Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/intel-iommu.h>
23#include <linux/timer.h>
24#include <linux/irq.h>
25#include <linux/interrupt.h>
26#include <linux/tboot.h>
27#include <linux/dmi.h>
28#include <linux/slab.h>
29#include <linux/iommu.h>
30#include <linux/numa.h>
31#include <linux/limits.h>
32#include <asm/irq_remapping.h>
33#include <asm/iommu_table.h>
34
35#include "../irq_remapping.h"
36
37typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38struct dmar_res_callback {
39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
40 void *arg[ACPI_DMAR_TYPE_RESERVED];
41 bool ignore_unhandled;
42 bool print_entry;
43};
44
45/*
46 * Assumptions:
47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48 * before IO devices managed by that unit.
49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50 * after IO devices managed by that unit.
51 * 3) Hotplug events are rare.
52 *
53 * Locking rules for DMA and interrupt remapping related global data structures:
54 * 1) Use dmar_global_lock in process context
55 * 2) Use RCU in interrupt context
56 */
57DECLARE_RWSEM(dmar_global_lock);
58LIST_HEAD(dmar_drhd_units);
59
60struct acpi_table_header * __initdata dmar_tbl;
61static int dmar_dev_scope_status = 1;
62static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63
64static int alloc_iommu(struct dmar_drhd_unit *drhd);
65static void free_iommu(struct intel_iommu *iommu);
66
67extern const struct iommu_ops intel_iommu_ops;
68
69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70{
71 /*
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 * the very end.
74 */
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 else
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
79}
80
81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82{
83 struct acpi_dmar_device_scope *scope;
84
85 *cnt = 0;
86 while (start < end) {
87 scope = start;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 (*cnt)++;
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
95 }
96 start += scope->length;
97 }
98 if (*cnt == 0)
99 return NULL;
100
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102}
103
104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105{
106 int i;
107 struct device *tmp_dev;
108
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 put_device(tmp_dev);
112 kfree(*devices);
113 }
114
115 *devices = NULL;
116 *cnt = 0;
117}
118
119/* Optimize out kzalloc()/kfree() for normal cases */
120static char dmar_pci_notify_info_buf[64];
121
122static struct dmar_pci_notify_info *
123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124{
125 int level = 0;
126 size_t size;
127 struct pci_dev *tmp;
128 struct dmar_pci_notify_info *info;
129
130 BUG_ON(dev->is_virtfn);
131
132 /*
133 * Ignore devices that have a domain number higher than what can
134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 */
136 if (pci_domain_nr(dev->bus) > U16_MAX)
137 return NULL;
138
139 /* Only generate path[] for device addition event */
140 if (event == BUS_NOTIFY_ADD_DEVICE)
141 for (tmp = dev; tmp; tmp = tmp->bus->self)
142 level++;
143
144 size = struct_size(info, path, level);
145 if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 } else {
148 info = kzalloc(size, GFP_KERNEL);
149 if (!info) {
150 pr_warn("Out of memory when allocating notify_info "
151 "for %s.\n", pci_name(dev));
152 if (dmar_dev_scope_status == 0)
153 dmar_dev_scope_status = -ENOMEM;
154 return NULL;
155 }
156 }
157
158 info->event = event;
159 info->dev = dev;
160 info->seg = pci_domain_nr(dev->bus);
161 info->level = level;
162 if (event == BUS_NOTIFY_ADD_DEVICE) {
163 for (tmp = dev; tmp; tmp = tmp->bus->self) {
164 level--;
165 info->path[level].bus = tmp->bus->number;
166 info->path[level].device = PCI_SLOT(tmp->devfn);
167 info->path[level].function = PCI_FUNC(tmp->devfn);
168 if (pci_is_root_bus(tmp->bus))
169 info->bus = tmp->bus->number;
170 }
171 }
172
173 return info;
174}
175
176static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177{
178 if ((void *)info != dmar_pci_notify_info_buf)
179 kfree(info);
180}
181
182static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 struct acpi_dmar_pci_path *path, int count)
184{
185 int i;
186
187 if (info->bus != bus)
188 goto fallback;
189 if (info->level != count)
190 goto fallback;
191
192 for (i = 0; i < count; i++) {
193 if (path[i].device != info->path[i].device ||
194 path[i].function != info->path[i].function)
195 goto fallback;
196 }
197
198 return true;
199
200fallback:
201
202 if (count != 1)
203 return false;
204
205 i = info->level - 1;
206 if (bus == info->path[i].bus &&
207 path[0].device == info->path[i].device &&
208 path[0].function == info->path[i].function) {
209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 bus, path[0].device, path[0].function);
211 return true;
212 }
213
214 return false;
215}
216
217/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 void *start, void*end, u16 segment,
220 struct dmar_dev_scope *devices,
221 int devices_cnt)
222{
223 int i, level;
224 struct device *tmp, *dev = &info->dev->dev;
225 struct acpi_dmar_device_scope *scope;
226 struct acpi_dmar_pci_path *path;
227
228 if (segment != info->seg)
229 return 0;
230
231 for (; start < end; start += scope->length) {
232 scope = start;
233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235 continue;
236
237 path = (struct acpi_dmar_pci_path *)(scope + 1);
238 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 if (!dmar_match_pci_path(info, scope->bus, path, level))
240 continue;
241
242 /*
243 * We expect devices with endpoint scope to have normal PCI
244 * headers, and devices with bridge scope to have bridge PCI
245 * headers. However PCI NTB devices may be listed in the
246 * DMAR table with bridge scope, even though they have a
247 * normal PCI header. NTB devices are identified by class
248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 * for this special case.
250 */
251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 pr_warn("Device scope type does not match for %s\n",
257 pci_name(info->dev));
258 return -EINVAL;
259 }
260
261 for_each_dev_scope(devices, devices_cnt, i, tmp)
262 if (tmp == NULL) {
263 devices[i].bus = info->dev->bus->number;
264 devices[i].devfn = info->dev->devfn;
265 rcu_assign_pointer(devices[i].dev,
266 get_device(dev));
267 return 1;
268 }
269 BUG_ON(i >= devices_cnt);
270 }
271
272 return 0;
273}
274
275int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 struct dmar_dev_scope *devices, int count)
277{
278 int index;
279 struct device *tmp;
280
281 if (info->seg != segment)
282 return 0;
283
284 for_each_active_dev_scope(devices, count, index, tmp)
285 if (tmp == &info->dev->dev) {
286 RCU_INIT_POINTER(devices[index].dev, NULL);
287 synchronize_rcu();
288 put_device(tmp);
289 return 1;
290 }
291
292 return 0;
293}
294
295static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296{
297 int ret = 0;
298 struct dmar_drhd_unit *dmaru;
299 struct acpi_dmar_hardware_unit *drhd;
300
301 for_each_drhd_unit(dmaru) {
302 if (dmaru->include_all)
303 continue;
304
305 drhd = container_of(dmaru->hdr,
306 struct acpi_dmar_hardware_unit, header);
307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 ((void *)drhd) + drhd->header.length,
309 dmaru->segment,
310 dmaru->devices, dmaru->devices_cnt);
311 if (ret)
312 break;
313 }
314 if (ret >= 0)
315 ret = dmar_iommu_notify_scope_dev(info);
316 if (ret < 0 && dmar_dev_scope_status == 0)
317 dmar_dev_scope_status = ret;
318
319 return ret;
320}
321
322static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323{
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331}
332
333static int dmar_pci_bus_notifier(struct notifier_block *nb,
334 unsigned long action, void *data)
335{
336 struct pci_dev *pdev = to_pci_dev(data);
337 struct dmar_pci_notify_info *info;
338
339 /* Only care about add/remove events for physical functions.
340 * For VFs we actually do the lookup based on the corresponding
341 * PF in device_to_iommu() anyway. */
342 if (pdev->is_virtfn)
343 return NOTIFY_DONE;
344 if (action != BUS_NOTIFY_ADD_DEVICE &&
345 action != BUS_NOTIFY_REMOVED_DEVICE)
346 return NOTIFY_DONE;
347
348 info = dmar_alloc_pci_notify_info(pdev, action);
349 if (!info)
350 return NOTIFY_DONE;
351
352 down_write(&dmar_global_lock);
353 if (action == BUS_NOTIFY_ADD_DEVICE)
354 dmar_pci_bus_add_dev(info);
355 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
356 dmar_pci_bus_del_dev(info);
357 up_write(&dmar_global_lock);
358
359 dmar_free_pci_notify_info(info);
360
361 return NOTIFY_OK;
362}
363
364static struct notifier_block dmar_pci_bus_nb = {
365 .notifier_call = dmar_pci_bus_notifier,
366 .priority = INT_MIN,
367};
368
369static struct dmar_drhd_unit *
370dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
371{
372 struct dmar_drhd_unit *dmaru;
373
374 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
375 dmar_rcu_check())
376 if (dmaru->segment == drhd->segment &&
377 dmaru->reg_base_addr == drhd->address)
378 return dmaru;
379
380 return NULL;
381}
382
383/**
384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
385 * structure which uniquely represent one DMA remapping hardware unit
386 * present in the platform
387 */
388static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
389{
390 struct acpi_dmar_hardware_unit *drhd;
391 struct dmar_drhd_unit *dmaru;
392 int ret;
393
394 drhd = (struct acpi_dmar_hardware_unit *)header;
395 dmaru = dmar_find_dmaru(drhd);
396 if (dmaru)
397 goto out;
398
399 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
400 if (!dmaru)
401 return -ENOMEM;
402
403 /*
404 * If header is allocated from slab by ACPI _DSM method, we need to
405 * copy the content because the memory buffer will be freed on return.
406 */
407 dmaru->hdr = (void *)(dmaru + 1);
408 memcpy(dmaru->hdr, header, header->length);
409 dmaru->reg_base_addr = drhd->address;
410 dmaru->segment = drhd->segment;
411 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
412 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
413 ((void *)drhd) + drhd->header.length,
414 &dmaru->devices_cnt);
415 if (dmaru->devices_cnt && dmaru->devices == NULL) {
416 kfree(dmaru);
417 return -ENOMEM;
418 }
419
420 ret = alloc_iommu(dmaru);
421 if (ret) {
422 dmar_free_dev_scope(&dmaru->devices,
423 &dmaru->devices_cnt);
424 kfree(dmaru);
425 return ret;
426 }
427 dmar_register_drhd_unit(dmaru);
428
429out:
430 if (arg)
431 (*(int *)arg)++;
432
433 return 0;
434}
435
436static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
437{
438 if (dmaru->devices && dmaru->devices_cnt)
439 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
440 if (dmaru->iommu)
441 free_iommu(dmaru->iommu);
442 kfree(dmaru);
443}
444
445static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
446 void *arg)
447{
448 struct acpi_dmar_andd *andd = (void *)header;
449
450 /* Check for NUL termination within the designated length */
451 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
452 pr_warn(FW_BUG
453 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
454 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
455 dmi_get_system_info(DMI_BIOS_VENDOR),
456 dmi_get_system_info(DMI_BIOS_VERSION),
457 dmi_get_system_info(DMI_PRODUCT_VERSION));
458 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
459 return -EINVAL;
460 }
461 pr_info("ANDD device: %x name: %s\n", andd->device_number,
462 andd->device_name);
463
464 return 0;
465}
466
467#ifdef CONFIG_ACPI_NUMA
468static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
469{
470 struct acpi_dmar_rhsa *rhsa;
471 struct dmar_drhd_unit *drhd;
472
473 rhsa = (struct acpi_dmar_rhsa *)header;
474 for_each_drhd_unit(drhd) {
475 if (drhd->reg_base_addr == rhsa->base_address) {
476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
477
478 if (!node_online(node))
479 node = NUMA_NO_NODE;
480 drhd->iommu->node = node;
481 return 0;
482 }
483 }
484 pr_warn(FW_BUG
485 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
486 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
487 rhsa->base_address,
488 dmi_get_system_info(DMI_BIOS_VENDOR),
489 dmi_get_system_info(DMI_BIOS_VERSION),
490 dmi_get_system_info(DMI_PRODUCT_VERSION));
491 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
492
493 return 0;
494}
495#else
496#define dmar_parse_one_rhsa dmar_res_noop
497#endif
498
499static void
500dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
501{
502 struct acpi_dmar_hardware_unit *drhd;
503 struct acpi_dmar_reserved_memory *rmrr;
504 struct acpi_dmar_atsr *atsr;
505 struct acpi_dmar_rhsa *rhsa;
506
507 switch (header->type) {
508 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 drhd = container_of(header, struct acpi_dmar_hardware_unit,
510 header);
511 pr_info("DRHD base: %#016Lx flags: %#x\n",
512 (unsigned long long)drhd->address, drhd->flags);
513 break;
514 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
516 header);
517 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
518 (unsigned long long)rmrr->base_address,
519 (unsigned long long)rmrr->end_address);
520 break;
521 case ACPI_DMAR_TYPE_ROOT_ATS:
522 atsr = container_of(header, struct acpi_dmar_atsr, header);
523 pr_info("ATSR flags: %#x\n", atsr->flags);
524 break;
525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 (unsigned long long)rhsa->base_address,
529 rhsa->proximity_domain);
530 break;
531 case ACPI_DMAR_TYPE_NAMESPACE:
532 /* We don't print this here because we need to sanity-check
533 it first. So print it in dmar_parse_one_andd() instead. */
534 break;
535 }
536}
537
538/**
539 * dmar_table_detect - checks to see if the platform supports DMAR devices
540 */
541static int __init dmar_table_detect(void)
542{
543 acpi_status status = AE_OK;
544
545 /* if we could find DMAR table, then there are DMAR devices */
546 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
547
548 if (ACPI_SUCCESS(status) && !dmar_tbl) {
549 pr_warn("Unable to map DMAR\n");
550 status = AE_NOT_FOUND;
551 }
552
553 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
554}
555
556static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
557 size_t len, struct dmar_res_callback *cb)
558{
559 struct acpi_dmar_header *iter, *next;
560 struct acpi_dmar_header *end = ((void *)start) + len;
561
562 for (iter = start; iter < end; iter = next) {
563 next = (void *)iter + iter->length;
564 if (iter->length == 0) {
565 /* Avoid looping forever on bad ACPI tables */
566 pr_debug(FW_BUG "Invalid 0-length structure\n");
567 break;
568 } else if (next > end) {
569 /* Avoid passing table end */
570 pr_warn(FW_BUG "Record passes table end\n");
571 return -EINVAL;
572 }
573
574 if (cb->print_entry)
575 dmar_table_print_dmar_entry(iter);
576
577 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
578 /* continue for forward compatibility */
579 pr_debug("Unknown DMAR structure type %d\n",
580 iter->type);
581 } else if (cb->cb[iter->type]) {
582 int ret;
583
584 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
585 if (ret)
586 return ret;
587 } else if (!cb->ignore_unhandled) {
588 pr_warn("No handler for DMAR structure type %d\n",
589 iter->type);
590 return -EINVAL;
591 }
592 }
593
594 return 0;
595}
596
597static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
598 struct dmar_res_callback *cb)
599{
600 return dmar_walk_remapping_entries((void *)(dmar + 1),
601 dmar->header.length - sizeof(*dmar), cb);
602}
603
604/**
605 * parse_dmar_table - parses the DMA reporting table
606 */
607static int __init
608parse_dmar_table(void)
609{
610 struct acpi_table_dmar *dmar;
611 int drhd_count = 0;
612 int ret;
613 struct dmar_res_callback cb = {
614 .print_entry = true,
615 .ignore_unhandled = true,
616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
622 };
623
624 /*
625 * Do it again, earlier dmar_tbl mapping could be mapped with
626 * fixed map.
