_limit = info->low_limit;
1588	if (low_limit < mmap_min_addr)
1589		low_limit = mmap_min_addr;
1590	high_limit = info->high_limit;
1591retry:
1592	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1593		return -ENOMEM;
1594
1595	gap = mas.index;
1596	gap += (info->align_offset - gap) & info->align_mask;
1597	tmp = mas_next(&mas, ULONG_MAX);
1598	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1599		if (vm_start_gap(tmp) < gap + length - 1) {
1600			low_limit = tmp->vm_end;
1601			mas_reset(&mas);
1602			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603		}
1604	} else {
1605		tmp = mas_prev(&mas, 0);
1606		if (tmp && vm_end_gap(tmp) > gap) {
1607			low_limit = vm_end_gap(tmp);
1608			mas_reset(&mas);
1609			goto retry;
 
 
 
 
 
 
 
1610		}
1611	}
1612
1613	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614}
1615
1616/**
1617 * unmapped_area_topdown() - Find an area between the low_limit and the
1618 * high_limit with the correct alignment and offset at the highest available
1619 * address, all from @info. Note: current->mm is used for the search.
1620 *
1621 * @info: The unmapped area information including the range [low_limit -
1622 * high_limit), the alignment offset and mask.
1623 *
1624 * Return: A memory address or -ENOMEM.
1625 */
1626static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1627{
1628	unsigned long length, gap, gap_end;
1629	unsigned long low_limit, high_limit;
1630	struct vm_area_struct *tmp;
1631
1632	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1633	/* Adjust search length to account for worst case alignment overhead */
1634	length = info->length + info->align_mask;
1635	if (length < info->length)
1636		return -ENOMEM;
1637
1638	low_limit = info->low_limit;
1639	if (low_limit < mmap_min_addr)
1640		low_limit = mmap_min_addr;
1641	high_limit = info->high_limit;
1642retry:
1643	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1644		return -ENOMEM;
1645
1646	gap = mas.last + 1 - info->length;
1647	gap -= (gap - info->align_offset) & info->align_mask;
1648	gap_end = mas.last;
1649	tmp = mas_next(&mas, ULONG_MAX);
1650	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1651		if (vm_start_gap(tmp) <= gap_end) {
1652			high_limit = vm_start_gap(tmp);
1653			mas_reset(&mas);
1654			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655		}
1656	} else {
1657		tmp = mas_prev(&mas, 0);
1658		if (tmp && vm_end_gap(tmp) > gap) {
1659			high_limit = tmp->vm_start;
1660			mas_reset(&mas);
1661			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662		}
1663	}
1664
1665	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
1666}
1667
1668/*
1669 * Search for an unmapped address range.
1670 *
1671 * We are looking for a range that:
1672 * - does not intersect with any VMA;
1673 * - is contained within the [low_limit, high_limit) interval;
1674 * - is at least the desired size.
1675 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1676 */
1677unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1678{
1679	unsigned long addr;
1680
1681	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1682		addr = unmapped_area_topdown(info);
1683	else
1684		addr = unmapped_area(info);
1685
1686	trace_vm_unmapped_area(addr, info);
1687	return addr;
1688}
1689
 
 
 
 
 
 
 
 
1690/* Get an address range which is currently unmapped.
1691 * For shmat() with addr=0.
1692 *
1693 * Ugly calling convention alert:
1694 * Return value with the low bits set means error value,
1695 * ie
1696 *	if (ret & ~PAGE_MASK)
1697 *		error = ret;
1698 *
1699 * This function "knows" that -ENOMEM has the bits set.
1700 */
 
1701unsigned long
1702generic_get_unmapped_area(struct file *filp, unsigned long addr,
1703			  unsigned long len, unsigned long pgoff,
1704			  unsigned long flags)
1705{
1706	struct mm_struct *mm = current->mm;
1707	struct vm_area_struct *vma, *prev;
1708	struct vm_unmapped_area_info info;
1709	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1710
1711	if (len > mmap_end - mmap_min_addr)
1712		return -ENOMEM;
1713
1714	if (flags & MAP_FIXED)
1715		return addr;
1716
1717	if (addr) {
1718		addr = PAGE_ALIGN(addr);
1719		vma = find_vma_prev(mm, addr, &prev);
1720		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1721		    (!vma || addr + len <= vm_start_gap(vma)) &&
1722		    (!prev || addr >= vm_end_gap(prev)))
1723			return addr;
1724	}
1725
1726	info.flags = 0;
1727	info.length = len;
1728	info.low_limit = mm->mmap_base;
1729	info.high_limit = mmap_end;
1730	info.align_mask = 0;
1731	info.align_offset = 0;
1732	return vm_unmapped_area(&info);
1733}
1734
1735#ifndef HAVE_ARCH_UNMAPPED_AREA
1736unsigned long
1737arch_get_unmapped_area(struct file *filp, unsigned long addr,
1738		       unsigned long len, unsigned long pgoff,
1739		       unsigned long flags)
1740{
1741	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1742}
1743#endif
1744
1745/*
1746 * This mmap-allocator allocates new areas top-down from below the
1747 * stack's low limit (the base):
1748 */
 
1749unsigned long
1750generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1751				  unsigned long len, unsigned long pgoff,
1752				  unsigned long flags)
1753{
1754	struct vm_area_struct *vma, *prev;
1755	struct mm_struct *mm = current->mm;
1756	struct vm_unmapped_area_info info;
1757	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1758
1759	/* requested length too big for entire address space */
1760	if (len > mmap_end - mmap_min_addr)
1761		return -ENOMEM;
1762
1763	if (flags & MAP_FIXED)
1764		return addr;
1765
1766	/* requesting a specific address */
1767	if (addr) {
1768		addr = PAGE_ALIGN(addr);
1769		vma = find_vma_prev(mm, addr, &prev);
1770		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1771				(!vma || addr + len <= vm_start_gap(vma)) &&
1772				(!prev || addr >= vm_end_gap(prev)))
1773			return addr;
1774	}
1775
1776	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1777	info.length = len;
1778	info.low_limit = PAGE_SIZE;
1779	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1780	info.align_mask = 0;
1781	info.align_offset = 0;
1782	addr = vm_unmapped_area(&info);
1783
1784	/*
1785	 * A failed mmap() very likely causes application failure,
1786	 * so fall back to the bottom-up function here. This scenario
1787	 * can happen with large stack limits and large mmap()
1788	 * allocations.
1789	 */
1790	if (offset_in_page(addr)) {
1791		VM_BUG_ON(addr != -ENOMEM);
1792		info.flags = 0;
1793		info.low_limit = TASK_UNMAPPED_BASE;
1794		info.high_limit = mmap_end;
1795		addr = vm_unmapped_area(&info);
1796	}
1797
1798	return addr;
1799}
1800
1801#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1802unsigned long
1803arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1804			       unsigned long len, unsigned long pgoff,
1805			       unsigned long flags)
1806{
1807	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1808}
1809#endif
1810
1811unsigned long
1812get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1813		unsigned long pgoff, unsigned long flags)
1814{
1815	unsigned long (*get_area)(struct file *, unsigned long,
1816				  unsigned long, unsigned long, unsigned long);
1817
1818	unsigned long error = arch_mmap_check(addr, len, flags);
1819	if (error)
1820		return error;
1821
1822	/* Careful about overflows.. */
1823	if (len > TASK_SIZE)
1824		return -ENOMEM;
1825
1826	get_area = current->mm->get_unmapped_area;
1827	if (file) {
1828		if (file->f_op->get_unmapped_area)
1829			get_area = file->f_op->get_unmapped_area;
1830	} else if (flags & MAP_SHARED) {
1831		/*
1832		 * mmap_region() will call shmem_zero_setup() to create a file,
1833		 * so use shmem's get_unmapped_area in case it can be huge.
 
1834		 */
 
1835		get_area = shmem_get_unmapped_area;
1836	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1837		/* Ensures that larger anonymous mappings are THP aligned. */
1838		get_area = thp_get_unmapped_area;
1839	}
1840
1841	/* Always treat pgoff as zero for anonymous memory. */
1842	if (!file)
1843		pgoff = 0;
1844
1845	addr = get_area(file, addr, len, pgoff, flags);
1846	if (IS_ERR_VALUE(addr))
1847		return addr;
1848
1849	if (addr > TASK_SIZE - len)
1850		return -ENOMEM;
1851	if (offset_in_page(addr))
1852		return -EINVAL;
1853
1854	error = security_mmap_addr(addr);
1855	return error ? error : addr;
1856}
1857
1858EXPORT_SYMBOL(get_unmapped_area);
1859
1860/**
1861 * find_vma_intersection() - Look up the first VMA which intersects the interval
1862 * @mm: The process address space.
1863 * @start_addr: The inclusive start user address.
1864 * @end_addr: The exclusive end user address.
1865 *
1866 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1867 * start_addr < end_addr.
1868 */
1869struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1870					     unsigned long start_addr,
1871					     unsigned long end_addr)
1872{
1873	unsigned long index = start_addr;
 
 
 
 
 
 
 
 
 
 
 
