Loading...
1/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "md-bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22/*
23 * Minimum sectors of free reshape space per raid device
24 */
25#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27/*
28 * Minimum journal space 4 MiB in sectors.
29 */
30#define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32static bool devices_handle_discard_safely = false;
33
34/*
35 * The following flags are used by dm-raid.c to set up the array state.
36 * They must be cleared before md_run is called.
37 */
38#define FirstUse 10 /* rdev flag */
39
40struct raid_dev {
41 /*
42 * Two DM devices, one to hold metadata and one to hold the
43 * actual data/parity. The reason for this is to not confuse
44 * ti->len and give more flexibility in altering size and
45 * characteristics.
46 *
47 * While it is possible for this device to be associated
48 * with a different physical device than the data_dev, it
49 * is intended for it to be the same.
50 * |--------- Physical Device ---------|
51 * |- meta_dev -|------ data_dev ------|
52 */
53 struct dm_dev *meta_dev;
54 struct dm_dev *data_dev;
55 struct md_rdev rdev;
56};
57
58/*
59 * Bits for establishing rs->ctr_flags
60 *
61 * 1 = no flag value
62 * 2 = flag with value
63 */
64#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
65#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
66#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
67#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
68#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
71#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
72#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
73#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
74#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
75#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
76/* New for v1.9.0 */
77#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81/* New for v1.10.0 */
82#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83
84/* New for v1.11.1 */
85#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86
87/*
88 * Flags for rs->ctr_flags field.
89 */
90#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
91#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
92#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
93#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
94#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
98#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
99#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
100#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
101#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
102#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
103#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
104#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
106#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
107
108/*
109 * Definitions of various constructor flags to
110 * be used in checks of valid / invalid flags
111 * per raid level.
112 */
113/* Define all any sync flags */
114#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115
116/* Define flags for options without argument (e.g. 'nosync') */
117#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
118 CTR_FLAG_RAID10_USE_NEAR_SETS)
119
120/* Define flags for options with one argument (e.g. 'delta_disks +2') */
121#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122 CTR_FLAG_WRITE_MOSTLY | \
123 CTR_FLAG_DAEMON_SLEEP | \
124 CTR_FLAG_MIN_RECOVERY_RATE | \
125 CTR_FLAG_MAX_RECOVERY_RATE | \
126 CTR_FLAG_MAX_WRITE_BEHIND | \
127 CTR_FLAG_STRIPE_CACHE | \
128 CTR_FLAG_REGION_SIZE | \
129 CTR_FLAG_RAID10_COPIES | \
130 CTR_FLAG_RAID10_FORMAT | \
131 CTR_FLAG_DELTA_DISKS | \
132 CTR_FLAG_DATA_OFFSET | \
133 CTR_FLAG_JOURNAL_DEV | \
134 CTR_FLAG_JOURNAL_MODE)
135
136/* Valid options definitions per raid level... */
137
138/* "raid0" does only accept data offset */
139#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
140
141/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
142#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
143 CTR_FLAG_REBUILD | \
144 CTR_FLAG_WRITE_MOSTLY | \
145 CTR_FLAG_DAEMON_SLEEP | \
146 CTR_FLAG_MIN_RECOVERY_RATE | \
147 CTR_FLAG_MAX_RECOVERY_RATE | \
148 CTR_FLAG_MAX_WRITE_BEHIND | \
149 CTR_FLAG_REGION_SIZE | \
150 CTR_FLAG_DELTA_DISKS | \
151 CTR_FLAG_DATA_OFFSET)
152
153/* "raid10" does not accept any raid1 or stripe cache options */
154#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
155 CTR_FLAG_REBUILD | \
156 CTR_FLAG_DAEMON_SLEEP | \
157 CTR_FLAG_MIN_RECOVERY_RATE | \
158 CTR_FLAG_MAX_RECOVERY_RATE | \
159 CTR_FLAG_REGION_SIZE | \
160 CTR_FLAG_RAID10_COPIES | \
161 CTR_FLAG_RAID10_FORMAT | \
162 CTR_FLAG_DELTA_DISKS | \
163 CTR_FLAG_DATA_OFFSET | \
164 CTR_FLAG_RAID10_USE_NEAR_SETS)
165
166/*
167 * "raid4/5/6" do not accept any raid1 or raid10 specific options
168 *
169 * "raid6" does not accept "nosync", because it is not guaranteed
170 * that both parity and q-syndrome are being written properly with
171 * any writes
172 */
173#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
174 CTR_FLAG_REBUILD | \
175 CTR_FLAG_DAEMON_SLEEP | \
176 CTR_FLAG_MIN_RECOVERY_RATE | \
177 CTR_FLAG_MAX_RECOVERY_RATE | \
178 CTR_FLAG_STRIPE_CACHE | \
179 CTR_FLAG_REGION_SIZE | \
180 CTR_FLAG_DELTA_DISKS | \
181 CTR_FLAG_DATA_OFFSET | \
182 CTR_FLAG_JOURNAL_DEV | \
183 CTR_FLAG_JOURNAL_MODE)
184
185#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
186 CTR_FLAG_REBUILD | \
187 CTR_FLAG_DAEMON_SLEEP | \
188 CTR_FLAG_MIN_RECOVERY_RATE | \
189 CTR_FLAG_MAX_RECOVERY_RATE | \
190 CTR_FLAG_STRIPE_CACHE | \
191 CTR_FLAG_REGION_SIZE | \
192 CTR_FLAG_DELTA_DISKS | \
193 CTR_FLAG_DATA_OFFSET | \
194 CTR_FLAG_JOURNAL_DEV | \
195 CTR_FLAG_JOURNAL_MODE)
196/* ...valid options definitions per raid level */
197
198/*
199 * Flags for rs->runtime_flags field
200 * (RT_FLAG prefix meaning "runtime flag")
201 *
202 * These are all internal and used to define runtime state,
203 * e.g. to prevent another resume from preresume processing
204 * the raid set all over again.
205 */
206#define RT_FLAG_RS_PRERESUMED 0
207#define RT_FLAG_RS_RESUMED 1
208#define RT_FLAG_RS_BITMAP_LOADED 2
209#define RT_FLAG_UPDATE_SBS 3
210#define RT_FLAG_RESHAPE_RS 4
211#define RT_FLAG_RS_SUSPENDED 5
212#define RT_FLAG_RS_IN_SYNC 6
213#define RT_FLAG_RS_RESYNCING 7
214#define RT_FLAG_RS_GROW 8
215
216/* Array elements of 64 bit needed for rebuild/failed disk bits */
217#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
218
219/*
220 * raid set level, layout and chunk sectors backup/restore
221 */
222struct rs_layout {
223 int new_level;
224 int new_layout;
225 int new_chunk_sectors;
226};
227
228struct raid_set {
229 struct dm_target *ti;
230
231 uint32_t stripe_cache_entries;
232 unsigned long ctr_flags;
233 unsigned long runtime_flags;
234
235 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
236
237 int raid_disks;
238 int delta_disks;
239 int data_offset;
240 int raid10_copies;
241 int requested_bitmap_chunk_sectors;
242
243 struct mddev md;
244 struct raid_type *raid_type;
245
246 sector_t array_sectors;
247 sector_t dev_sectors;
248
249 /* Optional raid4/5/6 journal device */
250 struct journal_dev {
251 struct dm_dev *dev;
252 struct md_rdev rdev;
253 int mode;
254 } journal_dev;
255
256 struct raid_dev dev[];
257};
258
259static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
260{
261 struct mddev *mddev = &rs->md;
262
263 l->new_level = mddev->new_level;
264 l->new_layout = mddev->new_layout;
265 l->new_chunk_sectors = mddev->new_chunk_sectors;
266}
267
268static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
269{
270 struct mddev *mddev = &rs->md;
271
272 mddev->new_level = l->new_level;
273 mddev->new_layout = l->new_layout;
274 mddev->new_chunk_sectors = l->new_chunk_sectors;
275}
276
277/* raid10 algorithms (i.e. formats) */
278#define ALGORITHM_RAID10_DEFAULT 0
279#define ALGORITHM_RAID10_NEAR 1
280#define ALGORITHM_RAID10_OFFSET 2
281#define ALGORITHM_RAID10_FAR 3
282
283/* Supported raid types and properties. */
284static struct raid_type {
285 const char *name; /* RAID algorithm. */
286 const char *descr; /* Descriptor text for logging. */
287 const unsigned int parity_devs; /* # of parity devices. */
288 const unsigned int minimal_devs;/* minimal # of devices in set. */
289 const unsigned int level; /* RAID level. */
290 const unsigned int algorithm; /* RAID algorithm. */
291} raid_types[] = {
292 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
293 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
294 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
295 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
296 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
297 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
298 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
299 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
300 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
301 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
302 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
303 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
304 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
305 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
306 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
307 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
308 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
309 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
310 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
311 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
312};
313
314/* True, if @v is in inclusive range [@min, @max] */
315static bool __within_range(long v, long min, long max)
316{
317 return v >= min && v <= max;
318}
319
320/* All table line arguments are defined here */
321static struct arg_name_flag {
322 const unsigned long flag;
323 const char *name;
324} __arg_name_flags[] = {
325 { CTR_FLAG_SYNC, "sync"},
326 { CTR_FLAG_NOSYNC, "nosync"},
327 { CTR_FLAG_REBUILD, "rebuild"},
328 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
329 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
330 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
331 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
332 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
333 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
334 { CTR_FLAG_REGION_SIZE, "region_size"},
335 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
336 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
337 { CTR_FLAG_DATA_OFFSET, "data_offset"},
338 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
339 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
340 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
341 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
342};
343
344/* Return argument name string for given @flag */
345static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
346{
347 if (hweight32(flag) == 1) {
348 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
349
350 while (anf-- > __arg_name_flags)
351 if (flag & anf->flag)
352 return anf->name;
353
354 } else
355 DMERR("%s called with more than one flag!", __func__);
356
357 return NULL;
358}
359
360/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
361static struct {
362 const int mode;
363 const char *param;
364} _raid456_journal_mode[] = {
365 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
366 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" }
367};
368
369/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
370static int dm_raid_journal_mode_to_md(const char *mode)
371{
372 int m = ARRAY_SIZE(_raid456_journal_mode);
373
374 while (m--)
375 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
376 return _raid456_journal_mode[m].mode;
377
378 return -EINVAL;
379}
380
381/* Return dm-raid raid4/5/6 journal mode string for @mode */
382static const char *md_journal_mode_to_dm_raid(const int mode)
383{
384 int m = ARRAY_SIZE(_raid456_journal_mode);
385
386 while (m--)
387 if (mode == _raid456_journal_mode[m].mode)
388 return _raid456_journal_mode[m].param;
389
390 return "unknown";
391}
392
393/*
394 * Bool helpers to test for various raid levels of a raid set.
395 * It's level as reported by the superblock rather than
396 * the requested raid_type passed to the constructor.
397 */
398/* Return true, if raid set in @rs is raid0 */
399static bool rs_is_raid0(struct raid_set *rs)
400{
401 return !rs->md.level;
402}
403
404/* Return true, if raid set in @rs is raid1 */
405static bool rs_is_raid1(struct raid_set *rs)
406{
407 return rs->md.level == 1;
408}
409
410/* Return true, if raid set in @rs is raid10 */
411static bool rs_is_raid10(struct raid_set *rs)
412{
413 return rs->md.level == 10;
414}
415
416/* Return true, if raid set in @rs is level 6 */
417static bool rs_is_raid6(struct raid_set *rs)
418{
419 return rs->md.level == 6;
420}
421
422/* Return true, if raid set in @rs is level 4, 5 or 6 */
423static bool rs_is_raid456(struct raid_set *rs)
424{
425 return __within_range(rs->md.level, 4, 6);
426}
427
428/* Return true, if raid set in @rs is reshapable */
429static bool __is_raid10_far(int layout);
430static bool rs_is_reshapable(struct raid_set *rs)
431{
432 return rs_is_raid456(rs) ||
433 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
434}
435
436/* Return true, if raid set in @rs is recovering */
437static bool rs_is_recovering(struct raid_set *rs)
438{
439 return rs->md.recovery_cp < rs->md.dev_sectors;
440}
441
442/* Return true, if raid set in @rs is reshaping */
443static bool rs_is_reshaping(struct raid_set *rs)
444{
445 return rs->md.reshape_position != MaxSector;
446}
447
448/*
449 * bool helpers to test for various raid levels of a raid type @rt
450 */
451
452/* Return true, if raid type in @rt is raid0 */
453static bool rt_is_raid0(struct raid_type *rt)
454{
455 return !rt->level;
456}
457
458/* Return true, if raid type in @rt is raid1 */
459static bool rt_is_raid1(struct raid_type *rt)
460{
461 return rt->level == 1;
462}
463
464/* Return true, if raid type in @rt is raid10 */
465static bool rt_is_raid10(struct raid_type *rt)
466{
467 return rt->level == 10;
468}
469
470/* Return true, if raid type in @rt is raid4/5 */
471static bool rt_is_raid45(struct raid_type *rt)
472{
473 return __within_range(rt->level, 4, 5);
474}
475
476/* Return true, if raid type in @rt is raid6 */
477static bool rt_is_raid6(struct raid_type *rt)
478{
479 return rt->level == 6;
480}
481
482/* Return true, if raid type in @rt is raid4/5/6 */
483static bool rt_is_raid456(struct raid_type *rt)
484{
485 return __within_range(rt->level, 4, 6);
486}
487/* END: raid level bools */
488
489/* Return valid ctr flags for the raid level of @rs */
490static unsigned long __valid_flags(struct raid_set *rs)
491{
492 if (rt_is_raid0(rs->raid_type))
493 return RAID0_VALID_FLAGS;
494 else if (rt_is_raid1(rs->raid_type))
495 return RAID1_VALID_FLAGS;
496 else if (rt_is_raid10(rs->raid_type))
497 return RAID10_VALID_FLAGS;
498 else if (rt_is_raid45(rs->raid_type))
499 return RAID45_VALID_FLAGS;
500 else if (rt_is_raid6(rs->raid_type))
501 return RAID6_VALID_FLAGS;
502
503 return 0;
504}
505
506/*
507 * Check for valid flags set on @rs
508 *
509 * Has to be called after parsing of the ctr flags!
510 */
511static int rs_check_for_valid_flags(struct raid_set *rs)
512{
513 if (rs->ctr_flags & ~__valid_flags(rs)) {
514 rs->ti->error = "Invalid flags combination";
515 return -EINVAL;
516 }
517
518 return 0;
519}
520
521/* MD raid10 bit definitions and helpers */
522#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
523#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
524#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
525#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
526
527/* Return md raid10 near copies for @layout */
528static unsigned int __raid10_near_copies(int layout)
529{
530 return layout & 0xFF;
531}
532
533/* Return md raid10 far copies for @layout */
534static unsigned int __raid10_far_copies(int layout)
535{
536 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
537}
538
539/* Return true if md raid10 offset for @layout */
540static bool __is_raid10_offset(int layout)
541{
542 return !!(layout & RAID10_OFFSET);
543}
544
545/* Return true if md raid10 near for @layout */
546static bool __is_raid10_near(int layout)
547{
548 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
549}
550
551/* Return true if md raid10 far for @layout */
552static bool __is_raid10_far(int layout)
553{
554 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
555}
556
557/* Return md raid10 layout string for @layout */
558static const char *raid10_md_layout_to_format(int layout)
559{
560 /*
561 * Bit 16 stands for "offset"
562 * (i.e. adjacent stripes hold copies)
563 *
564 * Refer to MD's raid10.c for details
565 */
566 if (__is_raid10_offset(layout))
567 return "offset";
568
569 if (__raid10_near_copies(layout) > 1)
570 return "near";
571
572 if (__raid10_far_copies(layout) > 1)
573 return "far";
574
575 return "unknown";
576}
577
578/* Return md raid10 algorithm for @name */
579static int raid10_name_to_format(const char *name)
580{
581 if (!strcasecmp(name, "near"))
582 return ALGORITHM_RAID10_NEAR;
583 else if (!strcasecmp(name, "offset"))
584 return ALGORITHM_RAID10_OFFSET;
585 else if (!strcasecmp(name, "far"))
586 return ALGORITHM_RAID10_FAR;
587
588 return -EINVAL;
589}
590
591/* Return md raid10 copies for @layout */
592static unsigned int raid10_md_layout_to_copies(int layout)
593{
594 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
595}
596
597/* Return md raid10 format id for @format string */
598static int raid10_format_to_md_layout(struct raid_set *rs,
599 unsigned int algorithm,
600 unsigned int copies)
601{
602 unsigned int n = 1, f = 1, r = 0;
603
604 /*
605 * MD resilienece flaw:
606 *
607 * enabling use_far_sets for far/offset formats causes copies
608 * to be colocated on the same devs together with their origins!
609 *
610 * -> disable it for now in the definition above
611 */
612 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
613 algorithm == ALGORITHM_RAID10_NEAR)
614 n = copies;
615
616 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
617 f = copies;
618 r = RAID10_OFFSET;
619 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
620 r |= RAID10_USE_FAR_SETS;
621
622 } else if (algorithm == ALGORITHM_RAID10_FAR) {
623 f = copies;
624 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
625 r |= RAID10_USE_FAR_SETS;
626
627 } else
628 return -EINVAL;
629
630 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
631}
632/* END: MD raid10 bit definitions and helpers */
633
634/* Check for any of the raid10 algorithms */
635static bool __got_raid10(struct raid_type *rtp, const int layout)
636{
637 if (rtp->level == 10) {
638 switch (rtp->algorithm) {
639 case ALGORITHM_RAID10_DEFAULT:
640 case ALGORITHM_RAID10_NEAR:
641 return __is_raid10_near(layout);
642 case ALGORITHM_RAID10_OFFSET:
643 return __is_raid10_offset(layout);
644 case ALGORITHM_RAID10_FAR:
645 return __is_raid10_far(layout);
646 default:
647 break;
648 }
649 }
650
651 return false;
652}
653
654/* Return raid_type for @name */
655static struct raid_type *get_raid_type(const char *name)
656{
657 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
658
659 while (rtp-- > raid_types)
660 if (!strcasecmp(rtp->name, name))
661 return rtp;
662
663 return NULL;
664}
665
666/* Return raid_type for @name based derived from @level and @layout */
667static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
668{
669 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
670
671 while (rtp-- > raid_types) {
672 /* RAID10 special checks based on @layout flags/properties */
673 if (rtp->level == level &&
674 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
675 return rtp;
676 }
677
678 return NULL;
679}
680
681/* Adjust rdev sectors */
682static void rs_set_rdev_sectors(struct raid_set *rs)
683{
684 struct mddev *mddev = &rs->md;
685 struct md_rdev *rdev;
686
687 /*
688 * raid10 sets rdev->sector to the device size, which
689 * is unintended in case of out-of-place reshaping
690 */
691 rdev_for_each(rdev, mddev)
692 if (!test_bit(Journal, &rdev->flags))
693 rdev->sectors = mddev->dev_sectors;
694}
695
696/*
697 * Change bdev capacity of @rs in case of a disk add/remove reshape
698 */
699static void rs_set_capacity(struct raid_set *rs)
700{
701 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
702
703 set_capacity(gendisk, rs->md.array_sectors);
704 revalidate_disk(gendisk);
705}
706
707/*
708 * Set the mddev properties in @rs to the current
709 * ones retrieved from the freshest superblock
710 */
711static void rs_set_cur(struct raid_set *rs)
712{
713 struct mddev *mddev = &rs->md;
714
715 mddev->new_level = mddev->level;
716 mddev->new_layout = mddev->layout;
717 mddev->new_chunk_sectors = mddev->chunk_sectors;
718}
719
720/*
721 * Set the mddev properties in @rs to the new
722 * ones requested by the ctr
723 */
724static void rs_set_new(struct raid_set *rs)
725{
726 struct mddev *mddev = &rs->md;
727
728 mddev->level = mddev->new_level;
729 mddev->layout = mddev->new_layout;
730 mddev->chunk_sectors = mddev->new_chunk_sectors;
731 mddev->raid_disks = rs->raid_disks;
732 mddev->delta_disks = 0;
733}
734
735static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736 unsigned int raid_devs)
737{
738 unsigned int i;
739 struct raid_set *rs;
740
741 if (raid_devs <= raid_type->parity_devs) {
742 ti->error = "Insufficient number of devices";
743 return ERR_PTR(-EINVAL);
744 }
745
746 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747 if (!rs) {
748 ti->error = "Cannot allocate raid context";
749 return ERR_PTR(-ENOMEM);
750 }
751
752 mddev_init(&rs->md);
753
754 rs->raid_disks = raid_devs;
755 rs->delta_disks = 0;
756
757 rs->ti = ti;
758 rs->raid_type = raid_type;
759 rs->stripe_cache_entries = 256;
760 rs->md.raid_disks = raid_devs;
761 rs->md.level = raid_type->level;
762 rs->md.new_level = rs->md.level;
763 rs->md.layout = raid_type->algorithm;
764 rs->md.new_layout = rs->md.layout;
765 rs->md.delta_disks = 0;
766 rs->md.recovery_cp = MaxSector;
767
768 for (i = 0; i < raid_devs; i++)
769 md_rdev_init(&rs->dev[i].rdev);
770
771 /*
772 * Remaining items to be initialized by further RAID params:
773 * rs->md.persistent
774 * rs->md.external
775 * rs->md.chunk_sectors
776 * rs->md.new_chunk_sectors
777 * rs->md.dev_sectors
778 */
779
780 return rs;
781}
782
783/* Free all @rs allocations */
784static void raid_set_free(struct raid_set *rs)
785{
786 int i;
787
788 if (rs->journal_dev.dev) {
789 md_rdev_clear(&rs->journal_dev.rdev);
790 dm_put_device(rs->ti, rs->journal_dev.dev);
791 }
792
793 for (i = 0; i < rs->raid_disks; i++) {
794 if (rs->dev[i].meta_dev)
795 dm_put_device(rs->ti, rs->dev[i].meta_dev);
796 md_rdev_clear(&rs->dev[i].rdev);
797 if (rs->dev[i].data_dev)
798 dm_put_device(rs->ti, rs->dev[i].data_dev);
799 }
800
801 kfree(rs);
802}
803
804/*
805 * For every device we have two words
806 * <meta_dev>: meta device name or '-' if missing
807 * <data_dev>: data device name or '-' if missing
808 *
809 * The following are permitted:
810 * - -
811 * - <data_dev>
812 * <meta_dev> <data_dev>
813 *
814 * The following is not allowed:
815 * <meta_dev> -
816 *
817 * This code parses those words. If there is a failure,
818 * the caller must use raid_set_free() to unwind the operations.
819 */
820static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
821{
822 int i;
823 int rebuild = 0;
824 int metadata_available = 0;
825 int r = 0;
826 const char *arg;
827
828 /* Put off the number of raid devices argument to get to dev pairs */
829 arg = dm_shift_arg(as);
830 if (!arg)
831 return -EINVAL;
832
833 for (i = 0; i < rs->raid_disks; i++) {
834 rs->dev[i].rdev.raid_disk = i;
835
836 rs->dev[i].meta_dev = NULL;
837 rs->dev[i].data_dev = NULL;
838
839 /*
840 * There are no offsets initially.
841 * Out of place reshape will set them accordingly.
842 */
843 rs->dev[i].rdev.data_offset = 0;
844 rs->dev[i].rdev.new_data_offset = 0;
845 rs->dev[i].rdev.mddev = &rs->md;
846
847 arg = dm_shift_arg(as);
848 if (!arg)
849 return -EINVAL;
850
851 if (strcmp(arg, "-")) {
852 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
853 &rs->dev[i].meta_dev);
854 if (r) {
855 rs->ti->error = "RAID metadata device lookup failure";
856 return r;
857 }
858
859 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
860 if (!rs->dev[i].rdev.sb_page) {
861 rs->ti->error = "Failed to allocate superblock page";
862 return -ENOMEM;
863 }
864 }
865
866 arg = dm_shift_arg(as);
867 if (!arg)
868 return -EINVAL;
869
870 if (!strcmp(arg, "-")) {
871 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
872 (!rs->dev[i].rdev.recovery_offset)) {
873 rs->ti->error = "Drive designated for rebuild not specified";
874 return -EINVAL;
875 }
876
877 if (rs->dev[i].meta_dev) {
878 rs->ti->error = "No data device supplied with metadata device";
879 return -EINVAL;
880 }
881
882 continue;
883 }
884
885 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
886 &rs->dev[i].data_dev);
887 if (r) {
888 rs->ti->error = "RAID device lookup failure";
889 return r;
890 }
891
892 if (rs->dev[i].meta_dev) {
893 metadata_available = 1;
894 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
895 }
896 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
897 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
898 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
899 rebuild++;
900 }
901
902 if (rs->journal_dev.dev)
903 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
904
905 if (metadata_available) {
906 rs->md.external = 0;
907 rs->md.persistent = 1;
908 rs->md.major_version = 2;
909 } else if (rebuild && !rs->md.recovery_cp) {
910 /*
911 * Without metadata, we will not be able to tell if the array
912 * is in-sync or not - we must assume it is not. Therefore,
913 * it is impossible to rebuild a drive.
914 *
915 * Even if there is metadata, the on-disk information may
916 * indicate that the array is not in-sync and it will then
917 * fail at that time.
918 *
919 * User could specify 'nosync' option if desperate.
920 */
921 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
922 return -EINVAL;
923 }
924
925 return 0;
926}
927
928/*
929 * validate_region_size
930 * @rs
931 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
932 *
933 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
934 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
935 *
936 * Returns: 0 on success, -EINVAL on failure.
937 */
938static int validate_region_size(struct raid_set *rs, unsigned long region_size)
939{
940 unsigned long min_region_size = rs->ti->len / (1 << 21);
941
942 if (rs_is_raid0(rs))
943 return 0;
944
945 if (!region_size) {
946 /*
947 * Choose a reasonable default. All figures in sectors.
948 */
949 if (min_region_size > (1 << 13)) {
950 /* If not a power of 2, make it the next power of 2 */
951 region_size = roundup_pow_of_two(min_region_size);
952 DMINFO("Choosing default region size of %lu sectors",
953 region_size);
954 } else {
955 DMINFO("Choosing default region size of 4MiB");
956 region_size = 1 << 13; /* sectors */
957 }
958 } else {
959 /*
960 * Validate user-supplied value.
961 */
962 if (region_size > rs->ti->len) {
963 rs->ti->error = "Supplied region size is too large";
964 return -EINVAL;
965 }
966
967 if (region_size < min_region_size) {
968 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
969 region_size, min_region_size);
970 rs->ti->error = "Supplied region size is too small";
971 return -EINVAL;
972 }
973
974 if (!is_power_of_2(region_size)) {
975 rs->ti->error = "Region size is not a power of 2";
976 return -EINVAL;
977 }
978
979 if (region_size < rs->md.chunk_sectors) {
980 rs->ti->error = "Region size is smaller than the chunk size";
981 return -EINVAL;
982 }
983 }
984
985 /*
986 * Convert sectors to bytes.
987 */
988 rs->md.bitmap_info.chunksize = to_bytes(region_size);
989
990 return 0;
991}
992
993/*
994 * validate_raid_redundancy
995 * @rs
996 *
997 * Determine if there are enough devices in the array that haven't
998 * failed (or are being rebuilt) to form a usable array.
999 *
1000 * Returns: 0 on success, -EINVAL on failure.
1001 */
1002static int validate_raid_redundancy(struct raid_set *rs)
1003{
1004 unsigned int i, rebuild_cnt = 0;
1005 unsigned int rebuilds_per_group = 0, copies;
1006 unsigned int group_size, last_group_start;
1007
1008 for (i = 0; i < rs->md.raid_disks; i++)
1009 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1010 !rs->dev[i].rdev.sb_page)
1011 rebuild_cnt++;
1012
1013 switch (rs->md.level) {
1014 case 0:
1015 break;
1016 case 1:
1017 if (rebuild_cnt >= rs->md.raid_disks)
1018 goto too_many;
1019 break;
1020 case 4:
1021 case 5:
1022 case 6:
1023 if (rebuild_cnt > rs->raid_type->parity_devs)
1024 goto too_many;
1025 break;
1026 case 10:
1027 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1028 if (copies < 2) {
1029 DMERR("Bogus raid10 data copies < 2!");
1030 return -EINVAL;
1031 }
1032
1033 if (rebuild_cnt < copies)
1034 break;
1035
1036 /*
1037 * It is possible to have a higher rebuild count for RAID10,
1038 * as long as the failed devices occur in different mirror
1039 * groups (i.e. different stripes).
1040 *
1041 * When checking "near" format, make sure no adjacent devices
1042 * have failed beyond what can be handled. In addition to the
1043 * simple case where the number of devices is a multiple of the
1044 * number of copies, we must also handle cases where the number
1045 * of devices is not a multiple of the number of copies.