627 */
628 dmar_table_detect();
629
630 /*
631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
633 */
634 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
635
636 dmar = (struct acpi_table_dmar *)dmar_tbl;
637 if (!dmar)
638 return -ENODEV;
639
640 if (dmar->width < PAGE_SHIFT - 1) {
641 pr_warn("Invalid DMAR haw\n");
642 return -EINVAL;
643 }
644
645 pr_info("Host address width %d\n", dmar->width + 1);
646 ret = dmar_walk_dmar_table(dmar, &cb);
647 if (ret == 0 && drhd_count == 0)
648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
649
650 return ret;
651}
652
653static int dmar_pci_device_match(struct dmar_dev_scope devices[],
654 int cnt, struct pci_dev *dev)
655{
656 int index;
657 struct device *tmp;
658
659 while (dev) {
660 for_each_active_dev_scope(devices, cnt, index, tmp)
661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
662 return 1;
663
664 /* Check our parent */
665 dev = dev->bus->self;
666 }
667
668 return 0;
669}
670
671struct dmar_drhd_unit *
672dmar_find_matched_drhd_unit(struct pci_dev *dev)
673{
674 struct dmar_drhd_unit *dmaru;
675 struct acpi_dmar_hardware_unit *drhd;
676
677 dev = pci_physfn(dev);
678
679 rcu_read_lock();
680 for_each_drhd_unit(dmaru) {
681 drhd = container_of(dmaru->hdr,
682 struct acpi_dmar_hardware_unit,
683 header);
684
685 if (dmaru->include_all &&
686 drhd->segment == pci_domain_nr(dev->bus))
687 goto out;
688
689 if (dmar_pci_device_match(dmaru->devices,
690 dmaru->devices_cnt, dev))
691 goto out;
692 }
693 dmaru = NULL;
694out:
695 rcu_read_unlock();
696
697 return dmaru;
698}
699
700static void __init dmar_acpi_insert_dev_scope(u8 device_number,
701 struct acpi_device *adev)
702{
703 struct dmar_drhd_unit *dmaru;
704 struct acpi_dmar_hardware_unit *drhd;
705 struct acpi_dmar_device_scope *scope;
706 struct device *tmp;
707 int i;
708 struct acpi_dmar_pci_path *path;
709
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 for (scope = (void *)(drhd + 1);
716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
717 scope = ((void *)scope) + scope->length) {
718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
719 continue;
720 if (scope->enumeration_id != device_number)
721 continue;
722
723 path = (void *)(scope + 1);
724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
725 dev_name(&adev->dev), dmaru->reg_base_addr,
726 scope->bus, path->device, path->function);
727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
728 if (tmp == NULL) {
729 dmaru->devices[i].bus = scope->bus;
730 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
731 path->function);
732 rcu_assign_pointer(dmaru->devices[i].dev,
733 get_device(&adev->dev));
734 return;
735 }
736 BUG_ON(i >= dmaru->devices_cnt);
737 }
738 }
739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
740 device_number, dev_name(&adev->dev));
741}
742
743static int __init dmar_acpi_dev_scope_init(void)
744{
745 struct acpi_dmar_andd *andd;
746
747 if (dmar_tbl == NULL)
748 return -ENODEV;
749
750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
752 andd = ((void *)andd) + andd->header.length) {
753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
754 acpi_handle h;
755 struct acpi_device *adev;
756
757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
758 andd->device_name,
759 &h))) {
760 pr_err("Failed to find handle for ACPI object %s\n",
761 andd->device_name);
762 continue;
763 }
764 if (acpi_bus_get_device(h, &adev)) {
765 pr_err("Failed to get device for ACPI object %s\n",
766 andd->device_name);
767 continue;
768 }
769 dmar_acpi_insert_dev_scope(andd->device_number, adev);
770 }
771 }
772 return 0;
773}
774
775int __init dmar_dev_scope_init(void)
776{
777 struct pci_dev *dev = NULL;
778 struct dmar_pci_notify_info *info;
779
780 if (dmar_dev_scope_status != 1)
781 return dmar_dev_scope_status;
782
783 if (list_empty(&dmar_drhd_units)) {
784 dmar_dev_scope_status = -ENODEV;
785 } else {
786 dmar_dev_scope_status = 0;
787
788 dmar_acpi_dev_scope_init();
789
790 for_each_pci_dev(dev) {
791 if (dev->is_virtfn)
792 continue;
793
794 info = dmar_alloc_pci_notify_info(dev,
795 BUS_NOTIFY_ADD_DEVICE);
796 if (!info) {
797 return dmar_dev_scope_status;
798 } else {
799 dmar_pci_bus_add_dev(info);
800 dmar_free_pci_notify_info(info);
801 }
802 }
803 }
804
805 return dmar_dev_scope_status;
806}
807
808void __init dmar_register_bus_notifier(void)
809{
810 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
811}
812
813
814int __init dmar_table_init(void)
815{
816 static int dmar_table_initialized;
817 int ret;
818
819 if (dmar_table_initialized == 0) {
820 ret = parse_dmar_table();
821 if (ret < 0) {
822 if (ret != -ENODEV)
823 pr_info("Parse DMAR table failure.\n");
824 } else if (list_empty(&dmar_drhd_units)) {
825 pr_info("No DMAR devices found\n");
826 ret = -ENODEV;
827 }
828
829 if (ret < 0)
830 dmar_table_initialized = ret;
831 else
832 dmar_table_initialized = 1;
833 }
834
835 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
836}
837
838static void warn_invalid_dmar(u64 addr, const char *message)
839{
840 pr_warn_once(FW_BUG
841 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
842 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
843 addr, message,
844 dmi_get_system_info(DMI_BIOS_VENDOR),
845 dmi_get_system_info(DMI_BIOS_VERSION),
846 dmi_get_system_info(DMI_PRODUCT_VERSION));
847 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
848}
849
850static int __ref
851dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
852{
853 struct acpi_dmar_hardware_unit *drhd;
854 void __iomem *addr;
855 u64 cap, ecap;
856
857 drhd = (void *)entry;
858 if (!drhd->address) {
859 warn_invalid_dmar(0, "");
860 return -EINVAL;
861 }
862
863 if (arg)
864 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
865 else
866 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
867 if (!addr) {
868 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
869 return -EINVAL;
870 }
871
872 cap = dmar_readq(addr + DMAR_CAP_REG);
873 ecap = dmar_readq(addr + DMAR_ECAP_REG);
874
875 if (arg)
876 iounmap(addr);
877 else
878 early_iounmap(addr, VTD_PAGE_SIZE);
879
880 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
881 warn_invalid_dmar(drhd->address, " returns all ones");
882 return -EINVAL;
883 }
884
885 return 0;
886}
887
888int __init detect_intel_iommu(void)
889{
890 int ret;
891 struct dmar_res_callback validate_drhd_cb = {
892 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
893 .ignore_unhandled = true,
894 };
895
896 down_write(&dmar_global_lock);
897 ret = dmar_table_detect();
898 if (!ret)
899 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
900 &validate_drhd_cb);
901 if (!ret && !no_iommu && !iommu_detected &&
902 (!dmar_disabled || dmar_platform_optin())) {
903 iommu_detected = 1;
904 /* Make sure ACS will be enabled */
905 pci_request_acs();
906 }
907
908#ifdef CONFIG_X86
909 if (!ret) {
910 x86_init.iommu.iommu_init = intel_iommu_init;
911 x86_platform.iommu_shutdown = intel_iommu_shutdown;
912 }
913
914#endif
915
916 if (dmar_tbl) {
917 acpi_put_table(dmar_tbl);
918 dmar_tbl = NULL;
919 }
920 up_write(&dmar_global_lock);
921
922 return ret ? ret : 1;
923}
924
925static void unmap_iommu(struct intel_iommu *iommu)
926{
927 iounmap(iommu->reg);
928 release_mem_region(iommu->reg_phys, iommu->reg_size);
929}
930
931/**
932 * map_iommu: map the iommu's registers
933 * @iommu: the iommu to map
934 * @phys_addr: the physical address of the base resgister
935 *
936 * Memory map the iommu's registers. Start w/ a single page, and
937 * possibly expand if that turns out to be insufficent.
938 */
939static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
940{
941 int map_size, err=0;
942
943 iommu->reg_phys = phys_addr;
944 iommu->reg_size = VTD_PAGE_SIZE;
945
946 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
947 pr_err("Can't reserve memory\n");
948 err = -EBUSY;
949 goto out;
950 }
951
952 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
953 if (!iommu->reg) {
954 pr_err("Can't map the region\n");
955 err = -ENOMEM;
956 goto release;
957 }
958
959 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
960 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
961
962 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
963 err = -EINVAL;
964 warn_invalid_dmar(phys_addr, " returns all ones");
965 goto unmap;
966 }
967 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
968
969 /* the registers might be more than one page */
970 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
971 cap_max_fault_reg_offset(iommu->cap));
972 map_size = VTD_PAGE_ALIGN(map_size);
973 if (map_size > iommu->reg_size) {
974 iounmap(iommu->reg);
975 release_mem_region(iommu->reg_phys, iommu->reg_size);
976 iommu->reg_size = map_size;
977 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
978 iommu->name)) {
979 pr_err("Can't reserve memory\n");
980 err = -EBUSY;
981 goto out;
982 }
983 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
984 if (!iommu->reg) {
985 pr_err("Can't map the region\n");
986 err = -ENOMEM;
987 goto release;
988 }
989 }
990 err = 0;
991 goto out;
992
993unmap:
994 iounmap(iommu->reg);
995release:
996 release_mem_region(iommu->reg_phys, iommu->reg_size);
997out:
998 return err;
999}
1000
1001static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1002{
1003 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1004 DMAR_UNITS_SUPPORTED);
1005 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1006 iommu->seq_id = -1;
1007 } else {
1008 set_bit(iommu->seq_id, dmar_seq_ids);
1009 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1010 }
1011
1012 return iommu->seq_id;
1013}
1014
1015static void dmar_free_seq_id(struct intel_iommu *iommu)
1016{
1017 if (iommu->seq_id >= 0) {
1018 clear_bit(iommu->seq_id, dmar_seq_ids);
1019 iommu->seq_id = -1;
1020 }
1021}
1022
1023static int alloc_iommu(struct dmar_drhd_unit *drhd)
1024{
1025 struct intel_iommu *iommu;
1026 u32 ver, sts;
1027 int agaw = 0;
1028 int msagaw = 0;
1029 int err;
1030
1031 if (!drhd->reg_base_addr) {
1032 warn_invalid_dmar(0, "");
1033 return -EINVAL;
1034 }
1035
1036 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1037 if (!iommu)
1038 return -ENOMEM;
1039
1040 if (dmar_alloc_seq_id(iommu) < 0) {
1041 pr_err("Failed to allocate seq_id\n");
1042 err = -ENOSPC;
1043 goto error;
1044 }
1045
1046 err = map_iommu(iommu, drhd->reg_base_addr);
1047 if (err) {
1048 pr_err("Failed to map %s\n", iommu->name);
1049 goto error_free_seq_id;
1050 }
1051
1052 err = -EINVAL;
1053 agaw = iommu_calculate_agaw(iommu);
1054 if (agaw < 0) {
1055 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1056 iommu->seq_id);
1057 goto err_unmap;
1058 }
1059 msagaw = iommu_calculate_max_sagaw(iommu);
1060 if (msagaw < 0) {
1061 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1062 iommu->seq_id);
1063 goto err_unmap;
1064 }
1065 iommu->agaw = agaw;
1066 iommu->msagaw = msagaw;
1067 iommu->segment = drhd->segment;
1068
1069 iommu->node = NUMA_NO_NODE;
1070
1071 ver = readl(iommu->reg + DMAR_VER_REG);
1072 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1073 iommu->name,
1074 (unsigned long long)drhd->reg_base_addr,
1075 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1076 (unsigned long long)iommu->cap,
1077 (unsigned long long)iommu->ecap);
1078
1079 /* Reflect status in gcmd */
1080 sts = readl(iommu->reg + DMAR_GSTS_REG);
1081 if (sts & DMA_GSTS_IRES)
1082 iommu->gcmd |= DMA_GCMD_IRE;
1083 if (sts & DMA_GSTS_TES)
1084 iommu->gcmd |= DMA_GCMD_TE;
1085 if (sts & DMA_GSTS_QIES)
1086 iommu->gcmd |= DMA_GCMD_QIE;
1087
1088 raw_spin_lock_init(&iommu->register_lock);
1089
1090 if (intel_iommu_enabled) {
1091 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1092 intel_iommu_groups,
1093 "%s", iommu->name);
1094 if (err)
1095 goto err_unmap;
1096
1097 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1098
1099 err = iommu_device_register(&iommu->iommu);
1100 if (err)
1101 goto err_unmap;
1102 }
1103
1104 drhd->iommu = iommu;
1105 iommu->drhd = drhd;
1106
1107 return 0;
1108
1109err_unmap:
1110 unmap_iommu(iommu);
1111error_free_seq_id:
1112 dmar_free_seq_id(iommu);
1113error:
1114 kfree(iommu);
1115 return err;
1116}
1117
1118static void free_iommu(struct intel_iommu *iommu)
1119{
1120 if (intel_iommu_enabled) {
1121 iommu_device_unregister(&iommu->iommu);
1122 iommu_device_sysfs_remove(&iommu->iommu);
1123 }
1124
1125 if (iommu->irq) {
1126 if (iommu->pr_irq) {
1127 free_irq(iommu->pr_irq, iommu);
1128 dmar_free_hwirq(iommu->pr_irq);
1129 iommu->pr_irq = 0;
1130 }
1131 free_irq(iommu->irq, iommu);
1132 dmar_free_hwirq(iommu->irq);
1133 iommu->irq = 0;
1134 }
1135
1136 if (iommu->qi) {
1137 free_page((unsigned long)iommu->qi->desc);
1138 kfree(iommu->qi->desc_status);
1139 kfree(iommu->qi);
1140 }
1141
1142 if (iommu->reg)
1143 unmap_iommu(iommu);
1144
1145 dmar_free_seq_id(iommu);
1146 kfree(iommu);
1147}
1148
1149/*
1150 * Reclaim all the submitted descriptors which have completed its work.
1151 */
1152static inline void reclaim_free_desc(struct q_inval *qi)
1153{
1154 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1155 qi->desc_status[qi->free_tail] == QI_ABORT) {
1156 qi->desc_status[qi->free_tail] = QI_FREE;
1157 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1158 qi->free_cnt++;
1159 }
1160}
1161
1162static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1163{
1164 u32 fault;
1165 int head, tail;
1166 struct q_inval *qi = iommu->qi;
1167 int shift = qi_shift(iommu);
1168
1169 if (qi->desc_status[wait_index] == QI_ABORT)
1170 return -EAGAIN;
1171
1172 fault = readl(iommu->reg + DMAR_FSTS_REG);
1173
1174 /*
1175 * If IQE happens, the head points to the descriptor associated
1176 * with the error. No new descriptors are fetched until the IQE
1177 * is cleared.
1178 */
1179 if (fault & DMA_FSTS_IQE) {
1180 head = readl(iommu->reg + DMAR_IQH_REG);
1181 if ((head >> shift) == index) {
1182 struct qi_desc *desc = qi->desc + head;
1183
1184 /*
1185 * desc->qw2 and desc->qw3 are either reserved or
1186 * used by software as private data. We won't print
1187 * out these two qw's for security consideration.
1188 */
1189 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1190 (unsigned long long)desc->qw0,
1191 (unsigned long long)desc->qw1);
1192 memcpy(desc, qi->desc + (wait_index << shift),
1193 1 << shift);
1194 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1195 return -EINVAL;
1196 }
1197 }
1198
1199 /*
1200 * If ITE happens, all pending wait_desc commands are aborted.
1201 * No new descriptors are fetched until the ITE is cleared.
1202 */
1203 if (fault & DMA_FSTS_ITE) {
1204 head = readl(iommu->reg + DMAR_IQH_REG);
1205 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1206 head |= 1;
1207 tail = readl(iommu->reg + DMAR_IQT_REG);
1208 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1209
1210 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1211
1212 do {
1213 if (qi->desc_status[head] == QI_IN_USE)
1214 qi->desc_status[head] = QI_ABORT;
1215 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1216 } while (head != tail);
1217
1218 if (qi->desc_status[wait_index] == QI_ABORT)
1219 return -EAGAIN;
1220 }
1221
1222 if (fault & DMA_FSTS_ICE)
1223 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1224
1225 return 0;
1226}
1227
1228/*
1229 * Function to submit invalidation descriptors of all types to the queued
1230 * invalidation interface(QI). Multiple descriptors can be submitted at a
1231 * time, a wait descriptor will be appended to each submission to ensure
1232 * hardware has completed the invalidation before return. Wait descriptors
1233 * can be part of the submission but it will not be polled for completion.
