Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#include <stdarg.h>
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/spinlock.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/capability.h>
  17#include <linux/delay.h>
  18#include <linux/cpu.h>
  19#include <linux/sched.h>
  20#include <linux/smp.h>
  21#include <linux/completion.h>
  22#include <linux/cpumask.h>
  23#include <linux/memblock.h>
  24#include <linux/slab.h>
 
 
  25#include <linux/reboot.h>
 
 
 
 
 
  26#include <linux/syscalls.h>
 
 
 
  27
  28#include <asm/prom.h>
  29#include <asm/rtas.h>
  30#include <asm/hvcall.h>
  31#include <asm/machdep.h>
  32#include <asm/firmware.h>
 
 
 
  33#include <asm/page.h>
  34#include <asm/param.h>
  35#include <asm/delay.h>
  36#include <linux/uaccess.h>
  37#include <asm/udbg.h>
  38#include <asm/syscalls.h>
  39#include <asm/smp.h>
  40#include <linux/atomic.h>
  41#include <asm/time.h>
  42#include <asm/mmu.h>
  43#include <asm/topology.h>
  44#include <asm/paca.h>
  45
  46/* This is here deliberately so it's only used in this file */
  47void enter_rtas(unsigned long);
 
 
 
 
 
 
 
 
 
 
  48
  49struct rtas_t rtas = {
  50	.lock = __ARCH_SPIN_LOCK_UNLOCKED
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51};
  52EXPORT_SYMBOL(rtas);
  53
  54DEFINE_SPINLOCK(rtas_data_buf_lock);
  55EXPORT_SYMBOL(rtas_data_buf_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
  58EXPORT_SYMBOL(rtas_data_buf);
 
 
  59
  60unsigned long rtas_rmo_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62/*
  63 * If non-NULL, this gets called when the kernel terminates.
  64 * This is done like this so rtas_flash can be a module.
 