1046 * E.g. dev1 dev2 dev3 dev4 dev5
1047 * A A B B C
1048 * C D D E E
1049 */
1050 if (__is_raid10_near(rs->md.new_layout)) {
1051 for (i = 0; i < rs->md.raid_disks; i++) {
1052 if (!(i % copies))
1053 rebuilds_per_group = 0;
1054 if ((!rs->dev[i].rdev.sb_page ||
1055 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1056 (++rebuilds_per_group >= copies))
1057 goto too_many;
1058 }
1059 break;
1060 }
1061
1062 /*
1063 * When checking "far" and "offset" formats, we need to ensure
1064 * that the device that holds its copy is not also dead or
1065 * being rebuilt. (Note that "far" and "offset" formats only
1066 * support two copies right now. These formats also only ever
1067 * use the 'use_far_sets' variant.)
1068 *
1069 * This check is somewhat complicated by the need to account
1070 * for arrays that are not a multiple of (far) copies. This
1071 * results in the need to treat the last (potentially larger)
1072 * set differently.
1073 */
1074 group_size = (rs->md.raid_disks / copies);
1075 last_group_start = (rs->md.raid_disks / group_size) - 1;
1076 last_group_start *= group_size;
1077 for (i = 0; i < rs->md.raid_disks; i++) {
1078 if (!(i % copies) && !(i > last_group_start))
1079 rebuilds_per_group = 0;
1080 if ((!rs->dev[i].rdev.sb_page ||
1081 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1082 (++rebuilds_per_group >= copies))
1083 goto too_many;
1084 }
1085 break;
1086 default:
1087 if (rebuild_cnt)
1088 return -EINVAL;
1089 }
1090
1091 return 0;
1092
1093too_many:
1094 return -EINVAL;
1095}
1096
1097/*
1098 * Possible arguments are...
1099 * <chunk_size> [optional_args]
1100 *
1101 * Argument definitions
1102 * <chunk_size> The number of sectors per disk that
1103 * will form the "stripe"
1104 * [[no]sync] Force or prevent recovery of the
1105 * entire array
1106 * [rebuild <idx>] Rebuild the drive indicated by the index
1107 * [daemon_sleep <ms>] Time between bitmap daemon work to
1108 * clear bits
1109 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1110 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1111 * [write_mostly <idx>] Indicate a write mostly drive via index
1112 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1113 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1114 * [region_size <sectors>] Defines granularity of bitmap
1115 * [journal_dev <dev>] raid4/5/6 journaling deviice
1116 * (i.e. write hole closing log)
1117 *
1118 * RAID10-only options:
1119 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1120 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1121 */
1122static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1123 unsigned int num_raid_params)
1124{
1125 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1126 unsigned int raid10_copies = 2;
1127 unsigned int i, write_mostly = 0;
1128 unsigned int region_size = 0;
1129 sector_t max_io_len;
1130 const char *arg, *key;
1131 struct raid_dev *rd;
1132 struct raid_type *rt = rs->raid_type;
1133
1134 arg = dm_shift_arg(as);
1135 num_raid_params--; /* Account for chunk_size argument */
1136
1137 if (kstrtoint(arg, 10, &value) < 0) {
1138 rs->ti->error = "Bad numerical argument given for chunk_size";
1139 return -EINVAL;
1140 }
1141
1142 /*
1143 * First, parse the in-order required arguments
1144 * "chunk_size" is the only argument of this type.
1145 */
1146 if (rt_is_raid1(rt)) {
1147 if (value)
1148 DMERR("Ignoring chunk size parameter for RAID 1");
1149 value = 0;
1150 } else if (!is_power_of_2(value)) {
1151 rs->ti->error = "Chunk size must be a power of 2";
1152 return -EINVAL;
1153 } else if (value < 8) {
1154 rs->ti->error = "Chunk size value is too small";
1155 return -EINVAL;
1156 }
1157
1158 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1159
1160 /*
1161 * We set each individual device as In_sync with a completed
1162 * 'recovery_offset'. If there has been a device failure or
1163 * replacement then one of the following cases applies:
1164 *
1165 * 1) User specifies 'rebuild'.
1166 * - Device is reset when param is read.
1167 * 2) A new device is supplied.
1168 * - No matching superblock found, resets device.
1169 * 3) Device failure was transient and returns on reload.
1170 * - Failure noticed, resets device for bitmap replay.
1171 * 4) Device hadn't completed recovery after previous failure.
1172 * - Superblock is read and overrides recovery_offset.
1173 *
1174 * What is found in the superblocks of the devices is always
1175 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1176 */
1177 for (i = 0; i < rs->raid_disks; i++) {
1178 set_bit(In_sync, &rs->dev[i].rdev.flags);
1179 rs->dev[i].rdev.recovery_offset = MaxSector;
1180 }
1181
1182 /*
1183 * Second, parse the unordered optional arguments
1184 */
1185 for (i = 0; i < num_raid_params; i++) {
1186 key = dm_shift_arg(as);
1187 if (!key) {
1188 rs->ti->error = "Not enough raid parameters given";
1189 return -EINVAL;
1190 }
1191
1192 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1193 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1194 rs->ti->error = "Only one 'nosync' argument allowed";
1195 return -EINVAL;
1196 }
1197 continue;
1198 }
1199 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1200 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1201 rs->ti->error = "Only one 'sync' argument allowed";
1202 return -EINVAL;
1203 }
1204 continue;
1205 }
1206 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1207 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1208 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1209 return -EINVAL;
1210 }
1211 continue;
1212 }
1213
1214 arg = dm_shift_arg(as);
1215 i++; /* Account for the argument pairs */
1216 if (!arg) {
1217 rs->ti->error = "Wrong number of raid parameters given";
1218 return -EINVAL;
1219 }
1220
1221 /*
1222 * Parameters that take a string value are checked here.
1223 */
1224 /* "raid10_format {near|offset|far} */
1225 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1226 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1227 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1228 return -EINVAL;
1229 }
1230 if (!rt_is_raid10(rt)) {
1231 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1232 return -EINVAL;
1233 }
1234 raid10_format = raid10_name_to_format(arg);
1235 if (raid10_format < 0) {
1236 rs->ti->error = "Invalid 'raid10_format' value given";
1237 return raid10_format;
1238 }
1239 continue;
1240 }
1241
1242 /* "journal_dev <dev>" */
1243 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1244 int r;
1245 struct md_rdev *jdev;
1246
1247 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1248 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1249 return -EINVAL;
1250 }
1251 if (!rt_is_raid456(rt)) {
1252 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1253 return -EINVAL;
1254 }
1255 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1256 &rs->journal_dev.dev);
1257 if (r) {
1258 rs->ti->error = "raid4/5/6 journal device lookup failure";
1259 return r;
1260 }
1261 jdev = &rs->journal_dev.rdev;
1262 md_rdev_init(jdev);
1263 jdev->mddev = &rs->md;
1264 jdev->bdev = rs->journal_dev.dev->bdev;
1265 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1266 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1267 rs->ti->error = "No space for raid4/5/6 journal";
1268 return -ENOSPC;
1269 }
1270 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1271 set_bit(Journal, &jdev->flags);
1272 continue;
1273 }
1274
1275 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1276 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1277 int r;
1278
1279 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1280 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1281 return -EINVAL;
1282 }
1283 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1284 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1285 return -EINVAL;
1286 }
1287 r = dm_raid_journal_mode_to_md(arg);
1288 if (r < 0) {
1289 rs->ti->error = "Invalid 'journal_mode' argument";
1290 return r;
1291 }
1292 rs->journal_dev.mode = r;
1293 continue;
1294 }
1295
1296 /*
1297 * Parameters with number values from here on.
1298 */
1299 if (kstrtoint(arg, 10, &value) < 0) {
1300 rs->ti->error = "Bad numerical argument given in raid params";
1301 return -EINVAL;
1302 }
1303
1304 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1305 /*
1306 * "rebuild" is being passed in by userspace to provide
1307 * indexes of replaced devices and to set up additional
1308 * devices on raid level takeover.
1309 */
1310 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1311 rs->ti->error = "Invalid rebuild index given";
1312 return -EINVAL;
1313 }
1314
1315 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1316 rs->ti->error = "rebuild for this index already given";
1317 return -EINVAL;
1318 }
1319
1320 rd = rs->dev + value;
1321 clear_bit(In_sync, &rd->rdev.flags);
1322 clear_bit(Faulty, &rd->rdev.flags);
1323 rd->rdev.recovery_offset = 0;
1324 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1325 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1326 if (!rt_is_raid1(rt)) {
1327 rs->ti->error = "write_mostly option is only valid for RAID1";
1328 return -EINVAL;
1329 }
1330
1331 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1332 rs->ti->error = "Invalid write_mostly index given";
1333 return -EINVAL;
1334 }
1335
1336 write_mostly++;
1337 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1338 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1339 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1340 if (!rt_is_raid1(rt)) {
1341 rs->ti->error = "max_write_behind option is only valid for RAID1";
1342 return -EINVAL;
1343 }
1344
1345 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1346 rs->ti->error = "Only one max_write_behind argument pair allowed";
1347 return -EINVAL;
1348 }
1349
1350 /*
1351 * In device-mapper, we specify things in sectors, but
1352 * MD records this value in kB
1353 */
1354 if (value < 0 || value / 2 > COUNTER_MAX) {
1355 rs->ti->error = "Max write-behind limit out of range";
1356 return -EINVAL;
1357 }
1358
1359 rs->md.bitmap_info.max_write_behind = value / 2;
1360 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1361 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1362 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1363 return -EINVAL;
1364 }
1365 if (value < 0) {
1366 rs->ti->error = "daemon sleep period out of range";
1367 return -EINVAL;
1368 }
1369 rs->md.bitmap_info.daemon_sleep = value;
1370 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1371 /* Userspace passes new data_offset after having extended the the data image LV */
1372 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1373 rs->ti->error = "Only one data_offset argument pair allowed";
1374 return -EINVAL;
1375 }
1376 /* Ensure sensible data offset */
1377 if (value < 0 ||
1378 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1379 rs->ti->error = "Bogus data_offset value";
1380 return -EINVAL;
1381 }
1382 rs->data_offset = value;
1383 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1384 /* Define the +/-# of disks to add to/remove from the given raid set */
1385 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1386 rs->ti->error = "Only one delta_disks argument pair allowed";
1387 return -EINVAL;
1388 }
1389 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1390 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1391 rs->ti->error = "Too many delta_disk requested";
1392 return -EINVAL;
1393 }
1394
1395 rs->delta_disks = value;
1396 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1397 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1398 rs->ti->error = "Only one stripe_cache argument pair allowed";
1399 return -EINVAL;
1400 }
1401
1402 if (!rt_is_raid456(rt)) {
1403 rs->ti->error = "Inappropriate argument: stripe_cache";
1404 return -EINVAL;
1405 }
1406
1407 if (value < 0) {
1408 rs->ti->error = "Bogus stripe cache entries value";
1409 return -EINVAL;
1410 }
1411 rs->stripe_cache_entries = value;
1412 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1413 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1414 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1415 return -EINVAL;
1416 }
1417
1418 if (value < 0) {
1419 rs->ti->error = "min_recovery_rate out of range";
1420 return -EINVAL;
1421 }
1422 rs->md.sync_speed_min = value;
1423 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1424 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1425 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1426 return -EINVAL;
1427 }
1428
1429 if (value < 0) {
1430 rs->ti->error = "max_recovery_rate out of range";
1431 return -EINVAL;
1432 }
1433 rs->md.sync_speed_max = value;
1434 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1435 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1436 rs->ti->error = "Only one region_size argument pair allowed";
1437 return -EINVAL;
1438 }
1439
1440 region_size = value;
1441 rs->requested_bitmap_chunk_sectors = value;
1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1443 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1444 rs->ti->error = "Only one raid10_copies argument pair allowed";
1445 return -EINVAL;
1446 }
1447
1448 if (!__within_range(value, 2, rs->md.raid_disks)) {
1449 rs->ti->error = "Bad value for 'raid10_copies'";
1450 return -EINVAL;
1451 }
1452
1453 raid10_copies = value;
1454 } else {
1455 DMERR("Unable to parse RAID parameter: %s", key);
1456 rs->ti->error = "Unable to parse RAID parameter";
1457 return -EINVAL;
1458 }
1459 }
1460
1461 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1462 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1463 rs->ti->error = "sync and nosync are mutually exclusive";
1464 return -EINVAL;
1465 }
1466
1467 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1468 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1469 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1470 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1471 return -EINVAL;
1472 }
1473
1474 if (write_mostly >= rs->md.raid_disks) {
1475 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1476 return -EINVAL;
1477 }
1478
1479 if (rs->md.sync_speed_max &&
1480 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1481 rs->ti->error = "Bogus recovery rates";
1482 return -EINVAL;
1483 }
1484
1485 if (validate_region_size(rs, region_size))
1486 return -EINVAL;
1487
1488 if (rs->md.chunk_sectors)
1489 max_io_len = rs->md.chunk_sectors;
1490 else
1491 max_io_len = region_size;
1492
1493 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1494 return -EINVAL;
1495
1496 if (rt_is_raid10(rt)) {
1497 if (raid10_copies > rs->md.raid_disks) {
1498 rs->ti->error = "Not enough devices to satisfy specification";
1499 return -EINVAL;
1500 }
1501
1502 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1503 if (rs->md.new_layout < 0) {
1504 rs->ti->error = "Error getting raid10 format";
1505 return rs->md.new_layout;
1506 }
1507
1508 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1509 if (!rt) {
1510 rs->ti->error = "Failed to recognize new raid10 layout";
1511 return -EINVAL;
1512 }
1513
1514 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1515 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1516 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1517 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1518 return -EINVAL;
1519 }
1520 }
1521
1522 rs->raid10_copies = raid10_copies;
1523
1524 /* Assume there are no metadata devices until the drives are parsed */
1525 rs->md.persistent = 0;
1526 rs->md.external = 1;
1527
1528 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1529 return rs_check_for_valid_flags(rs);
1530}
1531
1532/* Set raid4/5/6 cache size */
1533static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1534{
1535 int r;
1536 struct r5conf *conf;
1537 struct mddev *mddev = &rs->md;
1538 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1539 uint32_t nr_stripes = rs->stripe_cache_entries;
1540
1541 if (!rt_is_raid456(rs->raid_type)) {
1542 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1543 return -EINVAL;
1544 }
1545
1546 if (nr_stripes < min_stripes) {
1547 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1548 nr_stripes, min_stripes);
1549 nr_stripes = min_stripes;
1550 }
1551
1552 conf = mddev->private;
1553 if (!conf) {
1554 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1555 return -EINVAL;
1556 }
1557
1558 /* Try setting number of stripes in raid456 stripe cache */
1559 if (conf->min_nr_stripes != nr_stripes) {
1560 r = raid5_set_cache_size(mddev, nr_stripes);
1561 if (r) {
1562 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1563 return r;
1564 }
1565
1566 DMINFO("%u stripe cache entries", nr_stripes);
1567 }
1568
1569 return 0;
1570}
1571
1572/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1573static unsigned int mddev_data_stripes(struct raid_set *rs)
1574{
1575 return rs->md.raid_disks - rs->raid_type->parity_devs;
1576}
1577
1578/* Return # of data stripes of @rs (i.e. as of ctr) */
1579static unsigned int rs_data_stripes(struct raid_set *rs)
1580{
1581 return rs->raid_disks - rs->raid_type->parity_devs;
1582}
1583
1584/*
1585 * Retrieve rdev->sectors from any valid raid device of @rs
1586 * to allow userpace to pass in arbitray "- -" device tupples.
1587 */
1588static sector_t __rdev_sectors(struct raid_set *rs)
1589{
1590 int i;
1591
1592 for (i = 0; i < rs->md.raid_disks; i++) {
1593 struct md_rdev *rdev = &rs->dev[i].rdev;
1594
1595 if (!test_bit(Journal, &rdev->flags) &&
1596 rdev->bdev && rdev->sectors)
1597 return rdev->sectors;
1598 }
1599
1600 return 0;
1601}
1602
1603/* Check that calculated dev_sectors fits all component devices. */
1604static int _check_data_dev_sectors(struct raid_set *rs)
1605{
1606 sector_t ds = ~0;
1607 struct md_rdev *rdev;
1608
1609 rdev_for_each(rdev, &rs->md)
1610 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1611 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1612 if (ds < rs->md.dev_sectors) {
1613 rs->ti->error = "Component device(s) too small";
1614 return -EINVAL;
1615 }
1616 }
1617
1618 return 0;
1619}
1620
1621/* Calculate the sectors per device and per array used for @rs */
1622static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1623{
1624 int delta_disks;
1625 unsigned int data_stripes;
1626 sector_t array_sectors = sectors, dev_sectors = sectors;
1627 struct mddev *mddev = &rs->md;
1628
1629 if (use_mddev) {
1630 delta_disks = mddev->delta_disks;
1631 data_stripes = mddev_data_stripes(rs);
1632 } else {
1633 delta_disks = rs->delta_disks;
1634 data_stripes = rs_data_stripes(rs);
1635 }
1636
1637 /* Special raid1 case w/o delta_disks support (yet) */
1638 if (rt_is_raid1(rs->raid_type))
1639 ;
1640 else if (rt_is_raid10(rs->raid_type)) {
1641 if (rs->raid10_copies < 2 ||
1642 delta_disks < 0) {
1643 rs->ti->error = "Bogus raid10 data copies or delta disks";
1644 return -EINVAL;
1645 }
1646
1647 dev_sectors *= rs->raid10_copies;
1648 if (sector_div(dev_sectors, data_stripes))
1649 goto bad;
1650
1651 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1652 if (sector_div(array_sectors, rs->raid10_copies))
1653 goto bad;
1654
1655 } else if (sector_div(dev_sectors, data_stripes))
1656 goto bad;
1657
1658 else
1659 /* Striped layouts */
1660 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1661
1662 mddev->array_sectors = array_sectors;
1663 mddev->dev_sectors = dev_sectors;
1664 rs_set_rdev_sectors(rs);
1665
1666 return _check_data_dev_sectors(rs);
1667bad:
1668 rs->ti->error = "Target length not divisible by number of data devices";
1669 return -EINVAL;
1670}
1671
1672/* Setup recovery on @rs */
1673static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1674{
1675 /* raid0 does not recover */
1676 if (rs_is_raid0(rs))
1677 rs->md.recovery_cp = MaxSector;
1678 /*
1679 * A raid6 set has to be recovered either
1680 * completely or for the grown part to
1681 * ensure proper parity and Q-Syndrome
1682 */
1683 else if (rs_is_raid6(rs))
1684 rs->md.recovery_cp = dev_sectors;
1685 /*
1686 * Other raid set types may skip recovery
1687 * depending on the 'nosync' flag.
1688 */
1689 else
1690 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1691 ? MaxSector : dev_sectors;
1692}
1693
1694static void do_table_event(struct work_struct *ws)
1695{
1696 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1697
1698 smp_rmb(); /* Make sure we access most actual mddev properties */
1699 if (!rs_is_reshaping(rs)) {
1700 if (rs_is_raid10(rs))
1701 rs_set_rdev_sectors(rs);
1702 rs_set_capacity(rs);
1703 }
1704 dm_table_event(rs->ti->table);
1705}
1706
1707/*
1708 * Make sure a valid takover (level switch) is being requested on @rs
1709 *
1710 * Conversions of raid sets from one MD personality to another
1711 * have to conform to restrictions which are enforced here.
1712 */
1713static int rs_check_takeover(struct raid_set *rs)
1714{
1715 struct mddev *mddev = &rs->md;
1716 unsigned int near_copies;
1717
1718 if (rs->md.degraded) {
1719 rs->ti->error = "Can't takeover degraded raid set";
1720 return -EPERM;
1721 }
1722
1723 if (rs_is_reshaping(rs)) {
1724 rs->ti->error = "Can't takeover reshaping raid set";
1725 return -EPERM;
1726 }
1727
1728 switch (mddev->level) {
1729 case 0:
1730 /* raid0 -> raid1/5 with one disk */
1731 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1732 mddev->raid_disks == 1)
1733 return 0;
1734
1735 /* raid0 -> raid10 */
1736 if (mddev->new_level == 10 &&
1737 !(rs->raid_disks % mddev->raid_disks))
1738 return 0;
1739
1740 /* raid0 with multiple disks -> raid4/5/6 */
1741 if (__within_range(mddev->new_level, 4, 6) &&
1742 mddev->new_layout == ALGORITHM_PARITY_N &&
1743 mddev->raid_disks > 1)
1744 return 0;
1745
1746 break;
1747
1748 case 10:
1749 /* Can't takeover raid10_offset! */
1750 if (__is_raid10_offset(mddev->layout))
1751 break;
1752
1753 near_copies = __raid10_near_copies(mddev->layout);
1754
1755 /* raid10* -> raid0 */
1756 if (mddev->new_level == 0) {
1757 /* Can takeover raid10_near with raid disks divisable by data copies! */
1758 if (near_copies > 1 &&
1759 !(mddev->raid_disks % near_copies)) {
1760 mddev->raid_disks /= near_copies;
1761 mddev->delta_disks = mddev->raid_disks;
1762 return 0;
1763 }
1764
1765 /* Can takeover raid10_far */
1766 if (near_copies == 1 &&
1767 __raid10_far_copies(mddev->layout) > 1)
1768 return 0;
1769
1770 break;
1771 }
1772
1773 /* raid10_{near,far} -> raid1 */
1774 if (mddev->new_level == 1 &&
1775 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1776 return 0;
1777
1778 /* raid10_{near,far} with 2 disks -> raid4/5 */
1779 if (__within_range(mddev->new_level, 4, 5) &&
1780 mddev->raid_disks == 2)
1781 return 0;
1782 break;
1783
1784 case 1:
1785 /* raid1 with 2 disks -> raid4/5 */
1786 if (__within_range(mddev->new_level, 4, 5) &&
1787 mddev->raid_disks == 2) {
1788 mddev->degraded = 1;
1789 return 0;
1790 }
1791
1792 /* raid1 -> raid0 */
1793 if (mddev->new_level == 0 &&
1794 mddev->raid_disks == 1)
1795 return 0;
1796
1797 /* raid1 -> raid10 */
1798 if (mddev->new_level == 10)
1799 return 0;
1800 break;
1801
1802 case 4:
1803 /* raid4 -> raid0 */
1804 if (mddev->new_level == 0)
1805 return 0;
1806
1807 /* raid4 -> raid1/5 with 2 disks */
1808 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1809 mddev->raid_disks == 2)
1810 return 0;
1811
1812 /* raid4 -> raid5/6 with parity N */
1813 if (__within_range(mddev->new_level, 5, 6) &&
1814 mddev->layout == ALGORITHM_PARITY_N)
1815 return 0;
1816 break;
1817
1818 case 5:
1819 /* raid5 with parity N -> raid0 */
1820 if (mddev->new_level == 0 &&
1821 mddev->layout == ALGORITHM_PARITY_N)
1822 return 0;
1823
1824 /* raid5 with parity N -> raid4 */
1825 if (mddev->new_level == 4 &&
1826 mddev->layout == ALGORITHM_PARITY_N)
1827 return 0;
1828
1829 /* raid5 with 2 disks -> raid1/4/10 */
1830 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1831 mddev->raid_disks == 2)
1832 return 0;
1833
1834 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1835 if (mddev->new_level == 6 &&
1836 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1837 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1838 return 0;
1839 break;
1840
1841 case 6:
1842 /* raid6 with parity N -> raid0 */
1843 if (mddev->new_level == 0 &&
1844 mddev->layout == ALGORITHM_PARITY_N)
1845 return 0;
1846
1847 /* raid6 with parity N -> raid4 */
1848 if (mddev->new_level == 4 &&
1849 mddev->layout == ALGORITHM_PARITY_N)
1850 return 0;
1851
1852 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1853 if (mddev->new_level == 5 &&
1854 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1855 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1856 return 0;
1857
1858 default:
1859 break;
1860 }
1861
1862 rs->ti->error = "takeover not possible";
1863 return -EINVAL;
1864}
1865
1866/* True if @rs requested to be taken over */
1867static bool rs_takeover_requested(struct raid_set *rs)
1868{
1869 return rs->md.new_level != rs->md.level;
1870}
1871
1872/* True if @rs is requested to reshape by ctr */
1873static bool rs_reshape_requested(struct raid_set *rs)
1874{
1875 bool change;
1876 struct mddev *mddev = &rs->md;
1877
1878 if (rs_takeover_requested(rs))
1879 return false;
1880
1881 if (rs_is_raid0(rs))
1882 return false;
1883
1884 change = mddev->new_layout != mddev->layout ||
1885 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1886 rs->delta_disks;
1887
1888 /* Historical case to support raid1 reshape without delta disks */
1889 if (rs_is_raid1(rs)) {
1890 if (rs->delta_disks)
1891 return !!rs->delta_disks;
1892
1893 return !change &&
1894 mddev->raid_disks != rs->raid_disks;
1895 }
1896
1897 if (rs_is_raid10(rs))
1898 return change &&
1899 !__is_raid10_far(mddev->new_layout) &&
1900 rs->delta_disks >= 0;
1901
1902 return change;
1903}
1904
1905/* Features */
1906#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1907
1908/* State flags for sb->flags */
1909#define SB_FLAG_RESHAPE_ACTIVE 0x1
1910#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1911
1912/*
1913 * This structure is never routinely used by userspace, unlike md superblocks.
1914 * Devices with this superblock should only ever be accessed via device-mapper.
1915 */
1916#define DM_RAID_MAGIC 0x64526D44
1917struct dm_raid_superblock {
1918 __le32 magic; /* "DmRd" */
1919 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1920
1921 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1922 __le32 array_position; /* The position of this drive in the raid set */
1923
1924 __le64 events; /* Incremented by md when superblock updated */
1925 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1926 /* indicate failures (see extension below) */
1927
1928 /*
1929 * This offset tracks the progress of the repair or replacement of
1930 * an individual drive.
1931 */
1932 __le64 disk_recovery_offset;
1933
1934 /*
1935 * This offset tracks the progress of the initial raid set
1936 * synchronisation/parity calculation.
1937 */
1938 __le64 array_resync_offset;
1939
1940 /*
1941 * raid characteristics
1942 */
1943 __le32 level;
1944 __le32 layout;
1945 __le32 stripe_sectors;
1946
1947 /********************************************************************
1948 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1949 *
1950 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1951 */
1952
1953 __le32 flags; /* Flags defining array states for reshaping */
1954
1955 /*
1956 * This offset tracks the progress of a raid
1957 * set reshape in order to be able to restart it
1958 */
1959 __le64 reshape_position;
1960
1961 /*
1962 * These define the properties of the array in case of an interrupted reshape
1963 */
1964 __le32 new_level;
1965 __le32 new_layout;
1966 __le32 new_stripe_sectors;
1967 __le32 delta_disks;
1968
1969 __le64 array_sectors; /* Array size in sectors */
1970
1971 /*
1972 * Sector offsets to data on devices (reshaping).
1973 * Needed to support out of place reshaping, thus
1974 * not writing over any stripes whilst converting
1975 * them from old to new layout
1976 */
1977 __le64 data_offset;
1978 __le64 new_data_offset;
1979
1980 __le64 sectors; /* Used device size in sectors */
1981
1982 /*
1983 * Additonal Bit field of devices indicating failures to support
1984 * up to 256 devices with the 1.9.0 on-disk metadata format
1985 */
1986 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1987
1988 __le32 incompat_features; /* Used to indicate any incompatible features */
1989
1990 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1991} __packed;
1992
1993/*
1994 * Check for reshape constraints on raid set @rs:
1995 *
1996 * - reshape function non-existent
1997 * - degraded set
1998 * - ongoing recovery
1999 * - ongoing reshape
2000 *
2001 * Returns 0 if none or -EPERM if given constraint
2002 * and error message reference in @errmsg
2003 */
2004static int rs_check_reshape(struct raid_set *rs)
2005{
2006 struct mddev *mddev = &rs->md;
2007
2008 if (!mddev->pers || !mddev->pers->check_reshape)
2009 rs->ti->error = "Reshape not supported";
2010 else if (mddev->degraded)
2011 rs->ti->error = "Can't reshape degraded raid set";
2012 else if (rs_is_recovering(rs))
2013 rs->ti->error = "Convert request on recovering raid set prohibited";
2014 else if (rs_is_reshaping(rs))
2015 rs->ti->error = "raid set already reshaping!";
2016 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2017 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2018 else
2019 return 0;
2020
2021 return -EPERM;
2022}
2023
2024static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2025{
2026 BUG_ON(!rdev->sb_page);
2027
2028 if (rdev->sb_loaded && !force_reload)
2029 return 0;
2030
2031 rdev->sb_loaded = 0;
2032
2033 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2034 DMERR("Failed to read superblock of device at position %d",
2035 rdev->raid_disk);
2036 md_error(rdev->mddev, rdev);
2037 set_bit(Faulty, &rdev->flags);
2038 return -EIO;
2039 }
2040
2041 rdev->sb_loaded = 1;
2042
2043 return 0;
2044}
2045
2046static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2047{
2048 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2049 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2050
2051 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2052 int i = ARRAY_SIZE(sb->extended_failed_devices);
2053
2054 while (i--)
2055 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2056 }
2057}
2058
2059static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2060{
2061 int i = ARRAY_SIZE(sb->extended_failed_devices);
2062
2063 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2064 while (i--)
2065 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2066}
2067
2068/*
2069 * Synchronize the superblock members with the raid set properties
2070 *
2071 * All superblock data is little endian.
