Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2006, Intel Corporation.
   4 *
   5 * Copyright (C) 2006-2008 Intel Corporation
   6 * Author: Ashok Raj <ashok.raj@intel.com>
   7 * Author: Shaohua Li <shaohua.li@intel.com>
   8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * This file implements early detection/parsing of Remapping Devices
  11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  12 * tables.
  13 *
  14 * These routines are used by both DMA-remapping and Interrupt-remapping
  15 */
  16
  17#define pr_fmt(fmt)     "DMAR: " fmt
  18
  19#include <linux/pci.h>
  20#include <linux/dmar.h>
  21#include <linux/iova.h>
  22#include <linux/intel-iommu.h>
  23#include <linux/timer.h>
  24#include <linux/irq.h>
  25#include <linux/interrupt.h>
  26#include <linux/tboot.h>
  27#include <linux/dmi.h>
  28#include <linux/slab.h>
  29#include <linux/iommu.h>
  30#include <linux/numa.h>
  31#include <linux/limits.h>
  32#include <asm/irq_remapping.h>
  33#include <asm/iommu_table.h>
 
  34
  35#include "../irq_remapping.h"
 
  36
  37typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
  38struct dmar_res_callback {
  39	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
  40	void			*arg[ACPI_DMAR_TYPE_RESERVED];
  41	bool			ignore_unhandled;
  42	bool			print_entry;
  43};
  44
  45/*
  46 * Assumptions:
  47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
  48 *    before IO devices managed by that unit.
  49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
  50 *    after IO devices managed by that unit.
  51 * 3) Hotplug events are rare.
  52 *
  53 * Locking rules for DMA and interrupt remapping related global data structures:
  54 * 1) Use dmar_global_lock in process context
  55 * 2) Use RCU in interrupt context
  56 */
  57DECLARE_RWSEM(dmar_global_lock);
  58LIST_HEAD(dmar_drhd_units);
  59
  60struct acpi_table_header * __initdata dmar_tbl;
  61static int dmar_dev_scope_status = 1;
  62static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
  63
  64static int alloc_iommu(struct dmar_drhd_unit *drhd);
  65static void free_iommu(struct intel_iommu *iommu);
  66
  67extern const struct iommu_ops intel_iommu_ops;
  68
  69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  70{
  71	/*
  72	 * add INCLUDE_ALL at the tail, so scan the list will find it at
  73	 * the very end.
  74	 */
  75	if (drhd->include_all)
  76		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
  77	else
  78		list_add_rcu(&drhd->list, &dmar_drhd_units);
  79}
  80
  81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
  82{
  83	struct acpi_dmar_device_scope *scope;
  84
  85	*cnt = 0;
  86	while (start < end) {
  87		scope = start;
  88		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
  89		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  90		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  91			(*cnt)++;
  92		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
  93			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
  94			pr_warn("Unsupported device scope\n");
  95		}
  96		start += scope->length;
  97	}
  98	if (*cnt == 0)
  99		return NULL;
 100
 101	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
 102}
 103
 104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
 105{
 106	int i;
 107	struct device *tmp_dev;
 108
 109	if (*devices && *cnt) {
 110		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
 111			put_device(tmp_dev);
 112		kfree(*devices);
 113	}
 114
 115	*devices = NULL;
 116	*cnt = 0;
 117}
 118
 119/* Optimize out kzalloc()/kfree() for normal cases */
 120static char dmar_pci_notify_info_buf[64];
 121
 122static struct dmar_pci_notify_info *
 123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
 124{
 125	int level = 0;
 126	size_t size;
 127	struct pci_dev *tmp;
 128	struct dmar_pci_notify_info *info;
 129
 130	BUG_ON(dev->is_virtfn);
 131
 132	/*
 133	 * Ignore devices that have a domain number higher than what can
 134	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
 135	 */
 136	if (pci_domain_nr(dev->bus) > U16_MAX)
 137		return NULL;
 138
 139	/* Only generate path[] for device addition event */
 140	if (event == BUS_NOTIFY_ADD_DEVICE)
 141		for (tmp = dev; tmp; tmp = tmp->bus->self)
 142			level++;
 143
 144	size = struct_size(info, path, level);
 145	if (size <= sizeof(dmar_pci_notify_info_buf)) {
 146		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
 147	} else {
 148		info = kzalloc(size, GFP_KERNEL);
 149		if (!info) {
 150			pr_warn("Out of memory when allocating notify_info "
 151				"for %s.\n", pci_name(dev));
 152			if (dmar_dev_scope_status == 0)
 153				dmar_dev_scope_status = -ENOMEM;
 154			return NULL;
 155		}
 156	}
 157
 158	info->event = event;
 159	info->dev = dev;
 160	info->seg = pci_domain_nr(dev->bus);
 161	info->level = level;
 162	if (event == BUS_NOTIFY_ADD_DEVICE) {
 163		for (tmp = dev; tmp; tmp = tmp->bus->self) {
 164			level--;
 165			info->path[level].bus = tmp->bus->number;
 166			info->path[level].device = PCI_SLOT(tmp->devfn);
 167			info->path[level].function = PCI_FUNC(tmp->devfn);
 168			if (pci_is_root_bus(tmp->bus))
 169				info->bus = tmp->bus->number;
 170		}
 171	}
 172
 173	return info;
 174}
 175
 176static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
 177{
 178	if ((void *)info != dmar_pci_notify_info_buf)
 179		kfree(info);
 180}
 181
 182static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
 183				struct acpi_dmar_pci_path *path, int count)
 184{
 185	int i;
 186
 187	if (info->bus != bus)
 188		goto fallback;
 189	if (info->level != count)
 190		goto fallback;
 191
 192	for (i = 0; i < count; i++) {
 193		if (path[i].device != info->path[i].device ||
 194		    path[i].function != info->path[i].function)
 195			goto fallback;
 196	}
 197
 198	return true;
 199
 200fallback:
 201
 202	if (count != 1)
 203		return false;
 204
 205	i = info->level - 1;
 206	if (bus              == info->path[i].bus &&
 207	    path[0].device   == info->path[i].device &&
 208	    path[0].function == info->path[i].function) {
 209		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
 210			bus, path[0].device, path[0].function);
 211		return true;
 212	}
 213
 214	return false;
 215}
 216
 217/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
 218int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
 219			  void *start, void*end, u16 segment,
 220			  struct dmar_dev_scope *devices,
 221			  int devices_cnt)
 222{
 223	int i, level;
 224	struct device *tmp, *dev = &info->dev->dev;
 225	struct acpi_dmar_device_scope *scope;
 226	struct acpi_dmar_pci_path *path;
 227
 228	if (segment != info->seg)
 229		return 0;
 230
 231	for (; start < end; start += scope->length) {
 232		scope = start;
 233		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 234		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 235			continue;
 236
 237		path = (struct acpi_dmar_pci_path *)(scope + 1);
 238		level = (scope->length - sizeof(*scope)) / sizeof(*path);
 239		if (!dmar_match_pci_path(info, scope->bus, path, level))
 240			continue;
 241
 242		/*
 243		 * We expect devices with endpoint scope to have normal PCI
 244		 * headers, and devices with bridge scope to have bridge PCI
 245		 * headers.  However PCI NTB devices may be listed in the
 246		 * DMAR table with bridge scope, even though they have a
 247		 * normal PCI header.  NTB devices are identified by class
 248		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
 249		 * for this special case.
 250		 */
 251		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 252		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
 253		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
 254		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
 255		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
 256			pr_warn("Device scope type does not match for %s\n",
 257				pci_name(info->dev));
 258			return -EINVAL;
 259		}
 260
 261		for_each_dev_scope(devices, devices_cnt, i, tmp)
 262			if (tmp == NULL) {
 263				devices[i].bus = info->dev->bus->number;
 264				devices[i].devfn = info->dev->devfn;
 265				rcu_assign_pointer(devices[i].dev,
 266						   get_device(dev));
 267				return 1;
 268			}
 269		BUG_ON(i >= devices_cnt);
 270	}
 271
 272	return 0;
 273}
 274
 275int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
 276			  struct dmar_dev_scope *devices, int count)
 277{
 278	int index;
 279	struct device *tmp;
 280
 281	if (info->seg != segment)
 282		return 0;
 283
 284	for_each_active_dev_scope(devices, count, index, tmp)
 285		if (tmp == &info->dev->dev) {
 286			RCU_INIT_POINTER(devices[index].dev, NULL);
 287			synchronize_rcu();
 288			put_device(tmp);
 289			return 1;
 290		}
 291
 292	return 0;
 293}
 294
 295static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
 296{
 297	int ret = 0;
 298	struct dmar_drhd_unit *dmaru;
 299	struct acpi_dmar_hardware_unit *drhd;
 300
 301	for_each_drhd_unit(dmaru) {
 302		if (dmaru->include_all)
 303			continue;
 304
 305		drhd = container_of(dmaru->hdr,
 306				    struct acpi_dmar_hardware_unit, header);
 307		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
 308				((void *)drhd) + drhd->header.length,
 309				dmaru->segment,
 310				dmaru->devices, dmaru->devices_cnt);
 311		if (ret)
 312			break;
 313	}
 314	if (ret >= 0)
 315		ret = dmar_iommu_notify_scope_dev(info);
 316	if (ret < 0 && dmar_dev_scope_status == 0)
 317		dmar_dev_scope_status = ret;
 318
 
 
 
 319	return ret;
 320}
 321
 322static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
 323{
 324	struct dmar_drhd_unit *dmaru;
 325
 326	for_each_drhd_unit(dmaru)
 327		if (dmar_remove_dev_scope(info, dmaru->segment,
 328			dmaru->devices, dmaru->devices_cnt))
 329			break;
 330	dmar_iommu_notify_scope_dev(info);
 331}
 332
 
 
 
 
 
 
 
 333static int dmar_pci_bus_notifier(struct notifier_block *nb,
 334				 unsigned long action, void *data)
 335{
 336	struct pci_dev *pdev = to_pci_dev(data);
 337	struct dmar_pci_notify_info *info;
 338
 339	/* Only care about add/remove events for physical functions.
 340	 * For VFs we actually do the lookup based on the corresponding
 341	 * PF in device_to_iommu() anyway. */
 342	if (pdev->is_virtfn)
 
 
 
 
 
 
 
 
 
 
 343		return NOTIFY_DONE;
 
 
 344	if (action != BUS_NOTIFY_ADD_DEVICE &&
 345	    action != BUS_NOTIFY_REMOVED_DEVICE)
 346		return NOTIFY_DONE;
 347
 348	info = dmar_alloc_pci_notify_info(pdev, action);
 349	if (!info)
 350		return NOTIFY_DONE;
 351
 352	down_write(&dmar_global_lock);
 353	if (action == BUS_NOTIFY_ADD_DEVICE)
 354		dmar_pci_bus_add_dev(info);
 355	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
 356		dmar_pci_bus_del_dev(info);
 357	up_write(&dmar_global_lock);
 358
 359	dmar_free_pci_notify_info(info);
 360
 361	return NOTIFY_OK;
 362}
 363
 364static struct notifier_block dmar_pci_bus_nb = {
 365	.notifier_call = dmar_pci_bus_notifier,
 366	.priority = INT_MIN,
 367};
 368
 369static struct dmar_drhd_unit *
 370dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
 371{
 372	struct dmar_drhd_unit *dmaru;
 373
 374	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
 375				dmar_rcu_check())
 376		if (dmaru->segment == drhd->segment &&
 377		    dmaru->reg_base_addr == drhd->address)
 378			return dmaru;
 379
 380	return NULL;
 381}
 382
 383/**
 384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 385 * structure which uniquely represent one DMA remapping hardware unit
 386 * present in the platform
 387 */
 388static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
 389{
 390	struct acpi_dmar_hardware_unit *drhd;
 391	struct dmar_drhd_unit *dmaru;
 392	int ret;
 393
 394	drhd = (struct acpi_dmar_hardware_unit *)header;
 395	dmaru = dmar_find_dmaru(drhd);
 396	if (dmaru)
 397		goto out;
 398
 399	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
 400	if (!dmaru)
 401		return -ENOMEM;
 402
 403	/*
 404	 * If header is allocated from slab by ACPI _DSM method, we need to
 405	 * copy the content because the memory buffer will be freed on return.
 406	 */
 407	dmaru->hdr = (void *)(dmaru + 1);
 408	memcpy(dmaru->hdr, header, header->length);
 409	dmaru->reg_base_addr = drhd->address;
 410	dmaru->segment = drhd->segment;
 411	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 412	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
 413					      ((void *)drhd) + drhd->header.length,
 414					      &dmaru->devices_cnt);
 415	if (dmaru->devices_cnt && dmaru->devices == NULL) {
 416		kfree(dmaru);
 417		return -ENOMEM;
 418	}
 419
 420	ret = alloc_iommu(dmaru);
 421	if (ret) {
 422		dmar_free_dev_scope(&dmaru->devices,
 423				    &dmaru->devices_cnt);
 424		kfree(dmaru);
 425		return ret;
 426	}
 427	dmar_register_drhd_unit(dmaru);
 428
 429out:
 430	if (arg)
 431		(*(int *)arg)++;
 432
 433	return 0;
 434}
 435
 436static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
 437{
 438	if (dmaru->devices && dmaru->devices_cnt)
 439		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
 440	if (dmaru->iommu)
 441		free_iommu(dmaru->iommu);
 442	kfree(dmaru);
 443}
 444
 445static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
 446				      void *arg)
 447{
 448	struct acpi_dmar_andd *andd = (void *)header;
 449
 450	/* Check for NUL termination within the designated length */
 451	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
 452		pr_warn(FW_BUG
 453			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
 454			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 455			   dmi_get_system_info(DMI_BIOS_VENDOR),
 456			   dmi_get_system_info(DMI_BIOS_VERSION),
 457			   dmi_get_system_info(DMI_PRODUCT_VERSION));
 458		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 459		return -EINVAL;
 460	}
 461	pr_info("ANDD device: %x name: %s\n", andd->device_number,
 462		andd->device_name);
 463
 464	return 0;
 465}
 466
 467#ifdef CONFIG_ACPI_NUMA
 468static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
 469{
 470	struct acpi_dmar_rhsa *rhsa;
 471	struct dmar_drhd_unit *drhd;
 472
 473	rhsa = (struct acpi_dmar_rhsa *)header;
 474	for_each_drhd_unit(drhd) {
 475		if (drhd->reg_base_addr == rhsa->base_address) {
 476			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
 477
 478			if (!node_online(node))
 479				node = NUMA_NO_NODE;
 480			drhd->iommu->node = node;
 481			return 0;
 482		}
 483	}
 484	pr_warn(FW_BUG
 485		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 486		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 487		rhsa->base_address,
 488		dmi_get_system_info(DMI_BIOS_VENDOR),
 489		dmi_get_system_info(DMI_BIOS_VERSION),
 490		dmi_get_system_info(DMI_PRODUCT_VERSION));
 491	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 492
 493	return 0;
 494}
 495#else
 496#define	dmar_parse_one_rhsa		dmar_res_noop
 497#endif
 498
 499static void
 500dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 501{
 502	struct acpi_dmar_hardware_unit *drhd;
 503	struct acpi_dmar_reserved_memory *rmrr;
 504	struct acpi_dmar_atsr *atsr;
 505	struct acpi_dmar_rhsa *rhsa;
 
 506
 507	switch (header->type) {
 508	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 509		drhd = container_of(header, struct acpi_dmar_hardware_unit,
 510				    header);
 511		pr_info("DRHD base: %#016Lx flags: %#x\n",
 512			(unsigned long long)drhd->address, drhd->flags);
 513		break;
 514	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 515		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 516				    header);
 517		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
 518			(unsigned long long)rmrr->base_address,
 519			(unsigned long long)rmrr->end_address);
 520		break;
 521	case ACPI_DMAR_TYPE_ROOT_ATS:
 522		atsr = container_of(header, struct acpi_dmar_atsr, header);
 523		pr_info("ATSR flags: %#x\n", atsr->flags);
 524		break;
 525	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
 526		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 527		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
 528		       (unsigned long long)rhsa->base_address,
 529		       rhsa->proximity_domain);
 530		break;
 531	case ACPI_DMAR_TYPE_NAMESPACE:
 532		/* We don't print this here because we need to sanity-check
 533		   it first. So print it in dmar_parse_one_andd() instead. */
 534		break;
 
 
 