  65 */
  66void (*rtas_flash_term_hook)(int);
  67EXPORT_SYMBOL(rtas_flash_term_hook);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69/* RTAS use home made raw locking instead of spin_lock_irqsave
  70 * because those can be called from within really nasty contexts
  71 * such as having the timebase stopped which would lockup with
  72 * normal locks and spinlock debugging enabled
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73 */
  74static unsigned long lock_rtas(void)
  75{
  76	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78	local_irq_save(flags);
  79	preempt_disable();
  80	arch_spin_lock(&rtas.lock);
  81	return flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82}
  83
  84static void unlock_rtas(unsigned long flags)
  85{
  86	arch_spin_unlock(&rtas.lock);
  87	local_irq_restore(flags);
  88	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89}
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91/*
  92 * call_rtas_display_status and call_rtas_display_status_delay
  93 * are designed only for very early low-level debugging, which
  94 * is why the token is hard-coded to 10.
  95 */
  96static void call_rtas_display_status(unsigned char c)
  97{
  98	unsigned long s;
  99
 100	if (!rtas.base)
 101		return;
 102
 103	s = lock_rtas();
 104	rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
 105	unlock_rtas(s);
 106}
 107
 108static void call_rtas_display_status_delay(char c)
 109{
 110	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 111	static int width = 16;
 112
 113	if (c == '\n') {	
 114		while (width-- > 0)
 115			call_rtas_display_status(' ');
 116		width = 16;
 117		mdelay(500);
 118		pending_newline = 1;
 119	} else {
 120		if (pending_newline) {
 121			call_rtas_display_status('\r');
 122			call_rtas_display_status('\n');
 123		} 
 124		pending_newline = 0;
 125		if (width--) {
 126			call_rtas_display_status(c);
 127			udelay(10000);
 128		}
 129	}
 130}
 131
 132void __init udbg_init_rtas_panel(void)
 133{
 134	udbg_putc = call_rtas_display_status_delay;
 135}
 136
 137#ifdef CONFIG_UDBG_RTAS_CONSOLE
 138
 139/* If you think you're dying before early_init_dt_scan_rtas() does its
 140 * work, you can hard code the token values for your firmware here and
 141 * hardcode rtas.base/entry etc.
 142 */
 143static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 144static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 145
 146static void udbg_rtascon_putc(char c)
 147{
 148	int tries;
 149
 150	if (!rtas.base)
 151		return;
 152
 153	/* Add CRs before LFs */
 154	if (c == '\n')
 155		udbg_rtascon_putc('\r');
 156
 157	/* if there is more than one character to be displayed, wait a bit */
 158	for (tries = 0; tries < 16; tries++) {
 159		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 160			break;
 161		udelay(1000);
 162	}
 163}
 164
 165static int udbg_rtascon_getc_poll(void)
 166{
 167	int c;
 168
 169	if (!rtas.base)
 170		return -1;
 171
 172	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 173		return -1;
 174
 175	return c;
 176}
 177
 178static int udbg_rtascon_getc(void)
 179{
 180	int c;
 181
 182	while ((c = udbg_rtascon_getc_poll()) == -1)
 183		;
 184
 185	return c;
 186}
 187
 188
 189void __init udbg_init_rtas_console(void)
 190{
 191	udbg_putc = udbg_rtascon_putc;
 192	udbg_getc = udbg_rtascon_getc;
 193	udbg_getc_poll = udbg_rtascon_getc_poll;
 194}
 195#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 196
 197void rtas_progress(char *s, unsigned short hex)
 198{
 199	struct device_node *root;
 200	int width;
 201	const __be32 *p;
 202	char *os;
 203	static int display_character, set_indicator;
 204	static int display_width, display_lines, form_feed;
 205	static const int *row_width;
 206	static DEFINE_SPINLOCK(progress_lock);
 207	static int current_line;
 208	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 209
 210	if (!rtas.base)
 211		return;
 212
 213	if (display_width == 0) {
 214		display_width = 0x10;
 215		if ((root = of_find_node_by_path("/rtas"))) {
 216			if ((p = of_get_property(root,
 217					"ibm,display-line-length", NULL)))
 218				display_width = be32_to_cpu(*p);
 219			if ((p = of_get_property(root,
 220					"ibm,form-feed", NULL)))
 221				form_feed = be32_to_cpu(*p);
 222			if ((p = of_get_property(root,
 223					"ibm,display-number-of-lines", NULL)))
 224				display_lines = be32_to_cpu(*p);
 225			row_width = of_get_property(root,
 226					"ibm,display-truncation-length", NULL);
 227			of_node_put(root);
 228		}
 229		display_character = rtas_token("display-character");
 230		set_indicator = rtas_token("set-indicator");
 231	}
 232
 233	if (display_character == RTAS_UNKNOWN_SERVICE) {
 234		/* use hex display if available */
 235		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 236			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 237		return;
 238	}
 239
 240	spin_lock(&progress_lock);
 241
 242	/*
 243	 * Last write ended with newline, but we didn't print it since
 244	 * it would just clear the bottom line of output. Print it now
 245	 * instead.
 246	 *
 247	 * If no newline is pending and form feed is supported, clear the
 248	 * display with a form feed; otherwise, print a CR to start output
 249	 * at the beginning of the line.
 250	 */
 251	if (pending_newline) {
 252		rtas_call(display_character, 1, 1, NULL, '\r');
 253		rtas_call(display_character, 1, 1, NULL, '\n');
 254		pending_newline = 0;
 255	} else {
 256		current_line = 0;
 257		if (form_feed)
 258			rtas_call(display_character, 1, 1, NULL,
 259				  (char)form_feed);
 260		else
 261			rtas_call(display_character, 1, 1, NULL, '\r');
 262	}
 263 
 264	if (row_width)
 265		width = row_width[current_line];
 266	else
 267		width = display_width;
 268	os = s;
 269	while (*os) {
 270		if (*os == '\n' || *os == '\r') {
 271			/* If newline is the last character, save it
 272			 * until next call to avoid bumping up the
 273			 * display output.
 274			 */
 275			if (*os == '\n' && !os[1]) {
 276				pending_newline = 1;
 277				current_line++;
 278				if (current_line > display_lines-1)
 279					current_line = display_lines-1;
 280				spin_unlock(&progress_lock);
 281				return;
 282			}
 283 
 284			/* RTAS wants CR-LF, not just LF */
 285 
 286			if (*os == '\n') {
 287				rtas_call(display_character, 1, 1, NULL, '\r');
 288				rtas_call(display_character, 1, 1, NULL, '\n');
 289			} else {
 290				/* CR might be used to re-draw a line, so we'll
 291				 * leave it alone and not add LF.
 292				 */
 293				rtas_call(display_character, 1, 1, NULL, *os);
 294			}
 295 
 296			if (row_width)
 297				width = row_width[current_line];
 298			else
 299				width = display_width;
 300		} else {
 301			width--;
 302			rtas_call(display_character, 1, 1, NULL, *os);
 303		}
 304 
 305		os++;
 306 
 307		/* if we overwrite the screen length */
 308		if (width <= 0)
 309			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 310				os++;
 311	}
 312 
 313	spin_unlock(&progress_lock);
 314}
 315EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */
 316
 317int rtas_token(const char *service)
 318{
 
 319	const __be32 *tokp;
 
 320	if (rtas.dev == NULL)
 321		return RTAS_UNKNOWN_SERVICE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322	tokp = of_get_property(rtas.dev, service, NULL);
 323	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
 324}
 325EXPORT_SYMBOL(rtas_token);
 326
 327int rtas_service_present(const char *service)
 328{
 329	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
 330}
 331EXPORT_SYMBOL(rtas_service_present);
 332
 333#ifdef CONFIG_RTAS_ERROR_LOGGING
 
 
 