2072 */
2073static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2074{
2075 bool update_failed_devices = false;
2076 unsigned int i;
2077 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2078 struct dm_raid_superblock *sb;
2079 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2080
2081 /* No metadata device, no superblock */
2082 if (!rdev->meta_bdev)
2083 return;
2084
2085 BUG_ON(!rdev->sb_page);
2086
2087 sb = page_address(rdev->sb_page);
2088
2089 sb_retrieve_failed_devices(sb, failed_devices);
2090
2091 for (i = 0; i < rs->raid_disks; i++)
2092 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2093 update_failed_devices = true;
2094 set_bit(i, (void *) failed_devices);
2095 }
2096
2097 if (update_failed_devices)
2098 sb_update_failed_devices(sb, failed_devices);
2099
2100 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2101 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2102
2103 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2104 sb->array_position = cpu_to_le32(rdev->raid_disk);
2105
2106 sb->events = cpu_to_le64(mddev->events);
2107
2108 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2109 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2110
2111 sb->level = cpu_to_le32(mddev->level);
2112 sb->layout = cpu_to_le32(mddev->layout);
2113 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2114
2115 /********************************************************************
2116 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2117 *
2118 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2119 */
2120 sb->new_level = cpu_to_le32(mddev->new_level);
2121 sb->new_layout = cpu_to_le32(mddev->new_layout);
2122 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2123
2124 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2125
2126 smp_rmb(); /* Make sure we access most recent reshape position */
2127 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2128 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2129 /* Flag ongoing reshape */
2130 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2131
2132 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2133 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2134 } else {
2135 /* Clear reshape flags */
2136 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2137 }
2138
2139 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2140 sb->data_offset = cpu_to_le64(rdev->data_offset);
2141 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2142 sb->sectors = cpu_to_le64(rdev->sectors);
2143 sb->incompat_features = cpu_to_le32(0);
2144
2145 /* Zero out the rest of the payload after the size of the superblock */
2146 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2147}
2148
2149/*
2150 * super_load
2151 *
2152 * This function creates a superblock if one is not found on the device
2153 * and will decide which superblock to use if there's a choice.
2154 *
2155 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2156 */
2157static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2158{
2159 int r;
2160 struct dm_raid_superblock *sb;
2161 struct dm_raid_superblock *refsb;
2162 uint64_t events_sb, events_refsb;
2163
2164 r = read_disk_sb(rdev, rdev->sb_size, false);
2165 if (r)
2166 return r;
2167
2168 sb = page_address(rdev->sb_page);
2169
2170 /*
2171 * Two cases that we want to write new superblocks and rebuild:
2172 * 1) New device (no matching magic number)
2173 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2174 */
2175 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2176 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2177 super_sync(rdev->mddev, rdev);
2178
2179 set_bit(FirstUse, &rdev->flags);
2180 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2181
2182 /* Force writing of superblocks to disk */
2183 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2184
2185 /* Any superblock is better than none, choose that if given */
2186 return refdev ? 0 : 1;
2187 }
2188
2189 if (!refdev)
2190 return 1;
2191
2192 events_sb = le64_to_cpu(sb->events);
2193
2194 refsb = page_address(refdev->sb_page);
2195 events_refsb = le64_to_cpu(refsb->events);
2196
2197 return (events_sb > events_refsb) ? 1 : 0;
2198}
2199
2200static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2201{
2202 int role;
2203 unsigned int d;
2204 struct mddev *mddev = &rs->md;
2205 uint64_t events_sb;
2206 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2207 struct dm_raid_superblock *sb;
2208 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2209 struct md_rdev *r;
2210 struct dm_raid_superblock *sb2;
2211
2212 sb = page_address(rdev->sb_page);
2213 events_sb = le64_to_cpu(sb->events);
2214
2215 /*
2216 * Initialise to 1 if this is a new superblock.
2217 */
2218 mddev->events = events_sb ? : 1;
2219
2220 mddev->reshape_position = MaxSector;
2221
2222 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2223 mddev->level = le32_to_cpu(sb->level);
2224 mddev->layout = le32_to_cpu(sb->layout);
2225 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2226
2227 /*
2228 * Reshaping is supported, e.g. reshape_position is valid
2229 * in superblock and superblock content is authoritative.
2230 */
2231 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2232 /* Superblock is authoritative wrt given raid set layout! */
2233 mddev->new_level = le32_to_cpu(sb->new_level);
2234 mddev->new_layout = le32_to_cpu(sb->new_layout);
2235 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2236 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2237 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2238
2239 /* raid was reshaping and got interrupted */
2240 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2241 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2242 DMERR("Reshape requested but raid set is still reshaping");
2243 return -EINVAL;
2244 }
2245
2246 if (mddev->delta_disks < 0 ||
2247 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2248 mddev->reshape_backwards = 1;
2249 else
2250 mddev->reshape_backwards = 0;
2251
2252 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2253 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2254 }
2255
2256 } else {
2257 /*
2258 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2259 */
2260 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2261 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2262
2263 if (rs_takeover_requested(rs)) {
2264 if (rt_cur && rt_new)
2265 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2266 rt_cur->name, rt_new->name);
2267 else
2268 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2269 return -EINVAL;
2270 } else if (rs_reshape_requested(rs)) {
2271 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2272 if (mddev->layout != mddev->new_layout) {
2273 if (rt_cur && rt_new)
2274 DMERR(" current layout %s vs new layout %s",
2275 rt_cur->name, rt_new->name);
2276 else
2277 DMERR(" current layout 0x%X vs new layout 0x%X",
2278 le32_to_cpu(sb->layout), mddev->new_layout);
2279 }
2280 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2281 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2282 mddev->chunk_sectors, mddev->new_chunk_sectors);
2283 if (rs->delta_disks)
2284 DMERR(" current %u disks vs new %u disks",
2285 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2286 if (rs_is_raid10(rs)) {
2287 DMERR(" Old layout: %s w/ %u copies",
2288 raid10_md_layout_to_format(mddev->layout),
2289 raid10_md_layout_to_copies(mddev->layout));
2290 DMERR(" New layout: %s w/ %u copies",
2291 raid10_md_layout_to_format(mddev->new_layout),
2292 raid10_md_layout_to_copies(mddev->new_layout));
2293 }
2294 return -EINVAL;
2295 }
2296
2297 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2298 }
2299
2300 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2301 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2302
2303 /*
2304 * During load, we set FirstUse if a new superblock was written.
2305 * There are two reasons we might not have a superblock:
2306 * 1) The raid set is brand new - in which case, all of the
2307 * devices must have their In_sync bit set. Also,
2308 * recovery_cp must be 0, unless forced.
2309 * 2) This is a new device being added to an old raid set
2310 * and the new device needs to be rebuilt - in which
2311 * case the In_sync bit will /not/ be set and
2312 * recovery_cp must be MaxSector.
2313 * 3) This is/are a new device(s) being added to an old
2314 * raid set during takeover to a higher raid level
2315 * to provide capacity for redundancy or during reshape
2316 * to add capacity to grow the raid set.
2317 */
2318 d = 0;
2319 rdev_for_each(r, mddev) {
2320 if (test_bit(Journal, &rdev->flags))
2321 continue;
2322
2323 if (test_bit(FirstUse, &r->flags))
2324 new_devs++;
2325
2326 if (!test_bit(In_sync, &r->flags)) {
2327 DMINFO("Device %d specified for rebuild; clearing superblock",
2328 r->raid_disk);
2329 rebuilds++;
2330
2331 if (test_bit(FirstUse, &r->flags))
2332 rebuild_and_new++;
2333 }
2334
2335 d++;
2336 }
2337
2338 if (new_devs == rs->raid_disks || !rebuilds) {
2339 /* Replace a broken device */
2340 if (new_devs == rs->raid_disks) {
2341 DMINFO("Superblocks created for new raid set");
2342 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2343 } else if (new_devs != rebuilds &&
2344 new_devs != rs->delta_disks) {
2345 DMERR("New device injected into existing raid set without "
2346 "'delta_disks' or 'rebuild' parameter specified");
2347 return -EINVAL;
2348 }
2349 } else if (new_devs && new_devs != rebuilds) {
2350 DMERR("%u 'rebuild' devices cannot be injected into"
2351 " a raid set with %u other first-time devices",
2352 rebuilds, new_devs);
2353 return -EINVAL;
2354 } else if (rebuilds) {
2355 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2356 DMERR("new device%s provided without 'rebuild'",
2357 new_devs > 1 ? "s" : "");
2358 return -EINVAL;
2359 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2360 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2361 (unsigned long long) mddev->recovery_cp);
2362 return -EINVAL;
2363 } else if (rs_is_reshaping(rs)) {
2364 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2365 (unsigned long long) mddev->reshape_position);
2366 return -EINVAL;
2367 }
2368 }
2369
2370 /*
2371 * Now we set the Faulty bit for those devices that are
2372 * recorded in the superblock as failed.
2373 */
2374 sb_retrieve_failed_devices(sb, failed_devices);
2375 rdev_for_each(r, mddev) {
2376 if (test_bit(Journal, &rdev->flags) ||
2377 !r->sb_page)
2378 continue;
2379 sb2 = page_address(r->sb_page);
2380 sb2->failed_devices = 0;
2381 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2382
2383 /*
2384 * Check for any device re-ordering.
2385 */
2386 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2387 role = le32_to_cpu(sb2->array_position);
2388 if (role < 0)
2389 continue;
2390
2391 if (role != r->raid_disk) {
2392 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2393 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2394 rs->raid_disks % rs->raid10_copies) {
2395 rs->ti->error =
2396 "Cannot change raid10 near set to odd # of devices!";
2397 return -EINVAL;
2398 }
2399
2400 sb2->array_position = cpu_to_le32(r->raid_disk);
2401
2402 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2403 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2404 !rt_is_raid1(rs->raid_type)) {
2405 rs->ti->error = "Cannot change device positions in raid set";
2406 return -EINVAL;
2407 }
2408
2409 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2410 }
2411
2412 /*
2413 * Partial recovery is performed on
2414 * returning failed devices.
2415 */
2416 if (test_bit(role, (void *) failed_devices))
2417 set_bit(Faulty, &r->flags);
2418 }
2419 }
2420
2421 return 0;
2422}
2423
2424static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2425{
2426 struct mddev *mddev = &rs->md;
2427 struct dm_raid_superblock *sb;
2428
2429 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2430 return 0;
2431
2432 sb = page_address(rdev->sb_page);
2433
2434 /*
2435 * If mddev->events is not set, we know we have not yet initialized
2436 * the array.
2437 */
2438 if (!mddev->events && super_init_validation(rs, rdev))
2439 return -EINVAL;
2440
2441 if (le32_to_cpu(sb->compat_features) &&
2442 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2443 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2444 return -EINVAL;
2445 }
2446
2447 if (sb->incompat_features) {
2448 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2449 return -EINVAL;
2450 }
2451
2452 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2453 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2454 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2455
2456 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2457 /*
2458 * Retrieve rdev size stored in superblock to be prepared for shrink.
2459 * Check extended superblock members are present otherwise the size
2460 * will not be set!
2461 */
2462 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2463 rdev->sectors = le64_to_cpu(sb->sectors);
2464
2465 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2466 if (rdev->recovery_offset == MaxSector)
2467 set_bit(In_sync, &rdev->flags);
2468 /*
2469 * If no reshape in progress -> we're recovering single
2470 * disk(s) and have to set the device(s) to out-of-sync
2471 */
2472 else if (!rs_is_reshaping(rs))
2473 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2474 }
2475
2476 /*
2477 * If a device comes back, set it as not In_sync and no longer faulty.
2478 */
2479 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2480 rdev->recovery_offset = 0;
2481 clear_bit(In_sync, &rdev->flags);
2482 rdev->saved_raid_disk = rdev->raid_disk;
2483 }
2484
2485 /* Reshape support -> restore repective data offsets */
2486 rdev->data_offset = le64_to_cpu(sb->data_offset);
2487 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2488
2489 return 0;
2490}
2491
2492/*
2493 * Analyse superblocks and select the freshest.
2494 */
2495static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2496{
2497 int r;
2498 struct md_rdev *rdev, *freshest;
2499 struct mddev *mddev = &rs->md;
2500
2501 freshest = NULL;
2502 rdev_for_each(rdev, mddev) {
2503 if (test_bit(Journal, &rdev->flags))
2504 continue;
2505
2506 if (!rdev->meta_bdev)
2507 continue;
2508
2509 /* Set superblock offset/size for metadata device. */
2510 rdev->sb_start = 0;
2511 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2512 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2513 DMERR("superblock size of a logical block is no longer valid");
2514 return -EINVAL;
2515 }
2516
2517 /*
2518 * Skipping super_load due to CTR_FLAG_SYNC will cause
2519 * the array to undergo initialization again as
2520 * though it were new. This is the intended effect
2521 * of the "sync" directive.
2522 *
2523 * With reshaping capability added, we must ensure that
2524 * that the "sync" directive is disallowed during the reshape.
2525 */
2526 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2527 continue;
2528
2529 r = super_load(rdev, freshest);
2530
2531 switch (r) {
2532 case 1:
2533 freshest = rdev;
2534 break;
2535 case 0:
2536 break;
2537 default:
2538 /* This is a failure to read the superblock from the metadata device. */
2539 /*
2540 * We have to keep any raid0 data/metadata device pairs or
2541 * the MD raid0 personality will fail to start the array.
2542 */
2543 if (rs_is_raid0(rs))
2544 continue;
2545
2546 /*
2547 * We keep the dm_devs to be able to emit the device tuple
2548 * properly on the table line in raid_status() (rather than
2549 * mistakenly acting as if '- -' got passed into the constructor).
2550 *
2551 * The rdev has to stay on the same_set list to allow for
2552 * the attempt to restore faulty devices on second resume.
2553 */
2554 rdev->raid_disk = rdev->saved_raid_disk = -1;
2555 break;
2556 }
2557 }
2558
2559 if (!freshest)
2560 return 0;
2561
2562 /*
2563 * Validation of the freshest device provides the source of
2564 * validation for the remaining devices.
2565 */
2566 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2567 if (super_validate(rs, freshest))
2568 return -EINVAL;
2569
2570 if (validate_raid_redundancy(rs)) {
2571 rs->ti->error = "Insufficient redundancy to activate array";
2572 return -EINVAL;
2573 }
2574
2575 rdev_for_each(rdev, mddev)
2576 if (!test_bit(Journal, &rdev->flags) &&
2577 rdev != freshest &&
2578 super_validate(rs, rdev))
2579 return -EINVAL;
2580 return 0;
2581}
2582
2583/*
2584 * Adjust data_offset and new_data_offset on all disk members of @rs
2585 * for out of place reshaping if requested by contructor
2586 *
2587 * We need free space at the beginning of each raid disk for forward
2588 * and at the end for backward reshapes which userspace has to provide
2589 * via remapping/reordering of space.
2590 */
2591static int rs_adjust_data_offsets(struct raid_set *rs)
2592{
2593 sector_t data_offset = 0, new_data_offset = 0;
2594 struct md_rdev *rdev;
2595
2596 /* Constructor did not request data offset change */
2597 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2598 if (!rs_is_reshapable(rs))
2599 goto out;
2600
2601 return 0;
2602 }
2603
2604 /* HM FIXME: get In_Sync raid_dev? */
2605 rdev = &rs->dev[0].rdev;
2606
2607 if (rs->delta_disks < 0) {
2608 /*
2609 * Removing disks (reshaping backwards):
2610 *
2611 * - before reshape: data is at offset 0 and free space
2612 * is at end of each component LV
2613 *
2614 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2615 */
2616 data_offset = 0;
2617 new_data_offset = rs->data_offset;
2618
2619 } else if (rs->delta_disks > 0) {
2620 /*
2621 * Adding disks (reshaping forwards):
2622 *
2623 * - before reshape: data is at offset rs->data_offset != 0 and
2624 * free space is at begin of each component LV
2625 *
2626 * - after reshape: data is at offset 0 on each component LV
2627 */
2628 data_offset = rs->data_offset;
2629 new_data_offset = 0;
2630
2631 } else {
2632 /*
2633 * User space passes in 0 for data offset after having removed reshape space
2634 *
2635 * - or - (data offset != 0)
2636 *
2637 * Changing RAID layout or chunk size -> toggle offsets
2638 *
2639 * - before reshape: data is at offset rs->data_offset 0 and
2640 * free space is at end of each component LV
2641 * -or-
2642 * data is at offset rs->data_offset != 0 and
2643 * free space is at begin of each component LV
2644 *
2645 * - after reshape: data is at offset 0 if it was at offset != 0
2646 * or at offset != 0 if it was at offset 0
2647 * on each component LV
2648 *
2649 */
2650 data_offset = rs->data_offset ? rdev->data_offset : 0;
2651 new_data_offset = data_offset ? 0 : rs->data_offset;
2652 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2653 }
2654
2655 /*
2656 * Make sure we got a minimum amount of free sectors per device
2657 */
2658 if (rs->data_offset &&
2659 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2660 rs->ti->error = data_offset ? "No space for forward reshape" :
2661 "No space for backward reshape";
2662 return -ENOSPC;
2663 }
2664out:
2665 /*
2666 * Raise recovery_cp in case data_offset != 0 to
2667 * avoid false recovery positives in the constructor.
2668 */
2669 if (rs->md.recovery_cp < rs->md.dev_sectors)
2670 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2671
2672 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2673 rdev_for_each(rdev, &rs->md) {
2674 if (!test_bit(Journal, &rdev->flags)) {
2675 rdev->data_offset = data_offset;
2676 rdev->new_data_offset = new_data_offset;
2677 }
2678 }
2679
2680 return 0;
2681}
2682
2683/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2684static void __reorder_raid_disk_indexes(struct raid_set *rs)
2685{
2686 int i = 0;
2687 struct md_rdev *rdev;
2688
2689 rdev_for_each(rdev, &rs->md) {
2690 if (!test_bit(Journal, &rdev->flags)) {
2691 rdev->raid_disk = i++;
2692 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2693 }
2694 }
2695}
2696
2697/*
2698 * Setup @rs for takeover by a different raid level
2699 */
2700static int rs_setup_takeover(struct raid_set *rs)
2701{
2702 struct mddev *mddev = &rs->md;
2703 struct md_rdev *rdev;
2704 unsigned int d = mddev->raid_disks = rs->raid_disks;
2705 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2706
2707 if (rt_is_raid10(rs->raid_type)) {
2708 if (rs_is_raid0(rs)) {
2709 /* Userpace reordered disks -> adjust raid_disk indexes */
2710 __reorder_raid_disk_indexes(rs);
2711
2712 /* raid0 -> raid10_far layout */
2713 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2714 rs->raid10_copies);
2715 } else if (rs_is_raid1(rs))
2716 /* raid1 -> raid10_near layout */
2717 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2718 rs->raid_disks);
2719 else
2720 return -EINVAL;
2721
2722 }
2723
2724 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2725 mddev->recovery_cp = MaxSector;
2726
2727 while (d--) {
2728 rdev = &rs->dev[d].rdev;
2729
2730 if (test_bit(d, (void *) rs->rebuild_disks)) {
2731 clear_bit(In_sync, &rdev->flags);
2732 clear_bit(Faulty, &rdev->flags);
2733 mddev->recovery_cp = rdev->recovery_offset = 0;
2734 /* Bitmap has to be created when we do an "up" takeover */
2735 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2736 }
2737
2738 rdev->new_data_offset = new_data_offset;
2739 }
2740
2741 return 0;
2742}
2743
2744/* Prepare @rs for reshape */
2745static int rs_prepare_reshape(struct raid_set *rs)
2746{
2747 bool reshape;
2748 struct mddev *mddev = &rs->md;
2749
2750 if (rs_is_raid10(rs)) {
2751 if (rs->raid_disks != mddev->raid_disks &&
2752 __is_raid10_near(mddev->layout) &&
2753 rs->raid10_copies &&
2754 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2755 /*
2756 * raid disk have to be multiple of data copies to allow this conversion,
2757 *
2758 * This is actually not a reshape it is a
2759 * rebuild of any additional mirrors per group
2760 */
2761 if (rs->raid_disks % rs->raid10_copies) {
2762 rs->ti->error = "Can't reshape raid10 mirror groups";
2763 return -EINVAL;
2764 }
2765
2766 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2767 __reorder_raid_disk_indexes(rs);
2768 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2769 rs->raid10_copies);
2770 mddev->new_layout = mddev->layout;
2771 reshape = false;
2772 } else
2773 reshape = true;
2774
2775 } else if (rs_is_raid456(rs))
2776 reshape = true;
2777
2778 else if (rs_is_raid1(rs)) {
2779 if (rs->delta_disks) {
2780 /* Process raid1 via delta_disks */
2781 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2782 reshape = true;
2783 } else {
2784 /* Process raid1 without delta_disks */
2785 mddev->raid_disks = rs->raid_disks;
2786 reshape = false;
2787 }
2788 } else {
2789 rs->ti->error = "Called with bogus raid type";
2790 return -EINVAL;
2791 }
2792
2793 if (reshape) {
2794 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2795 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2796 } else if (mddev->raid_disks < rs->raid_disks)
2797 /* Create new superblocks and bitmaps, if any new disks */
2798 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2799
2800 return 0;
2801}
2802
2803/* Get reshape sectors from data_offsets or raid set */
2804static sector_t _get_reshape_sectors(struct raid_set *rs)
2805{
2806 struct md_rdev *rdev;
2807 sector_t reshape_sectors = 0;
2808
2809 rdev_for_each(rdev, &rs->md)
2810 if (!test_bit(Journal, &rdev->flags)) {
2811 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2812 rdev->data_offset - rdev->new_data_offset :
2813 rdev->new_data_offset - rdev->data_offset;
2814 break;
2815 }
2816
2817 return max(reshape_sectors, (sector_t) rs->data_offset);
2818}
2819
2820/*
2821 *
2822 * - change raid layout
2823 * - change chunk size
2824 * - add disks
2825 * - remove disks
2826 */
2827static int rs_setup_reshape(struct raid_set *rs)
2828{
2829 int r = 0;
2830 unsigned int cur_raid_devs, d;
2831 sector_t reshape_sectors = _get_reshape_sectors(rs);
2832 struct mddev *mddev = &rs->md;
2833 struct md_rdev *rdev;
2834
2835 mddev->delta_disks = rs->delta_disks;
2836 cur_raid_devs = mddev->raid_disks;
2837
2838 /* Ignore impossible layout change whilst adding/removing disks */
2839 if (mddev->delta_disks &&
2840 mddev->layout != mddev->new_layout) {
2841 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2842 mddev->new_layout = mddev->layout;
2843 }
2844
2845 /*
2846 * Adjust array size:
2847 *
2848 * - in case of adding disk(s), array size has
2849 * to grow after the disk adding reshape,
2850 * which'll hapen in the event handler;
2851 * reshape will happen forward, so space has to
2852 * be available at the beginning of each disk
2853 *
2854 * - in case of removing disk(s), array size
2855 * has to shrink before starting the reshape,
2856 * which'll happen here;
2857 * reshape will happen backward, so space has to
2858 * be available at the end of each disk
2859 *
2860 * - data_offset and new_data_offset are
2861 * adjusted for aforementioned out of place
2862 * reshaping based on userspace passing in
2863 * the "data_offset <sectors>" key/value
2864 * pair via the constructor
2865 */
2866
2867 /* Add disk(s) */
2868 if (rs->delta_disks > 0) {
2869 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2870 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2871 rdev = &rs->dev[d].rdev;
2872 clear_bit(In_sync, &rdev->flags);
2873
2874 /*
2875 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2876 * by md, which'll store that erroneously in the superblock on reshape
2877 */
2878 rdev->saved_raid_disk = -1;
2879 rdev->raid_disk = d;
2880
2881 rdev->sectors = mddev->dev_sectors;
2882 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2883 }
2884
2885 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2886
2887 /* Remove disk(s) */
2888 } else if (rs->delta_disks < 0) {
2889 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2890 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2891
2892 /* Change layout and/or chunk size */
2893 } else {
2894 /*
2895 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2896 *
2897 * keeping number of disks and do layout change ->
2898 *
2899 * toggle reshape_backward depending on data_offset:
2900 *
2901 * - free space upfront -> reshape forward
2902 *
2903 * - free space at the end -> reshape backward
2904 *
2905 *
2906 * This utilizes free reshape space avoiding the need
2907 * for userspace to move (parts of) LV segments in
2908 * case of layout/chunksize change (for disk
2909 * adding/removing reshape space has to be at
2910 * the proper address (see above with delta_disks):
2911 *
2912 * add disk(s) -> begin
2913 * remove disk(s)-> end
2914 */
2915 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2916 }
2917
2918 /*
2919 * Adjust device size for forward reshape
2920 * because md_finish_reshape() reduces it.
2921 */
2922 if (!mddev->reshape_backwards)
2923 rdev_for_each(rdev, &rs->md)
2924 if (!test_bit(Journal, &rdev->flags))
2925 rdev->sectors += reshape_sectors;
2926
2927 return r;
2928}
2929
2930/*
2931 * Enable/disable discard support on RAID set depending on
2932 * RAID level and discard properties of underlying RAID members.
2933 */
2934static void configure_discard_support(struct raid_set *rs)
2935{
2936 int i;
2937 bool raid456;
2938 struct dm_target *ti = rs->ti;
2939
2940 /*
2941 * XXX: RAID level 4,5,6 require zeroing for safety.
2942 */
2943 raid456 = rs_is_raid456(rs);
2944
2945 for (i = 0; i < rs->raid_disks; i++) {
2946 struct request_queue *q;
2947
2948 if (!rs->dev[i].rdev.bdev)
2949 continue;
2950
2951 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2952 if (!q || !blk_queue_discard(q))
2953 return;
2954
2955 if (raid456) {
2956 if (!devices_handle_discard_safely) {
2957 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2958 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2959 return;
2960 }
2961 }
2962 }
2963
2964 ti->num_discard_bios = 1;
2965}
2966
2967/*
2968 * Construct a RAID0/1/10/4/5/6 mapping:
2969 * Args:
2970 * <raid_type> <#raid_params> <raid_params>{0,} \
2971 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2972 *
2973 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2974 * details on possible <raid_params>.
2975 *
2976 * Userspace is free to initialize the metadata devices, hence the superblocks to
2977 * enforce recreation based on the passed in table parameters.
2978 *
2979 */
2980static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2981{
2982 int r;
2983 bool resize = false;
2984 struct raid_type *rt;
2985 unsigned int num_raid_params, num_raid_devs;
2986 sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
2987 struct raid_set *rs = NULL;
2988 const char *arg;
2989 struct rs_layout rs_layout;
2990 struct dm_arg_set as = { argc, argv }, as_nrd;
2991 struct dm_arg _args[] = {
2992 { 0, as.argc, "Cannot understand number of raid parameters" },
2993 { 1, 254, "Cannot understand number of raid devices parameters" }
2994 };
2995
2996 arg = dm_shift_arg(&as);
2997 if (!arg) {
2998 ti->error = "No arguments";
2999 return -EINVAL;
3000 }
3001
3002 rt = get_raid_type(arg);
3003 if (!rt) {
3004 ti->error = "Unrecognised raid_type";
3005 return -EINVAL;
3006 }
3007
3008 /* Must have <#raid_params> */
3009 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3010 return -EINVAL;
3011
3012 /* number of raid device tupples <meta_dev data_dev> */
3013 as_nrd = as;
3014 dm_consume_args(&as_nrd, num_raid_params);
3015 _args[1].max = (as_nrd.argc - 1) / 2;
3016 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3017 return -EINVAL;
3018
3019 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3020 ti->error = "Invalid number of supplied raid devices";
3021 return -EINVAL;
3022 }
3023
3024 rs = raid_set_alloc(ti, rt, num_raid_devs);
3025 if (IS_ERR(rs))
3026 return PTR_ERR(rs);
3027
3028 r = parse_raid_params(rs, &as, num_raid_params);
3029 if (r)
3030 goto bad;
3031
3032 r = parse_dev_params(rs, &as);
3033 if (r)
3034 goto bad;
3035
3036 rs->md.sync_super = super_sync;
3037
3038 /*
3039 * Calculate ctr requested array and device sizes to allow
3040 * for superblock analysis needing device sizes defined.
3041 *
3042 * Any existing superblock will overwrite the array and device sizes
3043 */
3044 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3045 if (r)
3046 goto bad;
3047
3048 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3049 rs->array_sectors = rs->md.array_sectors;
3050 rs->dev_sectors = rs->md.dev_sectors;
3051
3052 /*
3053 * Backup any new raid set level, layout, ...
3054 * requested to be able to compare to superblock
3055 * members for conversion decisions.
