Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/intel-iommu.h>
23#include <linux/timer.h>
24#include <linux/irq.h>
25#include <linux/interrupt.h>
26#include <linux/tboot.h>
27#include <linux/dmi.h>
28#include <linux/slab.h>
29#include <linux/iommu.h>
30#include <linux/numa.h>
31#include <linux/limits.h>
32#include <asm/irq_remapping.h>
33#include <asm/iommu_table.h>
34
35#include "../irq_remapping.h"
36
37typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38struct dmar_res_callback {
39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
40 void *arg[ACPI_DMAR_TYPE_RESERVED];
41 bool ignore_unhandled;
42 bool print_entry;
43};
44
45/*
46 * Assumptions:
47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48 * before IO devices managed by that unit.
49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50 * after IO devices managed by that unit.
51 * 3) Hotplug events are rare.
52 *
53 * Locking rules for DMA and interrupt remapping related global data structures:
54 * 1) Use dmar_global_lock in process context
55 * 2) Use RCU in interrupt context
56 */
57DECLARE_RWSEM(dmar_global_lock);
58LIST_HEAD(dmar_drhd_units);
59
60struct acpi_table_header * __initdata dmar_tbl;
61static int dmar_dev_scope_status = 1;
62static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63
64static int alloc_iommu(struct dmar_drhd_unit *drhd);
65static void free_iommu(struct intel_iommu *iommu);
66
67extern const struct iommu_ops intel_iommu_ops;
68
69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70{
71 /*
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 * the very end.
74 */
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 else
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
79}
80
81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82{
83 struct acpi_dmar_device_scope *scope;
84
85 *cnt = 0;
86 while (start < end) {
87 scope = start;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 (*cnt)++;
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
95 }
96 start += scope->length;
97 }
98 if (*cnt == 0)
99 return NULL;
100
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102}
103
104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105{
106 int i;
107 struct device *tmp_dev;
108
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 put_device(tmp_dev);
112 kfree(*devices);
113 }
114
115 *devices = NULL;
116 *cnt = 0;
117}
118
119/* Optimize out kzalloc()/kfree() for normal cases */
120static char dmar_pci_notify_info_buf[64];
121
122static struct dmar_pci_notify_info *
123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124{
125 int level = 0;
126 size_t size;
127 struct pci_dev *tmp;
128 struct dmar_pci_notify_info *info;
129
130 BUG_ON(dev->is_virtfn);
131
132 /*
133 * Ignore devices that have a domain number higher than what can
134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 */
136 if (pci_domain_nr(dev->bus) > U16_MAX)
137 return NULL;
138
139 /* Only generate path[] for device addition event */
140 if (event == BUS_NOTIFY_ADD_DEVICE)
141 for (tmp = dev; tmp; tmp = tmp->bus->self)
142 level++;
143
144 size = struct_size(info, path, level);
145 if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 } else {
148 info = kzalloc(size, GFP_KERNEL);
149 if (!info) {
150 pr_warn("Out of memory when allocating notify_info "
151 "for %s.\n", pci_name(dev));
152 if (dmar_dev_scope_status == 0)
153 dmar_dev_scope_status = -ENOMEM;
154 return NULL;
155 }
156 }
157
158 info->event = event;
159 info->dev = dev;
160 info->seg = pci_domain_nr(dev->bus);
161 info->level = level;
162 if (event == BUS_NOTIFY_ADD_DEVICE) {
163 for (tmp = dev; tmp; tmp = tmp->bus->self) {
164 level--;
165 info->path[level].bus = tmp->bus->number;
166 info->path[level].device = PCI_SLOT(tmp->devfn);
167 info->path[level].function = PCI_FUNC(tmp->devfn);
168 if (pci_is_root_bus(tmp->bus))
169 info->bus = tmp->bus->number;
170 }
171 }
172
173 return info;
174}
175
176static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177{
178 if ((void *)info != dmar_pci_notify_info_buf)
179 kfree(info);
180}
181
182static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 struct acpi_dmar_pci_path *path, int count)
184{
185 int i;
186
187 if (info->bus != bus)
188 goto fallback;
189 if (info->level != count)
190 goto fallback;
191
192 for (i = 0; i < count; i++) {
193 if (path[i].device != info->path[i].device ||
194 path[i].function != info->path[i].function)
195 goto fallback;
196 }
197
198 return true;
199
200fallback:
201
202 if (count != 1)
203 return false;
204
205 i = info->level - 1;
206 if (bus == info->path[i].bus &&
207 path[0].device == info->path[i].device &&
208 path[0].function == info->path[i].function) {
209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 bus, path[0].device, path[0].function);
211 return true;
212 }
213
214 return false;
215}
216
217/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 void *start, void*end, u16 segment,
220 struct dmar_dev_scope *devices,
221 int devices_cnt)
222{
223 int i, level;
224 struct device *tmp, *dev = &info->dev->dev;
225 struct acpi_dmar_device_scope *scope;
226 struct acpi_dmar_pci_path *path;
227
228 if (segment != info->seg)
229 return 0;
230
231 for (; start < end; start += scope->length) {
232 scope = start;
233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235 continue;
236
237 path = (struct acpi_dmar_pci_path *)(scope + 1);
238 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 if (!dmar_match_pci_path(info, scope->bus, path, level))
240 continue;
241
242 /*
243 * We expect devices with endpoint scope to have normal PCI
244 * headers, and devices with bridge scope to have bridge PCI
245 * headers. However PCI NTB devices may be listed in the
246 * DMAR table with bridge scope, even though they have a
247 * normal PCI header. NTB devices are identified by class
248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 * for this special case.
250 */
251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 pr_warn("Device scope type does not match for %s\n",
257 pci_name(info->dev));
258 return -EINVAL;
259 }
260
261 for_each_dev_scope(devices, devices_cnt, i, tmp)
262 if (tmp == NULL) {
263 devices[i].bus = info->dev->bus->number;
264 devices[i].devfn = info->dev->devfn;
265 rcu_assign_pointer(devices[i].dev,
266 get_device(dev));
267 return 1;
268 }
269 BUG_ON(i >= devices_cnt);
270 }
271
272 return 0;
273}
274
275int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 struct dmar_dev_scope *devices, int count)
277{
278 int index;
279 struct device *tmp;
280
281 if (info->seg != segment)
282 return 0;
283
284 for_each_active_dev_scope(devices, count, index, tmp)
285 if (tmp == &info->dev->dev) {
286 RCU_INIT_POINTER(devices[index].dev, NULL);
287 synchronize_rcu();
288 put_device(tmp);
289 return 1;
290 }
291
292 return 0;
293}
294
295static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296{
297 int ret = 0;
298 struct dmar_drhd_unit *dmaru;
299 struct acpi_dmar_hardware_unit *drhd;
300
301 for_each_drhd_unit(dmaru) {
302 if (dmaru->include_all)
303 continue;
304
305 drhd = container_of(dmaru->hdr,
306 struct acpi_dmar_hardware_unit, header);
307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 ((void *)drhd) + drhd->header.length,
309 dmaru->segment,
310 dmaru->devices, dmaru->devices_cnt);
311 if (ret)
312 break;
313 }
314 if (ret >= 0)
315 ret = dmar_iommu_notify_scope_dev(info);
316 if (ret < 0 && dmar_dev_scope_status == 0)
317 dmar_dev_scope_status = ret;
318
319 return ret;
320}
321
322static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323{
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331}
332
333static int dmar_pci_bus_notifier(struct notifier_block *nb,
334 unsigned long action, void *data)
335{
336 struct pci_dev *pdev = to_pci_dev(data);
337 struct dmar_pci_notify_info *info;
338
339 /* Only care about add/remove events for physical functions.
340 * For VFs we actually do the lookup based on the corresponding
341 * PF in device_to_iommu() anyway. */
342 if (pdev->is_virtfn)
343 return NOTIFY_DONE;
344 if (action != BUS_NOTIFY_ADD_DEVICE &&
345 action != BUS_NOTIFY_REMOVED_DEVICE)
346 return NOTIFY_DONE;
347
348 info = dmar_alloc_pci_notify_info(pdev, action);
349 if (!info)
350 return NOTIFY_DONE;
351
352 down_write(&dmar_global_lock);
353 if (action == BUS_NOTIFY_ADD_DEVICE)
354 dmar_pci_bus_add_dev(info);
355 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
356 dmar_pci_bus_del_dev(info);
357 up_write(&dmar_global_lock);
358
359 dmar_free_pci_notify_info(info);
360
361 return NOTIFY_OK;
362}
363
364static struct notifier_block dmar_pci_bus_nb = {
365 .notifier_call = dmar_pci_bus_notifier,
366 .priority = INT_MIN,
367};
368
369static struct dmar_drhd_unit *
370dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
371{
372 struct dmar_drhd_unit *dmaru;
373
374 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
375 dmar_rcu_check())
376 if (dmaru->segment == drhd->segment &&
377 dmaru->reg_base_addr == drhd->address)
378 return dmaru;
379
380 return NULL;
381}
382
383/**
384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
385 * structure which uniquely represent one DMA remapping hardware unit
386 * present in the platform
387 */
388static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
389{
390 struct acpi_dmar_hardware_unit *drhd;
391 struct dmar_drhd_unit *dmaru;
392 int ret;
393
394 drhd = (struct acpi_dmar_hardware_unit *)header;
395 dmaru = dmar_find_dmaru(drhd);
396 if (dmaru)
397 goto out;
398
399 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
400 if (!dmaru)
401 return -ENOMEM;
402
403 /*
404 * If header is allocated from slab by ACPI _DSM method, we need to
405 * copy the content because the memory buffer will be freed on return.
406 */
407 dmaru->hdr = (void *)(dmaru + 1);
408 memcpy(dmaru->hdr, header, header->length);
409 dmaru->reg_base_addr = drhd->address;
410 dmaru->segment = drhd->segment;
411 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
412 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
413 ((void *)drhd) + drhd->header.length,
414 &dmaru->devices_cnt);
415 if (dmaru->devices_cnt && dmaru->devices == NULL) {
416 kfree(dmaru);
417 return -ENOMEM;
418 }
419
420 ret = alloc_iommu(dmaru);
421 if (ret) {
422 dmar_free_dev_scope(&dmaru->devices,
423 &dmaru->devices_cnt);
424 kfree(dmaru);
425 return ret;
426 }
427 dmar_register_drhd_unit(dmaru);
428
429out:
430 if (arg)
431 (*(int *)arg)++;
432
433 return 0;
434}
435
436static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
437{
438 if (dmaru->devices && dmaru->devices_cnt)
439 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
440 if (dmaru->iommu)
441 free_iommu(dmaru->iommu);
442 kfree(dmaru);
443}
444
445static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
446 void *arg)
447{
448 struct acpi_dmar_andd *andd = (void *)header;
449
450 /* Check for NUL termination within the designated length */
451 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
452 pr_warn(FW_BUG
453 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
454 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
455 dmi_get_system_info(DMI_BIOS_VENDOR),
456 dmi_get_system_info(DMI_BIOS_VERSION),
457 dmi_get_system_info(DMI_PRODUCT_VERSION));
458 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
459 return -EINVAL;
460 }
461 pr_info("ANDD device: %x name: %s\n", andd->device_number,
462 andd->device_name);
463
464 return 0;
465}
466
467#ifdef CONFIG_ACPI_NUMA
468static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
469{
470 struct acpi_dmar_rhsa *rhsa;
471 struct dmar_drhd_unit *drhd;
472
473 rhsa = (struct acpi_dmar_rhsa *)header;
474 for_each_drhd_unit(drhd) {
475 if (drhd->reg_base_addr == rhsa->base_address) {
476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
477
478 if (!node_online(node))
479 node = NUMA_NO_NODE;
480 drhd->iommu->node = node;
481 return 0;
482 }
483 }
484 pr_warn(FW_BUG
485 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
486 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
487 rhsa->base_address,
488 dmi_get_system_info(DMI_BIOS_VENDOR),
489 dmi_get_system_info(DMI_BIOS_VERSION),
490 dmi_get_system_info(DMI_PRODUCT_VERSION));
491 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
492
493 return 0;
494}
495#else
496#define dmar_parse_one_rhsa dmar_res_noop
497#endif
498
499static void
500dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
501{
502 struct acpi_dmar_hardware_unit *drhd;
503 struct acpi_dmar_reserved_memory *rmrr;
504 struct acpi_dmar_atsr *atsr;
505 struct acpi_dmar_rhsa *rhsa;
506
507 switch (header->type) {
508 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 drhd = container_of(header, struct acpi_dmar_hardware_unit,
510 header);
511 pr_info("DRHD base: %#016Lx flags: %#x\n",
512 (unsigned long long)drhd->address, drhd->flags);
513 break;
514 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
516 header);
517 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
518 (unsigned long long)rmrr->base_address,
519 (unsigned long long)rmrr->end_address);
520 break;
521 case ACPI_DMAR_TYPE_ROOT_ATS:
522 atsr = container_of(header, struct acpi_dmar_atsr, header);
523 pr_info("ATSR flags: %#x\n", atsr->flags);
524 break;
525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 (unsigned long long)rhsa->base_address,
529 rhsa->proximity_domain);
530 break;
531 case ACPI_DMAR_TYPE_NAMESPACE:
532 /* We don't print this here because we need to sanity-check
533 it first. So print it in dmar_parse_one_andd() instead. */
534 break;
535 }
536}
537
538/**
539 * dmar_table_detect - checks to see if the platform supports DMAR devices
540 */
541static int __init dmar_table_detect(void)
542{
543 acpi_status status = AE_OK;
544
545 /* if we could find DMAR table, then there are DMAR devices */
546 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
547
548 if (ACPI_SUCCESS(status) && !dmar_tbl) {
549 pr_warn("Unable to map DMAR\n");
550 status = AE_NOT_FOUND;
551 }
552
553 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
554}
555
556static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
557 size_t len, struct dmar_res_callback *cb)
558{
559 struct acpi_dmar_header *iter, *next;
560 struct acpi_dmar_header *end = ((void *)start) + len;
561
562 for (iter = start; iter < end; iter = next) {
563 next = (void *)iter + iter->length;
564 if (iter->length == 0) {
565 /* Avoid looping forever on bad ACPI tables */
566 pr_debug(FW_BUG "Invalid 0-length structure\n");
567 break;
568 } else if (next > end) {
569 /* Avoid passing table end */
570 pr_warn(FW_BUG "Record passes table end\n");
571 return -EINVAL;
572 }
573
574 if (cb->print_entry)
575 dmar_table_print_dmar_entry(iter);
576
577 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
578 /* continue for forward compatibility */
579 pr_debug("Unknown DMAR structure type %d\n",
580 iter->type);
581 } else if (cb->cb[iter->type]) {
582 int ret;
583
584 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
585 if (ret)
586 return ret;
587 } else if (!cb->ignore_unhandled) {
588 pr_warn("No handler for DMAR structure type %d\n",
589 iter->type);
590 return -EINVAL;
591 }
592 }
593
594 return 0;
595}
596
597static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
598 struct dmar_res_callback *cb)
599{
600 return dmar_walk_remapping_entries((void *)(dmar + 1),
601 dmar->header.length - sizeof(*dmar), cb);
602}
603
604/**
605 * parse_dmar_table - parses the DMA reporting table
606 */
607static int __init
608parse_dmar_table(void)
609{
610 struct acpi_table_dmar *dmar;
611 int drhd_count = 0;
612 int ret;
613 struct dmar_res_callback cb = {
614 .print_entry = true,
615 .ignore_unhandled = true,
616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
622 };
623
624 /*
625 * Do it again, earlier dmar_tbl mapping could be mapped with
626 * fixed map.