 
 535	}
 536}
 537
 538/**
 539 * dmar_table_detect - checks to see if the platform supports DMAR devices
 540 */
 541static int __init dmar_table_detect(void)
 542{
 543	acpi_status status = AE_OK;
 544
 545	/* if we could find DMAR table, then there are DMAR devices */
 546	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
 547
 548	if (ACPI_SUCCESS(status) && !dmar_tbl) {
 549		pr_warn("Unable to map DMAR\n");
 550		status = AE_NOT_FOUND;
 551	}
 552
 553	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
 554}
 555
 556static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
 557				       size_t len, struct dmar_res_callback *cb)
 558{
 559	struct acpi_dmar_header *iter, *next;
 560	struct acpi_dmar_header *end = ((void *)start) + len;
 561
 562	for (iter = start; iter < end; iter = next) {
 563		next = (void *)iter + iter->length;
 564		if (iter->length == 0) {
 565			/* Avoid looping forever on bad ACPI tables */
 566			pr_debug(FW_BUG "Invalid 0-length structure\n");
 567			break;
 568		} else if (next > end) {
 569			/* Avoid passing table end */
 570			pr_warn(FW_BUG "Record passes table end\n");
 571			return -EINVAL;
 572		}
 573
 574		if (cb->print_entry)
 575			dmar_table_print_dmar_entry(iter);
 576
 577		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
 578			/* continue for forward compatibility */
 579			pr_debug("Unknown DMAR structure type %d\n",
 580				 iter->type);
 581		} else if (cb->cb[iter->type]) {
 582			int ret;
 583
 584			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
 585			if (ret)
 586				return ret;
 587		} else if (!cb->ignore_unhandled) {
 588			pr_warn("No handler for DMAR structure type %d\n",
 589				iter->type);
 590			return -EINVAL;
 591		}
 592	}
 593
 594	return 0;
 595}
 596
 597static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
 598				       struct dmar_res_callback *cb)
 599{
 600	return dmar_walk_remapping_entries((void *)(dmar + 1),
 601			dmar->header.length - sizeof(*dmar), cb);
 602}
 603
 604/**
 605 * parse_dmar_table - parses the DMA reporting table
 606 */
 607static int __init
 608parse_dmar_table(void)
 609{
 610	struct acpi_table_dmar *dmar;
 611	int drhd_count = 0;
 612	int ret;
 613	struct dmar_res_callback cb = {
 614		.print_entry = true,
 615		.ignore_unhandled = true,
 616		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
 617		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
 618		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
 619		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
 620		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
 621		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
 
 622	};
 623
 624	/*
 625	 * Do it again, earlier dmar_tbl mapping could be mapped with
 626	 * fixed map.
 627	 */
 628	dmar_table_detect();
 629
 630	/*
 631	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 632	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 633	 */
 634	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 635
 636	dmar = (struct acpi_table_dmar *)dmar_tbl;
 637	if (!dmar)
 638		return -ENODEV;
 639
 640	if (dmar->width < PAGE_SHIFT - 1) {
 641		pr_warn("Invalid DMAR haw\n");
 642		return -EINVAL;
 643	}
 644
 645	pr_info("Host address width %d\n", dmar->width + 1);
 646	ret = dmar_walk_dmar_table(dmar, &cb);
 647	if (ret == 0 && drhd_count == 0)
 648		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
 649
 650	return ret;
 651}
 652
 653static int dmar_pci_device_match(struct dmar_dev_scope devices[],
 654				 int cnt, struct pci_dev *dev)
 655{
 656	int index;
 657	struct device *tmp;
 658
 659	while (dev) {
 660		for_each_active_dev_scope(devices, cnt, index, tmp)
 661			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
 662				return 1;
 663
 664		/* Check our parent */
 665		dev = dev->bus->self;
 666	}
 667
 668	return 0;
 669}
 670
 671struct dmar_drhd_unit *
 672dmar_find_matched_drhd_unit(struct pci_dev *dev)
 673{
 674	struct dmar_drhd_unit *dmaru;
 675	struct acpi_dmar_hardware_unit *drhd;
 676
 677	dev = pci_physfn(dev);
 678
 679	rcu_read_lock();
 680	for_each_drhd_unit(dmaru) {
 681		drhd = container_of(dmaru->hdr,
 682				    struct acpi_dmar_hardware_unit,
 683				    header);
 684
 685		if (dmaru->include_all &&
 686		    drhd->segment == pci_domain_nr(dev->bus))
 687			goto out;
 688
 689		if (dmar_pci_device_match(dmaru->devices,
 690					  dmaru->devices_cnt, dev))
 691			goto out;
 692	}
 693	dmaru = NULL;
 694out:
 695	rcu_read_unlock();
 696
 697	return dmaru;
 698}
 699
 700static void __init dmar_acpi_insert_dev_scope(u8 device_number,
 701					      struct acpi_device *adev)
 702{
 703	struct dmar_drhd_unit *dmaru;
 704	struct acpi_dmar_hardware_unit *drhd;
 705	struct acpi_dmar_device_scope *scope;
 706	struct device *tmp;
 707	int i;
 708	struct acpi_dmar_pci_path *path;
 709
 710	for_each_drhd_unit(dmaru) {
 711		drhd = container_of(dmaru->hdr,
 712				    struct acpi_dmar_hardware_unit,
 713				    header);
 714
 715		for (scope = (void *)(drhd + 1);
 716		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
 717		     scope = ((void *)scope) + scope->length) {
 718			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
 719				continue;
 720			if (scope->enumeration_id != device_number)
 721				continue;
 722
 723			path = (void *)(scope + 1);
 724			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
 725				dev_name(&adev->dev), dmaru->reg_base_addr,
 726				scope->bus, path->device, path->function);
 727			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
 728				if (tmp == NULL) {
 729					dmaru->devices[i].bus = scope->bus;
 730					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
 731									    path->function);
 732					rcu_assign_pointer(dmaru->devices[i].dev,
 733							   get_device(&adev->dev));
 734					return;
 735				}
 736			BUG_ON(i >= dmaru->devices_cnt);
 737		}
 738	}
 739	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
 740		device_number, dev_name(&adev->dev));
 741}
 742
 743static int __init dmar_acpi_dev_scope_init(void)
 744{
 745	struct acpi_dmar_andd *andd;
 746
 747	if (dmar_tbl == NULL)
 748		return -ENODEV;
 749
 750	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
 751	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
 752	     andd = ((void *)andd) + andd->header.length) {
 753		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
 754			acpi_handle h;
 755			struct acpi_device *adev;
 756
 757			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
 758							  andd->device_name,
 759							  &h))) {
 760				pr_err("Failed to find handle for ACPI object %s\n",
 761				       andd->device_name);
 762				continue;
 763			}
 764			if (acpi_bus_get_device(h, &adev)) {
 765				pr_err("Failed to get device for ACPI object %s\n",
 766				       andd->device_name);
 767				continue;
 768			}
 769			dmar_acpi_insert_dev_scope(andd->device_number, adev);
 770		}
 771	}
 772	return 0;
 773}
 774
 775int __init dmar_dev_scope_init(void)
 776{
 777	struct pci_dev *dev = NULL;
 778	struct dmar_pci_notify_info *info;
 779
 780	if (dmar_dev_scope_status != 1)
 781		return dmar_dev_scope_status;
 782
 783	if (list_empty(&dmar_drhd_units)) {
 784		dmar_dev_scope_status = -ENODEV;
 785	} else {
 786		dmar_dev_scope_status = 0;
 787
 788		dmar_acpi_dev_scope_init();
 789
 790		for_each_pci_dev(dev) {
 791			if (dev->is_virtfn)
 792				continue;
 793
 794			info = dmar_alloc_pci_notify_info(dev,
 795					BUS_NOTIFY_ADD_DEVICE);
 796			if (!info) {
 797				return dmar_dev_scope_status;
 798			} else {
 799				dmar_pci_bus_add_dev(info);
 800				dmar_free_pci_notify_info(info);
 801			}
 802		}
 803	}
 804
 805	return dmar_dev_scope_status;
 806}
 807
 808void __init dmar_register_bus_notifier(void)
 809{
 810	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
 811}
 812
 813
 814int __init dmar_table_init(void)
 815{
 816	static int dmar_table_initialized;
 817	int ret;
 818
 819	if (dmar_table_initialized == 0) {
 820		ret = parse_dmar_table();
 821		if (ret < 0) {
 822			if (ret != -ENODEV)
 823				pr_info("Parse DMAR table failure.\n");
 824		} else  if (list_empty(&dmar_drhd_units)) {
 825			pr_info("No DMAR devices found\n");
 826			ret = -ENODEV;
 827		}
 828
 829		if (ret < 0)
 830			dmar_table_initialized = ret;
 831		else
 832			dmar_table_initialized = 1;
 833	}
 834
 835	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
 836}
 837
 838static void warn_invalid_dmar(u64 addr, const char *message)
 839{
 840	pr_warn_once(FW_BUG
 841		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
 842		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 843		addr, message,
 844		dmi_get_system_info(DMI_BIOS_VENDOR),
 845		dmi_get_system_info(DMI_BIOS_VERSION),
 846		dmi_get_system_info(DMI_PRODUCT_VERSION));
 847	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 848}
 849
 850static int __ref
 851dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
 852{
 853	struct acpi_dmar_hardware_unit *drhd;
 854	void __iomem *addr;
 855	u64 cap, ecap;
 856
 857	drhd = (void *)entry;
 858	if (!drhd->address) {
 859		warn_invalid_dmar(0, "");
 860		return -EINVAL;
 861	}
 862
 863	if (arg)
 864		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
 865	else
 866		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 867	if (!addr) {
 868		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
 869		return -EINVAL;
 870	}
 871
 872	cap = dmar_readq(addr + DMAR_CAP_REG);
 873	ecap = dmar_readq(addr + DMAR_ECAP_REG);
 874
 875	if (arg)
 876		iounmap(addr);
 877	else
 878		early_iounmap(addr, VTD_PAGE_SIZE);
 879
 880	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 881		warn_invalid_dmar(drhd->address, " returns all ones");
 882		return -EINVAL;
 883	}
 884
 885	return 0;
 886}
 887
 888int __init detect_intel_iommu(void)
 889{
 890	int ret;
 891	struct dmar_res_callback validate_drhd_cb = {
 892		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
 893		.ignore_unhandled = true,
 894	};
 895
 896	down_write(&dmar_global_lock);
 897	ret = dmar_table_detect();
 898	if (!ret)
 899		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
 900					   &validate_drhd_cb);
 901	if (!ret && !no_iommu && !iommu_detected &&
 902	    (!dmar_disabled || dmar_platform_optin())) {
 903		iommu_detected = 1;
 904		/* Make sure ACS will be enabled */
 905		pci_request_acs();
 906	}
 907
 908#ifdef CONFIG_X86
 909	if (!ret) {
 910		x86_init.iommu.iommu_init = intel_iommu_init;
 911		x86_platform.iommu_shutdown = intel_iommu_shutdown;
 912	}
 913
 914#endif
 915
 916	if (dmar_tbl) {
 917		acpi_put_table(dmar_tbl);
 918		dmar_tbl = NULL;
 919	}
 920	up_write(&dmar_global_lock);
 921
 922	return ret ? ret : 1;
 923}
 924
 925static void unmap_iommu(struct intel_iommu *iommu)
 926{
 927	iounmap(iommu->reg);
 928	release_mem_region(iommu->reg_phys, iommu->reg_size);
 929}
 930
 931/**
 932 * map_iommu: map the iommu's registers
 933 * @iommu: the iommu to map
 934 * @phys_addr: the physical address of the base resgister
 935 *
 936 * Memory map the iommu's registers.  Start w/ a single page, and
 937 * possibly expand if that turns out to be insufficent.
 938 */
 939static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
 940{
 941	int map_size, err=0;
 942
 943	iommu->reg_phys = phys_addr;
 944	iommu->reg_size = VTD_PAGE_SIZE;
 945
 946	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
 947		pr_err("Can't reserve memory\n");
 948		err = -EBUSY;
 949		goto out;
 950	}
 951
 952	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 953	if (!iommu->reg) {
 954		pr_err("Can't map the region\n");
 955		err = -ENOMEM;
 956		goto release;
 957	}
 958
 959	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 960	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 961
 962	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 963		err = -EINVAL;
 964		warn_invalid_dmar(phys_addr, " returns all ones");
 965		goto unmap;
 966	}
 967	iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
 
 968
 969	/* the registers might be more than one page */
 970	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
 971			 cap_max_fault_reg_offset(iommu->cap));
 972	map_size = VTD_PAGE_ALIGN(map_size);
 973	if (map_size > iommu->reg_size) {
 974		iounmap(iommu->reg);
 975		release_mem_region(iommu->reg_phys, iommu->reg_size);
 976		iommu->reg_size = map_size;
 977		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
 978					iommu->name)) {
 979			pr_err("Can't reserve memory\n");
 980			err = -EBUSY;
 981			goto out;
 982		}
 983		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 984		if (!iommu->reg) {
 985			pr_err("Can't map the region\n");
 986			err = -ENOMEM;
 987			goto release;
 988		}
 989	}
 990	err = 0;
 991	goto out;
 992
 993unmap:
 994	iounmap(iommu->reg);
 995release:
 996	release_mem_region(iommu->reg_phys, iommu->reg_size);
 997out:
 998	return err;
 999}
1000
1001static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1002{
1003	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1004					    DMAR_UNITS_SUPPORTED);
1005	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1006		iommu->seq_id = -1;
1007	} else {
1008		set_bit(iommu->seq_id, dmar_seq_ids);
1009		sprintf(iommu->name, "dmar%d", iommu->seq_id);
1010	}
1011
1012	return iommu->seq_id;
1013}
1014
1015static void dmar_free_seq_id(struct intel_iommu *iommu)
1016{
1017	if (iommu->seq_id >= 0) {
1018		clear_bit(iommu->seq_id, dmar_seq_ids);
1019		iommu->seq_id = -1;
1020	}
1021}
1022
1023static int alloc_iommu(struct dmar_drhd_unit *drhd)
1024{
1025	struct intel_iommu *iommu;
1026	u32 ver, sts;
1027	int agaw = 0;
1028	int msagaw = 0;
1029	int err;
1030
1031	if (!drhd->reg_base_addr) {
1032		warn_invalid_dmar(0, "");
1033		return -EINVAL;
1034	}
1035
1036	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1037	if (!iommu)
1038		return -ENOMEM;
1039
1040	if (dmar_alloc_seq_id(iommu) < 0) {
1041		pr_err("Failed to allocate seq_id\n");
1042		err = -ENOSPC;
1043		goto error;
1044	}
1045
1046	err = map_iommu(iommu, drhd->reg_base_addr);
1047	if (err) {
1048		pr_err("Failed to map %s\n", iommu->name);
1049		goto error_free_seq_id;
1050	}
1051
1052	err = -EINVAL;
1053	agaw = iommu_calculate_agaw(iommu);
1054	if (agaw < 0) {
1055		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1056			iommu->seq_id);
1057		goto err_unmap;
1058	}
1059	msagaw = iommu_calculate_max_sagaw(iommu);
1060	if (msagaw < 0) {
1061		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1062			iommu->seq_id);
1063		goto err_unmap;
 
 
 
 
 
 
 
 
 
 
 
1064	}
1065	iommu->agaw = agaw;
1066	iommu->msagaw = msagaw;
1067	iommu->segment = drhd->segment;
1068
1069	iommu->node = NUMA_NO_NODE;
1070
1071	ver = readl(iommu->reg + DMAR_VER_REG);
1072	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1073		iommu->name,
1074		(unsigned long long)drhd->reg_base_addr,
1075		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1076		(unsigned long long)iommu->cap,
1077		(unsigned long long)iommu->ecap);
1078
1079	/* Reflect status in gcmd */
1080	sts = readl(iommu->reg + DMAR_GSTS_REG);
1081	if (sts & DMA_GSTS_IRES)
1082		iommu->gcmd |= DMA_GCMD_IRE;
1083	if (sts & DMA_GSTS_TES)
1084		iommu->gcmd |= DMA_GCMD_TE;
1085	if (sts & DMA_GSTS_QIES)
1086		iommu->gcmd |= DMA_GCMD_QIE;
1087
1088	raw_spin_lock_init(&iommu->register_lock);
1089
1090	if (intel_iommu_enabled) {
 
 
 
 
 
1091		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1092					     intel_iommu_groups,
1093					     "%s", iommu->name);
1094		if (err)
1095			goto err_unmap;
1096
1097		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1098
1099		err = iommu_device_register(&iommu->iommu);
1100		if (err)
1101			goto err_unmap;
1102	}
1103
1104	drhd->iommu = iommu;
1105	iommu->drhd = drhd;
1106
1107	return 0;
1108
 
 
1109err_unmap:
1110	unmap_iommu(iommu);
1111error_free_seq_id:
1112	dmar_free_seq_id(iommu);
1113error:
1114	kfree(iommu);
1115	return err;
1116}
1117
1118static void free_iommu(struct intel_iommu *iommu)
1119{
1120	if (intel_iommu_enabled) {
1121		iommu_device_unregister(&iommu->iommu);
1122		iommu_device_sysfs_remove(&iommu->iommu);
1123	}
1124
1125	if (iommu->irq) {
1126		if (iommu->pr_irq) {
1127			free_irq(iommu->pr_irq, iommu);
1128			dmar_free_hwirq(iommu->pr_irq);
1129			iommu->pr_irq = 0;
1130		}
1131		free_irq(iommu->irq, iommu);
1132		dmar_free_hwirq(iommu->irq);
1133		iommu->irq = 0;
1134	}
1135
1136	if (iommu->qi) {
1137		free_page((unsigned long)iommu->qi->desc);
1138		kfree(iommu->qi->desc_status);
1139		kfree(iommu->qi);
1140	}
1141
1142	if (iommu->reg)
1143		unmap_iommu(iommu);
1144
1145	dmar_free_seq_id(iommu);
1146	kfree(iommu);
1147}
1148
1149/*
1150 * Reclaim all the submitted descriptors which have completed its work.
1151 */
1152static inline void reclaim_free_desc(struct q_inval *qi)
1153{
1154	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1155	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1156		qi->desc_status[qi->free_tail] = QI_FREE;
1157		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1158		qi->free_cnt++;
1159	}
1160}
1161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1163{
1164	u32 fault;
1165	int head, tail;
1166	struct q_inval *qi = iommu->qi;
1167	int shift = qi_shift(iommu);
1168
1169	if (qi->desc_status[wait_index] == QI_ABORT)
1170		return -EAGAIN;
1171
1172	fault = readl(iommu->reg + DMAR_FSTS_REG);
 