3056 */
3057 rs_config_backup(rs, &rs_layout);
3058
3059 r = analyse_superblocks(ti, rs);
3060 if (r)
3061 goto bad;
3062
3063 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3064 sb_array_sectors = rs->md.array_sectors;
3065 rdev_sectors = __rdev_sectors(rs);
3066 if (!rdev_sectors) {
3067 ti->error = "Invalid rdev size";
3068 r = -EINVAL;
3069 goto bad;
3070 }
3071
3072
3073 reshape_sectors = _get_reshape_sectors(rs);
3074 if (rs->dev_sectors != rdev_sectors) {
3075 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3076 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3077 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3078 }
3079
3080 INIT_WORK(&rs->md.event_work, do_table_event);
3081 ti->private = rs;
3082 ti->num_flush_bios = 1;
3083
3084 /* Restore any requested new layout for conversion decision */
3085 rs_config_restore(rs, &rs_layout);
3086
3087 /*
3088 * Now that we have any superblock metadata available,
3089 * check for new, recovering, reshaping, to be taken over,
3090 * to be reshaped or an existing, unchanged raid set to
3091 * run in sequence.
3092 */
3093 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3094 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3095 if (rs_is_raid6(rs) &&
3096 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3097 ti->error = "'nosync' not allowed for new raid6 set";
3098 r = -EINVAL;
3099 goto bad;
3100 }
3101 rs_setup_recovery(rs, 0);
3102 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3103 rs_set_new(rs);
3104 } else if (rs_is_recovering(rs)) {
3105 /* A recovering raid set may be resized */
3106 goto size_check;
3107 } else if (rs_is_reshaping(rs)) {
3108 /* Have to reject size change request during reshape */
3109 if (resize) {
3110 ti->error = "Can't resize a reshaping raid set";
3111 r = -EPERM;
3112 goto bad;
3113 }
3114 /* skip setup rs */
3115 } else if (rs_takeover_requested(rs)) {
3116 if (rs_is_reshaping(rs)) {
3117 ti->error = "Can't takeover a reshaping raid set";
3118 r = -EPERM;
3119 goto bad;
3120 }
3121
3122 /* We can't takeover a journaled raid4/5/6 */
3123 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3124 ti->error = "Can't takeover a journaled raid4/5/6 set";
3125 r = -EPERM;
3126 goto bad;
3127 }
3128
3129 /*
3130 * If a takeover is needed, userspace sets any additional
3131 * devices to rebuild and we can check for a valid request here.
3132 *
3133 * If acceptible, set the level to the new requested
3134 * one, prohibit requesting recovery, allow the raid
3135 * set to run and store superblocks during resume.
3136 */
3137 r = rs_check_takeover(rs);
3138 if (r)
3139 goto bad;
3140
3141 r = rs_setup_takeover(rs);
3142 if (r)
3143 goto bad;
3144
3145 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3146 /* Takeover ain't recovery, so disable recovery */
3147 rs_setup_recovery(rs, MaxSector);
3148 rs_set_new(rs);
3149 } else if (rs_reshape_requested(rs)) {
3150 /* Only request grow on raid set size extensions, not on reshapes. */
3151 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3152
3153 /*
3154 * No need to check for 'ongoing' takeover here, because takeover
3155 * is an instant operation as oposed to an ongoing reshape.
3156 */
3157
3158 /* We can't reshape a journaled raid4/5/6 */
3159 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3160 ti->error = "Can't reshape a journaled raid4/5/6 set";
3161 r = -EPERM;
3162 goto bad;
3163 }
3164
3165 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3166 if (reshape_sectors || rs_is_raid1(rs)) {
3167 /*
3168 * We can only prepare for a reshape here, because the
3169 * raid set needs to run to provide the repective reshape
3170 * check functions via its MD personality instance.
3171 *
3172 * So do the reshape check after md_run() succeeded.
3173 */
3174 r = rs_prepare_reshape(rs);
3175 if (r)
3176 goto bad;
3177
3178 /* Reshaping ain't recovery, so disable recovery */
3179 rs_setup_recovery(rs, MaxSector);
3180 }
3181 rs_set_cur(rs);
3182 } else {
3183size_check:
3184 /* May not set recovery when a device rebuild is requested */
3185 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3186 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3187 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3188 rs_setup_recovery(rs, MaxSector);
3189 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3190 /*
3191 * Set raid set to current size, i.e. size as of
3192 * superblocks to grow to larger size in preresume.
3193 */
3194 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3195 if (r)
3196 goto bad;
3197
3198 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3199 } else {
3200 /* This is no size change or it is shrinking, update size and record in superblocks */
3201 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3202 if (r)
3203 goto bad;
3204
3205 if (sb_array_sectors > rs->array_sectors)
3206 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3207 }
3208 rs_set_cur(rs);
3209 }
3210
3211 /* If constructor requested it, change data and new_data offsets */
3212 r = rs_adjust_data_offsets(rs);
3213 if (r)
3214 goto bad;
3215
3216 /* Start raid set read-only and assumed clean to change in raid_resume() */
3217 rs->md.ro = 1;
3218 rs->md.in_sync = 1;
3219
3220 /* Keep array frozen */
3221 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3222
3223 /* Has to be held on running the array */
3224 mddev_lock_nointr(&rs->md);
3225 r = md_run(&rs->md);
3226 rs->md.in_sync = 0; /* Assume already marked dirty */
3227 if (r) {
3228 ti->error = "Failed to run raid array";
3229 mddev_unlock(&rs->md);
3230 goto bad;
3231 }
3232
3233 r = md_start(&rs->md);
3234
3235 if (r) {
3236 ti->error = "Failed to start raid array";
3237 mddev_unlock(&rs->md);
3238 goto bad_md_start;
3239 }
3240
3241 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3242 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3243 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3244 if (r) {
3245 ti->error = "Failed to set raid4/5/6 journal mode";
3246 mddev_unlock(&rs->md);
3247 goto bad_journal_mode_set;
3248 }
3249 }
3250
3251 mddev_suspend(&rs->md);
3252 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3253
3254 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3255 if (rs_is_raid456(rs)) {
3256 r = rs_set_raid456_stripe_cache(rs);
3257 if (r)
3258 goto bad_stripe_cache;
3259 }
3260
3261 /* Now do an early reshape check */
3262 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3263 r = rs_check_reshape(rs);
3264 if (r)
3265 goto bad_check_reshape;
3266
3267 /* Restore new, ctr requested layout to perform check */
3268 rs_config_restore(rs, &rs_layout);
3269
3270 if (rs->md.pers->start_reshape) {
3271 r = rs->md.pers->check_reshape(&rs->md);
3272 if (r) {
3273 ti->error = "Reshape check failed";
3274 goto bad_check_reshape;
3275 }
3276 }
3277 }
3278
3279 /* Disable/enable discard support on raid set. */
3280 configure_discard_support(rs);
3281
3282 mddev_unlock(&rs->md);
3283 return 0;
3284
3285bad_md_start:
3286bad_journal_mode_set:
3287bad_stripe_cache:
3288bad_check_reshape:
3289 md_stop(&rs->md);
3290bad:
3291 raid_set_free(rs);
3292
3293 return r;
3294}
3295
3296static void raid_dtr(struct dm_target *ti)
3297{
3298 struct raid_set *rs = ti->private;
3299
3300 md_stop(&rs->md);
3301 raid_set_free(rs);
3302}
3303
3304static int raid_map(struct dm_target *ti, struct bio *bio)
3305{
3306 struct raid_set *rs = ti->private;
3307 struct mddev *mddev = &rs->md;
3308
3309 /*
3310 * If we're reshaping to add disk(s)), ti->len and
3311 * mddev->array_sectors will differ during the process
3312 * (ti->len > mddev->array_sectors), so we have to requeue
3313 * bios with addresses > mddev->array_sectors here or
3314 * there will occur accesses past EOD of the component
3315 * data images thus erroring the raid set.
3316 */
3317 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3318 return DM_MAPIO_REQUEUE;
3319
3320 md_handle_request(mddev, bio);
3321
3322 return DM_MAPIO_SUBMITTED;
3323}
3324
3325/* Return sync state string for @state */
3326enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3327static const char *sync_str(enum sync_state state)
3328{
3329 /* Has to be in above sync_state order! */
3330 static const char *sync_strs[] = {
3331 "frozen",
3332 "reshape",
3333 "resync",
3334 "check",
3335 "repair",
3336 "recover",
3337 "idle"
3338 };
3339
3340 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3341};
3342
3343/* Return enum sync_state for @mddev derived from @recovery flags */
3344static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3345{
3346 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3347 return st_frozen;
3348
3349 /* The MD sync thread can be done with io or be interrupted but still be running */
3350 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3351 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3352 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3353 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3354 return st_reshape;
3355
3356 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3357 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3358 return st_resync;
3359 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3360 return st_check;
3361 return st_repair;
3362 }
3363
3364 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3365 return st_recover;
3366
3367 if (mddev->reshape_position != MaxSector)
3368 return st_reshape;
3369 }
3370
3371 return st_idle;
3372}
3373
3374/*
3375 * Return status string for @rdev
3376 *
3377 * Status characters:
3378 *
3379 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3380 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3381 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3382 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3383 */
3384static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3385{
3386 if (!rdev->bdev)
3387 return "-";
3388 else if (test_bit(Faulty, &rdev->flags))
3389 return "D";
3390 else if (test_bit(Journal, &rdev->flags))
3391 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3392 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3393 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3394 !test_bit(In_sync, &rdev->flags)))
3395 return "a";
3396 else
3397 return "A";
3398}
3399
3400/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3401static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3402 enum sync_state state, sector_t resync_max_sectors)
3403{
3404 sector_t r;
3405 struct mddev *mddev = &rs->md;
3406
3407 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3408 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3409
3410 if (rs_is_raid0(rs)) {
3411 r = resync_max_sectors;
3412 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3413
3414 } else {
3415 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3416 r = mddev->recovery_cp;
3417 else
3418 r = mddev->curr_resync_completed;
3419
3420 if (state == st_idle && r >= resync_max_sectors) {
3421 /*
3422 * Sync complete.
3423 */
3424 /* In case we have finished recovering, the array is in sync. */
3425 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3426 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3427
3428 } else if (state == st_recover)
3429 /*
3430 * In case we are recovering, the array is not in sync
3431 * and health chars should show the recovering legs.
3432 *
3433 * Already retrieved recovery offset from curr_resync_completed above.
3434 */
3435 ;
3436
3437 else if (state == st_resync || state == st_reshape)
3438 /*
3439 * If "resync/reshape" is occurring, the raid set
3440 * is or may be out of sync hence the health
3441 * characters shall be 'a'.
3442 */
3443 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3444
3445 else if (state == st_check || state == st_repair)
3446 /*
3447 * If "check" or "repair" is occurring, the raid set has
3448 * undergone an initial sync and the health characters
3449 * should not be 'a' anymore.
3450 */
3451 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3452
3453 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3454 /*
3455 * We are idle and recovery is needed, prevent 'A' chars race
3456 * caused by components still set to in-sync by constructor.
3457 */
3458 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3459
3460 else {
3461 /*
3462 * We are idle and the raid set may be doing an initial
3463 * sync, or it may be rebuilding individual components.
3464 * If all the devices are In_sync, then it is the raid set
3465 * that is being initialized.
3466 */
3467 struct md_rdev *rdev;
3468
3469 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3470 rdev_for_each(rdev, mddev)
3471 if (!test_bit(Journal, &rdev->flags) &&
3472 !test_bit(In_sync, &rdev->flags)) {
3473 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3474 break;
3475 }
3476 }
3477 }
3478
3479 return min(r, resync_max_sectors);
3480}
3481
3482/* Helper to return @dev name or "-" if !@dev */
3483static const char *__get_dev_name(struct dm_dev *dev)
3484{
3485 return dev ? dev->name : "-";
3486}
3487
3488static void raid_status(struct dm_target *ti, status_type_t type,
3489 unsigned int status_flags, char *result, unsigned int maxlen)
3490{
3491 struct raid_set *rs = ti->private;
3492 struct mddev *mddev = &rs->md;
3493 struct r5conf *conf = mddev->private;
3494 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3495 unsigned long recovery;
3496 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3497 unsigned int sz = 0;
3498 unsigned int rebuild_writemostly_count = 0;
3499 sector_t progress, resync_max_sectors, resync_mismatches;
3500 enum sync_state state;
3501 struct raid_type *rt;
3502
3503 switch (type) {
3504 case STATUSTYPE_INFO:
3505 /* *Should* always succeed */
3506 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3507 if (!rt)
3508 return;
3509
3510 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3511
3512 /* Access most recent mddev properties for status output */
3513 smp_rmb();
3514 /* Get sensible max sectors even if raid set not yet started */
3515 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3516 mddev->resync_max_sectors : mddev->dev_sectors;
3517 recovery = rs->md.recovery;
3518 state = decipher_sync_action(mddev, recovery);
3519 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3520 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3521 atomic64_read(&mddev->resync_mismatches) : 0;
3522
3523 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3524 for (i = 0; i < rs->raid_disks; i++)
3525 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3526
3527 /*
3528 * In-sync/Reshape ratio:
3529 * The in-sync ratio shows the progress of:
3530 * - Initializing the raid set
3531 * - Rebuilding a subset of devices of the raid set
3532 * The user can distinguish between the two by referring
3533 * to the status characters.
3534 *
3535 * The reshape ratio shows the progress of
3536 * changing the raid layout or the number of
3537 * disks of a raid set
3538 */
3539 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3540 (unsigned long long) resync_max_sectors);
3541
3542 /*
3543 * v1.5.0+:
3544 *
3545 * Sync action:
3546 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
3547 * information on each of these states.
3548 */
3549 DMEMIT(" %s", sync_str(state));
3550
3551 /*
3552 * v1.5.0+:
3553 *
3554 * resync_mismatches/mismatch_cnt
3555 * This field shows the number of discrepancies found when
3556 * performing a "check" of the raid set.
3557 */
3558 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3559
3560 /*
3561 * v1.9.0+:
3562 *
3563 * data_offset (needed for out of space reshaping)
3564 * This field shows the data offset into the data
3565 * image LV where the first stripes data starts.
3566 *
3567 * We keep data_offset equal on all raid disks of the set,
3568 * so retrieving it from the first raid disk is sufficient.
3569 */
3570 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3571
3572 /*
3573 * v1.10.0+:
3574 */
3575 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3576 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3577 break;
3578
3579 case STATUSTYPE_TABLE:
3580 /* Report the table line string you would use to construct this raid set */
3581
3582 /*
3583 * Count any rebuild or writemostly argument pairs and subtract the
3584 * hweight count being added below of any rebuild and writemostly ctr flags.
3585 */
3586 for (i = 0; i < rs->raid_disks; i++) {
3587 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3588 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3589 }
3590 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3591 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3592 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3593 raid_param_cnt += rebuild_writemostly_count +
3594 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3595 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3596 /* Emit table line */
3597 /* This has to be in the documented order for userspace! */
3598 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3599 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3600 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3601 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3602 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3603 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3604 for (i = 0; i < rs->raid_disks; i++)
3605 if (test_bit(i, (void *) rs->rebuild_disks))
3606 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3607 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3608 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3609 mddev->bitmap_info.daemon_sleep);
3610 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3611 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3612 mddev->sync_speed_min);
3613 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3614 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3615 mddev->sync_speed_max);
3616 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3617 for (i = 0; i < rs->raid_disks; i++)
3618 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3619 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3620 rs->dev[i].rdev.raid_disk);
3621 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3622 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3623 mddev->bitmap_info.max_write_behind);
3624 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3625 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3626 max_nr_stripes);
3627 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3628 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3629 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3630 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3631 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3632 raid10_md_layout_to_copies(mddev->layout));
3633 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3634 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3635 raid10_md_layout_to_format(mddev->layout));
3636 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3637 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3638 max(rs->delta_disks, mddev->delta_disks));
3639 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3640 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3641 (unsigned long long) rs->data_offset);
3642 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3643 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3644 __get_dev_name(rs->journal_dev.dev));
3645 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3646 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3647 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3648 DMEMIT(" %d", rs->raid_disks);
3649 for (i = 0; i < rs->raid_disks; i++)
3650 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3651 __get_dev_name(rs->dev[i].data_dev));
3652 }
3653}
3654
3655static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3656 char *result, unsigned maxlen)
3657{
3658 struct raid_set *rs = ti->private;
3659 struct mddev *mddev = &rs->md;
3660
3661 if (!mddev->pers || !mddev->pers->sync_request)
3662 return -EINVAL;
3663
3664 if (!strcasecmp(argv[0], "frozen"))
3665 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3666 else
3667 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3668
3669 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3670 if (mddev->sync_thread) {
3671 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3672 md_reap_sync_thread(mddev);
3673 }
3674 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3675 return -EBUSY;
3676 else if (!strcasecmp(argv[0], "resync"))
3677 ; /* MD_RECOVERY_NEEDED set below */
3678 else if (!strcasecmp(argv[0], "recover"))
3679 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3680 else {
3681 if (!strcasecmp(argv[0], "check")) {
3682 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3683 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3684 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3685 } else if (!strcasecmp(argv[0], "repair")) {
3686 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3687 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3688 } else
3689 return -EINVAL;
3690 }
3691 if (mddev->ro == 2) {
3692 /* A write to sync_action is enough to justify
3693 * canceling read-auto mode
3694 */
3695 mddev->ro = 0;
3696 if (!mddev->suspended && mddev->sync_thread)
3697 md_wakeup_thread(mddev->sync_thread);
3698 }
3699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3700 if (!mddev->suspended && mddev->thread)
3701 md_wakeup_thread(mddev->thread);
3702
3703 return 0;
3704}
3705
3706static int raid_iterate_devices(struct dm_target *ti,
3707 iterate_devices_callout_fn fn, void *data)
3708{
3709 struct raid_set *rs = ti->private;
3710 unsigned int i;
3711 int r = 0;
3712
3713 for (i = 0; !r && i < rs->md.raid_disks; i++)
3714 if (rs->dev[i].data_dev)
3715 r = fn(ti,
3716 rs->dev[i].data_dev,
3717 0, /* No offset on data devs */
3718 rs->md.dev_sectors,
3719 data);
3720
3721 return r;
3722}
3723
3724static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3725{
3726 struct raid_set *rs = ti->private;
3727 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3728
3729 blk_limits_io_min(limits, chunk_size_bytes);
3730 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3731
3732 /*
3733 * RAID1 and RAID10 personalities require bio splitting,
3734 * RAID0/4/5/6 don't and process large discard bios properly.
3735 */
3736 if (rs_is_raid1(rs) || rs_is_raid10(rs)) {
3737 limits->discard_granularity = chunk_size_bytes;
3738 limits->max_discard_sectors = rs->md.chunk_sectors;
3739 }
3740}
3741
3742static void raid_postsuspend(struct dm_target *ti)
3743{
3744 struct raid_set *rs = ti->private;
3745
3746 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3747 /* Writes have to be stopped before suspending to avoid deadlocks. */
3748 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3749 md_stop_writes(&rs->md);
3750
3751 mddev_lock_nointr(&rs->md);
3752 mddev_suspend(&rs->md);
3753 mddev_unlock(&rs->md);
3754 }
3755}
3756
3757static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3758{
3759 int i;
3760 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3761 unsigned long flags;
3762 bool cleared = false;
3763 struct dm_raid_superblock *sb;
3764 struct mddev *mddev = &rs->md;
3765 struct md_rdev *r;
3766
3767 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3768 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3769 return;
3770
3771 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3772
3773 for (i = 0; i < mddev->raid_disks; i++) {
3774 r = &rs->dev[i].rdev;
3775 /* HM FIXME: enhance journal device recovery processing */
3776 if (test_bit(Journal, &r->flags))
3777 continue;
3778
3779 if (test_bit(Faulty, &r->flags) &&
3780 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3781 DMINFO("Faulty %s device #%d has readable super block."
3782 " Attempting to revive it.",
3783 rs->raid_type->name, i);
3784
3785 /*
3786 * Faulty bit may be set, but sometimes the array can
3787 * be suspended before the personalities can respond
3788 * by removing the device from the array (i.e. calling
3789 * 'hot_remove_disk'). If they haven't yet removed
3790 * the failed device, its 'raid_disk' number will be
3791 * '>= 0' - meaning we must call this function
3792 * ourselves.
3793 */
3794 flags = r->flags;
3795 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3796 if (r->raid_disk >= 0) {
3797 if (mddev->pers->hot_remove_disk(mddev, r)) {
3798 /* Failed to revive this device, try next */
3799 r->flags = flags;
3800 continue;
3801 }
3802 } else
3803 r->raid_disk = r->saved_raid_disk = i;
3804
3805 clear_bit(Faulty, &r->flags);
3806 clear_bit(WriteErrorSeen, &r->flags);
3807
3808 if (mddev->pers->hot_add_disk(mddev, r)) {
3809 /* Failed to revive this device, try next */
3810 r->raid_disk = r->saved_raid_disk = -1;
3811 r->flags = flags;
3812 } else {
3813 clear_bit(In_sync, &r->flags);
3814 r->recovery_offset = 0;
3815 set_bit(i, (void *) cleared_failed_devices);
3816 cleared = true;
3817 }
3818 }
3819 }
3820
3821 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3822 if (cleared) {
3823 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3824
3825 rdev_for_each(r, &rs->md) {
3826 if (test_bit(Journal, &r->flags))
3827 continue;
3828
3829 sb = page_address(r->sb_page);
3830 sb_retrieve_failed_devices(sb, failed_devices);
3831
3832 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3833 failed_devices[i] &= ~cleared_failed_devices[i];
3834
3835 sb_update_failed_devices(sb, failed_devices);
3836 }
3837 }
3838}
3839
3840static int __load_dirty_region_bitmap(struct raid_set *rs)
3841{
3842 int r = 0;
3843
3844 /* Try loading the bitmap unless "raid0", which does not have one */
3845 if (!rs_is_raid0(rs) &&
3846 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3847 r = md_bitmap_load(&rs->md);
3848 if (r)
3849 DMERR("Failed to load bitmap");
3850 }
3851
3852 return r;
3853}
3854
3855/* Enforce updating all superblocks */
3856static void rs_update_sbs(struct raid_set *rs)
3857{
3858 struct mddev *mddev = &rs->md;
3859 int ro = mddev->ro;
3860
3861 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3862 mddev->ro = 0;
3863 md_update_sb(mddev, 1);
3864 mddev->ro = ro;
3865}
3866
3867/*
3868 * Reshape changes raid algorithm of @rs to new one within personality
3869 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3870 * disks from a raid set thus growing/shrinking it or resizes the set
3871 *
3872 * Call mddev_lock_nointr() before!
3873 */
3874static int rs_start_reshape(struct raid_set *rs)
3875{
3876 int r;
3877 struct mddev *mddev = &rs->md;
3878 struct md_personality *pers = mddev->pers;
3879
3880 /* Don't allow the sync thread to work until the table gets reloaded. */
3881 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3882
3883 r = rs_setup_reshape(rs);
3884 if (r)
3885 return r;
3886
3887 /*
3888 * Check any reshape constraints enforced by the personalility
3889 *
3890 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3891 */
3892 r = pers->check_reshape(mddev);
3893 if (r) {
3894 rs->ti->error = "pers->check_reshape() failed";
3895 return r;
3896 }
3897
3898 /*
3899 * Personality may not provide start reshape method in which
3900 * case check_reshape above has already covered everything
3901 */
3902 if (pers->start_reshape) {
3903 r = pers->start_reshape(mddev);
3904 if (r) {
3905 rs->ti->error = "pers->start_reshape() failed";
3906 return r;
3907 }
3908 }
3909
3910 /*
3911 * Now reshape got set up, update superblocks to
3912 * reflect the fact so that a table reload will
3913 * access proper superblock content in the ctr.
3914 */
3915 rs_update_sbs(rs);
3916
3917 return 0;
3918}
3919
3920static int raid_preresume(struct dm_target *ti)
3921{
3922 int r;
3923 struct raid_set *rs = ti->private;
3924 struct mddev *mddev = &rs->md;
3925
3926 /* This is a resume after a suspend of the set -> it's already started. */
3927 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3928 return 0;
3929
3930 /*
3931 * The superblocks need to be updated on disk if the
3932 * array is new or new devices got added (thus zeroed
3933 * out by userspace) or __load_dirty_region_bitmap
3934 * will overwrite them in core with old data or fail.
3935 */
3936 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3937 rs_update_sbs(rs);
3938
3939 /* Load the bitmap from disk unless raid0 */
3940 r = __load_dirty_region_bitmap(rs);
3941 if (r)
3942 return r;
3943
3944 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3945 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3946 mddev->array_sectors = rs->array_sectors;
3947 mddev->dev_sectors = rs->dev_sectors;
3948 rs_set_rdev_sectors(rs);
3949 rs_set_capacity(rs);
3950 }
3951
3952 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3953 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3954 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
3955 (rs->requested_bitmap_chunk_sectors &&
3956 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
3957 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
3958
3959 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
3960 if (r)
3961 DMERR("Failed to resize bitmap");
3962 }
3963
3964 /* Check for any resize/reshape on @rs and adjust/initiate */
3965 /* Be prepared for mddev_resume() in raid_resume() */
3966 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3967 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3968 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3969 mddev->resync_min = mddev->recovery_cp;
3970 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
3971 mddev->resync_max_sectors = mddev->dev_sectors;
3972 }
3973
3974 /* Check for any reshape request unless new raid set */
3975 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3976 /* Initiate a reshape. */
3977 rs_set_rdev_sectors(rs);
3978 mddev_lock_nointr(mddev);
3979 r = rs_start_reshape(rs);
3980 mddev_unlock(mddev);
3981 if (r)
3982 DMWARN("Failed to check/start reshape, continuing without change");
3983 r = 0;
3984 }
3985
3986 return r;
3987}
3988
3989static void raid_resume(struct dm_target *ti)
3990{
3991 struct raid_set *rs = ti->private;
3992 struct mddev *mddev = &rs->md;
3993
3994 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3995 /*
3996 * A secondary resume while the device is active.
3997 * Take this opportunity to check whether any failed
3998 * devices are reachable again.
3999 */
4000 attempt_restore_of_faulty_devices(rs);
4001 }
4002
4003 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4004 /* Only reduce raid set size before running a disk removing reshape. */
4005 if (mddev->delta_disks < 0)
4006 rs_set_capacity(rs);
4007
4008 mddev_lock_nointr(mddev);
4009 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4010 mddev->ro = 0;
4011 mddev->in_sync = 0;
4012 mddev_resume(mddev);
4013 mddev_unlock(mddev);
4014 }
4015}
4016
4017static struct target_type raid_target = {
4018 .name = "raid",
4019 .version = {1, 15, 1},
4020 .module = THIS_MODULE,
4021 .ctr = raid_ctr,
4022 .dtr = raid_dtr,
4023 .map = raid_map,
4024 .status = raid_status,
4025 .message = raid_message,
4026 .iterate_devices = raid_iterate_devices,
4027 .io_hints = raid_io_hints,
4028 .postsuspend = raid_postsuspend,
4029 .preresume = raid_preresume,
4030 .resume = raid_resume,
4031};
4032
4033static int __init dm_raid_init(void)
4034{
4035 DMINFO("Loading target version %u.%u.%u",
4036 raid_target.version[0],
4037 raid_target.version[1],
4038 raid_target.version[2]);
4039 return dm_register_target(&raid_target);
4040}
4041
4042static void __exit dm_raid_exit(void)
4043{
4044 dm_unregister_target(&raid_target);
4045}
4046
4047module_init(dm_raid_init);
4048module_exit(dm_raid_exit);
4049
4050module_param(devices_handle_discard_safely, bool, 0644);
4051MODULE_PARM_DESC(devices_handle_discard_safely,
4052 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4053
4054MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4055MODULE_ALIAS("dm-raid0");
4056MODULE_ALIAS("dm-raid1");
4057MODULE_ALIAS("dm-raid10");
4058MODULE_ALIAS("dm-raid4");
4059MODULE_ALIAS("dm-raid5");
4060MODULE_ALIAS("dm-raid6");
4061MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4062MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4063MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010-2011 Neil Brown
4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/slab.h>
10#include <linux/module.h>
11
12#include "md.h"
13#include "raid1.h"
14#include "raid5.h"
15#include "raid10.h"
16#include "md-bitmap.h"
17
18#include <linux/device-mapper.h>
19
20#define DM_MSG_PREFIX "raid"
21#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
22
23/*
24 * Minimum sectors of free reshape space per raid device
25 */
26#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28/*
29 * Minimum journal space 4 MiB in sectors.
30 */
31#define MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33static bool devices_handle_discard_safely;
34
35/*
36 * The following flags are used by dm-raid to set up the array state.
37 * They must be cleared before md_run is called.
38 */
39#define FirstUse 10 /* rdev flag */
40
41struct raid_dev {
42 /*
43 * Two DM devices, one to hold metadata and one to hold the
44 * actual data/parity. The reason for this is to not confuse
45 * ti->len and give more flexibility in altering size and
46 * characteristics.
47 *
48 * While it is possible for this device to be associated
49 * with a different physical device than the data_dev, it
50 * is intended for it to be the same.
51 * |--------- Physical Device ---------|
52 * |- meta_dev -|------ data_dev ------|
53 */
54 struct dm_dev *meta_dev;
55 struct dm_dev *data_dev;
56 struct md_rdev rdev;
57};
58
59/*
60 * Bits for establishing rs->ctr_flags
61 *
62 * 1 = no flag value
63 * 2 = flag with value
64 */
65#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
66#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
67#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
68#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
71#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
72#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
73#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
74#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
75#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
76#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
77/* New for v1.9.0 */
78#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82/* New for v1.10.0 */
83#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85/* New for v1.11.1 */
86#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88/*
89 * Flags for rs->ctr_flags field.