627 */
628 dmar_table_detect();
629
630 /*
631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
633 */
634 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
635
636 dmar = (struct acpi_table_dmar *)dmar_tbl;
637 if (!dmar)
638 return -ENODEV;
639
640 if (dmar->width < PAGE_SHIFT - 1) {
641 pr_warn("Invalid DMAR haw\n");
642 return -EINVAL;
643 }
644
645 pr_info("Host address width %d\n", dmar->width + 1);
646 ret = dmar_walk_dmar_table(dmar, &cb);
647 if (ret == 0 && drhd_count == 0)
648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
649
650 return ret;
651}
652
653static int dmar_pci_device_match(struct dmar_dev_scope devices[],
654 int cnt, struct pci_dev *dev)
655{
656 int index;
657 struct device *tmp;
658
659 while (dev) {
660 for_each_active_dev_scope(devices, cnt, index, tmp)
661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
662 return 1;
663
664 /* Check our parent */
665 dev = dev->bus->self;
666 }
667
668 return 0;
669}
670
671struct dmar_drhd_unit *
672dmar_find_matched_drhd_unit(struct pci_dev *dev)
673{
674 struct dmar_drhd_unit *dmaru;
675 struct acpi_dmar_hardware_unit *drhd;
676
677 dev = pci_physfn(dev);
678
679 rcu_read_lock();
680 for_each_drhd_unit(dmaru) {
681 drhd = container_of(dmaru->hdr,
682 struct acpi_dmar_hardware_unit,
683 header);
684
685 if (dmaru->include_all &&
686 drhd->segment == pci_domain_nr(dev->bus))
687 goto out;
688
689 if (dmar_pci_device_match(dmaru->devices,
690 dmaru->devices_cnt, dev))
691 goto out;
692 }
693 dmaru = NULL;
694out:
695 rcu_read_unlock();
696
697 return dmaru;
698}
699
700static void __init dmar_acpi_insert_dev_scope(u8 device_number,
701 struct acpi_device *adev)
702{
703 struct dmar_drhd_unit *dmaru;
704 struct acpi_dmar_hardware_unit *drhd;
705 struct acpi_dmar_device_scope *scope;
706 struct device *tmp;
707 int i;
708 struct acpi_dmar_pci_path *path;
709
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 for (scope = (void *)(drhd + 1);
716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
717 scope = ((void *)scope) + scope->length) {
718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
719 continue;
720 if (scope->enumeration_id != device_number)
721 continue;
722
723 path = (void *)(scope + 1);
724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
725 dev_name(&adev->dev), dmaru->reg_base_addr,
726 scope->bus, path->device, path->function);
727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
728 if (tmp == NULL) {
729 dmaru->devices[i].bus = scope->bus;
730 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
731 path->function);
732 rcu_assign_pointer(dmaru->devices[i].dev,
733 get_device(&adev->dev));
734 return;
735 }
736 BUG_ON(i >= dmaru->devices_cnt);
737 }
738 }
739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
740 device_number, dev_name(&adev->dev));
741}
742
743static int __init dmar_acpi_dev_scope_init(void)
744{
745 struct acpi_dmar_andd *andd;
746
747 if (dmar_tbl == NULL)
748 return -ENODEV;
749
750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
752 andd = ((void *)andd) + andd->header.length) {
753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
754 acpi_handle h;
755 struct acpi_device *adev;
756
757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
758 andd->device_name,
759 &h))) {
760 pr_err("Failed to find handle for ACPI object %s\n",
761 andd->device_name);
762 continue;
763 }
764 if (acpi_bus_get_device(h, &adev)) {
765 pr_err("Failed to get device for ACPI object %s\n",
766 andd->device_name);
767 continue;
768 }
769 dmar_acpi_insert_dev_scope(andd->device_number, adev);
770 }
771 }
772 return 0;
773}
774
775int __init dmar_dev_scope_init(void)
776{
777 struct pci_dev *dev = NULL;
778 struct dmar_pci_notify_info *info;
779
780 if (dmar_dev_scope_status != 1)
781 return dmar_dev_scope_status;
782
783 if (list_empty(&dmar_drhd_units)) {
784 dmar_dev_scope_status = -ENODEV;
785 } else {
786 dmar_dev_scope_status = 0;
787
788 dmar_acpi_dev_scope_init();
789
790 for_each_pci_dev(dev) {
791 if (dev->is_virtfn)
792 continue;
793
794 info = dmar_alloc_pci_notify_info(dev,
795 BUS_NOTIFY_ADD_DEVICE);
796 if (!info) {
797 return dmar_dev_scope_status;
798 } else {
799 dmar_pci_bus_add_dev(info);
800 dmar_free_pci_notify_info(info);
801 }
802 }
803 }
804
805 return dmar_dev_scope_status;
806}
807
808void __init dmar_register_bus_notifier(void)
809{
810 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
811}
812
813
814int __init dmar_table_init(void)
815{
816 static int dmar_table_initialized;
817 int ret;
818
819 if (dmar_table_initialized == 0) {
820 ret = parse_dmar_table();
821 if (ret < 0) {
822 if (ret != -ENODEV)
823 pr_info("Parse DMAR table failure.\n");
824 } else if (list_empty(&dmar_drhd_units)) {
825 pr_info("No DMAR devices found\n");
826 ret = -ENODEV;
827 }
828
829 if (ret < 0)
830 dmar_table_initialized = ret;
831 else
832 dmar_table_initialized = 1;
833 }
834
835 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
836}
837
838static void warn_invalid_dmar(u64 addr, const char *message)
839{
840 pr_warn_once(FW_BUG
841 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
842 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
843 addr, message,
844 dmi_get_system_info(DMI_BIOS_VENDOR),
845 dmi_get_system_info(DMI_BIOS_VERSION),
846 dmi_get_system_info(DMI_PRODUCT_VERSION));
847 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
848}
849
850static int __ref
851dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
852{
853 struct acpi_dmar_hardware_unit *drhd;
854 void __iomem *addr;
855 u64 cap, ecap;
856
857 drhd = (void *)entry;
858 if (!drhd->address) {
859 warn_invalid_dmar(0, "");
860 return -EINVAL;
861 }
862
863 if (arg)
864 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
865 else
866 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
867 if (!addr) {
868 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
869 return -EINVAL;
870 }
871
872 cap = dmar_readq(addr + DMAR_CAP_REG);
873 ecap = dmar_readq(addr + DMAR_ECAP_REG);
874
875 if (arg)
876 iounmap(addr);
877 else
878 early_iounmap(addr, VTD_PAGE_SIZE);
879
880 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
881 warn_invalid_dmar(drhd->address, " returns all ones");
882 return -EINVAL;
883 }
884
885 return 0;
886}
887
888int __init detect_intel_iommu(void)
889{
890 int ret;
891 struct dmar_res_callback validate_drhd_cb = {
892 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
893 .ignore_unhandled = true,
894 };
895
896 down_write(&dmar_global_lock);
897 ret = dmar_table_detect();
898 if (!ret)
899 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
900 &validate_drhd_cb);
901 if (!ret && !no_iommu && !iommu_detected &&
902 (!dmar_disabled || dmar_platform_optin())) {
903 iommu_detected = 1;
904 /* Make sure ACS will be enabled */
905 pci_request_acs();
906 }
907
908#ifdef CONFIG_X86
909 if (!ret) {
910 x86_init.iommu.iommu_init = intel_iommu_init;
911 x86_platform.iommu_shutdown = intel_iommu_shutdown;
912 }
913
914#endif
915
916 if (dmar_tbl) {
917 acpi_put_table(dmar_tbl);
918 dmar_tbl = NULL;
919 }
920 up_write(&dmar_global_lock);
921
922 return ret ? ret : 1;
923}
924
925static void unmap_iommu(struct intel_iommu *iommu)
926{
927 iounmap(iommu->reg);
928 release_mem_region(iommu->reg_phys, iommu->reg_size);
929}
930
931/**
932 * map_iommu: map the iommu's registers
933 * @iommu: the iommu to map
934 * @phys_addr: the physical address of the base resgister
935 *
936 * Memory map the iommu's registers. Start w/ a single page, and
937 * possibly expand if that turns out to be insufficent.
938 */
939static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
940{
941 int map_size, err=0;
942
943 iommu->reg_phys = phys_addr;
944 iommu->reg_size = VTD_PAGE_SIZE;
945
946 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
947 pr_err("Can't reserve memory\n");
948 err = -EBUSY;
949 goto out;
950 }
951
952 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
953 if (!iommu->reg) {
954 pr_err("Can't map the region\n");
955 err = -ENOMEM;
956 goto release;
957 }
958
959 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
960 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
961
962 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
963 err = -EINVAL;
964 warn_invalid_dmar(phys_addr, " returns all ones");
965 goto unmap;
966 }
967 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
968
969 /* the registers might be more than one page */
970 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
971 cap_max_fault_reg_offset(iommu->cap));
972 map_size = VTD_PAGE_ALIGN(map_size);
973 if (map_size > iommu->reg_size) {
974 iounmap(iommu->reg);
975 release_mem_region(iommu->reg_phys, iommu->reg_size);
976 iommu->reg_size = map_size;
977 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
978 iommu->name)) {
979 pr_err("Can't reserve memory\n");
980 err = -EBUSY;
981 goto out;
982 }
983 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
984 if (!iommu->reg) {
985 pr_err("Can't map the region\n");
986 err = -ENOMEM;
987 goto release;
988 }
989 }
990 err = 0;
991 goto out;
992
993unmap:
994 iounmap(iommu->reg);
995release:
996 release_mem_region(iommu->reg_phys, iommu->reg_size);
997out:
998 return err;
999}
1000
1001static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1002{
1003 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1004 DMAR_UNITS_SUPPORTED);
1005 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1006 iommu->seq_id = -1;
1007 } else {
1008 set_bit(iommu->seq_id, dmar_seq_ids);
1009 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1010 }
1011
1012 return iommu->seq_id;
1013}
1014
1015static void dmar_free_seq_id(struct intel_iommu *iommu)
1016{
1017 if (iommu->seq_id >= 0) {
1018 clear_bit(iommu->seq_id, dmar_seq_ids);
1019 iommu->seq_id = -1;
1020 }
1021}
1022
1023static int alloc_iommu(struct dmar_drhd_unit *drhd)
1024{
1025 struct intel_iommu *iommu;
1026 u32 ver, sts;
1027 int agaw = 0;
1028 int msagaw = 0;
1029 int err;
1030
1031 if (!drhd->reg_base_addr) {
1032 warn_invalid_dmar(0, "");
1033 return -EINVAL;
1034 }
1035
1036 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1037 if (!iommu)
1038 return -ENOMEM;
1039
1040 if (dmar_alloc_seq_id(iommu) < 0) {
1041 pr_err("Failed to allocate seq_id\n");
1042 err = -ENOSPC;
1043 goto error;
1044 }
1045
1046 err = map_iommu(iommu, drhd->reg_base_addr);
1047 if (err) {
1048 pr_err("Failed to map %s\n", iommu->name);
1049 goto error_free_seq_id;
1050 }
1051
1052 err = -EINVAL;
1053 agaw = iommu_calculate_agaw(iommu);
1054 if (agaw < 0) {
1055 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1056 iommu->seq_id);
1057 goto err_unmap;
1058 }
1059 msagaw = iommu_calculate_max_sagaw(iommu);
1060 if (msagaw < 0) {
1061 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1062 iommu->seq_id);
1063 goto err_unmap;
1064 }
1065 iommu->agaw = agaw;
1066 iommu->msagaw = msagaw;
1067 iommu->segment = drhd->segment;
1068
1069 iommu->node = NUMA_NO_NODE;
1070
1071 ver = readl(iommu->reg + DMAR_VER_REG);
1072 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1073 iommu->name,
1074 (unsigned long long)drhd->reg_base_addr,
1075 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1076 (unsigned long long)iommu->cap,
1077 (unsigned long long)iommu->ecap);
1078
1079 /* Reflect status in gcmd */
1080 sts = readl(iommu->reg + DMAR_GSTS_REG);
1081 if (sts & DMA_GSTS_IRES)
1082 iommu->gcmd |= DMA_GCMD_IRE;
1083 if (sts & DMA_GSTS_TES)
1084 iommu->gcmd |= DMA_GCMD_TE;
1085 if (sts & DMA_GSTS_QIES)
1086 iommu->gcmd |= DMA_GCMD_QIE;
1087
1088 raw_spin_lock_init(&iommu->register_lock);
1089
1090 if (intel_iommu_enabled) {
1091 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1092 intel_iommu_groups,
1093 "%s", iommu->name);
1094 if (err)
1095 goto err_unmap;
1096
1097 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1098
1099 err = iommu_device_register(&iommu->iommu);
1100 if (err)
1101 goto err_unmap;
1102 }
1103
1104 drhd->iommu = iommu;
1105 iommu->drhd = drhd;
1106
1107 return 0;
1108
1109err_unmap:
1110 unmap_iommu(iommu);
1111error_free_seq_id:
1112 dmar_free_seq_id(iommu);
1113error:
1114 kfree(iommu);
1115 return err;
1116}
1117
1118static void free_iommu(struct intel_iommu *iommu)
1119{
1120 if (intel_iommu_enabled) {
1121 iommu_device_unregister(&iommu->iommu);
1122 iommu_device_sysfs_remove(&iommu->iommu);
1123 }
1124
1125 if (iommu->irq) {
1126 if (iommu->pr_irq) {
1127 free_irq(iommu->pr_irq, iommu);
1128 dmar_free_hwirq(iommu->pr_irq);
1129 iommu->pr_irq = 0;
1130 }
1131 free_irq(iommu->irq, iommu);
1132 dmar_free_hwirq(iommu->irq);
1133 iommu->irq = 0;
1134 }
1135
1136 if (iommu->qi) {
1137 free_page((unsigned long)iommu->qi->desc);
1138 kfree(iommu->qi->desc_status);
1139 kfree(iommu->qi);
1140 }
1141
1142 if (iommu->reg)
1143 unmap_iommu(iommu);
1144
1145 dmar_free_seq_id(iommu);
1146 kfree(iommu);
1147}
1148
1149/*
1150 * Reclaim all the submitted descriptors which have completed its work.
1151 */
1152static inline void reclaim_free_desc(struct q_inval *qi)
1153{
1154 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1155 qi->desc_status[qi->free_tail] == QI_ABORT) {
1156 qi->desc_status[qi->free_tail] = QI_FREE;
1157 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1158 qi->free_cnt++;
1159 }
1160}
1161
1162static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1163{
1164 u32 fault;
1165 int head, tail;
1166 struct q_inval *qi = iommu->qi;
1167 int shift = qi_shift(iommu);
1168
1169 if (qi->desc_status[wait_index] == QI_ABORT)
1170 return -EAGAIN;
1171
1172 fault = readl(iommu->reg + DMAR_FSTS_REG);
1173
1174 /*
1175 * If IQE happens, the head points to the descriptor associated
1176 * with the error. No new descriptors are fetched until the IQE
1177 * is cleared.
1178 */
1179 if (fault & DMA_FSTS_IQE) {
1180 head = readl(iommu->reg + DMAR_IQH_REG);
1181 if ((head >> shift) == index) {
1182 struct qi_desc *desc = qi->desc + head;
1183
1184 /*
1185 * desc->qw2 and desc->qw3 are either reserved or
1186 * used by software as private data. We won't print
1187 * out these two qw's for security consideration.
1188 */
1189 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1190 (unsigned long long)desc->qw0,
1191 (unsigned long long)desc->qw1);
1192 memcpy(desc, qi->desc + (wait_index << shift),
1193 1 << shift);
1194 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1195 return -EINVAL;
1196 }
1197 }
1198
1199 /*
1200 * If ITE happens, all pending wait_desc commands are aborted.
1201 * No new descriptors are fetched until the ITE is cleared.
1202 */
1203 if (fault & DMA_FSTS_ITE) {
1204 head = readl(iommu->reg + DMAR_IQH_REG);
1205 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1206 head |= 1;
1207 tail = readl(iommu->reg + DMAR_IQT_REG);
1208 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1209
1210 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1211
1212 do {
1213 if (qi->desc_status[head] == QI_IN_USE)
1214 qi->desc_status[head] = QI_ABORT;
1215 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1216 } while (head != tail);
1217
1218 if (qi->desc_status[wait_index] == QI_ABORT)
1219 return -EAGAIN;
1220 }
1221
1222 if (fault & DMA_FSTS_ICE)
1223 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1224
1225 return 0;
1226}
1227
1228/*
1229 * Function to submit invalidation descriptors of all types to the queued
1230 * invalidation interface(QI). Multiple descriptors can be submitted at a
1231 * time, a wait descriptor will be appended to each submission to ensure
1232 * hardware has completed the invalidation before return. Wait descriptors
1233 * can be part of the submission but it will not be polled for completion.