 
1173
1174	/*
1175	 * If IQE happens, the head points to the descriptor associated
1176	 * with the error. No new descriptors are fetched until the IQE
1177	 * is cleared.
1178	 */
1179	if (fault & DMA_FSTS_IQE) {
1180		head = readl(iommu->reg + DMAR_IQH_REG);
1181		if ((head >> shift) == index) {
1182			struct qi_desc *desc = qi->desc + head;
1183
1184			/*
1185			 * desc->qw2 and desc->qw3 are either reserved or
1186			 * used by software as private data. We won't print
1187			 * out these two qw's for security consideration.
1188			 */
1189			pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1190			       (unsigned long long)desc->qw0,
1191			       (unsigned long long)desc->qw1);
1192			memcpy(desc, qi->desc + (wait_index << shift),
1193			       1 << shift);
1194			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
 
1195			return -EINVAL;
1196		}
1197	}
1198
1199	/*
1200	 * If ITE happens, all pending wait_desc commands are aborted.
1201	 * No new descriptors are fetched until the ITE is cleared.
1202	 */
1203	if (fault & DMA_FSTS_ITE) {
1204		head = readl(iommu->reg + DMAR_IQH_REG);
1205		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1206		head |= 1;
1207		tail = readl(iommu->reg + DMAR_IQT_REG);
1208		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1209
1210		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
 
1211
1212		do {
1213			if (qi->desc_status[head] == QI_IN_USE)
1214				qi->desc_status[head] = QI_ABORT;
1215			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1216		} while (head != tail);
1217
1218		if (qi->desc_status[wait_index] == QI_ABORT)
1219			return -EAGAIN;
1220	}
1221
1222	if (fault & DMA_FSTS_ICE)
1223		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
 
 
1224
1225	return 0;
1226}
1227
1228/*
1229 * Function to submit invalidation descriptors of all types to the queued
1230 * invalidation interface(QI). Multiple descriptors can be submitted at a
1231 * time, a wait descriptor will be appended to each submission to ensure
1232 * hardware has completed the invalidation before return. Wait descriptors
1233 * can be part of the submission but it will not be polled for completion.
1234 */
1235int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1236		   unsigned int count, unsigned long options)
1237{
1238	struct q_inval *qi = iommu->qi;
 
 
 
1239	struct qi_desc wait_desc;
1240	int wait_index, index;
1241	unsigned long flags;
1242	int offset, shift;
1243	int rc, i;
 
1244
1245	if (!qi)
1246		return 0;
1247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248restart:
1249	rc = 0;
1250
1251	raw_spin_lock_irqsave(&qi->q_lock, flags);
1252	/*
1253	 * Check if we have enough empty slots in the queue to submit,
1254	 * the calculation is based on:
1255	 * # of desc + 1 wait desc + 1 space between head and tail
1256	 */
1257	while (qi->free_cnt < count + 2) {
1258		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1259		cpu_relax();
1260		raw_spin_lock_irqsave(&qi->q_lock, flags);
1261	}
1262
1263	index = qi->free_head;
1264	wait_index = (index + count) % QI_LENGTH;
1265	shift = qi_shift(iommu);
1266
1267	for (i = 0; i < count; i++) {
1268		offset = ((index + i) % QI_LENGTH) << shift;
1269		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1270		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
 
 
1271	}
1272	qi->desc_status[wait_index] = QI_IN_USE;
1273
1274	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1275			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1276	if (options & QI_OPT_WAIT_DRAIN)
1277		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1278	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1279	wait_desc.qw2 = 0;
1280	wait_desc.qw3 = 0;
1281
1282	offset = wait_index << shift;
1283	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1284
1285	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1286	qi->free_cnt -= count + 1;
1287
1288	/*
1289	 * update the HW tail register indicating the presence of
1290	 * new descriptors.
1291	 */
1292	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1293
1294	while (qi->desc_status[wait_index] != QI_DONE) {
1295		/*
1296		 * We will leave the interrupts disabled, to prevent interrupt
1297		 * context to queue another cmd while a cmd is already submitted
1298		 * and waiting for completion on this cpu. This is to avoid
1299		 * a deadlock where the interrupt context can wait indefinitely
1300		 * for free slots in the queue.
1301		 */
1302		rc = qi_check_fault(iommu, index, wait_index);
1303		if (rc)
1304			break;
1305
1306		raw_spin_unlock(&qi->q_lock);
1307		cpu_relax();
1308		raw_spin_lock(&qi->q_lock);
1309	}
1310
1311	for (i = 0; i < count; i++)
1312		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1313
1314	reclaim_free_desc(qi);
1315	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1316
1317	if (rc == -EAGAIN)
1318		goto restart;
1319
 
 
 
 
 
 
 
 
 
 
 
 
1320	return rc;
1321}
1322
1323/*
1324 * Flush the global interrupt entry cache.
1325 */
1326void qi_global_iec(struct intel_iommu *iommu)
1327{
1328	struct qi_desc desc;
1329
1330	desc.qw0 = QI_IEC_TYPE;
1331	desc.qw1 = 0;
1332	desc.qw2 = 0;
1333	desc.qw3 = 0;
1334
1335	/* should never fail */
1336	qi_submit_sync(iommu, &desc, 1, 0);
1337}
1338
1339void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1340		      u64 type)
1341{
1342	struct qi_desc desc;
1343
1344	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1345			| QI_CC_GRAN(type) | QI_CC_TYPE;
1346	desc.qw1 = 0;
1347	desc.qw2 = 0;
1348	desc.qw3 = 0;
1349
1350	qi_submit_sync(iommu, &desc, 1, 0);
1351}
1352
1353void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1354		    unsigned int size_order, u64 type)
1355{
1356	u8 dw = 0, dr = 0;
1357
1358	struct qi_desc desc;
1359	int ih = 0;
1360
1361	if (cap_write_drain(iommu->cap))
1362		dw = 1;
1363
1364	if (cap_read_drain(iommu->cap))
1365		dr = 1;
1366
1367	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1368		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1369	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1370		| QI_IOTLB_AM(size_order);
1371	desc.qw2 = 0;
1372	desc.qw3 = 0;
1373
1374	qi_submit_sync(iommu, &desc, 1, 0);
1375}
1376
1377void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1378			u16 qdep, u64 addr, unsigned mask)
1379{
1380	struct qi_desc desc;
1381
1382	if (mask) {
1383		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1384		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1385	} else
1386		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1387
1388	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1389		qdep = 0;
1390
1391	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1392		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1393	desc.qw2 = 0;
1394	desc.qw3 = 0;
1395
1396	qi_submit_sync(iommu, &desc, 1, 0);
1397}
1398
1399/* PASID-based IOTLB invalidation */
1400void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1401		     unsigned long npages, bool ih)
1402{
1403	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1404
1405	/*
1406	 * npages == -1 means a PASID-selective invalidation, otherwise,
1407	 * a positive value for Page-selective-within-PASID invalidation.
1408	 * 0 is not a valid input.
1409	 */
1410	if (WARN_ON(!npages)) {
1411		pr_err("Invalid input npages = %ld\n", npages);
1412		return;
1413	}
1414
1415	if (npages == -1) {
1416		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1417				QI_EIOTLB_DID(did) |
1418				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1419				QI_EIOTLB_TYPE;
1420		desc.qw1 = 0;
1421	} else {
1422		int mask = ilog2(__roundup_pow_of_two(npages));
1423		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1424
1425		if (WARN_ON_ONCE(!ALIGN(addr, align)))
1426			addr &= ~(align - 1);
1427
1428		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1429				QI_EIOTLB_DID(did) |
1430				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1431				QI_EIOTLB_TYPE;
1432		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1433				QI_EIOTLB_IH(ih) |
1434				QI_EIOTLB_AM(mask);
1435	}
1436
1437	qi_submit_sync(iommu, &desc, 1, 0);
1438}
1439
1440/* PASID-based device IOTLB Invalidate */
1441void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1442			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1443{
1444	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1445	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1446
1447	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1448		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1449		QI_DEV_IOTLB_PFSID(pfsid);
1450
1451	/*
1452	 * If S bit is 0, we only flush a single page. If S bit is set,
1453	 * The least significant zero bit indicates the invalidation address
1454	 * range. VT-d spec 6.5.2.6.
1455	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1456	 * size order = 0 is PAGE_SIZE 4KB
1457	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1458	 * ECAP.
1459	 */
1460	if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1461		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1462				    addr, size_order);
1463
1464	/* Take page address */
1465	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1466
1467	if (size_order) {
1468		/*
1469		 * Existing 0s in address below size_order may be the least
1470		 * significant bit, we must set them to 1s to avoid having
1471		 * smaller size than desired.
1472		 */
1473		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1474					VTD_PAGE_SHIFT);
1475		/* Clear size_order bit to indicate size */
1476		desc.qw1 &= ~mask;
1477		/* Set the S bit to indicate flushing more than 1 page */
1478		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1479	}
1480
1481	qi_submit_sync(iommu, &desc, 1, 0);
1482}
1483
1484void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1485			  u64 granu, int pasid)
1486{
1487	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1488
1489	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1490			QI_PC_GRAN(granu) | QI_PC_TYPE;
1491	qi_submit_sync(iommu, &desc, 1, 0);
1492}
1493
1494/*
1495 * Disable Queued Invalidation interface.
1496 */
1497void dmar_disable_qi(struct intel_iommu *iommu)
1498{
1499	unsigned long flags;
1500	u32 sts;
1501	cycles_t start_time = get_cycles();
1502
1503	if (!ecap_qis(iommu->ecap))
1504		return;
1505
1506	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1507
1508	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1509	if (!(sts & DMA_GSTS_QIES))
1510		goto end;
1511
1512	/*
1513	 * Give a chance to HW to complete the pending invalidation requests.
1514	 */
1515	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1516		readl(iommu->reg + DMAR_IQH_REG)) &&
1517		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1518		cpu_relax();
1519
1520	iommu->gcmd &= ~DMA_GCMD_QIE;
1521	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1522
1523	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1524		      !(sts & DMA_GSTS_QIES), sts);
1525end:
1526	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1527}
1528
1529/*
1530 * Enable queued invalidation.
1531 */
1532static void __dmar_enable_qi(struct intel_iommu *iommu)
1533{
1534	u32 sts;
1535	unsigned long flags;
1536	struct q_inval *qi = iommu->qi;
1537	u64 val = virt_to_phys(qi->desc);
1538
1539	qi->free_head = qi->free_tail = 0;
1540	qi->free_cnt = QI_LENGTH;
1541
1542	/*
1543	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1544	 * is present.
1545	 */
1546	if (ecap_smts(iommu->ecap))
1547		val |= (1 << 11) | 1;
1548
1549	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1550
1551	/* write zero to the tail reg */
1552	writel(0, iommu->reg + DMAR_IQT_REG);
1553
1554	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1555
1556	iommu->gcmd |= DMA_GCMD_QIE;
1557	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1558
1559	/* Make sure hardware complete it */
1560	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1561
1562	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563}
1564
1565/*
1566 * Enable Queued Invalidation interface. This is a must to support
1567 * interrupt-remapping. Also used by DMA-remapping, which replaces
1568 * register based IOTLB invalidation.
1569 */
1570int dmar_enable_qi(struct intel_iommu *iommu)
1571{
1572	struct q_inval *qi;
1573	struct page *desc_page;
1574
1575	if (!ecap_qis(iommu->ecap))
1576		return -ENOENT;
1577
1578	/*
1579	 * queued invalidation is already setup and enabled.
1580	 */
1581	if (iommu->qi)
1582		return 0;
1583
1584	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1585	if (!iommu->qi)
1586		return -ENOMEM;
1587
1588	qi = iommu->qi;
1589
1590	/*
1591	 * Need two pages to accommodate 256 descriptors of 256 bits each
1592	 * if the remapping hardware supports scalable mode translation.
1593	 */
1594	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1595				     !!ecap_smts(iommu->ecap));
1596	if (!desc_page) {
1597		kfree(qi);
1598		iommu->qi = NULL;
1599		return -ENOMEM;
1600	}
1601
1602	qi->desc = page_address(desc_page);
1603
1604	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1605	if (!qi->desc_status) {
1606		free_page((unsigned long) qi->desc);
1607		kfree(qi);
1608		iommu->qi = NULL;
1609		return -ENOMEM;
1610	}
1611
1612	raw_spin_lock_init(&qi->q_lock);
1613
1614	__dmar_enable_qi(iommu);
1615
1616	return 0;
1617}
1618
1619/* iommu interrupt handling. Most stuff are MSI-like. */
1620
1621enum faulttype {
1622	DMA_REMAP,
1623	INTR_REMAP,
1624	UNKNOWN,
1625};
1626
1627static const char *dma_remap_fault_reasons[] =
1628{
1629	"Software",
1630	"Present bit in root entry is clear",
1631	"Present bit in context entry is clear",
1632	"Invalid context entry",
1633	"Access beyond MGAW",
1634	"PTE Write access is not set",
1635	"PTE Read access is not set",
1636	"Next page table ptr is invalid",
1637	"Root table address invalid",
1638	"Context table ptr is invalid",
1639	"non-zero reserved fields in RTP",
1640	"non-zero reserved fields in CTP",
1641	"non-zero reserved fields in PTE",
1642	"PCE for translation request specifies blocking",
1643};
1644
1645static const char * const dma_remap_sm_fault_reasons[] = {
1646	"SM: Invalid Root Table Address",
1647	"SM: TTM 0 for request with PASID",
1648	"SM: TTM 0 for page group request",
1649	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1650	"SM: Error attempting to access Root Entry",
1651	"SM: Present bit in Root Entry is clear",
1652	"SM: Non-zero reserved field set in Root Entry",
1653	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1654	"SM: Error attempting to access Context Entry",
1655	"SM: Present bit in Context Entry is clear",
1656	"SM: Non-zero reserved field set in the Context Entry",
1657	"SM: Invalid Context Entry",
1658	"SM: DTE field in Context Entry is clear",
1659	"SM: PASID Enable field in Context Entry is clear",
1660	"SM: PASID is larger than the max in Context Entry",
1661	"SM: PRE field in Context-Entry is clear",
1662	"SM: RID_PASID field error in Context-Entry",
1663	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1664	"SM: Error attempting to access the PASID Directory Entry",
1665	"SM: Present bit in Directory Entry is clear",
1666	"SM: Non-zero reserved field set in PASID Directory Entry",
1667	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1668	"SM: Error attempting to access PASID Table Entry",
1669	"SM: Present bit in PASID Table Entry is clear",
1670	"SM: Non-zero reserved field set in PASID Table Entry",
1671	"SM: Invalid Scalable-Mode PASID Table Entry",
1672	"SM: ERE field is clear in PASID Table Entry",
1673	"SM: SRE field is clear in PASID Table Entry",
1674	"Unknown", "Unknown",/* 0x5E-0x5F */
1675	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1676	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1677	"SM: Error attempting to access first-level paging entry",
1678	"SM: Present bit in first-level paging entry is clear",
1679	"SM: Non-zero reserved field set in first-level paging entry",
1680	"SM: Error attempting to access FL-PML4 entry",
1681	"SM: First-level entry address beyond MGAW in Nested translation",
1682	"SM: Read permission error in FL-PML4 entry in Nested translation",
1683	"SM: Read permission error in first-level paging entry in Nested translation",
1684	"SM: Write permission error in first-level paging entry in Nested translation",
1685	"SM: Error attempting to access second-level paging entry",
1686	"SM: Read/Write permission error in second-level paging entry",
1687	"SM: Non-zero reserved field set in second-level paging entry",
1688	"SM: Invalid second-level page table pointer",
1689	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1690	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1691	"SM: Address in first-level translation is not canonical",
1692	"SM: U/S set 0 for first-level translation with user privilege",
1693	"SM: No execute permission for request with PASID and ER=1",
1694	"SM: Address beyond the DMA hardware max",
1695	"SM: Second-level entry address beyond the max",
1696	"SM: No write permission for Write/AtomicOp request",
1697	"SM: No read permission for Read/AtomicOp request",
1698	"SM: Invalid address-interrupt address",
1699	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1700	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1701};
1702
1703static const char *irq_remap_fault_reasons[] =
1704{
1705	"Detected reserved fields in the decoded interrupt-remapped request",
1706	"Interrupt index exceeded the interrupt-remapping table size",
1707	"Present field in the IRTE entry is clear",
1708	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1709	"Detected reserved fields in the IRTE entry",
1710	"Blocked a compatibility format interrupt request",
1711	"Blocked an interrupt request due to source-id verification failure",
1712};
1713
1714static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1715{
1716	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1717					ARRAY_SIZE(irq_remap_fault_reasons))) {
1718		*fault_type = INTR_REMAP;
1719		return irq_remap_fault_reasons[fault_reason - 0x20];
1720	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1721			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1722		*fault_type = DMA_REMAP;
1723		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1724	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1725		*fault_type = DMA_REMAP;
1726		return dma_remap_fault_reasons[fault_reason];
1727	} else {
1728		*fault_type = UNKNOWN;
1729		return "Unknown";
1730	}
1731}
1732
1733
1734static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1735{
1736	if (iommu->irq == irq)
1737		return DMAR_FECTL_REG;
1738	else if (iommu->pr_irq == irq)
1739		return DMAR_PECTL_REG;
1740	else
1741		BUG();
1742}
1743
1744void dmar_msi_unmask(struct irq_data *data)
1745{
1746	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1747	int reg = dmar_msi_reg(iommu, data->irq);
1748	unsigned long flag;
1749
1750	/* unmask it */
1751	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1752	writel(0, iommu->reg + reg);
1753	/* Read a reg to force flush the post write */
1754	readl(iommu->reg + reg);
1755	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1756}
1757
1758void dmar_msi_mask(struct irq_data *data)
1759{
1760	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1761	int reg = dmar_msi_reg(iommu, data->irq);
1762	unsigned long flag;
1763
1764	/* mask it */
1765	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1766	writel(DMA_FECTL_IM, iommu->reg + reg);
1767	/* Read a reg to force flush the post write */
1768	readl(iommu->reg + reg);
1769	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1770}
1771
1772void dmar_msi_write(int irq, struct msi_msg *msg)
1773{
1774	struct intel_iommu *iommu = irq_get_handler_data(irq);
1775	int reg = dmar_msi_reg(iommu, irq);
1776	unsigned long flag;
1777
1778	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1779	writel(msg->data, iommu->reg + reg + 4);
1780	writel(msg->address_lo, iommu->reg + reg + 8);
1781	writel(msg->address_hi, iommu->reg + reg + 12);
1782	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1783}
1784
1785void dmar_msi_read(int irq, struct msi_msg *msg)
1786{
1787	struct intel_iommu *iommu = irq_get_handler_data(irq);
1788	int reg = dmar_msi_reg(iommu, irq);
1789	unsigned long flag;
1790
1791	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1792	msg->data = readl(iommu->reg + reg + 4);
1793	msg->address_lo = readl(iommu->reg + reg + 8);
1794	msg->address_hi = readl(iommu->reg + reg + 12);
1795	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1796}
1797
1798static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1799		u8 fault_reason, int pasid, u16 source_id,
1800		unsigned long long addr)
1801{
1802	const char *reason;
1803	int fault_type;
1804
1805	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1806
1807	if (fault_type == INTR_REMAP)
1808		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1809			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1810			PCI_FUNC(source_id & 0xFF), addr >> 48,
1811			fault_reason, reason);
1812	else
1813		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1814		       type ? "DMA Read" : "DMA Write",
1815		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1816		       PCI_FUNC(source_id & 0xFF), pasid, addr,
1817		       fault_reason, reason);
 