90 */
91#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
92#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
93#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
94#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
95#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
99#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
100#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
101#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
102#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
103#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
104#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
105#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
107#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
108
109/*
110 * Definitions of various constructor flags to
111 * be used in checks of valid / invalid flags
112 * per raid level.
113 */
114/* Define all any sync flags */
115#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117/* Define flags for options without argument (e.g. 'nosync') */
118#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
119 CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121/* Define flags for options with one argument (e.g. 'delta_disks +2') */
122#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123 CTR_FLAG_WRITE_MOSTLY | \
124 CTR_FLAG_DAEMON_SLEEP | \
125 CTR_FLAG_MIN_RECOVERY_RATE | \
126 CTR_FLAG_MAX_RECOVERY_RATE | \
127 CTR_FLAG_MAX_WRITE_BEHIND | \
128 CTR_FLAG_STRIPE_CACHE | \
129 CTR_FLAG_REGION_SIZE | \
130 CTR_FLAG_RAID10_COPIES | \
131 CTR_FLAG_RAID10_FORMAT | \
132 CTR_FLAG_DELTA_DISKS | \
133 CTR_FLAG_DATA_OFFSET | \
134 CTR_FLAG_JOURNAL_DEV | \
135 CTR_FLAG_JOURNAL_MODE)
136
137/* Valid options definitions per raid level... */
138
139/* "raid0" does only accept data offset */
140#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
141
142/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
144 CTR_FLAG_REBUILD | \
145 CTR_FLAG_WRITE_MOSTLY | \
146 CTR_FLAG_DAEMON_SLEEP | \
147 CTR_FLAG_MIN_RECOVERY_RATE | \
148 CTR_FLAG_MAX_RECOVERY_RATE | \
149 CTR_FLAG_MAX_WRITE_BEHIND | \
150 CTR_FLAG_REGION_SIZE | \
151 CTR_FLAG_DELTA_DISKS | \
152 CTR_FLAG_DATA_OFFSET)
153
154/* "raid10" does not accept any raid1 or stripe cache options */
155#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
156 CTR_FLAG_REBUILD | \
157 CTR_FLAG_DAEMON_SLEEP | \
158 CTR_FLAG_MIN_RECOVERY_RATE | \
159 CTR_FLAG_MAX_RECOVERY_RATE | \
160 CTR_FLAG_REGION_SIZE | \
161 CTR_FLAG_RAID10_COPIES | \
162 CTR_FLAG_RAID10_FORMAT | \
163 CTR_FLAG_DELTA_DISKS | \
164 CTR_FLAG_DATA_OFFSET | \
165 CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167/*
168 * "raid4/5/6" do not accept any raid1 or raid10 specific options
169 *
170 * "raid6" does not accept "nosync", because it is not guaranteed
171 * that both parity and q-syndrome are being written properly with
172 * any writes
173 */
174#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
175 CTR_FLAG_REBUILD | \
176 CTR_FLAG_DAEMON_SLEEP | \
177 CTR_FLAG_MIN_RECOVERY_RATE | \
178 CTR_FLAG_MAX_RECOVERY_RATE | \
179 CTR_FLAG_STRIPE_CACHE | \
180 CTR_FLAG_REGION_SIZE | \
181 CTR_FLAG_DELTA_DISKS | \
182 CTR_FLAG_DATA_OFFSET | \
183 CTR_FLAG_JOURNAL_DEV | \
184 CTR_FLAG_JOURNAL_MODE)
185
186#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
187 CTR_FLAG_REBUILD | \
188 CTR_FLAG_DAEMON_SLEEP | \
189 CTR_FLAG_MIN_RECOVERY_RATE | \
190 CTR_FLAG_MAX_RECOVERY_RATE | \
191 CTR_FLAG_STRIPE_CACHE | \
192 CTR_FLAG_REGION_SIZE | \
193 CTR_FLAG_DELTA_DISKS | \
194 CTR_FLAG_DATA_OFFSET | \
195 CTR_FLAG_JOURNAL_DEV | \
196 CTR_FLAG_JOURNAL_MODE)
197/* ...valid options definitions per raid level */
198
199/*
200 * Flags for rs->runtime_flags field
201 * (RT_FLAG prefix meaning "runtime flag")
202 *
203 * These are all internal and used to define runtime state,
204 * e.g. to prevent another resume from preresume processing
205 * the raid set all over again.
206 */
207#define RT_FLAG_RS_PRERESUMED 0
208#define RT_FLAG_RS_RESUMED 1
209#define RT_FLAG_RS_BITMAP_LOADED 2
210#define RT_FLAG_UPDATE_SBS 3
211#define RT_FLAG_RESHAPE_RS 4
212#define RT_FLAG_RS_SUSPENDED 5
213#define RT_FLAG_RS_IN_SYNC 6
214#define RT_FLAG_RS_RESYNCING 7
215#define RT_FLAG_RS_GROW 8
216#define RT_FLAG_RS_FROZEN 9
217
218/* Array elements of 64 bit needed for rebuild/failed disk bits */
219#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
220
221/*
222 * raid set level, layout and chunk sectors backup/restore
223 */
224struct rs_layout {
225 int new_level;
226 int new_layout;
227 int new_chunk_sectors;
228};
229
230struct raid_set {
231 struct dm_target *ti;
232
233 uint32_t stripe_cache_entries;
234 unsigned long ctr_flags;
235 unsigned long runtime_flags;
236
237 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
238
239 int raid_disks;
240 int delta_disks;
241 int data_offset;
242 int raid10_copies;
243 int requested_bitmap_chunk_sectors;
244
245 struct mddev md;
246 struct raid_type *raid_type;
247
248 sector_t array_sectors;
249 sector_t dev_sectors;
250
251 /* Optional raid4/5/6 journal device */
252 struct journal_dev {
253 struct dm_dev *dev;
254 struct md_rdev rdev;
255 int mode;
256 } journal_dev;
257
258 struct raid_dev dev[] __counted_by(raid_disks);
259};
260
261static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
262{
263 struct mddev *mddev = &rs->md;
264
265 l->new_level = mddev->new_level;
266 l->new_layout = mddev->new_layout;
267 l->new_chunk_sectors = mddev->new_chunk_sectors;
268}
269
270static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
271{
272 struct mddev *mddev = &rs->md;
273
274 mddev->new_level = l->new_level;
275 mddev->new_layout = l->new_layout;
276 mddev->new_chunk_sectors = l->new_chunk_sectors;
277}
278
279/* raid10 algorithms (i.e. formats) */
280#define ALGORITHM_RAID10_DEFAULT 0
281#define ALGORITHM_RAID10_NEAR 1
282#define ALGORITHM_RAID10_OFFSET 2
283#define ALGORITHM_RAID10_FAR 3
284
285/* Supported raid types and properties. */
286static struct raid_type {
287 const char *name; /* RAID algorithm. */
288 const char *descr; /* Descriptor text for logging. */
289 const unsigned int parity_devs; /* # of parity devices. */
290 const unsigned int minimal_devs;/* minimal # of devices in set. */
291 const unsigned int level; /* RAID level. */
292 const unsigned int algorithm; /* RAID algorithm. */
293} raid_types[] = {
294 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
295 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
296 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
297 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
298 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
299 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
300 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
301 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
302 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
303 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
304 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
305 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
306 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
307 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
308 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
309 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
310 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
311 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
312 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
313 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
314};
315
316/* True, if @v is in inclusive range [@min, @max] */
317static bool __within_range(long v, long min, long max)
318{
319 return v >= min && v <= max;
320}
321
322/* All table line arguments are defined here */
323static struct arg_name_flag {
324 const unsigned long flag;
325 const char *name;
326} __arg_name_flags[] = {
327 { CTR_FLAG_SYNC, "sync"},
328 { CTR_FLAG_NOSYNC, "nosync"},
329 { CTR_FLAG_REBUILD, "rebuild"},
330 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
331 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
332 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
333 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
334 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
335 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
336 { CTR_FLAG_REGION_SIZE, "region_size"},
337 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
338 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
339 { CTR_FLAG_DATA_OFFSET, "data_offset"},
340 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
341 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
342 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
343 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
344};
345
346/* Return argument name string for given @flag */
347static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
348{
349 if (hweight32(flag) == 1) {
350 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
351
352 while (anf-- > __arg_name_flags)
353 if (flag & anf->flag)
354 return anf->name;
355
356 } else
357 DMERR("%s called with more than one flag!", __func__);
358
359 return NULL;
360}
361
362/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
363static struct {
364 const int mode;
365 const char *param;
366} _raid456_journal_mode[] = {
367 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
368 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" }
369};
370
371/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
372static int dm_raid_journal_mode_to_md(const char *mode)
373{
374 int m = ARRAY_SIZE(_raid456_journal_mode);
375
376 while (m--)
377 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
378 return _raid456_journal_mode[m].mode;
379
380 return -EINVAL;
381}
382
383/* Return dm-raid raid4/5/6 journal mode string for @mode */
384static const char *md_journal_mode_to_dm_raid(const int mode)
385{
386 int m = ARRAY_SIZE(_raid456_journal_mode);
387
388 while (m--)
389 if (mode == _raid456_journal_mode[m].mode)
390 return _raid456_journal_mode[m].param;
391
392 return "unknown";
393}
394
395/*
396 * Bool helpers to test for various raid levels of a raid set.
397 * It's level as reported by the superblock rather than
398 * the requested raid_type passed to the constructor.
399 */
400/* Return true, if raid set in @rs is raid0 */
401static bool rs_is_raid0(struct raid_set *rs)
402{
403 return !rs->md.level;
404}
405
406/* Return true, if raid set in @rs is raid1 */
407static bool rs_is_raid1(struct raid_set *rs)
408{
409 return rs->md.level == 1;
410}
411
412/* Return true, if raid set in @rs is raid10 */
413static bool rs_is_raid10(struct raid_set *rs)
414{
415 return rs->md.level == 10;
416}
417
418/* Return true, if raid set in @rs is level 6 */
419static bool rs_is_raid6(struct raid_set *rs)
420{
421 return rs->md.level == 6;
422}
423
424/* Return true, if raid set in @rs is level 4, 5 or 6 */
425static bool rs_is_raid456(struct raid_set *rs)
426{
427 return __within_range(rs->md.level, 4, 6);
428}
429
430/* Return true, if raid set in @rs is reshapable */
431static bool __is_raid10_far(int layout);
432static bool rs_is_reshapable(struct raid_set *rs)
433{
434 return rs_is_raid456(rs) ||
435 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
436}
437
438/* Return true, if raid set in @rs is recovering */
439static bool rs_is_recovering(struct raid_set *rs)
440{
441 return rs->md.recovery_cp < rs->md.dev_sectors;
442}
443
444/* Return true, if raid set in @rs is reshaping */
445static bool rs_is_reshaping(struct raid_set *rs)
446{
447 return rs->md.reshape_position != MaxSector;
448}
449
450/*
451 * bool helpers to test for various raid levels of a raid type @rt
452 */
453
454/* Return true, if raid type in @rt is raid0 */
455static bool rt_is_raid0(struct raid_type *rt)
456{
457 return !rt->level;
458}
459
460/* Return true, if raid type in @rt is raid1 */
461static bool rt_is_raid1(struct raid_type *rt)
462{
463 return rt->level == 1;
464}
465
466/* Return true, if raid type in @rt is raid10 */
467static bool rt_is_raid10(struct raid_type *rt)
468{
469 return rt->level == 10;
470}
471
472/* Return true, if raid type in @rt is raid4/5 */
473static bool rt_is_raid45(struct raid_type *rt)
474{
475 return __within_range(rt->level, 4, 5);
476}
477
478/* Return true, if raid type in @rt is raid6 */
479static bool rt_is_raid6(struct raid_type *rt)
480{
481 return rt->level == 6;
482}
483
484/* Return true, if raid type in @rt is raid4/5/6 */
485static bool rt_is_raid456(struct raid_type *rt)
486{
487 return __within_range(rt->level, 4, 6);
488}
489/* END: raid level bools */
490
491/* Return valid ctr flags for the raid level of @rs */
492static unsigned long __valid_flags(struct raid_set *rs)
493{
494 if (rt_is_raid0(rs->raid_type))
495 return RAID0_VALID_FLAGS;
496 else if (rt_is_raid1(rs->raid_type))
497 return RAID1_VALID_FLAGS;
498 else if (rt_is_raid10(rs->raid_type))
499 return RAID10_VALID_FLAGS;
500 else if (rt_is_raid45(rs->raid_type))
501 return RAID45_VALID_FLAGS;
502 else if (rt_is_raid6(rs->raid_type))
503 return RAID6_VALID_FLAGS;
504
505 return 0;
506}
507
508/*
509 * Check for valid flags set on @rs
510 *
511 * Has to be called after parsing of the ctr flags!
512 */
513static int rs_check_for_valid_flags(struct raid_set *rs)
514{
515 if (rs->ctr_flags & ~__valid_flags(rs)) {
516 rs->ti->error = "Invalid flags combination";
517 return -EINVAL;
518 }
519
520 return 0;
521}
522
523/* MD raid10 bit definitions and helpers */
524#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
525#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
526#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
527#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
528
529/* Return md raid10 near copies for @layout */
530static unsigned int __raid10_near_copies(int layout)
531{
532 return layout & 0xFF;
533}
534
535/* Return md raid10 far copies for @layout */
536static unsigned int __raid10_far_copies(int layout)
537{
538 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
539}
540
541/* Return true if md raid10 offset for @layout */
542static bool __is_raid10_offset(int layout)
543{
544 return !!(layout & RAID10_OFFSET);
545}
546
547/* Return true if md raid10 near for @layout */
548static bool __is_raid10_near(int layout)
549{
550 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
551}
552
553/* Return true if md raid10 far for @layout */
554static bool __is_raid10_far(int layout)
555{
556 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
557}
558
559/* Return md raid10 layout string for @layout */
560static const char *raid10_md_layout_to_format(int layout)
561{
562 /*
563 * Bit 16 stands for "offset"
564 * (i.e. adjacent stripes hold copies)
565 *
566 * Refer to MD's raid10.c for details
567 */
568 if (__is_raid10_offset(layout))
569 return "offset";
570
571 if (__raid10_near_copies(layout) > 1)
572 return "near";
573
574 if (__raid10_far_copies(layout) > 1)
575 return "far";
576
577 return "unknown";
578}
579
580/* Return md raid10 algorithm for @name */
581static int raid10_name_to_format(const char *name)
582{
583 if (!strcasecmp(name, "near"))
584 return ALGORITHM_RAID10_NEAR;
585 else if (!strcasecmp(name, "offset"))
586 return ALGORITHM_RAID10_OFFSET;
587 else if (!strcasecmp(name, "far"))
588 return ALGORITHM_RAID10_FAR;
589
590 return -EINVAL;
591}
592
593/* Return md raid10 copies for @layout */
594static unsigned int raid10_md_layout_to_copies(int layout)
595{
596 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
597}
598
599/* Return md raid10 format id for @format string */
600static int raid10_format_to_md_layout(struct raid_set *rs,
601 unsigned int algorithm,
602 unsigned int copies)
603{
604 unsigned int n = 1, f = 1, r = 0;
605
606 /*
607 * MD resilienece flaw:
608 *
609 * enabling use_far_sets for far/offset formats causes copies
610 * to be colocated on the same devs together with their origins!
611 *
612 * -> disable it for now in the definition above
613 */
614 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
615 algorithm == ALGORITHM_RAID10_NEAR)
616 n = copies;
617
618 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
619 f = copies;
620 r = RAID10_OFFSET;
621 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
622 r |= RAID10_USE_FAR_SETS;
623
624 } else if (algorithm == ALGORITHM_RAID10_FAR) {
625 f = copies;
626 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
627 r |= RAID10_USE_FAR_SETS;
628
629 } else
630 return -EINVAL;
631
632 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
633}
634/* END: MD raid10 bit definitions and helpers */
635
636/* Check for any of the raid10 algorithms */
637static bool __got_raid10(struct raid_type *rtp, const int layout)
638{
639 if (rtp->level == 10) {
640 switch (rtp->algorithm) {
641 case ALGORITHM_RAID10_DEFAULT:
642 case ALGORITHM_RAID10_NEAR:
643 return __is_raid10_near(layout);
644 case ALGORITHM_RAID10_OFFSET:
645 return __is_raid10_offset(layout);
646 case ALGORITHM_RAID10_FAR:
647 return __is_raid10_far(layout);
648 default:
649 break;
650 }
651 }
652
653 return false;
654}
655
656/* Return raid_type for @name */
657static struct raid_type *get_raid_type(const char *name)
658{
659 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
660
661 while (rtp-- > raid_types)
662 if (!strcasecmp(rtp->name, name))
663 return rtp;
664
665 return NULL;
666}
667
668/* Return raid_type for @name based derived from @level and @layout */
669static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
670{
671 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
672
673 while (rtp-- > raid_types) {
674 /* RAID10 special checks based on @layout flags/properties */
675 if (rtp->level == level &&
676 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
677 return rtp;
678 }
679
680 return NULL;
681}
682
683/* Adjust rdev sectors */
684static void rs_set_rdev_sectors(struct raid_set *rs)
685{
686 struct mddev *mddev = &rs->md;
687 struct md_rdev *rdev;
688
689 /*
690 * raid10 sets rdev->sector to the device size, which
691 * is unintended in case of out-of-place reshaping
692 */
693 rdev_for_each(rdev, mddev)
694 if (!test_bit(Journal, &rdev->flags))
695 rdev->sectors = mddev->dev_sectors;
696}
697
698/*
699 * Change bdev capacity of @rs in case of a disk add/remove reshape
700 */
701static void rs_set_capacity(struct raid_set *rs)
702{
703 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
704
705 set_capacity_and_notify(gendisk, rs->md.array_sectors);
706}
707
708/*
709 * Set the mddev properties in @rs to the current
710 * ones retrieved from the freshest superblock
711 */
712static void rs_set_cur(struct raid_set *rs)
713{
714 struct mddev *mddev = &rs->md;
715
716 mddev->new_level = mddev->level;
717 mddev->new_layout = mddev->layout;
718 mddev->new_chunk_sectors = mddev->chunk_sectors;
719}
720
721/*
722 * Set the mddev properties in @rs to the new
723 * ones requested by the ctr
724 */
725static void rs_set_new(struct raid_set *rs)
726{
727 struct mddev *mddev = &rs->md;
728
729 mddev->level = mddev->new_level;
730 mddev->layout = mddev->new_layout;
731 mddev->chunk_sectors = mddev->new_chunk_sectors;
732 mddev->raid_disks = rs->raid_disks;
733 mddev->delta_disks = 0;
734}
735
736static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
737 unsigned int raid_devs)
738{
739 unsigned int i;
740 struct raid_set *rs;
741
742 if (raid_devs <= raid_type->parity_devs) {
743 ti->error = "Insufficient number of devices";
744 return ERR_PTR(-EINVAL);
745 }
746
747 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
748 if (!rs) {
749 ti->error = "Cannot allocate raid context";
750 return ERR_PTR(-ENOMEM);
751 }
752
753 if (mddev_init(&rs->md)) {
754 kfree(rs);
755 ti->error = "Cannot initialize raid context";
756 return ERR_PTR(-ENOMEM);
757 }
758
759 rs->raid_disks = raid_devs;
760 rs->delta_disks = 0;
761
762 rs->ti = ti;
763 rs->raid_type = raid_type;
764 rs->stripe_cache_entries = 256;
765 rs->md.raid_disks = raid_devs;
766 rs->md.level = raid_type->level;
767 rs->md.new_level = rs->md.level;
768 rs->md.layout = raid_type->algorithm;
769 rs->md.new_layout = rs->md.layout;
770 rs->md.delta_disks = 0;
771 rs->md.recovery_cp = MaxSector;
772
773 for (i = 0; i < raid_devs; i++)
774 md_rdev_init(&rs->dev[i].rdev);
775
776 /*
777 * Remaining items to be initialized by further RAID params:
778 * rs->md.persistent
779 * rs->md.external
780 * rs->md.chunk_sectors
781 * rs->md.new_chunk_sectors
782 * rs->md.dev_sectors
783 */
784
785 return rs;
786}
787
788/* Free all @rs allocations */
789static void raid_set_free(struct raid_set *rs)
790{
791 int i;
792
793 if (rs->journal_dev.dev) {
794 md_rdev_clear(&rs->journal_dev.rdev);
795 dm_put_device(rs->ti, rs->journal_dev.dev);
796 }
797
798 for (i = 0; i < rs->raid_disks; i++) {
799 if (rs->dev[i].meta_dev)
800 dm_put_device(rs->ti, rs->dev[i].meta_dev);
801 md_rdev_clear(&rs->dev[i].rdev);
802 if (rs->dev[i].data_dev)
803 dm_put_device(rs->ti, rs->dev[i].data_dev);
804 }
805
806 mddev_destroy(&rs->md);
807 kfree(rs);
808}
809
810/*
811 * For every device we have two words
812 * <meta_dev>: meta device name or '-' if missing
813 * <data_dev>: data device name or '-' if missing
814 *
815 * The following are permitted:
816 * - -
817 * - <data_dev>
818 * <meta_dev> <data_dev>
819 *
820 * The following is not allowed:
821 * <meta_dev> -
822 *
823 * This code parses those words. If there is a failure,
824 * the caller must use raid_set_free() to unwind the operations.
825 */
826static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
827{
828 int i;
829 int rebuild = 0;
830 int metadata_available = 0;
831 int r = 0;
832 const char *arg;
833
834 /* Put off the number of raid devices argument to get to dev pairs */
835 arg = dm_shift_arg(as);
836 if (!arg)
837 return -EINVAL;
838
839 for (i = 0; i < rs->raid_disks; i++) {
840 rs->dev[i].rdev.raid_disk = i;
841
842 rs->dev[i].meta_dev = NULL;
843 rs->dev[i].data_dev = NULL;
844
845 /*
846 * There are no offsets initially.
847 * Out of place reshape will set them accordingly.
848 */
849 rs->dev[i].rdev.data_offset = 0;
850 rs->dev[i].rdev.new_data_offset = 0;
851 rs->dev[i].rdev.mddev = &rs->md;
852
853 arg = dm_shift_arg(as);
854 if (!arg)
855 return -EINVAL;
856
857 if (strcmp(arg, "-")) {
858 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
859 &rs->dev[i].meta_dev);
860 if (r) {
861 rs->ti->error = "RAID metadata device lookup failure";
862 return r;
863 }
864
865 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
866 if (!rs->dev[i].rdev.sb_page) {
867 rs->ti->error = "Failed to allocate superblock page";
868 return -ENOMEM;
869 }
870 }
871
872 arg = dm_shift_arg(as);
873 if (!arg)
874 return -EINVAL;
875
876 if (!strcmp(arg, "-")) {
877 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
878 (!rs->dev[i].rdev.recovery_offset)) {
879 rs->ti->error = "Drive designated for rebuild not specified";
880 return -EINVAL;
881 }
882
883 if (rs->dev[i].meta_dev) {
884 rs->ti->error = "No data device supplied with metadata device";
885 return -EINVAL;
886 }
887
888 continue;
889 }
890
891 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
892 &rs->dev[i].data_dev);
893 if (r) {
894 rs->ti->error = "RAID device lookup failure";
895 return r;
896 }
897
898 if (rs->dev[i].meta_dev) {
899 metadata_available = 1;
900 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
901 }
902 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
903 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
904 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
905 rebuild++;
906 }
907
908 if (rs->journal_dev.dev)
909 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
910
911 if (metadata_available) {
912 rs->md.external = 0;
913 rs->md.persistent = 1;
914 rs->md.major_version = 2;
915 } else if (rebuild && !rs->md.recovery_cp) {
916 /*
917 * Without metadata, we will not be able to tell if the array
918 * is in-sync or not - we must assume it is not. Therefore,
919 * it is impossible to rebuild a drive.
920 *
921 * Even if there is metadata, the on-disk information may
922 * indicate that the array is not in-sync and it will then
923 * fail at that time.
924 *
925 * User could specify 'nosync' option if desperate.
926 */
927 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
928 return -EINVAL;
929 }
930
931 return 0;
932}
933
934/*
935 * validate_region_size
936 * @rs
937 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
938 *
939 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
940 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
941 *
942 * Returns: 0 on success, -EINVAL on failure.
943 */
944static int validate_region_size(struct raid_set *rs, unsigned long region_size)
945{
946 unsigned long min_region_size = rs->ti->len / (1 << 21);
947
948 if (rs_is_raid0(rs))
949 return 0;
950
951 if (!region_size) {
952 /*
953 * Choose a reasonable default. All figures in sectors.
954 */
955 if (min_region_size > (1 << 13)) {
956 /* If not a power of 2, make it the next power of 2 */
957 region_size = roundup_pow_of_two(min_region_size);
958 DMINFO("Choosing default region size of %lu sectors",
959 region_size);
960 } else {
961 DMINFO("Choosing default region size of 4MiB");
962 region_size = 1 << 13; /* sectors */
963 }
964 } else {
965 /*
966 * Validate user-supplied value.
967 */
968 if (region_size > rs->ti->len) {
969 rs->ti->error = "Supplied region size is too large";
970 return -EINVAL;
971 }
972
973 if (region_size < min_region_size) {
974 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
975 region_size, min_region_size);
976 rs->ti->error = "Supplied region size is too small";
977 return -EINVAL;
978 }
979
980 if (!is_power_of_2(region_size)) {
981 rs->ti->error = "Region size is not a power of 2";
982 return -EINVAL;
983 }
984
985 if (region_size < rs->md.chunk_sectors) {
986 rs->ti->error = "Region size is smaller than the chunk size";
987 return -EINVAL;
988 }
989 }
990
991 /*
992 * Convert sectors to bytes.
993 */
994 rs->md.bitmap_info.chunksize = to_bytes(region_size);
995
996 return 0;
997}
998
999/*
1000 * validate_raid_redundancy
1001 * @rs
1002 *
1003 * Determine if there are enough devices in the array that haven't
1004 * failed (or are being rebuilt) to form a usable array.
1005 *
1006 * Returns: 0 on success, -EINVAL on failure.
1007 */
1008static int validate_raid_redundancy(struct raid_set *rs)
1009{
1010 unsigned int i, rebuild_cnt = 0;
1011 unsigned int rebuilds_per_group = 0, copies, raid_disks;
1012 unsigned int group_size, last_group_start;
1013
1014 for (i = 0; i < rs->raid_disks; i++)
1015 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1016 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1017 !rs->dev[i].rdev.sb_page)))
1018 rebuild_cnt++;
1019
1020 switch (rs->md.level) {
1021 case 0:
1022 break;
1023 case 1:
1024 if (rebuild_cnt >= rs->md.raid_disks)
1025 goto too_many;
1026 break;
1027 case 4:
1028 case 5:
1029 case 6:
1030 if (rebuild_cnt > rs->raid_type->parity_devs)
1031 goto too_many;
1032 break;
1033 case 10:
1034 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1035 if (copies < 2) {
1036 DMERR("Bogus raid10 data copies < 2!");
1037 return -EINVAL;
1038 }
1039
1040 if (rebuild_cnt < copies)
1041 break;
1042
1043 /*
1044 * It is possible to have a higher rebuild count for RAID10,
1045 * as long as the failed devices occur in different mirror
1046 * groups (i.e. different stripes).
1047 *
1048 * When checking "near" format, make sure no adjacent devices
1049 * have failed beyond what can be handled. In addition to the
1050 * simple case where the number of devices is a multiple of the
1051 * number of copies, we must also handle cases where the number
1052 * of devices is not a multiple of the number of copies.
1053 * E.g. dev1 dev2 dev3 dev4 dev5
1054 * A A B B C
1055 * C D D E E
1056 */
1057 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1058 if (__is_raid10_near(rs->md.new_layout)) {
1059 for (i = 0; i < raid_disks; i++) {
1060 if (!(i % copies))
1061 rebuilds_per_group = 0;
1062 if ((!rs->dev[i].rdev.sb_page ||
1063 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1064 (++rebuilds_per_group >= copies))
1065 goto too_many;
1066 }
1067 break;
1068 }
1069
1070 /*
1071 * When checking "far" and "offset" formats, we need to ensure
1072 * that the device that holds its copy is not also dead or
1073 * being rebuilt. (Note that "far" and "offset" formats only
1074 * support two copies right now. These formats also only ever
1075 * use the 'use_far_sets' variant.)
1076 *
1077 * This check is somewhat complicated by the need to account
1078 * for arrays that are not a multiple of (far) copies. This
1079 * results in the need to treat the last (potentially larger)
1080 * set differently.