1874
1875	mmap_assert_locked(mm);
1876	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1877}
1878EXPORT_SYMBOL(find_vma_intersection);
1879
1880/**
1881 * find_vma() - Find the VMA for a given address, or the next VMA.
1882 * @mm: The mm_struct to check
1883 * @addr: The address
1884 *
1885 * Returns: The VMA associated with addr, or the next VMA.
1886 * May return %NULL in the case of no VMA at addr or above.
1887 */
1888struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1889{
1890	unsigned long index = addr;
1891
1892	mmap_assert_locked(mm);
1893	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
 
1894}
 
1895EXPORT_SYMBOL(find_vma);
1896
1897/**
1898 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1899 * set %pprev to the previous VMA, if any.
1900 * @mm: The mm_struct to check
1901 * @addr: The address
1902 * @pprev: The pointer to set to the previous VMA
1903 *
1904 * Note that RCU lock is missing here since the external mmap_lock() is used
1905 * instead.
1906 *
1907 * Returns: The VMA associated with @addr, or the next vma.
1908 * May return %NULL in the case of no vma at addr or above.
1909 */
1910struct vm_area_struct *
1911find_vma_prev(struct mm_struct *mm, unsigned long addr,
1912			struct vm_area_struct **pprev)
1913{
1914	struct vm_area_struct *vma;
1915	MA_STATE(mas, &mm->mm_mt, addr, addr);
1916
1917	vma = mas_walk(&mas);
1918	*pprev = mas_prev(&mas, 0);
1919	if (!vma)
1920		vma = mas_next(&mas, ULONG_MAX);
 
 
 
 
1921	return vma;
1922}
1923
1924/*
1925 * Verify that the stack growth is acceptable and
1926 * update accounting. This is shared with both the
1927 * grow-up and grow-down cases.
1928 */
1929static int acct_stack_growth(struct vm_area_struct *vma,
1930			     unsigned long size, unsigned long grow)
1931{
1932	struct mm_struct *mm = vma->vm_mm;
1933	unsigned long new_start;
1934
1935	/* address space limit tests */
1936	if (!may_expand_vm(mm, vma->vm_flags, grow))
1937		return -ENOMEM;
1938
1939	/* Stack limit test */
1940	if (size > rlimit(RLIMIT_STACK))
1941		return -ENOMEM;
1942
1943	/* mlock limit tests */
1944	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1945		return -ENOMEM;
 
 
 
 
 
 
 
1946
1947	/* Check to ensure the stack will not grow into a hugetlb-only region */
1948	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1949			vma->vm_end - size;
1950	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1951		return -EFAULT;
1952
1953	/*
1954	 * Overcommit..  This must be the final test, as it will
1955	 * update security statistics.
1956	 */
1957	if (security_vm_enough_memory_mm(mm, grow))
1958		return -ENOMEM;
1959
1960	return 0;
1961}
1962
1963#if defined(CONFIG_STACK_GROWSUP)
1964/*
1965 * PA-RISC uses this for its stack.
1966 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1967 */
1968static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1969{
1970	struct mm_struct *mm = vma->vm_mm;
1971	struct vm_area_struct *next;
1972	unsigned long gap_addr;
1973	int error = 0;
1974	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1975
1976	if (!(vma->vm_flags & VM_GROWSUP))
1977		return -EFAULT;
1978
1979	/* Guard against exceeding limits of the address space. */
1980	address &= PAGE_MASK;
1981	if (address >= (TASK_SIZE & PAGE_MASK))
1982		return -ENOMEM;
1983	address += PAGE_SIZE;
1984
1985	/* Enforce stack_guard_gap */
1986	gap_addr = address + stack_guard_gap;
1987
1988	/* Guard against overflow */
1989	if (gap_addr < address || gap_addr > TASK_SIZE)
1990		gap_addr = TASK_SIZE;
1991
1992	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1993	if (next && vma_is_accessible(next)) {
1994		if (!(next->vm_flags & VM_GROWSUP))
1995			return -ENOMEM;
1996		/* Check that both stack segments have the same anon_vma? */
1997	}
1998
1999	if (next)
2000		mas_prev_range(&mas, address);
2001
2002	__mas_set_range(&mas, vma->vm_start, address - 1);
2003	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2004		return -ENOMEM;
2005
2006	/* We must make sure the anon_vma is allocated. */
2007	if (unlikely(anon_vma_prepare(vma))) {
2008		mas_destroy(&mas);
2009		return -ENOMEM;
2010	}
2011
2012	/* Lock the VMA before expanding to prevent concurrent page faults */
2013	vma_start_write(vma);
2014	/*
2015	 * vma->vm_start/vm_end cannot change under us because the caller
2016	 * is required to hold the mmap_lock in read mode.  We need the
2017	 * anon_vma lock to serialize against concurrent expand_stacks.
2018	 */
2019	anon_vma_lock_write(vma->anon_vma);
2020
2021	/* Somebody else might have raced and expanded it already */
2022	if (address > vma->vm_end) {
2023		unsigned long size, grow;
2024
2025		size = address - vma->vm_start;
2026		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2027
2028		error = -ENOMEM;
2029		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2030			error = acct_stack_growth(vma, size, grow);
2031			if (!error) {
2032				/*
2033				 * We only hold a shared mmap_lock lock here, so
2034				 * we need to protect against concurrent vma
2035				 * expansions.  anon_vma_lock_write() doesn't
2036				 * help here, as we don't guarantee that all
2037				 * growable vmas in a mm share the same root
2038				 * anon vma.  So, we reuse mm->page_table_lock
2039				 * to guard against concurrent vma expansions.
 
 
2040				 */
2041				spin_lock(&mm->page_table_lock);
2042				if (vma->vm_flags & VM_LOCKED)
2043					mm->locked_vm += grow;
2044				vm_stat_account(mm, vma->vm_flags, grow);
2045				anon_vma_interval_tree_pre_update_vma(vma);
2046				vma->vm_end = address;
2047				/* Overwrite old entry in mtree. */
2048				mas_store_prealloc(&mas, vma);
2049				anon_vma_interval_tree_post_update_vma(vma);
 
 
 
 
2050				spin_unlock(&mm->page_table_lock);
2051
2052				perf_event_mmap(vma);
2053			}
2054		}
2055	}
2056	anon_vma_unlock_write(vma->anon_vma);
2057	mas_destroy(&mas);
2058	validate_mm(mm);
2059	return error;
2060}
2061#endif /* CONFIG_STACK_GROWSUP */
2062
2063/*
2064 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2065 * mmap_lock held for writing.
2066 */
2067int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
2068{
2069	struct mm_struct *mm = vma->vm_mm;
2070	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2071	struct vm_area_struct *prev;
2072	int error = 0;
2073
2074	if (!(vma->vm_flags & VM_GROWSDOWN))
2075		return -EFAULT;
2076
2077	address &= PAGE_MASK;
2078	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2079		return -EPERM;
2080
2081	/* Enforce stack_guard_gap */
2082	prev = mas_prev(&mas, 0);
2083	/* Check that both stack segments have the same anon_vma? */
2084	if (prev) {
2085		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2086		    vma_is_accessible(prev) &&
2087		    (address - prev->vm_end < stack_guard_gap))
2088			return -ENOMEM;
2089	}
2090
2091	if (prev)
2092		mas_next_range(&mas, vma->vm_start);
2093
2094	__mas_set_range(&mas, address, vma->vm_end - 1);
2095	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2096		return -ENOMEM;
2097
2098	/* We must make sure the anon_vma is allocated. */
2099	if (unlikely(anon_vma_prepare(vma))) {
2100		mas_destroy(&mas);
2101		return -ENOMEM;
2102	}
2103
2104	/* Lock the VMA before expanding to prevent concurrent page faults */
2105	vma_start_write(vma);
2106	/*
2107	 * vma->vm_start/vm_end cannot change under us because the caller
2108	 * is required to hold the mmap_lock in read mode.  We need the
2109	 * anon_vma lock to serialize against concurrent expand_stacks.
2110	 */
2111	anon_vma_lock_write(vma->anon_vma);
2112
2113	/* Somebody else might have raced and expanded it already */
2114	if (address < vma->vm_start) {
2115		unsigned long size, grow;
2116
2117		size = vma->vm_end - address;
2118		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2119
2120		error = -ENOMEM;
2121		if (grow <= vma->vm_pgoff) {
2122			error = acct_stack_growth(vma, size, grow);
2123			if (!error) {
2124				/*
2125				 * We only hold a shared mmap_lock lock here, so
2126				 * we need to protect against concurrent vma
2127				 * expansions.  anon_vma_lock_write() doesn't
2128				 * help here, as we don't guarantee that all
2129				 * growable vmas in a mm share the same root
2130				 * anon vma.  So, we reuse mm->page_table_lock
2131				 * to guard against concurrent vma expansions.
 