1234 */
1235int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1236 unsigned int count, unsigned long options)
1237{
1238 struct q_inval *qi = iommu->qi;
1239 struct qi_desc wait_desc;
1240 int wait_index, index;
1241 unsigned long flags;
1242 int offset, shift;
1243 int rc, i;
1244
1245 if (!qi)
1246 return 0;
1247
1248restart:
1249 rc = 0;
1250
1251 raw_spin_lock_irqsave(&qi->q_lock, flags);
1252 /*
1253 * Check if we have enough empty slots in the queue to submit,
1254 * the calculation is based on:
1255 * # of desc + 1 wait desc + 1 space between head and tail
1256 */
1257 while (qi->free_cnt < count + 2) {
1258 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1259 cpu_relax();
1260 raw_spin_lock_irqsave(&qi->q_lock, flags);
1261 }
1262
1263 index = qi->free_head;
1264 wait_index = (index + count) % QI_LENGTH;
1265 shift = qi_shift(iommu);
1266
1267 for (i = 0; i < count; i++) {
1268 offset = ((index + i) % QI_LENGTH) << shift;
1269 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1270 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1271 }
1272 qi->desc_status[wait_index] = QI_IN_USE;
1273
1274 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1275 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1276 if (options & QI_OPT_WAIT_DRAIN)
1277 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1278 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1279 wait_desc.qw2 = 0;
1280 wait_desc.qw3 = 0;
1281
1282 offset = wait_index << shift;
1283 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1284
1285 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1286 qi->free_cnt -= count + 1;
1287
1288 /*
1289 * update the HW tail register indicating the presence of
1290 * new descriptors.
1291 */
1292 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1293
1294 while (qi->desc_status[wait_index] != QI_DONE) {
1295 /*
1296 * We will leave the interrupts disabled, to prevent interrupt
1297 * context to queue another cmd while a cmd is already submitted
1298 * and waiting for completion on this cpu. This is to avoid
1299 * a deadlock where the interrupt context can wait indefinitely
1300 * for free slots in the queue.
1301 */
1302 rc = qi_check_fault(iommu, index, wait_index);
1303 if (rc)
1304 break;
1305
1306 raw_spin_unlock(&qi->q_lock);
1307 cpu_relax();
1308 raw_spin_lock(&qi->q_lock);
1309 }
1310
1311 for (i = 0; i < count; i++)
1312 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1313
1314 reclaim_free_desc(qi);
1315 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1316
1317 if (rc == -EAGAIN)
1318 goto restart;
1319
1320 return rc;
1321}
1322
1323/*
1324 * Flush the global interrupt entry cache.
1325 */
1326void qi_global_iec(struct intel_iommu *iommu)
1327{
1328 struct qi_desc desc;
1329
1330 desc.qw0 = QI_IEC_TYPE;
1331 desc.qw1 = 0;
1332 desc.qw2 = 0;
1333 desc.qw3 = 0;
1334
1335 /* should never fail */
1336 qi_submit_sync(iommu, &desc, 1, 0);
1337}
1338
1339void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1340 u64 type)
1341{
1342 struct qi_desc desc;
1343
1344 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1345 | QI_CC_GRAN(type) | QI_CC_TYPE;
1346 desc.qw1 = 0;
1347 desc.qw2 = 0;
1348 desc.qw3 = 0;
1349
1350 qi_submit_sync(iommu, &desc, 1, 0);
1351}
1352
1353void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1354 unsigned int size_order, u64 type)
1355{
1356 u8 dw = 0, dr = 0;
1357
1358 struct qi_desc desc;
1359 int ih = 0;
1360
1361 if (cap_write_drain(iommu->cap))
1362 dw = 1;
1363
1364 if (cap_read_drain(iommu->cap))
1365 dr = 1;
1366
1367 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1368 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1369 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1370 | QI_IOTLB_AM(size_order);
1371 desc.qw2 = 0;
1372 desc.qw3 = 0;
1373
1374 qi_submit_sync(iommu, &desc, 1, 0);
1375}
1376
1377void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1378 u16 qdep, u64 addr, unsigned mask)
1379{
1380 struct qi_desc desc;
1381
1382 if (mask) {
1383 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1384 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1385 } else
1386 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1387
1388 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1389 qdep = 0;
1390
1391 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1392 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1393 desc.qw2 = 0;
1394 desc.qw3 = 0;
1395
1396 qi_submit_sync(iommu, &desc, 1, 0);
1397}
1398
1399/* PASID-based IOTLB invalidation */
1400void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1401 unsigned long npages, bool ih)
1402{
1403 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1404
1405 /*
1406 * npages == -1 means a PASID-selective invalidation, otherwise,
1407 * a positive value for Page-selective-within-PASID invalidation.
1408 * 0 is not a valid input.
1409 */
1410 if (WARN_ON(!npages)) {
1411 pr_err("Invalid input npages = %ld\n", npages);
1412 return;
1413 }
1414
1415 if (npages == -1) {
1416 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1417 QI_EIOTLB_DID(did) |
1418 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1419 QI_EIOTLB_TYPE;
1420 desc.qw1 = 0;
1421 } else {
1422 int mask = ilog2(__roundup_pow_of_two(npages));
1423 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1424
1425 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1426 addr &= ~(align - 1);
1427
1428 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1429 QI_EIOTLB_DID(did) |
1430 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1431 QI_EIOTLB_TYPE;
1432 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1433 QI_EIOTLB_IH(ih) |
1434 QI_EIOTLB_AM(mask);
1435 }
1436
1437 qi_submit_sync(iommu, &desc, 1, 0);
1438}
1439
1440/* PASID-based device IOTLB Invalidate */
1441void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1442 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1443{
1444 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1445 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1446
1447 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1448 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1449 QI_DEV_IOTLB_PFSID(pfsid);
1450
1451 /*
1452 * If S bit is 0, we only flush a single page. If S bit is set,
1453 * The least significant zero bit indicates the invalidation address
1454 * range. VT-d spec 6.5.2.6.
1455 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1456 * size order = 0 is PAGE_SIZE 4KB
1457 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1458 * ECAP.
1459 */
1460 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1461 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1462 addr, size_order);
1463
1464 /* Take page address */
1465 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1466
1467 if (size_order) {
1468 /*
1469 * Existing 0s in address below size_order may be the least
1470 * significant bit, we must set them to 1s to avoid having
1471 * smaller size than desired.
1472 */
1473 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1474 VTD_PAGE_SHIFT);
1475 /* Clear size_order bit to indicate size */
1476 desc.qw1 &= ~mask;
1477 /* Set the S bit to indicate flushing more than 1 page */
1478 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1479 }
1480
1481 qi_submit_sync(iommu, &desc, 1, 0);
1482}
1483
1484void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1485 u64 granu, int pasid)
1486{
1487 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1488
1489 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1490 QI_PC_GRAN(granu) | QI_PC_TYPE;
1491 qi_submit_sync(iommu, &desc, 1, 0);
1492}
1493
1494/*
1495 * Disable Queued Invalidation interface.
1496 */
1497void dmar_disable_qi(struct intel_iommu *iommu)
1498{
1499 unsigned long flags;
1500 u32 sts;
1501 cycles_t start_time = get_cycles();
1502
1503 if (!ecap_qis(iommu->ecap))
1504 return;
1505
1506 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1507
1508 sts = readl(iommu->reg + DMAR_GSTS_REG);
1509 if (!(sts & DMA_GSTS_QIES))
1510 goto end;
1511
1512 /*
1513 * Give a chance to HW to complete the pending invalidation requests.
1514 */
1515 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1516 readl(iommu->reg + DMAR_IQH_REG)) &&
1517 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1518 cpu_relax();
1519
1520 iommu->gcmd &= ~DMA_GCMD_QIE;
1521 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1522
1523 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1524 !(sts & DMA_GSTS_QIES), sts);
1525end:
1526 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1527}
1528
1529/*
1530 * Enable queued invalidation.
1531 */
1532static void __dmar_enable_qi(struct intel_iommu *iommu)
1533{
1534 u32 sts;
1535 unsigned long flags;
1536 struct q_inval *qi = iommu->qi;
1537 u64 val = virt_to_phys(qi->desc);
1538
1539 qi->free_head = qi->free_tail = 0;
1540 qi->free_cnt = QI_LENGTH;
1541
1542 /*
1543 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1544 * is present.
1545 */
1546 if (ecap_smts(iommu->ecap))
1547 val |= (1 << 11) | 1;
1548
1549 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1550
1551 /* write zero to the tail reg */
1552 writel(0, iommu->reg + DMAR_IQT_REG);
1553
1554 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1555
1556 iommu->gcmd |= DMA_GCMD_QIE;
1557 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1558
1559 /* Make sure hardware complete it */
1560 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1561
1562 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563}
1564
1565/*
1566 * Enable Queued Invalidation interface. This is a must to support
1567 * interrupt-remapping. Also used by DMA-remapping, which replaces
1568 * register based IOTLB invalidation.
1569 */
1570int dmar_enable_qi(struct intel_iommu *iommu)
1571{
1572 struct q_inval *qi;
1573 struct page *desc_page;
1574
1575 if (!ecap_qis(iommu->ecap))
1576 return -ENOENT;
1577
1578 /*
1579 * queued invalidation is already setup and enabled.
1580 */
1581 if (iommu->qi)
1582 return 0;
1583
1584 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1585 if (!iommu->qi)
1586 return -ENOMEM;
1587
1588 qi = iommu->qi;
1589
1590 /*
1591 * Need two pages to accommodate 256 descriptors of 256 bits each
1592 * if the remapping hardware supports scalable mode translation.
1593 */
1594 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1595 !!ecap_smts(iommu->ecap));
1596 if (!desc_page) {
1597 kfree(qi);
1598 iommu->qi = NULL;
1599 return -ENOMEM;
1600 }
1601
1602 qi->desc = page_address(desc_page);
1603
1604 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1605 if (!qi->desc_status) {
1606 free_page((unsigned long) qi->desc);
1607 kfree(qi);
1608 iommu->qi = NULL;
1609 return -ENOMEM;
1610 }
1611
1612 raw_spin_lock_init(&qi->q_lock);
1613
1614 __dmar_enable_qi(iommu);
1615
1616 return 0;
1617}
1618
1619/* iommu interrupt handling. Most stuff are MSI-like. */
1620
1621enum faulttype {
1622 DMA_REMAP,
1623 INTR_REMAP,
1624 UNKNOWN,
1625};
1626
1627static const char *dma_remap_fault_reasons[] =
1628{
1629 "Software",
1630 "Present bit in root entry is clear",
1631 "Present bit in context entry is clear",
1632 "Invalid context entry",
1633 "Access beyond MGAW",
1634 "PTE Write access is not set",
1635 "PTE Read access is not set",
1636 "Next page table ptr is invalid",
1637 "Root table address invalid",
1638 "Context table ptr is invalid",
1639 "non-zero reserved fields in RTP",
1640 "non-zero reserved fields in CTP",
1641 "non-zero reserved fields in PTE",
1642 "PCE for translation request specifies blocking",
1643};
1644
1645static const char * const dma_remap_sm_fault_reasons[] = {
1646 "SM: Invalid Root Table Address",
1647 "SM: TTM 0 for request with PASID",
1648 "SM: TTM 0 for page group request",
1649 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1650 "SM: Error attempting to access Root Entry",
1651 "SM: Present bit in Root Entry is clear",
1652 "SM: Non-zero reserved field set in Root Entry",
1653 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1654 "SM: Error attempting to access Context Entry",
1655 "SM: Present bit in Context Entry is clear",
1656 "SM: Non-zero reserved field set in the Context Entry",
1657 "SM: Invalid Context Entry",
1658 "SM: DTE field in Context Entry is clear",
1659 "SM: PASID Enable field in Context Entry is clear",
1660 "SM: PASID is larger than the max in Context Entry",
1661 "SM: PRE field in Context-Entry is clear",
1662 "SM: RID_PASID field error in Context-Entry",
1663 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1664 "SM: Error attempting to access the PASID Directory Entry",
1665 "SM: Present bit in Directory Entry is clear",
1666 "SM: Non-zero reserved field set in PASID Directory Entry",
1667 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1668 "SM: Error attempting to access PASID Table Entry",
1669 "SM: Present bit in PASID Table Entry is clear",
1670 "SM: Non-zero reserved field set in PASID Table Entry",
1671 "SM: Invalid Scalable-Mode PASID Table Entry",
1672 "SM: ERE field is clear in PASID Table Entry",
1673 "SM: SRE field is clear in PASID Table Entry",
1674 "Unknown", "Unknown",/* 0x5E-0x5F */
1675 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1676 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1677 "SM: Error attempting to access first-level paging entry",
1678 "SM: Present bit in first-level paging entry is clear",
1679 "SM: Non-zero reserved field set in first-level paging entry",
1680 "SM: Error attempting to access FL-PML4 entry",
1681 "SM: First-level entry address beyond MGAW in Nested translation",
1682 "SM: Read permission error in FL-PML4 entry in Nested translation",
1683 "SM: Read permission error in first-level paging entry in Nested translation",
1684 "SM: Write permission error in first-level paging entry in Nested translation",
1685 "SM: Error attempting to access second-level paging entry",
1686 "SM: Read/Write permission error in second-level paging entry",
1687 "SM: Non-zero reserved field set in second-level paging entry",
1688 "SM: Invalid second-level page table pointer",
1689 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1690 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1691 "SM: Address in first-level translation is not canonical",
1692 "SM: U/S set 0 for first-level translation with user privilege",
1693 "SM: No execute permission for request with PASID and ER=1",
1694 "SM: Address beyond the DMA hardware max",
1695 "SM: Second-level entry address beyond the max",
1696 "SM: No write permission for Write/AtomicOp request",
1697 "SM: No read permission for Read/AtomicOp request",
1698 "SM: Invalid address-interrupt address",
1699 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1700 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1701};
1702
1703static const char *irq_remap_fault_reasons[] =
1704{
1705 "Detected reserved fields in the decoded interrupt-remapped request",
1706 "Interrupt index exceeded the interrupt-remapping table size",
1707 "Present field in the IRTE entry is clear",
1708 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1709 "Detected reserved fields in the IRTE entry",
1710 "Blocked a compatibility format interrupt request",
1711 "Blocked an interrupt request due to source-id verification failure",
1712};
1713
1714static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1715{
1716 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1717 ARRAY_SIZE(irq_remap_fault_reasons))) {
1718 *fault_type = INTR_REMAP;
1719 return irq_remap_fault_reasons[fault_reason - 0x20];
1720 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1721 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1722 *fault_type = DMA_REMAP;
1723 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1724 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1725 *fault_type = DMA_REMAP;
1726 return dma_remap_fault_reasons[fault_reason];
1727 } else {
1728 *fault_type = UNKNOWN;
1729 return "Unknown";
1730 }
1731}
1732
1733
1734static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1735{
1736 if (iommu->irq == irq)
1737 return DMAR_FECTL_REG;
1738 else if (iommu->pr_irq == irq)
1739 return DMAR_PECTL_REG;
1740 else
1741 BUG();
1742}
1743
1744void dmar_msi_unmask(struct irq_data *data)
1745{
1746 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1747 int reg = dmar_msi_reg(iommu, data->irq);
1748 unsigned long flag;
1749
1750 /* unmask it */
1751 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1752 writel(0, iommu->reg + reg);
1753 /* Read a reg to force flush the post write */
1754 readl(iommu->reg + reg);
1755 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1756}
1757
1758void dmar_msi_mask(struct irq_data *data)
1759{
1760 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1761 int reg = dmar_msi_reg(iommu, data->irq);
1762 unsigned long flag;
1763
1764 /* mask it */
1765 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1766 writel(DMA_FECTL_IM, iommu->reg + reg);
1767 /* Read a reg to force flush the post write */
1768 readl(iommu->reg + reg);
1769 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1770}
1771
1772void dmar_msi_write(int irq, struct msi_msg *msg)
1773{
1774 struct intel_iommu *iommu = irq_get_handler_data(irq);
1775 int reg = dmar_msi_reg(iommu, irq);
1776 unsigned long flag;
1777
1778 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1779 writel(msg->data, iommu->reg + reg + 4);
1780 writel(msg->address_lo, iommu->reg + reg + 8);
1781 writel(msg->address_hi, iommu->reg + reg + 12);
1782 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1783}
1784
1785void dmar_msi_read(int irq, struct msi_msg *msg)
1786{
1787 struct intel_iommu *iommu = irq_get_handler_data(irq);
1788 int reg = dmar_msi_reg(iommu, irq);
1789 unsigned long flag;
1790
1791 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1792 msg->data = readl(iommu->reg + reg + 4);
1793 msg->address_lo = readl(iommu->reg + reg + 8);
1794 msg->address_hi = readl(iommu->reg + reg + 12);
1795 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1796}
1797
1798static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1799 u8 fault_reason, int pasid, u16 source_id,
1800 unsigned long long addr)
1801{
1802 const char *reason;
1803 int fault_type;
1804
1805 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1806
1807 if (fault_type == INTR_REMAP)
1808 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1809 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1810 PCI_FUNC(source_id & 0xFF), addr >> 48,
1811 fault_reason, reason);
1812 else
1813 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1814 type ? "DMA Read" : "DMA Write",
1815 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1816 PCI_FUNC(source_id & 0xFF), pasid, addr,
1817 fault_reason, reason);
1818 return 0;
1819}
1820
1821#define PRIMARY_FAULT_REG_LEN (16)
1822irqreturn_t dmar_fault(int irq, void *dev_id)
1823{
1824 struct intel_iommu *iommu = dev_id;
1825 int reg, fault_index;
1826 u32 fault_status;
1827 unsigned long flag;
1828 static DEFINE_RATELIMIT_STATE(rs,
1829 DEFAULT_RATELIMIT_INTERVAL,
1830 DEFAULT_RATELIMIT_BURST);
1831
1832 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1833 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1834 if (fault_status && __ratelimit(&rs))
1835 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1836
1837 /* TBD: ignore advanced fault log currently */
1838 if (!(fault_status & DMA_FSTS_PPF))
1839 goto unlock_exit;
1840
1841 fault_index = dma_fsts_fault_record_index(fault_status);
1842 reg = cap_fault_reg_offset(iommu->cap);
1843 while (1) {
1844 /* Disable printing, simply clear the fault when ratelimited */
1845 bool ratelimited = !__ratelimit(&rs);
1846 u8 fault_reason;
1847 u16 source_id;
1848 u64 guest_addr;
1849 int type, pasid;
1850 u32 data;
1851 bool pasid_present;
1852
1853 /* highest 32 bits */
1854 data = readl(iommu->reg + reg +
1855 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1856 if (!(data & DMA_FRCD_F))
1857 break;
1858
1859 if (!ratelimited) {
1860 fault_reason = dma_frcd_fault_reason(data);
1861 type = dma_frcd_type(data);
1862
1863 pasid = dma_frcd_pasid_value(data);
1864 data = readl(iommu->reg + reg +
1865 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1866 source_id = dma_frcd_source_id(data);
1867
1868 pasid_present = dma_frcd_pasid_present(data);
1869 guest_addr = dmar_readq(iommu->reg + reg +
1870 fault_index * PRIMARY_FAULT_REG_LEN);
1871 guest_addr = dma_frcd_page_addr(guest_addr);
1872 }
1873
1874 /* clear the fault */
1875 writel(DMA_FRCD_F, iommu->reg + reg +
1876 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1877
1878 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1879
1880 if (!ratelimited)
1881 /* Using pasid -1 if pasid is not present */
1882 dmar_fault_do_one(iommu, type, fault_reason,
1883 pasid_present ? pasid : -1,
1884 source_id, guest_addr);
1885
1886 fault_index++;
1887 if (fault_index >= cap_num_fault_regs(iommu->cap))
1888 fault_index = 0;
1889 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1890 }
1891
1892 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1893 iommu->reg + DMAR_FSTS_REG);
1894
1895unlock_exit:
1896 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 return IRQ_HANDLED;
1898}
1899
1900int dmar_set_interrupt(struct intel_iommu *iommu)
1901{
1902 int irq, ret;
1903
1904 /*
1905 * Check if the fault interrupt is already initialized.