 
 
 
 
 
 
1818	return 0;
1819}
1820
1821#define PRIMARY_FAULT_REG_LEN (16)
1822irqreturn_t dmar_fault(int irq, void *dev_id)
1823{
1824	struct intel_iommu *iommu = dev_id;
1825	int reg, fault_index;
1826	u32 fault_status;
1827	unsigned long flag;
1828	static DEFINE_RATELIMIT_STATE(rs,
1829				      DEFAULT_RATELIMIT_INTERVAL,
1830				      DEFAULT_RATELIMIT_BURST);
1831
1832	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1833	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1834	if (fault_status && __ratelimit(&rs))
1835		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1836
1837	/* TBD: ignore advanced fault log currently */
1838	if (!(fault_status & DMA_FSTS_PPF))
1839		goto unlock_exit;
1840
1841	fault_index = dma_fsts_fault_record_index(fault_status);
1842	reg = cap_fault_reg_offset(iommu->cap);
1843	while (1) {
1844		/* Disable printing, simply clear the fault when ratelimited */
1845		bool ratelimited = !__ratelimit(&rs);
1846		u8 fault_reason;
1847		u16 source_id;
1848		u64 guest_addr;
1849		int type, pasid;
 
1850		u32 data;
1851		bool pasid_present;
1852
1853		/* highest 32 bits */
1854		data = readl(iommu->reg + reg +
1855				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1856		if (!(data & DMA_FRCD_F))
1857			break;
1858
1859		if (!ratelimited) {
1860			fault_reason = dma_frcd_fault_reason(data);
1861			type = dma_frcd_type(data);
1862
1863			pasid = dma_frcd_pasid_value(data);
1864			data = readl(iommu->reg + reg +
1865				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1866			source_id = dma_frcd_source_id(data);
1867
1868			pasid_present = dma_frcd_pasid_present(data);
1869			guest_addr = dmar_readq(iommu->reg + reg +
1870					fault_index * PRIMARY_FAULT_REG_LEN);
1871			guest_addr = dma_frcd_page_addr(guest_addr);
1872		}
1873
1874		/* clear the fault */
1875		writel(DMA_FRCD_F, iommu->reg + reg +
1876			fault_index * PRIMARY_FAULT_REG_LEN + 12);
1877
1878		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1879
1880		if (!ratelimited)
1881			/* Using pasid -1 if pasid is not present */
1882			dmar_fault_do_one(iommu, type, fault_reason,
1883					  pasid_present ? pasid : -1,
1884					  source_id, guest_addr);
1885
1886		fault_index++;
1887		if (fault_index >= cap_num_fault_regs(iommu->cap))
1888			fault_index = 0;
1889		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1890	}
1891
1892	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1893	       iommu->reg + DMAR_FSTS_REG);
1894
1895unlock_exit:
1896	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897	return IRQ_HANDLED;
1898}
1899
1900int dmar_set_interrupt(struct intel_iommu *iommu)
1901{
1902	int irq, ret;
1903
1904	/*
1905	 * Check if the fault interrupt is already initialized.
1906	 */
1907	if (iommu->irq)
1908		return 0;
1909
1910	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1911	if (irq > 0) {
1912		iommu->irq = irq;
1913	} else {
1914		pr_err("No free IRQ vectors\n");
1915		return -EINVAL;
1916	}
1917
1918	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1919	if (ret)
1920		pr_err("Can't request irq\n");
1921	return ret;
1922}
1923
1924int __init enable_drhd_fault_handling(void)
1925{
1926	struct dmar_drhd_unit *drhd;
1927	struct intel_iommu *iommu;
1928
1929	/*
1930	 * Enable fault control interrupt.
1931	 */
1932	for_each_iommu(iommu, drhd) {
1933		u32 fault_status;
1934		int ret = dmar_set_interrupt(iommu);
1935
1936		if (ret) {
1937			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1938			       (unsigned long long)drhd->reg_base_addr, ret);
1939			return -1;
1940		}
1941
1942		/*
1943		 * Clear any previous faults.
1944		 */
1945		dmar_fault(iommu->irq, iommu);
1946		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1947		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1948	}
1949
1950	return 0;
1951}
1952
1953/*
1954 * Re-enable Queued Invalidation interface.
1955 */
1956int dmar_reenable_qi(struct intel_iommu *iommu)
1957{
1958	if (!ecap_qis(iommu->ecap))
1959		return -ENOENT;
1960
1961	if (!iommu->qi)
1962		return -ENOENT;
1963
1964	/*
1965	 * First disable queued invalidation.
1966	 */
1967	dmar_disable_qi(iommu);
1968	/*
1969	 * Then enable queued invalidation again. Since there is no pending
1970	 * invalidation requests now, it's safe to re-enable queued
1971	 * invalidation.
1972	 */
1973	__dmar_enable_qi(iommu);
1974
1975	return 0;
1976}
1977
1978/*
1979 * Check interrupt remapping support in DMAR table description.
1980 */
1981int __init dmar_ir_support(void)
1982{
1983	struct acpi_table_dmar *dmar;
1984	dmar = (struct acpi_table_dmar *)dmar_tbl;
1985	if (!dmar)
1986		return 0;
1987	return dmar->flags & 0x1;
1988}
1989
1990/* Check whether DMAR units are in use */
1991static inline bool dmar_in_use(void)
1992{
1993	return irq_remapping_enabled || intel_iommu_enabled;
1994}
1995
1996static int __init dmar_free_unused_resources(void)
1997{
1998	struct dmar_drhd_unit *dmaru, *dmaru_n;
1999
2000	if (dmar_in_use())
2001		return 0;
2002
2003	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2004		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2005
2006	down_write(&dmar_global_lock);
2007	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2008		list_del(&dmaru->list);
2009		dmar_free_drhd(dmaru);
2010	}
2011	up_write(&dmar_global_lock);
2012
2013	return 0;
2014}
2015
2016late_initcall(dmar_free_unused_resources);
2017IOMMU_INIT_POST(detect_intel_iommu);
2018
2019/*
2020 * DMAR Hotplug Support
2021 * For more details, please refer to Intel(R) Virtualization Technology
2022 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2023 * "Remapping Hardware Unit Hot Plug".
2024 */
2025static guid_t dmar_hp_guid =
2026	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2027		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2028
2029/*
2030 * Currently there's only one revision and BIOS will not check the revision id,
2031 * so use 0 for safety.
2032 */
2033#define	DMAR_DSM_REV_ID			0
2034#define	DMAR_DSM_FUNC_DRHD		1
2035#define	DMAR_DSM_FUNC_ATSR		2
2036#define	DMAR_DSM_FUNC_RHSA		3
 
2037
2038static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2039{
2040	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2041}
2042
2043static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2044				  dmar_res_handler_t handler, void *arg)
2045{
2046	int ret = -ENODEV;
2047	union acpi_object *obj;
2048	struct acpi_dmar_header *start;
2049	struct dmar_res_callback callback;
2050	static int res_type[] = {
2051		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2052		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2053		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
 