 
2132				 */
2133				spin_lock(&mm->page_table_lock);
2134				if (vma->vm_flags & VM_LOCKED)
2135					mm->locked_vm += grow;
2136				vm_stat_account(mm, vma->vm_flags, grow);
2137				anon_vma_interval_tree_pre_update_vma(vma);
2138				vma->vm_start = address;
2139				vma->vm_pgoff -= grow;
2140				/* Overwrite old entry in mtree. */
2141				mas_store_prealloc(&mas, vma);
2142				anon_vma_interval_tree_post_update_vma(vma);
 
2143				spin_unlock(&mm->page_table_lock);
2144
2145				perf_event_mmap(vma);
2146			}
2147		}
2148	}
2149	anon_vma_unlock_write(vma->anon_vma);
2150	mas_destroy(&mas);
2151	validate_mm(mm);
2152	return error;
2153}
2154
2155/* enforced gap between the expanding stack and other mappings. */
2156unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2157
2158static int __init cmdline_parse_stack_guard_gap(char *p)
2159{
2160	unsigned long val;
2161	char *endptr;
2162
2163	val = simple_strtoul(p, &endptr, 10);
2164	if (!*endptr)
2165		stack_guard_gap = val << PAGE_SHIFT;
2166
2167	return 1;
2168}
2169__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2170
2171#ifdef CONFIG_STACK_GROWSUP
2172int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2173{
2174	return expand_upwards(vma, address);
2175}
2176
2177struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2178{
2179	struct vm_area_struct *vma, *prev;
2180
2181	addr &= PAGE_MASK;
2182	vma = find_vma_prev(mm, addr, &prev);
2183	if (vma && (vma->vm_start <= addr))
2184		return vma;
2185	if (!prev)
2186		return NULL;
2187	if (expand_stack_locked(prev, addr))
2188		return NULL;
2189	if (prev->vm_flags & VM_LOCKED)
2190		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2191	return prev;
2192}
2193#else
2194int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2195{
2196	return expand_downwards(vma, address);
2197}
2198
2199struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2200{
2201	struct vm_area_struct *vma;
2202	unsigned long start;
2203
2204	addr &= PAGE_MASK;
2205	vma = find_vma(mm, addr);
2206	if (!vma)
2207		return NULL;
2208	if (vma->vm_start <= addr)
2209		return vma;
 
 
 
 
 
2210	start = vma->vm_start;
2211	if (expand_stack_locked(vma, addr))
2212		return NULL;
2213	if (vma->vm_flags & VM_LOCKED)
2214		populate_vma_page_range(vma, addr, start, NULL);
2215	return vma;
2216}
2217#endif
2218
2219#if defined(CONFIG_STACK_GROWSUP)
2220
2221#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2222#define vma_expand_down(vma, addr) (-EFAULT)
2223
2224#else
2225
2226#define vma_expand_up(vma,addr) (-EFAULT)
2227#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2228
2229#endif
2230
2231/*
2232 * expand_stack(): legacy interface for page faulting. Don't use unless
2233 * you have to.
2234 *
2235 * This is called with the mm locked for reading, drops the lock, takes
2236 * the lock for writing, tries to look up a vma again, expands it if
2237 * necessary, and downgrades the lock to reading again.
2238 *
2239 * If no vma is found or it can't be expanded, it returns NULL and has
2240 * dropped the lock.
2241 */
2242struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2243{
2244	struct vm_area_struct *vma, *prev;
2245
2246	mmap_read_unlock(mm);
2247	if (mmap_write_lock_killable(mm))
2248		return NULL;
2249
2250	vma = find_vma_prev(mm, addr, &prev);
2251	if (vma && vma->vm_start <= addr)
2252		goto success;
2253
2254	if (prev && !vma_expand_up(prev, addr)) {
2255		vma = prev;
2256		goto success;
2257	}
2258
2259	if (vma && !vma_expand_down(vma, addr))
2260		goto success;
2261
2262	mmap_write_unlock(mm);
2263	return NULL;
2264
2265success:
2266	mmap_write_downgrade(mm);
2267	return vma;
2268}
2269
2270/*
2271 * Ok - we have the memory areas we should free on a maple tree so release them,
2272 * and do the vma updates.
2273 *
2274 * Called with the mm semaphore held.
2275 */
2276static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2277{
2278	unsigned long nr_accounted = 0;
2279	struct vm_area_struct *vma;
2280
2281	/* Update high watermark before we lower total_vm */
2282	update_hiwater_vm(mm);
2283	mas_for_each(mas, vma, ULONG_MAX) {
2284		long nrpages = vma_pages(vma);
2285
2286		if (vma->vm_flags & VM_ACCOUNT)
2287			nr_accounted += nrpages;
2288		vm_stat_account(mm, vma->vm_flags, -nrpages);
2289		remove_vma(vma, false);
2290	}
2291	vm_unacct_memory(nr_accounted);
 
2292}
2293
2294/*
2295 * Get rid of page table information in the indicated region.
2296 *
2297 * Called with the mm semaphore held.
2298 */
2299static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2300		struct vm_area_struct *vma, struct vm_area_struct *prev,
2301		struct vm_area_struct *next, unsigned long start,
2302		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2303{
 
2304	struct mmu_gather tlb;
2305	unsigned long mt_start = mas->index;
2306
2307	lru_add_drain();
2308	tlb_gather_mmu(&tlb, mm);
2309	update_hiwater_rss(mm);
2310	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2311	mas_set(mas, mt_start);
2312	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2313				 next ? next->vm_start : USER_PGTABLES_CEILING,
2314				 mm_wr_locked);
2315	tlb_finish_mmu(&tlb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316}
2317
2318/*
2319 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2320 * has already been checked or doesn't make sense to fail.
2321 * VMA Iterator will point to the end VMA.
2322 */
2323static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2324		       unsigned long addr, int new_below)
2325{
2326	struct vma_prepare vp;
2327	struct vm_area_struct *new;
2328	int err;
2329
2330	WARN_ON(vma->vm_start >= addr);
2331	WARN_ON(vma->vm_end <= addr);
2332
2333	if (vma->vm_ops && vma->vm_ops->may_split) {
2334		err = vma->vm_ops->may_split(vma, addr);
2335		if (err)
2336			return err;
2337	}
2338
2339	new = vm_area_dup(vma);
2340	if (!new)
2341		return -ENOMEM;
2342
2343	if (new_below) {
2344		new->vm_end = addr;
2345	} else {
2346		new->vm_start = addr;
2347		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2348	}
2349
2350	err = -ENOMEM;
2351	vma_iter_config(vmi, new->vm_start, new->vm_end);
2352	if (vma_iter_prealloc(vmi, new))
2353		goto out_free_vma;
2354
2355	err = vma_dup_policy(vma, new);
2356	if (err)
2357		goto out_free_vmi;
2358
2359	err = anon_vma_clone(new, vma);
2360	if (err)
2361		goto out_free_mpol;
2362
2363	if (new->vm_file)
2364		get_file(new->vm_file);
2365
2366	if (new->vm_ops && new->vm_ops->open)
2367		new->vm_ops->open(new);
2368
2369	vma_start_write(vma);
2370	vma_start_write(new);
2371
2372	init_vma_prep(&vp, vma);
2373	vp.insert = new;
2374	vma_prepare(&vp);
2375	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2376
2377	if (new_below) {
2378		vma->vm_start = addr;
2379		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2380	} else {
2381		vma->vm_end = addr;
2382	}
2383
2384	/* vma_complete stores the new vma */
2385	vma_complete(&vp, vmi, vma->vm_mm);
2386
2387	/* Success. */
2388	if (new_below)
2389		vma_next(vmi);
2390	return 0;
2391
2392out_free_mpol:
 
 
 
 
 
 
2393	mpol_put(vma_policy(new));
2394out_free_vmi:
2395	vma_iter_free(vmi);
2396out_free_vma:
2397	vm_area_free(new);
2398	return err;
2399}
2400
2401/*
2402 * Split a vma into two pieces at address 'addr', a new vma is allocated
2403 * either for the first part or the tail.
2404 */
2405static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2406		     unsigned long addr, int new_below)
2407{
2408	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2409		return -ENOMEM;
2410
2411	return __split_vma(vmi, vma, addr, new_below);
2412}
2413
2414/*
2415 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2416 * context and anonymous VMA name within the range [start, end).
2417 *
2418 * As a result, we might be able to merge the newly modified VMA range with an
2419 * adjacent VMA with identical properties.
2420 *
2421 * If no merge is possible and the range does not span the entirety of the VMA,
2422 * we then need to split the VMA to accommodate the change.
2423 *
2424 * The function returns either the merged VMA, the original VMA if a split was
2425 * required instead, or an error if the split failed.
2426 */
2427struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2428				  struct vm_area_struct *prev,
2429				  struct vm_area_struct *vma,
2430				  unsigned long start, unsigned long end,
2431				  unsigned long vm_flags,
2432				  struct mempolicy *policy,
2433				  struct vm_userfaultfd_ctx uffd_ctx,
2434				  struct anon_vma_name *anon_name)
2435{
2436	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2437	struct vm_area_struct *merged;
2438
2439	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2440			   pgoff, policy, uffd_ctx, anon_name);
2441	if (merged)
2442		return merged;
2443
2444	if (vma->vm_start < start) {
2445		int err = split_vma(vmi, vma, start, 1);
 
 
2446
2447		if (err)
2448			return ERR_PTR(err);
2449	}
 
 
 
2450
2451	if (vma->vm_end > end) {
2452		int err = split_vma(vmi, vma, end, 0);
 
 
 