1081 */
1082 group_size = (raid_disks / copies);
1083 last_group_start = (raid_disks / group_size) - 1;
1084 last_group_start *= group_size;
1085 for (i = 0; i < raid_disks; i++) {
1086 if (!(i % copies) && !(i > last_group_start))
1087 rebuilds_per_group = 0;
1088 if ((!rs->dev[i].rdev.sb_page ||
1089 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1090 (++rebuilds_per_group >= copies))
1091 goto too_many;
1092 }
1093 break;
1094 default:
1095 if (rebuild_cnt)
1096 return -EINVAL;
1097 }
1098
1099 return 0;
1100
1101too_many:
1102 return -EINVAL;
1103}
1104
1105/*
1106 * Possible arguments are...
1107 * <chunk_size> [optional_args]
1108 *
1109 * Argument definitions
1110 * <chunk_size> The number of sectors per disk that
1111 * will form the "stripe"
1112 * [[no]sync] Force or prevent recovery of the
1113 * entire array
1114 * [rebuild <idx>] Rebuild the drive indicated by the index
1115 * [daemon_sleep <ms>] Time between bitmap daemon work to
1116 * clear bits
1117 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1118 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1119 * [write_mostly <idx>] Indicate a write mostly drive via index
1120 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1121 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1122 * [region_size <sectors>] Defines granularity of bitmap
1123 * [journal_dev <dev>] raid4/5/6 journaling deviice
1124 * (i.e. write hole closing log)
1125 *
1126 * RAID10-only options:
1127 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1128 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1129 */
1130static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1131 unsigned int num_raid_params)
1132{
1133 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1134 unsigned int raid10_copies = 2;
1135 unsigned int i, write_mostly = 0;
1136 unsigned int region_size = 0;
1137 sector_t max_io_len;
1138 const char *arg, *key;
1139 struct raid_dev *rd;
1140 struct raid_type *rt = rs->raid_type;
1141
1142 arg = dm_shift_arg(as);
1143 num_raid_params--; /* Account for chunk_size argument */
1144
1145 if (kstrtoint(arg, 10, &value) < 0) {
1146 rs->ti->error = "Bad numerical argument given for chunk_size";
1147 return -EINVAL;
1148 }
1149
1150 /*
1151 * First, parse the in-order required arguments
1152 * "chunk_size" is the only argument of this type.
1153 */
1154 if (rt_is_raid1(rt)) {
1155 if (value)
1156 DMERR("Ignoring chunk size parameter for RAID 1");
1157 value = 0;
1158 } else if (!is_power_of_2(value)) {
1159 rs->ti->error = "Chunk size must be a power of 2";
1160 return -EINVAL;
1161 } else if (value < 8) {
1162 rs->ti->error = "Chunk size value is too small";
1163 return -EINVAL;
1164 }
1165
1166 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1167
1168 /*
1169 * We set each individual device as In_sync with a completed
1170 * 'recovery_offset'. If there has been a device failure or
1171 * replacement then one of the following cases applies:
1172 *
1173 * 1) User specifies 'rebuild'.
1174 * - Device is reset when param is read.
1175 * 2) A new device is supplied.
1176 * - No matching superblock found, resets device.
1177 * 3) Device failure was transient and returns on reload.
1178 * - Failure noticed, resets device for bitmap replay.
1179 * 4) Device hadn't completed recovery after previous failure.
1180 * - Superblock is read and overrides recovery_offset.
1181 *
1182 * What is found in the superblocks of the devices is always
1183 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1184 */
1185 for (i = 0; i < rs->raid_disks; i++) {
1186 set_bit(In_sync, &rs->dev[i].rdev.flags);
1187 rs->dev[i].rdev.recovery_offset = MaxSector;
1188 }
1189
1190 /*
1191 * Second, parse the unordered optional arguments
1192 */
1193 for (i = 0; i < num_raid_params; i++) {
1194 key = dm_shift_arg(as);
1195 if (!key) {
1196 rs->ti->error = "Not enough raid parameters given";
1197 return -EINVAL;
1198 }
1199
1200 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1201 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1202 rs->ti->error = "Only one 'nosync' argument allowed";
1203 return -EINVAL;
1204 }
1205 continue;
1206 }
1207 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1208 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1209 rs->ti->error = "Only one 'sync' argument allowed";
1210 return -EINVAL;
1211 }
1212 continue;
1213 }
1214 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1215 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1216 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1217 return -EINVAL;
1218 }
1219 continue;
1220 }
1221
1222 arg = dm_shift_arg(as);
1223 i++; /* Account for the argument pairs */
1224 if (!arg) {
1225 rs->ti->error = "Wrong number of raid parameters given";
1226 return -EINVAL;
1227 }
1228
1229 /*
1230 * Parameters that take a string value are checked here.
1231 */
1232 /* "raid10_format {near|offset|far} */
1233 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1234 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1235 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1236 return -EINVAL;
1237 }
1238 if (!rt_is_raid10(rt)) {
1239 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1240 return -EINVAL;
1241 }
1242 raid10_format = raid10_name_to_format(arg);
1243 if (raid10_format < 0) {
1244 rs->ti->error = "Invalid 'raid10_format' value given";
1245 return raid10_format;
1246 }
1247 continue;
1248 }
1249
1250 /* "journal_dev <dev>" */
1251 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1252 int r;
1253 struct md_rdev *jdev;
1254
1255 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1256 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1257 return -EINVAL;
1258 }
1259 if (!rt_is_raid456(rt)) {
1260 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1261 return -EINVAL;
1262 }
1263 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1264 &rs->journal_dev.dev);
1265 if (r) {
1266 rs->ti->error = "raid4/5/6 journal device lookup failure";
1267 return r;
1268 }
1269 jdev = &rs->journal_dev.rdev;
1270 md_rdev_init(jdev);
1271 jdev->mddev = &rs->md;
1272 jdev->bdev = rs->journal_dev.dev->bdev;
1273 jdev->sectors = bdev_nr_sectors(jdev->bdev);
1274 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1275 rs->ti->error = "No space for raid4/5/6 journal";
1276 return -ENOSPC;
1277 }
1278 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1279 set_bit(Journal, &jdev->flags);
1280 continue;
1281 }
1282
1283 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1284 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1285 int r;
1286
1287 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1288 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1289 return -EINVAL;
1290 }
1291 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1292 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1293 return -EINVAL;
1294 }
1295 r = dm_raid_journal_mode_to_md(arg);
1296 if (r < 0) {
1297 rs->ti->error = "Invalid 'journal_mode' argument";
1298 return r;
1299 }
1300 rs->journal_dev.mode = r;
1301 continue;
1302 }
1303
1304 /*
1305 * Parameters with number values from here on.
1306 */
1307 if (kstrtoint(arg, 10, &value) < 0) {
1308 rs->ti->error = "Bad numerical argument given in raid params";
1309 return -EINVAL;
1310 }
1311
1312 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1313 /*
1314 * "rebuild" is being passed in by userspace to provide
1315 * indexes of replaced devices and to set up additional
1316 * devices on raid level takeover.
1317 */
1318 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1319 rs->ti->error = "Invalid rebuild index given";
1320 return -EINVAL;
1321 }
1322
1323 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1324 rs->ti->error = "rebuild for this index already given";
1325 return -EINVAL;
1326 }
1327
1328 rd = rs->dev + value;
1329 clear_bit(In_sync, &rd->rdev.flags);
1330 clear_bit(Faulty, &rd->rdev.flags);
1331 rd->rdev.recovery_offset = 0;
1332 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1333 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1334 if (!rt_is_raid1(rt)) {
1335 rs->ti->error = "write_mostly option is only valid for RAID1";
1336 return -EINVAL;
1337 }
1338
1339 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1340 rs->ti->error = "Invalid write_mostly index given";
1341 return -EINVAL;
1342 }
1343
1344 write_mostly++;
1345 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1346 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1347 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1348 if (!rt_is_raid1(rt)) {
1349 rs->ti->error = "max_write_behind option is only valid for RAID1";
1350 return -EINVAL;
1351 }
1352
1353 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1354 rs->ti->error = "Only one max_write_behind argument pair allowed";
1355 return -EINVAL;
1356 }
1357
1358 /*
1359 * In device-mapper, we specify things in sectors, but
1360 * MD records this value in kB
1361 */
1362 if (value < 0 || value / 2 > COUNTER_MAX) {
1363 rs->ti->error = "Max write-behind limit out of range";
1364 return -EINVAL;
1365 }
1366
1367 rs->md.bitmap_info.max_write_behind = value / 2;
1368 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1369 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1370 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1371 return -EINVAL;
1372 }
1373 if (value < 0) {
1374 rs->ti->error = "daemon sleep period out of range";
1375 return -EINVAL;
1376 }
1377 rs->md.bitmap_info.daemon_sleep = value;
1378 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1379 /* Userspace passes new data_offset after having extended the data image LV */
1380 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1381 rs->ti->error = "Only one data_offset argument pair allowed";
1382 return -EINVAL;
1383 }
1384 /* Ensure sensible data offset */
1385 if (value < 0 ||
1386 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1387 rs->ti->error = "Bogus data_offset value";
1388 return -EINVAL;
1389 }
1390 rs->data_offset = value;
1391 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1392 /* Define the +/-# of disks to add to/remove from the given raid set */
1393 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1394 rs->ti->error = "Only one delta_disks argument pair allowed";
1395 return -EINVAL;
1396 }
1397 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1398 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1399 rs->ti->error = "Too many delta_disk requested";
1400 return -EINVAL;
1401 }
1402
1403 rs->delta_disks = value;
1404 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1405 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1406 rs->ti->error = "Only one stripe_cache argument pair allowed";
1407 return -EINVAL;
1408 }
1409
1410 if (!rt_is_raid456(rt)) {
1411 rs->ti->error = "Inappropriate argument: stripe_cache";
1412 return -EINVAL;
1413 }
1414
1415 if (value < 0) {
1416 rs->ti->error = "Bogus stripe cache entries value";
1417 return -EINVAL;
1418 }
1419 rs->stripe_cache_entries = value;
1420 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1421 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1422 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1423 return -EINVAL;
1424 }
1425
1426 if (value < 0) {
1427 rs->ti->error = "min_recovery_rate out of range";
1428 return -EINVAL;
1429 }
1430 rs->md.sync_speed_min = value;
1431 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1432 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1433 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1434 return -EINVAL;
1435 }
1436
1437 if (value < 0) {
1438 rs->ti->error = "max_recovery_rate out of range";
1439 return -EINVAL;
1440 }
1441 rs->md.sync_speed_max = value;
1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1443 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1444 rs->ti->error = "Only one region_size argument pair allowed";
1445 return -EINVAL;
1446 }
1447
1448 region_size = value;
1449 rs->requested_bitmap_chunk_sectors = value;
1450 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1451 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1452 rs->ti->error = "Only one raid10_copies argument pair allowed";
1453 return -EINVAL;
1454 }
1455
1456 if (!__within_range(value, 2, rs->md.raid_disks)) {
1457 rs->ti->error = "Bad value for 'raid10_copies'";
1458 return -EINVAL;
1459 }
1460
1461 raid10_copies = value;
1462 } else {
1463 DMERR("Unable to parse RAID parameter: %s", key);
1464 rs->ti->error = "Unable to parse RAID parameter";
1465 return -EINVAL;
1466 }
1467 }
1468
1469 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1470 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1471 rs->ti->error = "sync and nosync are mutually exclusive";
1472 return -EINVAL;
1473 }
1474
1475 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1476 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1477 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1478 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1479 return -EINVAL;
1480 }
1481
1482 if (write_mostly >= rs->md.raid_disks) {
1483 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1484 return -EINVAL;
1485 }
1486
1487 if (rs->md.sync_speed_max &&
1488 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1489 rs->ti->error = "Bogus recovery rates";
1490 return -EINVAL;
1491 }
1492
1493 if (validate_region_size(rs, region_size))
1494 return -EINVAL;
1495
1496 if (rs->md.chunk_sectors)
1497 max_io_len = rs->md.chunk_sectors;
1498 else
1499 max_io_len = region_size;
1500
1501 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1502 return -EINVAL;
1503
1504 if (rt_is_raid10(rt)) {
1505 if (raid10_copies > rs->md.raid_disks) {
1506 rs->ti->error = "Not enough devices to satisfy specification";
1507 return -EINVAL;
1508 }
1509
1510 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1511 if (rs->md.new_layout < 0) {
1512 rs->ti->error = "Error getting raid10 format";
1513 return rs->md.new_layout;
1514 }
1515
1516 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1517 if (!rt) {
1518 rs->ti->error = "Failed to recognize new raid10 layout";
1519 return -EINVAL;
1520 }
1521
1522 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1523 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1524 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1525 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1526 return -EINVAL;
1527 }
1528 }
1529
1530 rs->raid10_copies = raid10_copies;
1531
1532 /* Assume there are no metadata devices until the drives are parsed */
1533 rs->md.persistent = 0;
1534 rs->md.external = 1;
1535
1536 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1537 return rs_check_for_valid_flags(rs);
1538}
1539
1540/* Set raid4/5/6 cache size */
1541static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1542{
1543 int r;
1544 struct r5conf *conf;
1545 struct mddev *mddev = &rs->md;
1546 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1547 uint32_t nr_stripes = rs->stripe_cache_entries;
1548
1549 if (!rt_is_raid456(rs->raid_type)) {
1550 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1551 return -EINVAL;
1552 }
1553
1554 if (nr_stripes < min_stripes) {
1555 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1556 nr_stripes, min_stripes);
1557 nr_stripes = min_stripes;
1558 }
1559
1560 conf = mddev->private;
1561 if (!conf) {
1562 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1563 return -EINVAL;
1564 }
1565
1566 /* Try setting number of stripes in raid456 stripe cache */
1567 if (conf->min_nr_stripes != nr_stripes) {
1568 r = raid5_set_cache_size(mddev, nr_stripes);
1569 if (r) {
1570 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1571 return r;
1572 }
1573
1574 DMINFO("%u stripe cache entries", nr_stripes);
1575 }
1576
1577 return 0;
1578}
1579
1580/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1581static unsigned int mddev_data_stripes(struct raid_set *rs)
1582{
1583 return rs->md.raid_disks - rs->raid_type->parity_devs;
1584}
1585
1586/* Return # of data stripes of @rs (i.e. as of ctr) */
1587static unsigned int rs_data_stripes(struct raid_set *rs)
1588{
1589 return rs->raid_disks - rs->raid_type->parity_devs;
1590}
1591
1592/*
1593 * Retrieve rdev->sectors from any valid raid device of @rs
1594 * to allow userpace to pass in arbitray "- -" device tupples.
1595 */
1596static sector_t __rdev_sectors(struct raid_set *rs)
1597{
1598 int i;
1599
1600 for (i = 0; i < rs->raid_disks; i++) {
1601 struct md_rdev *rdev = &rs->dev[i].rdev;
1602
1603 if (!test_bit(Journal, &rdev->flags) &&
1604 rdev->bdev && rdev->sectors)
1605 return rdev->sectors;
1606 }
1607
1608 return 0;
1609}
1610
1611/* Check that calculated dev_sectors fits all component devices. */
1612static int _check_data_dev_sectors(struct raid_set *rs)
1613{
1614 sector_t ds = ~0;
1615 struct md_rdev *rdev;
1616
1617 rdev_for_each(rdev, &rs->md)
1618 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1619 ds = min(ds, bdev_nr_sectors(rdev->bdev));
1620 if (ds < rs->md.dev_sectors) {
1621 rs->ti->error = "Component device(s) too small";
1622 return -EINVAL;
1623 }
1624 }
1625
1626 return 0;
1627}
1628
1629/* Calculate the sectors per device and per array used for @rs */
1630static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1631{
1632 int delta_disks;
1633 unsigned int data_stripes;
1634 sector_t array_sectors = sectors, dev_sectors = sectors;
1635 struct mddev *mddev = &rs->md;
1636
1637 if (use_mddev) {
1638 delta_disks = mddev->delta_disks;
1639 data_stripes = mddev_data_stripes(rs);
1640 } else {
1641 delta_disks = rs->delta_disks;
1642 data_stripes = rs_data_stripes(rs);
1643 }
1644
1645 /* Special raid1 case w/o delta_disks support (yet) */
1646 if (rt_is_raid1(rs->raid_type))
1647 ;
1648 else if (rt_is_raid10(rs->raid_type)) {
1649 if (rs->raid10_copies < 2 ||
1650 delta_disks < 0) {
1651 rs->ti->error = "Bogus raid10 data copies or delta disks";
1652 return -EINVAL;
1653 }
1654
1655 dev_sectors *= rs->raid10_copies;
1656 if (sector_div(dev_sectors, data_stripes))
1657 goto bad;
1658
1659 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1660 if (sector_div(array_sectors, rs->raid10_copies))
1661 goto bad;
1662
1663 } else if (sector_div(dev_sectors, data_stripes))
1664 goto bad;
1665
1666 else
1667 /* Striped layouts */
1668 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1669
1670 mddev->array_sectors = array_sectors;
1671 mddev->dev_sectors = dev_sectors;
1672 rs_set_rdev_sectors(rs);
1673
1674 return _check_data_dev_sectors(rs);
1675bad:
1676 rs->ti->error = "Target length not divisible by number of data devices";
1677 return -EINVAL;
1678}
1679
1680/* Setup recovery on @rs */
1681static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1682{
1683 /* raid0 does not recover */
1684 if (rs_is_raid0(rs))
1685 rs->md.recovery_cp = MaxSector;
1686 /*
1687 * A raid6 set has to be recovered either
1688 * completely or for the grown part to
1689 * ensure proper parity and Q-Syndrome
1690 */
1691 else if (rs_is_raid6(rs))
1692 rs->md.recovery_cp = dev_sectors;
1693 /*
1694 * Other raid set types may skip recovery
1695 * depending on the 'nosync' flag.
1696 */
1697 else
1698 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1699 ? MaxSector : dev_sectors;
1700}
1701
1702static void do_table_event(struct work_struct *ws)
1703{
1704 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1705
1706 smp_rmb(); /* Make sure we access most actual mddev properties */
1707 if (!rs_is_reshaping(rs)) {
1708 if (rs_is_raid10(rs))
1709 rs_set_rdev_sectors(rs);
1710 rs_set_capacity(rs);
1711 }
1712 dm_table_event(rs->ti->table);
1713}
1714
1715/*
1716 * Make sure a valid takover (level switch) is being requested on @rs
1717 *
1718 * Conversions of raid sets from one MD personality to another
1719 * have to conform to restrictions which are enforced here.
1720 */
1721static int rs_check_takeover(struct raid_set *rs)
1722{
1723 struct mddev *mddev = &rs->md;
1724 unsigned int near_copies;
1725
1726 if (rs->md.degraded) {
1727 rs->ti->error = "Can't takeover degraded raid set";
1728 return -EPERM;
1729 }
1730
1731 if (rs_is_reshaping(rs)) {
1732 rs->ti->error = "Can't takeover reshaping raid set";
1733 return -EPERM;
1734 }
1735
1736 switch (mddev->level) {
1737 case 0:
1738 /* raid0 -> raid1/5 with one disk */
1739 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1740 mddev->raid_disks == 1)
1741 return 0;
1742
1743 /* raid0 -> raid10 */
1744 if (mddev->new_level == 10 &&
1745 !(rs->raid_disks % mddev->raid_disks))
1746 return 0;
1747
1748 /* raid0 with multiple disks -> raid4/5/6 */
1749 if (__within_range(mddev->new_level, 4, 6) &&
1750 mddev->new_layout == ALGORITHM_PARITY_N &&
1751 mddev->raid_disks > 1)
1752 return 0;
1753
1754 break;
1755
1756 case 10:
1757 /* Can't takeover raid10_offset! */
1758 if (__is_raid10_offset(mddev->layout))
1759 break;
1760
1761 near_copies = __raid10_near_copies(mddev->layout);
1762
1763 /* raid10* -> raid0 */
1764 if (mddev->new_level == 0) {
1765 /* Can takeover raid10_near with raid disks divisable by data copies! */
1766 if (near_copies > 1 &&
1767 !(mddev->raid_disks % near_copies)) {
1768 mddev->raid_disks /= near_copies;
1769 mddev->delta_disks = mddev->raid_disks;
1770 return 0;
1771 }
1772
1773 /* Can takeover raid10_far */
1774 if (near_copies == 1 &&
1775 __raid10_far_copies(mddev->layout) > 1)
1776 return 0;
1777
1778 break;
1779 }
1780
1781 /* raid10_{near,far} -> raid1 */
1782 if (mddev->new_level == 1 &&
1783 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1784 return 0;
1785
1786 /* raid10_{near,far} with 2 disks -> raid4/5 */
1787 if (__within_range(mddev->new_level, 4, 5) &&
1788 mddev->raid_disks == 2)
1789 return 0;
1790 break;
1791
1792 case 1:
1793 /* raid1 with 2 disks -> raid4/5 */
1794 if (__within_range(mddev->new_level, 4, 5) &&
1795 mddev->raid_disks == 2) {
1796 mddev->degraded = 1;
1797 return 0;
1798 }
1799
1800 /* raid1 -> raid0 */
1801 if (mddev->new_level == 0 &&
1802 mddev->raid_disks == 1)
1803 return 0;
1804
1805 /* raid1 -> raid10 */
1806 if (mddev->new_level == 10)
1807 return 0;
1808 break;
1809
1810 case 4:
1811 /* raid4 -> raid0 */
1812 if (mddev->new_level == 0)
1813 return 0;
1814
1815 /* raid4 -> raid1/5 with 2 disks */
1816 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1817 mddev->raid_disks == 2)
1818 return 0;
1819
1820 /* raid4 -> raid5/6 with parity N */
1821 if (__within_range(mddev->new_level, 5, 6) &&
1822 mddev->layout == ALGORITHM_PARITY_N)
1823 return 0;
1824 break;
1825
1826 case 5:
1827 /* raid5 with parity N -> raid0 */
1828 if (mddev->new_level == 0 &&
1829 mddev->layout == ALGORITHM_PARITY_N)
1830 return 0;
1831
1832 /* raid5 with parity N -> raid4 */
1833 if (mddev->new_level == 4 &&
1834 mddev->layout == ALGORITHM_PARITY_N)
1835 return 0;
1836
1837 /* raid5 with 2 disks -> raid1/4/10 */
1838 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1839 mddev->raid_disks == 2)
1840 return 0;
1841
1842 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1843 if (mddev->new_level == 6 &&
1844 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1845 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1846 return 0;
1847 break;
1848
1849 case 6:
1850 /* raid6 with parity N -> raid0 */
1851 if (mddev->new_level == 0 &&
1852 mddev->layout == ALGORITHM_PARITY_N)
1853 return 0;
1854
1855 /* raid6 with parity N -> raid4 */
1856 if (mddev->new_level == 4 &&
1857 mddev->layout == ALGORITHM_PARITY_N)
1858 return 0;
1859
1860 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1861 if (mddev->new_level == 5 &&
1862 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1863 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1864 return 0;
1865 break;
1866
1867 default:
1868 break;
1869 }
1870
1871 rs->ti->error = "takeover not possible";
1872 return -EINVAL;
1873}
1874
1875/* True if @rs requested to be taken over */
1876static bool rs_takeover_requested(struct raid_set *rs)
1877{
1878 return rs->md.new_level != rs->md.level;
1879}
1880
1881/* True if layout is set to reshape. */
1882static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1883{
1884 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1885 rs->md.new_layout != rs->md.layout ||
1886 rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1887}
1888
1889/* True if @rs is requested to reshape by ctr */
1890static bool rs_reshape_requested(struct raid_set *rs)
1891{
1892 bool change;
1893 struct mddev *mddev = &rs->md;
1894
1895 if (rs_takeover_requested(rs))
1896 return false;
1897
1898 if (rs_is_raid0(rs))
1899 return false;
1900
1901 change = rs_is_layout_change(rs, false);
1902
1903 /* Historical case to support raid1 reshape without delta disks */
1904 if (rs_is_raid1(rs)) {
1905 if (rs->delta_disks)
1906 return !!rs->delta_disks;
1907
1908 return !change &&
1909 mddev->raid_disks != rs->raid_disks;
1910 }
1911
1912 if (rs_is_raid10(rs))
1913 return change &&
1914 !__is_raid10_far(mddev->new_layout) &&
1915 rs->delta_disks >= 0;
1916
1917 return change;
1918}
1919
1920/* Features */
1921#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1922
1923/* State flags for sb->flags */
1924#define SB_FLAG_RESHAPE_ACTIVE 0x1
1925#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1926
1927/*
1928 * This structure is never routinely used by userspace, unlike md superblocks.
1929 * Devices with this superblock should only ever be accessed via device-mapper.
1930 */
1931#define DM_RAID_MAGIC 0x64526D44
1932struct dm_raid_superblock {
1933 __le32 magic; /* "DmRd" */
1934 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1935
1936 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1937 __le32 array_position; /* The position of this drive in the raid set */
1938
1939 __le64 events; /* Incremented by md when superblock updated */
1940 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1941 /* indicate failures (see extension below) */
1942
1943 /*
1944 * This offset tracks the progress of the repair or replacement of
1945 * an individual drive.
1946 */
1947 __le64 disk_recovery_offset;
1948
1949 /*
1950 * This offset tracks the progress of the initial raid set
1951 * synchronisation/parity calculation.
1952 */
1953 __le64 array_resync_offset;
1954
1955 /*
1956 * raid characteristics
1957 */
1958 __le32 level;
1959 __le32 layout;
1960 __le32 stripe_sectors;
1961
1962 /********************************************************************
1963 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1964 *
1965 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1966 */
1967
1968 __le32 flags; /* Flags defining array states for reshaping */
1969
1970 /*
1971 * This offset tracks the progress of a raid
1972 * set reshape in order to be able to restart it
1973 */
1974 __le64 reshape_position;
1975
1976 /*
1977 * These define the properties of the array in case of an interrupted reshape
1978 */
1979 __le32 new_level;
1980 __le32 new_layout;
1981 __le32 new_stripe_sectors;
1982 __le32 delta_disks;
1983
1984 __le64 array_sectors; /* Array size in sectors */
1985
1986 /*
1987 * Sector offsets to data on devices (reshaping).
1988 * Needed to support out of place reshaping, thus
1989 * not writing over any stripes whilst converting
1990 * them from old to new layout
1991 */
1992 __le64 data_offset;
1993 __le64 new_data_offset;
1994
1995 __le64 sectors; /* Used device size in sectors */
1996
1997 /*
1998 * Additional Bit field of devices indicating failures to support
1999 * up to 256 devices with the 1.9.0 on-disk metadata format
2000 */
2001 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2002
2003 __le32 incompat_features; /* Used to indicate any incompatible features */
2004
2005 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2006} __packed;
2007
2008/*
2009 * Check for reshape constraints on raid set @rs:
2010 *
2011 * - reshape function non-existent
2012 * - degraded set
2013 * - ongoing recovery
2014 * - ongoing reshape
2015 *
2016 * Returns 0 if none or -EPERM if given constraint
2017 * and error message reference in @errmsg
2018 */
2019static int rs_check_reshape(struct raid_set *rs)
2020{
2021 struct mddev *mddev = &rs->md;
2022
2023 if (!mddev->pers || !mddev->pers->check_reshape)
2024 rs->ti->error = "Reshape not supported";
2025 else if (mddev->degraded)
2026 rs->ti->error = "Can't reshape degraded raid set";
2027 else if (rs_is_recovering(rs))
2028 rs->ti->error = "Convert request on recovering raid set prohibited";
2029 else if (rs_is_reshaping(rs))
2030 rs->ti->error = "raid set already reshaping!";
2031 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2032 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2033 else
2034 return 0;
2035
2036 return -EPERM;
2037}
2038
2039static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2040{
2041 BUG_ON(!rdev->sb_page);
2042
2043 if (rdev->sb_loaded && !force_reload)
2044 return 0;
2045
2046 rdev->sb_loaded = 0;
2047
2048 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2049 DMERR("Failed to read superblock of device at position %d",
2050 rdev->raid_disk);
2051 md_error(rdev->mddev, rdev);
2052 set_bit(Faulty, &rdev->flags);
2053 return -EIO;
2054 }
2055
2056 rdev->sb_loaded = 1;
2057
2058 return 0;
2059}
2060
2061static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2062{
2063 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2064 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2065
2066 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2067 int i = ARRAY_SIZE(sb->extended_failed_devices);
2068
2069 while (i--)
2070 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2071 }
2072}
2073
2074static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2075{
2076 int i = ARRAY_SIZE(sb->extended_failed_devices);
2077
2078 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2079 while (i--)
2080 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2081}
2082
2083/*
2084 * Synchronize the superblock members with the raid set properties
2085 *
2086 * All superblock data is little endian.