1906 */
1907 if (iommu->irq)
1908 return 0;
1909
1910 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1911 if (irq > 0) {
1912 iommu->irq = irq;
1913 } else {
1914 pr_err("No free IRQ vectors\n");
1915 return -EINVAL;
1916 }
1917
1918 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1919 if (ret)
1920 pr_err("Can't request irq\n");
1921 return ret;
1922}
1923
1924int __init enable_drhd_fault_handling(void)
1925{
1926 struct dmar_drhd_unit *drhd;
1927 struct intel_iommu *iommu;
1928
1929 /*
1930 * Enable fault control interrupt.
1931 */
1932 for_each_iommu(iommu, drhd) {
1933 u32 fault_status;
1934 int ret = dmar_set_interrupt(iommu);
1935
1936 if (ret) {
1937 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1938 (unsigned long long)drhd->reg_base_addr, ret);
1939 return -1;
1940 }
1941
1942 /*
1943 * Clear any previous faults.
1944 */
1945 dmar_fault(iommu->irq, iommu);
1946 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1947 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1948 }
1949
1950 return 0;
1951}
1952
1953/*
1954 * Re-enable Queued Invalidation interface.
1955 */
1956int dmar_reenable_qi(struct intel_iommu *iommu)
1957{
1958 if (!ecap_qis(iommu->ecap))
1959 return -ENOENT;
1960
1961 if (!iommu->qi)
1962 return -ENOENT;
1963
1964 /*
1965 * First disable queued invalidation.
1966 */
1967 dmar_disable_qi(iommu);
1968 /*
1969 * Then enable queued invalidation again. Since there is no pending
1970 * invalidation requests now, it's safe to re-enable queued
1971 * invalidation.
1972 */
1973 __dmar_enable_qi(iommu);
1974
1975 return 0;
1976}
1977
1978/*
1979 * Check interrupt remapping support in DMAR table description.
1980 */
1981int __init dmar_ir_support(void)
1982{
1983 struct acpi_table_dmar *dmar;
1984 dmar = (struct acpi_table_dmar *)dmar_tbl;
1985 if (!dmar)
1986 return 0;
1987 return dmar->flags & 0x1;
1988}
1989
1990/* Check whether DMAR units are in use */
1991static inline bool dmar_in_use(void)
1992{
1993 return irq_remapping_enabled || intel_iommu_enabled;
1994}
1995
1996static int __init dmar_free_unused_resources(void)
1997{
1998 struct dmar_drhd_unit *dmaru, *dmaru_n;
1999
2000 if (dmar_in_use())
2001 return 0;
2002
2003 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2004 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2005
2006 down_write(&dmar_global_lock);
2007 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2008 list_del(&dmaru->list);
2009 dmar_free_drhd(dmaru);
2010 }
2011 up_write(&dmar_global_lock);
2012
2013 return 0;
2014}
2015
2016late_initcall(dmar_free_unused_resources);
2017IOMMU_INIT_POST(detect_intel_iommu);
2018
2019/*
2020 * DMAR Hotplug Support
2021 * For more details, please refer to Intel(R) Virtualization Technology
2022 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2023 * "Remapping Hardware Unit Hot Plug".
2024 */
2025static guid_t dmar_hp_guid =
2026 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2027 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2028
2029/*
2030 * Currently there's only one revision and BIOS will not check the revision id,
2031 * so use 0 for safety.
2032 */
2033#define DMAR_DSM_REV_ID 0
2034#define DMAR_DSM_FUNC_DRHD 1
2035#define DMAR_DSM_FUNC_ATSR 2
2036#define DMAR_DSM_FUNC_RHSA 3
2037
2038static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2039{
2040 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2041}
2042
2043static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2044 dmar_res_handler_t handler, void *arg)
2045{
2046 int ret = -ENODEV;
2047 union acpi_object *obj;
2048 struct acpi_dmar_header *start;
2049 struct dmar_res_callback callback;
2050 static int res_type[] = {
2051 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2052 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2053 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2054 };
2055
2056 if (!dmar_detect_dsm(handle, func))
2057 return 0;
2058
2059 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2060 func, NULL, ACPI_TYPE_BUFFER);
2061 if (!obj)
2062 return -ENODEV;
2063
2064 memset(&callback, 0, sizeof(callback));
2065 callback.cb[res_type[func]] = handler;
2066 callback.arg[res_type[func]] = arg;
2067 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2068 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2069
2070 ACPI_FREE(obj);
2071
2072 return ret;
2073}
2074
2075static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2076{
2077 int ret;
2078 struct dmar_drhd_unit *dmaru;
2079
2080 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2081 if (!dmaru)
2082 return -ENODEV;
2083
2084 ret = dmar_ir_hotplug(dmaru, true);
2085 if (ret == 0)
2086 ret = dmar_iommu_hotplug(dmaru, true);
2087
2088 return ret;
2089}
2090
2091static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2092{
2093 int i, ret;
2094 struct device *dev;
2095 struct dmar_drhd_unit *dmaru;
2096
2097 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2098 if (!dmaru)
2099 return 0;
2100
2101 /*
2102 * All PCI devices managed by this unit should have been destroyed.
2103 */
2104 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2105 for_each_active_dev_scope(dmaru->devices,
2106 dmaru->devices_cnt, i, dev)
2107 return -EBUSY;
2108 }
2109
2110 ret = dmar_ir_hotplug(dmaru, false);
2111 if (ret == 0)
2112 ret = dmar_iommu_hotplug(dmaru, false);
2113
2114 return ret;
2115}
2116
2117static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2118{
2119 struct dmar_drhd_unit *dmaru;
2120
2121 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2122 if (dmaru) {
2123 list_del_rcu(&dmaru->list);
2124 synchronize_rcu();
2125 dmar_free_drhd(dmaru);
2126 }
2127
2128 return 0;
2129}
2130
2131static int dmar_hotplug_insert(acpi_handle handle)
2132{
2133 int ret;
2134 int drhd_count = 0;
2135
2136 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2137 &dmar_validate_one_drhd, (void *)1);
2138 if (ret)
2139 goto out;
2140
2141 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2142 &dmar_parse_one_drhd, (void *)&drhd_count);
2143 if (ret == 0 && drhd_count == 0) {
2144 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2145 goto out;
2146 } else if (ret) {
2147 goto release_drhd;
2148 }
2149
2150 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2151 &dmar_parse_one_rhsa, NULL);
2152 if (ret)
2153 goto release_drhd;
2154
2155 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2156 &dmar_parse_one_atsr, NULL);
2157 if (ret)
2158 goto release_atsr;
2159
2160 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2161 &dmar_hp_add_drhd, NULL);
2162 if (!ret)
2163 return 0;
2164
2165 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2166 &dmar_hp_remove_drhd, NULL);
2167release_atsr:
2168 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2169 &dmar_release_one_atsr, NULL);
2170release_drhd:
2171 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2172 &dmar_hp_release_drhd, NULL);
2173out:
2174 return ret;
2175}
2176
2177static int dmar_hotplug_remove(acpi_handle handle)
2178{
2179 int ret;
2180
2181 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2182 &dmar_check_one_atsr, NULL);
2183 if (ret)
2184 return ret;
2185
2186 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2187 &dmar_hp_remove_drhd, NULL);
2188 if (ret == 0) {
2189 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2190 &dmar_release_one_atsr, NULL));
2191 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2192 &dmar_hp_release_drhd, NULL));
2193 } else {
2194 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2195 &dmar_hp_add_drhd, NULL);
2196 }
2197
2198 return ret;
2199}
2200
2201static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2202 void *context, void **retval)
2203{
2204 acpi_handle *phdl = retval;
2205
2206 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2207 *phdl = handle;
2208 return AE_CTRL_TERMINATE;
2209 }
2210
2211 return AE_OK;
2212}
2213
2214static int dmar_device_hotplug(acpi_handle handle, bool insert)
2215{
2216 int ret;
2217 acpi_handle tmp = NULL;
2218 acpi_status status;
2219
2220 if (!dmar_in_use())
2221 return 0;
2222
2223 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2224 tmp = handle;
2225 } else {
2226 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2227 ACPI_UINT32_MAX,
2228 dmar_get_dsm_handle,
2229 NULL, NULL, &tmp);
2230 if (ACPI_FAILURE(status)) {
2231 pr_warn("Failed to locate _DSM method.\n");
2232 return -ENXIO;
2233 }
2234 }
2235 if (tmp == NULL)
2236 return 0;
2237
2238 down_write(&dmar_global_lock);
2239 if (insert)
2240 ret = dmar_hotplug_insert(tmp);
2241 else
2242 ret = dmar_hotplug_remove(tmp);
2243 up_write(&dmar_global_lock);
2244
2245 return ret;
2246}
2247
2248int dmar_device_add(acpi_handle handle)
2249{
2250 return dmar_device_hotplug(handle, true);
2251}
2252
2253int dmar_device_remove(acpi_handle handle)
2254{
2255 return dmar_device_hotplug(handle, false);
2256}
2257
2258/*
2259 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2260 *
2261 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2262 * the ACPI DMAR table. This means that the platform boot firmware has made
2263 * sure no device can issue DMA outside of RMRR regions.
2264 */
2265bool dmar_platform_optin(void)
2266{
2267 struct acpi_table_dmar *dmar;
2268 acpi_status status;
2269 bool ret;
2270
2271 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2272 (struct acpi_table_header **)&dmar);
2273 if (ACPI_FAILURE(status))
2274 return false;
2275
2276 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2277 acpi_put_table((struct acpi_table_header *)dmar);
2278
2279 return ret;
2280}
2281EXPORT_SYMBOL_GPL(dmar_platform_optin);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/intel-iommu.h>
23#include <linux/timer.h>
24#include <linux/irq.h>
25#include <linux/interrupt.h>
26#include <linux/tboot.h>
27#include <linux/dmi.h>
28#include <linux/slab.h>
29#include <linux/iommu.h>
30#include <linux/numa.h>
31#include <linux/limits.h>
32#include <asm/irq_remapping.h>
33#include <asm/iommu_table.h>
34#include <trace/events/intel_iommu.h>
35
36#include "../irq_remapping.h"
37#include "perf.h"
38
39typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40struct dmar_res_callback {
41 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
42 void *arg[ACPI_DMAR_TYPE_RESERVED];
43 bool ignore_unhandled;
44 bool print_entry;
45};
46
47/*
48 * Assumptions:
49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50 * before IO devices managed by that unit.
51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52 * after IO devices managed by that unit.
53 * 3) Hotplug events are rare.
54 *
55 * Locking rules for DMA and interrupt remapping related global data structures:
56 * 1) Use dmar_global_lock in process context
57 * 2) Use RCU in interrupt context
58 */
59DECLARE_RWSEM(dmar_global_lock);
60LIST_HEAD(dmar_drhd_units);
61
62struct acpi_table_header * __initdata dmar_tbl;
63static int dmar_dev_scope_status = 1;
64static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
65
66static int alloc_iommu(struct dmar_drhd_unit *drhd);
67static void free_iommu(struct intel_iommu *iommu);
68
69extern const struct iommu_ops intel_iommu_ops;
70
71static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
72{
73 /*
74 * add INCLUDE_ALL at the tail, so scan the list will find it at
75 * the very end.