1234 */
1235int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1236 unsigned int count, unsigned long options)
1237{
1238 struct q_inval *qi = iommu->qi;
1239 struct qi_desc wait_desc;
1240 int wait_index, index;
1241 unsigned long flags;
1242 int offset, shift;
1243 int rc, i;
1244
1245 if (!qi)
1246 return 0;
1247
1248restart:
1249 rc = 0;
1250
1251 raw_spin_lock_irqsave(&qi->q_lock, flags);
1252 /*
1253 * Check if we have enough empty slots in the queue to submit,
1254 * the calculation is based on:
1255 * # of desc + 1 wait desc + 1 space between head and tail
1256 */
1257 while (qi->free_cnt < count + 2) {
1258 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1259 cpu_relax();
1260 raw_spin_lock_irqsave(&qi->q_lock, flags);
1261 }
1262
1263 index = qi->free_head;
1264 wait_index = (index + count) % QI_LENGTH;
1265 shift = qi_shift(iommu);
1266
1267 for (i = 0; i < count; i++) {
1268 offset = ((index + i) % QI_LENGTH) << shift;
1269 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1270 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1271 }
1272 qi->desc_status[wait_index] = QI_IN_USE;
1273
1274 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1275 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1276 if (options & QI_OPT_WAIT_DRAIN)
1277 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1278 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1279 wait_desc.qw2 = 0;
1280 wait_desc.qw3 = 0;
1281
1282 offset = wait_index << shift;
1283 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1284
1285 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1286 qi->free_cnt -= count + 1;
1287
1288 /*
1289 * update the HW tail register indicating the presence of
1290 * new descriptors.
1291 */
1292 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1293
1294 while (qi->desc_status[wait_index] != QI_DONE) {
1295 /*
1296 * We will leave the interrupts disabled, to prevent interrupt
1297 * context to queue another cmd while a cmd is already submitted
1298 * and waiting for completion on this cpu. This is to avoid
1299 * a deadlock where the interrupt context can wait indefinitely
1300 * for free slots in the queue.
1301 */
1302 rc = qi_check_fault(iommu, index, wait_index);
1303 if (rc)
1304 break;
1305
1306 raw_spin_unlock(&qi->q_lock);
1307 cpu_relax();
1308 raw_spin_lock(&qi->q_lock);
1309 }
1310
1311 for (i = 0; i < count; i++)
1312 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1313
1314 reclaim_free_desc(qi);
1315 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1316
1317 if (rc == -EAGAIN)
1318 goto restart;
1319
1320 return rc;
1321}
1322
1323/*
1324 * Flush the global interrupt entry cache.
1325 */
1326void qi_global_iec(struct intel_iommu *iommu)
1327{
1328 struct qi_desc desc;
1329
1330 desc.qw0 = QI_IEC_TYPE;
1331 desc.qw1 = 0;
1332 desc.qw2 = 0;
1333 desc.qw3 = 0;
1334
1335 /* should never fail */
1336 qi_submit_sync(iommu, &desc, 1, 0);
1337}
1338
1339void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1340 u64 type)
1341{
1342 struct qi_desc desc;
1343
1344 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1345 | QI_CC_GRAN(type) | QI_CC_TYPE;
1346 desc.qw1 = 0;
1347 desc.qw2 = 0;
1348 desc.qw3 = 0;
1349
1350 qi_submit_sync(iommu, &desc, 1, 0);
1351}
1352
1353void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1354 unsigned int size_order, u64 type)
1355{
1356 u8 dw = 0, dr = 0;
1357
1358 struct qi_desc desc;
1359 int ih = 0;
1360
1361 if (cap_write_drain(iommu->cap))
1362 dw = 1;
1363
1364 if (cap_read_drain(iommu->cap))
1365 dr = 1;
1366
1367 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1368 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1369 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1370 | QI_IOTLB_AM(size_order);
1371 desc.qw2 = 0;
1372 desc.qw3 = 0;
1373
1374 qi_submit_sync(iommu, &desc, 1, 0);
1375}
1376
1377void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1378 u16 qdep, u64 addr, unsigned mask)
1379{
1380 struct qi_desc desc;
1381
1382 if (mask) {
1383 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1384 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1385 } else
1386 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1387
1388 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1389 qdep = 0;
1390
1391 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1392 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1393 desc.qw2 = 0;
1394 desc.qw3 = 0;
1395
1396 qi_submit_sync(iommu, &desc, 1, 0);
1397}
1398
1399/* PASID-based IOTLB invalidation */
1400void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1401 unsigned long npages, bool ih)
1402{
1403 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1404
1405 /*
1406 * npages == -1 means a PASID-selective invalidation, otherwise,
1407 * a positive value for Page-selective-within-PASID invalidation.
1408 * 0 is not a valid input.
1409 */
1410 if (WARN_ON(!npages)) {
1411 pr_err("Invalid input npages = %ld\n", npages);
1412 return;
1413 }
1414
1415 if (npages == -1) {
1416 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1417 QI_EIOTLB_DID(did) |
1418 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1419 QI_EIOTLB_TYPE;
1420 desc.qw1 = 0;
1421 } else {
1422 int mask = ilog2(__roundup_pow_of_two(npages));
1423 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1424
1425 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1426 addr &= ~(align - 1);
1427
1428 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1429 QI_EIOTLB_DID(did) |
1430 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1431 QI_EIOTLB_TYPE;
1432 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1433 QI_EIOTLB_IH(ih) |
1434 QI_EIOTLB_AM(mask);
1435 }
1436
1437 qi_submit_sync(iommu, &desc, 1, 0);
1438}
1439
1440/* PASID-based device IOTLB Invalidate */
1441void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1442 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1443{
1444 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1445 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1446
1447 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1448 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1449 QI_DEV_IOTLB_PFSID(pfsid);
1450
1451 /*
1452 * If S bit is 0, we only flush a single page. If S bit is set,
1453 * The least significant zero bit indicates the invalidation address
1454 * range. VT-d spec 6.5.2.6.
1455 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1456 * size order = 0 is PAGE_SIZE 4KB
1457 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1458 * ECAP.
1459 */
1460 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1461 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1462 addr, size_order);
1463
1464 /* Take page address */
1465 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1466
1467 if (size_order) {
1468 /*
1469 * Existing 0s in address below size_order may be the least
1470 * significant bit, we must set them to 1s to avoid having
1471 * smaller size than desired.
1472 */
1473 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1474 VTD_PAGE_SHIFT);
1475 /* Clear size_order bit to indicate size */
1476 desc.qw1 &= ~mask;
1477 /* Set the S bit to indicate flushing more than 1 page */
1478 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1479 }
1480
1481 qi_submit_sync(iommu, &desc, 1, 0);
1482}
1483
1484void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1485 u64 granu, int pasid)
1486{
1487 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1488
1489 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1490 QI_PC_GRAN(granu) | QI_PC_TYPE;
1491 qi_submit_sync(iommu, &desc, 1, 0);
1492}
1493
1494/*
1495 * Disable Queued Invalidation interface.
1496 */
1497void dmar_disable_qi(struct intel_iommu *iommu)
1498{
1499 unsigned long flags;
1500 u32 sts;
1501 cycles_t start_time = get_cycles();
1502
1503 if (!ecap_qis(iommu->ecap))
1504 return;
1505
1506 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1507
1508 sts = readl(iommu->reg + DMAR_GSTS_REG);
1509 if (!(sts & DMA_GSTS_QIES))
1510 goto end;
1511
1512 /*
1513 * Give a chance to HW to complete the pending invalidation requests.
1514 */
1515 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1516 readl(iommu->reg + DMAR_IQH_REG)) &&
1517 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1518 cpu_relax();
1519
1520 iommu->gcmd &= ~DMA_GCMD_QIE;
1521 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1522
1523 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1524 !(sts & DMA_GSTS_QIES), sts);
1525end:
1526 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1527}
1528
1529/*
1530 * Enable queued invalidation.
1531 */
1532static void __dmar_enable_qi(struct intel_iommu *iommu)
1533{
1534 u32 sts;
1535 unsigned long flags;
1536 struct q_inval *qi = iommu->qi;
1537 u64 val = virt_to_phys(qi->desc);
1538
1539 qi->free_head = qi->free_tail = 0;
1540 qi->free_cnt = QI_LENGTH;
1541
1542 /*
1543 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1544 * is present.
1545 */
1546 if (ecap_smts(iommu->ecap))
1547 val |= (1 << 11) | 1;
1548
1549 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1550
1551 /* write zero to the tail reg */
1552 writel(0, iommu->reg + DMAR_IQT_REG);
1553
1554 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1555
1556 iommu->gcmd |= DMA_GCMD_QIE;
1557 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1558
1559 /* Make sure hardware complete it */
1560 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1561
1562 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563}
1564
1565/*
1566 * Enable Queued Invalidation interface. This is a must to support
1567 * interrupt-remapping. Also used by DMA-remapping, which replaces
1568 * register based IOTLB invalidation.
1569 */
1570int dmar_enable_qi(struct intel_iommu *iommu)
1571{
1572 struct q_inval *qi;
1573 struct page *desc_page;
1574
1575 if (!ecap_qis(iommu->ecap))
1576 return -ENOENT;
1577
1578 /*
1579 * queued invalidation is already setup and enabled.
1580 */
1581 if (iommu->qi)
1582 return 0;
1583
1584 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1585 if (!iommu->qi)
1586 return -ENOMEM;
1587
1588 qi = iommu->qi;
1589
1590 /*
1591 * Need two pages to accommodate 256 descriptors of 256 bits each
1592 * if the remapping hardware supports scalable mode translation.
1593 */
1594 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1595 !!ecap_smts(iommu->ecap));
1596 if (!desc_page) {
1597 kfree(qi);
1598 iommu->qi = NULL;
1599 return -ENOMEM;
1600 }
1601
1602 qi->desc = page_address(desc_page);
1603
1604 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1605 if (!qi->desc_status) {
1606 free_page((unsigned long) qi->desc);
1607 kfree(qi);
1608 iommu->qi = NULL;
1609 return -ENOMEM;
1610 }
1611
1612 raw_spin_lock_init(&qi->q_lock);
1613
1614 __dmar_enable_qi(iommu);
1615
1616 return 0;
1617}
1618
1619/* iommu interrupt handling. Most stuff are MSI-like. */
1620
1621enum faulttype {
1622 DMA_REMAP,
1623 INTR_REMAP,
1624 UNKNOWN,
1625};
1626
1627static const char *dma_remap_fault_reasons[] =
1628{
1629 "Software",
1630 "Present bit in root entry is clear",
1631 "Present bit in context entry is clear",
1632 "Invalid context entry",
1633 "Access beyond MGAW",
1634 "PTE Write access is not set",
1635 "PTE Read access is not set",
1636 "Next page table ptr is invalid",
1637 "Root table address invalid",
1638 "Context table ptr is invalid",
1639 "non-zero reserved fields in RTP",
1640 "non-zero reserved fields in CTP",
1641 "non-zero reserved fields in PTE",
1642 "PCE for translation request specifies blocking",
1643};
1644
1645static const char * const dma_remap_sm_fault_reasons[] = {
1646 "SM: Invalid Root Table Address",
1647 "SM: TTM 0 for request with PASID",
1648 "SM: TTM 0 for page group request",
1649 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1650 "SM: Error attempting to access Root Entry",
1651 "SM: Present bit in Root Entry is clear",
1652 "SM: Non-zero reserved field set in Root Entry",
1653 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1654 "SM: Error attempting to access Context Entry",
1655 "SM: Present bit in Context Entry is clear",
1656 "SM: Non-zero reserved field set in the Context Entry",
1657 "SM: Invalid Context Entry",
1658 "SM: DTE field in Context Entry is clear",
1659 "SM: PASID Enable field in Context Entry is clear",
1660 "SM: PASID is larger than the max in Context Entry",
1661 "SM: PRE field in Context-Entry is clear",
1662 "SM: RID_PASID field error in Context-Entry",
1663 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1664 "SM: Error attempting to access the PASID Directory Entry",
1665 "SM: Present bit in Directory Entry is clear",
1666 "SM: Non-zero reserved field set in PASID Directory Entry",
1667 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1668 "SM: Error attempting to access PASID Table Entry",
1669 "SM: Present bit in PASID Table Entry is clear",
1670 "SM: Non-zero reserved field set in PASID Table Entry",
1671 "SM: Invalid Scalable-Mode PASID Table Entry",
1672 "SM: ERE field is clear in PASID Table Entry",
1673 "SM: SRE field is clear in PASID Table Entry",
1674 "Unknown", "Unknown",/* 0x5E-0x5F */
1675 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1676 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1677 "SM: Error attempting to access first-level paging entry",
1678 "SM: Present bit in first-level paging entry is clear",
1679 "SM: Non-zero reserved field set in first-level paging entry",
1680 "SM: Error attempting to access FL-PML4 entry",
1681 "SM: First-level entry address beyond MGAW in Nested translation",
1682 "SM: Read permission error in FL-PML4 entry in Nested translation",
1683 "SM: Read permission error in first-level paging entry in Nested translation",
1684 "SM: Write permission error in first-level paging entry in Nested translation",
1685 "SM: Error attempting to access second-level paging entry",
1686 "SM: Read/Write permission error in second-level paging entry",
1687 "SM: Non-zero reserved field set in second-level paging entry",
1688 "SM: Invalid second-level page table pointer",
1689 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1690 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1691 "SM: Address in first-level translation is not canonical",
1692 "SM: U/S set 0 for first-level translation with user privilege",
1693 "SM: No execute permission for request with PASID and ER=1",
1694 "SM: Address beyond the DMA hardware max",
1695 "SM: Second-level entry address beyond the max",
1696 "SM: No write permission for Write/AtomicOp request",
1697 "SM: No read permission for Read/AtomicOp request",
1698 "SM: Invalid address-interrupt address",
1699 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1700 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1701};
1702
1703static const char *irq_remap_fault_reasons[] =
1704{
1705 "Detected reserved fields in the decoded interrupt-remapped request",
1706 "Interrupt index exceeded the interrupt-remapping table size",
1707 "Present field in the IRTE entry is clear",
1708 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1709 "Detected reserved fields in the IRTE entry",
1710 "Blocked a compatibility format interrupt request",
1711 "Blocked an interrupt request due to source-id verification failure",
1712};
1713
1714static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1715{
1716 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1717 ARRAY_SIZE(irq_remap_fault_reasons))) {
1718 *fault_type = INTR_REMAP;
1719 return irq_remap_fault_reasons[fault_reason - 0x20];
1720 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1721 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1722 *fault_type = DMA_REMAP;
1723 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1724 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1725 *fault_type = DMA_REMAP;
1726 return dma_remap_fault_reasons[fault_reason];
1727 } else {
1728 *fault_type = UNKNOWN;
1729 return "Unknown";
1730 }
1731}
1732
1733
1734static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1735{
1736 if (iommu->irq == irq)
1737 return DMAR_FECTL_REG;
1738 else if (iommu->pr_irq == irq)
1739 return DMAR_PECTL_REG;
1740 else
1741 BUG();
1742}
1743
1744void dmar_msi_unmask(struct irq_data *data)
1745{
1746 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1747 int reg = dmar_msi_reg(iommu, data->irq);
1748 unsigned long flag;
1749
1750 /* unmask it */
1751 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1752 writel(0, iommu->reg + reg);
1753 /* Read a reg to force flush the post write */
1754 readl(iommu->reg + reg);
1755 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1756}
1757
1758void dmar_msi_mask(struct irq_data *data)
1759{
1760 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1761 int reg = dmar_msi_reg(iommu, data->irq);
1762 unsigned long flag;
1763
1764 /* mask it */
1765 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1766 writel(DMA_FECTL_IM, iommu->reg + reg);
1767 /* Read a reg to force flush the post write */
1768 readl(iommu->reg + reg);
1769 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1770}
1771
1772void dmar_msi_write(int irq, struct msi_msg *msg)
1773{
1774 struct intel_iommu *iommu = irq_get_handler_data(irq);
1775 int reg = dmar_msi_reg(iommu, irq);
1776 unsigned long flag;
1777
1778 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1779 writel(msg->data, iommu->reg + reg + 4);
1780 writel(msg->address_lo, iommu->reg + reg + 8);
1781 writel(msg->address_hi, iommu->reg + reg + 12);
1782 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1783}
1784
1785void dmar_msi_read(int irq, struct msi_msg *msg)
1786{
1787 struct intel_iommu *iommu = irq_get_handler_data(irq);
1788 int reg = dmar_msi_reg(iommu, irq);
1789 unsigned long flag;
1790
1791 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1792 msg->data = readl(iommu->reg + reg + 4);
1793 msg->address_lo = readl(iommu->reg + reg + 8);
1794 msg->address_hi = readl(iommu->reg + reg + 12);
1795 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1796}
1797
1798static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1799 u8 fault_reason, int pasid, u16 source_id,
1800 unsigned long long addr)
1801{
1802 const char *reason;
1803 int fault_type;
1804
1805 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1806
1807 if (fault_type == INTR_REMAP)
1808 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1809 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1810 PCI_FUNC(source_id & 0xFF), addr >> 48,
1811 fault_reason, reason);
1812 else
1813 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1814 type ? "DMA Read" : "DMA Write",
1815 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1816 PCI_FUNC(source_id & 0xFF), pasid, addr,
1817 fault_reason, reason);
1818 return 0;
1819}
1820
1821#define PRIMARY_FAULT_REG_LEN (16)
1822irqreturn_t dmar_fault(int irq, void *dev_id)
1823{
1824 struct intel_iommu *iommu = dev_id;
1825 int reg, fault_index;
1826 u32 fault_status;
1827 unsigned long flag;
1828 static DEFINE_RATELIMIT_STATE(rs,
1829 DEFAULT_RATELIMIT_INTERVAL,
1830 DEFAULT_RATELIMIT_BURST);
1831
1832 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1833 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1834 if (fault_status && __ratelimit(&rs))
1835 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1836
1837 /* TBD: ignore advanced fault log currently */
1838 if (!(fault_status & DMA_FSTS_PPF))
1839 goto unlock_exit;
1840
1841 fault_index = dma_fsts_fault_record_index(fault_status);
1842 reg = cap_fault_reg_offset(iommu->cap);
1843 while (1) {
1844 /* Disable printing, simply clear the fault when ratelimited */
1845 bool ratelimited = !__ratelimit(&rs);
1846 u8 fault_reason;
1847 u16 source_id;
1848 u64 guest_addr;
1849 int type, pasid;
1850 u32 data;
1851 bool pasid_present;
1852
1853 /* highest 32 bits */
1854 data = readl(iommu->reg + reg +
1855 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1856 if (!(data & DMA_FRCD_F))
1857 break;
1858
1859 if (!ratelimited) {
1860 fault_reason = dma_frcd_fault_reason(data);
1861 type = dma_frcd_type(data);
1862
1863 pasid = dma_frcd_pasid_value(data);
1864 data = readl(iommu->reg + reg +
1865 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1866 source_id = dma_frcd_source_id(data);
1867
1868 pasid_present = dma_frcd_pasid_present(data);
1869 guest_addr = dmar_readq(iommu->reg + reg +
1870 fault_index * PRIMARY_FAULT_REG_LEN);
1871 guest_addr = dma_frcd_page_addr(guest_addr);
1872 }
1873
1874 /* clear the fault */
1875 writel(DMA_FRCD_F, iommu->reg + reg +
1876 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1877
1878 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1879
1880 if (!ratelimited)
1881 /* Using pasid -1 if pasid is not present */
1882 dmar_fault_do_one(iommu, type, fault_reason,
1883 pasid_present ? pasid : -1,
1884 source_id, guest_addr);
1885
1886 fault_index++;
1887 if (fault_index >= cap_num_fault_regs(iommu->cap))
1888 fault_index = 0;
1889 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1890 }
1891
1892 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1893 iommu->reg + DMAR_FSTS_REG);
1894
1895unlock_exit:
1896 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 return IRQ_HANDLED;
1898}
1899
1900int dmar_set_interrupt(struct intel_iommu *iommu)
1901{
1902 int irq, ret;
1903
1904 /*
1905 * Check if the fault interrupt is already initialized.