2087 */
2088static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2089{
2090 bool update_failed_devices = false;
2091 unsigned int i;
2092 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2093 struct dm_raid_superblock *sb;
2094 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2095
2096 /* No metadata device, no superblock */
2097 if (!rdev->meta_bdev)
2098 return;
2099
2100 BUG_ON(!rdev->sb_page);
2101
2102 sb = page_address(rdev->sb_page);
2103
2104 sb_retrieve_failed_devices(sb, failed_devices);
2105
2106 for (i = 0; i < rs->raid_disks; i++)
2107 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2108 update_failed_devices = true;
2109 set_bit(i, (void *) failed_devices);
2110 }
2111
2112 if (update_failed_devices)
2113 sb_update_failed_devices(sb, failed_devices);
2114
2115 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2116 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2117
2118 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2119 sb->array_position = cpu_to_le32(rdev->raid_disk);
2120
2121 sb->events = cpu_to_le64(mddev->events);
2122
2123 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2124 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2125
2126 sb->level = cpu_to_le32(mddev->level);
2127 sb->layout = cpu_to_le32(mddev->layout);
2128 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2129
2130 /********************************************************************
2131 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2132 *
2133 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2134 */
2135 sb->new_level = cpu_to_le32(mddev->new_level);
2136 sb->new_layout = cpu_to_le32(mddev->new_layout);
2137 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2138
2139 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2140
2141 smp_rmb(); /* Make sure we access most recent reshape position */
2142 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2143 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2144 /* Flag ongoing reshape */
2145 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2146
2147 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2148 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2149 } else {
2150 /* Clear reshape flags */
2151 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2152 }
2153
2154 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2155 sb->data_offset = cpu_to_le64(rdev->data_offset);
2156 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2157 sb->sectors = cpu_to_le64(rdev->sectors);
2158 sb->incompat_features = cpu_to_le32(0);
2159
2160 /* Zero out the rest of the payload after the size of the superblock */
2161 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2162}
2163
2164/*
2165 * super_load
2166 *
2167 * This function creates a superblock if one is not found on the device
2168 * and will decide which superblock to use if there's a choice.
2169 *
2170 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2171 */
2172static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2173{
2174 int r;
2175 struct dm_raid_superblock *sb;
2176 struct dm_raid_superblock *refsb;
2177 uint64_t events_sb, events_refsb;
2178
2179 r = read_disk_sb(rdev, rdev->sb_size, false);
2180 if (r)
2181 return r;
2182
2183 sb = page_address(rdev->sb_page);
2184
2185 /*
2186 * Two cases that we want to write new superblocks and rebuild:
2187 * 1) New device (no matching magic number)
2188 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2189 */
2190 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2191 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2192 super_sync(rdev->mddev, rdev);
2193
2194 set_bit(FirstUse, &rdev->flags);
2195 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2196
2197 /* Force writing of superblocks to disk */
2198 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2199
2200 /* Any superblock is better than none, choose that if given */
2201 return refdev ? 0 : 1;
2202 }
2203
2204 if (!refdev)
2205 return 1;
2206
2207 events_sb = le64_to_cpu(sb->events);
2208
2209 refsb = page_address(refdev->sb_page);
2210 events_refsb = le64_to_cpu(refsb->events);
2211
2212 return (events_sb > events_refsb) ? 1 : 0;
2213}
2214
2215static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2216{
2217 int role;
2218 struct mddev *mddev = &rs->md;
2219 uint64_t events_sb;
2220 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2221 struct dm_raid_superblock *sb;
2222 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2223 struct md_rdev *r;
2224 struct dm_raid_superblock *sb2;
2225
2226 sb = page_address(rdev->sb_page);
2227 events_sb = le64_to_cpu(sb->events);
2228
2229 /*
2230 * Initialise to 1 if this is a new superblock.
2231 */
2232 mddev->events = events_sb ? : 1;
2233
2234 mddev->reshape_position = MaxSector;
2235
2236 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2237 mddev->level = le32_to_cpu(sb->level);
2238 mddev->layout = le32_to_cpu(sb->layout);
2239 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2240
2241 /*
2242 * Reshaping is supported, e.g. reshape_position is valid
2243 * in superblock and superblock content is authoritative.
2244 */
2245 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2246 /* Superblock is authoritative wrt given raid set layout! */
2247 mddev->new_level = le32_to_cpu(sb->new_level);
2248 mddev->new_layout = le32_to_cpu(sb->new_layout);
2249 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2250 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2251 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2252
2253 /* raid was reshaping and got interrupted */
2254 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2255 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2256 DMERR("Reshape requested but raid set is still reshaping");
2257 return -EINVAL;
2258 }
2259
2260 if (mddev->delta_disks < 0 ||
2261 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2262 mddev->reshape_backwards = 1;
2263 else
2264 mddev->reshape_backwards = 0;
2265
2266 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2267 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2268 }
2269
2270 } else {
2271 /*
2272 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2273 */
2274 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2275 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2276
2277 if (rs_takeover_requested(rs)) {
2278 if (rt_cur && rt_new)
2279 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2280 rt_cur->name, rt_new->name);
2281 else
2282 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2283 return -EINVAL;
2284 } else if (rs_reshape_requested(rs)) {
2285 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2286 if (mddev->layout != mddev->new_layout) {
2287 if (rt_cur && rt_new)
2288 DMERR(" current layout %s vs new layout %s",
2289 rt_cur->name, rt_new->name);
2290 else
2291 DMERR(" current layout 0x%X vs new layout 0x%X",
2292 le32_to_cpu(sb->layout), mddev->new_layout);
2293 }
2294 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2295 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2296 mddev->chunk_sectors, mddev->new_chunk_sectors);
2297 if (rs->delta_disks)
2298 DMERR(" current %u disks vs new %u disks",
2299 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2300 if (rs_is_raid10(rs)) {
2301 DMERR(" Old layout: %s w/ %u copies",
2302 raid10_md_layout_to_format(mddev->layout),
2303 raid10_md_layout_to_copies(mddev->layout));
2304 DMERR(" New layout: %s w/ %u copies",
2305 raid10_md_layout_to_format(mddev->new_layout),
2306 raid10_md_layout_to_copies(mddev->new_layout));
2307 }
2308 return -EINVAL;
2309 }
2310
2311 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2312 }
2313
2314 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2315 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2316
2317 /*
2318 * During load, we set FirstUse if a new superblock was written.
2319 * There are two reasons we might not have a superblock:
2320 * 1) The raid set is brand new - in which case, all of the
2321 * devices must have their In_sync bit set. Also,
2322 * recovery_cp must be 0, unless forced.
2323 * 2) This is a new device being added to an old raid set
2324 * and the new device needs to be rebuilt - in which
2325 * case the In_sync bit will /not/ be set and
2326 * recovery_cp must be MaxSector.
2327 * 3) This is/are a new device(s) being added to an old
2328 * raid set during takeover to a higher raid level
2329 * to provide capacity for redundancy or during reshape
2330 * to add capacity to grow the raid set.
2331 */
2332 rdev_for_each(r, mddev) {
2333 if (test_bit(Journal, &rdev->flags))
2334 continue;
2335
2336 if (test_bit(FirstUse, &r->flags))
2337 new_devs++;
2338
2339 if (!test_bit(In_sync, &r->flags)) {
2340 DMINFO("Device %d specified for rebuild; clearing superblock",
2341 r->raid_disk);
2342 rebuilds++;
2343
2344 if (test_bit(FirstUse, &r->flags))
2345 rebuild_and_new++;
2346 }
2347 }
2348
2349 if (new_devs == rs->raid_disks || !rebuilds) {
2350 /* Replace a broken device */
2351 if (new_devs == rs->raid_disks) {
2352 DMINFO("Superblocks created for new raid set");
2353 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2354 } else if (new_devs != rebuilds &&
2355 new_devs != rs->delta_disks) {
2356 DMERR("New device injected into existing raid set without "
2357 "'delta_disks' or 'rebuild' parameter specified");
2358 return -EINVAL;
2359 }
2360 } else if (new_devs && new_devs != rebuilds) {
2361 DMERR("%u 'rebuild' devices cannot be injected into"
2362 " a raid set with %u other first-time devices",
2363 rebuilds, new_devs);
2364 return -EINVAL;
2365 } else if (rebuilds) {
2366 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2367 DMERR("new device%s provided without 'rebuild'",
2368 new_devs > 1 ? "s" : "");
2369 return -EINVAL;
2370 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2371 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2372 (unsigned long long) mddev->recovery_cp);
2373 return -EINVAL;
2374 } else if (rs_is_reshaping(rs)) {
2375 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2376 (unsigned long long) mddev->reshape_position);
2377 return -EINVAL;
2378 }
2379 }
2380
2381 /*
2382 * Now we set the Faulty bit for those devices that are
2383 * recorded in the superblock as failed.
2384 */
2385 sb_retrieve_failed_devices(sb, failed_devices);
2386 rdev_for_each(r, mddev) {
2387 if (test_bit(Journal, &rdev->flags) ||
2388 !r->sb_page)
2389 continue;
2390 sb2 = page_address(r->sb_page);
2391 sb2->failed_devices = 0;
2392 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2393
2394 /*
2395 * Check for any device re-ordering.
2396 */
2397 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2398 role = le32_to_cpu(sb2->array_position);
2399 if (role < 0)
2400 continue;
2401
2402 if (role != r->raid_disk) {
2403 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2404 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2405 rs->raid_disks % rs->raid10_copies) {
2406 rs->ti->error =
2407 "Cannot change raid10 near set to odd # of devices!";
2408 return -EINVAL;
2409 }
2410
2411 sb2->array_position = cpu_to_le32(r->raid_disk);
2412
2413 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2414 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2415 !rt_is_raid1(rs->raid_type)) {
2416 rs->ti->error = "Cannot change device positions in raid set";
2417 return -EINVAL;
2418 }
2419
2420 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2421 }
2422
2423 /*
2424 * Partial recovery is performed on
2425 * returning failed devices.
2426 */
2427 if (test_bit(role, (void *) failed_devices))
2428 set_bit(Faulty, &r->flags);
2429 }
2430 }
2431
2432 return 0;
2433}
2434
2435static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2436{
2437 struct mddev *mddev = &rs->md;
2438 struct dm_raid_superblock *sb;
2439
2440 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2441 return 0;
2442
2443 sb = page_address(rdev->sb_page);
2444
2445 /*
2446 * If mddev->events is not set, we know we have not yet initialized
2447 * the array.
2448 */
2449 if (!mddev->events && super_init_validation(rs, rdev))
2450 return -EINVAL;
2451
2452 if (le32_to_cpu(sb->compat_features) &&
2453 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2454 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2455 return -EINVAL;
2456 }
2457
2458 if (sb->incompat_features) {
2459 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2460 return -EINVAL;
2461 }
2462
2463 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2464 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2465 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2466
2467 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2468 /*
2469 * Retrieve rdev size stored in superblock to be prepared for shrink.
2470 * Check extended superblock members are present otherwise the size
2471 * will not be set!
2472 */
2473 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2474 rdev->sectors = le64_to_cpu(sb->sectors);
2475
2476 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2477 if (rdev->recovery_offset == MaxSector)
2478 set_bit(In_sync, &rdev->flags);
2479 /*
2480 * If no reshape in progress -> we're recovering single
2481 * disk(s) and have to set the device(s) to out-of-sync
2482 */
2483 else if (!rs_is_reshaping(rs))
2484 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2485 }
2486
2487 /*
2488 * If a device comes back, set it as not In_sync and no longer faulty.
2489 */
2490 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2491 rdev->recovery_offset = 0;
2492 clear_bit(In_sync, &rdev->flags);
2493 rdev->saved_raid_disk = rdev->raid_disk;
2494 }
2495
2496 /* Reshape support -> restore repective data offsets */
2497 rdev->data_offset = le64_to_cpu(sb->data_offset);
2498 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2499
2500 return 0;
2501}
2502
2503/*
2504 * Analyse superblocks and select the freshest.
2505 */
2506static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2507{
2508 int r;
2509 struct md_rdev *rdev, *freshest;
2510 struct mddev *mddev = &rs->md;
2511
2512 freshest = NULL;
2513 rdev_for_each(rdev, mddev) {
2514 if (test_bit(Journal, &rdev->flags))
2515 continue;
2516
2517 if (!rdev->meta_bdev)
2518 continue;
2519
2520 /* Set superblock offset/size for metadata device. */
2521 rdev->sb_start = 0;
2522 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2523 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2524 DMERR("superblock size of a logical block is no longer valid");
2525 return -EINVAL;
2526 }
2527
2528 /*
2529 * Skipping super_load due to CTR_FLAG_SYNC will cause
2530 * the array to undergo initialization again as
2531 * though it were new. This is the intended effect
2532 * of the "sync" directive.
2533 *
2534 * With reshaping capability added, we must ensure that
2535 * the "sync" directive is disallowed during the reshape.
2536 */
2537 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2538 continue;
2539
2540 r = super_load(rdev, freshest);
2541
2542 switch (r) {
2543 case 1:
2544 freshest = rdev;
2545 break;
2546 case 0:
2547 break;
2548 default:
2549 /* This is a failure to read the superblock from the metadata device. */
2550 /*
2551 * We have to keep any raid0 data/metadata device pairs or
2552 * the MD raid0 personality will fail to start the array.
2553 */
2554 if (rs_is_raid0(rs))
2555 continue;
2556
2557 /*
2558 * We keep the dm_devs to be able to emit the device tuple
2559 * properly on the table line in raid_status() (rather than
2560 * mistakenly acting as if '- -' got passed into the constructor).
2561 *
2562 * The rdev has to stay on the same_set list to allow for
2563 * the attempt to restore faulty devices on second resume.
2564 */
2565 rdev->raid_disk = rdev->saved_raid_disk = -1;
2566 break;
2567 }
2568 }
2569
2570 if (!freshest)
2571 return 0;
2572
2573 /*
2574 * Validation of the freshest device provides the source of
2575 * validation for the remaining devices.
2576 */
2577 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2578 if (super_validate(rs, freshest))
2579 return -EINVAL;
2580
2581 if (validate_raid_redundancy(rs)) {
2582 rs->ti->error = "Insufficient redundancy to activate array";
2583 return -EINVAL;
2584 }
2585
2586 rdev_for_each(rdev, mddev)
2587 if (!test_bit(Journal, &rdev->flags) &&
2588 rdev != freshest &&
2589 super_validate(rs, rdev))
2590 return -EINVAL;
2591 return 0;
2592}
2593
2594/*
2595 * Adjust data_offset and new_data_offset on all disk members of @rs
2596 * for out of place reshaping if requested by constructor
2597 *
2598 * We need free space at the beginning of each raid disk for forward
2599 * and at the end for backward reshapes which userspace has to provide
2600 * via remapping/reordering of space.
2601 */
2602static int rs_adjust_data_offsets(struct raid_set *rs)
2603{
2604 sector_t data_offset = 0, new_data_offset = 0;
2605 struct md_rdev *rdev;
2606
2607 /* Constructor did not request data offset change */
2608 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2609 if (!rs_is_reshapable(rs))
2610 goto out;
2611
2612 return 0;
2613 }
2614
2615 /* HM FIXME: get In_Sync raid_dev? */
2616 rdev = &rs->dev[0].rdev;
2617
2618 if (rs->delta_disks < 0) {
2619 /*
2620 * Removing disks (reshaping backwards):
2621 *
2622 * - before reshape: data is at offset 0 and free space
2623 * is at end of each component LV
2624 *
2625 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2626 */
2627 data_offset = 0;
2628 new_data_offset = rs->data_offset;
2629
2630 } else if (rs->delta_disks > 0) {
2631 /*
2632 * Adding disks (reshaping forwards):
2633 *
2634 * - before reshape: data is at offset rs->data_offset != 0 and
2635 * free space is at begin of each component LV
2636 *
2637 * - after reshape: data is at offset 0 on each component LV
2638 */
2639 data_offset = rs->data_offset;
2640 new_data_offset = 0;
2641
2642 } else {
2643 /*
2644 * User space passes in 0 for data offset after having removed reshape space
2645 *
2646 * - or - (data offset != 0)
2647 *
2648 * Changing RAID layout or chunk size -> toggle offsets
2649 *
2650 * - before reshape: data is at offset rs->data_offset 0 and
2651 * free space is at end of each component LV
2652 * -or-
2653 * data is at offset rs->data_offset != 0 and
2654 * free space is at begin of each component LV
2655 *
2656 * - after reshape: data is at offset 0 if it was at offset != 0
2657 * or at offset != 0 if it was at offset 0
2658 * on each component LV
2659 *
2660 */
2661 data_offset = rs->data_offset ? rdev->data_offset : 0;
2662 new_data_offset = data_offset ? 0 : rs->data_offset;
2663 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2664 }
2665
2666 /*
2667 * Make sure we got a minimum amount of free sectors per device
2668 */
2669 if (rs->data_offset &&
2670 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2671 rs->ti->error = data_offset ? "No space for forward reshape" :
2672 "No space for backward reshape";
2673 return -ENOSPC;
2674 }
2675out:
2676 /*
2677 * Raise recovery_cp in case data_offset != 0 to
2678 * avoid false recovery positives in the constructor.
2679 */
2680 if (rs->md.recovery_cp < rs->md.dev_sectors)
2681 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2682
2683 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2684 rdev_for_each(rdev, &rs->md) {
2685 if (!test_bit(Journal, &rdev->flags)) {
2686 rdev->data_offset = data_offset;
2687 rdev->new_data_offset = new_data_offset;
2688 }
2689 }
2690
2691 return 0;
2692}
2693
2694/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2695static void __reorder_raid_disk_indexes(struct raid_set *rs)
2696{
2697 int i = 0;
2698 struct md_rdev *rdev;
2699
2700 rdev_for_each(rdev, &rs->md) {
2701 if (!test_bit(Journal, &rdev->flags)) {
2702 rdev->raid_disk = i++;
2703 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2704 }
2705 }
2706}
2707
2708/*
2709 * Setup @rs for takeover by a different raid level
2710 */
2711static int rs_setup_takeover(struct raid_set *rs)
2712{
2713 struct mddev *mddev = &rs->md;
2714 struct md_rdev *rdev;
2715 unsigned int d = mddev->raid_disks = rs->raid_disks;
2716 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2717
2718 if (rt_is_raid10(rs->raid_type)) {
2719 if (rs_is_raid0(rs)) {
2720 /* Userpace reordered disks -> adjust raid_disk indexes */
2721 __reorder_raid_disk_indexes(rs);
2722
2723 /* raid0 -> raid10_far layout */
2724 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2725 rs->raid10_copies);
2726 } else if (rs_is_raid1(rs))
2727 /* raid1 -> raid10_near layout */
2728 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2729 rs->raid_disks);
2730 else
2731 return -EINVAL;
2732
2733 }
2734
2735 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2736 mddev->recovery_cp = MaxSector;
2737
2738 while (d--) {
2739 rdev = &rs->dev[d].rdev;
2740
2741 if (test_bit(d, (void *) rs->rebuild_disks)) {
2742 clear_bit(In_sync, &rdev->flags);
2743 clear_bit(Faulty, &rdev->flags);
2744 mddev->recovery_cp = rdev->recovery_offset = 0;
2745 /* Bitmap has to be created when we do an "up" takeover */
2746 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2747 }
2748
2749 rdev->new_data_offset = new_data_offset;
2750 }
2751
2752 return 0;
2753}
2754
2755/* Prepare @rs for reshape */
2756static int rs_prepare_reshape(struct raid_set *rs)
2757{
2758 bool reshape;
2759 struct mddev *mddev = &rs->md;
2760
2761 if (rs_is_raid10(rs)) {
2762 if (rs->raid_disks != mddev->raid_disks &&
2763 __is_raid10_near(mddev->layout) &&
2764 rs->raid10_copies &&
2765 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2766 /*
2767 * raid disk have to be multiple of data copies to allow this conversion,
2768 *
2769 * This is actually not a reshape it is a
2770 * rebuild of any additional mirrors per group
2771 */
2772 if (rs->raid_disks % rs->raid10_copies) {
2773 rs->ti->error = "Can't reshape raid10 mirror groups";
2774 return -EINVAL;
2775 }
2776
2777 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2778 __reorder_raid_disk_indexes(rs);
2779 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2780 rs->raid10_copies);
2781 mddev->new_layout = mddev->layout;
2782 reshape = false;
2783 } else
2784 reshape = true;
2785
2786 } else if (rs_is_raid456(rs))
2787 reshape = true;
2788
2789 else if (rs_is_raid1(rs)) {
2790 if (rs->delta_disks) {
2791 /* Process raid1 via delta_disks */
2792 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2793 reshape = true;
2794 } else {
2795 /* Process raid1 without delta_disks */
2796 mddev->raid_disks = rs->raid_disks;
2797 reshape = false;
2798 }
2799 } else {
2800 rs->ti->error = "Called with bogus raid type";
2801 return -EINVAL;
2802 }
2803
2804 if (reshape) {
2805 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2806 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2807 } else if (mddev->raid_disks < rs->raid_disks)
2808 /* Create new superblocks and bitmaps, if any new disks */
2809 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2810
2811 return 0;
2812}
2813
2814/* Get reshape sectors from data_offsets or raid set */
2815static sector_t _get_reshape_sectors(struct raid_set *rs)
2816{
2817 struct md_rdev *rdev;
2818 sector_t reshape_sectors = 0;
2819
2820 rdev_for_each(rdev, &rs->md)
2821 if (!test_bit(Journal, &rdev->flags)) {
2822 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2823 rdev->data_offset - rdev->new_data_offset :
2824 rdev->new_data_offset - rdev->data_offset;
2825 break;
2826 }
2827
2828 return max(reshape_sectors, (sector_t) rs->data_offset);
2829}
2830
2831/*
2832 * Reshape:
2833 * - change raid layout
2834 * - change chunk size
2835 * - add disks
2836 * - remove disks
2837 */
2838static int rs_setup_reshape(struct raid_set *rs)
2839{
2840 int r = 0;
2841 unsigned int cur_raid_devs, d;
2842 sector_t reshape_sectors = _get_reshape_sectors(rs);
2843 struct mddev *mddev = &rs->md;
2844 struct md_rdev *rdev;
2845
2846 mddev->delta_disks = rs->delta_disks;
2847 cur_raid_devs = mddev->raid_disks;
2848
2849 /* Ignore impossible layout change whilst adding/removing disks */
2850 if (mddev->delta_disks &&
2851 mddev->layout != mddev->new_layout) {
2852 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2853 mddev->new_layout = mddev->layout;
2854 }
2855
2856 /*
2857 * Adjust array size:
2858 *
2859 * - in case of adding disk(s), array size has
2860 * to grow after the disk adding reshape,
2861 * which'll happen in the event handler;
2862 * reshape will happen forward, so space has to
2863 * be available at the beginning of each disk
2864 *
2865 * - in case of removing disk(s), array size
2866 * has to shrink before starting the reshape,
2867 * which'll happen here;
2868 * reshape will happen backward, so space has to
2869 * be available at the end of each disk
2870 *
2871 * - data_offset and new_data_offset are
2872 * adjusted for aforementioned out of place
2873 * reshaping based on userspace passing in
2874 * the "data_offset <sectors>" key/value
2875 * pair via the constructor
2876 */
2877
2878 /* Add disk(s) */
2879 if (rs->delta_disks > 0) {
2880 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2881 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2882 rdev = &rs->dev[d].rdev;
2883 clear_bit(In_sync, &rdev->flags);
2884
2885 /*
2886 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2887 * by md, which'll store that erroneously in the superblock on reshape
2888 */
2889 rdev->saved_raid_disk = -1;
2890 rdev->raid_disk = d;
2891
2892 rdev->sectors = mddev->dev_sectors;
2893 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2894 }
2895
2896 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2897
2898 /* Remove disk(s) */
2899 } else if (rs->delta_disks < 0) {
2900 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2901 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2902
2903 /* Change layout and/or chunk size */
2904 } else {
2905 /*
2906 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2907 *
2908 * keeping number of disks and do layout change ->
2909 *
2910 * toggle reshape_backward depending on data_offset:
2911 *
2912 * - free space upfront -> reshape forward
2913 *
2914 * - free space at the end -> reshape backward
2915 *
2916 *
2917 * This utilizes free reshape space avoiding the need
2918 * for userspace to move (parts of) LV segments in
2919 * case of layout/chunksize change (for disk
2920 * adding/removing reshape space has to be at
2921 * the proper address (see above with delta_disks):
2922 *
2923 * add disk(s) -> begin
2924 * remove disk(s)-> end
2925 */
2926 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2927 }
2928
2929 /*
2930 * Adjust device size for forward reshape
2931 * because md_finish_reshape() reduces it.
2932 */
2933 if (!mddev->reshape_backwards)
2934 rdev_for_each(rdev, &rs->md)
2935 if (!test_bit(Journal, &rdev->flags))
2936 rdev->sectors += reshape_sectors;
2937
2938 return r;
2939}
2940
2941/*
2942 * If the md resync thread has updated superblock with max reshape position
2943 * at the end of a reshape but not (yet) reset the layout configuration
2944 * changes -> reset the latter.
2945 */
2946static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2947{
2948 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2949 rs_set_cur(rs);
2950 rs->md.delta_disks = 0;
2951 rs->md.reshape_backwards = 0;
2952 }
2953}
2954
2955/*
2956 * Enable/disable discard support on RAID set depending on
2957 * RAID level and discard properties of underlying RAID members.
2958 */
2959static void configure_discard_support(struct raid_set *rs)
2960{
2961 int i;
2962 bool raid456;
2963 struct dm_target *ti = rs->ti;
2964
2965 /*
2966 * XXX: RAID level 4,5,6 require zeroing for safety.
2967 */
2968 raid456 = rs_is_raid456(rs);
2969
2970 for (i = 0; i < rs->raid_disks; i++) {
2971 if (!rs->dev[i].rdev.bdev ||
2972 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2973 return;
2974
2975 if (raid456) {
2976 if (!devices_handle_discard_safely) {
2977 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2978 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2979 return;
2980 }
2981 }
2982 }
2983
2984 ti->num_discard_bios = 1;
2985}
2986
2987/*
2988 * Construct a RAID0/1/10/4/5/6 mapping:
2989 * Args:
2990 * <raid_type> <#raid_params> <raid_params>{0,} \
2991 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2992 *
2993 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2994 * details on possible <raid_params>.
2995 *
2996 * Userspace is free to initialize the metadata devices, hence the superblocks to
2997 * enforce recreation based on the passed in table parameters.
2998 *
2999 */
3000static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3001{
3002 int r;
3003 bool resize = false;
3004 struct raid_type *rt;
3005 unsigned int num_raid_params, num_raid_devs;
3006 sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3007 struct raid_set *rs = NULL;
3008 const char *arg;
3009 struct rs_layout rs_layout;
3010 struct dm_arg_set as = { argc, argv }, as_nrd;
3011 struct dm_arg _args[] = {
3012 { 0, as.argc, "Cannot understand number of raid parameters" },
3013 { 1, 254, "Cannot understand number of raid devices parameters" }
3014 };
3015
3016 arg = dm_shift_arg(&as);
3017 if (!arg) {
3018 ti->error = "No arguments";
3019 return -EINVAL;
3020 }
3021
3022 rt = get_raid_type(arg);
3023 if (!rt) {
3024 ti->error = "Unrecognised raid_type";
3025 return -EINVAL;
3026 }
3027
3028 /* Must have <#raid_params> */
3029 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3030 return -EINVAL;
3031
3032 /* number of raid device tupples <meta_dev data_dev> */
3033 as_nrd = as;
3034 dm_consume_args(&as_nrd, num_raid_params);
3035 _args[1].max = (as_nrd.argc - 1) / 2;
3036 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3037 return -EINVAL;
3038
3039 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3040 ti->error = "Invalid number of supplied raid devices";
3041 return -EINVAL;
3042 }
3043
3044 rs = raid_set_alloc(ti, rt, num_raid_devs);
3045 if (IS_ERR(rs))
3046 return PTR_ERR(rs);
3047
3048 r = parse_raid_params(rs, &as, num_raid_params);
3049 if (r)
3050 goto bad;
3051
3052 r = parse_dev_params(rs, &as);
3053 if (r)
3054 goto bad;
3055
3056 rs->md.sync_super = super_sync;
3057
3058 /*
3059 * Calculate ctr requested array and device sizes to allow
3060 * for superblock analysis needing device sizes defined.
3061 *
3062 * Any existing superblock will overwrite the array and device sizes
3063 */
3064 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3065 if (r)
3066 goto bad;
3067
3068 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3069 rs->array_sectors = rs->md.array_sectors;
3070 rs->dev_sectors = rs->md.dev_sectors;
3071
3072 /*
3073 * Backup any new raid set level, layout, ...
3074 * requested to be able to compare to superblock
3075 * members for conversion decisions.
3076 */
3077 rs_config_backup(rs, &rs_layout);
3078
3079 r = analyse_superblocks(ti, rs);
3080 if (r)
3081 goto bad;
3082
3083 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3084 sb_array_sectors = rs->md.array_sectors;
3085 rdev_sectors = __rdev_sectors(rs);
3086 if (!rdev_sectors) {
3087 ti->error = "Invalid rdev size";
3088 r = -EINVAL;
3089 goto bad;
3090 }
3091
3092
3093 reshape_sectors = _get_reshape_sectors(rs);
3094 if (rs->dev_sectors != rdev_sectors) {
3095 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3096 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3097 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3098 }
3099
3100 INIT_WORK(&rs->md.event_work, do_table_event);
3101 ti->private = rs;
3102 ti->num_flush_bios = 1;
3103 ti->needs_bio_set_dev = true;
3104
3105 /* Restore any requested new layout for conversion decision */
3106 rs_config_restore(rs, &rs_layout);
3107
3108 /*
3109 * Now that we have any superblock metadata available,
3110 * check for new, recovering, reshaping, to be taken over,
3111 * to be reshaped or an existing, unchanged raid set to
3112 * run in sequence.