 334/*
 335 * Return the firmware-specified size of the error log buffer
 336 *  for all rtas calls that require an error buffer argument.
 337 *  This includes 'check-exception' and 'rtas-last-error'.
 338 */
 339int rtas_get_error_log_max(void)
 340{
 341	static int rtas_error_log_max;
 342	if (rtas_error_log_max)
 343		return rtas_error_log_max;
 344
 345	rtas_error_log_max = rtas_token ("rtas-error-log-max");
 346	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
 347	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
 348		printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
 349			rtas_error_log_max);
 350		rtas_error_log_max = RTAS_ERROR_LOG_MAX;
 351	}
 352	return rtas_error_log_max;
 353}
 354EXPORT_SYMBOL(rtas_get_error_log_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356
 357static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 358static int rtas_last_error_token;
 359
 360/** Return a copy of the detailed error text associated with the
 361 *  most recent failed call to rtas.  Because the error text
 362 *  might go stale if there are any other intervening rtas calls,
 363 *  this routine must be called atomically with whatever produced
 364 *  the error (i.e. with rtas.lock still held from the previous call).
 365 */
 366static char *__fetch_rtas_last_error(char *altbuf)
 367{
 
 368	struct rtas_args err_args, save_args;
 369	u32 bufsz;
 370	char *buf = NULL;
 371
 372	if (rtas_last_error_token == -1)
 
 
 373		return NULL;
 374
 375	bufsz = rtas_get_error_log_max();
 376
 377	err_args.token = cpu_to_be32(rtas_last_error_token);
 378	err_args.nargs = cpu_to_be32(2);
 379	err_args.nret = cpu_to_be32(1);
 380	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
 381	err_args.args[1] = cpu_to_be32(bufsz);
 382	err_args.args[2] = 0;
 383
 384	save_args = rtas.args;
 385	rtas.args = err_args;
 386
 387	enter_rtas(__pa(&rtas.args));
 388
 389	err_args = rtas.args;
 390	rtas.args = save_args;
 391
 392	/* Log the error in the unlikely case that there was one. */
 393	if (unlikely(err_args.args[2] == 0)) {
 394		if (altbuf) {
 395			buf = altbuf;
 396		} else {
 397			buf = rtas_err_buf;
 398			if (slab_is_available())
 399				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
 400		}
 401		if (buf)
 402			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
 403	}
 404
 405	return buf;
 406}
 407
 408#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
 409
 410#else /* CONFIG_RTAS_ERROR_LOGGING */
 411#define __fetch_rtas_last_error(x)	NULL
 412#define get_errorlog_buffer()		NULL
 
 413#endif
 414
 415
 416static void
 417va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
 418		      va_list list)
 419{
 420	int i;
 421
 422	args->token = cpu_to_be32(token);
 423	args->nargs = cpu_to_be32(nargs);
 424	args->nret  = cpu_to_be32(nret);
 425	args->rets  = &(args->args[nargs]);
 426
 427	for (i = 0; i < nargs; ++i)
 428		args->args[i] = cpu_to_be32(va_arg(list, __u32));
 429
 430	for (i = 0; i < nret; ++i)
 431		args->rets[i] = 0;
 432
 433	enter_rtas(__pa(args));
 434}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
 437{
 438	va_list list;
 439
 440	va_start(list, nret);
 441	va_rtas_call_unlocked(args, token, nargs, nret, list);
 442	va_end(list);
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445int rtas_call(int token, int nargs, int nret, int *outputs, ...)
 446{
 
 447	va_list list;
 448	int i;
 449	unsigned long s;
 450	struct rtas_args *rtas_args;
 451	char *buff_copy = NULL;
 452	int ret;
 453
 454	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
 455		return -1;
 456
 457	s = lock_rtas();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458
 459	/* We use the global rtas args buffer */
 460	rtas_args = &rtas.args;
 461
 462	va_start(list, outputs);
 463	va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
 464	va_end(list);
 465
 466	/* A -1 return code indicates that the last command couldn't
 467	   be completed due to a hardware error. */
 468	if (be32_to_cpu(rtas_args->rets[0]) == -1)
 469		buff_copy = __fetch_rtas_last_error(NULL);
 470
 471	if (nret > 1 && outputs != NULL)
 472		for (i = 0; i < nret-1; ++i)
 473			outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
 474	ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
 475
 476	unlock_rtas(s);
 
 477
 478	if (buff_copy) {
 479		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
 480		if (slab_is_available())
 481			kfree(buff_copy);
 482	}
 483	return ret;
 484}
 485EXPORT_SYMBOL(rtas_call);
 486
 487/* For RTAS_BUSY (-2), delay for 1 millisecond.  For an extended busy status
 488 * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489 */
 490unsigned int rtas_busy_delay_time(int status)
 491{
 492	int order;
 493	unsigned int ms = 0;
 494
 495	if (status == RTAS_BUSY) {
 496		ms = 1;
 497	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
 498		   status <= RTAS_EXTENDED_DELAY_MAX) {
 499		order = status - RTAS_EXTENDED_DELAY_MIN;
 500		for (ms = 1; order > 0; order--)
 501			ms *= 10;
 502	}
 503
 504	return ms;
 505}
 506EXPORT_SYMBOL(rtas_busy_delay_time);
 507
 508/* For an RTAS busy status code, perform the hinted delay. */
 509unsigned int rtas_busy_delay(int status)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	unsigned int ms;
 
 512
 513	might_sleep();
 514	ms = rtas_busy_delay_time(status);
 515	if (ms && need_resched())
 516		msleep(ms);
 