1906 */
1907 if (iommu->irq)
1908 return 0;
1909
1910 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1911 if (irq > 0) {
1912 iommu->irq = irq;
1913 } else {
1914 pr_err("No free IRQ vectors\n");
1915 return -EINVAL;
1916 }
1917
1918 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1919 if (ret)
1920 pr_err("Can't request irq\n");
1921 return ret;
1922}
1923
1924int __init enable_drhd_fault_handling(void)
1925{
1926 struct dmar_drhd_unit *drhd;
1927 struct intel_iommu *iommu;
1928
1929 /*
1930 * Enable fault control interrupt.
1931 */
1932 for_each_iommu(iommu, drhd) {
1933 u32 fault_status;
1934 int ret = dmar_set_interrupt(iommu);
1935
1936 if (ret) {
1937 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1938 (unsigned long long)drhd->reg_base_addr, ret);
1939 return -1;
1940 }
1941
1942 /*
1943 * Clear any previous faults.
1944 */
1945 dmar_fault(iommu->irq, iommu);
1946 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1947 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1948 }
1949
1950 return 0;
1951}
1952
1953/*
1954 * Re-enable Queued Invalidation interface.
1955 */
1956int dmar_reenable_qi(struct intel_iommu *iommu)
1957{
1958 if (!ecap_qis(iommu->ecap))
1959 return -ENOENT;
1960
1961 if (!iommu->qi)
1962 return -ENOENT;
1963
1964 /*
1965 * First disable queued invalidation.
1966 */
1967 dmar_disable_qi(iommu);
1968 /*
1969 * Then enable queued invalidation again. Since there is no pending
1970 * invalidation requests now, it's safe to re-enable queued
1971 * invalidation.
1972 */
1973 __dmar_enable_qi(iommu);
1974
1975 return 0;
1976}
1977
1978/*
1979 * Check interrupt remapping support in DMAR table description.
1980 */
1981int __init dmar_ir_support(void)
1982{
1983 struct acpi_table_dmar *dmar;
1984 dmar = (struct acpi_table_dmar *)dmar_tbl;
1985 if (!dmar)
1986 return 0;
1987 return dmar->flags & 0x1;
1988}
1989
1990/* Check whether DMAR units are in use */
1991static inline bool dmar_in_use(void)
1992{
1993 return irq_remapping_enabled || intel_iommu_enabled;
1994}
1995
1996static int __init dmar_free_unused_resources(void)
1997{
1998 struct dmar_drhd_unit *dmaru, *dmaru_n;
1999
2000 if (dmar_in_use())
2001 return 0;
2002
2003 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2004 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2005
2006 down_write(&dmar_global_lock);
2007 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2008 list_del(&dmaru->list);
2009 dmar_free_drhd(dmaru);
2010 }
2011 up_write(&dmar_global_lock);
2012
2013 return 0;
2014}
2015
2016late_initcall(dmar_free_unused_resources);
2017IOMMU_INIT_POST(detect_intel_iommu);
2018
2019/*
2020 * DMAR Hotplug Support
2021 * For more details, please refer to Intel(R) Virtualization Technology
2022 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2023 * "Remapping Hardware Unit Hot Plug".
2024 */
2025static guid_t dmar_hp_guid =
2026 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2027 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2028
2029/*
2030 * Currently there's only one revision and BIOS will not check the revision id,
2031 * so use 0 for safety.
2032 */
2033#define DMAR_DSM_REV_ID 0
2034#define DMAR_DSM_FUNC_DRHD 1
2035#define DMAR_DSM_FUNC_ATSR 2
2036#define DMAR_DSM_FUNC_RHSA 3
2037
2038static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2039{
2040 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2041}
2042
2043static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2044 dmar_res_handler_t handler, void *arg)
2045{
2046 int ret = -ENODEV;
2047 union acpi_object *obj;
2048 struct acpi_dmar_header *start;
2049 struct dmar_res_callback callback;
2050 static int res_type[] = {
2051 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2052 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2053 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2054 };
2055
2056 if (!dmar_detect_dsm(handle, func))
2057 return 0;
2058
2059 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2060 func, NULL, ACPI_TYPE_BUFFER);
2061 if (!obj)
2062 return -ENODEV;
2063
2064 memset(&callback, 0, sizeof(callback));
2065 callback.cb[res_type[func]] = handler;
2066 callback.arg[res_type[func]] = arg;
2067 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2068 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2069
2070 ACPI_FREE(obj);
2071
2072 return ret;
2073}
2074
2075static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2076{
2077 int ret;
2078 struct dmar_drhd_unit *dmaru;
2079
2080 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2081 if (!dmaru)
2082 return -ENODEV;
2083
2084 ret = dmar_ir_hotplug(dmaru, true);
2085 if (ret == 0)
2086 ret = dmar_iommu_hotplug(dmaru, true);
2087
2088 return ret;
2089}
2090
2091static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2092{
2093 int i, ret;
2094 struct device *dev;
2095 struct dmar_drhd_unit *dmaru;
2096
2097 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2098 if (!dmaru)
2099 return 0;
2100
2101 /*
2102 * All PCI devices managed by this unit should have been destroyed.
2103 */
2104 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2105 for_each_active_dev_scope(dmaru->devices,
2106 dmaru->devices_cnt, i, dev)
2107 return -EBUSY;
2108 }
2109
2110 ret = dmar_ir_hotplug(dmaru, false);
2111 if (ret == 0)
2112 ret = dmar_iommu_hotplug(dmaru, false);
2113
2114 return ret;
2115}
2116
2117static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2118{
2119 struct dmar_drhd_unit *dmaru;
2120
2121 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2122 if (dmaru) {
2123 list_del_rcu(&dmaru->list);
2124 synchronize_rcu();
2125 dmar_free_drhd(dmaru);
2126 }
2127
2128 return 0;
2129}
2130
2131static int dmar_hotplug_insert(acpi_handle handle)
2132{
2133 int ret;
2134 int drhd_count = 0;
2135
2136 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2137 &dmar_validate_one_drhd, (void *)1);
2138 if (ret)
2139 goto out;
2140
2141 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2142 &dmar_parse_one_drhd, (void *)&drhd_count);
2143 if (ret == 0 && drhd_count == 0) {
2144 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2145 goto out;
2146 } else if (ret) {
2147 goto release_drhd;
2148 }
2149
2150 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2151 &dmar_parse_one_rhsa, NULL);
2152 if (ret)
2153 goto release_drhd;
2154
2155 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2156 &dmar_parse_one_atsr, NULL);
2157 if (ret)
2158 goto release_atsr;
2159
2160 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2161 &dmar_hp_add_drhd, NULL);
2162 if (!ret)
2163 return 0;
2164
2165 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2166 &dmar_hp_remove_drhd, NULL);
2167release_atsr:
2168 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2169 &dmar_release_one_atsr, NULL);
2170release_drhd:
2171 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2172 &dmar_hp_release_drhd, NULL);
2173out:
2174 return ret;
2175}
2176
2177static int dmar_hotplug_remove(acpi_handle handle)
2178{
2179 int ret;
2180
2181 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2182 &dmar_check_one_atsr, NULL);
2183 if (ret)
2184 return ret;
2185
2186 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2187 &dmar_hp_remove_drhd, NULL);
2188 if (ret == 0) {
2189 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2190 &dmar_release_one_atsr, NULL));
2191 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2192 &dmar_hp_release_drhd, NULL));
2193 } else {
2194 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2195 &dmar_hp_add_drhd, NULL);
2196 }
2197
2198 return ret;
2199}
2200
2201static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2202 void *context, void **retval)
2203{
2204 acpi_handle *phdl = retval;
2205
2206 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2207 *phdl = handle;
2208 return AE_CTRL_TERMINATE;
2209 }
2210
2211 return AE_OK;
2212}
2213
2214static int dmar_device_hotplug(acpi_handle handle, bool insert)
2215{
2216 int ret;
2217 acpi_handle tmp = NULL;
2218 acpi_status status;
2219
2220 if (!dmar_in_use())
2221 return 0;
2222
2223 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2224 tmp = handle;
2225 } else {
2226 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2227 ACPI_UINT32_MAX,
2228 dmar_get_dsm_handle,
2229 NULL, NULL, &tmp);
2230 if (ACPI_FAILURE(status)) {
2231 pr_warn("Failed to locate _DSM method.\n");
2232 return -ENXIO;
2233 }
2234 }
2235 if (tmp == NULL)
2236 return 0;
2237
2238 down_write(&dmar_global_lock);
2239 if (insert)
2240 ret = dmar_hotplug_insert(tmp);
2241 else
2242 ret = dmar_hotplug_remove(tmp);
2243 up_write(&dmar_global_lock);
2244
2245 return ret;
2246}
2247
2248int dmar_device_add(acpi_handle handle)
2249{
2250 return dmar_device_hotplug(handle, true);
2251}
2252
2253int dmar_device_remove(acpi_handle handle)
2254{
2255 return dmar_device_hotplug(handle, false);
2256}
2257
2258/*
2259 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2260 *
2261 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2262 * the ACPI DMAR table. This means that the platform boot firmware has made
2263 * sure no device can issue DMA outside of RMRR regions.
2264 */
2265bool dmar_platform_optin(void)
2266{
2267 struct acpi_table_dmar *dmar;
2268 acpi_status status;
2269 bool ret;
2270
2271 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2272 (struct acpi_table_header **)&dmar);
2273 if (ACPI_FAILURE(status))
2274 return false;
2275
2276 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2277 acpi_put_table((struct acpi_table_header *)dmar);
2278
2279 return ret;
2280}
2281EXPORT_SYMBOL_GPL(dmar_platform_optin);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/timer.h>
23#include <linux/irq.h>
24#include <linux/interrupt.h>
25#include <linux/tboot.h>
26#include <linux/dmi.h>
27#include <linux/slab.h>
28#include <linux/iommu.h>
29#include <linux/numa.h>
30#include <linux/limits.h>
31#include <asm/irq_remapping.h>
32
33#include "iommu.h"
34#include "../irq_remapping.h"
35#include "perf.h"
36#include "trace.h"
37#include "perfmon.h"
38
39typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40struct dmar_res_callback {
41 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
42 void *arg[ACPI_DMAR_TYPE_RESERVED];
43 bool ignore_unhandled;
44 bool print_entry;
45};
46
47/*
48 * Assumptions:
49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50 * before IO devices managed by that unit.
51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52 * after IO devices managed by that unit.
53 * 3) Hotplug events are rare.
54 *
55 * Locking rules for DMA and interrupt remapping related global data structures:
56 * 1) Use dmar_global_lock in process context
57 * 2) Use RCU in interrupt context
58 */
59DECLARE_RWSEM(dmar_global_lock);
60LIST_HEAD(dmar_drhd_units);
61
62struct acpi_table_header * __initdata dmar_tbl;
63static int dmar_dev_scope_status = 1;
64static DEFINE_IDA(dmar_seq_ids);
65
66static int alloc_iommu(struct dmar_drhd_unit *drhd);
67static void free_iommu(struct intel_iommu *iommu);
68
69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70{
71 /*
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 * the very end.
74 */
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 else
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
79}
80
81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82{
83 struct acpi_dmar_device_scope *scope;
84
85 *cnt = 0;
86 while (start < end) {
87 scope = start;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 (*cnt)++;
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
95 }
96 start += scope->length;
97 }
98 if (*cnt == 0)
99 return NULL;
100
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102}
103
104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105{
106 int i;
107 struct device *tmp_dev;
108
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 put_device(tmp_dev);
112 kfree(*devices);
113 }
114
115 *devices = NULL;
116 *cnt = 0;
117}
118
119/* Optimize out kzalloc()/kfree() for normal cases */
120static char dmar_pci_notify_info_buf[64];
121
122static struct dmar_pci_notify_info *
123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124{
125 int level = 0;
126 size_t size;
127 struct pci_dev *tmp;
128 struct dmar_pci_notify_info *info;
129
130 /*
131 * Ignore devices that have a domain number higher than what can
132 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
133 */
134 if (pci_domain_nr(dev->bus) > U16_MAX)
135 return NULL;
136
137 /* Only generate path[] for device addition event */
138 if (event == BUS_NOTIFY_ADD_DEVICE)
139 for (tmp = dev; tmp; tmp = tmp->bus->self)
140 level++;
141
142 size = struct_size(info, path, level);
143 if (size <= sizeof(dmar_pci_notify_info_buf)) {
144 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
145 } else {
146 info = kzalloc(size, GFP_KERNEL);
147 if (!info) {
148 if (dmar_dev_scope_status == 0)
149 dmar_dev_scope_status = -ENOMEM;
150 return NULL;
151 }
152 }
153
154 info->event = event;
155 info->dev = dev;
156 info->seg = pci_domain_nr(dev->bus);
157 info->level = level;
158 if (event == BUS_NOTIFY_ADD_DEVICE) {
159 for (tmp = dev; tmp; tmp = tmp->bus->self) {
160 level--;
161 info->path[level].bus = tmp->bus->number;
162 info->path[level].device = PCI_SLOT(tmp->devfn);
163 info->path[level].function = PCI_FUNC(tmp->devfn);
164 if (pci_is_root_bus(tmp->bus))
165 info->bus = tmp->bus->number;
166 }
167 }
168
169 return info;
170}
171
172static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
173{
174 if ((void *)info != dmar_pci_notify_info_buf)
175 kfree(info);
176}
177
178static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
179 struct acpi_dmar_pci_path *path, int count)
180{
181 int i;
182
183 if (info->bus != bus)
184 goto fallback;
185 if (info->level != count)
186 goto fallback;
187
188 for (i = 0; i < count; i++) {
189 if (path[i].device != info->path[i].device ||
190 path[i].function != info->path[i].function)
191 goto fallback;
192 }
193
194 return true;
195
196fallback:
197
198 if (count != 1)
199 return false;
200
201 i = info->level - 1;
202 if (bus == info->path[i].bus &&
203 path[0].device == info->path[i].device &&
204 path[0].function == info->path[i].function) {
205 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
206 bus, path[0].device, path[0].function);
207 return true;
208 }
209
210 return false;
211}
212
213/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
214int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
215 void *start, void*end, u16 segment,
216 struct dmar_dev_scope *devices,
217 int devices_cnt)
218{
219 int i, level;
220 struct device *tmp, *dev = &info->dev->dev;
221 struct acpi_dmar_device_scope *scope;
222 struct acpi_dmar_pci_path *path;
223
224 if (segment != info->seg)
225 return 0;
226
227 for (; start < end; start += scope->length) {
228 scope = start;
229 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
230 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
231 continue;
232
233 path = (struct acpi_dmar_pci_path *)(scope + 1);
234 level = (scope->length - sizeof(*scope)) / sizeof(*path);
235 if (!dmar_match_pci_path(info, scope->bus, path, level))
236 continue;
237
238 /*
239 * We expect devices with endpoint scope to have normal PCI
240 * headers, and devices with bridge scope to have bridge PCI
241 * headers. However PCI NTB devices may be listed in the
242 * DMAR table with bridge scope, even though they have a
243 * normal PCI header. NTB devices are identified by class
244 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
245 * for this special case.