76 */
77 if (drhd->include_all)
78 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
79 else
80 list_add_rcu(&drhd->list, &dmar_drhd_units);
81}
82
83void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
84{
85 struct acpi_dmar_device_scope *scope;
86
87 *cnt = 0;
88 while (start < end) {
89 scope = start;
90 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
92 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
93 (*cnt)++;
94 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
95 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
96 pr_warn("Unsupported device scope\n");
97 }
98 start += scope->length;
99 }
100 if (*cnt == 0)
101 return NULL;
102
103 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
104}
105
106void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
107{
108 int i;
109 struct device *tmp_dev;
110
111 if (*devices && *cnt) {
112 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
113 put_device(tmp_dev);
114 kfree(*devices);
115 }
116
117 *devices = NULL;
118 *cnt = 0;
119}
120
121/* Optimize out kzalloc()/kfree() for normal cases */
122static char dmar_pci_notify_info_buf[64];
123
124static struct dmar_pci_notify_info *
125dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
126{
127 int level = 0;
128 size_t size;
129 struct pci_dev *tmp;
130 struct dmar_pci_notify_info *info;
131
132 BUG_ON(dev->is_virtfn);
133
134 /*
135 * Ignore devices that have a domain number higher than what can
136 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
137 */
138 if (pci_domain_nr(dev->bus) > U16_MAX)
139 return NULL;
140
141 /* Only generate path[] for device addition event */
142 if (event == BUS_NOTIFY_ADD_DEVICE)
143 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 level++;
145
146 size = struct_size(info, path, level);
147 if (size <= sizeof(dmar_pci_notify_info_buf)) {
148 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149 } else {
150 info = kzalloc(size, GFP_KERNEL);
151 if (!info) {
152 pr_warn("Out of memory when allocating notify_info "
153 "for %s.\n", pci_name(dev));
154 if (dmar_dev_scope_status == 0)
155 dmar_dev_scope_status = -ENOMEM;
156 return NULL;
157 }
158 }
159
160 info->event = event;
161 info->dev = dev;
162 info->seg = pci_domain_nr(dev->bus);
163 info->level = level;
164 if (event == BUS_NOTIFY_ADD_DEVICE) {
165 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166 level--;
167 info->path[level].bus = tmp->bus->number;
168 info->path[level].device = PCI_SLOT(tmp->devfn);
169 info->path[level].function = PCI_FUNC(tmp->devfn);
170 if (pci_is_root_bus(tmp->bus))
171 info->bus = tmp->bus->number;
172 }
173 }
174
175 return info;
176}
177
178static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179{
180 if ((void *)info != dmar_pci_notify_info_buf)
181 kfree(info);
182}
183
184static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185 struct acpi_dmar_pci_path *path, int count)
186{
187 int i;
188
189 if (info->bus != bus)
190 goto fallback;
191 if (info->level != count)
192 goto fallback;
193
194 for (i = 0; i < count; i++) {
195 if (path[i].device != info->path[i].device ||
196 path[i].function != info->path[i].function)
197 goto fallback;
198 }
199
200 return true;
201
202fallback:
203
204 if (count != 1)
205 return false;
206
207 i = info->level - 1;
208 if (bus == info->path[i].bus &&
209 path[0].device == info->path[i].device &&
210 path[0].function == info->path[i].function) {
211 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212 bus, path[0].device, path[0].function);
213 return true;
214 }
215
216 return false;
217}
218
219/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221 void *start, void*end, u16 segment,
222 struct dmar_dev_scope *devices,
223 int devices_cnt)
224{
225 int i, level;
226 struct device *tmp, *dev = &info->dev->dev;
227 struct acpi_dmar_device_scope *scope;
228 struct acpi_dmar_pci_path *path;
229
230 if (segment != info->seg)
231 return 0;
232
233 for (; start < end; start += scope->length) {
234 scope = start;
235 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 continue;
238
239 path = (struct acpi_dmar_pci_path *)(scope + 1);
240 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241 if (!dmar_match_pci_path(info, scope->bus, path, level))
242 continue;
243
244 /*
245 * We expect devices with endpoint scope to have normal PCI
246 * headers, and devices with bridge scope to have bridge PCI
247 * headers. However PCI NTB devices may be listed in the
248 * DMAR table with bridge scope, even though they have a
249 * normal PCI header. NTB devices are identified by class
250 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
251 * for this special case.
252 */
253 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
254 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
255 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
256 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
257 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
258 pr_warn("Device scope type does not match for %s\n",
259 pci_name(info->dev));
260 return -EINVAL;
261 }
262
263 for_each_dev_scope(devices, devices_cnt, i, tmp)
264 if (tmp == NULL) {
265 devices[i].bus = info->dev->bus->number;
266 devices[i].devfn = info->dev->devfn;
267 rcu_assign_pointer(devices[i].dev,
268 get_device(dev));
269 return 1;
270 }
271 BUG_ON(i >= devices_cnt);
272 }
273
274 return 0;
275}
276
277int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
278 struct dmar_dev_scope *devices, int count)
279{
280 int index;
281 struct device *tmp;
282
283 if (info->seg != segment)
284 return 0;
285
286 for_each_active_dev_scope(devices, count, index, tmp)
287 if (tmp == &info->dev->dev) {
288 RCU_INIT_POINTER(devices[index].dev, NULL);
289 synchronize_rcu();
290 put_device(tmp);
291 return 1;
292 }
293
294 return 0;
295}
296
297static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
298{
299 int ret = 0;
300 struct dmar_drhd_unit *dmaru;
301 struct acpi_dmar_hardware_unit *drhd;
302
303 for_each_drhd_unit(dmaru) {
304 if (dmaru->include_all)
305 continue;
306
307 drhd = container_of(dmaru->hdr,
308 struct acpi_dmar_hardware_unit, header);
309 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
310 ((void *)drhd) + drhd->header.length,
311 dmaru->segment,
312 dmaru->devices, dmaru->devices_cnt);
313 if (ret)
314 break;
315 }
316 if (ret >= 0)
317 ret = dmar_iommu_notify_scope_dev(info);
318 if (ret < 0 && dmar_dev_scope_status == 0)
319 dmar_dev_scope_status = ret;
320
321 if (ret >= 0)
322 intel_irq_remap_add_device(info);
323
324 return ret;
325}
326
327static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
328{
329 struct dmar_drhd_unit *dmaru;
330
331 for_each_drhd_unit(dmaru)
332 if (dmar_remove_dev_scope(info, dmaru->segment,
333 dmaru->devices, dmaru->devices_cnt))
334 break;
335 dmar_iommu_notify_scope_dev(info);
336}
337
338static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
339{
340 struct pci_dev *physfn = pci_physfn(pdev);
341
342 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
343}
344
345static int dmar_pci_bus_notifier(struct notifier_block *nb,
346 unsigned long action, void *data)
347{
348 struct pci_dev *pdev = to_pci_dev(data);
349 struct dmar_pci_notify_info *info;
350
351 /* Only care about add/remove events for physical functions.
352 * For VFs we actually do the lookup based on the corresponding
353 * PF in device_to_iommu() anyway. */
354 if (pdev->is_virtfn) {
355 /*
356 * Ensure that the VF device inherits the irq domain of the
357 * PF device. Ideally the device would inherit the domain
358 * from the bus, but DMAR can have multiple units per bus
359 * which makes this impossible. The VF 'bus' could inherit
360 * from the PF device, but that's yet another x86'sism to
361 * inflict on everybody else.
362 */
363 if (action == BUS_NOTIFY_ADD_DEVICE)
364 vf_inherit_msi_domain(pdev);
365 return NOTIFY_DONE;
366 }
367
368 if (action != BUS_NOTIFY_ADD_DEVICE &&
369 action != BUS_NOTIFY_REMOVED_DEVICE)
370 return NOTIFY_DONE;
371
372 info = dmar_alloc_pci_notify_info(pdev, action);
373 if (!info)
374 return NOTIFY_DONE;
375
376 down_write(&dmar_global_lock);
377 if (action == BUS_NOTIFY_ADD_DEVICE)
378 dmar_pci_bus_add_dev(info);
379 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
380 dmar_pci_bus_del_dev(info);
381 up_write(&dmar_global_lock);
382
383 dmar_free_pci_notify_info(info);
384
385 return NOTIFY_OK;
386}
387
388static struct notifier_block dmar_pci_bus_nb = {
389 .notifier_call = dmar_pci_bus_notifier,
390 .priority = INT_MIN,
391};
392
393static struct dmar_drhd_unit *
394dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
395{
396 struct dmar_drhd_unit *dmaru;
397
398 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
399 dmar_rcu_check())
400 if (dmaru->segment == drhd->segment &&
401 dmaru->reg_base_addr == drhd->address)
402 return dmaru;
403
404 return NULL;
405}
406
407/*
408 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
409 * structure which uniquely represent one DMA remapping hardware unit
410 * present in the platform
411 */
412static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
413{
414 struct acpi_dmar_hardware_unit *drhd;
415 struct dmar_drhd_unit *dmaru;
416 int ret;
417
418 drhd = (struct acpi_dmar_hardware_unit *)header;
419 dmaru = dmar_find_dmaru(drhd);
420 if (dmaru)
421 goto out;
422
423 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
424 if (!dmaru)
425 return -ENOMEM;
426
427 /*
428 * If header is allocated from slab by ACPI _DSM method, we need to
429 * copy the content because the memory buffer will be freed on return.
430 */
431 dmaru->hdr = (void *)(dmaru + 1);
432 memcpy(dmaru->hdr, header, header->length);
433 dmaru->reg_base_addr = drhd->address;
434 dmaru->segment = drhd->segment;
435 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
436 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
437 ((void *)drhd) + drhd->header.length,
438 &dmaru->devices_cnt);
439 if (dmaru->devices_cnt && dmaru->devices == NULL) {
440 kfree(dmaru);
441 return -ENOMEM;
442 }
443
444 ret = alloc_iommu(dmaru);
445 if (ret) {
446 dmar_free_dev_scope(&dmaru->devices,
447 &dmaru->devices_cnt);
448 kfree(dmaru);
449 return ret;
450 }
451 dmar_register_drhd_unit(dmaru);
452
453out:
454 if (arg)
455 (*(int *)arg)++;
456
457 return 0;
458}
459
460static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
461{
462 if (dmaru->devices && dmaru->devices_cnt)
463 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
464 if (dmaru->iommu)
465 free_iommu(dmaru->iommu);
466 kfree(dmaru);
467}
468
469static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
470 void *arg)
471{
472 struct acpi_dmar_andd *andd = (void *)header;
473
474 /* Check for NUL termination within the designated length */
475 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
476 pr_warn(FW_BUG
477 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
478 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
479 dmi_get_system_info(DMI_BIOS_VENDOR),
480 dmi_get_system_info(DMI_BIOS_VERSION),
481 dmi_get_system_info(DMI_PRODUCT_VERSION));
482 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
483 return -EINVAL;
484 }
485 pr_info("ANDD device: %x name: %s\n", andd->device_number,
486 andd->device_name);
487
488 return 0;
489}
490
491#ifdef CONFIG_ACPI_NUMA
492static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
493{
494 struct acpi_dmar_rhsa *rhsa;
495 struct dmar_drhd_unit *drhd;
496
497 rhsa = (struct acpi_dmar_rhsa *)header;
498 for_each_drhd_unit(drhd) {
499 if (drhd->reg_base_addr == rhsa->base_address) {
500 int node = pxm_to_node(rhsa->proximity_domain);
501
502 if (!node_online(node))
503 node = NUMA_NO_NODE;
504 drhd->iommu->node = node;
505 return 0;
506 }
507 }
508 pr_warn(FW_BUG
509 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
510 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
511 rhsa->base_address,
512 dmi_get_system_info(DMI_BIOS_VENDOR),
513 dmi_get_system_info(DMI_BIOS_VERSION),
514 dmi_get_system_info(DMI_PRODUCT_VERSION));
515 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
516
517 return 0;
518}
519#else
520#define dmar_parse_one_rhsa dmar_res_noop
521#endif
522
523static void
524dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
525{
526 struct acpi_dmar_hardware_unit *drhd;
527 struct acpi_dmar_reserved_memory *rmrr;
528 struct acpi_dmar_atsr *atsr;
529 struct acpi_dmar_rhsa *rhsa;
530 struct acpi_dmar_satc *satc;
531
532 switch (header->type) {
533 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
534 drhd = container_of(header, struct acpi_dmar_hardware_unit,
535 header);
536 pr_info("DRHD base: %#016Lx flags: %#x\n",
537 (unsigned long long)drhd->address, drhd->flags);
538 break;
539 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
540 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
541 header);
542 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
543 (unsigned long long)rmrr->base_address,
544 (unsigned long long)rmrr->end_address);
545 break;
546 case ACPI_DMAR_TYPE_ROOT_ATS:
547 atsr = container_of(header, struct acpi_dmar_atsr, header);
548 pr_info("ATSR flags: %#x\n", atsr->flags);
549 break;
550 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
551 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
552 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
553 (unsigned long long)rhsa->base_address,
554 rhsa->proximity_domain);
555 break;
556 case ACPI_DMAR_TYPE_NAMESPACE:
557 /* We don't print this here because we need to sanity-check
558 it first. So print it in dmar_parse_one_andd() instead. */
559 break;
560 case ACPI_DMAR_TYPE_SATC:
561 satc = container_of(header, struct acpi_dmar_satc, header);
562 pr_info("SATC flags: 0x%x\n", satc->flags);
563 break;
564 }
565}
566
567/**
568 * dmar_table_detect - checks to see if the platform supports DMAR devices
569 */
570static int __init dmar_table_detect(void)
571{
572 acpi_status status = AE_OK;
573
574 /* if we could find DMAR table, then there are DMAR devices */
575 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
576
577 if (ACPI_SUCCESS(status) && !dmar_tbl) {
578 pr_warn("Unable to map DMAR\n");
579 status = AE_NOT_FOUND;
580 }
581
582 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
583}
584
585static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
586 size_t len, struct dmar_res_callback *cb)
587{
588 struct acpi_dmar_header *iter, *next;
589 struct acpi_dmar_header *end = ((void *)start) + len;
590
591 for (iter = start; iter < end; iter = next) {
592 next = (void *)iter + iter->length;
593 if (iter->length == 0) {
594 /* Avoid looping forever on bad ACPI tables */
595 pr_debug(FW_BUG "Invalid 0-length structure\n");
596 break;
597 } else if (next > end) {
598 /* Avoid passing table end */
599 pr_warn(FW_BUG "Record passes table end\n");
600 return -EINVAL;
601 }
602
603 if (cb->print_entry)
604 dmar_table_print_dmar_entry(iter);
605
606 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
607 /* continue for forward compatibility */
608 pr_debug("Unknown DMAR structure type %d\n",
609 iter->type);
610 } else if (cb->cb[iter->type]) {
611 int ret;
612
613 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
614 if (ret)
615 return ret;
616 } else if (!cb->ignore_unhandled) {
617 pr_warn("No handler for DMAR structure type %d\n",
618 iter->type);
619 return -EINVAL;
620 }
621 }
622
623 return 0;
624}
625
626static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
627 struct dmar_res_callback *cb)
628{
629 return dmar_walk_remapping_entries((void *)(dmar + 1),
630 dmar->header.length - sizeof(*dmar), cb);
631}
632
633/**
634 * parse_dmar_table - parses the DMA reporting table
635 */
636static int __init
637parse_dmar_table(void)
638{
639 struct acpi_table_dmar *dmar;
640 int drhd_count = 0;
641 int ret;
642 struct dmar_res_callback cb = {
643 .print_entry = true,
644 .ignore_unhandled = true,
645 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
646 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
647 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
648 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
649 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
650 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
651 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
652 };
653
654 /*
655 * Do it again, earlier dmar_tbl mapping could be mapped with
656 * fixed map.