2054	};
2055
2056	if (!dmar_detect_dsm(handle, func))
2057		return 0;
2058
2059	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2060				      func, NULL, ACPI_TYPE_BUFFER);
2061	if (!obj)
2062		return -ENODEV;
2063
2064	memset(&callback, 0, sizeof(callback));
2065	callback.cb[res_type[func]] = handler;
2066	callback.arg[res_type[func]] = arg;
2067	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2068	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2069
2070	ACPI_FREE(obj);
2071
2072	return ret;
2073}
2074
2075static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2076{
2077	int ret;
2078	struct dmar_drhd_unit *dmaru;
2079
2080	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2081	if (!dmaru)
2082		return -ENODEV;
2083
2084	ret = dmar_ir_hotplug(dmaru, true);
2085	if (ret == 0)
2086		ret = dmar_iommu_hotplug(dmaru, true);
2087
2088	return ret;
2089}
2090
2091static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2092{
2093	int i, ret;
2094	struct device *dev;
2095	struct dmar_drhd_unit *dmaru;
2096
2097	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2098	if (!dmaru)
2099		return 0;
2100
2101	/*
2102	 * All PCI devices managed by this unit should have been destroyed.
2103	 */
2104	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2105		for_each_active_dev_scope(dmaru->devices,
2106					  dmaru->devices_cnt, i, dev)
2107			return -EBUSY;
2108	}
2109
2110	ret = dmar_ir_hotplug(dmaru, false);
2111	if (ret == 0)
2112		ret = dmar_iommu_hotplug(dmaru, false);
2113
2114	return ret;
2115}
2116
2117static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2118{
2119	struct dmar_drhd_unit *dmaru;
2120
2121	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2122	if (dmaru) {
2123		list_del_rcu(&dmaru->list);
2124		synchronize_rcu();
2125		dmar_free_drhd(dmaru);
2126	}
2127
2128	return 0;
2129}
2130
2131static int dmar_hotplug_insert(acpi_handle handle)
2132{
2133	int ret;
2134	int drhd_count = 0;
2135
2136	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2137				     &dmar_validate_one_drhd, (void *)1);
2138	if (ret)
2139		goto out;
2140
2141	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2142				     &dmar_parse_one_drhd, (void *)&drhd_count);
2143	if (ret == 0 && drhd_count == 0) {
2144		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2145		goto out;
2146	} else if (ret) {
2147		goto release_drhd;
2148	}
2149
2150	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2151				     &dmar_parse_one_rhsa, NULL);
2152	if (ret)
2153		goto release_drhd;
2154
2155	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2156				     &dmar_parse_one_atsr, NULL);
2157	if (ret)
2158		goto release_atsr;
2159
2160	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2161				     &dmar_hp_add_drhd, NULL);
2162	if (!ret)
2163		return 0;
2164
2165	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2166			       &dmar_hp_remove_drhd, NULL);
2167release_atsr:
2168	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2169			       &dmar_release_one_atsr, NULL);
2170release_drhd:
2171	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2172			       &dmar_hp_release_drhd, NULL);
2173out:
2174	return ret;
2175}
2176
2177static int dmar_hotplug_remove(acpi_handle handle)
2178{
2179	int ret;
2180
2181	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2182				     &dmar_check_one_atsr, NULL);
2183	if (ret)
2184		return ret;
2185
2186	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2187				     &dmar_hp_remove_drhd, NULL);
2188	if (ret == 0) {
2189		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2190					       &dmar_release_one_atsr, NULL));
2191		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2192					       &dmar_hp_release_drhd, NULL));
2193	} else {
2194		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2195				       &dmar_hp_add_drhd, NULL);
2196	}
2197
2198	return ret;
2199}
2200
2201static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2202				       void *context, void **retval)
2203{
2204	acpi_handle *phdl = retval;
2205
2206	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2207		*phdl = handle;
2208		return AE_CTRL_TERMINATE;
2209	}
2210
2211	return AE_OK;
2212}
2213
2214static int dmar_device_hotplug(acpi_handle handle, bool insert)
2215{
2216	int ret;
2217	acpi_handle tmp = NULL;
2218	acpi_status status;
2219
2220	if (!dmar_in_use())
2221		return 0;
2222
2223	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2224		tmp = handle;
2225	} else {
2226		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2227					     ACPI_UINT32_MAX,
2228					     dmar_get_dsm_handle,
2229					     NULL, NULL, &tmp);
2230		if (ACPI_FAILURE(status)) {
2231			pr_warn("Failed to locate _DSM method.\n");
2232			return -ENXIO;
2233		}
2234	}
2235	if (tmp == NULL)
2236		return 0;
2237
2238	down_write(&dmar_global_lock);
2239	if (insert)
2240		ret = dmar_hotplug_insert(tmp);
2241	else
2242		ret = dmar_hotplug_remove(tmp);
2243	up_write(&dmar_global_lock);
2244
2245	return ret;
2246}
2247
2248int dmar_device_add(acpi_handle handle)
2249{
2250	return dmar_device_hotplug(handle, true);
2251}
2252
2253int dmar_device_remove(acpi_handle handle)
2254{
2255	return dmar_device_hotplug(handle, false);
2256}
2257
2258/*
2259 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2260 *
2261 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2262 * the ACPI DMAR table. This means that the platform boot firmware has made
2263 * sure no device can issue DMA outside of RMRR regions.
2264 */
2265bool dmar_platform_optin(void)
2266{
2267	struct acpi_table_dmar *dmar;
2268	acpi_status status;
2269	bool ret;
2270
2271	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2272				(struct acpi_table_header **)&dmar);
2273	if (ACPI_FAILURE(status))
2274		return false;
2275
2276	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2277	acpi_put_table((struct acpi_table_header *)dmar);
2278
2279	return ret;
2280}
2281EXPORT_SYMBOL_GPL(dmar_platform_optin);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2006, Intel Corporation.
   4 *
   5 * Copyright (C) 2006-2008 Intel Corporation
   6 * Author: Ashok Raj <ashok.raj@intel.com>
   7 * Author: Shaohua Li <shaohua.li@intel.com>
   8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * This file implements early detection/parsing of Remapping Devices
  11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  12 * tables.
  13 *
  14 * These routines are used by both DMA-remapping and Interrupt-remapping
  15 */
  16
  17#define pr_fmt(fmt)     "DMAR: " fmt
  18
  19#include <linux/pci.h>
  20#include <linux/dmar.h>
  21#include <linux/iova.h>
  22#include <linux/intel-iommu.h>
  23#include <linux/timer.h>
  24#include <linux/irq.h>
  25#include <linux/interrupt.h>
  26#include <linux/tboot.h>
  27#include <linux/dmi.h>
  28#include <linux/slab.h>
  29#include <linux/iommu.h>
  30#include <linux/numa.h>
  31#include <linux/limits.h>
  32#include <asm/irq_remapping.h>
  33#include <asm/iommu_table.h>
  34#include <trace/events/intel_iommu.h>
  35
  36#include "../irq_remapping.h"
  37#include "perf.h"
  38
  39typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
  40struct dmar_res_callback {
  41	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
  42	void			*arg[ACPI_DMAR_TYPE_RESERVED];
  43	bool			ignore_unhandled;
  44	bool			print_entry;
  45};
  46
  47/*
  48 * Assumptions:
  49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
  50 *    before IO devices managed by that unit.
  51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
  52 *    after IO devices managed by that unit.
  53 * 3) Hotplug events are rare.
  54 *
  55 * Locking rules for DMA and interrupt remapping related global data structures:
  56 * 1) Use dmar_global_lock in process context
  57 * 2) Use RCU in interrupt context
  58 */
  59DECLARE_RWSEM(dmar_global_lock);
  60LIST_HEAD(dmar_drhd_units);
  61
  62struct acpi_table_header * __initdata dmar_tbl;
  63static int dmar_dev_scope_status = 1;
  64static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
  65
  66static int alloc_iommu(struct dmar_drhd_unit *drhd);
  67static void free_iommu(struct intel_iommu *iommu);
  68
  69extern const struct iommu_ops intel_iommu_ops;
  70
  71static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  72{
  73	/*
  74	 * add INCLUDE_ALL at the tail, so scan the list will find it at
  75	 * the very end.
  76	 */
  77	if (drhd->include_all)
  78		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
  79	else
  80		list_add_rcu(&drhd->list, &dmar_drhd_units);
  81}
  82
  83void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
  84{
  85	struct acpi_dmar_device_scope *scope;
  86
  87	*cnt = 0;
  88	while (start < end) {
  89		scope = start;
  90		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
  91		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  92		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  93			(*cnt)++;
  94		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
  95			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
  96			pr_warn("Unsupported device scope\n");
  97		}
  98		start += scope->length;
  99	}
 100	if (*cnt == 0)
 101		return NULL;
 102
 103	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
 104}
 105
 106void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
 107{
 108	int i;
 109	struct device *tmp_dev;
 110
 111	if (*devices && *cnt) {
 112		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
 113			put_device(tmp_dev);
 114		kfree(*devices);
 115	}
 116
 117	*devices = NULL;
 118	*cnt = 0;
 119}
 120
 121/* Optimize out kzalloc()/kfree() for normal cases */
 122static char dmar_pci_notify_info_buf[64];
 123
 124static struct dmar_pci_notify_info *
 125dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
 126{
 127	int level = 0;
 128	size_t size;
 129	struct pci_dev *tmp;
 130	struct dmar_pci_notify_info *info;
 131
 132	BUG_ON(dev->is_virtfn);
 133
 134	/*
 135	 * Ignore devices that have a domain number higher than what can
 136	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
 137	 */
 138	if (pci_domain_nr(dev->bus) > U16_MAX)
 139		return NULL;
 140
 141	/* Only generate path[] for device addition event */
 142	if (event == BUS_NOTIFY_ADD_DEVICE)
 143		for (tmp = dev; tmp; tmp = tmp->bus->self)
 144			level++;
 145
 146	size = struct_size(info, path, level);
 147	if (size <= sizeof(dmar_pci_notify_info_buf)) {
 148		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
 149	} else {
 150		info = kzalloc(size, GFP_KERNEL);
 151		if (!info) {
 152			pr_warn("Out of memory when allocating notify_info "
 153				"for %s.\n", pci_name(dev));
 154			if (dmar_dev_scope_status == 0)
 155				dmar_dev_scope_status = -ENOMEM;
 156			return NULL;
 157		}
 158	}
 159
 160	info->event = event;
 161	info->dev = dev;
 162	info->seg = pci_domain_nr(dev->bus);
 163	info->level = level;
 164	if (event == BUS_NOTIFY_ADD_DEVICE) {
 165		for (tmp = dev; tmp; tmp = tmp->bus->self) {
 166			level--;
 167			info->path[level].bus = tmp->bus->number;
 168			info->path[level].device = PCI_SLOT(tmp->devfn);
 169			info->path[level].function = PCI_FUNC(tmp->devfn);
 170			if (pci_is_root_bus(tmp->bus))
 171				info->bus = tmp->bus->number;
 172		}
 173	}
 174
 175	return info;
 176}
 177
 178static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
 179{
 180	if ((void *)info != dmar_pci_notify_info_buf)
 181		kfree(info);
 182}
 183
 184static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
 185				struct acpi_dmar_pci_path *path, int count)
 186{
 187	int i;
 188
 189	if (info->bus != bus)
 190		goto fallback;
 191	if (info->level != count)
 192		goto fallback;
 193
 194	for (i = 0; i < count; i++) {
 195		if (path[i].device != info->path[i].device ||
 196		    path[i].function != info->path[i].function)
 197			goto fallback;
 198	}
 199
 200	return true;
 201
 202fallback:
 203
 204	if (count != 1)
 205		return false;
 206
 207	i = info->level - 1;
 208	if (bus              == info->path[i].bus &&
 209	    path[0].device   == info->path[i].device &&
 210	    path[0].function == info->path[i].function) {
 211		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
 212			bus, path[0].device, path[0].function);
 213		return true;
 214	}
 215
 216	return false;
 217}
 218
 219/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
 220int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
 221			  void *start, void*end, u16 segment,
 222			  struct dmar_dev_scope *devices,
 223			  int devices_cnt)
 224{
 225	int i, level;
 226	struct device *tmp, *dev = &info->dev->dev;
 227	struct acpi_dmar_device_scope *scope;
 228	struct acpi_dmar_pci_path *path;
 229
 230	if (segment != info->seg)
 231		return 0;
 232
 233	for (; start < end; start += scope->length) {
 234		scope = start;
 235		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 236		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 237			continue;
 238
 239		path = (struct acpi_dmar_pci_path *)(scope + 1);
 240		level = (scope->length - sizeof(*scope)) / sizeof(*path);
 241		if (!dmar_match_pci_path(info, scope->bus, path, level))
 242			continue;
 243
 244		/*
 245		 * We expect devices with endpoint scope to have normal PCI
 246		 * headers, and devices with bridge scope to have bridge PCI
 247		 * headers.  However PCI NTB devices may be listed in the
 248		 * DMAR table with bridge scope, even though they have a
 249		 * normal PCI header.  NTB devices are identified by class
 250		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
 251		 * for this special case.
 252		 */
 253		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 254		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
 255		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
 256		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
 257		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
 258			pr_warn("Device scope type does not match for %s\n",
 259				pci_name(info->dev));
 260			return -EINVAL;
 261		}
 262
 263		for_each_dev_scope(devices, devices_cnt, i, tmp)
 264			if (tmp == NULL) {
 265				devices[i].bus = info->dev->bus->number;
 266				devices[i].devfn = info->dev->devfn;
 267				rcu_assign_pointer(devices[i].dev,
 268						   get_device(dev));
 269				return 1;
 270			}
 271		BUG_ON(i >= devices_cnt);
 272	}
 273
 274	return 0;
 275}
 276
 277int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
 278			  struct dmar_dev_scope *devices, int count)
 279{
 280	int index;
 281	struct device *tmp;
 282
 283	if (info->seg != segment)
 284		return 0;
 285
 286	for_each_active_dev_scope(devices, count, index, tmp)
 287		if (tmp == &info->dev->dev) {
 288			RCU_INIT_POINTER(devices[index].dev, NULL);
 289			synchronize_rcu();
 290			put_device(tmp);
 291			return 1;
 292		}
 293
 294	return 0;
 295}
 296
 297static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
 298{
 299	int ret = 0;
 300	struct dmar_drhd_unit *dmaru;
 301	struct acpi_dmar_hardware_unit *drhd;
 302
 303	for_each_drhd_unit(dmaru) {
 304		if (dmaru->include_all)
 305			continue;
 306
 307		drhd = container_of(dmaru->hdr,
 308				    struct acpi_dmar_hardware_unit, header);
 309		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
 310				((void *)drhd) + drhd->header.length,
 311				dmaru->segment,
 312				dmaru->devices, dmaru->devices_cnt);
 313		if (ret)
 314			break;
 315	}
 316	if (ret >= 0)
 317		ret = dmar_iommu_notify_scope_dev(info);
 318	if (ret < 0 && dmar_dev_scope_status == 0)
 319		dmar_dev_scope_status = ret;
 320
 321	if (ret >= 0)
 322		intel_irq_remap_add_device(info);
 323
 324	return ret;
 325}
 326
 327static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
 328{
 329	struct dmar_drhd_unit *dmaru;
 330
 331	for_each_drhd_unit(dmaru)
 332		if (dmar_remove_dev_scope(info, dmaru->segment,
 333			dmaru->devices, dmaru->devices_cnt))
 334			break;
 335	dmar_iommu_notify_scope_dev(info);
 336}
 337
 338static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
 339{
 340	struct pci_dev *physfn = pci_physfn(pdev);
 341
 342	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
 343}
 344
 345static int dmar_pci_bus_notifier(struct notifier_block *nb,
 346				 unsigned long action, void *data)
 347{
 348	struct pci_dev *pdev = to_pci_dev(data);
 349	struct dmar_pci_notify_info *info;
 350
 351	/* Only care about add/remove events for physical functions.
 352	 * For VFs we actually do the lookup based on the corresponding
 353	 * PF in device_to_iommu() anyway. */
 354	if (pdev->is_virtfn) {
 355		/*
 356		 * Ensure that the VF device inherits the irq domain of the
 357		 * PF device. Ideally the device would inherit the domain
 358		 * from the bus, but DMAR can have multiple units per bus
 359		 * which makes this impossible. The VF 'bus' could inherit
 360		 * from the PF device, but that's yet another x86'sism to
 361		 * inflict on everybody else.
 362		 */
 363		if (action == BUS_NOTIFY_ADD_DEVICE)
 364			vf_inherit_msi_domain(pdev);
 365		return NOTIFY_DONE;
 366	}
 367
 368	if (action != BUS_NOTIFY_ADD_DEVICE &&
 369	    action != BUS_NOTIFY_REMOVED_DEVICE)
 370		return NOTIFY_DONE;
 371
 372	info = dmar_alloc_pci_notify_info(pdev, action);
 373	if (!info)
 374		return NOTIFY_DONE;
 375
 376	down_write(&dmar_global_lock);
 377	if (action == BUS_NOTIFY_ADD_DEVICE)
 378		dmar_pci_bus_add_dev(info);
 379	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
 380		dmar_pci_bus_del_dev(info);
 381	up_write(&dmar_global_lock);
 382
 383	dmar_free_pci_notify_info(info);
 384
 385	return NOTIFY_OK;
 386}
 387
 388static struct notifier_block dmar_pci_bus_nb = {
 389	.notifier_call = dmar_pci_bus_notifier,
 390	.priority = INT_MIN,
 391};
 392
 393static struct dmar_drhd_unit *
 394dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
 395{
 396	struct dmar_drhd_unit *dmaru;
 397
 398	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
 399				dmar_rcu_check())
 400		if (dmaru->segment == drhd->segment &&
 401		    dmaru->reg_base_addr == drhd->address)
 402			return dmaru;
 403
 404	return NULL;
 405}
 406
 407/*
 408 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 409 * structure which uniquely represent one DMA remapping hardware unit
 410 * present in the platform
 411 */
 412static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
 413{
 414	struct acpi_dmar_hardware_unit *drhd;
 415	struct dmar_drhd_unit *dmaru;
 416	int ret;
 417
 418	drhd = (struct acpi_dmar_hardware_unit *)header;
 419	dmaru = dmar_find_dmaru(drhd);
 420	if (dmaru)
 421		goto out;
 422
 423	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
 424	if (!dmaru)
 425		return -ENOMEM;
 426
 427	/*
 428	 * If header is allocated from slab by ACPI _DSM method, we need to
 429	 * copy the content because the memory buffer will be freed on return.
 430	 */
 431	dmaru->hdr = (void *)(dmaru + 1);
 432	memcpy(dmaru->hdr, header, header->length);
 433	dmaru->reg_base_addr = drhd->address;
 434	dmaru->segment = drhd->segment;
 435	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 436	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
 437					      ((void *)drhd) + drhd->header.length,
 438					      &dmaru->devices_cnt);
 439	if (dmaru->devices_cnt && dmaru->devices == NULL) {
 440		kfree(dmaru);
 441		return -ENOMEM;
 442	}
 443
 444	ret = alloc_iommu(dmaru);
 445	if (ret) {
 446		dmar_free_dev_scope(&dmaru->devices,
 447				    &dmaru->devices_cnt);
 448		kfree(dmaru);
 449		return ret;
 450	}
 451	dmar_register_drhd_unit(dmaru);
 452
 453out:
 454	if (arg)
 455		(*(int *)arg)++;
 456
 457	return 0;
 458}
 459
 460static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
 461{
 462	if (dmaru->devices && dmaru->devices_cnt)