246 */
247 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
248 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
249 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
250 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
251 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
252 pr_warn("Device scope type does not match for %s\n",
253 pci_name(info->dev));
254 return -EINVAL;
255 }
256
257 for_each_dev_scope(devices, devices_cnt, i, tmp)
258 if (tmp == NULL) {
259 devices[i].bus = info->dev->bus->number;
260 devices[i].devfn = info->dev->devfn;
261 rcu_assign_pointer(devices[i].dev,
262 get_device(dev));
263 return 1;
264 }
265 if (WARN_ON(i >= devices_cnt))
266 return -EINVAL;
267 }
268
269 return 0;
270}
271
272int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 struct dmar_dev_scope *devices, int count)
274{
275 int index;
276 struct device *tmp;
277
278 if (info->seg != segment)
279 return 0;
280
281 for_each_active_dev_scope(devices, count, index, tmp)
282 if (tmp == &info->dev->dev) {
283 RCU_INIT_POINTER(devices[index].dev, NULL);
284 synchronize_rcu();
285 put_device(tmp);
286 return 1;
287 }
288
289 return 0;
290}
291
292static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293{
294 int ret = 0;
295 struct dmar_drhd_unit *dmaru;
296 struct acpi_dmar_hardware_unit *drhd;
297
298 for_each_drhd_unit(dmaru) {
299 if (dmaru->include_all)
300 continue;
301
302 drhd = container_of(dmaru->hdr,
303 struct acpi_dmar_hardware_unit, header);
304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 ((void *)drhd) + drhd->header.length,
306 dmaru->segment,
307 dmaru->devices, dmaru->devices_cnt);
308 if (ret)
309 break;
310 }
311 if (ret >= 0)
312 ret = dmar_iommu_notify_scope_dev(info);
313 if (ret < 0 && dmar_dev_scope_status == 0)
314 dmar_dev_scope_status = ret;
315
316 if (ret >= 0)
317 intel_irq_remap_add_device(info);
318
319 return ret;
320}
321
322static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323{
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331}
332
333static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334{
335 struct pci_dev *physfn = pci_physfn(pdev);
336
337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338}
339
340static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 unsigned long action, void *data)
342{
343 struct pci_dev *pdev = to_pci_dev(data);
344 struct dmar_pci_notify_info *info;
345
346 /* Only care about add/remove events for physical functions.
347 * For VFs we actually do the lookup based on the corresponding
348 * PF in device_to_iommu() anyway. */
349 if (pdev->is_virtfn) {
350 /*
351 * Ensure that the VF device inherits the irq domain of the
352 * PF device. Ideally the device would inherit the domain
353 * from the bus, but DMAR can have multiple units per bus
354 * which makes this impossible. The VF 'bus' could inherit
355 * from the PF device, but that's yet another x86'sism to
356 * inflict on everybody else.
357 */
358 if (action == BUS_NOTIFY_ADD_DEVICE)
359 vf_inherit_msi_domain(pdev);
360 return NOTIFY_DONE;
361 }
362
363 if (action != BUS_NOTIFY_ADD_DEVICE &&
364 action != BUS_NOTIFY_REMOVED_DEVICE)
365 return NOTIFY_DONE;
366
367 info = dmar_alloc_pci_notify_info(pdev, action);
368 if (!info)
369 return NOTIFY_DONE;
370
371 down_write(&dmar_global_lock);
372 if (action == BUS_NOTIFY_ADD_DEVICE)
373 dmar_pci_bus_add_dev(info);
374 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 dmar_pci_bus_del_dev(info);
376 up_write(&dmar_global_lock);
377
378 dmar_free_pci_notify_info(info);
379
380 return NOTIFY_OK;
381}
382
383static struct notifier_block dmar_pci_bus_nb = {
384 .notifier_call = dmar_pci_bus_notifier,
385 .priority = 1,
386};
387
388static struct dmar_drhd_unit *
389dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390{
391 struct dmar_drhd_unit *dmaru;
392
393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 dmar_rcu_check())
395 if (dmaru->segment == drhd->segment &&
396 dmaru->reg_base_addr == drhd->address)
397 return dmaru;
398
399 return NULL;
400}
401
402/*
403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404 * structure which uniquely represent one DMA remapping hardware unit
405 * present in the platform
406 */
407static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408{
409 struct acpi_dmar_hardware_unit *drhd;
410 struct dmar_drhd_unit *dmaru;
411 int ret;
412
413 drhd = (struct acpi_dmar_hardware_unit *)header;
414 dmaru = dmar_find_dmaru(drhd);
415 if (dmaru)
416 goto out;
417
418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 if (!dmaru)
420 return -ENOMEM;
421
422 /*
423 * If header is allocated from slab by ACPI _DSM method, we need to
424 * copy the content because the memory buffer will be freed on return.
425 */
426 dmaru->hdr = (void *)(dmaru + 1);
427 memcpy(dmaru->hdr, header, header->length);
428 dmaru->reg_base_addr = drhd->address;
429 dmaru->segment = drhd->segment;
430 /* The size of the register set is 2 ^ N 4 KB pages. */
431 dmaru->reg_size = 1UL << (drhd->size + 12);
432 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
433 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
434 ((void *)drhd) + drhd->header.length,
435 &dmaru->devices_cnt);
436 if (dmaru->devices_cnt && dmaru->devices == NULL) {
437 kfree(dmaru);
438 return -ENOMEM;
439 }
440
441 ret = alloc_iommu(dmaru);
442 if (ret) {
443 dmar_free_dev_scope(&dmaru->devices,
444 &dmaru->devices_cnt);
445 kfree(dmaru);
446 return ret;
447 }
448 dmar_register_drhd_unit(dmaru);
449
450out:
451 if (arg)
452 (*(int *)arg)++;
453
454 return 0;
455}
456
457static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
458{
459 if (dmaru->devices && dmaru->devices_cnt)
460 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
461 if (dmaru->iommu)
462 free_iommu(dmaru->iommu);
463 kfree(dmaru);
464}
465
466static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
467 void *arg)
468{
469 struct acpi_dmar_andd *andd = (void *)header;
470
471 /* Check for NUL termination within the designated length */
472 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
473 pr_warn(FW_BUG
474 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
475 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
476 dmi_get_system_info(DMI_BIOS_VENDOR),
477 dmi_get_system_info(DMI_BIOS_VERSION),
478 dmi_get_system_info(DMI_PRODUCT_VERSION));
479 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
480 return -EINVAL;
481 }
482 pr_info("ANDD device: %x name: %s\n", andd->device_number,
483 andd->device_name);
484
485 return 0;
486}
487
488#ifdef CONFIG_ACPI_NUMA
489static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
490{
491 struct acpi_dmar_rhsa *rhsa;
492 struct dmar_drhd_unit *drhd;
493
494 rhsa = (struct acpi_dmar_rhsa *)header;
495 for_each_drhd_unit(drhd) {
496 if (drhd->reg_base_addr == rhsa->base_address) {
497 int node = pxm_to_node(rhsa->proximity_domain);
498
499 if (node != NUMA_NO_NODE && !node_online(node))
500 node = NUMA_NO_NODE;
501 drhd->iommu->node = node;
502 return 0;
503 }
504 }
505 pr_warn(FW_BUG
506 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
507 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
508 rhsa->base_address,
509 dmi_get_system_info(DMI_BIOS_VENDOR),
510 dmi_get_system_info(DMI_BIOS_VERSION),
511 dmi_get_system_info(DMI_PRODUCT_VERSION));
512 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
513
514 return 0;
515}
516#else
517#define dmar_parse_one_rhsa dmar_res_noop
518#endif
519
520static void
521dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
522{
523 struct acpi_dmar_hardware_unit *drhd;
524 struct acpi_dmar_reserved_memory *rmrr;
525 struct acpi_dmar_atsr *atsr;
526 struct acpi_dmar_rhsa *rhsa;
527 struct acpi_dmar_satc *satc;
528
529 switch (header->type) {
530 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531 drhd = container_of(header, struct acpi_dmar_hardware_unit,
532 header);
533 pr_info("DRHD base: %#016Lx flags: %#x\n",
534 (unsigned long long)drhd->address, drhd->flags);
535 break;
536 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
538 header);
539 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
540 (unsigned long long)rmrr->base_address,
541 (unsigned long long)rmrr->end_address);
542 break;
543 case ACPI_DMAR_TYPE_ROOT_ATS:
544 atsr = container_of(header, struct acpi_dmar_atsr, header);
545 pr_info("ATSR flags: %#x\n", atsr->flags);
546 break;
547 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550 (unsigned long long)rhsa->base_address,
551 rhsa->proximity_domain);
552 break;
553 case ACPI_DMAR_TYPE_NAMESPACE:
554 /* We don't print this here because we need to sanity-check
555 it first. So print it in dmar_parse_one_andd() instead. */
556 break;
557 case ACPI_DMAR_TYPE_SATC:
558 satc = container_of(header, struct acpi_dmar_satc, header);
559 pr_info("SATC flags: 0x%x\n", satc->flags);
560 break;
561 }
562}
563
564/**
565 * dmar_table_detect - checks to see if the platform supports DMAR devices
566 */
567static int __init dmar_table_detect(void)
568{
569 acpi_status status = AE_OK;
570
571 /* if we could find DMAR table, then there are DMAR devices */
572 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
573
574 if (ACPI_SUCCESS(status) && !dmar_tbl) {
575 pr_warn("Unable to map DMAR\n");
576 status = AE_NOT_FOUND;
577 }
578
579 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
580}
581
582static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
583 size_t len, struct dmar_res_callback *cb)
584{
585 struct acpi_dmar_header *iter, *next;
586 struct acpi_dmar_header *end = ((void *)start) + len;
587
588 for (iter = start; iter < end; iter = next) {
589 next = (void *)iter + iter->length;
590 if (iter->length == 0) {
591 /* Avoid looping forever on bad ACPI tables */
592 pr_debug(FW_BUG "Invalid 0-length structure\n");
593 break;
594 } else if (next > end) {
595 /* Avoid passing table end */
596 pr_warn(FW_BUG "Record passes table end\n");
597 return -EINVAL;
598 }
599
600 if (cb->print_entry)
601 dmar_table_print_dmar_entry(iter);
602
603 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
604 /* continue for forward compatibility */
605 pr_debug("Unknown DMAR structure type %d\n",
606 iter->type);
607 } else if (cb->cb[iter->type]) {
608 int ret;
609
610 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
611 if (ret)
612 return ret;
613 } else if (!cb->ignore_unhandled) {
614 pr_warn("No handler for DMAR structure type %d\n",
615 iter->type);
616 return -EINVAL;
617 }
618 }
619
620 return 0;
621}
622
623static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
624 struct dmar_res_callback *cb)
625{
626 return dmar_walk_remapping_entries((void *)(dmar + 1),
627 dmar->header.length - sizeof(*dmar), cb);
628}
629
630/**
631 * parse_dmar_table - parses the DMA reporting table
632 */
633static int __init
634parse_dmar_table(void)
635{
636 struct acpi_table_dmar *dmar;
637 int drhd_count = 0;
638 int ret;
639 struct dmar_res_callback cb = {
640 .print_entry = true,
641 .ignore_unhandled = true,
642 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
643 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
644 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
645 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
646 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
647 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
648 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
649 };
650
651 /*
652 * Do it again, earlier dmar_tbl mapping could be mapped with
653 * fixed map.