657 */
658 dmar_table_detect();
659
660 /*
661 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
662 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
663 */
664 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
665
666 dmar = (struct acpi_table_dmar *)dmar_tbl;
667 if (!dmar)
668 return -ENODEV;
669
670 if (dmar->width < PAGE_SHIFT - 1) {
671 pr_warn("Invalid DMAR haw\n");
672 return -EINVAL;
673 }
674
675 pr_info("Host address width %d\n", dmar->width + 1);
676 ret = dmar_walk_dmar_table(dmar, &cb);
677 if (ret == 0 && drhd_count == 0)
678 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
679
680 return ret;
681}
682
683static int dmar_pci_device_match(struct dmar_dev_scope devices[],
684 int cnt, struct pci_dev *dev)
685{
686 int index;
687 struct device *tmp;
688
689 while (dev) {
690 for_each_active_dev_scope(devices, cnt, index, tmp)
691 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
692 return 1;
693
694 /* Check our parent */
695 dev = dev->bus->self;
696 }
697
698 return 0;
699}
700
701struct dmar_drhd_unit *
702dmar_find_matched_drhd_unit(struct pci_dev *dev)
703{
704 struct dmar_drhd_unit *dmaru;
705 struct acpi_dmar_hardware_unit *drhd;
706
707 dev = pci_physfn(dev);
708
709 rcu_read_lock();
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 if (dmaru->include_all &&
716 drhd->segment == pci_domain_nr(dev->bus))
717 goto out;
718
719 if (dmar_pci_device_match(dmaru->devices,
720 dmaru->devices_cnt, dev))
721 goto out;
722 }
723 dmaru = NULL;
724out:
725 rcu_read_unlock();
726
727 return dmaru;
728}
729
730static void __init dmar_acpi_insert_dev_scope(u8 device_number,
731 struct acpi_device *adev)
732{
733 struct dmar_drhd_unit *dmaru;
734 struct acpi_dmar_hardware_unit *drhd;
735 struct acpi_dmar_device_scope *scope;
736 struct device *tmp;
737 int i;
738 struct acpi_dmar_pci_path *path;
739
740 for_each_drhd_unit(dmaru) {
741 drhd = container_of(dmaru->hdr,
742 struct acpi_dmar_hardware_unit,
743 header);
744
745 for (scope = (void *)(drhd + 1);
746 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
747 scope = ((void *)scope) + scope->length) {
748 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
749 continue;
750 if (scope->enumeration_id != device_number)
751 continue;
752
753 path = (void *)(scope + 1);
754 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
755 dev_name(&adev->dev), dmaru->reg_base_addr,
756 scope->bus, path->device, path->function);
757 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
758 if (tmp == NULL) {
759 dmaru->devices[i].bus = scope->bus;
760 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
761 path->function);
762 rcu_assign_pointer(dmaru->devices[i].dev,
763 get_device(&adev->dev));
764 return;
765 }
766 BUG_ON(i >= dmaru->devices_cnt);
767 }
768 }
769 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
770 device_number, dev_name(&adev->dev));
771}
772
773static int __init dmar_acpi_dev_scope_init(void)
774{
775 struct acpi_dmar_andd *andd;
776
777 if (dmar_tbl == NULL)
778 return -ENODEV;
779
780 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
781 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
782 andd = ((void *)andd) + andd->header.length) {
783 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
784 acpi_handle h;
785 struct acpi_device *adev;
786
787 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
788 andd->device_name,
789 &h))) {
790 pr_err("Failed to find handle for ACPI object %s\n",
791 andd->device_name);
792 continue;
793 }
794 if (acpi_bus_get_device(h, &adev)) {
795 pr_err("Failed to get device for ACPI object %s\n",
796 andd->device_name);
797 continue;
798 }
799 dmar_acpi_insert_dev_scope(andd->device_number, adev);
800 }
801 }
802 return 0;
803}
804
805int __init dmar_dev_scope_init(void)
806{
807 struct pci_dev *dev = NULL;
808 struct dmar_pci_notify_info *info;
809
810 if (dmar_dev_scope_status != 1)
811 return dmar_dev_scope_status;
812
813 if (list_empty(&dmar_drhd_units)) {
814 dmar_dev_scope_status = -ENODEV;
815 } else {
816 dmar_dev_scope_status = 0;
817
818 dmar_acpi_dev_scope_init();
819
820 for_each_pci_dev(dev) {
821 if (dev->is_virtfn)
822 continue;
823
824 info = dmar_alloc_pci_notify_info(dev,
825 BUS_NOTIFY_ADD_DEVICE);
826 if (!info) {
827 return dmar_dev_scope_status;
828 } else {
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
831 }
832 }
833 }
834
835 return dmar_dev_scope_status;
836}
837
838void __init dmar_register_bus_notifier(void)
839{
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841}
842
843
844int __init dmar_table_init(void)
845{
846 static int dmar_table_initialized;
847 int ret;
848
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
851 if (ret < 0) {
852 if (ret != -ENODEV)
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
856 ret = -ENODEV;
857 }
858
859 if (ret < 0)
860 dmar_table_initialized = ret;
861 else
862 dmar_table_initialized = 1;
863 }
864
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866}
867
868static void warn_invalid_dmar(u64 addr, const char *message)
869{
870 pr_warn_once(FW_BUG
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 addr, message,
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878}
879
880static int __ref
881dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882{
883 struct acpi_dmar_hardware_unit *drhd;
884 void __iomem *addr;
885 u64 cap, ecap;
886
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
890 return -EINVAL;
891 }
892
893 if (arg)
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 else
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 if (!addr) {
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 return -EINVAL;
900 }
901
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905 if (arg)
906 iounmap(addr);
907 else
908 early_iounmap(addr, VTD_PAGE_SIZE);
909
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
912 return -EINVAL;
913 }
914
915 return 0;
916}
917
918int __init detect_intel_iommu(void)
919{
920 int ret;
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
924 };
925
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
928 if (!ret)
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 &validate_drhd_cb);
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
933 iommu_detected = 1;
934 /* Make sure ACS will be enabled */
935 pci_request_acs();
936 }
937
938#ifdef CONFIG_X86
939 if (!ret) {
940 x86_init.iommu.iommu_init = intel_iommu_init;
941 x86_platform.iommu_shutdown = intel_iommu_shutdown;
942 }
943
944#endif
945
946 if (dmar_tbl) {
947 acpi_put_table(dmar_tbl);
948 dmar_tbl = NULL;
949 }
950 up_write(&dmar_global_lock);
951
952 return ret ? ret : 1;
953}
954
955static void unmap_iommu(struct intel_iommu *iommu)
956{
957 iounmap(iommu->reg);
958 release_mem_region(iommu->reg_phys, iommu->reg_size);
959}
960
961/**
962 * map_iommu: map the iommu's registers
963 * @iommu: the iommu to map
964 * @phys_addr: the physical address of the base resgister
965 *
966 * Memory map the iommu's registers. Start w/ a single page, and
967 * possibly expand if that turns out to be insufficent.
968 */
969static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
970{
971 int map_size, err=0;
972
973 iommu->reg_phys = phys_addr;
974 iommu->reg_size = VTD_PAGE_SIZE;
975
976 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
977 pr_err("Can't reserve memory\n");
978 err = -EBUSY;
979 goto out;
980 }
981
982 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
983 if (!iommu->reg) {
984 pr_err("Can't map the region\n");
985 err = -ENOMEM;
986 goto release;
987 }
988
989 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
990 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
991
992 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
993 err = -EINVAL;
994 warn_invalid_dmar(phys_addr, " returns all ones");
995 goto unmap;
996 }
997 if (ecap_vcs(iommu->ecap))
998 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
999
1000 /* the registers might be more than one page */
1001 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1002 cap_max_fault_reg_offset(iommu->cap));
1003 map_size = VTD_PAGE_ALIGN(map_size);
1004 if (map_size > iommu->reg_size) {
1005 iounmap(iommu->reg);
1006 release_mem_region(iommu->reg_phys, iommu->reg_size);
1007 iommu->reg_size = map_size;
1008 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1009 iommu->name)) {
1010 pr_err("Can't reserve memory\n");
1011 err = -EBUSY;
1012 goto out;
1013 }
1014 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1015 if (!iommu->reg) {
1016 pr_err("Can't map the region\n");
1017 err = -ENOMEM;
1018 goto release;
1019 }
1020 }
1021 err = 0;
1022 goto out;
1023
1024unmap:
1025 iounmap(iommu->reg);
1026release:
1027 release_mem_region(iommu->reg_phys, iommu->reg_size);
1028out:
1029 return err;
1030}
1031
1032static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1033{
1034 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1035 DMAR_UNITS_SUPPORTED);
1036 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1037 iommu->seq_id = -1;
1038 } else {
1039 set_bit(iommu->seq_id, dmar_seq_ids);
1040 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1041 }
1042
1043 return iommu->seq_id;
1044}
1045
1046static void dmar_free_seq_id(struct intel_iommu *iommu)
1047{
1048 if (iommu->seq_id >= 0) {
1049 clear_bit(iommu->seq_id, dmar_seq_ids);
1050 iommu->seq_id = -1;
1051 }
1052}
1053
1054static int alloc_iommu(struct dmar_drhd_unit *drhd)
1055{
1056 struct intel_iommu *iommu;
1057 u32 ver, sts;
1058 int agaw = -1;
1059 int msagaw = -1;
1060 int err;
1061
1062 if (!drhd->reg_base_addr) {
1063 warn_invalid_dmar(0, "");
1064 return -EINVAL;
1065 }
1066
1067 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1068 if (!iommu)
1069 return -ENOMEM;
1070
1071 if (dmar_alloc_seq_id(iommu) < 0) {
1072 pr_err("Failed to allocate seq_id\n");
1073 err = -ENOSPC;
1074 goto error;
1075 }
1076
1077 err = map_iommu(iommu, drhd->reg_base_addr);
1078 if (err) {
1079 pr_err("Failed to map %s\n", iommu->name);
1080 goto error_free_seq_id;
1081 }
1082
1083 err = -EINVAL;
1084 if (cap_sagaw(iommu->cap) == 0) {
1085 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1086 iommu->name);
1087 drhd->ignored = 1;
1088 }
1089
1090 if (!drhd->ignored) {
1091 agaw = iommu_calculate_agaw(iommu);
1092 if (agaw < 0) {
1093 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1094 iommu->seq_id);
1095 drhd->ignored = 1;
1096 }
1097 }
1098 if (!drhd->ignored) {
1099 msagaw = iommu_calculate_max_sagaw(iommu);
1100 if (msagaw < 0) {
1101 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1102 iommu->seq_id);
1103 drhd->ignored = 1;
1104 agaw = -1;
1105 }
1106 }
1107 iommu->agaw = agaw;
1108 iommu->msagaw = msagaw;
1109 iommu->segment = drhd->segment;
1110
1111 iommu->node = NUMA_NO_NODE;
1112
1113 ver = readl(iommu->reg + DMAR_VER_REG);
1114 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1115 iommu->name,
1116 (unsigned long long)drhd->reg_base_addr,
1117 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1118 (unsigned long long)iommu->cap,
1119 (unsigned long long)iommu->ecap);
1120
1121 /* Reflect status in gcmd */
1122 sts = readl(iommu->reg + DMAR_GSTS_REG);
1123 if (sts & DMA_GSTS_IRES)
1124 iommu->gcmd |= DMA_GCMD_IRE;
1125 if (sts & DMA_GSTS_TES)
1126 iommu->gcmd |= DMA_GCMD_TE;
1127 if (sts & DMA_GSTS_QIES)
1128 iommu->gcmd |= DMA_GCMD_QIE;
1129
1130 raw_spin_lock_init(&iommu->register_lock);
1131
1132 /*
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1136 */
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 intel_iommu_groups,
1140 "%s", iommu->name);
1141 if (err)
1142 goto err_unmap;
1143
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 if (err)
1146 goto err_sysfs;
1147 }
1148
1149 drhd->iommu = iommu;
1150 iommu->drhd = drhd;
1151
1152 return 0;
1153
1154err_sysfs:
1155 iommu_device_sysfs_remove(&iommu->iommu);
1156err_unmap:
1157 unmap_iommu(iommu);
1158error_free_seq_id:
1159 dmar_free_seq_id(iommu);
1160error:
1161 kfree(iommu);
1162 return err;
1163}
1164
1165static void free_iommu(struct intel_iommu *iommu)
1166{
1167 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1168 iommu_device_unregister(&iommu->iommu);
1169 iommu_device_sysfs_remove(&iommu->iommu);
1170 }
1171
1172 if (iommu->irq) {
1173 if (iommu->pr_irq) {
1174 free_irq(iommu->pr_irq, iommu);
1175 dmar_free_hwirq(iommu->pr_irq);
1176 iommu->pr_irq = 0;
1177 }
1178 free_irq(iommu->irq, iommu);
1179 dmar_free_hwirq(iommu->irq);
1180 iommu->irq = 0;
1181 }
1182
1183 if (iommu->qi) {
1184 free_page((unsigned long)iommu->qi->desc);
1185 kfree(iommu->qi->desc_status);
1186 kfree(iommu->qi);
1187 }
1188
1189 if (iommu->reg)
1190 unmap_iommu(iommu);
1191
1192 dmar_free_seq_id(iommu);
1193 kfree(iommu);
1194}
1195
1196/*
1197 * Reclaim all the submitted descriptors which have completed its work.
1198 */
1199static inline void reclaim_free_desc(struct q_inval *qi)
1200{
1201 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1202 qi->desc_status[qi->free_tail] == QI_ABORT) {
1203 qi->desc_status[qi->free_tail] = QI_FREE;
1204 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1205 qi->free_cnt++;
1206 }
1207}
1208
1209static const char *qi_type_string(u8 type)
1210{
1211 switch (type) {
1212 case QI_CC_TYPE:
1213 return "Context-cache Invalidation";
1214 case QI_IOTLB_TYPE:
1215 return "IOTLB Invalidation";
1216 case QI_DIOTLB_TYPE:
1217 return "Device-TLB Invalidation";
1218 case QI_IEC_TYPE:
1219 return "Interrupt Entry Cache Invalidation";
1220 case QI_IWD_TYPE:
1221 return "Invalidation Wait";
1222 case QI_EIOTLB_TYPE:
1223 return "PASID-based IOTLB Invalidation";
1224 case QI_PC_TYPE:
1225 return "PASID-cache Invalidation";
1226 case QI_DEIOTLB_TYPE:
1227 return "PASID-based Device-TLB Invalidation";
1228 case QI_PGRP_RESP_TYPE:
1229 return "Page Group Response";
1230 default:
1231 return "UNKNOWN";
1232 }
1233}
1234
1235static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1236{
1237 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1238 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1239 struct qi_desc *desc = iommu->qi->desc + head;
1240
1241 if (fault & DMA_FSTS_IQE)
1242 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1243 DMAR_IQER_REG_IQEI(iqe_err));
1244 if (fault & DMA_FSTS_ITE)
1245 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1246 DMAR_IQER_REG_ITESID(iqe_err));
1247 if (fault & DMA_FSTS_ICE)
1248 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1249 DMAR_IQER_REG_ICESID(iqe_err));
1250
1251 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1252 qi_type_string(desc->qw0 & 0xf),
1253 (unsigned long long)desc->qw0,
1254 (unsigned long long)desc->qw1);
1255
1256 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1257 head <<= qi_shift(iommu);
1258 desc = iommu->qi->desc + head;
1259
1260 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1261 qi_type_string(desc->qw0 & 0xf),
1262 (unsigned long long)desc->qw0,
1263 (unsigned long long)desc->qw1);
1264}
1265
1266static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1267{
1268 u32 fault;
1269 int head, tail;
1270 struct q_inval *qi = iommu->qi;
1271 int shift = qi_shift(iommu);
1272
1273 if (qi->desc_status[wait_index] == QI_ABORT)
1274 return -EAGAIN;
1275
1276 fault = readl(iommu->reg + DMAR_FSTS_REG);
1277 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1278 qi_dump_fault(iommu, fault);
1279
1280 /*
1281 * If IQE happens, the head points to the descriptor associated
1282 * with the error. No new descriptors are fetched until the IQE
1283 * is cleared.
1284 */
1285 if (fault & DMA_FSTS_IQE) {
1286 head = readl(iommu->reg + DMAR_IQH_REG);
1287 if ((head >> shift) == index) {
1288 struct qi_desc *desc = qi->desc + head;
1289
1290 /*
1291 * desc->qw2 and desc->qw3 are either reserved or
1292 * used by software as private data. We won't print
1293 * out these two qw's for security consideration.
1294 */
1295 memcpy(desc, qi->desc + (wait_index << shift),
1296 1 << shift);
1297 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1298 pr_info("Invalidation Queue Error (IQE) cleared\n");
1299 return -EINVAL;
1300 }
1301 }
1302
1303 /*
1304 * If ITE happens, all pending wait_desc commands are aborted.
1305 * No new descriptors are fetched until the ITE is cleared.