 
2453
2454		if (err)
2455			return ERR_PTR(err);
2456	}
2457
2458	return vma;
2459}
2460
2461/*
2462 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2463 * must ensure that [start, end) does not overlap any existing VMA.
2464 */
2465static struct vm_area_struct
2466*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2467		   struct vm_area_struct *vma, unsigned long start,
2468		   unsigned long end, pgoff_t pgoff)
2469{
2470	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2471			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2472}
2473
2474/*
2475 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2476 * VMA with identical properties.
2477 */
2478struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2479					struct vm_area_struct *vma,
2480					unsigned long delta)
2481{
2482	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2483
2484	/* vma is specified as prev, so case 1 or 2 will apply. */
2485	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2486			 vma->vm_flags, pgoff, vma_policy(vma),
2487			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2488}
2489
2490/*
2491 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2492 * @vmi: The vma iterator
2493 * @vma: The starting vm_area_struct
2494 * @mm: The mm_struct
2495 * @start: The aligned start address to munmap.
2496 * @end: The aligned end address to munmap.
2497 * @uf: The userfaultfd list_head
2498 * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2499 * success.
2500 *
2501 * Return: 0 on success and drops the lock if so directed, error and leaves the
2502 * lock held otherwise.
2503 */
2504static int
2505do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2506		    struct mm_struct *mm, unsigned long start,
2507		    unsigned long end, struct list_head *uf, bool unlock)
2508{
2509	struct vm_area_struct *prev, *next = NULL;
2510	struct maple_tree mt_detach;
2511	int count = 0;
2512	int error = -ENOMEM;
2513	unsigned long locked_vm = 0;
2514	MA_STATE(mas_detach, &mt_detach, 0, 0);
2515	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2516	mt_on_stack(mt_detach);
2517
2518	/*
2519	 * If we need to split any vma, do it now to save pain later.
2520	 *
2521	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2522	 * unmapped vm_area_struct will remain in use: so lower split_vma
2523	 * places tmp vma above, and higher split_vma places tmp vma below.
2524	 */
2525
2526	/* Does it split the first one? */
2527	if (start > vma->vm_start) {
 
2528
2529		/*
2530		 * Make sure that map_count on return from munmap() will
2531		 * not exceed its limit; but let map_count go just above
2532		 * its limit temporarily, to help free resources as expected.
2533		 */
2534		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2535			goto map_count_exceeded;
2536
2537		error = __split_vma(vmi, vma, start, 1);
2538		if (error)
2539			goto start_split_failed;
 
2540	}
2541
2542	/*
2543	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2544	 * it is always overwritten.
2545	 */
2546	next = vma;
2547	do {
2548		/* Does it split the end? */
2549		if (next->vm_end > end) {
2550			error = __split_vma(vmi, next, end, 0);
2551			if (error)
2552				goto end_split_failed;
2553		}
2554		vma_start_write(next);
2555		mas_set(&mas_detach, count);
2556		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2557		if (error)
2558			goto munmap_gather_failed;
2559		vma_mark_detached(next, true);
2560		if (next->vm_flags & VM_LOCKED)
2561			locked_vm += vma_pages(next);
2562
2563		count++;
2564		if (unlikely(uf)) {
2565			/*
2566			 * If userfaultfd_unmap_prep returns an error the vmas
2567			 * will remain split, but userland will get a
2568			 * highly unexpected error anyway. This is no
2569			 * different than the case where the first of the two
2570			 * __split_vma fails, but we don't undo the first
2571			 * split, despite we could. This is unlikely enough
2572			 * failure that it's not worth optimizing it for.
2573			 */
2574			error = userfaultfd_unmap_prep(next, start, end, uf);
2575
2576			if (error)
2577				goto userfaultfd_error;
2578		}
2579#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2580		BUG_ON(next->vm_start < start);
2581		BUG_ON(next->vm_start > end);
2582#endif
2583	} for_each_vma_range(*vmi, next, end);
2584
2585#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2586	/* Make sure no VMAs are about to be lost. */
2587	{
2588		MA_STATE(test, &mt_detach, 0, 0);
2589		struct vm_area_struct *vma_mas, *vma_test;
2590		int test_count = 0;
2591
2592		vma_iter_set(vmi, start);
2593		rcu_read_lock();
2594		vma_test = mas_find(&test, count - 1);
2595		for_each_vma_range(*vmi, vma_mas, end) {
2596			BUG_ON(vma_mas != vma_test);
2597			test_count++;
2598			vma_test = mas_next(&test, count - 1);
2599		}
2600		rcu_read_unlock();
2601		BUG_ON(count != test_count);
2602	}
2603#endif
2604
2605	while (vma_iter_addr(vmi) > start)
2606		vma_iter_prev_range(vmi);
2607
2608	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2609	if (error)
2610		goto clear_tree_failed;
2611
2612	/* Point of no return */
2613	mm->locked_vm -= locked_vm;
2614	mm->map_count -= count;
2615	if (unlock)
2616		mmap_write_downgrade(mm);
2617
2618	prev = vma_iter_prev_range(vmi);
2619	next = vma_next(vmi);
2620	if (next)
2621		vma_iter_prev_range(vmi);
2622
2623	/*
2624	 * We can free page tables without write-locking mmap_lock because VMAs
2625	 * were isolated before we downgraded mmap_lock.
2626	 */
2627	mas_set(&mas_detach, 1);
2628	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2629		     !unlock);
2630	/* Statistics and freeing VMAs */
2631	mas_set(&mas_detach, 0);
2632	remove_mt(mm, &mas_detach);
2633	validate_mm(mm);
2634	if (unlock)
2635		mmap_read_unlock(mm);
2636
2637	__mt_destroy(&mt_detach);
2638	return 0;
2639
2640clear_tree_failed:
2641userfaultfd_error:
2642munmap_gather_failed:
2643end_split_failed:
2644	mas_set(&mas_detach, 0);
2645	mas_for_each(&mas_detach, next, end)
2646		vma_mark_detached(next, false);
2647
2648	__mt_destroy(&mt_detach);
2649start_split_failed:
2650map_count_exceeded:
2651	validate_mm(mm);
2652	return error;
2653}
2654
2655/*
2656 * do_vmi_munmap() - munmap a given range.
2657 * @vmi: The vma iterator
2658 * @mm: The mm_struct
2659 * @start: The start address to munmap
2660 * @len: The length of the range to munmap
2661 * @uf: The userfaultfd list_head
2662 * @unlock: set to true if the user wants to drop the mmap_lock on success
2663 *
2664 * This function takes a @mas that is either pointing to the previous VMA or set
2665 * to MA_START and sets it up to remove the mapping(s).  The @len will be
2666 * aligned and any arch_unmap work will be preformed.
2667 *
2668 * Return: 0 on success and drops the lock if so directed, error and leaves the
2669 * lock held otherwise.
2670 */
2671int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2672		  unsigned long start, size_t len, struct list_head *uf,
2673		  bool unlock)
2674{
2675	unsigned long end;
2676	struct vm_area_struct *vma;
2677
2678	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2679		return -EINVAL;
2680
2681	end = start + PAGE_ALIGN(len);
2682	if (end == start)
2683		return -EINVAL;
2684
2685	 /* arch_unmap() might do unmaps itself.  */
2686	arch_unmap(mm, start, end);
2687
2688	/* Find the first overlapping VMA */
2689	vma = vma_find(vmi, end);
2690	if (!vma) {
2691		if (unlock)
2692			mmap_write_unlock(mm);
2693		return 0;
2694	}
2695
2696	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2697}
2698
2699/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2700 * @mm: The mm_struct
2701 * @start: The start address to munmap
2702 * @len: The length to be munmapped.
2703 * @uf: The userfaultfd list_head
2704 *
2705 * Return: 0 on success, error otherwise.
2706 */
2707int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2708	      struct list_head *uf)
2709{
2710	VMA_ITERATOR(vmi, mm, start);
2711
2712	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2713}
2714
2715unsigned long mmap_region(struct file *file, unsigned long addr,
2716		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2717		struct list_head *uf)
2718{
2719	struct mm_struct *mm = current->mm;
2720	struct vm_area_struct *vma = NULL;
2721	struct vm_area_struct *next, *prev, *merge;
2722	pgoff_t pglen = len >> PAGE_SHIFT;
2723	unsigned long charged = 0;
2724	unsigned long end = addr + len;
2725	unsigned long merge_start = addr, merge_end = end;
2726	bool writable_file_mapping = false;
2727	pgoff_t vm_pgoff;
2728	int error;
2729	VMA_ITERATOR(vmi, mm, addr);
2730
2731	/* Check against address space limit. */
2732	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2733		unsigned long nr_pages;
2734
 
2735		/*
2736		 * MAP_FIXED may remove pages of mappings that intersects with
2737		 * requested mapping. Account for the pages it would unmap.
 