 463		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
 464	if (dmaru->iommu)
 465		free_iommu(dmaru->iommu);
 466	kfree(dmaru);
 467}
 468
 469static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
 470				      void *arg)
 471{
 472	struct acpi_dmar_andd *andd = (void *)header;
 473
 474	/* Check for NUL termination within the designated length */
 475	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
 476		pr_warn(FW_BUG
 477			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
 478			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 479			   dmi_get_system_info(DMI_BIOS_VENDOR),
 480			   dmi_get_system_info(DMI_BIOS_VERSION),
 481			   dmi_get_system_info(DMI_PRODUCT_VERSION));
 482		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 483		return -EINVAL;
 484	}
 485	pr_info("ANDD device: %x name: %s\n", andd->device_number,
 486		andd->device_name);
 487
 488	return 0;
 489}
 490
 491#ifdef CONFIG_ACPI_NUMA
 492static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
 493{
 494	struct acpi_dmar_rhsa *rhsa;
 495	struct dmar_drhd_unit *drhd;
 496
 497	rhsa = (struct acpi_dmar_rhsa *)header;
 498	for_each_drhd_unit(drhd) {
 499		if (drhd->reg_base_addr == rhsa->base_address) {
 500			int node = pxm_to_node(rhsa->proximity_domain);
 501
 502			if (!node_online(node))
 503				node = NUMA_NO_NODE;
 504			drhd->iommu->node = node;
 505			return 0;
 506		}
 507	}
 508	pr_warn(FW_BUG
 509		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 510		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 511		rhsa->base_address,
 512		dmi_get_system_info(DMI_BIOS_VENDOR),
 513		dmi_get_system_info(DMI_BIOS_VERSION),
 514		dmi_get_system_info(DMI_PRODUCT_VERSION));
 515	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 516
 517	return 0;
 518}
 519#else
 520#define	dmar_parse_one_rhsa		dmar_res_noop
 521#endif
 522
 523static void
 524dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 525{
 526	struct acpi_dmar_hardware_unit *drhd;
 527	struct acpi_dmar_reserved_memory *rmrr;
 528	struct acpi_dmar_atsr *atsr;
 529	struct acpi_dmar_rhsa *rhsa;
 530	struct acpi_dmar_satc *satc;
 531
 532	switch (header->type) {
 533	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 534		drhd = container_of(header, struct acpi_dmar_hardware_unit,
 535				    header);
 536		pr_info("DRHD base: %#016Lx flags: %#x\n",
 537			(unsigned long long)drhd->address, drhd->flags);
 538		break;
 539	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 540		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 541				    header);
 542		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
 543			(unsigned long long)rmrr->base_address,
 544			(unsigned long long)rmrr->end_address);
 545		break;
 546	case ACPI_DMAR_TYPE_ROOT_ATS:
 547		atsr = container_of(header, struct acpi_dmar_atsr, header);
 548		pr_info("ATSR flags: %#x\n", atsr->flags);
 549		break;
 550	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
 551		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 552		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
 553		       (unsigned long long)rhsa->base_address,
 554		       rhsa->proximity_domain);
 555		break;
 556	case ACPI_DMAR_TYPE_NAMESPACE:
 557		/* We don't print this here because we need to sanity-check
 558		   it first. So print it in dmar_parse_one_andd() instead. */
 559		break;
 560	case ACPI_DMAR_TYPE_SATC:
 561		satc = container_of(header, struct acpi_dmar_satc, header);
 562		pr_info("SATC flags: 0x%x\n", satc->flags);
 563		break;
 564	}
 565}
 566
 567/**
 568 * dmar_table_detect - checks to see if the platform supports DMAR devices
 569 */
 570static int __init dmar_table_detect(void)
 571{
 572	acpi_status status = AE_OK;
 573
 574	/* if we could find DMAR table, then there are DMAR devices */
 575	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
 576
 577	if (ACPI_SUCCESS(status) && !dmar_tbl) {
 578		pr_warn("Unable to map DMAR\n");
 579		status = AE_NOT_FOUND;
 580	}
 581
 582	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
 583}
 584
 585static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
 586				       size_t len, struct dmar_res_callback *cb)
 587{
 588	struct acpi_dmar_header *iter, *next;
 589	struct acpi_dmar_header *end = ((void *)start) + len;
 590
 591	for (iter = start; iter < end; iter = next) {
 592		next = (void *)iter + iter->length;
 593		if (iter->length == 0) {
 594			/* Avoid looping forever on bad ACPI tables */
 595			pr_debug(FW_BUG "Invalid 0-length structure\n");
 596			break;
 597		} else if (next > end) {
 598			/* Avoid passing table end */
 599			pr_warn(FW_BUG "Record passes table end\n");
 600			return -EINVAL;
 601		}
 602
 603		if (cb->print_entry)
 604			dmar_table_print_dmar_entry(iter);
 605
 606		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
 607			/* continue for forward compatibility */
 608			pr_debug("Unknown DMAR structure type %d\n",
 609				 iter->type);
 610		} else if (cb->cb[iter->type]) {
 611			int ret;
 612
 613			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
 614			if (ret)
 615				return ret;
 616		} else if (!cb->ignore_unhandled) {
 617			pr_warn("No handler for DMAR structure type %d\n",
 618				iter->type);
 619			return -EINVAL;
 620		}
 621	}
 622
 623	return 0;
 624}
 625
 626static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
 627				       struct dmar_res_callback *cb)
 628{
 629	return dmar_walk_remapping_entries((void *)(dmar + 1),
 630			dmar->header.length - sizeof(*dmar), cb);
 631}
 632
 633/**
 634 * parse_dmar_table - parses the DMA reporting table
 635 */
 636static int __init
 637parse_dmar_table(void)
 638{
 639	struct acpi_table_dmar *dmar;
 640	int drhd_count = 0;
 641	int ret;
 642	struct dmar_res_callback cb = {
 643		.print_entry = true,
 644		.ignore_unhandled = true,
 645		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
 646		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
 647		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
 648		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
 649		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
 650		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
 651		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
 652	};
 653
 654	/*
 655	 * Do it again, earlier dmar_tbl mapping could be mapped with
 656	 * fixed map.
 657	 */
 658	dmar_table_detect();
 659
 660	/*
 661	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 662	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 663	 */
 664	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 665
 666	dmar = (struct acpi_table_dmar *)dmar_tbl;
 667	if (!dmar)
 668		return -ENODEV;
 669
 670	if (dmar->width < PAGE_SHIFT - 1) {
 671		pr_warn("Invalid DMAR haw\n");
 672		return -EINVAL;
 673	}
 674
 675	pr_info("Host address width %d\n", dmar->width + 1);
 676	ret = dmar_walk_dmar_table(dmar, &cb);
 677	if (ret == 0 && drhd_count == 0)
 678		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
 679
 680	return ret;
 681}
 682
 683static int dmar_pci_device_match(struct dmar_dev_scope devices[],
 684				 int cnt, struct pci_dev *dev)
 685{
 686	int index;
 687	struct device *tmp;
 688
 689	while (dev) {
 690		for_each_active_dev_scope(devices, cnt, index, tmp)
 691			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
 692				return 1;
 693
 694		/* Check our parent */
 695		dev = dev->bus->self;
 696	}
 697
 698	return 0;
 699}
 700
 701struct dmar_drhd_unit *
 702dmar_find_matched_drhd_unit(struct pci_dev *dev)
 703{
 704	struct dmar_drhd_unit *dmaru;
 705	struct acpi_dmar_hardware_unit *drhd;
 706
 707	dev = pci_physfn(dev);
 708
 709	rcu_read_lock();
 710	for_each_drhd_unit(dmaru) {
 711		drhd = container_of(dmaru->hdr,
 712				    struct acpi_dmar_hardware_unit,
 713				    header);
 714
 715		if (dmaru->include_all &&
 716		    drhd->segment == pci_domain_nr(dev->bus))
 717			goto out;
 718
 719		if (dmar_pci_device_match(dmaru->devices,
 720					  dmaru->devices_cnt, dev))
 721			goto out;
 722	}
 723	dmaru = NULL;
 724out:
 725	rcu_read_unlock();
 726
 727	return dmaru;
 728}
 729
 730static void __init dmar_acpi_insert_dev_scope(u8 device_number,
 731					      struct acpi_device *adev)
 732{
 733	struct dmar_drhd_unit *dmaru;
 734	struct acpi_dmar_hardware_unit *drhd;
 735	struct acpi_dmar_device_scope *scope;
 736	struct device *tmp;
 737	int i;
 738	struct acpi_dmar_pci_path *path;
 739
 740	for_each_drhd_unit(dmaru) {
 741		drhd = container_of(dmaru->hdr,
 742				    struct acpi_dmar_hardware_unit,
 743				    header);
 744
 745		for (scope = (void *)(drhd + 1);
 746		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
 747		     scope = ((void *)scope) + scope->length) {
 748			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
 749				continue;
 750			if (scope->enumeration_id != device_number)
 751				continue;
 752
 753			path = (void *)(scope + 1);
 754			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
 755				dev_name(&adev->dev), dmaru->reg_base_addr,
 756				scope->bus, path->device, path->function);
 757			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
 758				if (tmp == NULL) {
 759					dmaru->devices[i].bus = scope->bus;
 760					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
 761									    path->function);
 762					rcu_assign_pointer(dmaru->devices[i].dev,
 763							   get_device(&adev->dev));
 764					return;
 765				}
 766			BUG_ON(i >= dmaru->devices_cnt);
 767		}
 768	}
 769	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
 770		device_number, dev_name(&adev->dev));
 771}
 772
 773static int __init dmar_acpi_dev_scope_init(void)
 774{
 775	struct acpi_dmar_andd *andd;
 776
 777	if (dmar_tbl == NULL)
 778		return -ENODEV;
 779
 780	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
 781	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
 782	     andd = ((void *)andd) + andd->header.length) {
 783		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
 784			acpi_handle h;
 785			struct acpi_device *adev;
 786
 787			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
 788							  andd->device_name,
 789							  &h))) {
 790				pr_err("Failed to find handle for ACPI object %s\n",
 791				       andd->device_name);
 792				continue;
 793			}
 794			if (acpi_bus_get_device(h, &adev)) {
 795				pr_err("Failed to get device for ACPI object %s\n",
 796				       andd->device_name);
 797				continue;
 798			}
 799			dmar_acpi_insert_dev_scope(andd->device_number, adev);
 800		}
 801	}
 802	return 0;
 803}
 804
 805int __init dmar_dev_scope_init(void)
 806{
 807	struct pci_dev *dev = NULL;
 808	struct dmar_pci_notify_info *info;
 809
 810	if (dmar_dev_scope_status != 1)
 811		return dmar_dev_scope_status;
 812
 813	if (list_empty(&dmar_drhd_units)) {
 814		dmar_dev_scope_status = -ENODEV;
 815	} else {
 816		dmar_dev_scope_status = 0;
 817
 818		dmar_acpi_dev_scope_init();
 819
 820		for_each_pci_dev(dev) {
 821			if (dev->is_virtfn)
 822				continue;
 823
 824			info = dmar_alloc_pci_notify_info(dev,
 825					BUS_NOTIFY_ADD_DEVICE);
 826			if (!info) {
 827				return dmar_dev_scope_status;
 828			} else {
 829				dmar_pci_bus_add_dev(info);
 830				dmar_free_pci_notify_info(info);
 831			}
 832		}
 833	}
 834
 835	return dmar_dev_scope_status;
 836}
 837
 838void __init dmar_register_bus_notifier(void)
 839{
 840	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
 841}
 842
 843
 844int __init dmar_table_init(void)
 845{
 846	static int dmar_table_initialized;
 847	int ret;
 848
 849	if (dmar_table_initialized == 0) {
 850		ret = parse_dmar_table();
 851		if (ret < 0) {
 852			if (ret != -ENODEV)
 853				pr_info("Parse DMAR table failure.\n");
 854		} else  if (list_empty(&dmar_drhd_units)) {
 855			pr_info("No DMAR devices found\n");
 856			ret = -ENODEV;
 857		}
 858
 859		if (ret < 0)
 860			dmar_table_initialized = ret;
 861		else
 862			dmar_table_initialized = 1;
 863	}
 864
 865	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
 866}
 867
 868static void warn_invalid_dmar(u64 addr, const char *message)
 869{
 870	pr_warn_once(FW_BUG
 871		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
 872		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 873		addr, message,
 874		dmi_get_system_info(DMI_BIOS_VENDOR),
 875		dmi_get_system_info(DMI_BIOS_VERSION),
 876		dmi_get_system_info(DMI_PRODUCT_VERSION));
 877	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 878}
 879
 880static int __ref
 881dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
 882{
 883	struct acpi_dmar_hardware_unit *drhd;
 884	void __iomem *addr;
 885	u64 cap, ecap;
 886
 887	drhd = (void *)entry;
 888	if (!drhd->address) {
 889		warn_invalid_dmar(0, "");
 890		return -EINVAL;
 891	}
 892
 893	if (arg)
 894		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
 895	else
 896		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 897	if (!addr) {
 898		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
 899		return -EINVAL;
 900	}
 901
 902	cap = dmar_readq(addr + DMAR_CAP_REG);
 903	ecap = dmar_readq(addr + DMAR_ECAP_REG);
 904
 905	if (arg)
 906		iounmap(addr);
 907	else
 908		early_iounmap(addr, VTD_PAGE_SIZE);
 909
 910	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 911		warn_invalid_dmar(drhd->address, " returns all ones");
 912		return -EINVAL;
 913	}
 914
 915	return 0;
 916}
 917
 918int __init detect_intel_iommu(void)
 919{
 920	int ret;
 921	struct dmar_res_callback validate_drhd_cb = {
 922		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
 923		.ignore_unhandled = true,
 924	};
 925
 926	down_write(&dmar_global_lock);
 927	ret = dmar_table_detect();
 928	if (!ret)
 929		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
 930					   &validate_drhd_cb);
 931	if (!ret && !no_iommu && !iommu_detected &&
 932	    (!dmar_disabled || dmar_platform_optin())) {
 933		iommu_detected = 1;
 934		/* Make sure ACS will be enabled */
 935		pci_request_acs();
 936	}
 937
 938#ifdef CONFIG_X86
 939	if (!ret) {
 940		x86_init.iommu.iommu_init = intel_iommu_init;
 941		x86_platform.iommu_shutdown = intel_iommu_shutdown;
 942	}
 943
 944#endif
 945
 946	if (dmar_tbl) {
 947		acpi_put_table(dmar_tbl);
 948		dmar_tbl = NULL;
 949	}
 950	up_write(&dmar_global_lock);
 951
 952	return ret ? ret : 1;
 953}
 954
 955static void unmap_iommu(struct intel_iommu *iommu)
 956{
 957	iounmap(iommu->reg);
 958	release_mem_region(iommu->reg_phys, iommu->reg_size);
 959}
 960
 961/**
 962 * map_iommu: map the iommu's registers
 963 * @iommu: the iommu to map
 964 * @phys_addr: the physical address of the base resgister
 965 *
 966 * Memory map the iommu's registers.  Start w/ a single page, and
 967 * possibly expand if that turns out to be insufficent.
 968 */
 969static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
 970{
 971	int map_size, err=0;
 972
 973	iommu->reg_phys = phys_addr;
 974	iommu->reg_size = VTD_PAGE_SIZE;
 975
 976	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
 977		pr_err("Can't reserve memory\n");
 978		err = -EBUSY;
 979		goto out;
 980	}
 981
 982	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 983	if (!iommu->reg) {
 984		pr_err("Can't map the region\n");
 985		err = -ENOMEM;
 986		goto release;
 987	}
 988
 989	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 990	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 991
 992	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 993		err = -EINVAL;
 994		warn_invalid_dmar(phys_addr, " returns all ones");
 995		goto unmap;
 996	}
 997	if (ecap_vcs(iommu->ecap))
 998		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
 999
1000	/* the registers might be more than one page */
1001	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1002			 cap_max_fault_reg_offset(iommu->cap));
1003	map_size = VTD_PAGE_ALIGN(map_size);
1004	if (map_size > iommu->reg_size) {
1005		iounmap(iommu->reg);
1006		release_mem_region(iommu->reg_phys, iommu->reg_size);
1007		iommu->reg_size = map_size;
1008		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1009					iommu->name)) {
1010			pr_err("Can't reserve memory\n");
1011			err = -EBUSY;
1012			goto out;
1013		}
1014		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1015		if (!iommu->reg) {
1016			pr_err("Can't map the region\n");
1017			err = -ENOMEM;
1018			goto release;
1019		}
1020	}
1021	err = 0;
1022	goto out;
1023
1024unmap:
1025	iounmap(iommu->reg);
1026release:
1027	release_mem_region(iommu->reg_phys, iommu->reg_size);
1028out:
1029	return err;
1030}
1031
1032static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1033{
1034	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1035					    DMAR_UNITS_SUPPORTED);
1036	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1037		iommu->seq_id = -1;
1038	} else {
1039		set_bit(iommu->seq_id, dmar_seq_ids);
1040		sprintf(iommu->name, "dmar%d", iommu->seq_id);
1041	}
1042
1043	return iommu->seq_id;
1044}
1045
1046static void dmar_free_seq_id(struct intel_iommu *iommu)
1047{
1048	if (iommu->seq_id >= 0) {
1049		clear_bit(iommu->seq_id, dmar_seq_ids);
1050		iommu->seq_id = -1;
1051	}
1052}
1053
1054static int alloc_iommu(struct dmar_drhd_unit *drhd)
1055{
1056	struct intel_iommu *iommu;
1057	u32 ver, sts;
1058	int agaw = -1;
1059	int msagaw = -1;
1060	int err;
1061
1062	if (!drhd->reg_base_addr) {
1063		warn_invalid_dmar(0, "");
1064		return -EINVAL;
1065	}
1066
1067	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1068	if (!iommu)
1069		return -ENOMEM;
1070
1071	if (dmar_alloc_seq_id(iommu) < 0) {
1072		pr_err("Failed to allocate seq_id\n");
1073		err = -ENOSPC;
1074		goto error;
1075	}
1076
1077	err = map_iommu(iommu, drhd->reg_base_addr);
1078	if (err) {
1079		pr_err("Failed to map %s\n", iommu->name);
1080		goto error_free_seq_id;
1081	}
1082
1083	err = -EINVAL;
1084	if (cap_sagaw(iommu->cap) == 0) {
1085		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1086			iommu->name);
1087		drhd->ignored = 1;
1088	}
1089
1090	if (!drhd->ignored) {
1091		agaw = iommu_calculate_agaw(iommu);
1092		if (agaw < 0) {
1093			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1094			       iommu->seq_id);
1095			drhd->ignored = 1;
1096		}
1097	}
1098	if (!drhd->ignored) {
1099		msagaw = iommu_calculate_max_sagaw(iommu);
1100		if (msagaw < 0) {
1101			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1102			       iommu->seq_id);
1103			drhd->ignored = 1;
1104			agaw = -1;
1105		}
1106	}
1107	iommu->agaw = agaw;
1108	iommu->msagaw = msagaw;
1109	iommu->segment = drhd->segment;
1110
1111	iommu->node = NUMA_NO_NODE;
1112
1113	ver = readl(iommu->reg + DMAR_VER_REG);
1114	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1115		iommu->name,
1116		(unsigned long long)drhd->reg_base_addr,
1117		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1118		(unsigned long long)iommu->cap,
1119		(unsigned long long)iommu->ecap);
1120
1121	/* Reflect status in gcmd */
1122	sts = readl(iommu->reg + DMAR_GSTS_REG);
1123	if (sts & DMA_GSTS_IRES)
1124		iommu->gcmd |= DMA_GCMD_IRE;
1125	if (sts & DMA_GSTS_TES)
1126		iommu->gcmd |= DMA_GCMD_TE;
1127	if (sts & DMA_GSTS_QIES)
1128		iommu->gcmd |= DMA_GCMD_QIE;
1129
1130	raw_spin_lock_init(&iommu->register_lock);
1131
1132	/*
1133	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134	 * be set yet. When intel_iommu_init() runs, it registers the units
1135	 * present at boot time, then sets intel_iommu_enabled.
1136	 */
1137	if (intel_iommu_enabled && !drhd->ignored) {
1138		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139					     intel_iommu_groups,
1140					     "%s", iommu->name);
1141		if (err)
1142			goto err_unmap;
1143
1144		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
 