 517
 518	return ms;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519}
 520EXPORT_SYMBOL(rtas_busy_delay);
 521
 522static int rtas_error_rc(int rtas_rc)
 523{
 524	int rc;
 525
 526	switch (rtas_rc) {
 527		case -1: 		/* Hardware Error */
 528			rc = -EIO;
 529			break;
 530		case -3:		/* Bad indicator/domain/etc */
 531			rc = -EINVAL;
 532			break;
 533		case -9000:		/* Isolation error */
 534			rc = -EFAULT;
 535			break;
 536		case -9001:		/* Outstanding TCE/PTE */
 537			rc = -EEXIST;
 538			break;
 539		case -9002:		/* No usable slot */
 540			rc = -ENODEV;
 541			break;
 542		default:
 543			printk(KERN_ERR "%s: unexpected RTAS error %d\n",
 544					__func__, rtas_rc);
 545			rc = -ERANGE;
 546			break;
 547	}
 548	return rc;
 549}
 
 550
 551int rtas_get_power_level(int powerdomain, int *level)
 552{
 553	int token = rtas_token("get-power-level");
 554	int rc;
 555
 556	if (token == RTAS_UNKNOWN_SERVICE)
 557		return -ENOENT;
 558
 559	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
 560		udelay(1);
 561
 562	if (rc < 0)
 563		return rtas_error_rc(rc);
 564	return rc;
 565}
 566EXPORT_SYMBOL(rtas_get_power_level);
 567
 568int rtas_set_power_level(int powerdomain, int level, int *setlevel)
 569{
 570	int token = rtas_token("set-power-level");
 571	int rc;
 572
 573	if (token == RTAS_UNKNOWN_SERVICE)
 574		return -ENOENT;
 575
 576	do {
 577		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
 578	} while (rtas_busy_delay(rc));
 579
 580	if (rc < 0)
 581		return rtas_error_rc(rc);
 582	return rc;
 583}
 584EXPORT_SYMBOL(rtas_set_power_level);
 585
 586int rtas_get_sensor(int sensor, int index, int *state)
 587{
 588	int token = rtas_token("get-sensor-state");
 589	int rc;
 590
 591	if (token == RTAS_UNKNOWN_SERVICE)
 592		return -ENOENT;
 593
 594	do {
 595		rc = rtas_call(token, 2, 2, state, sensor, index);
 596	} while (rtas_busy_delay(rc));
 597
 598	if (rc < 0)
 599		return rtas_error_rc(rc);
 600	return rc;
 601}
 602EXPORT_SYMBOL(rtas_get_sensor);
 603
 604int rtas_get_sensor_fast(int sensor, int index, int *state)
 605{
 606	int token = rtas_token("get-sensor-state");
 607	int rc;
 608
 609	if (token == RTAS_UNKNOWN_SERVICE)
 610		return -ENOENT;
 611
 612	rc = rtas_call(token, 2, 2, state, sensor, index);
 613	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 614				    rc <= RTAS_EXTENDED_DELAY_MAX));
 615
 616	if (rc < 0)
 617		return rtas_error_rc(rc);
 618	return rc;
 619}
 620
 621bool rtas_indicator_present(int token, int *maxindex)
 622{
 623	int proplen, count, i;
 624	const struct indicator_elem {
 625		__be32 token;
 626		__be32 maxindex;
 627	} *indicators;
 628
 629	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
 630	if (!indicators)
 631		return false;
 632
 633	count = proplen / sizeof(struct indicator_elem);
 634
 635	for (i = 0; i < count; i++) {
 636		if (__be32_to_cpu(indicators[i].token) != token)
 637			continue;
 638		if (maxindex)
 639			*maxindex = __be32_to_cpu(indicators[i].maxindex);
 640		return true;
 641	}
 642
 643	return false;
 644}
 645EXPORT_SYMBOL(rtas_indicator_present);
 646
 647int rtas_set_indicator(int indicator, int index, int new_value)
 648{
 649	int token = rtas_token("set-indicator");
 650	int rc;
 651
 652	if (token == RTAS_UNKNOWN_SERVICE)
 653		return -ENOENT;
 654
 655	do {
 656		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 657	} while (rtas_busy_delay(rc));
 658
 659	if (rc < 0)
 660		return rtas_error_rc(rc);
 661	return rc;
 662}
 663EXPORT_SYMBOL(rtas_set_indicator);
 664
 665/*
 666 * Ignoring RTAS extended delay
 667 */
 668int rtas_set_indicator_fast(int indicator, int index, int new_value)
 669{
 