654 */
655 dmar_table_detect();
656
657 /*
658 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
659 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
660 */
661 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
662
663 dmar = (struct acpi_table_dmar *)dmar_tbl;
664 if (!dmar)
665 return -ENODEV;
666
667 if (dmar->width < PAGE_SHIFT - 1) {
668 pr_warn("Invalid DMAR haw\n");
669 return -EINVAL;
670 }
671
672 pr_info("Host address width %d\n", dmar->width + 1);
673 ret = dmar_walk_dmar_table(dmar, &cb);
674 if (ret == 0 && drhd_count == 0)
675 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
676
677 return ret;
678}
679
680static int dmar_pci_device_match(struct dmar_dev_scope devices[],
681 int cnt, struct pci_dev *dev)
682{
683 int index;
684 struct device *tmp;
685
686 while (dev) {
687 for_each_active_dev_scope(devices, cnt, index, tmp)
688 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
689 return 1;
690
691 /* Check our parent */
692 dev = dev->bus->self;
693 }
694
695 return 0;
696}
697
698struct dmar_drhd_unit *
699dmar_find_matched_drhd_unit(struct pci_dev *dev)
700{
701 struct dmar_drhd_unit *dmaru;
702 struct acpi_dmar_hardware_unit *drhd;
703
704 dev = pci_physfn(dev);
705
706 rcu_read_lock();
707 for_each_drhd_unit(dmaru) {
708 drhd = container_of(dmaru->hdr,
709 struct acpi_dmar_hardware_unit,
710 header);
711
712 if (dmaru->include_all &&
713 drhd->segment == pci_domain_nr(dev->bus))
714 goto out;
715
716 if (dmar_pci_device_match(dmaru->devices,
717 dmaru->devices_cnt, dev))
718 goto out;
719 }
720 dmaru = NULL;
721out:
722 rcu_read_unlock();
723
724 return dmaru;
725}
726
727static void __init dmar_acpi_insert_dev_scope(u8 device_number,
728 struct acpi_device *adev)
729{
730 struct dmar_drhd_unit *dmaru;
731 struct acpi_dmar_hardware_unit *drhd;
732 struct acpi_dmar_device_scope *scope;
733 struct device *tmp;
734 int i;
735 struct acpi_dmar_pci_path *path;
736
737 for_each_drhd_unit(dmaru) {
738 drhd = container_of(dmaru->hdr,
739 struct acpi_dmar_hardware_unit,
740 header);
741
742 for (scope = (void *)(drhd + 1);
743 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
744 scope = ((void *)scope) + scope->length) {
745 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
746 continue;
747 if (scope->enumeration_id != device_number)
748 continue;
749
750 path = (void *)(scope + 1);
751 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
752 dev_name(&adev->dev), dmaru->reg_base_addr,
753 scope->bus, path->device, path->function);
754 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
755 if (tmp == NULL) {
756 dmaru->devices[i].bus = scope->bus;
757 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
758 path->function);
759 rcu_assign_pointer(dmaru->devices[i].dev,
760 get_device(&adev->dev));
761 return;
762 }
763 BUG_ON(i >= dmaru->devices_cnt);
764 }
765 }
766 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
767 device_number, dev_name(&adev->dev));
768}
769
770static int __init dmar_acpi_dev_scope_init(void)
771{
772 struct acpi_dmar_andd *andd;
773
774 if (dmar_tbl == NULL)
775 return -ENODEV;
776
777 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
778 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
779 andd = ((void *)andd) + andd->header.length) {
780 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
781 acpi_handle h;
782 struct acpi_device *adev;
783
784 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
785 andd->device_name,
786 &h))) {
787 pr_err("Failed to find handle for ACPI object %s\n",
788 andd->device_name);
789 continue;
790 }
791 adev = acpi_fetch_acpi_dev(h);
792 if (!adev) {
793 pr_err("Failed to get device for ACPI object %s\n",
794 andd->device_name);
795 continue;
796 }
797 dmar_acpi_insert_dev_scope(andd->device_number, adev);
798 }
799 }
800 return 0;
801}
802
803int __init dmar_dev_scope_init(void)
804{
805 struct pci_dev *dev = NULL;
806 struct dmar_pci_notify_info *info;
807
808 if (dmar_dev_scope_status != 1)
809 return dmar_dev_scope_status;
810
811 if (list_empty(&dmar_drhd_units)) {
812 dmar_dev_scope_status = -ENODEV;
813 } else {
814 dmar_dev_scope_status = 0;
815
816 dmar_acpi_dev_scope_init();
817
818 for_each_pci_dev(dev) {
819 if (dev->is_virtfn)
820 continue;
821
822 info = dmar_alloc_pci_notify_info(dev,
823 BUS_NOTIFY_ADD_DEVICE);
824 if (!info) {
825 pci_dev_put(dev);
826 return dmar_dev_scope_status;
827 } else {
828 dmar_pci_bus_add_dev(info);
829 dmar_free_pci_notify_info(info);
830 }
831 }
832 }
833
834 return dmar_dev_scope_status;
835}
836
837void __init dmar_register_bus_notifier(void)
838{
839 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
840}
841
842
843int __init dmar_table_init(void)
844{
845 static int dmar_table_initialized;
846 int ret;
847
848 if (dmar_table_initialized == 0) {
849 ret = parse_dmar_table();
850 if (ret < 0) {
851 if (ret != -ENODEV)
852 pr_info("Parse DMAR table failure.\n");
853 } else if (list_empty(&dmar_drhd_units)) {
854 pr_info("No DMAR devices found\n");
855 ret = -ENODEV;
856 }
857
858 if (ret < 0)
859 dmar_table_initialized = ret;
860 else
861 dmar_table_initialized = 1;
862 }
863
864 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
865}
866
867static void warn_invalid_dmar(u64 addr, const char *message)
868{
869 pr_warn_once(FW_BUG
870 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
871 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
872 addr, message,
873 dmi_get_system_info(DMI_BIOS_VENDOR),
874 dmi_get_system_info(DMI_BIOS_VERSION),
875 dmi_get_system_info(DMI_PRODUCT_VERSION));
876 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
877}
878
879static int __ref
880dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
881{
882 struct acpi_dmar_hardware_unit *drhd;
883 void __iomem *addr;
884 u64 cap, ecap;
885
886 drhd = (void *)entry;
887 if (!drhd->address) {
888 warn_invalid_dmar(0, "");
889 return -EINVAL;
890 }
891
892 if (arg)
893 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
894 else
895 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
896 if (!addr) {
897 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
898 return -EINVAL;
899 }
900
901 cap = dmar_readq(addr + DMAR_CAP_REG);
902 ecap = dmar_readq(addr + DMAR_ECAP_REG);
903
904 if (arg)
905 iounmap(addr);
906 else
907 early_iounmap(addr, VTD_PAGE_SIZE);
908
909 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
910 warn_invalid_dmar(drhd->address, " returns all ones");
911 return -EINVAL;
912 }
913
914 return 0;
915}
916
917void __init detect_intel_iommu(void)
918{
919 int ret;
920 struct dmar_res_callback validate_drhd_cb = {
921 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
922 .ignore_unhandled = true,
923 };
924
925 down_write(&dmar_global_lock);
926 ret = dmar_table_detect();
927 if (!ret)
928 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
929 &validate_drhd_cb);
930 if (!ret && !no_iommu && !iommu_detected &&
931 (!dmar_disabled || dmar_platform_optin())) {
932 iommu_detected = 1;
933 /* Make sure ACS will be enabled */
934 pci_request_acs();
935 }
936
937#ifdef CONFIG_X86
938 if (!ret) {
939 x86_init.iommu.iommu_init = intel_iommu_init;
940 x86_platform.iommu_shutdown = intel_iommu_shutdown;
941 }
942
943#endif
944
945 if (dmar_tbl) {
946 acpi_put_table(dmar_tbl);
947 dmar_tbl = NULL;
948 }
949 up_write(&dmar_global_lock);
950}
951
952static void unmap_iommu(struct intel_iommu *iommu)
953{
954 iounmap(iommu->reg);
955 release_mem_region(iommu->reg_phys, iommu->reg_size);
956}
957
958/**
959 * map_iommu: map the iommu's registers
960 * @iommu: the iommu to map
961 * @drhd: DMA remapping hardware definition structure
962 *
963 * Memory map the iommu's registers. Start w/ a single page, and
964 * possibly expand if that turns out to be insufficent.
965 */
966static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
967{
968 u64 phys_addr = drhd->reg_base_addr;
969 int map_size, err=0;
970
971 iommu->reg_phys = phys_addr;
972 iommu->reg_size = drhd->reg_size;
973
974 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
975 pr_err("Can't reserve memory\n");
976 err = -EBUSY;
977 goto out;
978 }
979
980 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
981 if (!iommu->reg) {
982 pr_err("Can't map the region\n");
983 err = -ENOMEM;
984 goto release;
985 }
986
987 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
988 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
989
990 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
991 err = -EINVAL;
992 warn_invalid_dmar(phys_addr, " returns all ones");
993 goto unmap;
994 }
995
996 /* the registers might be more than one page */
997 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
998 cap_max_fault_reg_offset(iommu->cap));
999 map_size = VTD_PAGE_ALIGN(map_size);
1000 if (map_size > iommu->reg_size) {
1001 iounmap(iommu->reg);
1002 release_mem_region(iommu->reg_phys, iommu->reg_size);
1003 iommu->reg_size = map_size;
1004 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1005 iommu->name)) {
1006 pr_err("Can't reserve memory\n");
1007 err = -EBUSY;
1008 goto out;
1009 }
1010 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1011 if (!iommu->reg) {
1012 pr_err("Can't map the region\n");
1013 err = -ENOMEM;
1014 goto release;
1015 }
1016 }
1017
1018 if (cap_ecmds(iommu->cap)) {
1019 int i;
1020
1021 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1022 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1023 i * DMA_ECMD_REG_STEP);
1024 }
1025 }
1026
1027 err = 0;
1028 goto out;
1029
1030unmap:
1031 iounmap(iommu->reg);
1032release:
1033 release_mem_region(iommu->reg_phys, iommu->reg_size);
1034out:
1035 return err;
1036}
1037
1038static int alloc_iommu(struct dmar_drhd_unit *drhd)
1039{
1040 struct intel_iommu *iommu;
1041 u32 ver, sts;
1042 int agaw = -1;
1043 int msagaw = -1;
1044 int err;
1045
1046 if (!drhd->reg_base_addr) {
1047 warn_invalid_dmar(0, "");
1048 return -EINVAL;
1049 }
1050
1051 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1052 if (!iommu)
1053 return -ENOMEM;
1054
1055 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1056 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1057 if (iommu->seq_id < 0) {
1058 pr_err("Failed to allocate seq_id\n");
1059 err = iommu->seq_id;
1060 goto error;
1061 }
1062 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1063
1064 err = map_iommu(iommu, drhd);
1065 if (err) {
1066 pr_err("Failed to map %s\n", iommu->name);
1067 goto error_free_seq_id;
1068 }
1069
1070 err = -EINVAL;
1071 if (!cap_sagaw(iommu->cap) &&
1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074 iommu->name);
1075 drhd->ignored = 1;
1076 }
1077
1078 if (!drhd->ignored) {
1079 agaw = iommu_calculate_agaw(iommu);
1080 if (agaw < 0) {
1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082 iommu->seq_id);
1083 drhd->ignored = 1;
1084 }
1085 }
1086 if (!drhd->ignored) {
1087 msagaw = iommu_calculate_max_sagaw(iommu);
1088 if (msagaw < 0) {
1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090 iommu->seq_id);
1091 drhd->ignored = 1;
1092 agaw = -1;
1093 }
1094 }
1095 iommu->agaw = agaw;
1096 iommu->msagaw = msagaw;
1097 iommu->segment = drhd->segment;
1098 iommu->device_rbtree = RB_ROOT;
1099 spin_lock_init(&iommu->device_rbtree_lock);
1100 mutex_init(&iommu->iopf_lock);
1101 iommu->node = NUMA_NO_NODE;
1102
1103 ver = readl(iommu->reg + DMAR_VER_REG);
1104 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105 iommu->name,
1106 (unsigned long long)drhd->reg_base_addr,
1107 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 (unsigned long long)iommu->cap,
1109 (unsigned long long)iommu->ecap);
1110
1111 /* Reflect status in gcmd */
1112 sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 if (sts & DMA_GSTS_IRES)
1114 iommu->gcmd |= DMA_GCMD_IRE;
1115 if (sts & DMA_GSTS_TES)
1116 iommu->gcmd |= DMA_GCMD_TE;
1117 if (sts & DMA_GSTS_QIES)
1118 iommu->gcmd |= DMA_GCMD_QIE;
1119
1120 if (alloc_iommu_pmu(iommu))
1121 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122
1123 raw_spin_lock_init(&iommu->register_lock);
1124
1125 /*
1126 * A value of N in PSS field of eCap register indicates hardware
1127 * supports PASID field of N+1 bits.
1128 */
1129 if (pasid_supported(iommu))
1130 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131
1132 /*
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1136 */
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 intel_iommu_groups,
1140 "%s", iommu->name);
1141 if (err)
1142 goto err_unmap;
1143
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 if (err)
1146 goto err_sysfs;
1147
1148 iommu_pmu_register(iommu);
1149 }
1150
1151 drhd->iommu = iommu;
1152 iommu->drhd = drhd;
1153
1154 return 0;
1155
1156err_sysfs:
1157 iommu_device_sysfs_remove(&iommu->iommu);
1158err_unmap:
1159 free_iommu_pmu(iommu);
1160 unmap_iommu(iommu);
1161error_free_seq_id:
1162 ida_free(&dmar_seq_ids, iommu->seq_id);
1163error:
1164 kfree(iommu);
1165 return err;
1166}
1167
1168static void free_iommu(struct intel_iommu *iommu)
1169{
1170 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 iommu_pmu_unregister(iommu);
1172 iommu_device_unregister(&iommu->iommu);
1173 iommu_device_sysfs_remove(&iommu->iommu);
1174 }
1175
1176 free_iommu_pmu(iommu);
1177
1178 if (iommu->irq) {
1179 if (iommu->pr_irq) {
1180 free_irq(iommu->pr_irq, iommu);
1181 dmar_free_hwirq(iommu->pr_irq);
1182 iommu->pr_irq = 0;
1183 }
1184 free_irq(iommu->irq, iommu);
1185 dmar_free_hwirq(iommu->irq);
1186 iommu->irq = 0;
1187 }
1188
1189 if (iommu->qi) {
1190 free_page((unsigned long)iommu->qi->desc);
1191 kfree(iommu->qi->desc_status);
1192 kfree(iommu->qi);
1193 }
1194
1195 if (iommu->reg)
1196 unmap_iommu(iommu);
1197
1198 ida_free(&dmar_seq_ids, iommu->seq_id);
1199 kfree(iommu);
1200}
1201
1202/*
1203 * Reclaim all the submitted descriptors which have completed its work.
1204 */
1205static inline void reclaim_free_desc(struct q_inval *qi)
1206{
1207 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1208 qi->desc_status[qi->free_tail] == QI_ABORT) {
1209 qi->desc_status[qi->free_tail] = QI_FREE;
1210 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1211 qi->free_cnt++;
1212 }
1213}
1214
1215static const char *qi_type_string(u8 type)
1216{
1217 switch (type) {
1218 case QI_CC_TYPE:
1219 return "Context-cache Invalidation";
1220 case QI_IOTLB_TYPE:
1221 return "IOTLB Invalidation";
1222 case QI_DIOTLB_TYPE:
1223 return "Device-TLB Invalidation";
1224 case QI_IEC_TYPE:
1225 return "Interrupt Entry Cache Invalidation";
1226 case QI_IWD_TYPE:
1227 return "Invalidation Wait";
1228 case QI_EIOTLB_TYPE:
1229 return "PASID-based IOTLB Invalidation";
1230 case QI_PC_TYPE:
1231 return "PASID-cache Invalidation";
1232 case QI_DEIOTLB_TYPE:
1233 return "PASID-based Device-TLB Invalidation";
1234 case QI_PGRP_RESP_TYPE:
1235 return "Page Group Response";
1236 default:
1237 return "UNKNOWN";
1238 }
1239}
1240
1241static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1242{
1243 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1244 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1245 struct qi_desc *desc = iommu->qi->desc + head;
1246
1247 if (fault & DMA_FSTS_IQE)
1248 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1249 DMAR_IQER_REG_IQEI(iqe_err));
1250 if (fault & DMA_FSTS_ITE)
1251 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1252 DMAR_IQER_REG_ITESID(iqe_err));
1253 if (fault & DMA_FSTS_ICE)
1254 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1255 DMAR_IQER_REG_ICESID(iqe_err));
1256
1257 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1258 qi_type_string(desc->qw0 & 0xf),
1259 (unsigned long long)desc->qw0,
1260 (unsigned long long)desc->qw1);
1261
1262 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1263 head <<= qi_shift(iommu);
1264 desc = iommu->qi->desc + head;
1265
1266 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1267 qi_type_string(desc->qw0 & 0xf),
1268 (unsigned long long)desc->qw0,
1269 (unsigned long long)desc->qw1);
1270}
1271
1272static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1273{
1274 u32 fault;
1275 int head, tail;
1276 struct device *dev;
1277 u64 iqe_err, ite_sid;
1278 struct q_inval *qi = iommu->qi;
1279 int shift = qi_shift(iommu);
1280
1281 if (qi->desc_status[wait_index] == QI_ABORT)
1282 return -EAGAIN;
1283
1284 fault = readl(iommu->reg + DMAR_FSTS_REG);
1285 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1286 qi_dump_fault(iommu, fault);
1287
1288 /*
1289 * If IQE happens, the head points to the descriptor associated
1290 * with the error. No new descriptors are fetched until the IQE
1291 * is cleared.
1292 */
1293 if (fault & DMA_FSTS_IQE) {
1294 head = readl(iommu->reg + DMAR_IQH_REG);
1295 if ((head >> shift) == index) {
1296 struct qi_desc *desc = qi->desc + head;
1297
1298 /*
1299 * desc->qw2 and desc->qw3 are either reserved or
1300 * used by software as private data. We won't print
1301 * out these two qw's for security consideration.
1302 */
1303 memcpy(desc, qi->desc + (wait_index << shift),
1304 1 << shift);
1305 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1306 pr_info("Invalidation Queue Error (IQE) cleared\n");
1307 return -EINVAL;
1308 }
1309 }
1310
1311 /*
1312 * If ITE happens, all pending wait_desc commands are aborted.
1313 * No new descriptors are fetched until the ITE is cleared.
1314 */
1315 if (fault & DMA_FSTS_ITE) {
1316 head = readl(iommu->reg + DMAR_IQH_REG);
1317 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1318 head |= 1;
1319 tail = readl(iommu->reg + DMAR_IQT_REG);
1320 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1321
1322 /*
1323 * SID field is valid only when the ITE field is Set in FSTS_REG
1324 * see Intel VT-d spec r4.1, section 11.4.9.9
1325 */
1326 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1327 ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1328
1329 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1330 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1331
1332 do {
1333 if (qi->desc_status[head] == QI_IN_USE)
1334 qi->desc_status[head] = QI_ABORT;
1335 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1336 } while (head != tail);
1337
1338 /*
1339 * If device was released or isn't present, no need to retry
1340 * the ATS invalidate request anymore.