 
 
 
 
2738		 */
2739		nr_pages = count_vma_pages_range(mm, addr, end);
2740
2741		if (!may_expand_vm(mm, vm_flags,
2742					(len >> PAGE_SHIFT) - nr_pages))
2743			return -ENOMEM;
2744	}
2745
2746	/* Unmap any existing mapping in the area */
2747	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2748		return -ENOMEM;
2749
2750	/*
2751	 * Private writable mapping: check memory availability
2752	 */
2753	if (accountable_mapping(file, vm_flags)) {
2754		charged = len >> PAGE_SHIFT;
2755		if (security_vm_enough_memory_mm(mm, charged))
2756			return -ENOMEM;
2757		vm_flags |= VM_ACCOUNT;
2758	}
2759
2760	next = vma_next(&vmi);
2761	prev = vma_prev(&vmi);
2762	if (vm_flags & VM_SPECIAL) {
2763		if (prev)
2764			vma_iter_next_range(&vmi);
2765		goto cannot_expand;
2766	}
2767
2768	/* Attempt to expand an old mapping */
2769	/* Check next */
2770	if (next && next->vm_start == end && !vma_policy(next) &&
2771	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2772				 NULL_VM_UFFD_CTX, NULL)) {
2773		merge_end = next->vm_end;
2774		vma = next;
2775		vm_pgoff = next->vm_pgoff - pglen;
2776	}
2777
2778	/* Check prev */
2779	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2780	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2781				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2782		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2783				       NULL_VM_UFFD_CTX, NULL))) {
2784		merge_start = prev->vm_start;
2785		vma = prev;
2786		vm_pgoff = prev->vm_pgoff;
2787	} else if (prev) {
2788		vma_iter_next_range(&vmi);
2789	}
2790
2791	/* Actually expand, if possible */
2792	if (vma &&
2793	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2794		khugepaged_enter_vma(vma, vm_flags);
2795		goto expanded;
2796	}
2797
2798	if (vma == prev)
2799		vma_iter_set(&vmi, addr);
2800cannot_expand:
2801
2802	/*
2803	 * Determine the object being mapped and call the appropriate
2804	 * specific mapper. the address has already been validated, but
2805	 * not unmapped, but the maps are removed from the list.
2806	 */
2807	vma = vm_area_alloc(mm);
2808	if (!vma) {
2809		error = -ENOMEM;
2810		goto unacct_error;
2811	}
2812
2813	vma_iter_config(&vmi, addr, end);
2814	vma_set_range(vma, addr, end, pgoff);
2815	vm_flags_init(vma, vm_flags);
2816	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2817
2818	if (file) {
2819		vma->vm_file = get_file(file);
2820		error = call_mmap(file, vma);
2821		if (error)
2822			goto unmap_and_free_vma;
2823
2824		if (vma_is_shared_maywrite(vma)) {
2825			error = mapping_map_writable(file->f_mapping);
2826			if (error)
2827				goto close_and_free_vma;
2828
2829			writable_file_mapping = true;
2830		}
2831
2832		/*
2833		 * Expansion is handled above, merging is handled below.
2834		 * Drivers should not alter the address of the VMA.
2835		 */
2836		error = -EINVAL;
2837		if (WARN_ON((addr != vma->vm_start)))
2838			goto close_and_free_vma;
2839
2840		vma_iter_config(&vmi, addr, end);
2841		/*
2842		 * If vm_flags changed after call_mmap(), we should try merge
2843		 * vma again as we may succeed this time.
2844		 */
2845		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2846			merge = vma_merge_new_vma(&vmi, prev, vma,
2847						  vma->vm_start, vma->vm_end,
2848						  vma->vm_pgoff);
2849			if (merge) {
2850				/*
2851				 * ->mmap() can change vma->vm_file and fput
2852				 * the original file. So fput the vma->vm_file
2853				 * here or we would add an extra fput for file
2854				 * and cause general protection fault
2855				 * ultimately.
2856				 */
2857				fput(vma->vm_file);
2858				vm_area_free(vma);
2859				vma = merge;
2860				/* Update vm_flags to pick up the change. */
2861				vm_flags = vma->vm_flags;
2862				goto unmap_writable;
2863			}
2864		}
2865
2866		vm_flags = vma->vm_flags;
2867	} else if (vm_flags & VM_SHARED) {
2868		error = shmem_zero_setup(vma);
2869		if (error)
2870			goto free_vma;
2871	} else {
2872		vma_set_anonymous(vma);
2873	}
2874
2875	if (map_deny_write_exec(vma, vma->vm_flags)) {
2876		error = -EACCES;
2877		goto close_and_free_vma;
2878	}
2879
2880	/* Allow architectures to sanity-check the vm_flags */
2881	error = -EINVAL;
2882	if (!arch_validate_flags(vma->vm_flags))
2883		goto close_and_free_vma;
2884
2885	error = -ENOMEM;
2886	if (vma_iter_prealloc(&vmi, vma))
2887		goto close_and_free_vma;
2888
2889	/* Lock the VMA since it is modified after insertion into VMA tree */
2890	vma_start_write(vma);
2891	vma_iter_store(&vmi, vma);
2892	mm->map_count++;
2893	vma_link_file(vma);
2894
2895	/*
2896	 * vma_merge() calls khugepaged_enter_vma() either, the below
2897	 * call covers the non-merge case.
2898	 */
2899	khugepaged_enter_vma(vma, vma->vm_flags);
2900
2901	/* Once vma denies write, undo our temporary denial count */
2902unmap_writable:
2903	if (writable_file_mapping)
2904		mapping_unmap_writable(file->f_mapping);
2905	file = vma->vm_file;
2906	ksm_add_vma(vma);
2907expanded:
2908	perf_event_mmap(vma);
2909
2910	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2911	if (vm_flags & VM_LOCKED) {
2912		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2913					is_vm_hugetlb_page(vma) ||
2914					vma == get_gate_vma(current->mm))
2915			vm_flags_clear(vma, VM_LOCKED_MASK);
2916		else
2917			mm->locked_vm += (len >> PAGE_SHIFT);
2918	}
2919
2920	if (file)
2921		uprobe_mmap(vma);
2922
2923	/*
2924	 * New (or expanded) vma always get soft dirty status.
2925	 * Otherwise user-space soft-dirty page tracker won't
2926	 * be able to distinguish situation when vma area unmapped,
2927	 * then new mapped in-place (which must be aimed as
2928	 * a completely new data area).
2929	 */
2930	vm_flags_set(vma, VM_SOFTDIRTY);
2931
2932	vma_set_page_prot(vma);
2933
2934	validate_mm(mm);
2935	return addr;
2936
2937close_and_free_vma:
2938	if (file && vma->vm_ops && vma->vm_ops->close)
2939		vma->vm_ops->close(vma);
2940
2941	if (file || vma->vm_file) {
2942unmap_and_free_vma:
2943		fput(vma->vm_file);
2944		vma->vm_file = NULL;
2945
2946		vma_iter_set(&vmi, vma->vm_end);
2947		/* Undo any partial mapping done by a device driver. */
2948		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2949			     vma->vm_end, vma->vm_end, true);
2950	}
2951	if (writable_file_mapping)
2952		mapping_unmap_writable(file->f_mapping);
2953free_vma:
2954	vm_area_free(vma);
2955unacct_error:
2956	if (charged)
2957		vm_unacct_memory(charged);
2958	validate_mm(mm);
2959	return error;
2960}
2961
2962static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2963{
2964	int ret;
2965	struct mm_struct *mm = current->mm;
2966	LIST_HEAD(uf);
2967	VMA_ITERATOR(vmi, mm, start);
2968
2969	if (mmap_write_lock_killable(mm))
2970		return -EINTR;
2971
2972	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2973	if (ret || !unlock)
 
 
 
 
 
 
 
 
2974		mmap_write_unlock(mm);
2975
2976	userfaultfd_unmap_complete(mm, &uf);
2977	return ret;
2978}
2979
2980int vm_munmap(unsigned long start, size_t len)
2981{
2982	return __vm_munmap(start, len, false);
2983}
2984EXPORT_SYMBOL(vm_munmap);
2985
2986SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2987{
2988	addr = untagged_addr(addr);
 
2989	return __vm_munmap(addr, len, true);
2990}
2991
2992
2993/*
2994 * Emulation of deprecated remap_file_pages() syscall.
2995 */
2996SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2997		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2998{
2999
3000	struct mm_struct *mm = current->mm;
3001	struct vm_area_struct *vma;
3002	unsigned long populate = 0;
3003	unsigned long ret = -EINVAL;
3004	struct file *file;
3005
3006	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3007		     current->comm, current->pid);
3008
3009	if (prot)
3010		return ret;
3011	start = start & PAGE_MASK;
3012	size = size & PAGE_MASK;
3013
3014	if (start + size <= start)
3015		return ret;
3016
3017	/* Does pgoff wrap? */
3018	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3019		return ret;
3020
3021	if (mmap_write_lock_killable(mm))
3022		return -EINTR;
3023
3024	vma = vma_lookup(mm, start);
3025
3026	if (!vma || !(vma->vm_flags & VM_SHARED))
3027		goto out;
3028
 
 
 
3029	if (start + size > vma->vm_end) {
3030		VMA_ITERATOR(vmi, mm, vma->vm_end);
3031		struct vm_area_struct *next, *prev = vma;
3032
3033		for_each_vma_range(vmi, next, start + size) {
3034			/* hole between vmas ? */
3035			if (next->vm_start != prev->vm_end)
3036				goto out;
3037
3038			if (next->vm_file != vma->vm_file)
3039				goto out;
3040
3041			if (next->vm_flags != vma->vm_flags)
3042				goto out;
3043
3044			if (start + size <= next->vm_end)
3045				break;
3046
3047			prev = next;
3048		}
3049
3050		if (!next)
3051			goto out;
3052	}
3053
3054	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3055	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3056	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3057
3058	flags &= MAP_NONBLOCK;
3059	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3060	if (vma->vm_flags & VM_LOCKED)
 