 670	int rc;
 671	int token = rtas_token("set-indicator");
 672
 673	if (token == RTAS_UNKNOWN_SERVICE)
 674		return -ENOENT;
 675
 676	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 677
 678	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 679				    rc <= RTAS_EXTENDED_DELAY_MAX));
 680
 681	if (rc < 0)
 682		return rtas_error_rc(rc);
 683
 684	return rc;
 685}
 686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687void __noreturn rtas_restart(char *cmd)
 688{
 689	if (rtas_flash_term_hook)
 690		rtas_flash_term_hook(SYS_RESTART);
 691	printk("RTAS system-reboot returned %d\n",
 692	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
 693	for (;;);
 694}
 695
 696void rtas_power_off(void)
 697{
 698	if (rtas_flash_term_hook)
 699		rtas_flash_term_hook(SYS_POWER_OFF);
 700	/* allow power on only with power button press */
 701	printk("RTAS power-off returned %d\n",
 702	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 703	for (;;);
 704}
 705
 706void __noreturn rtas_halt(void)
 707{
 708	if (rtas_flash_term_hook)
 709		rtas_flash_term_hook(SYS_HALT);
 710	/* allow power on only with power button press */
 711	printk("RTAS power-off returned %d\n",
 712	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 713	for (;;);
 714}
 715
 716/* Must be in the RMO region, so we place it here */
 717static char rtas_os_term_buf[2048];
 
 718
 719void rtas_os_term(char *str)
 720{
 
 
 721	int status;
 722
 723	/*
 724	 * Firmware with the ibm,extended-os-term property is guaranteed
 725	 * to always return from an ibm,os-term call. Earlier versions without
 726	 * this property may terminate the partition which we want to avoid
 727	 * since it interferes with panic_timeout.
 728	 */
 729	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") ||
 730	    RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term"))
 731		return;
 732
 733	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
 734
 
 
 
 
 
 735	do {
 736		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
 737				   __pa(rtas_os_term_buf));
 738	} while (rtas_busy_delay(status));
 739
 740	if (status != 0)
 741		printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
 742}
 743
 744static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE;
 745#ifdef CONFIG_PPC_PSERIES
 746static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
 747{
 748	u16 slb_size = mmu_slb_size;
 749	int rc = H_MULTI_THREADS_ACTIVE;
 750	int cpu;
 751
 752	slb_set_size(SLB_MIN_SIZE);
 753	printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id());
 754
 755	while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) &&
 756	       !atomic_read(&data->error))
 757		rc = rtas_call(data->token, 0, 1, NULL);
 758
 759	if (rc || atomic_read(&data->error)) {
 760		printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc);
 761		slb_set_size(slb_size);
 762	}
 763
 764	if (atomic_read(&data->error))
 765		rc = atomic_read(&data->error);
 766
 767	atomic_set(&data->error, rc);
 768	pSeries_coalesce_init();
 769
 770	if (wake_when_done) {
 771		atomic_set(&data->done, 1);
 772
 773		for_each_online_cpu(cpu)
 774			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
 775	}
 776
 777	if (atomic_dec_return(&data->working) == 0)
 778		complete(data->complete);
 779
 780	return rc;
 781}
 782
 783int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data)
 784{
 785	atomic_inc(&data->working);
 786	return __rtas_suspend_last_cpu(data, 0);
 787}
 788
 789static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
 790{
 791	long rc = H_SUCCESS;
 792	unsigned long msr_save;
 793	int cpu;
 794
 795	atomic_inc(&data->working);
 796
 797	/* really need to ensure MSR.EE is off for H_JOIN */
 798	msr_save = mfmsr();
 799	mtmsr(msr_save & ~(MSR_EE));
 800
 801	while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error))
 802		rc = plpar_hcall_norets(H_JOIN);
 803
 804	mtmsr(msr_save);
 805
 806	if (rc == H_SUCCESS) {
 807		/* This cpu was prodded and the suspend is complete. */
 808		goto out;
 809	} else if (rc == H_CONTINUE) {
 810		/* All other cpus are in H_JOIN, this cpu does
 811		 * the suspend.
 812		 */
 813		return __rtas_suspend_last_cpu(data, wake_when_done);
 814	} else {
 815		printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n",
 816		       smp_processor_id(), rc);
 817		atomic_set(&data->error, rc);
 818	}
 819
 820	if (wake_when_done) {
 821		atomic_set(&data->done, 1);
 822
 823		/* This cpu did the suspend or got an error; in either case,
 824		 * we need to prod all other other cpus out of join state.
 825		 * Extra prods are harmless.
 826		 */
 827		for_each_online_cpu(cpu)
 828			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
 829	}
 830out:
 831	if (atomic_dec_return(&data->working) == 0)
 832		complete(data->complete);
 833	return rc;
 834}
 835
 836int rtas_suspend_cpu(struct rtas_suspend_me_data *data)
 837{
 838	return __rtas_suspend_cpu(data, 0);
 839}
 840
 841static void rtas_percpu_suspend_me(void *info)
 842{
 843	__rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1);
 844}
 845
 846int rtas_ibm_suspend_me(u64 handle)
 847{
 848	long state;
 849	long rc;
 850	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
 851	struct rtas_suspend_me_data data;
 852	DECLARE_COMPLETION_ONSTACK(done);
 853
 854	if (!rtas_service_present("ibm,suspend-me"))
 855		return -ENOSYS;
 856
 857	/* Make sure the state is valid */
 858	rc = plpar_hcall(H_VASI_STATE, retbuf, handle);
 859
 860	state = retbuf[0];
 861
 862	if (rc) {
 863		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
 864		return rc;
 865	} else if (state == H_VASI_ENABLED) {
 866		return -EAGAIN;
 867	} else if (state != H_VASI_SUSPENDING) {
 868		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
 869		       state);
 870		return -EIO;
 871	}
 872
 873	atomic_set(&data.working, 0);
 874	atomic_set(&data.done, 0);
 875	atomic_set(&data.error, 0);
 876	data.token = rtas_token("ibm,suspend-me");
 877	data.complete = &done;
 878
 879	lock_device_hotplug();
 880
 881	cpu_hotplug_disable();
 882
 883	/* Call function on all CPUs.  One of us will make the
 884	 * rtas call
 885	 */
 886	on_each_cpu(rtas_percpu_suspend_me, &data, 0);
 887
 888	wait_for_completion(&done);
 889
 890	if (atomic_read(&data.error) != 0)
 891		printk(KERN_ERR "Error doing global join\n");
 892
 893
 894	cpu_hotplug_enable();
 895
 896	unlock_device_hotplug();
 897
 898	return atomic_read(&data.error);
 899}
 900
 901/**
 902 * rtas_call_reentrant() - Used for reentrant rtas calls
 903 * @token:	Token for desired reentrant RTAS call
 904 * @nargs:	Number of Input Parameters
 905 * @nret:	Number of Output Parameters
 906 * @outputs:	Array of outputs
 907 * @...:	Inputs for desired RTAS call
 908 *
 909 * According to LoPAR documentation, only "ibm,int-on", "ibm,int-off",
 910 * "ibm,get-xive" and "ibm,set-xive" are currently reentrant.
 911 * Reentrant calls need their own rtas_args buffer, so not using rtas.args, but
 912 * PACA one instead.
 913 *
 914 * Return:	-1 on error,
 915 *		First output value of RTAS call if (nret > 0),
 916 *		0 otherwise,
 917 */
 918int rtas_call_reentrant(int token, int nargs, int nret, int *outputs, ...)
 919{
 920	va_list list;
 921	struct rtas_args *args;
 922	unsigned long flags;
 923	int i, ret = 0;
 924
 925	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
 926		return -1;
 927
 928	local_irq_save(flags);
 929	preempt_disable();
 930
 931	/* We use the per-cpu (PACA) rtas args buffer */
 932	args = local_paca->rtas_args_reentrant;
 933
 934	va_start(list, outputs);
 935	va_rtas_call_unlocked(args, token, nargs, nret, list);
 936	va_end(list);
 937
 938	if (nret > 1 && outputs)
 939		for (i = 0; i < nret - 1; ++i)
 940			outputs[i] = be32_to_cpu(args->rets[i + 1]);
 941
 942	if (nret > 0)
 943		ret = be32_to_cpu(args->rets[0]);
 944
 945	local_irq_restore(flags);
 946	preempt_enable();
 