1306 */
1307 if (fault & DMA_FSTS_ITE) {
1308 head = readl(iommu->reg + DMAR_IQH_REG);
1309 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1310 head |= 1;
1311 tail = readl(iommu->reg + DMAR_IQT_REG);
1312 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1313
1314 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1315 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1316
1317 do {
1318 if (qi->desc_status[head] == QI_IN_USE)
1319 qi->desc_status[head] = QI_ABORT;
1320 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1321 } while (head != tail);
1322
1323 if (qi->desc_status[wait_index] == QI_ABORT)
1324 return -EAGAIN;
1325 }
1326
1327 if (fault & DMA_FSTS_ICE) {
1328 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1329 pr_info("Invalidation Completion Error (ICE) cleared\n");
1330 }
1331
1332 return 0;
1333}
1334
1335/*
1336 * Function to submit invalidation descriptors of all types to the queued
1337 * invalidation interface(QI). Multiple descriptors can be submitted at a
1338 * time, a wait descriptor will be appended to each submission to ensure
1339 * hardware has completed the invalidation before return. Wait descriptors
1340 * can be part of the submission but it will not be polled for completion.
1341 */
1342int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1343 unsigned int count, unsigned long options)
1344{
1345 struct q_inval *qi = iommu->qi;
1346 s64 devtlb_start_ktime = 0;
1347 s64 iotlb_start_ktime = 0;
1348 s64 iec_start_ktime = 0;
1349 struct qi_desc wait_desc;
1350 int wait_index, index;
1351 unsigned long flags;
1352 int offset, shift;
1353 int rc, i;
1354 u64 type;
1355
1356 if (!qi)
1357 return 0;
1358
1359 type = desc->qw0 & GENMASK_ULL(3, 0);
1360
1361 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1362 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1363 iotlb_start_ktime = ktime_to_ns(ktime_get());
1364
1365 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1366 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1367 devtlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369 if (type == QI_IEC_TYPE &&
1370 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1371 iec_start_ktime = ktime_to_ns(ktime_get());
1372
1373restart:
1374 rc = 0;
1375
1376 raw_spin_lock_irqsave(&qi->q_lock, flags);
1377 /*
1378 * Check if we have enough empty slots in the queue to submit,
1379 * the calculation is based on:
1380 * # of desc + 1 wait desc + 1 space between head and tail
1381 */
1382 while (qi->free_cnt < count + 2) {
1383 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1384 cpu_relax();
1385 raw_spin_lock_irqsave(&qi->q_lock, flags);
1386 }
1387
1388 index = qi->free_head;
1389 wait_index = (index + count) % QI_LENGTH;
1390 shift = qi_shift(iommu);
1391
1392 for (i = 0; i < count; i++) {
1393 offset = ((index + i) % QI_LENGTH) << shift;
1394 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1395 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1396 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1397 desc[i].qw2, desc[i].qw3);
1398 }
1399 qi->desc_status[wait_index] = QI_IN_USE;
1400
1401 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1402 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1403 if (options & QI_OPT_WAIT_DRAIN)
1404 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1405 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1406 wait_desc.qw2 = 0;
1407 wait_desc.qw3 = 0;
1408
1409 offset = wait_index << shift;
1410 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1411
1412 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1413 qi->free_cnt -= count + 1;
1414
1415 /*
1416 * update the HW tail register indicating the presence of
1417 * new descriptors.
1418 */
1419 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1420
1421 while (qi->desc_status[wait_index] != QI_DONE) {
1422 /*
1423 * We will leave the interrupts disabled, to prevent interrupt
1424 * context to queue another cmd while a cmd is already submitted
1425 * and waiting for completion on this cpu. This is to avoid
1426 * a deadlock where the interrupt context can wait indefinitely
1427 * for free slots in the queue.
1428 */
1429 rc = qi_check_fault(iommu, index, wait_index);
1430 if (rc)
1431 break;
1432
1433 raw_spin_unlock(&qi->q_lock);
1434 cpu_relax();
1435 raw_spin_lock(&qi->q_lock);
1436 }
1437
1438 for (i = 0; i < count; i++)
1439 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1440
1441 reclaim_free_desc(qi);
1442 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1443
1444 if (rc == -EAGAIN)
1445 goto restart;
1446
1447 if (iotlb_start_ktime)
1448 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1449 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1450
1451 if (devtlb_start_ktime)
1452 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1453 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1454
1455 if (iec_start_ktime)
1456 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1457 ktime_to_ns(ktime_get()) - iec_start_ktime);
1458
1459 return rc;
1460}
1461
1462/*
1463 * Flush the global interrupt entry cache.
1464 */
1465void qi_global_iec(struct intel_iommu *iommu)
1466{
1467 struct qi_desc desc;
1468
1469 desc.qw0 = QI_IEC_TYPE;
1470 desc.qw1 = 0;
1471 desc.qw2 = 0;
1472 desc.qw3 = 0;
1473
1474 /* should never fail */
1475 qi_submit_sync(iommu, &desc, 1, 0);
1476}
1477
1478void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1479 u64 type)
1480{
1481 struct qi_desc desc;
1482
1483 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1484 | QI_CC_GRAN(type) | QI_CC_TYPE;
1485 desc.qw1 = 0;
1486 desc.qw2 = 0;
1487 desc.qw3 = 0;
1488
1489 qi_submit_sync(iommu, &desc, 1, 0);
1490}
1491
1492void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1493 unsigned int size_order, u64 type)
1494{
1495 u8 dw = 0, dr = 0;
1496
1497 struct qi_desc desc;
1498 int ih = 0;
1499
1500 if (cap_write_drain(iommu->cap))
1501 dw = 1;
1502
1503 if (cap_read_drain(iommu->cap))
1504 dr = 1;
1505
1506 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1507 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1508 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1509 | QI_IOTLB_AM(size_order);
1510 desc.qw2 = 0;
1511 desc.qw3 = 0;
1512
1513 qi_submit_sync(iommu, &desc, 1, 0);
1514}
1515
1516void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1517 u16 qdep, u64 addr, unsigned mask)
1518{
1519 struct qi_desc desc;
1520
1521 if (mask) {
1522 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1523 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1524 } else
1525 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1526
1527 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1528 qdep = 0;
1529
1530 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1531 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1532 desc.qw2 = 0;
1533 desc.qw3 = 0;
1534
1535 qi_submit_sync(iommu, &desc, 1, 0);
1536}
1537
1538/* PASID-based IOTLB invalidation */
1539void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1540 unsigned long npages, bool ih)
1541{
1542 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1543
1544 /*
1545 * npages == -1 means a PASID-selective invalidation, otherwise,
1546 * a positive value for Page-selective-within-PASID invalidation.
1547 * 0 is not a valid input.
1548 */
1549 if (WARN_ON(!npages)) {
1550 pr_err("Invalid input npages = %ld\n", npages);
1551 return;
1552 }
1553
1554 if (npages == -1) {
1555 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1556 QI_EIOTLB_DID(did) |
1557 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1558 QI_EIOTLB_TYPE;
1559 desc.qw1 = 0;
1560 } else {
1561 int mask = ilog2(__roundup_pow_of_two(npages));
1562 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1563
1564 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1565 addr = ALIGN_DOWN(addr, align);
1566
1567 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1568 QI_EIOTLB_DID(did) |
1569 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1570 QI_EIOTLB_TYPE;
1571 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1572 QI_EIOTLB_IH(ih) |
1573 QI_EIOTLB_AM(mask);
1574 }
1575
1576 qi_submit_sync(iommu, &desc, 1, 0);
1577}
1578
1579/* PASID-based device IOTLB Invalidate */
1580void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1581 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1582{
1583 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1584 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1585
1586 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1587 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1588 QI_DEV_IOTLB_PFSID(pfsid);
1589
1590 /*
1591 * If S bit is 0, we only flush a single page. If S bit is set,
1592 * The least significant zero bit indicates the invalidation address
1593 * range. VT-d spec 6.5.2.6.
1594 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1595 * size order = 0 is PAGE_SIZE 4KB
1596 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1597 * ECAP.
1598 */
1599 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1600 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1601 addr, size_order);
1602
1603 /* Take page address */
1604 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1605
1606 if (size_order) {
1607 /*
1608 * Existing 0s in address below size_order may be the least
1609 * significant bit, we must set them to 1s to avoid having
1610 * smaller size than desired.
1611 */
1612 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1613 VTD_PAGE_SHIFT);
1614 /* Clear size_order bit to indicate size */
1615 desc.qw1 &= ~mask;
1616 /* Set the S bit to indicate flushing more than 1 page */
1617 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1618 }
1619
1620 qi_submit_sync(iommu, &desc, 1, 0);
1621}
1622
1623void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1624 u64 granu, u32 pasid)
1625{
1626 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1627
1628 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1629 QI_PC_GRAN(granu) | QI_PC_TYPE;
1630 qi_submit_sync(iommu, &desc, 1, 0);
1631}
1632
1633/*
1634 * Disable Queued Invalidation interface.
1635 */
1636void dmar_disable_qi(struct intel_iommu *iommu)
1637{
1638 unsigned long flags;
1639 u32 sts;
1640 cycles_t start_time = get_cycles();
1641
1642 if (!ecap_qis(iommu->ecap))
1643 return;
1644
1645 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1646
1647 sts = readl(iommu->reg + DMAR_GSTS_REG);
1648 if (!(sts & DMA_GSTS_QIES))
1649 goto end;
1650
1651 /*
1652 * Give a chance to HW to complete the pending invalidation requests.
1653 */
1654 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1655 readl(iommu->reg + DMAR_IQH_REG)) &&
1656 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1657 cpu_relax();
1658
1659 iommu->gcmd &= ~DMA_GCMD_QIE;
1660 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1661
1662 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1663 !(sts & DMA_GSTS_QIES), sts);
1664end:
1665 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1666}
1667
1668/*
1669 * Enable queued invalidation.
1670 */
1671static void __dmar_enable_qi(struct intel_iommu *iommu)
1672{
1673 u32 sts;
1674 unsigned long flags;
1675 struct q_inval *qi = iommu->qi;
1676 u64 val = virt_to_phys(qi->desc);
1677
1678 qi->free_head = qi->free_tail = 0;
1679 qi->free_cnt = QI_LENGTH;
1680
1681 /*
1682 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1683 * is present.
1684 */
1685 if (ecap_smts(iommu->ecap))
1686 val |= (1 << 11) | 1;
1687
1688 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1689
1690 /* write zero to the tail reg */
1691 writel(0, iommu->reg + DMAR_IQT_REG);
1692
1693 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1694
1695 iommu->gcmd |= DMA_GCMD_QIE;
1696 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1697
1698 /* Make sure hardware complete it */
1699 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1700
1701 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1702}
1703
1704/*
1705 * Enable Queued Invalidation interface. This is a must to support
1706 * interrupt-remapping. Also used by DMA-remapping, which replaces
1707 * register based IOTLB invalidation.
1708 */
1709int dmar_enable_qi(struct intel_iommu *iommu)
1710{
1711 struct q_inval *qi;
1712 struct page *desc_page;
1713
1714 if (!ecap_qis(iommu->ecap))
1715 return -ENOENT;
1716
1717 /*
1718 * queued invalidation is already setup and enabled.
1719 */
1720 if (iommu->qi)
1721 return 0;
1722
1723 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1724 if (!iommu->qi)
1725 return -ENOMEM;
1726
1727 qi = iommu->qi;
1728
1729 /*
1730 * Need two pages to accommodate 256 descriptors of 256 bits each
1731 * if the remapping hardware supports scalable mode translation.