3061		flags |= MAP_LOCKED;
3062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063	file = get_file(vma->vm_file);
3064	ret = do_mmap(vma->vm_file, start, size,
3065			prot, flags, 0, pgoff, &populate, NULL);
3066	fput(file);
3067out:
3068	mmap_write_unlock(mm);
3069	if (populate)
3070		mm_populate(ret, populate);
3071	if (!IS_ERR_VALUE(ret))
3072		ret = 0;
3073	return ret;
3074}
3075
3076/*
3077 * do_vma_munmap() - Unmap a full or partial vma.
3078 * @vmi: The vma iterator pointing at the vma
3079 * @vma: The first vma to be munmapped
3080 * @start: the start of the address to unmap
3081 * @end: The end of the address to unmap
3082 * @uf: The userfaultfd list_head
3083 * @unlock: Drop the lock on success
3084 *
3085 * unmaps a VMA mapping when the vma iterator is already in position.
3086 * Does not handle alignment.
3087 *
3088 * Return: 0 on success drops the lock of so directed, error on failure and will
3089 * still hold the lock.
3090 */
3091int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3092		unsigned long start, unsigned long end, struct list_head *uf,
3093		bool unlock)
3094{
3095	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 
 
 
3096
3097	arch_unmap(mm, start, end);
3098	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3099}
3100
3101/*
3102 * do_brk_flags() - Increase the brk vma if the flags match.
3103 * @vmi: The vma iterator
3104 * @addr: The start address
3105 * @len: The length of the increase
3106 * @vma: The vma,
3107 * @flags: The VMA Flags
3108 *
3109 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3110 * do not match then create a new anonymous VMA.  Eventually we may be able to
3111 * do some brk-specific accounting here.
3112 */
3113static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3114		unsigned long addr, unsigned long len, unsigned long flags)
3115{
3116	struct mm_struct *mm = current->mm;
3117	struct vma_prepare vp;
3118
3119	/*
3120	 * Check against address space limits by the changed size
3121	 * Note: This happens *after* clearing old mappings in some code paths.
3122	 */
3123	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
 
 
 
3124	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3125		return -ENOMEM;
3126
3127	if (mm->map_count > sysctl_max_map_count)
3128		return -ENOMEM;
3129
3130	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3131		return -ENOMEM;
3132
 
 
 
 
 
 
3133	/*
3134	 * Expand the existing vma if possible; Note that singular lists do not
3135	 * occur after forking, so the expand will only happen on new VMAs.
3136	 */
3137	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3138	    can_vma_merge_after(vma, flags, NULL, NULL,
3139				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3140		vma_iter_config(vmi, vma->vm_start, addr + len);
3141		if (vma_iter_prealloc(vmi, vma))
3142			goto unacct_fail;
3143
3144		vma_start_write(vma);
3145
3146		init_vma_prep(&vp, vma);
3147		vma_prepare(&vp);
3148		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3149		vma->vm_end = addr + len;
3150		vm_flags_set(vma, VM_SOFTDIRTY);
3151		vma_iter_store(vmi, vma);
3152
3153		vma_complete(&vp, vmi, mm);
3154		khugepaged_enter_vma(vma, flags);
3155		goto out;
3156	}
3157
3158	if (vma)
3159		vma_iter_next_range(vmi);
3160	/* create a vma struct for an anonymous mapping */
3161	vma = vm_area_alloc(mm);
3162	if (!vma)
3163		goto unacct_fail;
3164
3165	vma_set_anonymous(vma);
3166	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3167	vm_flags_init(vma, flags);
 
 
3168	vma->vm_page_prot = vm_get_page_prot(flags);
3169	vma_start_write(vma);
3170	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3171		goto mas_store_fail;
3172
3173	mm->map_count++;
3174	validate_mm(mm);
3175	ksm_add_vma(vma);
3176out:
3177	perf_event_mmap(vma);
3178	mm->total_vm += len >> PAGE_SHIFT;
3179	mm->data_vm += len >> PAGE_SHIFT;
3180	if (flags & VM_LOCKED)
3181		mm->locked_vm += (len >> PAGE_SHIFT);
3182	vm_flags_set(vma, VM_SOFTDIRTY);
3183	return 0;
3184
3185mas_store_fail:
3186	vm_area_free(vma);
3187unacct_fail:
3188	vm_unacct_memory(len >> PAGE_SHIFT);
3189	return -ENOMEM;
3190}
3191
3192int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3193{
3194	struct mm_struct *mm = current->mm;
3195	struct vm_area_struct *vma = NULL;
3196	unsigned long len;
3197	int ret;
3198	bool populate;
3199	LIST_HEAD(uf);
3200	VMA_ITERATOR(vmi, mm, addr);
3201
3202	len = PAGE_ALIGN(request);
3203	if (len < request)
3204		return -ENOMEM;
3205	if (!len)
3206		return 0;
3207
3208	/* Until we need other flags, refuse anything except VM_EXEC. */
3209	if ((flags & (~VM_EXEC)) != 0)
3210		return -EINVAL;
3211
3212	if (mmap_write_lock_killable(mm))
3213		return -EINTR;
3214
3215	ret = check_brk_limits(addr, len);
3216	if (ret)
3217		goto limits_failed;
3218
3219	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3220	if (ret)
3221		goto munmap_failed;
3222
3223	vma = vma_prev(&vmi);
3224	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3225	populate = ((mm->def_flags & VM_LOCKED) != 0);
3226	mmap_write_unlock(mm);
3227	userfaultfd_unmap_complete(mm, &uf);
3228	if (populate && !ret)
3229		mm_populate(addr, len);
3230	return ret;
 
 
3231
3232munmap_failed:
3233limits_failed:
3234	mmap_write_unlock(mm);
3235	return ret;
3236}
3237EXPORT_SYMBOL(vm_brk_flags);
3238
3239/* Release all mmaps. */
3240void exit_mmap(struct mm_struct *mm)
3241{
3242	struct mmu_gather tlb;
3243	struct vm_area_struct *vma;
3244	unsigned long nr_accounted = 0;
3245	MA_STATE(mas, &mm->mm_mt, 0, 0);
3246	int count = 0;
3247
3248	/* mm's last user has gone, and its about to be pulled down */
3249	mmu_notifier_release(mm);
3250
3251	mmap_read_lock(mm);
3252	arch_exit_mmap(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3253
3254	vma = mas_find(&mas, ULONG_MAX);
3255	if (!vma || unlikely(xa_is_zero(vma))) {
3256		/* Can happen if dup_mmap() received an OOM */
3257		mmap_read_unlock(mm);
3258		mmap_write_lock(mm);
3259		goto destroy;
 
 
 
 
 
 
 
 
 
3260	}
3261
 
 
 
 
 
 
3262	lru_add_drain();
3263	flush_cache_mm(mm);
3264	tlb_gather_mmu_fullmm(&tlb, mm);
3265	/* update_hiwater_rss(mm) here? but nobody should be looking */
3266	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3267	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3268	mmap_read_unlock(mm);
 
3269
3270	/*
3271	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3272	 * because the memory has been already freed.
3273	 */
3274	set_bit(MMF_OOM_SKIP, &mm->flags);
3275	mmap_write_lock(mm);
3276	mt_clear_in_rcu(&mm->mm_mt);
3277	mas_set(&mas, vma->vm_end);
3278	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3279		      USER_PGTABLES_CEILING, true);
3280	tlb_finish_mmu(&tlb);
3281
3282	/*
3283	 * Walk the list again, actually closing and freeing it, with preemption
3284	 * enabled, without holding any MM locks besides the unreachable
3285	 * mmap_write_lock.
3286	 */
3287	mas_set(&mas, vma->vm_end);
3288	do {
3289		if (vma->vm_flags & VM_ACCOUNT)
3290			nr_accounted += vma_pages(vma);
3291		remove_vma(vma, true);
3292		count++;
3293		cond_resched();
3294		vma = mas_find(&mas, ULONG_MAX);
3295	} while (vma && likely(!xa_is_zero(vma)));
3296
3297	BUG_ON(count != mm->map_count);
3298
3299	trace_exit_mmap(mm);
3300destroy:
3301	__mt_destroy(&mm->mm_mt);
3302	mmap_write_unlock(mm);
3303	vm_unacct_memory(nr_accounted);
3304}
3305
3306/* Insert vm structure into process list sorted by address
3307 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3308 * then i_mmap_rwsem is taken here.
3309 */
3310int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3311{
3312	unsigned long charged = vma_pages(vma);
3313
3314
3315	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
 
3316		return -ENOMEM;
3317
3318	if ((vma->vm_flags & VM_ACCOUNT) &&
3319	     security_vm_enough_memory_mm(mm, charged))
3320		return -ENOMEM;
3321
3322	/*
3323	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3324	 * until its first write fault, when page's anon_vma and index
3325	 * are set.  But now set the vm_pgoff it will almost certainly
3326	 * end up with (unless mremap moves it elsewhere before that
3327	 * first wfault), so /proc/pid/maps tells a consistent story.
3328	 *
3329	 * By setting it to reflect the virtual start address of the
3330	 * vma, merges and splits can happen in a seamless way, just
3331	 * using the existing file pgoff checks and manipulations.
3332	 * Similarly in do_mmap and in do_brk_flags.
3333	 */
3334	if (vma_is_anonymous(vma)) {
3335		BUG_ON(vma->anon_vma);
3336		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3337	}
3338
3339	if (vma_link(mm, vma)) {
3340		if (vma->vm_flags & VM_ACCOUNT)
3341			vm_unacct_memory(charged);
3342		return -ENOMEM;
3343	}
3344
3345	return 0;
3346}
3347
3348/*
3349 * Copy the vma structure to a new location in the same mm,
3350 * prior to moving page table entries, to effect an mremap move.
3351 */
3352struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3353	unsigned long addr, unsigned long len, pgoff_t pgoff,
3354	bool *need_rmap_locks)
3355{
3356	struct vm_area_struct *vma = *vmap;
3357	unsigned long vma_start = vma->vm_start;
3358	struct mm_struct *mm = vma->vm_mm;
3359	struct vm_area_struct *new_vma, *prev;
 