 947
 948	return ret;
 949}
 950
 951#else /* CONFIG_PPC_PSERIES */
 952int rtas_ibm_suspend_me(u64 handle)
 953{
 954	return -ENOSYS;
 955}
 956#endif
 957
 958/**
 959 * Find a specific pseries error log in an RTAS extended event log.
 
 960 * @log: RTAS error/event log
 961 * @section_id: two character section identifier
 962 *
 963 * Returns a pointer to the specified errorlog or NULL if not found.
 964 */
 965struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
 966					      uint16_t section_id)
 967{
 968	struct rtas_ext_event_log_v6 *ext_log =
 969		(struct rtas_ext_event_log_v6 *)log->buffer;
 970	struct pseries_errorlog *sect;
 971	unsigned char *p, *log_end;
 972	uint32_t ext_log_length = rtas_error_extended_log_length(log);
 973	uint8_t log_format = rtas_ext_event_log_format(ext_log);
 974	uint32_t company_id = rtas_ext_event_company_id(ext_log);
 975
 976	/* Check that we understand the format */
 977	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
 978	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
 979	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
 980		return NULL;
 981
 982	log_end = log->buffer + ext_log_length;
 983	p = ext_log->vendor_log;
 984
 985	while (p < log_end) {
 986		sect = (struct pseries_errorlog *)p;
 987		if (pseries_errorlog_id(sect) == section_id)
 988			return sect;
 989		p += pseries_errorlog_length(sect);
 990	}
 991
 992	return NULL;
 993}
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995/* We assume to be passed big endian arguments */
 996SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
 997{
 
 
 998	struct rtas_args args;
 999	unsigned long flags;
1000	char *buff_copy, *errbuf = NULL;
1001	int nargs, nret, token;
1002
1003	if (!capable(CAP_SYS_ADMIN))
1004		return -EPERM;
1005
1006	if (!rtas.entry)
1007		return -EINVAL;
1008
1009	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1010		return -EFAULT;
1011
1012	nargs = be32_to_cpu(args.nargs);
1013	nret  = be32_to_cpu(args.nret);
1014	token = be32_to_cpu(args.token);
1015
1016	if (nargs >= ARRAY_SIZE(args.args)
1017	    || nret > ARRAY_SIZE(args.args)
1018	    || nargs + nret > ARRAY_SIZE(args.args))
1019		return -EINVAL;
1020
1021	/* Copy in args. */
1022	if (copy_from_user(args.args, uargs->args,
1023			   nargs * sizeof(rtas_arg_t)) != 0)
1024		return -EFAULT;
1025
1026	if (token == RTAS_UNKNOWN_SERVICE)
 