1341 *
1342 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1343 * see Intel VT-d spec r4.1, section 11.4.9.9
1344 */
1345 if (ite_sid) {
1346 dev = device_rbtree_find(iommu, ite_sid);
1347 if (!dev || !dev_is_pci(dev) ||
1348 !pci_device_is_present(to_pci_dev(dev)))
1349 return -ETIMEDOUT;
1350 }
1351 if (qi->desc_status[wait_index] == QI_ABORT)
1352 return -EAGAIN;
1353 }
1354
1355 if (fault & DMA_FSTS_ICE) {
1356 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1357 pr_info("Invalidation Completion Error (ICE) cleared\n");
1358 }
1359
1360 return 0;
1361}
1362
1363/*
1364 * Function to submit invalidation descriptors of all types to the queued
1365 * invalidation interface(QI). Multiple descriptors can be submitted at a
1366 * time, a wait descriptor will be appended to each submission to ensure
1367 * hardware has completed the invalidation before return. Wait descriptors
1368 * can be part of the submission but it will not be polled for completion.
1369 */
1370int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1371 unsigned int count, unsigned long options)
1372{
1373 struct q_inval *qi = iommu->qi;
1374 s64 devtlb_start_ktime = 0;
1375 s64 iotlb_start_ktime = 0;
1376 s64 iec_start_ktime = 0;
1377 struct qi_desc wait_desc;
1378 int wait_index, index;
1379 unsigned long flags;
1380 int offset, shift;
1381 int rc, i;
1382 u64 type;
1383
1384 if (!qi)
1385 return 0;
1386
1387 type = desc->qw0 & GENMASK_ULL(3, 0);
1388
1389 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1390 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1391 iotlb_start_ktime = ktime_to_ns(ktime_get());
1392
1393 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1394 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1395 devtlb_start_ktime = ktime_to_ns(ktime_get());
1396
1397 if (type == QI_IEC_TYPE &&
1398 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1399 iec_start_ktime = ktime_to_ns(ktime_get());
1400
1401restart:
1402 rc = 0;
1403
1404 raw_spin_lock_irqsave(&qi->q_lock, flags);
1405 /*
1406 * Check if we have enough empty slots in the queue to submit,
1407 * the calculation is based on:
1408 * # of desc + 1 wait desc + 1 space between head and tail
1409 */
1410 while (qi->free_cnt < count + 2) {
1411 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1412 cpu_relax();
1413 raw_spin_lock_irqsave(&qi->q_lock, flags);
1414 }
1415
1416 index = qi->free_head;
1417 wait_index = (index + count) % QI_LENGTH;
1418 shift = qi_shift(iommu);
1419
1420 for (i = 0; i < count; i++) {
1421 offset = ((index + i) % QI_LENGTH) << shift;
1422 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1423 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1424 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1425 desc[i].qw2, desc[i].qw3);
1426 }
1427 qi->desc_status[wait_index] = QI_IN_USE;
1428
1429 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1430 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1431 if (options & QI_OPT_WAIT_DRAIN)
1432 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1433 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1434 wait_desc.qw2 = 0;
1435 wait_desc.qw3 = 0;
1436
1437 offset = wait_index << shift;
1438 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1439
1440 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1441 qi->free_cnt -= count + 1;
1442
1443 /*
1444 * update the HW tail register indicating the presence of
1445 * new descriptors.
1446 */
1447 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1448
1449 while (qi->desc_status[wait_index] != QI_DONE) {
1450 /*
1451 * We will leave the interrupts disabled, to prevent interrupt
1452 * context to queue another cmd while a cmd is already submitted
1453 * and waiting for completion on this cpu. This is to avoid
1454 * a deadlock where the interrupt context can wait indefinitely
1455 * for free slots in the queue.
1456 */
1457 rc = qi_check_fault(iommu, index, wait_index);
1458 if (rc)
1459 break;
1460
1461 raw_spin_unlock(&qi->q_lock);
1462 cpu_relax();
1463 raw_spin_lock(&qi->q_lock);
1464 }
1465
1466 for (i = 0; i < count; i++)
1467 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1468
1469 reclaim_free_desc(qi);
1470 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1471
1472 if (rc == -EAGAIN)
1473 goto restart;
1474
1475 if (iotlb_start_ktime)
1476 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1477 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1478
1479 if (devtlb_start_ktime)
1480 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1481 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1482
1483 if (iec_start_ktime)
1484 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1485 ktime_to_ns(ktime_get()) - iec_start_ktime);
1486
1487 return rc;
1488}
1489
1490/*
1491 * Flush the global interrupt entry cache.
1492 */
1493void qi_global_iec(struct intel_iommu *iommu)
1494{
1495 struct qi_desc desc;
1496
1497 desc.qw0 = QI_IEC_TYPE;
1498 desc.qw1 = 0;
1499 desc.qw2 = 0;
1500 desc.qw3 = 0;
1501
1502 /* should never fail */
1503 qi_submit_sync(iommu, &desc, 1, 0);
1504}
1505
1506void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1507 u64 type)
1508{
1509 struct qi_desc desc;
1510
1511 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1512 | QI_CC_GRAN(type) | QI_CC_TYPE;
1513 desc.qw1 = 0;
1514 desc.qw2 = 0;
1515 desc.qw3 = 0;
1516
1517 qi_submit_sync(iommu, &desc, 1, 0);
1518}
1519
1520void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1521 unsigned int size_order, u64 type)
1522{
1523 u8 dw = 0, dr = 0;
1524
1525 struct qi_desc desc;
1526 int ih = 0;
1527
1528 if (cap_write_drain(iommu->cap))
1529 dw = 1;
1530
1531 if (cap_read_drain(iommu->cap))
1532 dr = 1;
1533
1534 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1535 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1536 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1537 | QI_IOTLB_AM(size_order);
1538 desc.qw2 = 0;
1539 desc.qw3 = 0;
1540
1541 qi_submit_sync(iommu, &desc, 1, 0);
1542}
1543
1544void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1545 u16 qdep, u64 addr, unsigned mask)
1546{
1547 struct qi_desc desc;
1548
1549 /*
1550 * VT-d spec, section 4.3:
1551 *
1552 * Software is recommended to not submit any Device-TLB invalidation
1553 * requests while address remapping hardware is disabled.
1554 */
1555 if (!(iommu->gcmd & DMA_GCMD_TE))
1556 return;
1557
1558 if (mask) {
1559 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1560 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1561 } else
1562 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1563
1564 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1565 qdep = 0;
1566
1567 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1568 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1569 desc.qw2 = 0;
1570 desc.qw3 = 0;
1571
1572 qi_submit_sync(iommu, &desc, 1, 0);
1573}
1574
1575/* PASID-based IOTLB invalidation */
1576void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1577 unsigned long npages, bool ih)
1578{
1579 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1580
1581 /*
1582 * npages == -1 means a PASID-selective invalidation, otherwise,
1583 * a positive value for Page-selective-within-PASID invalidation.
1584 * 0 is not a valid input.
1585 */
1586 if (WARN_ON(!npages)) {
1587 pr_err("Invalid input npages = %ld\n", npages);
1588 return;
1589 }
1590
1591 if (npages == -1) {
1592 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1593 QI_EIOTLB_DID(did) |
1594 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1595 QI_EIOTLB_TYPE;
1596 desc.qw1 = 0;
1597 } else {
1598 int mask = ilog2(__roundup_pow_of_two(npages));
1599 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1600
1601 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1602 addr = ALIGN_DOWN(addr, align);
1603
1604 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1605 QI_EIOTLB_DID(did) |
1606 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1607 QI_EIOTLB_TYPE;
1608 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1609 QI_EIOTLB_IH(ih) |
1610 QI_EIOTLB_AM(mask);
1611 }
1612
1613 qi_submit_sync(iommu, &desc, 1, 0);
1614}
1615
1616/* PASID-based device IOTLB Invalidate */
1617void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1618 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1619{
1620 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1621 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1622
1623 /*
1624 * VT-d spec, section 4.3:
1625 *
1626 * Software is recommended to not submit any Device-TLB invalidation
1627 * requests while address remapping hardware is disabled.
1628 */
1629 if (!(iommu->gcmd & DMA_GCMD_TE))
1630 return;
1631
1632 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1633 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1634 QI_DEV_IOTLB_PFSID(pfsid);
1635
1636 /*
1637 * If S bit is 0, we only flush a single page. If S bit is set,
1638 * The least significant zero bit indicates the invalidation address
1639 * range. VT-d spec 6.5.2.6.
1640 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1641 * size order = 0 is PAGE_SIZE 4KB
1642 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1643 * ECAP.
1644 */
1645 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1646 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1647 addr, size_order);
1648
1649 /* Take page address */
1650 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1651
1652 if (size_order) {
1653 /*
1654 * Existing 0s in address below size_order may be the least
1655 * significant bit, we must set them to 1s to avoid having
1656 * smaller size than desired.
1657 */
1658 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1659 VTD_PAGE_SHIFT);
1660 /* Clear size_order bit to indicate size */
1661 desc.qw1 &= ~mask;
1662 /* Set the S bit to indicate flushing more than 1 page */
1663 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1664 }
1665
1666 qi_submit_sync(iommu, &desc, 1, 0);
1667}
1668
1669void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1670 u64 granu, u32 pasid)
1671{
1672 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1673
1674 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1675 QI_PC_GRAN(granu) | QI_PC_TYPE;
1676 qi_submit_sync(iommu, &desc, 1, 0);
1677}
1678
1679/*
1680 * Disable Queued Invalidation interface.
1681 */
1682void dmar_disable_qi(struct intel_iommu *iommu)
1683{
1684 unsigned long flags;
1685 u32 sts;
1686 cycles_t start_time = get_cycles();
1687
1688 if (!ecap_qis(iommu->ecap))
1689 return;
1690
1691 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1692
1693 sts = readl(iommu->reg + DMAR_GSTS_REG);
1694 if (!(sts & DMA_GSTS_QIES))
1695 goto end;
1696
1697 /*
1698 * Give a chance to HW to complete the pending invalidation requests.
1699 */
1700 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1701 readl(iommu->reg + DMAR_IQH_REG)) &&
1702 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1703 cpu_relax();
1704
1705 iommu->gcmd &= ~DMA_GCMD_QIE;
1706 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1707
1708 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1709 !(sts & DMA_GSTS_QIES), sts);
1710end:
1711 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1712}
1713
1714/*
1715 * Enable queued invalidation.
1716 */
1717static void __dmar_enable_qi(struct intel_iommu *iommu)
1718{
1719 u32 sts;
1720 unsigned long flags;
1721 struct q_inval *qi = iommu->qi;
1722 u64 val = virt_to_phys(qi->desc);
1723
1724 qi->free_head = qi->free_tail = 0;
1725 qi->free_cnt = QI_LENGTH;
1726
1727 /*
1728 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1729 * is present.
1730 */
1731 if (ecap_smts(iommu->ecap))
1732 val |= BIT_ULL(11) | BIT_ULL(0);
1733
1734 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1735
1736 /* write zero to the tail reg */
1737 writel(0, iommu->reg + DMAR_IQT_REG);
1738
1739 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1740
1741 iommu->gcmd |= DMA_GCMD_QIE;
1742 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1743
1744 /* Make sure hardware complete it */
1745 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1746
1747 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1748}
1749
1750/*
1751 * Enable Queued Invalidation interface. This is a must to support
1752 * interrupt-remapping. Also used by DMA-remapping, which replaces
1753 * register based IOTLB invalidation.
1754 */
1755int dmar_enable_qi(struct intel_iommu *iommu)
1756{
1757 struct q_inval *qi;
1758 struct page *desc_page;
1759
1760 if (!ecap_qis(iommu->ecap))
1761 return -ENOENT;
1762
1763 /*
1764 * queued invalidation is already setup and enabled.
1765 */
1766 if (iommu->qi)
1767 return 0;
1768
1769 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1770 if (!iommu->qi)
1771 return -ENOMEM;
1772
1773 qi = iommu->qi;
1774
1775 /*
1776 * Need two pages to accommodate 256 descriptors of 256 bits each
1777 * if the remapping hardware supports scalable mode translation.