3360	bool faulted_in_anon_vma = true;
3361	VMA_ITERATOR(vmi, mm, addr);
3362
3363	/*
3364	 * If anonymous vma has not yet been faulted, update new pgoff
3365	 * to match new location, to increase its chance of merging.
3366	 */
3367	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3368		pgoff = addr >> PAGE_SHIFT;
3369		faulted_in_anon_vma = false;
3370	}
3371
3372	new_vma = find_vma_prev(mm, addr, &prev);
3373	if (new_vma && new_vma->vm_start < addr + len)
3374		return NULL;	/* should never get here */
3375
3376	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
 
3377	if (new_vma) {
3378		/*
3379		 * Source vma may have been merged into new_vma
3380		 */
3381		if (unlikely(vma_start >= new_vma->vm_start &&
3382			     vma_start < new_vma->vm_end)) {
3383			/*
3384			 * The only way we can get a vma_merge with
3385			 * self during an mremap is if the vma hasn't
3386			 * been faulted in yet and we were allowed to
3387			 * reset the dst vma->vm_pgoff to the
3388			 * destination address of the mremap to allow
3389			 * the merge to happen. mremap must change the
3390			 * vm_pgoff linearity between src and dst vmas
3391			 * (in turn preventing a vma_merge) to be
3392			 * safe. It is only safe to keep the vm_pgoff
3393			 * linear if there are no pages mapped yet.
3394			 */
3395			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3396			*vmap = vma = new_vma;
3397		}
3398		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3399	} else {
3400		new_vma = vm_area_dup(vma);
3401		if (!new_vma)
3402			goto out;
3403		vma_set_range(new_vma, addr, addr + len, pgoff);
 
 
3404		if (vma_dup_policy(vma, new_vma))
3405			goto out_free_vma;
3406		if (anon_vma_clone(new_vma, vma))
3407			goto out_free_mempol;
3408		if (new_vma->vm_file)
3409			get_file(new_vma->vm_file);
3410		if (new_vma->vm_ops && new_vma->vm_ops->open)
3411			new_vma->vm_ops->open(new_vma);
3412		if (vma_link(mm, new_vma))
3413			goto out_vma_link;
3414		*need_rmap_locks = false;
3415	}
3416	return new_vma;
3417
3418out_vma_link:
3419	if (new_vma->vm_ops && new_vma->vm_ops->close)
3420		new_vma->vm_ops->close(new_vma);
3421
3422	if (new_vma->vm_file)
3423		fput(new_vma->vm_file);
3424
3425	unlink_anon_vmas(new_vma);
3426out_free_mempol:
3427	mpol_put(vma_policy(new_vma));
3428out_free_vma:
3429	vm_area_free(new_vma);
3430out:
3431	return NULL;
3432}
3433
3434/*
3435 * Return true if the calling process may expand its vm space by the passed
3436 * number of pages
3437 */
3438bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3439{
3440	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3441		return false;
3442
3443	if (is_data_mapping(flags) &&
3444	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3445		/* Workaround for Valgrind */
3446		if (rlimit(RLIMIT_DATA) == 0 &&
3447		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3448			return true;
3449
3450		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3451			     current->comm, current->pid,
3452			     (mm->data_vm + npages) << PAGE_SHIFT,
3453			     rlimit(RLIMIT_DATA),
3454			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3455
3456		if (!ignore_rlimit_data)
3457			return false;
3458	}
3459
3460	return true;
3461}
3462
3463void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3464{
3465	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3466
3467	if (is_exec_mapping(flags))
3468		mm->exec_vm += npages;
3469	else if (is_stack_mapping(flags))
3470		mm->stack_vm += npages;
3471	else if (is_data_mapping(flags))
3472		mm->data_vm += npages;
3473}
3474
3475static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3476
3477/*
3478 * Having a close hook prevents vma merging regardless of flags.
3479 */
3480static void special_mapping_close(struct vm_area_struct *vma)
3481{
3482}
3483
3484static const char *special_mapping_name(struct vm_area_struct *vma)
3485{
3486	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3487}
3488
3489static int special_mapping_mremap(struct vm_area_struct *new_vma)
3490{
3491	struct vm_special_mapping *sm = new_vma->vm_private_data;
3492
3493	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3494		return -EFAULT;
3495
3496	if (sm->mremap)
3497		return sm->mremap(sm, new_vma);
3498
3499	return 0;
3500}
3501
3502static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3503{
3504	/*
3505	 * Forbid splitting special mappings - kernel has expectations over
3506	 * the number of pages in mapping. Together with VM_DONTEXPAND
3507	 * the size of vma should stay the same over the special mapping's
3508	 * lifetime.
3509	 */
3510	return -EINVAL;
3511}
3512
3513static const struct vm_operations_struct special_mapping_vmops = {
3514	.close = special_mapping_close,
3515	.fault = special_mapping_fault,
3516	.mremap = special_mapping_mremap,
3517	.name = special_mapping_name,
3518	/* vDSO code relies that VVAR can't be accessed remotely */
3519	.access = NULL,
3520	.may_split = special_mapping_split,
3521};
3522
3523static const struct vm_operations_struct legacy_special_mapping_vmops = {
3524	.close = special_mapping_close,
3525	.fault = special_mapping_fault,
3526};
3527
3528static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3529{
3530	struct vm_area_struct *vma = vmf->vma;
3531	pgoff_t pgoff;
3532	struct page **pages;
3533
3534	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3535		pages = vma->vm_private_data;
3536	} else {
3537		struct vm_special_mapping *sm = vma->vm_private_data;
3538
3539		if (sm->fault)
3540			return sm->fault(sm, vmf->vma, vmf);
3541
3542		pages = sm->pages;
3543	}
3544
3545	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3546		pgoff--;
3547
3548	if (*pages) {
3549		struct page *page = *pages;
3550		get_page(page);
3551		vmf->page = page;
3552		return 0;
3553	}
3554
3555	return VM_FAULT_SIGBUS;
3556}
3557
3558static struct vm_area_struct *__install_special_mapping(
3559	struct mm_struct *mm,
3560	unsigned long addr, unsigned long len,
3561	unsigned long vm_flags, void *priv,
3562	const struct vm_operations_struct *ops)
3563{
3564	int ret;
3565	struct vm_area_struct *vma;
3566
3567	vma = vm_area_alloc(mm);
3568	if (unlikely(vma == NULL))
3569		return ERR_PTR(-ENOMEM);
3570
3571	vma_set_range(vma, addr, addr + len, 0);
3572	vm_flags_init(vma, (vm_flags | mm->def_flags |
3573		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
 