 
1145		if (err)
1146			goto err_sysfs;
1147	}
1148
1149	drhd->iommu = iommu;
1150	iommu->drhd = drhd;
1151
1152	return 0;
1153
1154err_sysfs:
1155	iommu_device_sysfs_remove(&iommu->iommu);
1156err_unmap:
1157	unmap_iommu(iommu);
1158error_free_seq_id:
1159	dmar_free_seq_id(iommu);
1160error:
1161	kfree(iommu);
1162	return err;
1163}
1164
1165static void free_iommu(struct intel_iommu *iommu)
1166{
1167	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1168		iommu_device_unregister(&iommu->iommu);
1169		iommu_device_sysfs_remove(&iommu->iommu);
1170	}
1171
1172	if (iommu->irq) {
1173		if (iommu->pr_irq) {
1174			free_irq(iommu->pr_irq, iommu);
1175			dmar_free_hwirq(iommu->pr_irq);
1176			iommu->pr_irq = 0;
1177		}
1178		free_irq(iommu->irq, iommu);
1179		dmar_free_hwirq(iommu->irq);
1180		iommu->irq = 0;
1181	}
1182
1183	if (iommu->qi) {
1184		free_page((unsigned long)iommu->qi->desc);
1185		kfree(iommu->qi->desc_status);
1186		kfree(iommu->qi);
1187	}
1188
1189	if (iommu->reg)
1190		unmap_iommu(iommu);
1191
1192	dmar_free_seq_id(iommu);
1193	kfree(iommu);
1194}
1195
1196/*
1197 * Reclaim all the submitted descriptors which have completed its work.
1198 */
1199static inline void reclaim_free_desc(struct q_inval *qi)
1200{
1201	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1202	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1203		qi->desc_status[qi->free_tail] = QI_FREE;
1204		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1205		qi->free_cnt++;
1206	}
1207}
1208
1209static const char *qi_type_string(u8 type)
1210{
1211	switch (type) {
1212	case QI_CC_TYPE:
1213		return "Context-cache Invalidation";
1214	case QI_IOTLB_TYPE:
1215		return "IOTLB Invalidation";
1216	case QI_DIOTLB_TYPE:
1217		return "Device-TLB Invalidation";
1218	case QI_IEC_TYPE:
1219		return "Interrupt Entry Cache Invalidation";
1220	case QI_IWD_TYPE:
1221		return "Invalidation Wait";
1222	case QI_EIOTLB_TYPE:
1223		return "PASID-based IOTLB Invalidation";
1224	case QI_PC_TYPE:
1225		return "PASID-cache Invalidation";
1226	case QI_DEIOTLB_TYPE:
1227		return "PASID-based Device-TLB Invalidation";
1228	case QI_PGRP_RESP_TYPE:
1229		return "Page Group Response";
1230	default:
1231		return "UNKNOWN";
1232	}
1233}
1234
1235static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1236{
1237	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1238	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1239	struct qi_desc *desc = iommu->qi->desc + head;
1240
1241	if (fault & DMA_FSTS_IQE)
1242		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1243		       DMAR_IQER_REG_IQEI(iqe_err));
1244	if (fault & DMA_FSTS_ITE)
1245		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1246		       DMAR_IQER_REG_ITESID(iqe_err));
1247	if (fault & DMA_FSTS_ICE)
1248		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1249		       DMAR_IQER_REG_ICESID(iqe_err));
1250
1251	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1252	       qi_type_string(desc->qw0 & 0xf),
1253	       (unsigned long long)desc->qw0,
1254	       (unsigned long long)desc->qw1);
1255
1256	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1257	head <<= qi_shift(iommu);
1258	desc = iommu->qi->desc + head;
1259
1260	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1261	       qi_type_string(desc->qw0 & 0xf),
1262	       (unsigned long long)desc->qw0,
1263	       (unsigned long long)desc->qw1);
1264}
1265
1266static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1267{
1268	u32 fault;
1269	int head, tail;
1270	struct q_inval *qi = iommu->qi;
1271	int shift = qi_shift(iommu);
1272
1273	if (qi->desc_status[wait_index] == QI_ABORT)
1274		return -EAGAIN;
1275
1276	fault = readl(iommu->reg + DMAR_FSTS_REG);
1277	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1278		qi_dump_fault(iommu, fault);
1279
1280	/*
1281	 * If IQE happens, the head points to the descriptor associated
1282	 * with the error. No new descriptors are fetched until the IQE
1283	 * is cleared.
1284	 */
1285	if (fault & DMA_FSTS_IQE) {
1286		head = readl(iommu->reg + DMAR_IQH_REG);
1287		if ((head >> shift) == index) {
1288			struct qi_desc *desc = qi->desc + head;
1289
1290			/*
1291			 * desc->qw2 and desc->qw3 are either reserved or
1292			 * used by software as private data. We won't print
1293			 * out these two qw's for security consideration.
1294			 */
 