 
 
 
 
1027		return -EINVAL;
1028
1029	args.rets = &args.args[nargs];
1030	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1031
 
 
 
 
 
 
 
 
 
 
 
1032	/* Need to handle ibm,suspend_me call specially */
1033	if (token == ibm_suspend_me_token) {
1034
1035		/*
1036		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1037		 * endian, or at least the hcall within it requires it.
1038		 */
1039		int rc = 0;
1040		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1041		              | be32_to_cpu(args.args[1]);
1042		rc = rtas_ibm_suspend_me(handle);
1043		if (rc == -EAGAIN)
1044			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1045		else if (rc == -EIO)
1046			args.rets[0] = cpu_to_be32(-1);
1047		else if (rc)
1048			return rc;
1049		goto copy_return;
1050	}
1051
1052	buff_copy = get_errorlog_buffer();
1053
1054	flags = lock_rtas();
 
 
 
 
 
 
 
 
 
 
1055
1056	rtas.args = args;
1057	enter_rtas(__pa(&rtas.args));
1058	args = rtas.args;
1059
1060	/* A -1 return code indicates that the last command couldn't
1061	   be completed due to a hardware error. */
1062	if (be32_to_cpu(args.rets[0]) == -1)
1063		errbuf = __fetch_rtas_last_error(buff_copy);
1064
1065	unlock_rtas(flags);
 
 
 
 
1066
1067	if (buff_copy) {
1068		if (errbuf)
1069			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1070		kfree(buff_copy);
1071	}
1072
1073 copy_return:
1074	/* Copy out args. */
1075	if (copy_to_user(uargs->args + nargs,
1076			 args.args + nargs,
1077			 nret * sizeof(rtas_arg_t)) != 0)
1078		return -EFAULT;
1079
1080	return 0;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083/*
1084 * Call early during boot, before mem init, to retrieve the RTAS
1085 * information from the device-tree and allocate the RMO buffer for userland
1086 * accesses.
1087 */
1088void __init rtas_initialize(void)
1089{
1090	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1091	u32 base, size, entry;
1092	int no_base, no_size, no_entry;
1093
1094	/* Get RTAS dev node and fill up our "rtas" structure with infos
1095	 * about it.
1096	 */
1097	rtas.dev = of_find_node_by_name(NULL, "rtas");
1098	if (!rtas.dev)
1099		return;
1100
1101	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1102	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1103	if (no_base || no_size) {
1104		of_node_put(rtas.dev);
1105		rtas.dev = NULL;
1106		return;
1107	}
1108
1109	rtas.base = base;
1110	rtas.size = size;
1111	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1112	rtas.entry = no_entry ? rtas.base : entry;
1113
 
 
 
 
 
 
 
 
 
 
 
1114	/* If RTAS was found, allocate the RMO buffer for it and look for
1115	 * the stop-self token if any
1116	 */
1117#ifdef CONFIG_PPC64
1118	if (firmware_has_feature(FW_FEATURE_LPAR)) {
1119		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1120		ibm_suspend_me_token = rtas_token("ibm,suspend-me");
1121	}
1122#endif
1123	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE,
1124						 0, rtas_region);
1125	if (!rtas_rmo_buf)
1126		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1127		      PAGE_SIZE, &rtas_region);
1128
1129#ifdef CONFIG_RTAS_ERROR_LOGGING
1130	rtas_last_error_token = rtas_token("rtas-last-error");
1131#endif
1132}
1133
1134int __init early_init_dt_scan_rtas(unsigned long node,
1135		const char *uname, int depth, void *data)
1136{
1137	const u32 *basep, *entryp, *sizep;
1138
1139	if (depth != 1 || strcmp(uname, "rtas") != 0)
1140		return 0;
1141
1142	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1143	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1144	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
1145
 
 
 
 
 
 
1146	if (basep && entryp && sizep) {
1147		rtas.base = *basep;
1148		rtas.entry = *entryp;
1149		rtas.size = *sizep;
1150	}
1151
1152#ifdef CONFIG_UDBG_RTAS_CONSOLE
1153	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1154	if (basep)
1155		rtas_putchar_token = *basep;
1156
1157	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
1158	if (basep)
1159		rtas_getchar_token = *basep;
1160
1161	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
1162	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
1163		udbg_init_rtas_console();
1164
1165#endif
1166
1167	/* break now */
1168	return 1;
1169}
1170
1171static arch_spinlock_t timebase_lock;
1172static u64 timebase = 0;
1173
1174void rtas_give_timebase(void)
1175{
1176	unsigned long flags;
1177
1178	local_irq_save(flags);
1179	hard_irq_disable();
1180	arch_spin_lock(&timebase_lock);
1181	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
1182	timebase = get_tb();
1183	arch_spin_unlock(&timebase_lock);
1184
1185	while (timebase)
1186		barrier();
1187	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
1188	local_irq_restore(flags);
1189}
1190
1191void rtas_take_timebase(void)
1192{
1193	while (!timebase)
1194		barrier();
1195	arch_spin_lock(&timebase_lock);
1196	set_tb(timebase >> 32, timebase & 0xffffffff);
1197	timebase = 0;
1198	arch_spin_unlock(&timebase_lock);
1199}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#define pr_fmt(fmt)	"rtas: " fmt
  11
  12#include <linux/bsearch.h>
 