1778 */
1779 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1780 !!ecap_smts(iommu->ecap));
1781 if (!desc_page) {
1782 kfree(qi);
1783 iommu->qi = NULL;
1784 return -ENOMEM;
1785 }
1786
1787 qi->desc = page_address(desc_page);
1788
1789 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1790 if (!qi->desc_status) {
1791 free_page((unsigned long) qi->desc);
1792 kfree(qi);
1793 iommu->qi = NULL;
1794 return -ENOMEM;
1795 }
1796
1797 raw_spin_lock_init(&qi->q_lock);
1798
1799 __dmar_enable_qi(iommu);
1800
1801 return 0;
1802}
1803
1804/* iommu interrupt handling. Most stuff are MSI-like. */
1805
1806enum faulttype {
1807 DMA_REMAP,
1808 INTR_REMAP,
1809 UNKNOWN,
1810};
1811
1812static const char *dma_remap_fault_reasons[] =
1813{
1814 "Software",
1815 "Present bit in root entry is clear",
1816 "Present bit in context entry is clear",
1817 "Invalid context entry",
1818 "Access beyond MGAW",
1819 "PTE Write access is not set",
1820 "PTE Read access is not set",
1821 "Next page table ptr is invalid",
1822 "Root table address invalid",
1823 "Context table ptr is invalid",
1824 "non-zero reserved fields in RTP",
1825 "non-zero reserved fields in CTP",
1826 "non-zero reserved fields in PTE",
1827 "PCE for translation request specifies blocking",
1828};
1829
1830static const char * const dma_remap_sm_fault_reasons[] = {
1831 "SM: Invalid Root Table Address",
1832 "SM: TTM 0 for request with PASID",
1833 "SM: TTM 0 for page group request",
1834 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1835 "SM: Error attempting to access Root Entry",
1836 "SM: Present bit in Root Entry is clear",
1837 "SM: Non-zero reserved field set in Root Entry",
1838 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1839 "SM: Error attempting to access Context Entry",
1840 "SM: Present bit in Context Entry is clear",
1841 "SM: Non-zero reserved field set in the Context Entry",
1842 "SM: Invalid Context Entry",
1843 "SM: DTE field in Context Entry is clear",
1844 "SM: PASID Enable field in Context Entry is clear",
1845 "SM: PASID is larger than the max in Context Entry",
1846 "SM: PRE field in Context-Entry is clear",
1847 "SM: RID_PASID field error in Context-Entry",
1848 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1849 "SM: Error attempting to access the PASID Directory Entry",
1850 "SM: Present bit in Directory Entry is clear",
1851 "SM: Non-zero reserved field set in PASID Directory Entry",
1852 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1853 "SM: Error attempting to access PASID Table Entry",
1854 "SM: Present bit in PASID Table Entry is clear",
1855 "SM: Non-zero reserved field set in PASID Table Entry",
1856 "SM: Invalid Scalable-Mode PASID Table Entry",
1857 "SM: ERE field is clear in PASID Table Entry",
1858 "SM: SRE field is clear in PASID Table Entry",
1859 "Unknown", "Unknown",/* 0x5E-0x5F */
1860 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1861 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1862 "SM: Error attempting to access first-level paging entry",
1863 "SM: Present bit in first-level paging entry is clear",
1864 "SM: Non-zero reserved field set in first-level paging entry",
1865 "SM: Error attempting to access FL-PML4 entry",
1866 "SM: First-level entry address beyond MGAW in Nested translation",
1867 "SM: Read permission error in FL-PML4 entry in Nested translation",
1868 "SM: Read permission error in first-level paging entry in Nested translation",
1869 "SM: Write permission error in first-level paging entry in Nested translation",
1870 "SM: Error attempting to access second-level paging entry",
1871 "SM: Read/Write permission error in second-level paging entry",
1872 "SM: Non-zero reserved field set in second-level paging entry",
1873 "SM: Invalid second-level page table pointer",
1874 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1875 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1876 "SM: Address in first-level translation is not canonical",
1877 "SM: U/S set 0 for first-level translation with user privilege",
1878 "SM: No execute permission for request with PASID and ER=1",
1879 "SM: Address beyond the DMA hardware max",
1880 "SM: Second-level entry address beyond the max",
1881 "SM: No write permission for Write/AtomicOp request",
1882 "SM: No read permission for Read/AtomicOp request",
1883 "SM: Invalid address-interrupt address",
1884 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1885 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1886};
1887
1888static const char *irq_remap_fault_reasons[] =
1889{
1890 "Detected reserved fields in the decoded interrupt-remapped request",
1891 "Interrupt index exceeded the interrupt-remapping table size",
1892 "Present field in the IRTE entry is clear",
1893 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1894 "Detected reserved fields in the IRTE entry",
1895 "Blocked a compatibility format interrupt request",
1896 "Blocked an interrupt request due to source-id verification failure",
1897};
1898
1899static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1900{
1901 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1902 ARRAY_SIZE(irq_remap_fault_reasons))) {
1903 *fault_type = INTR_REMAP;
1904 return irq_remap_fault_reasons[fault_reason - 0x20];
1905 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1906 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1907 *fault_type = DMA_REMAP;
1908 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1909 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1910 *fault_type = DMA_REMAP;
1911 return dma_remap_fault_reasons[fault_reason];
1912 } else {
1913 *fault_type = UNKNOWN;
1914 return "Unknown";
1915 }
1916}
1917
1918
1919static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1920{
1921 if (iommu->irq == irq)
1922 return DMAR_FECTL_REG;
1923 else if (iommu->pr_irq == irq)
1924 return DMAR_PECTL_REG;
1925 else if (iommu->perf_irq == irq)
1926 return DMAR_PERFINTRCTL_REG;
1927 else
1928 BUG();
1929}
1930
1931void dmar_msi_unmask(struct irq_data *data)
1932{
1933 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1934 int reg = dmar_msi_reg(iommu, data->irq);
1935 unsigned long flag;
1936
1937 /* unmask it */
1938 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1939 writel(0, iommu->reg + reg);
1940 /* Read a reg to force flush the post write */
1941 readl(iommu->reg + reg);
1942 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1943}
1944
1945void dmar_msi_mask(struct irq_data *data)
1946{
1947 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1948 int reg = dmar_msi_reg(iommu, data->irq);
1949 unsigned long flag;
1950
1951 /* mask it */
1952 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1953 writel(DMA_FECTL_IM, iommu->reg + reg);
1954 /* Read a reg to force flush the post write */
1955 readl(iommu->reg + reg);
1956 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1957}
1958
1959void dmar_msi_write(int irq, struct msi_msg *msg)
1960{
1961 struct intel_iommu *iommu = irq_get_handler_data(irq);
1962 int reg = dmar_msi_reg(iommu, irq);
1963 unsigned long flag;
1964
1965 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1966 writel(msg->data, iommu->reg + reg + 4);
1967 writel(msg->address_lo, iommu->reg + reg + 8);
1968 writel(msg->address_hi, iommu->reg + reg + 12);
1969 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1970}
1971
1972void dmar_msi_read(int irq, struct msi_msg *msg)
1973{
1974 struct intel_iommu *iommu = irq_get_handler_data(irq);
1975 int reg = dmar_msi_reg(iommu, irq);
1976 unsigned long flag;
1977
1978 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979 msg->data = readl(iommu->reg + reg + 4);
1980 msg->address_lo = readl(iommu->reg + reg + 8);
1981 msg->address_hi = readl(iommu->reg + reg + 12);
1982 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1983}
1984
1985static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1986 u8 fault_reason, u32 pasid, u16 source_id,
1987 unsigned long long addr)
1988{
1989 const char *reason;
1990 int fault_type;
1991
1992 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1993
1994 if (fault_type == INTR_REMAP) {
1995 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1996 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1997 PCI_FUNC(source_id & 0xFF), addr >> 48,
1998 fault_reason, reason);
1999
2000 return 0;
2001 }
2002
2003 if (pasid == IOMMU_PASID_INVALID)
2004 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2005 type ? "DMA Read" : "DMA Write",
2006 source_id >> 8, PCI_SLOT(source_id & 0xFF),
2007 PCI_FUNC(source_id & 0xFF), addr,
2008 fault_reason, reason);
2009 else
2010 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2011 type ? "DMA Read" : "DMA Write", pasid,
2012 source_id >> 8, PCI_SLOT(source_id & 0xFF),
2013 PCI_FUNC(source_id & 0xFF), addr,
2014 fault_reason, reason);
2015
2016 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
2017
2018 return 0;
2019}
2020
2021#define PRIMARY_FAULT_REG_LEN (16)
2022irqreturn_t dmar_fault(int irq, void *dev_id)
2023{
2024 struct intel_iommu *iommu = dev_id;
2025 int reg, fault_index;
2026 u32 fault_status;
2027 unsigned long flag;
2028 static DEFINE_RATELIMIT_STATE(rs,
2029 DEFAULT_RATELIMIT_INTERVAL,
2030 DEFAULT_RATELIMIT_BURST);
2031
2032 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2033 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2034 if (fault_status && __ratelimit(&rs))
2035 pr_err("DRHD: handling fault status reg %x\n", fault_status);
2036
2037 /* TBD: ignore advanced fault log currently */
2038 if (!(fault_status & DMA_FSTS_PPF))
2039 goto unlock_exit;
2040
2041 fault_index = dma_fsts_fault_record_index(fault_status);
2042 reg = cap_fault_reg_offset(iommu->cap);
2043 while (1) {
2044 /* Disable printing, simply clear the fault when ratelimited */
2045 bool ratelimited = !__ratelimit(&rs);
2046 u8 fault_reason;
2047 u16 source_id;
2048 u64 guest_addr;
2049 u32 pasid;
2050 int type;
2051 u32 data;
2052 bool pasid_present;
2053
2054 /* highest 32 bits */
2055 data = readl(iommu->reg + reg +
2056 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2057 if (!(data & DMA_FRCD_F))
2058 break;
2059
2060 if (!ratelimited) {
2061 fault_reason = dma_frcd_fault_reason(data);
2062 type = dma_frcd_type(data);
2063
2064 pasid = dma_frcd_pasid_value(data);
2065 data = readl(iommu->reg + reg +
2066 fault_index * PRIMARY_FAULT_REG_LEN + 8);
2067 source_id = dma_frcd_source_id(data);
2068
2069 pasid_present = dma_frcd_pasid_present(data);
2070 guest_addr = dmar_readq(iommu->reg + reg +
2071 fault_index * PRIMARY_FAULT_REG_LEN);
2072 guest_addr = dma_frcd_page_addr(guest_addr);
2073 }
2074
2075 /* clear the fault */
2076 writel(DMA_FRCD_F, iommu->reg + reg +
2077 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2078
2079 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2080
2081 if (!ratelimited)
2082 /* Using pasid -1 if pasid is not present */
2083 dmar_fault_do_one(iommu, type, fault_reason,
2084 pasid_present ? pasid : IOMMU_PASID_INVALID,
2085 source_id, guest_addr);
2086
2087 fault_index++;
2088 if (fault_index >= cap_num_fault_regs(iommu->cap))
2089 fault_index = 0;
2090 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2091 }
2092
2093 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2094 iommu->reg + DMAR_FSTS_REG);
2095
2096unlock_exit:
2097 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2098 return IRQ_HANDLED;
2099}
2100
2101int dmar_set_interrupt(struct intel_iommu *iommu)
2102{
2103 int irq, ret;
2104
2105 /*
2106 * Check if the fault interrupt is already initialized.
2107 */
2108 if (iommu->irq)
2109 return 0;
2110
2111 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2112 if (irq > 0) {
2113 iommu->irq = irq;
2114 } else {
2115 pr_err("No free IRQ vectors\n");
2116 return -EINVAL;
2117 }
2118
2119 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2120 if (ret)
2121 pr_err("Can't request irq\n");
2122 return ret;
2123}
2124
2125int __init enable_drhd_fault_handling(void)
2126{
2127 struct dmar_drhd_unit *drhd;
2128 struct intel_iommu *iommu;
2129
2130 /*
2131 * Enable fault control interrupt.
2132 */
2133 for_each_iommu(iommu, drhd) {
2134 u32 fault_status;
2135 int ret = dmar_set_interrupt(iommu);
2136
2137 if (ret) {
2138 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2139 (unsigned long long)drhd->reg_base_addr, ret);
2140 return -1;
2141 }
2142
2143 /*
2144 * Clear any previous faults.
2145 */
2146 dmar_fault(iommu->irq, iommu);
2147 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2148 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2149 }
2150
2151 return 0;
2152}
2153
2154/*
2155 * Re-enable Queued Invalidation interface.
2156 */
2157int dmar_reenable_qi(struct intel_iommu *iommu)
2158{
2159 if (!ecap_qis(iommu->ecap))
2160 return -ENOENT;
2161
2162 if (!iommu->qi)
2163 return -ENOENT;
2164
2165 /*
2166 * First disable queued invalidation.
2167 */
2168 dmar_disable_qi(iommu);
2169 /*
2170 * Then enable queued invalidation again. Since there is no pending
2171 * invalidation requests now, it's safe to re-enable queued
2172 * invalidation.
2173 */
2174 __dmar_enable_qi(iommu);
2175
2176 return 0;
2177}
2178
2179/*
2180 * Check interrupt remapping support in DMAR table description.
2181 */
2182int __init dmar_ir_support(void)
2183{
2184 struct acpi_table_dmar *dmar;
2185 dmar = (struct acpi_table_dmar *)dmar_tbl;
2186 if (!dmar)
2187 return 0;
2188 return dmar->flags & 0x1;
2189}
2190
2191/* Check whether DMAR units are in use */
2192static inline bool dmar_in_use(void)
2193{
2194 return irq_remapping_enabled || intel_iommu_enabled;
2195}
2196
2197static int __init dmar_free_unused_resources(void)
2198{
2199 struct dmar_drhd_unit *dmaru, *dmaru_n;
2200
2201 if (dmar_in_use())
2202 return 0;
2203
2204 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2205 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2206
2207 down_write(&dmar_global_lock);
2208 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2209 list_del(&dmaru->list);
2210 dmar_free_drhd(dmaru);
2211 }
2212 up_write(&dmar_global_lock);
2213
2214 return 0;
2215}
2216
2217late_initcall(dmar_free_unused_resources);
2218
2219/*
2220 * DMAR Hotplug Support
2221 * For more details, please refer to Intel(R) Virtualization Technology
2222 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2223 * "Remapping Hardware Unit Hot Plug".
2224 */
2225static guid_t dmar_hp_guid =
2226 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2227 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2228
2229/*
2230 * Currently there's only one revision and BIOS will not check the revision id,
2231 * so use 0 for safety.
2232 */
2233#define DMAR_DSM_REV_ID 0
2234#define DMAR_DSM_FUNC_DRHD 1
2235#define DMAR_DSM_FUNC_ATSR 2
2236#define DMAR_DSM_FUNC_RHSA 3
2237#define DMAR_DSM_FUNC_SATC 4
2238
2239static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2240{
2241 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2242}
2243
2244static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2245 dmar_res_handler_t handler, void *arg)
2246{
2247 int ret = -ENODEV;
2248 union acpi_object *obj;
2249 struct acpi_dmar_header *start;
2250 struct dmar_res_callback callback;
2251 static int res_type[] = {
2252 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2253 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2254 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2255 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2256 };
2257
2258 if (!dmar_detect_dsm(handle, func))
2259 return 0;
2260
2261 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2262 func, NULL, ACPI_TYPE_BUFFER);
2263 if (!obj)
2264 return -ENODEV;
2265
2266 memset(&callback, 0, sizeof(callback));
2267 callback.cb[res_type[func]] = handler;
2268 callback.arg[res_type[func]] = arg;
2269 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2270 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2271
2272 ACPI_FREE(obj);
2273
2274 return ret;
2275}
2276
2277static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2278{
2279 int ret;
2280 struct dmar_drhd_unit *dmaru;
2281
2282 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2283 if (!dmaru)
2284 return -ENODEV;
2285
2286 ret = dmar_ir_hotplug(dmaru, true);
2287 if (ret == 0)
2288 ret = dmar_iommu_hotplug(dmaru, true);
2289
2290 return ret;
2291}
2292
2293static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2294{
2295 int i, ret;
2296 struct device *dev;
2297 struct dmar_drhd_unit *dmaru;
2298
2299 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2300 if (!dmaru)
2301 return 0;
2302
2303 /*
2304 * All PCI devices managed by this unit should have been destroyed.
2305 */
2306 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2307 for_each_active_dev_scope(dmaru->devices,
2308 dmaru->devices_cnt, i, dev)
2309 return -EBUSY;
2310 }
2311
2312 ret = dmar_ir_hotplug(dmaru, false);
2313 if (ret == 0)
2314 ret = dmar_iommu_hotplug(dmaru, false);
2315
2316 return ret;
2317}
2318
2319static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2320{
2321 struct dmar_drhd_unit *dmaru;
2322
2323 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2324 if (dmaru) {
2325 list_del_rcu(&dmaru->list);
2326 synchronize_rcu();
2327 dmar_free_drhd(dmaru);
2328 }
2329
2330 return 0;
2331}
2332
2333static int dmar_hotplug_insert(acpi_handle handle)
2334{
2335 int ret;
2336 int drhd_count = 0;
2337
2338 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2339 &dmar_validate_one_drhd, (void *)1);
2340 if (ret)
2341 goto out;
2342
2343 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344 &dmar_parse_one_drhd, (void *)&drhd_count);
2345 if (ret == 0 && drhd_count == 0) {
2346 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2347 goto out;
2348 } else if (ret) {
2349 goto release_drhd;
2350 }
2351
2352 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2353 &dmar_parse_one_rhsa, NULL);
2354 if (ret)
2355 goto release_drhd;
2356
2357 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2358 &dmar_parse_one_atsr, NULL);
2359 if (ret)
2360 goto release_atsr;
2361
2362 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2363 &dmar_hp_add_drhd, NULL);
2364 if (!ret)
2365 return 0;
2366
2367 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2368 &dmar_hp_remove_drhd, NULL);
2369release_atsr:
2370 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2371 &dmar_release_one_atsr, NULL);
2372release_drhd:
2373 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2374 &dmar_hp_release_drhd, NULL);
2375out:
2376 return ret;
2377}
2378
2379static int dmar_hotplug_remove(acpi_handle handle)
2380{
2381 int ret;
2382
2383 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2384 &dmar_check_one_atsr, NULL);
2385 if (ret)
2386 return ret;
2387
2388 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2389 &dmar_hp_remove_drhd, NULL);
2390 if (ret == 0) {
2391 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2392 &dmar_release_one_atsr, NULL));
2393 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2394 &dmar_hp_release_drhd, NULL));
2395 } else {
2396 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2397 &dmar_hp_add_drhd, NULL);
2398 }
2399
2400 return ret;
2401}
2402
2403static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2404 void *context, void **retval)
2405{
2406 acpi_handle *phdl = retval;
2407
2408 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2409 *phdl = handle;
2410 return AE_CTRL_TERMINATE;
2411 }
2412
2413 return AE_OK;
2414}
2415
2416static int dmar_device_hotplug(acpi_handle handle, bool insert)
2417{
2418 int ret;
2419 acpi_handle tmp = NULL;
2420 acpi_status status;
2421
2422 if (!dmar_in_use())
2423 return 0;
2424
2425 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2426 tmp = handle;
2427 } else {
2428 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2429 ACPI_UINT32_MAX,
2430 dmar_get_dsm_handle,
2431 NULL, NULL, &tmp);
2432 if (ACPI_FAILURE(status)) {
2433 pr_warn("Failed to locate _DSM method.\n");
2434 return -ENXIO;
2435 }
2436 }
2437 if (tmp == NULL)
2438 return 0;
2439
2440 down_write(&dmar_global_lock);
2441 if (insert)
2442 ret = dmar_hotplug_insert(tmp);
2443 else
2444 ret = dmar_hotplug_remove(tmp);
2445 up_write(&dmar_global_lock);
2446
2447 return ret;
2448}
2449
2450int dmar_device_add(acpi_handle handle)
2451{
2452 return dmar_device_hotplug(handle, true);
2453}
2454
2455int dmar_device_remove(acpi_handle handle)
2456{
2457 return dmar_device_hotplug(handle, false);
2458}
2459
2460/*
2461 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2462 *
2463 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2464 * the ACPI DMAR table. This means that the platform boot firmware has made
2465 * sure no device can issue DMA outside of RMRR regions.
2466 */
2467bool dmar_platform_optin(void)
2468{
2469 struct acpi_table_dmar *dmar;
2470 acpi_status status;
2471 bool ret;
2472
2473 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2474 (struct acpi_table_header **)&dmar);
2475 if (ACPI_FAILURE(status))
2476 return false;
2477
2478 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2479 acpi_put_table((struct acpi_table_header *)dmar);
2480
2481 return ret;
2482}
2483EXPORT_SYMBOL_GPL(dmar_platform_optin);