 
 
1295			memcpy(desc, qi->desc + (wait_index << shift),
1296			       1 << shift);
1297			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1298			pr_info("Invalidation Queue Error (IQE) cleared\n");
1299			return -EINVAL;
1300		}
1301	}
1302
1303	/*
1304	 * If ITE happens, all pending wait_desc commands are aborted.
1305	 * No new descriptors are fetched until the ITE is cleared.
1306	 */
1307	if (fault & DMA_FSTS_ITE) {
1308		head = readl(iommu->reg + DMAR_IQH_REG);
1309		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1310		head |= 1;
1311		tail = readl(iommu->reg + DMAR_IQT_REG);
1312		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1313
1314		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1315		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1316
1317		do {
1318			if (qi->desc_status[head] == QI_IN_USE)
1319				qi->desc_status[head] = QI_ABORT;
1320			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1321		} while (head != tail);
1322
1323		if (qi->desc_status[wait_index] == QI_ABORT)
1324			return -EAGAIN;
1325	}
1326
1327	if (fault & DMA_FSTS_ICE) {
1328		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1329		pr_info("Invalidation Completion Error (ICE) cleared\n");
1330	}
1331
1332	return 0;
1333}
1334
1335/*
1336 * Function to submit invalidation descriptors of all types to the queued
1337 * invalidation interface(QI). Multiple descriptors can be submitted at a
1338 * time, a wait descriptor will be appended to each submission to ensure
1339 * hardware has completed the invalidation before return. Wait descriptors
1340 * can be part of the submission but it will not be polled for completion.
1341 */
1342int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1343		   unsigned int count, unsigned long options)
1344{
1345	struct q_inval *qi = iommu->qi;
1346	s64 devtlb_start_ktime = 0;
1347	s64 iotlb_start_ktime = 0;
1348	s64 iec_start_ktime = 0;
1349	struct qi_desc wait_desc;
1350	int wait_index, index;
1351	unsigned long flags;
1352	int offset, shift;
1353	int rc, i;
1354	u64 type;
1355
1356	if (!qi)
1357		return 0;
1358
1359	type = desc->qw0 & GENMASK_ULL(3, 0);
1360
1361	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1362	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1363		iotlb_start_ktime = ktime_to_ns(ktime_get());
1364
1365	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1366	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1367		devtlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369	if (type == QI_IEC_TYPE &&
1370	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1371		iec_start_ktime = ktime_to_ns(ktime_get());
1372
1373restart:
1374	rc = 0;
1375
1376	raw_spin_lock_irqsave(&qi->q_lock, flags);
1377	/*
1378	 * Check if we have enough empty slots in the queue to submit,
1379	 * the calculation is based on:
1380	 * # of desc + 1 wait desc + 1 space between head and tail
1381	 */
1382	while (qi->free_cnt < count + 2) {
1383		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1384		cpu_relax();
1385		raw_spin_lock_irqsave(&qi->q_lock, flags);
1386	}
1387
1388	index = qi->free_head;
1389	wait_index = (index + count) % QI_LENGTH;
1390	shift = qi_shift(iommu);
1391
1392	for (i = 0; i < count; i++) {
1393		offset = ((index + i) % QI_LENGTH) << shift;
1394		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1395		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1396		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1397				desc[i].qw2, desc[i].qw3);
1398	}
1399	qi->desc_status[wait_index] = QI_IN_USE;
1400
1401	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1402			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1403	if (options & QI_OPT_WAIT_DRAIN)
1404		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1405	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1406	wait_desc.qw2 = 0;
1407	wait_desc.qw3 = 0;
1408
1409	offset = wait_index << shift;
1410	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1411
1412	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1413	qi->free_cnt -= count + 1;
1414
1415	/*
1416	 * update the HW tail register indicating the presence of
1417	 * new descriptors.
1418	 */
1419	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1420
1421	while (qi->desc_status[wait_index] != QI_DONE) {
1422		/*
1423		 * We will leave the interrupts disabled, to prevent interrupt
1424		 * context to queue another cmd while a cmd is already submitted
1425		 * and waiting for completion on this cpu. This is to avoid
1426		 * a deadlock where the interrupt context can wait indefinitely
1427		 * for free slots in the queue.
1428		 */
1429		rc = qi_check_fault(iommu, index, wait_index);
1430		if (rc)
1431			break;
1432
1433		raw_spin_unlock(&qi->q_lock);
1434		cpu_relax();
1435		raw_spin_lock(&qi->q_lock);
1436	}
1437
1438	for (i = 0; i < count; i++)
1439		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1440
1441	reclaim_free_desc(qi);
1442	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1443
1444	if (rc == -EAGAIN)
1445		goto restart;
1446
1447	if (iotlb_start_ktime)
1448		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1449				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1450
1451	if (devtlb_start_ktime)
1452		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1453				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1454
1455	if (iec_start_ktime)
1456		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1457				ktime_to_ns(ktime_get()) - iec_start_ktime);
1458
1459	return rc;
1460}
1461
1462/*
1463 * Flush the global interrupt entry cache.
1464 */
1465void qi_global_iec(struct intel_iommu *iommu)
1466{
1467	struct qi_desc desc;
1468
1469	desc.qw0 = QI_IEC_TYPE;
1470	desc.qw1 = 0;
1471	desc.qw2 = 0;
1472	desc.qw3 = 0;
1473
1474	/* should never fail */
1475	qi_submit_sync(iommu, &desc, 1, 0);
1476}
1477
1478void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1479		      u64 type)
1480{
1481	struct qi_desc desc;
1482
1483	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1484			| QI_CC_GRAN(type) | QI_CC_TYPE;
1485	desc.qw1 = 0;
1486	desc.qw2 = 0;
1487	desc.qw3 = 0;
1488
1489	qi_submit_sync(iommu, &desc, 1, 0);
1490}
1491
1492void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1493		    unsigned int size_order, u64 type)
1494{
1495	u8 dw = 0, dr = 0;
1496
1497	struct qi_desc desc;
1498	int ih = 0;
1499
1500	if (cap_write_drain(iommu->cap))
1501		dw = 1;
1502
1503	if (cap_read_drain(iommu->cap))
1504		dr = 1;
1505
1506	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1507		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1508	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1509		| QI_IOTLB_AM(size_order);
1510	desc.qw2 = 0;
1511	desc.qw3 = 0;
1512
1513	qi_submit_sync(iommu, &desc, 1, 0);
1514}
1515
1516void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1517			u16 qdep, u64 addr, unsigned mask)
1518{
1519	struct qi_desc desc;
1520
1521	if (mask) {
1522		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1523		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1524	} else
1525		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1526
1527	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1528		qdep = 0;
1529
1530	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1531		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1532	desc.qw2 = 0;
1533	desc.qw3 = 0;
1534
1535	qi_submit_sync(iommu, &desc, 1, 0);
1536}
1537
1538/* PASID-based IOTLB invalidation */
1539void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1540		     unsigned long npages, bool ih)
1541{
1542	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1543
1544	/*
1545	 * npages == -1 means a PASID-selective invalidation, otherwise,
1546	 * a positive value for Page-selective-within-PASID invalidation.
1547	 * 0 is not a valid input.
1548	 */
1549	if (WARN_ON(!npages)) {
1550		pr_err("Invalid input npages = %ld\n", npages);
1551		return;
1552	}
1553
1554	if (npages == -1) {
1555		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1556				QI_EIOTLB_DID(did) |
1557				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1558				QI_EIOTLB_TYPE;
1559		desc.qw1 = 0;
1560	} else {
1561		int mask = ilog2(__roundup_pow_of_two(npages));
1562		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1563
1564		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1565			addr = ALIGN_DOWN(addr, align);
1566
1567		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1568				QI_EIOTLB_DID(did) |
1569				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1570				QI_EIOTLB_TYPE;
1571		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1572				QI_EIOTLB_IH(ih) |
1573				QI_EIOTLB_AM(mask);
1574	}
1575
1576	qi_submit_sync(iommu, &desc, 1, 0);
1577}
1578
1579/* PASID-based device IOTLB Invalidate */
1580void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1581			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1582{
1583	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1584	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1585
1586	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1587		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1588		QI_DEV_IOTLB_PFSID(pfsid);
1589
1590	/*
1591	 * If S bit is 0, we only flush a single page. If S bit is set,
1592	 * The least significant zero bit indicates the invalidation address
1593	 * range. VT-d spec 6.5.2.6.
1594	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1595	 * size order = 0 is PAGE_SIZE 4KB
1596	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1597	 * ECAP.
1598	 */
1599	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1600		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1601				    addr, size_order);
1602
1603	/* Take page address */
1604	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1605
1606	if (size_order) {
1607		/*
1608		 * Existing 0s in address below size_order may be the least
1609		 * significant bit, we must set them to 1s to avoid having
1610		 * smaller size than desired.
1611		 */
1612		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1613					VTD_PAGE_SHIFT);
1614		/* Clear size_order bit to indicate size */
1615		desc.qw1 &= ~mask;
1616		/* Set the S bit to indicate flushing more than 1 page */
1617		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1618	}
1619
1620	qi_submit_sync(iommu, &desc, 1, 0);
1621}
1622
1623void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1624			  u64 granu, u32 pasid)
1625{
1626	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1627
1628	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1629			QI_PC_GRAN(granu) | QI_PC_TYPE;
1630	qi_submit_sync(iommu, &desc, 1, 0);
1631}
1632
1633/*
1634 * Disable Queued Invalidation interface.
1635 */
1636void dmar_disable_qi(struct intel_iommu *iommu)
1637{
1638	unsigned long flags;
1639	u32 sts;
1640	cycles_t start_time = get_cycles();
1641
1642	if (!ecap_qis(iommu->ecap))
1643		return;
1644
1645	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1646
1647	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1648	if (!(sts & DMA_GSTS_QIES))
1649		goto end;
1650
1651	/*
1652	 * Give a chance to HW to complete the pending invalidation requests.
1653	 */
1654	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1655		readl(iommu->reg + DMAR_IQH_REG)) &&
1656		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1657		cpu_relax();
1658
1659	iommu->gcmd &= ~DMA_GCMD_QIE;
1660	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1661
1662	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1663		      !(sts & DMA_GSTS_QIES), sts);
1664end:
1665	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1666}
1667
1668/*
1669 * Enable queued invalidation.
1670 */
1671static void __dmar_enable_qi(struct intel_iommu *iommu)
1672{
1673	u32 sts;
1674	unsigned long flags;
1675	struct q_inval *qi = iommu->qi;
1676	u64 val = virt_to_phys(qi->desc);
1677
1678	qi->free_head = qi->free_tail = 0;
1679	qi->free_cnt = QI_LENGTH;
1680
1681	/*
1682	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1683	 * is present.
1684	 */
1685	if (ecap_smts(iommu->ecap))
1686		val |= (1 << 11) | 1;
1687
1688	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1689
1690	/* write zero to the tail reg */
1691	writel(0, iommu->reg + DMAR_IQT_REG);
1692
1693	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1694
1695	iommu->gcmd |= DMA_GCMD_QIE;
1696	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1697
1698	/* Make sure hardware complete it */
1699	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1700
1701	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1702}
1703
1704/*
1705 * Enable Queued Invalidation interface. This is a must to support
1706 * interrupt-remapping. Also used by DMA-remapping, which replaces
1707 * register based IOTLB invalidation.
1708 */
1709int dmar_enable_qi(struct intel_iommu *iommu)
1710{
1711	struct q_inval *qi;
1712	struct page *desc_page;
1713
1714	if (!ecap_qis(iommu->ecap))
1715		return -ENOENT;
1716
1717	/*
1718	 * queued invalidation is already setup and enabled.
1719	 */
1720	if (iommu->qi)
1721		return 0;
1722
1723	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1724	if (!iommu->qi)
1725		return -ENOMEM;
1726
1727	qi = iommu->qi;
1728
1729	/*
1730	 * Need two pages to accommodate 256 descriptors of 256 bits each
1731	 * if the remapping hardware supports scalable mode translation.
1732	 */
1733	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1734				     !!ecap_smts(iommu->ecap));
1735	if (!desc_page) {
1736		kfree(qi);
1737		iommu->qi = NULL;
1738		return -ENOMEM;
1739	}
1740
1741	qi->desc = page_address(desc_page);
1742
1743	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1744	if (!qi->desc_status) {
1745		free_page((unsigned long) qi->desc);
1746		kfree(qi);
1747		iommu->qi = NULL;
1748		return -ENOMEM;
1749	}
1750
1751	raw_spin_lock_init(&qi->q_lock);
1752
1753	__dmar_enable_qi(iommu);
1754
1755	return 0;
1756}
1757
1758/* iommu interrupt handling. Most stuff are MSI-like. */
1759
1760enum faulttype {
1761	DMA_REMAP,
1762	INTR_REMAP,
1763	UNKNOWN,
1764};
1765
1766static const char *dma_remap_fault_reasons[] =
1767{
1768	"Software",
1769	"Present bit in root entry is clear",
1770	"Present bit in context entry is clear",
1771	"Invalid context entry",
1772	"Access beyond MGAW",
1773	"PTE Write access is not set",
1774	"PTE Read access is not set",
1775	"Next page table ptr is invalid",
1776	"Root table address invalid",
1777	"Context table ptr is invalid",
1778	"non-zero reserved fields in RTP",
1779	"non-zero reserved fields in CTP",
1780	"non-zero reserved fields in PTE",
1781	"PCE for translation request specifies blocking",
1782};
1783
1784static const char * const dma_remap_sm_fault_reasons[] = {
1785	"SM: Invalid Root Table Address",
1786	"SM: TTM 0 for request with PASID",
1787	"SM: TTM 0 for page group request",
1788	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1789	"SM: Error attempting to access Root Entry",
1790	"SM: Present bit in Root Entry is clear",
1791	"SM: Non-zero reserved field set in Root Entry",
1792	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1793	"SM: Error attempting to access Context Entry",
1794	"SM: Present bit in Context Entry is clear",
1795	"SM: Non-zero reserved field set in the Context Entry",
1796	"SM: Invalid Context Entry",
1797	"SM: DTE field in Context Entry is clear",
1798	"SM: PASID Enable field in Context Entry is clear",
1799	"SM: PASID is larger than the max in Context Entry",
1800	"SM: PRE field in Context-Entry is clear",
1801	"SM: RID_PASID field error in Context-Entry",
1802	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1803	"SM: Error attempting to access the PASID Directory Entry",
1804	"SM: Present bit in Directory Entry is clear",
1805	"SM: Non-zero reserved field set in PASID Directory Entry",
1806	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1807	"SM: Error attempting to access PASID Table Entry",
1808	"SM: Present bit in PASID Table Entry is clear",
1809	"SM: Non-zero reserved field set in PASID Table Entry",
1810	"SM: Invalid Scalable-Mode PASID Table Entry",
1811	"SM: ERE field is clear in PASID Table Entry",
1812	"SM: SRE field is clear in PASID Table Entry",
1813	"Unknown", "Unknown",/* 0x5E-0x5F */
1814	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1815	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1816	"SM: Error attempting to access first-level paging entry",
1817	"SM: Present bit in first-level paging entry is clear",
1818	"SM: Non-zero reserved field set in first-level paging entry",
1819	"SM: Error attempting to access FL-PML4 entry",
1820	"SM: First-level entry address beyond MGAW in Nested translation",
1821	"SM: Read permission error in FL-PML4 entry in Nested translation",
1822	"SM: Read permission error in first-level paging entry in Nested translation",
1823	"SM: Write permission error in first-level paging entry in Nested translation",
1824	"SM: Error attempting to access second-level paging entry",
1825	"SM: Read/Write permission error in second-level paging entry",
1826	"SM: Non-zero reserved field set in second-level paging entry",
1827	"SM: Invalid second-level page table pointer",
1828	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1829	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1830	"SM: Address in first-level translation is not canonical",
1831	"SM: U/S set 0 for first-level translation with user privilege",
1832	"SM: No execute permission for request with PASID and ER=1",
1833	"SM: Address beyond the DMA hardware max",
1834	"SM: Second-level entry address beyond the max",
1835	"SM: No write permission for Write/AtomicOp request",
1836	"SM: No read permission for Read/AtomicOp request",
1837	"SM: Invalid address-interrupt address",
1838	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1839	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1840};
1841
1842static const char *irq_remap_fault_reasons[] =
1843{
1844	"Detected reserved fields in the decoded interrupt-remapped request",
1845	"Interrupt index exceeded the interrupt-remapping table size",
1846	"Present field in the IRTE entry is clear",
1847	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1848	"Detected reserved fields in the IRTE entry",
1849	"Blocked a compatibility format interrupt request",
1850	"Blocked an interrupt request due to source-id verification failure",
1851};
1852
1853static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1854{
1855	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1856					ARRAY_SIZE(irq_remap_fault_reasons))) {
1857		*fault_type = INTR_REMAP;
1858		return irq_remap_fault_reasons[fault_reason - 0x20];
1859	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1860			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1861		*fault_type = DMA_REMAP;
1862		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1863	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1864		*fault_type = DMA_REMAP;
1865		return dma_remap_fault_reasons[fault_reason];
1866	} else {
1867		*fault_type = UNKNOWN;
1868		return "Unknown";
1869	}
1870}
1871
1872
1873static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1874{
1875	if (iommu->irq == irq)
1876		return DMAR_FECTL_REG;
1877	else if (iommu->pr_irq == irq)
1878		return DMAR_PECTL_REG;
1879	else
1880		BUG();
1881}
1882
1883void dmar_msi_unmask(struct irq_data *data)
1884{
1885	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1886	int reg = dmar_msi_reg(iommu, data->irq);
1887	unsigned long flag;
1888
1889	/* unmask it */
1890	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1891	writel(0, iommu->reg + reg);
1892	/* Read a reg to force flush the post write */
1893	readl(iommu->reg + reg);
1894	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1895}
1896
1897void dmar_msi_mask(struct irq_data *data)
1898{
1899	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1900	int reg = dmar_msi_reg(iommu, data->irq);
1901	unsigned long flag;
1902
1903	/* mask it */
1904	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1905	writel(DMA_FECTL_IM, iommu->reg + reg);
1906	/* Read a reg to force flush the post write */
1907	readl(iommu->reg + reg);
1908	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1909}
1910
1911void dmar_msi_write(int irq, struct msi_msg *msg)
1912{
1913	struct intel_iommu *iommu = irq_get_handler_data(irq);
1914	int reg = dmar_msi_reg(iommu, irq);
1915	unsigned long flag;
1916
1917	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1918	writel(msg->data, iommu->reg + reg + 4);
1919	writel(msg->address_lo, iommu->reg + reg + 8);
1920	writel(msg->address_hi, iommu->reg + reg + 12);
1921	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1922}
1923
1924void dmar_msi_read(int irq, struct msi_msg *msg)
1925{
1926	struct intel_iommu *iommu = irq_get_handler_data(irq);
1927	int reg = dmar_msi_reg(iommu, irq);
1928	unsigned long flag;
1929
1930	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1931	msg->data = readl(iommu->reg + reg + 4);
1932	msg->address_lo = readl(iommu->reg + reg + 8);
1933	msg->address_hi = readl(iommu->reg + reg + 12);
1934	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1935}
1936
1937static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1938		u8 fault_reason, u32 pasid, u16 source_id,
1939		unsigned long long addr)
1940{
1941	const char *reason;
1942	int fault_type;
1943
1944	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1945
1946	if (fault_type == INTR_REMAP)
1947		pr_err("[INTR-REMAP] Request device [0x%02x:0x%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1948		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1949		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1950		       fault_reason, reason);
1951	else if (pasid == INVALID_IOASID)
1952		pr_err("[%s NO_PASID] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1953		       type ? "DMA Read" : "DMA Write",
1954		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1955		       PCI_FUNC(source_id & 0xFF), addr,
1956		       fault_reason, reason);
1957	else
1958		pr_err("[%s PASID 0x%x] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1959		       type ? "DMA Read" : "DMA Write", pasid,
1960		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1961		       PCI_FUNC(source_id & 0xFF), addr,
1962		       fault_reason, reason);
1963
1964	return 0;
1965}
1966
1967#define PRIMARY_FAULT_REG_LEN (16)
1968irqreturn_t dmar_fault(int irq, void *dev_id)
1969{
1970	struct intel_iommu *iommu = dev_id;
1971	int reg, fault_index;
1972	u32 fault_status;
1973	unsigned long flag;
1974	static DEFINE_RATELIMIT_STATE(rs,
1975				      DEFAULT_RATELIMIT_INTERVAL,
1976				      DEFAULT_RATELIMIT_BURST);
1977
1978	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1980	if (fault_status && __ratelimit(&rs))
1981		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1982
1983	/* TBD: ignore advanced fault log currently */
1984	if (!(fault_status & DMA_FSTS_PPF))
1985		goto unlock_exit;
1986
1987	fault_index = dma_fsts_fault_record_index(fault_status);
1988	reg = cap_fault_reg_offset(iommu->cap);
1989	while (1) {
1990		/* Disable printing, simply clear the fault when ratelimited */
1991		bool ratelimited = !__ratelimit(&rs);
1992		u8 fault_reason;
1993		u16 source_id;
1994		u64 guest_addr;
1995		u32 pasid;
1996		int type;
1997		u32 data;
1998		bool pasid_present;
1999
2000		/* highest 32 bits */
2001		data = readl(iommu->reg + reg +
2002				fault_index * PRIMARY_FAULT_REG_LEN + 12);
2003		if (!(data & DMA_FRCD_F))
2004			break;
2005
2006		if (!ratelimited) {
2007			fault_reason = dma_frcd_fault_reason(data);
2008			type = dma_frcd_type(data);
2009
2010			pasid = dma_frcd_pasid_value(data);
2011			data = readl(iommu->reg + reg +
2012				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2013			source_id = dma_frcd_source_id(data);
2014
2015			pasid_present = dma_frcd_pasid_present(data);
2016			guest_addr = dmar_readq(iommu->reg + reg +
2017					fault_index * PRIMARY_FAULT_REG_LEN);
2018			guest_addr = dma_frcd_page_addr(guest_addr);
2019		}
2020
2021		/* clear the fault */
2022		writel(DMA_FRCD_F, iommu->reg + reg +
2023			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2024
2025		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026
2027		if (!ratelimited)
2028			/* Using pasid -1 if pasid is not present */
2029			dmar_fault_do_one(iommu, type, fault_reason,
2030					  pasid_present ? pasid : INVALID_IOASID,
2031					  source_id, guest_addr);
2032
2033		fault_index++;
2034		if (fault_index >= cap_num_fault_regs(iommu->cap))
2035			fault_index = 0;
2036		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2037	}
2038
2039	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2040	       iommu->reg + DMAR_FSTS_REG);
2041
2042unlock_exit:
2043	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2044	return IRQ_HANDLED;
2045}
2046
2047int dmar_set_interrupt(struct intel_iommu *iommu)
2048{
2049	int irq, ret;
2050
2051	/*
2052	 * Check if the fault interrupt is already initialized.
2053	 */
2054	if (iommu->irq)
2055		return 0;
2056
2057	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2058	if (irq > 0) {
2059		iommu->irq = irq;
2060	} else {
2061		pr_err("No free IRQ vectors\n");
2062		return -EINVAL;
2063	}
2064
2065	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2066	if (ret)
2067		pr_err("Can't request irq\n");
2068	return ret;
2069}
2070
2071int __init enable_drhd_fault_handling(void)
2072{
2073	struct dmar_drhd_unit *drhd;
2074	struct intel_iommu *iommu;
2075
2076	/*
2077	 * Enable fault control interrupt.
2078	 */
2079	for_each_iommu(iommu, drhd) {
2080		u32 fault_status;
2081		int ret = dmar_set_interrupt(iommu);
2082
2083		if (ret) {
2084			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2085			       (unsigned long long)drhd->reg_base_addr, ret);
2086			return -1;
2087		}
2088
2089		/*
2090		 * Clear any previous faults.
2091		 */
2092		dmar_fault(iommu->irq, iommu);
2093		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2094		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2095	}
2096
2097	return 0;
2098}
2099
2100/*
2101 * Re-enable Queued Invalidation interface.
2102 */
2103int dmar_reenable_qi(struct intel_iommu *iommu)
2104{
2105	if (!ecap_qis(iommu->ecap))
2106		return -ENOENT;
2107
2108	if (!iommu->qi)
2109		return -ENOENT;
2110
2111	/*
2112	 * First disable queued invalidation.
2113	 */
2114	dmar_disable_qi(iommu);
2115	/*
2116	 * Then enable queued invalidation again. Since there is no pending
2117	 * invalidation requests now, it's safe to re-enable queued
2118	 * invalidation.
2119	 */
2120	__dmar_enable_qi(iommu);
2121
2122	return 0;
2123}
2124
2125/*
2126 * Check interrupt remapping support in DMAR table description.
2127 */
2128int __init dmar_ir_support(void)
2129{
2130	struct acpi_table_dmar *dmar;
2131	dmar = (struct acpi_table_dmar *)dmar_tbl;
2132	if (!dmar)
2133		return 0;
2134	return dmar->flags & 0x1;
2135}
2136
2137/* Check whether DMAR units are in use */
2138static inline bool dmar_in_use(void)
2139{
2140	return irq_remapping_enabled || intel_iommu_enabled;
2141}
2142
2143static int __init dmar_free_unused_resources(void)
2144{
2145	struct dmar_drhd_unit *dmaru, *dmaru_n;
2146
2147	if (dmar_in_use())
2148		return 0;
2149
2150	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2151		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2152
2153	down_write(&dmar_global_lock);
2154	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2155		list_del(&dmaru->list);
2156		dmar_free_drhd(dmaru);
2157	}
2158	up_write(&dmar_global_lock);
2159
2160	return 0;
2161}
2162
2163late_initcall(dmar_free_unused_resources);
2164IOMMU_INIT_POST(detect_intel_iommu);
2165
2166/*
2167 * DMAR Hotplug Support
2168 * For more details, please refer to Intel(R) Virtualization Technology
2169 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2170 * "Remapping Hardware Unit Hot Plug".
2171 */
2172static guid_t dmar_hp_guid =
2173	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2174		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2175
2176/*
2177 * Currently there's only one revision and BIOS will not check the revision id,
2178 * so use 0 for safety.
2179 */
2180#define	DMAR_DSM_REV_ID			0
2181#define	DMAR_DSM_FUNC_DRHD		1
2182#define	DMAR_DSM_FUNC_ATSR		2
2183#define	DMAR_DSM_FUNC_RHSA		3
2184#define	DMAR_DSM_FUNC_SATC		4
2185
2186static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2187{
2188	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2189}
2190
2191static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2192				  dmar_res_handler_t handler, void *arg)
2193{
2194	int ret = -ENODEV;
2195	union acpi_object *obj;
2196	struct acpi_dmar_header *start;
2197	struct dmar_res_callback callback;
2198	static int res_type[] = {
2199		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2200		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2201		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2202		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2203	};
2204
2205	if (!dmar_detect_dsm(handle, func))
2206		return 0;
2207
2208	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2209				      func, NULL, ACPI_TYPE_BUFFER);
2210	if (!obj)
2211		return -ENODEV;
2212
2213	memset(&callback, 0, sizeof(callback));
2214	callback.cb[res_type[func]] = handler;
2215	callback.arg[res_type[func]] = arg;
2216	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2217	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2218
2219	ACPI_FREE(obj);
2220
2221	return ret;
2222}
2223
2224static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2225{
2226	int ret;
2227	struct dmar_drhd_unit *dmaru;
2228
2229	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2230	if (!dmaru)
2231		return -ENODEV;
2232
2233	ret = dmar_ir_hotplug(dmaru, true);
2234	if (ret == 0)
2235		ret = dmar_iommu_hotplug(dmaru, true);
2236
2237	return ret;
2238}
2239
2240static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2241{
2242	int i, ret;
2243	struct device *dev;
2244	struct dmar_drhd_unit *dmaru;
2245
2246	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2247	if (!dmaru)
2248		return 0;
2249
2250	/*
2251	 * All PCI devices managed by this unit should have been destroyed.
2252	 */
2253	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2254		for_each_active_dev_scope(dmaru->devices,
2255					  dmaru->devices_cnt, i, dev)
2256			return -EBUSY;
2257	}
2258
2259	ret = dmar_ir_hotplug(dmaru, false);
2260	if (ret == 0)
2261		ret = dmar_iommu_hotplug(dmaru, false);
2262
2263	return ret;
2264}
2265
2266static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2267{
2268	struct dmar_drhd_unit *dmaru;
2269
2270	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2271	if (dmaru) {
2272		list_del_rcu(&dmaru->list);
2273		synchronize_rcu();
2274		dmar_free_drhd(dmaru);
2275	}
2276
2277	return 0;
2278}
2279
2280static int dmar_hotplug_insert(acpi_handle handle)
2281{
2282	int ret;
2283	int drhd_count = 0;
2284
2285	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2286				     &dmar_validate_one_drhd, (void *)1);
2287	if (ret)
2288		goto out;
2289
2290	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291				     &dmar_parse_one_drhd, (void *)&drhd_count);
2292	if (ret == 0 && drhd_count == 0) {
2293		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2294		goto out;
2295	} else if (ret) {
2296		goto release_drhd;
2297	}
2298
2299	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2300				     &dmar_parse_one_rhsa, NULL);
2301	if (ret)
2302		goto release_drhd;
2303
2304	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2305				     &dmar_parse_one_atsr, NULL);
2306	if (ret)
2307		goto release_atsr;
2308
2309	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2310				     &dmar_hp_add_drhd, NULL);
2311	if (!ret)
2312		return 0;
2313
2314	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315			       &dmar_hp_remove_drhd, NULL);
2316release_atsr:
2317	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318			       &dmar_release_one_atsr, NULL);
2319release_drhd:
2320	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321			       &dmar_hp_release_drhd, NULL);
2322out:
2323	return ret;
2324}
2325
2326static int dmar_hotplug_remove(acpi_handle handle)
2327{
2328	int ret;
2329
2330	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2331				     &dmar_check_one_atsr, NULL);
2332	if (ret)
2333		return ret;
2334
2335	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2336				     &dmar_hp_remove_drhd, NULL);
2337	if (ret == 0) {
2338		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2339					       &dmar_release_one_atsr, NULL));
2340		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2341					       &dmar_hp_release_drhd, NULL));
2342	} else {
2343		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344				       &dmar_hp_add_drhd, NULL);
2345	}
2346
2347	return ret;
2348}
2349
2350static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2351				       void *context, void **retval)
2352{
2353	acpi_handle *phdl = retval;
2354
2355	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2356		*phdl = handle;
2357		return AE_CTRL_TERMINATE;
2358	}
2359
2360	return AE_OK;
2361}
2362
2363static int dmar_device_hotplug(acpi_handle handle, bool insert)
2364{
2365	int ret;
2366	acpi_handle tmp = NULL;
2367	acpi_status status;
2368
2369	if (!dmar_in_use())
2370		return 0;
2371
2372	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2373		tmp = handle;
2374	} else {
2375		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2376					     ACPI_UINT32_MAX,
2377					     dmar_get_dsm_handle,
2378					     NULL, NULL, &tmp);
2379		if (ACPI_FAILURE(status)) {
2380			pr_warn("Failed to locate _DSM method.\n");
2381			return -ENXIO;
2382		}
2383	}
2384	if (tmp == NULL)
2385		return 0;
2386
2387	down_write(&dmar_global_lock);
2388	if (insert)
2389		ret = dmar_hotplug_insert(tmp);
2390	else
2391		ret = dmar_hotplug_remove(tmp);
2392	up_write(&dmar_global_lock);
2393
2394	return ret;
2395}
2396
2397int dmar_device_add(acpi_handle handle)
2398{
2399	return dmar_device_hotplug(handle, true);
2400}
2401
2402int dmar_device_remove(acpi_handle handle)
2403{
2404	return dmar_device_hotplug(handle, false);
2405}
2406
2407/*
2408 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2409 *
2410 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2411 * the ACPI DMAR table. This means that the platform boot firmware has made
2412 * sure no device can issue DMA outside of RMRR regions.
2413 */
2414bool dmar_platform_optin(void)
2415{
2416	struct acpi_table_dmar *dmar;
2417	acpi_status status;
2418	bool ret;
2419
2420	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2421				(struct acpi_table_header **)&dmar);
2422	if (ACPI_FAILURE(status))
2423		return false;
2424
2425	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2426	acpi_put_table((struct acpi_table_header *)dmar);
2427
2428	return ret;
2429}
2430EXPORT_SYMBOL_GPL(dmar_platform_optin);