3113 */
3114 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3115 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3116 if (rs_is_raid6(rs) &&
3117 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3118 ti->error = "'nosync' not allowed for new raid6 set";
3119 r = -EINVAL;
3120 goto bad;
3121 }
3122 rs_setup_recovery(rs, 0);
3123 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3124 rs_set_new(rs);
3125 } else if (rs_is_recovering(rs)) {
3126 /* A recovering raid set may be resized */
3127 goto size_check;
3128 } else if (rs_is_reshaping(rs)) {
3129 /* Have to reject size change request during reshape */
3130 if (resize) {
3131 ti->error = "Can't resize a reshaping raid set";
3132 r = -EPERM;
3133 goto bad;
3134 }
3135 /* skip setup rs */
3136 } else if (rs_takeover_requested(rs)) {
3137 if (rs_is_reshaping(rs)) {
3138 ti->error = "Can't takeover a reshaping raid set";
3139 r = -EPERM;
3140 goto bad;
3141 }
3142
3143 /* We can't takeover a journaled raid4/5/6 */
3144 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3145 ti->error = "Can't takeover a journaled raid4/5/6 set";
3146 r = -EPERM;
3147 goto bad;
3148 }
3149
3150 /*
3151 * If a takeover is needed, userspace sets any additional
3152 * devices to rebuild and we can check for a valid request here.
3153 *
3154 * If acceptable, set the level to the new requested
3155 * one, prohibit requesting recovery, allow the raid
3156 * set to run and store superblocks during resume.
3157 */
3158 r = rs_check_takeover(rs);
3159 if (r)
3160 goto bad;
3161
3162 r = rs_setup_takeover(rs);
3163 if (r)
3164 goto bad;
3165
3166 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3167 /* Takeover ain't recovery, so disable recovery */
3168 rs_setup_recovery(rs, MaxSector);
3169 rs_set_new(rs);
3170 } else if (rs_reshape_requested(rs)) {
3171 /* Only request grow on raid set size extensions, not on reshapes. */
3172 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3173
3174 /*
3175 * No need to check for 'ongoing' takeover here, because takeover
3176 * is an instant operation as oposed to an ongoing reshape.
3177 */
3178
3179 /* We can't reshape a journaled raid4/5/6 */
3180 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3181 ti->error = "Can't reshape a journaled raid4/5/6 set";
3182 r = -EPERM;
3183 goto bad;
3184 }
3185
3186 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3187 if (reshape_sectors || rs_is_raid1(rs)) {
3188 /*
3189 * We can only prepare for a reshape here, because the
3190 * raid set needs to run to provide the repective reshape
3191 * check functions via its MD personality instance.
3192 *
3193 * So do the reshape check after md_run() succeeded.
3194 */
3195 r = rs_prepare_reshape(rs);
3196 if (r)
3197 goto bad;
3198
3199 /* Reshaping ain't recovery, so disable recovery */
3200 rs_setup_recovery(rs, MaxSector);
3201 }
3202 rs_set_cur(rs);
3203 } else {
3204size_check:
3205 /* May not set recovery when a device rebuild is requested */
3206 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3207 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3208 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3209 rs_setup_recovery(rs, MaxSector);
3210 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3211 /*
3212 * Set raid set to current size, i.e. size as of
3213 * superblocks to grow to larger size in preresume.
3214 */
3215 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3216 if (r)
3217 goto bad;
3218
3219 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3220 } else {
3221 /* This is no size change or it is shrinking, update size and record in superblocks */
3222 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3223 if (r)
3224 goto bad;
3225
3226 if (sb_array_sectors > rs->array_sectors)
3227 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3228 }
3229 rs_set_cur(rs);
3230 }
3231
3232 /* If constructor requested it, change data and new_data offsets */
3233 r = rs_adjust_data_offsets(rs);
3234 if (r)
3235 goto bad;
3236
3237 /* Catch any inconclusive reshape superblock content. */
3238 rs_reset_inconclusive_reshape(rs);
3239
3240 /* Start raid set read-only and assumed clean to change in raid_resume() */
3241 rs->md.ro = 1;
3242 rs->md.in_sync = 1;
3243
3244 /* Has to be held on running the array */
3245 mddev_suspend_and_lock_nointr(&rs->md);
3246
3247 /* Keep array frozen until resume. */
3248 md_frozen_sync_thread(&rs->md);
3249
3250 r = md_run(&rs->md);
3251 rs->md.in_sync = 0; /* Assume already marked dirty */
3252 if (r) {
3253 ti->error = "Failed to run raid array";
3254 mddev_unlock(&rs->md);
3255 goto bad;
3256 }
3257
3258 r = md_start(&rs->md);
3259 if (r) {
3260 ti->error = "Failed to start raid array";
3261 goto bad_unlock;
3262 }
3263
3264 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3265 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3266 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3267 if (r) {
3268 ti->error = "Failed to set raid4/5/6 journal mode";
3269 goto bad_unlock;
3270 }
3271 }
3272
3273 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3274
3275 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3276 if (rs_is_raid456(rs)) {
3277 r = rs_set_raid456_stripe_cache(rs);
3278 if (r)
3279 goto bad_unlock;
3280 }
3281
3282 /* Now do an early reshape check */
3283 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3284 r = rs_check_reshape(rs);
3285 if (r)
3286 goto bad_unlock;
3287
3288 /* Restore new, ctr requested layout to perform check */
3289 rs_config_restore(rs, &rs_layout);
3290
3291 if (rs->md.pers->start_reshape) {
3292 r = rs->md.pers->check_reshape(&rs->md);
3293 if (r) {
3294 ti->error = "Reshape check failed";
3295 goto bad_unlock;
3296 }
3297 }
3298 }
3299
3300 /* Disable/enable discard support on raid set. */
3301 configure_discard_support(rs);
3302
3303 mddev_unlock(&rs->md);
3304 return 0;
3305
3306bad_unlock:
3307 md_stop(&rs->md);
3308 mddev_unlock(&rs->md);
3309bad:
3310 raid_set_free(rs);
3311
3312 return r;
3313}
3314
3315static void raid_dtr(struct dm_target *ti)
3316{
3317 struct raid_set *rs = ti->private;
3318
3319 mddev_lock_nointr(&rs->md);
3320 md_stop(&rs->md);
3321 mddev_unlock(&rs->md);
3322
3323 if (work_pending(&rs->md.event_work))
3324 flush_work(&rs->md.event_work);
3325 raid_set_free(rs);
3326}
3327
3328static int raid_map(struct dm_target *ti, struct bio *bio)
3329{
3330 struct raid_set *rs = ti->private;
3331 struct mddev *mddev = &rs->md;
3332
3333 /*
3334 * If we're reshaping to add disk(s), ti->len and
3335 * mddev->array_sectors will differ during the process
3336 * (ti->len > mddev->array_sectors), so we have to requeue
3337 * bios with addresses > mddev->array_sectors here or
3338 * there will occur accesses past EOD of the component
3339 * data images thus erroring the raid set.
3340 */
3341 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors))
3342 return DM_MAPIO_REQUEUE;
3343
3344 if (unlikely(!md_handle_request(mddev, bio)))
3345 return DM_MAPIO_REQUEUE;
3346
3347 return DM_MAPIO_SUBMITTED;
3348}
3349
3350/* Return sync state string for @state */
3351enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3352static const char *sync_str(enum sync_state state)
3353{
3354 /* Has to be in above sync_state order! */
3355 static const char *sync_strs[] = {
3356 "frozen",
3357 "reshape",
3358 "resync",
3359 "check",
3360 "repair",
3361 "recover",
3362 "idle"
3363 };
3364
3365 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3366};
3367
3368/* Return enum sync_state for @mddev derived from @recovery flags */
3369static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3370{
3371 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3372 return st_frozen;
3373
3374 /* The MD sync thread can be done with io or be interrupted but still be running */
3375 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3376 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3377 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3378 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3379 return st_reshape;
3380
3381 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3382 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3383 return st_resync;
3384 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3385 return st_check;
3386 return st_repair;
3387 }
3388
3389 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3390 return st_recover;
3391
3392 if (mddev->reshape_position != MaxSector)
3393 return st_reshape;
3394 }
3395
3396 return st_idle;
3397}
3398
3399/*
3400 * Return status string for @rdev
3401 *
3402 * Status characters:
3403 *
3404 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3405 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3406 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3407 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3408 */
3409static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3410{
3411 if (!rdev->bdev)
3412 return "-";
3413 else if (test_bit(Faulty, &rdev->flags))
3414 return "D";
3415 else if (test_bit(Journal, &rdev->flags))
3416 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3417 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3418 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3419 !test_bit(In_sync, &rdev->flags)))
3420 return "a";
3421 else
3422 return "A";
3423}
3424
3425/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3426static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3427 enum sync_state state, sector_t resync_max_sectors)
3428{
3429 sector_t r;
3430 struct mddev *mddev = &rs->md;
3431
3432 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3433 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3434
3435 if (rs_is_raid0(rs)) {
3436 r = resync_max_sectors;
3437 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3438
3439 } else {
3440 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3441 r = mddev->recovery_cp;
3442 else
3443 r = mddev->curr_resync_completed;
3444
3445 if (state == st_idle && r >= resync_max_sectors) {
3446 /*
3447 * Sync complete.
3448 */
3449 /* In case we have finished recovering, the array is in sync. */
3450 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3451 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3452
3453 } else if (state == st_recover)
3454 /*
3455 * In case we are recovering, the array is not in sync
3456 * and health chars should show the recovering legs.
3457 *
3458 * Already retrieved recovery offset from curr_resync_completed above.
3459 */
3460 ;
3461
3462 else if (state == st_resync || state == st_reshape)
3463 /*
3464 * If "resync/reshape" is occurring, the raid set
3465 * is or may be out of sync hence the health
3466 * characters shall be 'a'.
3467 */
3468 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3469
3470 else if (state == st_check || state == st_repair)
3471 /*
3472 * If "check" or "repair" is occurring, the raid set has
3473 * undergone an initial sync and the health characters
3474 * should not be 'a' anymore.
3475 */
3476 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3477
3478 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3479 /*
3480 * We are idle and recovery is needed, prevent 'A' chars race
3481 * caused by components still set to in-sync by constructor.
3482 */
3483 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3484
3485 else {
3486 /*
3487 * We are idle and the raid set may be doing an initial
3488 * sync, or it may be rebuilding individual components.
3489 * If all the devices are In_sync, then it is the raid set
3490 * that is being initialized.
3491 */
3492 struct md_rdev *rdev;
3493
3494 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3495 rdev_for_each(rdev, mddev)
3496 if (!test_bit(Journal, &rdev->flags) &&
3497 !test_bit(In_sync, &rdev->flags)) {
3498 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3499 break;
3500 }
3501 }
3502 }
3503
3504 return min(r, resync_max_sectors);
3505}
3506
3507/* Helper to return @dev name or "-" if !@dev */
3508static const char *__get_dev_name(struct dm_dev *dev)
3509{
3510 return dev ? dev->name : "-";
3511}
3512
3513static void raid_status(struct dm_target *ti, status_type_t type,
3514 unsigned int status_flags, char *result, unsigned int maxlen)
3515{
3516 struct raid_set *rs = ti->private;
3517 struct mddev *mddev = &rs->md;
3518 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3519 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3520 unsigned long recovery;
3521 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3522 unsigned int sz = 0;
3523 unsigned int rebuild_writemostly_count = 0;
3524 sector_t progress, resync_max_sectors, resync_mismatches;
3525 enum sync_state state;
3526 struct raid_type *rt;
3527
3528 switch (type) {
3529 case STATUSTYPE_INFO:
3530 /* *Should* always succeed */
3531 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3532 if (!rt)
3533 return;
3534
3535 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3536
3537 /* Access most recent mddev properties for status output */
3538 smp_rmb();
3539 /* Get sensible max sectors even if raid set not yet started */
3540 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3541 mddev->resync_max_sectors : mddev->dev_sectors;
3542 recovery = rs->md.recovery;
3543 state = decipher_sync_action(mddev, recovery);
3544 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3545 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3546 atomic64_read(&mddev->resync_mismatches) : 0;
3547
3548 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3549 for (i = 0; i < rs->raid_disks; i++)
3550 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3551
3552 /*
3553 * In-sync/Reshape ratio:
3554 * The in-sync ratio shows the progress of:
3555 * - Initializing the raid set
3556 * - Rebuilding a subset of devices of the raid set
3557 * The user can distinguish between the two by referring
3558 * to the status characters.
3559 *
3560 * The reshape ratio shows the progress of
3561 * changing the raid layout or the number of
3562 * disks of a raid set
3563 */
3564 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3565 (unsigned long long) resync_max_sectors);
3566
3567 /*
3568 * v1.5.0+:
3569 *
3570 * Sync action:
3571 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
3572 * information on each of these states.
3573 */
3574 DMEMIT(" %s", sync_str(state));
3575
3576 /*
3577 * v1.5.0+:
3578 *
3579 * resync_mismatches/mismatch_cnt
3580 * This field shows the number of discrepancies found when
3581 * performing a "check" of the raid set.
3582 */
3583 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3584
3585 /*
3586 * v1.9.0+:
3587 *
3588 * data_offset (needed for out of space reshaping)
3589 * This field shows the data offset into the data
3590 * image LV where the first stripes data starts.
3591 *
3592 * We keep data_offset equal on all raid disks of the set,
3593 * so retrieving it from the first raid disk is sufficient.
3594 */
3595 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3596
3597 /*
3598 * v1.10.0+:
3599 */
3600 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3601 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3602 break;
3603
3604 case STATUSTYPE_TABLE:
3605 /* Report the table line string you would use to construct this raid set */
3606
3607 /*
3608 * Count any rebuild or writemostly argument pairs and subtract the
3609 * hweight count being added below of any rebuild and writemostly ctr flags.
3610 */
3611 for (i = 0; i < rs->raid_disks; i++) {
3612 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3613 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3614 }
3615 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3616 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3617 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3618 raid_param_cnt += rebuild_writemostly_count +
3619 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3620 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3621 /* Emit table line */
3622 /* This has to be in the documented order for userspace! */
3623 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3624 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3625 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3626 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3627 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3628 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3629 for (i = 0; i < rs->raid_disks; i++)
3630 if (test_bit(i, (void *) rs->rebuild_disks))
3631 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3632 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3633 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3634 mddev->bitmap_info.daemon_sleep);
3635 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3636 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3637 mddev->sync_speed_min);
3638 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3639 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3640 mddev->sync_speed_max);
3641 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3642 for (i = 0; i < rs->raid_disks; i++)
3643 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3644 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3645 rs->dev[i].rdev.raid_disk);
3646 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3647 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3648 mddev->bitmap_info.max_write_behind);
3649 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3650 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3651 max_nr_stripes);
3652 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3653 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3654 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3655 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3656 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3657 raid10_md_layout_to_copies(mddev->layout));
3658 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3659 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3660 raid10_md_layout_to_format(mddev->layout));
3661 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3662 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3663 max(rs->delta_disks, mddev->delta_disks));
3664 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3665 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3666 (unsigned long long) rs->data_offset);
3667 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3668 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3669 __get_dev_name(rs->journal_dev.dev));
3670 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3671 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3672 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3673 DMEMIT(" %d", rs->raid_disks);
3674 for (i = 0; i < rs->raid_disks; i++)
3675 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3676 __get_dev_name(rs->dev[i].data_dev));
3677 break;
3678
3679 case STATUSTYPE_IMA:
3680 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3681 if (!rt)
3682 return;
3683
3684 DMEMIT_TARGET_NAME_VERSION(ti->type);
3685 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3686
3687 /* Access most recent mddev properties for status output */
3688 smp_rmb();
3689 recovery = rs->md.recovery;
3690 state = decipher_sync_action(mddev, recovery);
3691 DMEMIT(",raid_state=%s", sync_str(state));
3692
3693 for (i = 0; i < rs->raid_disks; i++) {
3694 DMEMIT(",raid_device_%d_status=", i);
3695 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3696 }
3697
3698 if (rt_is_raid456(rt)) {
3699 DMEMIT(",journal_dev_mode=");
3700 switch (rs->journal_dev.mode) {
3701 case R5C_JOURNAL_MODE_WRITE_THROUGH:
3702 DMEMIT("%s",
3703 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3704 break;
3705 case R5C_JOURNAL_MODE_WRITE_BACK:
3706 DMEMIT("%s",
3707 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3708 break;
3709 default:
3710 DMEMIT("invalid");
3711 break;
3712 }
3713 }
3714 DMEMIT(";");
3715 break;
3716 }
3717}
3718
3719static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3720 char *result, unsigned int maxlen)
3721{
3722 struct raid_set *rs = ti->private;
3723 struct mddev *mddev = &rs->md;
3724 int ret = 0;
3725
3726 if (!mddev->pers || !mddev->pers->sync_request)
3727 return -EINVAL;
3728
3729 if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) ||
3730 test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags))
3731 return -EBUSY;
3732
3733 if (!strcasecmp(argv[0], "frozen")) {
3734 ret = mddev_lock(mddev);
3735 if (ret)
3736 return ret;
3737
3738 md_frozen_sync_thread(mddev);
3739 mddev_unlock(mddev);
3740 } else if (!strcasecmp(argv[0], "idle")) {
3741 ret = mddev_lock(mddev);
3742 if (ret)
3743 return ret;
3744
3745 md_idle_sync_thread(mddev);
3746 mddev_unlock(mddev);
3747 }
3748
3749 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3750 if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3751 return -EBUSY;
3752 else if (!strcasecmp(argv[0], "resync"))
3753 ; /* MD_RECOVERY_NEEDED set below */
3754 else if (!strcasecmp(argv[0], "recover"))
3755 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3756 else {
3757 if (!strcasecmp(argv[0], "check")) {
3758 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3759 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3760 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3761 } else if (!strcasecmp(argv[0], "repair")) {
3762 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3763 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3764 } else
3765 return -EINVAL;
3766 }
3767 if (mddev->ro == 2) {
3768 /* A write to sync_action is enough to justify
3769 * canceling read-auto mode
3770 */
3771 mddev->ro = 0;
3772 if (!mddev->suspended)
3773 md_wakeup_thread(mddev->sync_thread);
3774 }
3775 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3776 if (!mddev->suspended)
3777 md_wakeup_thread(mddev->thread);
3778
3779 return 0;
3780}
3781
3782static int raid_iterate_devices(struct dm_target *ti,
3783 iterate_devices_callout_fn fn, void *data)
3784{
3785 struct raid_set *rs = ti->private;
3786 unsigned int i;
3787 int r = 0;
3788
3789 for (i = 0; !r && i < rs->raid_disks; i++) {
3790 if (rs->dev[i].data_dev) {
3791 r = fn(ti, rs->dev[i].data_dev,
3792 0, /* No offset on data devs */
3793 rs->md.dev_sectors, data);
3794 }
3795 }
3796
3797 return r;
3798}
3799
3800static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3801{
3802 struct raid_set *rs = ti->private;
3803 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3804
3805 blk_limits_io_min(limits, chunk_size_bytes);
3806 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3807}
3808
3809static void raid_presuspend(struct dm_target *ti)
3810{
3811 struct raid_set *rs = ti->private;
3812 struct mddev *mddev = &rs->md;
3813
3814 /*
3815 * From now on, disallow raid_message() to change sync_thread until
3816 * resume, raid_postsuspend() is too late.
3817 */
3818 set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
3819
3820 if (!reshape_interrupted(mddev))
3821 return;
3822
3823 /*
3824 * For raid456, if reshape is interrupted, IO across reshape position
3825 * will never make progress, while caller will wait for IO to be done.
3826 * Inform raid456 to handle those IO to prevent deadlock.
3827 */
3828 if (mddev->pers && mddev->pers->prepare_suspend)
3829 mddev->pers->prepare_suspend(mddev);
3830}
3831
3832static void raid_presuspend_undo(struct dm_target *ti)
3833{
3834 struct raid_set *rs = ti->private;
3835
3836 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
3837}
3838
3839static void raid_postsuspend(struct dm_target *ti)
3840{
3841 struct raid_set *rs = ti->private;
3842
3843 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3844 /*
3845 * sync_thread must be stopped during suspend, and writes have
3846 * to be stopped before suspending to avoid deadlocks.
3847 */
3848 md_stop_writes(&rs->md);
3849 mddev_suspend(&rs->md, false);
3850 }
3851}
3852
3853static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3854{
3855 int i;
3856 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3857 unsigned long flags;
3858 bool cleared = false;
3859 struct dm_raid_superblock *sb;
3860 struct mddev *mddev = &rs->md;
3861 struct md_rdev *r;
3862
3863 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3864 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3865 return;
3866
3867 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3868
3869 for (i = 0; i < rs->raid_disks; i++) {
3870 r = &rs->dev[i].rdev;
3871 /* HM FIXME: enhance journal device recovery processing */
3872 if (test_bit(Journal, &r->flags))
3873 continue;
3874
3875 if (test_bit(Faulty, &r->flags) &&
3876 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3877 DMINFO("Faulty %s device #%d has readable super block."
3878 " Attempting to revive it.",
3879 rs->raid_type->name, i);
3880
3881 /*
3882 * Faulty bit may be set, but sometimes the array can
3883 * be suspended before the personalities can respond
3884 * by removing the device from the array (i.e. calling
3885 * 'hot_remove_disk'). If they haven't yet removed
3886 * the failed device, its 'raid_disk' number will be
3887 * '>= 0' - meaning we must call this function
3888 * ourselves.
3889 */
3890 flags = r->flags;
3891 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3892 if (r->raid_disk >= 0) {
3893 if (mddev->pers->hot_remove_disk(mddev, r)) {
3894 /* Failed to revive this device, try next */
3895 r->flags = flags;
3896 continue;
3897 }
3898 } else
3899 r->raid_disk = r->saved_raid_disk = i;
3900
3901 clear_bit(Faulty, &r->flags);
3902 clear_bit(WriteErrorSeen, &r->flags);
3903
3904 if (mddev->pers->hot_add_disk(mddev, r)) {
3905 /* Failed to revive this device, try next */
3906 r->raid_disk = r->saved_raid_disk = -1;
3907 r->flags = flags;
3908 } else {
3909 clear_bit(In_sync, &r->flags);
3910 r->recovery_offset = 0;
3911 set_bit(i, (void *) cleared_failed_devices);
3912 cleared = true;
3913 }
3914 }
3915 }
3916
3917 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3918 if (cleared) {
3919 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3920
3921 rdev_for_each(r, &rs->md) {
3922 if (test_bit(Journal, &r->flags))
3923 continue;
3924
3925 sb = page_address(r->sb_page);
3926 sb_retrieve_failed_devices(sb, failed_devices);
3927
3928 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3929 failed_devices[i] &= ~cleared_failed_devices[i];
3930
3931 sb_update_failed_devices(sb, failed_devices);
3932 }
3933 }
3934}
3935
3936static int __load_dirty_region_bitmap(struct raid_set *rs)
3937{
3938 int r = 0;
3939
3940 /* Try loading the bitmap unless "raid0", which does not have one */
3941 if (!rs_is_raid0(rs) &&
3942 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3943 r = md_bitmap_load(&rs->md);
3944 if (r)
3945 DMERR("Failed to load bitmap");
3946 }
3947
3948 return r;
3949}
3950
3951/* Enforce updating all superblocks */
3952static void rs_update_sbs(struct raid_set *rs)
3953{
3954 struct mddev *mddev = &rs->md;
3955 int ro = mddev->ro;
3956
3957 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3958 mddev->ro = 0;
3959 md_update_sb(mddev, 1);
3960 mddev->ro = ro;
3961}
3962
3963/*
3964 * Reshape changes raid algorithm of @rs to new one within personality
3965 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3966 * disks from a raid set thus growing/shrinking it or resizes the set
3967 *
3968 * Call mddev_lock_nointr() before!
3969 */
3970static int rs_start_reshape(struct raid_set *rs)
3971{
3972 int r;
3973 struct mddev *mddev = &rs->md;
3974 struct md_personality *pers = mddev->pers;
3975
3976 /* Don't allow the sync thread to work until the table gets reloaded. */
3977 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3978
3979 r = rs_setup_reshape(rs);
3980 if (r)
3981 return r;
3982
3983 /*
3984 * Check any reshape constraints enforced by the personalility
3985 *
3986 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3987 */
3988 r = pers->check_reshape(mddev);
3989 if (r) {
3990 rs->ti->error = "pers->check_reshape() failed";
3991 return r;
3992 }
3993
3994 /*
3995 * Personality may not provide start reshape method in which
3996 * case check_reshape above has already covered everything
3997 */
3998 if (pers->start_reshape) {
3999 r = pers->start_reshape(mddev);
4000 if (r) {
4001 rs->ti->error = "pers->start_reshape() failed";
4002 return r;
4003 }
4004 }
4005
4006 /*
4007 * Now reshape got set up, update superblocks to
4008 * reflect the fact so that a table reload will
4009 * access proper superblock content in the ctr.
4010 */
4011 rs_update_sbs(rs);
4012
4013 return 0;
4014}
4015
4016static int raid_preresume(struct dm_target *ti)
4017{
4018 int r;
4019 struct raid_set *rs = ti->private;
4020 struct mddev *mddev = &rs->md;
4021
4022 /* This is a resume after a suspend of the set -> it's already started. */
4023 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
4024 return 0;
4025
4026 /*
4027 * The superblocks need to be updated on disk if the
4028 * array is new or new devices got added (thus zeroed
4029 * out by userspace) or __load_dirty_region_bitmap
4030 * will overwrite them in core with old data or fail.
4031 */
4032 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
4033 rs_update_sbs(rs);
4034
4035 /* Load the bitmap from disk unless raid0 */
4036 r = __load_dirty_region_bitmap(rs);
4037 if (r)
4038 return r;
4039
4040 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
4041 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
4042 mddev->array_sectors = rs->array_sectors;
4043 mddev->dev_sectors = rs->dev_sectors;
4044 rs_set_rdev_sectors(rs);
4045 rs_set_capacity(rs);
4046 }
4047
4048 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4049 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4050 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4051 (rs->requested_bitmap_chunk_sectors &&
4052 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4053 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4054
4055 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4056 if (r)
4057 DMERR("Failed to resize bitmap");
4058 }
4059
4060 /* Check for any resize/reshape on @rs and adjust/initiate */
4061 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4062 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4063 mddev->resync_min = mddev->recovery_cp;
4064 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4065 mddev->resync_max_sectors = mddev->dev_sectors;
4066 }
4067
4068 /* Check for any reshape request unless new raid set */
4069 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4070 /* Initiate a reshape. */
4071 rs_set_rdev_sectors(rs);
4072 mddev_lock_nointr(mddev);
4073 r = rs_start_reshape(rs);
4074 mddev_unlock(mddev);
4075 if (r)
4076 DMWARN("Failed to check/start reshape, continuing without change");
4077 r = 0;
4078 }
4079
4080 return r;
4081}
4082
4083static void raid_resume(struct dm_target *ti)
4084{
4085 struct raid_set *rs = ti->private;
4086 struct mddev *mddev = &rs->md;
4087
4088 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4089 /*
4090 * A secondary resume while the device is active.
4091 * Take this opportunity to check whether any failed
4092 * devices are reachable again.
4093 */
4094 mddev_lock_nointr(mddev);
4095 attempt_restore_of_faulty_devices(rs);
4096 mddev_unlock(mddev);
4097 }
4098
4099 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4100 /* Only reduce raid set size before running a disk removing reshape. */
4101 if (mddev->delta_disks < 0)
4102 rs_set_capacity(rs);
4103
4104 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery));
4105 WARN_ON_ONCE(test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4106 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
4107 mddev_lock_nointr(mddev);
4108 mddev->ro = 0;
4109 mddev->in_sync = 0;
4110 md_unfrozen_sync_thread(mddev);
4111 mddev_unlock_and_resume(mddev);
4112 }
4113}
4114
4115static struct target_type raid_target = {
4116 .name = "raid",
4117 .version = {1, 15, 1},
4118 .module = THIS_MODULE,
4119 .ctr = raid_ctr,
4120 .dtr = raid_dtr,
4121 .map = raid_map,
4122 .status = raid_status,
4123 .message = raid_message,
4124 .iterate_devices = raid_iterate_devices,
4125 .io_hints = raid_io_hints,
4126 .presuspend = raid_presuspend,
4127 .presuspend_undo = raid_presuspend_undo,
4128 .postsuspend = raid_postsuspend,
4129 .preresume = raid_preresume,
4130 .resume = raid_resume,
4131};
4132module_dm(raid);
4133
4134module_param(devices_handle_discard_safely, bool, 0644);
4135MODULE_PARM_DESC(devices_handle_discard_safely,
4136 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4137
4138MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4139MODULE_ALIAS("dm-raid0");
4140MODULE_ALIAS("dm-raid1");
4141MODULE_ALIAS("dm-raid10");
4142MODULE_ALIAS("dm-raid4");
4143MODULE_ALIAS("dm-raid5");
4144MODULE_ALIAS("dm-raid6");
4145MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>");
4146MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>");
4147MODULE_LICENSE("GPL");