3574	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3575
3576	vma->vm_ops = ops;
3577	vma->vm_private_data = priv;
3578
3579	ret = insert_vm_struct(mm, vma);
3580	if (ret)
3581		goto out;
3582
3583	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3584
3585	perf_event_mmap(vma);
3586
3587	return vma;
3588
3589out:
3590	vm_area_free(vma);
3591	return ERR_PTR(ret);
3592}
3593
3594bool vma_is_special_mapping(const struct vm_area_struct *vma,
3595	const struct vm_special_mapping *sm)
3596{
3597	return vma->vm_private_data == sm &&
3598		(vma->vm_ops == &special_mapping_vmops ||
3599		 vma->vm_ops == &legacy_special_mapping_vmops);
3600}
3601
3602/*
3603 * Called with mm->mmap_lock held for writing.
3604 * Insert a new vma covering the given region, with the given flags.
3605 * Its pages are supplied by the given array of struct page *.
3606 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3607 * The region past the last page supplied will always produce SIGBUS.
3608 * The array pointer and the pages it points to are assumed to stay alive
3609 * for as long as this mapping might exist.
3610 */
3611struct vm_area_struct *_install_special_mapping(
3612	struct mm_struct *mm,
3613	unsigned long addr, unsigned long len,
3614	unsigned long vm_flags, const struct vm_special_mapping *spec)
3615{
3616	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3617					&special_mapping_vmops);
3618}
3619
3620int install_special_mapping(struct mm_struct *mm,
3621			    unsigned long addr, unsigned long len,
3622			    unsigned long vm_flags, struct page **pages)
3623{
3624	struct vm_area_struct *vma = __install_special_mapping(
3625		mm, addr, len, vm_flags, (void *)pages,
3626		&legacy_special_mapping_vmops);
3627
3628	return PTR_ERR_OR_ZERO(vma);
3629}
3630
3631static DEFINE_MUTEX(mm_all_locks_mutex);
3632
3633static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3634{
3635	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3636		/*
3637		 * The LSB of head.next can't change from under us
3638		 * because we hold the mm_all_locks_mutex.
3639		 */
3640		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3641		/*
3642		 * We can safely modify head.next after taking the
3643		 * anon_vma->root->rwsem. If some other vma in this mm shares
3644		 * the same anon_vma we won't take it again.
3645		 *
3646		 * No need of atomic instructions here, head.next
3647		 * can't change from under us thanks to the
3648		 * anon_vma->root->rwsem.
3649		 */
3650		if (__test_and_set_bit(0, (unsigned long *)
3651				       &anon_vma->root->rb_root.rb_root.rb_node))
3652			BUG();
3653	}
3654}
3655
3656static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3657{
3658	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3659		/*
3660		 * AS_MM_ALL_LOCKS can't change from under us because
3661		 * we hold the mm_all_locks_mutex.
3662		 *
3663		 * Operations on ->flags have to be atomic because
3664		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3665		 * mm_all_locks_mutex, there may be other cpus
3666		 * changing other bitflags in parallel to us.
3667		 */
3668		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3669			BUG();
3670		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3671	}
3672}
3673
3674/*
3675 * This operation locks against the VM for all pte/vma/mm related
3676 * operations that could ever happen on a certain mm. This includes
3677 * vmtruncate, try_to_unmap, and all page faults.
3678 *
3679 * The caller must take the mmap_lock in write mode before calling
3680 * mm_take_all_locks(). The caller isn't allowed to release the
3681 * mmap_lock until mm_drop_all_locks() returns.
3682 *
3683 * mmap_lock in write mode is required in order to block all operations
3684 * that could modify pagetables and free pages without need of
3685 * altering the vma layout. It's also needed in write mode to avoid new
3686 * anon_vmas to be associated with existing vmas.
3687 *
3688 * A single task can't take more than one mm_take_all_locks() in a row
3689 * or it would deadlock.
3690 *
3691 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3692 * mapping->flags avoid to take the same lock twice, if more than one
3693 * vma in this mm is backed by the same anon_vma or address_space.
3694 *
3695 * We take locks in following order, accordingly to comment at beginning
3696 * of mm/rmap.c:
3697 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3698 *     hugetlb mapping);
3699 *   - all vmas marked locked
3700 *   - all i_mmap_rwsem locks;
3701 *   - all anon_vma->rwseml
3702 *
3703 * We can take all locks within these types randomly because the VM code
3704 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3705 * mm_all_locks_mutex.
3706 *
3707 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3708 * that may have to take thousand of locks.
3709 *
3710 * mm_take_all_locks() can fail if it's interrupted by signals.
3711 */
3712int mm_take_all_locks(struct mm_struct *mm)
3713{
3714	struct vm_area_struct *vma;
3715	struct anon_vma_chain *avc;
3716	MA_STATE(mas, &mm->mm_mt, 0, 0);
3717
3718	mmap_assert_write_locked(mm);
3719
3720	mutex_lock(&mm_all_locks_mutex);
3721
3722	/*
3723	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3724	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3725	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3726	 * is reached.
3727	 */
3728	mas_for_each(&mas, vma, ULONG_MAX) {
3729		if (signal_pending(current))
3730			goto out_unlock;
3731		vma_start_write(vma);
3732	}
3733
3734	mas_set(&mas, 0);
3735	mas_for_each(&mas, vma, ULONG_MAX) {
3736		if (signal_pending(current))
3737			goto out_unlock;
3738		if (vma->vm_file && vma->vm_file->f_mapping &&
3739				is_vm_hugetlb_page(vma))
3740			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3741	}
3742
3743	mas_set(&mas, 0);
3744	mas_for_each(&mas, vma, ULONG_MAX) {
3745		if (signal_pending(current))
3746			goto out_unlock;
3747		if (vma->vm_file && vma->vm_file->f_mapping &&
3748				!is_vm_hugetlb_page(vma))
3749			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3750	}
3751
3752	mas_set(&mas, 0);
3753	mas_for_each(&mas, vma, ULONG_MAX) {
3754		if (signal_pending(current))
3755			goto out_unlock;
3756		if (vma->anon_vma)
3757			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3758				vm_lock_anon_vma(mm, avc->anon_vma);
3759	}
3760
3761	return 0;
3762
3763out_unlock:
3764	mm_drop_all_locks(mm);
3765	return -EINTR;
3766}
3767
3768static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3769{
3770	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3771		/*
3772		 * The LSB of head.next can't change to 0 from under
3773		 * us because we hold the mm_all_locks_mutex.
3774		 *
3775		 * We must however clear the bitflag before unlocking
3776		 * the vma so the users using the anon_vma->rb_root will
3777		 * never see our bitflag.
3778		 *
3779		 * No need of atomic instructions here, head.next
3780		 * can't change from under us until we release the
3781		 * anon_vma->root->rwsem.
3782		 */
3783		if (!__test_and_clear_bit(0, (unsigned long *)
3784					  &anon_vma->root->rb_root.rb_root.rb_node))
3785			BUG();
3786		anon_vma_unlock_write(anon_vma);
3787	}
3788}
3789
3790static void vm_unlock_mapping(struct address_space *mapping)
3791{
3792	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3793		/*
3794		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3795		 * because we hold the mm_all_locks_mutex.
3796		 */
3797		i_mmap_unlock_write(mapping);
3798		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3799					&mapping->flags))
3800			BUG();
3801	}
3802}
3803
3804/*
3805 * The mmap_lock cannot be released by the caller until
3806 * mm_drop_all_locks() returns.
3807 */
3808void mm_drop_all_locks(struct mm_struct *mm)
3809{
3810	struct vm_area_struct *vma;
3811	struct anon_vma_chain *avc;
3812	MA_STATE(mas, &mm->mm_mt, 0, 0);
3813
3814	mmap_assert_write_locked(mm);
3815	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3816
3817	mas_for_each(&mas, vma, ULONG_MAX) {
3818		if (vma->anon_vma)
3819			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3820				vm_unlock_anon_vma(avc->anon_vma);
3821		if (vma->vm_file && vma->vm_file->f_mapping)
3822			vm_unlock_mapping(vma->vm_file->f_mapping);
3823	}
3824
3825	mutex_unlock(&mm_all_locks_mutex);
3826}
3827
3828/*
3829 * initialise the percpu counter for VM
3830 */
3831void __init mmap_init(void)
3832{
3833	int ret;
3834
3835	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3836	VM_BUG_ON(ret);
3837}
3838
3839/*
3840 * Initialise sysctl_user_reserve_kbytes.
3841 *
3842 * This is intended to prevent a user from starting a single memory hogging
3843 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3844 * mode.
3845 *
3846 * The default value is min(3% of free memory, 128MB)
3847 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3848 */
3849static int init_user_reserve(void)
3850{
3851	unsigned long free_kbytes;
3852
3853	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3854
3855	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3856	return 0;
3857}
3858subsys_initcall(init_user_reserve);
3859
3860/*
3861 * Initialise sysctl_admin_reserve_kbytes.
3862 *
3863 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3864 * to log in and kill a memory hogging process.
3865 *
3866 * Systems with more than 256MB will reserve 8MB, enough to recover
3867 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3868 * only reserve 3% of free pages by default.
3869 */
3870static int init_admin_reserve(void)
3871{
3872	unsigned long free_kbytes;
3873
3874	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3875
3876	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3877	return 0;
3878}
3879subsys_initcall(init_admin_reserve);
3880
3881/*
3882 * Reinititalise user and admin reserves if memory is added or removed.
3883 *
3884 * The default user reserve max is 128MB, and the default max for the
3885 * admin reserve is 8MB. These are usually, but not always, enough to
3886 * enable recovery from a memory hogging process using login/sshd, a shell,
3887 * and tools like top. It may make sense to increase or even disable the
3888 * reserve depending on the existence of swap or variations in the recovery
3889 * tools. So, the admin may have changed them.
3890 *
3891 * If memory is added and the reserves have been eliminated or increased above
3892 * the default max, then we'll trust the admin.
3893 *
3894 * If memory is removed and there isn't enough free memory, then we
3895 * need to reset the reserves.
3896 *
3897 * Otherwise keep the reserve set by the admin.
3898 */
3899static int reserve_mem_notifier(struct notifier_block *nb,
3900			     unsigned long action, void *data)
3901{
3902	unsigned long tmp, free_kbytes;
3903
3904	switch (action) {
3905	case MEM_ONLINE:
3906		/* Default max is 128MB. Leave alone if modified by operator. */
3907		tmp = sysctl_user_reserve_kbytes;
3908		if (tmp > 0 && tmp < SZ_128K)
3909			init_user_reserve();
3910
3911		/* Default max is 8MB.  Leave alone if modified by operator. */
3912		tmp = sysctl_admin_reserve_kbytes;
3913		if (tmp > 0 && tmp < SZ_8K)
3914			init_admin_reserve();
3915
3916		break;
3917	case MEM_OFFLINE:
3918		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3919
3920		if (sysctl_user_reserve_kbytes > free_kbytes) {
3921			init_user_reserve();
3922			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3923				sysctl_user_reserve_kbytes);
3924		}
3925
3926		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3927			init_admin_reserve();
3928			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3929				sysctl_admin_reserve_kbytes);
3930		}
3931		break;
3932	default:
3933		break;
3934	}
3935	return NOTIFY_OK;
3936}
3937
 
 
 
 
3938static int __meminit init_reserve_notifier(void)
3939{
3940	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3941		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3942
3943	return 0;
3944}
3945subsys_initcall(init_reserve_notifier);