1732 */
1733 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1734 !!ecap_smts(iommu->ecap));
1735 if (!desc_page) {
1736 kfree(qi);
1737 iommu->qi = NULL;
1738 return -ENOMEM;
1739 }
1740
1741 qi->desc = page_address(desc_page);
1742
1743 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1744 if (!qi->desc_status) {
1745 free_page((unsigned long) qi->desc);
1746 kfree(qi);
1747 iommu->qi = NULL;
1748 return -ENOMEM;
1749 }
1750
1751 raw_spin_lock_init(&qi->q_lock);
1752
1753 __dmar_enable_qi(iommu);
1754
1755 return 0;
1756}
1757
1758/* iommu interrupt handling. Most stuff are MSI-like. */
1759
1760enum faulttype {
1761 DMA_REMAP,
1762 INTR_REMAP,
1763 UNKNOWN,
1764};
1765
1766static const char *dma_remap_fault_reasons[] =
1767{
1768 "Software",
1769 "Present bit in root entry is clear",
1770 "Present bit in context entry is clear",
1771 "Invalid context entry",
1772 "Access beyond MGAW",
1773 "PTE Write access is not set",
1774 "PTE Read access is not set",
1775 "Next page table ptr is invalid",
1776 "Root table address invalid",
1777 "Context table ptr is invalid",
1778 "non-zero reserved fields in RTP",
1779 "non-zero reserved fields in CTP",
1780 "non-zero reserved fields in PTE",
1781 "PCE for translation request specifies blocking",
1782};
1783
1784static const char * const dma_remap_sm_fault_reasons[] = {
1785 "SM: Invalid Root Table Address",
1786 "SM: TTM 0 for request with PASID",
1787 "SM: TTM 0 for page group request",
1788 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1789 "SM: Error attempting to access Root Entry",
1790 "SM: Present bit in Root Entry is clear",
1791 "SM: Non-zero reserved field set in Root Entry",
1792 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1793 "SM: Error attempting to access Context Entry",
1794 "SM: Present bit in Context Entry is clear",
1795 "SM: Non-zero reserved field set in the Context Entry",
1796 "SM: Invalid Context Entry",
1797 "SM: DTE field in Context Entry is clear",
1798 "SM: PASID Enable field in Context Entry is clear",
1799 "SM: PASID is larger than the max in Context Entry",
1800 "SM: PRE field in Context-Entry is clear",
1801 "SM: RID_PASID field error in Context-Entry",
1802 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1803 "SM: Error attempting to access the PASID Directory Entry",
1804 "SM: Present bit in Directory Entry is clear",
1805 "SM: Non-zero reserved field set in PASID Directory Entry",
1806 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1807 "SM: Error attempting to access PASID Table Entry",
1808 "SM: Present bit in PASID Table Entry is clear",
1809 "SM: Non-zero reserved field set in PASID Table Entry",
1810 "SM: Invalid Scalable-Mode PASID Table Entry",
1811 "SM: ERE field is clear in PASID Table Entry",
1812 "SM: SRE field is clear in PASID Table Entry",
1813 "Unknown", "Unknown",/* 0x5E-0x5F */
1814 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1815 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1816 "SM: Error attempting to access first-level paging entry",
1817 "SM: Present bit in first-level paging entry is clear",
1818 "SM: Non-zero reserved field set in first-level paging entry",
1819 "SM: Error attempting to access FL-PML4 entry",
1820 "SM: First-level entry address beyond MGAW in Nested translation",
1821 "SM: Read permission error in FL-PML4 entry in Nested translation",
1822 "SM: Read permission error in first-level paging entry in Nested translation",
1823 "SM: Write permission error in first-level paging entry in Nested translation",
1824 "SM: Error attempting to access second-level paging entry",
1825 "SM: Read/Write permission error in second-level paging entry",
1826 "SM: Non-zero reserved field set in second-level paging entry",
1827 "SM: Invalid second-level page table pointer",
1828 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1829 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1830 "SM: Address in first-level translation is not canonical",
1831 "SM: U/S set 0 for first-level translation with user privilege",
1832 "SM: No execute permission for request with PASID and ER=1",
1833 "SM: Address beyond the DMA hardware max",
1834 "SM: Second-level entry address beyond the max",
1835 "SM: No write permission for Write/AtomicOp request",
1836 "SM: No read permission for Read/AtomicOp request",
1837 "SM: Invalid address-interrupt address",
1838 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1839 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1840};
1841
1842static const char *irq_remap_fault_reasons[] =
1843{
1844 "Detected reserved fields in the decoded interrupt-remapped request",
1845 "Interrupt index exceeded the interrupt-remapping table size",
1846 "Present field in the IRTE entry is clear",
1847 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1848 "Detected reserved fields in the IRTE entry",
1849 "Blocked a compatibility format interrupt request",
1850 "Blocked an interrupt request due to source-id verification failure",
1851};
1852
1853static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1854{
1855 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1856 ARRAY_SIZE(irq_remap_fault_reasons))) {
1857 *fault_type = INTR_REMAP;
1858 return irq_remap_fault_reasons[fault_reason - 0x20];
1859 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1860 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1861 *fault_type = DMA_REMAP;
1862 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1863 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1864 *fault_type = DMA_REMAP;
1865 return dma_remap_fault_reasons[fault_reason];
1866 } else {
1867 *fault_type = UNKNOWN;
1868 return "Unknown";
1869 }
1870}
1871
1872
1873static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1874{
1875 if (iommu->irq == irq)
1876 return DMAR_FECTL_REG;
1877 else if (iommu->pr_irq == irq)
1878 return DMAR_PECTL_REG;
1879 else
1880 BUG();
1881}
1882
1883void dmar_msi_unmask(struct irq_data *data)
1884{
1885 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1886 int reg = dmar_msi_reg(iommu, data->irq);
1887 unsigned long flag;
1888
1889 /* unmask it */
1890 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1891 writel(0, iommu->reg + reg);
1892 /* Read a reg to force flush the post write */
1893 readl(iommu->reg + reg);
1894 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1895}
1896
1897void dmar_msi_mask(struct irq_data *data)
1898{
1899 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1900 int reg = dmar_msi_reg(iommu, data->irq);
1901 unsigned long flag;
1902
1903 /* mask it */
1904 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1905 writel(DMA_FECTL_IM, iommu->reg + reg);
1906 /* Read a reg to force flush the post write */
1907 readl(iommu->reg + reg);
1908 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1909}
1910
1911void dmar_msi_write(int irq, struct msi_msg *msg)
1912{
1913 struct intel_iommu *iommu = irq_get_handler_data(irq);
1914 int reg = dmar_msi_reg(iommu, irq);
1915 unsigned long flag;
1916
1917 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1918 writel(msg->data, iommu->reg + reg + 4);
1919 writel(msg->address_lo, iommu->reg + reg + 8);
1920 writel(msg->address_hi, iommu->reg + reg + 12);
1921 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1922}
1923
1924void dmar_msi_read(int irq, struct msi_msg *msg)
1925{
1926 struct intel_iommu *iommu = irq_get_handler_data(irq);
1927 int reg = dmar_msi_reg(iommu, irq);
1928 unsigned long flag;
1929
1930 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1931 msg->data = readl(iommu->reg + reg + 4);
1932 msg->address_lo = readl(iommu->reg + reg + 8);
1933 msg->address_hi = readl(iommu->reg + reg + 12);
1934 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1935}
1936
1937static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1938 u8 fault_reason, u32 pasid, u16 source_id,
1939 unsigned long long addr)
1940{
1941 const char *reason;
1942 int fault_type;
1943
1944 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1945
1946 if (fault_type == INTR_REMAP)
1947 pr_err("[INTR-REMAP] Request device [0x%02x:0x%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1948 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1949 PCI_FUNC(source_id & 0xFF), addr >> 48,
1950 fault_reason, reason);
1951 else if (pasid == INVALID_IOASID)
1952 pr_err("[%s NO_PASID] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1953 type ? "DMA Read" : "DMA Write",
1954 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1955 PCI_FUNC(source_id & 0xFF), addr,
1956 fault_reason, reason);
1957 else
1958 pr_err("[%s PASID 0x%x] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1959 type ? "DMA Read" : "DMA Write", pasid,
1960 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1961 PCI_FUNC(source_id & 0xFF), addr,
1962 fault_reason, reason);
1963
1964 return 0;
1965}
1966
1967#define PRIMARY_FAULT_REG_LEN (16)
1968irqreturn_t dmar_fault(int irq, void *dev_id)
1969{
1970 struct intel_iommu *iommu = dev_id;
1971 int reg, fault_index;
1972 u32 fault_status;
1973 unsigned long flag;
1974 static DEFINE_RATELIMIT_STATE(rs,
1975 DEFAULT_RATELIMIT_INTERVAL,
1976 DEFAULT_RATELIMIT_BURST);
1977
1978 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1980 if (fault_status && __ratelimit(&rs))
1981 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1982
1983 /* TBD: ignore advanced fault log currently */
1984 if (!(fault_status & DMA_FSTS_PPF))
1985 goto unlock_exit;
1986
1987 fault_index = dma_fsts_fault_record_index(fault_status);
1988 reg = cap_fault_reg_offset(iommu->cap);
1989 while (1) {
1990 /* Disable printing, simply clear the fault when ratelimited */
1991 bool ratelimited = !__ratelimit(&rs);
1992 u8 fault_reason;
1993 u16 source_id;
1994 u64 guest_addr;
1995 u32 pasid;
1996 int type;
1997 u32 data;
1998 bool pasid_present;
1999
2000 /* highest 32 bits */
2001 data = readl(iommu->reg + reg +
2002 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2003 if (!(data & DMA_FRCD_F))
2004 break;
2005
2006 if (!ratelimited) {
2007 fault_reason = dma_frcd_fault_reason(data);
2008 type = dma_frcd_type(data);
2009
2010 pasid = dma_frcd_pasid_value(data);
2011 data = readl(iommu->reg + reg +
2012 fault_index * PRIMARY_FAULT_REG_LEN + 8);
2013 source_id = dma_frcd_source_id(data);
2014
2015 pasid_present = dma_frcd_pasid_present(data);
2016 guest_addr = dmar_readq(iommu->reg + reg +
2017 fault_index * PRIMARY_FAULT_REG_LEN);
2018 guest_addr = dma_frcd_page_addr(guest_addr);
2019 }
2020
2021 /* clear the fault */
2022 writel(DMA_FRCD_F, iommu->reg + reg +
2023 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2024
2025 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026
2027 if (!ratelimited)
2028 /* Using pasid -1 if pasid is not present */
2029 dmar_fault_do_one(iommu, type, fault_reason,
2030 pasid_present ? pasid : INVALID_IOASID,
2031 source_id, guest_addr);
2032
2033 fault_index++;
2034 if (fault_index >= cap_num_fault_regs(iommu->cap))
2035 fault_index = 0;
2036 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2037 }
2038
2039 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2040 iommu->reg + DMAR_FSTS_REG);
2041
2042unlock_exit:
2043 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2044 return IRQ_HANDLED;
2045}
2046
2047int dmar_set_interrupt(struct intel_iommu *iommu)
2048{
2049 int irq, ret;
2050
2051 /*
2052 * Check if the fault interrupt is already initialized.
2053 */
2054 if (iommu->irq)
2055 return 0;
2056
2057 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2058 if (irq > 0) {
2059 iommu->irq = irq;
2060 } else {
2061 pr_err("No free IRQ vectors\n");
2062 return -EINVAL;
2063 }
2064
2065 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2066 if (ret)
2067 pr_err("Can't request irq\n");
2068 return ret;
2069}
2070
2071int __init enable_drhd_fault_handling(void)
2072{
2073 struct dmar_drhd_unit *drhd;
2074 struct intel_iommu *iommu;
2075
2076 /*
2077 * Enable fault control interrupt.
2078 */
2079 for_each_iommu(iommu, drhd) {
2080 u32 fault_status;
2081 int ret = dmar_set_interrupt(iommu);
2082
2083 if (ret) {
2084 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2085 (unsigned long long)drhd->reg_base_addr, ret);
2086 return -1;
2087 }
2088
2089 /*
2090 * Clear any previous faults.
2091 */
2092 dmar_fault(iommu->irq, iommu);
2093 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2094 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2095 }
2096
2097 return 0;
2098}
2099
2100/*
2101 * Re-enable Queued Invalidation interface.
2102 */
2103int dmar_reenable_qi(struct intel_iommu *iommu)
2104{
2105 if (!ecap_qis(iommu->ecap))
2106 return -ENOENT;
2107
2108 if (!iommu->qi)
2109 return -ENOENT;
2110
2111 /*
2112 * First disable queued invalidation.
2113 */
2114 dmar_disable_qi(iommu);
2115 /*
2116 * Then enable queued invalidation again. Since there is no pending
2117 * invalidation requests now, it's safe to re-enable queued
2118 * invalidation.
2119 */
2120 __dmar_enable_qi(iommu);
2121
2122 return 0;
2123}
2124
2125/*
2126 * Check interrupt remapping support in DMAR table description.
2127 */
2128int __init dmar_ir_support(void)
2129{
2130 struct acpi_table_dmar *dmar;
2131 dmar = (struct acpi_table_dmar *)dmar_tbl;
2132 if (!dmar)
2133 return 0;
2134 return dmar->flags & 0x1;
2135}
2136
2137/* Check whether DMAR units are in use */
2138static inline bool dmar_in_use(void)
2139{
2140 return irq_remapping_enabled || intel_iommu_enabled;
2141}
2142
2143static int __init dmar_free_unused_resources(void)
2144{
2145 struct dmar_drhd_unit *dmaru, *dmaru_n;
2146
2147 if (dmar_in_use())
2148 return 0;
2149
2150 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2151 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2152
2153 down_write(&dmar_global_lock);
2154 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2155 list_del(&dmaru->list);
2156 dmar_free_drhd(dmaru);
2157 }
2158 up_write(&dmar_global_lock);
2159
2160 return 0;
2161}
2162
2163late_initcall(dmar_free_unused_resources);
2164IOMMU_INIT_POST(detect_intel_iommu);
2165
2166/*
2167 * DMAR Hotplug Support
2168 * For more details, please refer to Intel(R) Virtualization Technology
2169 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2170 * "Remapping Hardware Unit Hot Plug".
2171 */
2172static guid_t dmar_hp_guid =
2173 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2174 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2175
2176/*
2177 * Currently there's only one revision and BIOS will not check the revision id,
2178 * so use 0 for safety.
2179 */
2180#define DMAR_DSM_REV_ID 0
2181#define DMAR_DSM_FUNC_DRHD 1
2182#define DMAR_DSM_FUNC_ATSR 2
2183#define DMAR_DSM_FUNC_RHSA 3
2184#define DMAR_DSM_FUNC_SATC 4
2185
2186static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2187{
2188 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2189}
2190
2191static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2192 dmar_res_handler_t handler, void *arg)
2193{
2194 int ret = -ENODEV;
2195 union acpi_object *obj;
2196 struct acpi_dmar_header *start;
2197 struct dmar_res_callback callback;
2198 static int res_type[] = {
2199 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2200 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2201 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2202 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2203 };
2204
2205 if (!dmar_detect_dsm(handle, func))
2206 return 0;
2207
2208 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2209 func, NULL, ACPI_TYPE_BUFFER);
2210 if (!obj)
2211 return -ENODEV;
2212
2213 memset(&callback, 0, sizeof(callback));
2214 callback.cb[res_type[func]] = handler;
2215 callback.arg[res_type[func]] = arg;
2216 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2217 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2218
2219 ACPI_FREE(obj);
2220
2221 return ret;
2222}
2223
2224static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2225{
2226 int ret;
2227 struct dmar_drhd_unit *dmaru;
2228
2229 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2230 if (!dmaru)
2231 return -ENODEV;
2232
2233 ret = dmar_ir_hotplug(dmaru, true);
2234 if (ret == 0)
2235 ret = dmar_iommu_hotplug(dmaru, true);
2236
2237 return ret;
2238}
2239
2240static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2241{
2242 int i, ret;
2243 struct device *dev;
2244 struct dmar_drhd_unit *dmaru;
2245
2246 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2247 if (!dmaru)
2248 return 0;
2249
2250 /*
2251 * All PCI devices managed by this unit should have been destroyed.
2252 */
2253 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2254 for_each_active_dev_scope(dmaru->devices,
2255 dmaru->devices_cnt, i, dev)
2256 return -EBUSY;
2257 }
2258
2259 ret = dmar_ir_hotplug(dmaru, false);
2260 if (ret == 0)
2261 ret = dmar_iommu_hotplug(dmaru, false);
2262
2263 return ret;
2264}
2265
2266static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2267{
2268 struct dmar_drhd_unit *dmaru;
2269
2270 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2271 if (dmaru) {
2272 list_del_rcu(&dmaru->list);
2273 synchronize_rcu();
2274 dmar_free_drhd(dmaru);
2275 }
2276
2277 return 0;
2278}
2279
2280static int dmar_hotplug_insert(acpi_handle handle)
2281{
2282 int ret;
2283 int drhd_count = 0;
2284
2285 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2286 &dmar_validate_one_drhd, (void *)1);
2287 if (ret)
2288 goto out;
2289
2290 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291 &dmar_parse_one_drhd, (void *)&drhd_count);
2292 if (ret == 0 && drhd_count == 0) {
2293 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2294 goto out;
2295 } else if (ret) {
2296 goto release_drhd;
2297 }
2298
2299 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2300 &dmar_parse_one_rhsa, NULL);
2301 if (ret)
2302 goto release_drhd;
2303
2304 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2305 &dmar_parse_one_atsr, NULL);
2306 if (ret)
2307 goto release_atsr;
2308
2309 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2310 &dmar_hp_add_drhd, NULL);
2311 if (!ret)
2312 return 0;
2313
2314 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315 &dmar_hp_remove_drhd, NULL);
2316release_atsr:
2317 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318 &dmar_release_one_atsr, NULL);
2319release_drhd:
2320 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321 &dmar_hp_release_drhd, NULL);
2322out:
2323 return ret;
2324}
2325
2326static int dmar_hotplug_remove(acpi_handle handle)
2327{
2328 int ret;
2329
2330 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2331 &dmar_check_one_atsr, NULL);
2332 if (ret)
2333 return ret;
2334
2335 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2336 &dmar_hp_remove_drhd, NULL);
2337 if (ret == 0) {
2338 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2339 &dmar_release_one_atsr, NULL));
2340 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2341 &dmar_hp_release_drhd, NULL));
2342 } else {
2343 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344 &dmar_hp_add_drhd, NULL);
2345 }
2346
2347 return ret;
2348}
2349
2350static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2351 void *context, void **retval)
2352{
2353 acpi_handle *phdl = retval;
2354
2355 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2356 *phdl = handle;
2357 return AE_CTRL_TERMINATE;
2358 }
2359
2360 return AE_OK;
2361}
2362
2363static int dmar_device_hotplug(acpi_handle handle, bool insert)
2364{
2365 int ret;
2366 acpi_handle tmp = NULL;
2367 acpi_status status;
2368
2369 if (!dmar_in_use())
2370 return 0;
2371
2372 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2373 tmp = handle;
2374 } else {
2375 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2376 ACPI_UINT32_MAX,
2377 dmar_get_dsm_handle,
2378 NULL, NULL, &tmp);
2379 if (ACPI_FAILURE(status)) {
2380 pr_warn("Failed to locate _DSM method.\n");
2381 return -ENXIO;
2382 }
2383 }
2384 if (tmp == NULL)
2385 return 0;
2386
2387 down_write(&dmar_global_lock);
2388 if (insert)
2389 ret = dmar_hotplug_insert(tmp);
2390 else
2391 ret = dmar_hotplug_remove(tmp);
2392 up_write(&dmar_global_lock);
2393
2394 return ret;
2395}
2396
2397int dmar_device_add(acpi_handle handle)
2398{
2399 return dmar_device_hotplug(handle, true);
2400}
2401
2402int dmar_device_remove(acpi_handle handle)
2403{
2404 return dmar_device_hotplug(handle, false);
2405}
2406
2407/*
2408 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2409 *
2410 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2411 * the ACPI DMAR table. This means that the platform boot firmware has made
2412 * sure no device can issue DMA outside of RMRR regions.
2413 */
2414bool dmar_platform_optin(void)
2415{
2416 struct acpi_table_dmar *dmar;
2417 acpi_status status;
2418 bool ret;
2419
2420 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2421 (struct acpi_table_header **)&dmar);
2422 if (ACPI_FAILURE(status))
2423 return false;
2424
2425 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2426 acpi_put_table((struct acpi_table_header *)dmar);
2427
2428 return ret;
2429}
2430EXPORT_SYMBOL_GPL(dmar_platform_optin);