 
 
  13#include <linux/capability.h>
  14#include <linux/delay.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/kconfig.h>
  18#include <linux/kernel.h>
  19#include <linux/lockdep.h>
  20#include <linux/memblock.h>
  21#include <linux/mutex.h>
  22#include <linux/of.h>
  23#include <linux/of_fdt.h>
  24#include <linux/reboot.h>
  25#include <linux/sched.h>
  26#include <linux/security.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/stdarg.h>
  30#include <linux/syscalls.h>
  31#include <linux/types.h>
  32#include <linux/uaccess.h>
  33#include <linux/xarray.h>
  34
  35#include <asm/delay.h>
 
 
 
  36#include <asm/firmware.h>
  37#include <asm/interrupt.h>
  38#include <asm/machdep.h>
  39#include <asm/mmu.h>
  40#include <asm/page.h>
  41#include <asm/rtas-work-area.h>
  42#include <asm/rtas.h>
 
 
 
 
 
  43#include <asm/time.h>
  44#include <asm/trace.h>
  45#include <asm/udbg.h>
 
  46
  47struct rtas_filter {
  48	/* Indexes into the args buffer, -1 if not used */
  49	const int buf_idx1;
  50	const int size_idx1;
  51	const int buf_idx2;
  52	const int size_idx2;
  53	/*
  54	 * Assumed buffer size per the spec if the function does not
  55	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
  56	 */
  57	const int fixed_size;
  58};
  59
  60/**
  61 * struct rtas_function - Descriptor for RTAS functions.
  62 *
  63 * @token: Value of @name if it exists under the /rtas node.
  64 * @name: Function name.
  65 * @filter: If non-NULL, invoking this function via the rtas syscall is
  66 *          generally allowed, and @filter describes constraints on the
  67 *          arguments. See also @banned_for_syscall_on_le.
  68 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
  69 *                            but specifically restricted on ppc64le. Such
  70 *                            functions are believed to have no users on
  71 *                            ppc64le, and we want to keep it that way. It does
  72 *                            not make sense for this to be set when @filter
  73 *                            is NULL.
  74 * @lock: Pointer to an optional dedicated per-function mutex. This
  75 *        should be set for functions that require multiple calls in
  76 *        sequence to complete a single operation, and such sequences
  77 *        will disrupt each other if allowed to interleave. Users of
  78 *        this function are required to hold the associated lock for
  79 *        the duration of the call sequence. Add an explanatory
  80 *        comment to the function table entry if setting this member.
  81 */
  82struct rtas_function {
  83	s32 token;
  84	const bool banned_for_syscall_on_le:1;
  85	const char * const name;
  86	const struct rtas_filter *filter;
  87	struct mutex *lock;
  88};
 
  89
  90/*
  91 * Per-function locks for sequence-based RTAS functions.
  92 */
  93static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
  94static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
  95static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
  96static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
  97static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
  98static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
  99DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
 100
 101static struct rtas_function rtas_function_table[] __ro_after_init = {
 102	[RTAS_FNIDX__CHECK_EXCEPTION] = {
 103		.name = "check-exception",
 104	},
 105	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
 106		.name = "display-character",
 107		.filter = &(const struct rtas_filter) {
 108			.buf_idx1 = -1, .size_idx1 = -1,
 109			.buf_idx2 = -1, .size_idx2 = -1,
 110		},
 111	},
 112	[RTAS_FNIDX__EVENT_SCAN] = {
 113		.name = "event-scan",
 114	},
 115	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
 116		.name = "freeze-time-base",
 117	},
 118	[RTAS_FNIDX__GET_POWER_LEVEL] = {
 119		.name = "get-power-level",
 120		.filter = &(const struct rtas_filter) {
 121			.buf_idx1 = -1, .size_idx1 = -1,
 122			.buf_idx2 = -1, .size_idx2 = -1,
 123		},
 124	},
 125	[RTAS_FNIDX__GET_SENSOR_STATE] = {
 126		.name = "get-sensor-state",
 127		.filter = &(const struct rtas_filter) {
 128			.buf_idx1 = -1, .size_idx1 = -1,
 129			.buf_idx2 = -1, .size_idx2 = -1,
 130		},
 131	},
 132	[RTAS_FNIDX__GET_TERM_CHAR] = {
 133		.name = "get-term-char",
 134	},
 135	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
 136		.name = "get-time-of-day",
 137		.filter = &(const struct rtas_filter) {
 138			.buf_idx1 = -1, .size_idx1 = -1,
 139			.buf_idx2 = -1, .size_idx2 = -1,
 140		},
 141	},
 142	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
 143		.name = "ibm,activate-firmware",
 144		.filter = &(const struct rtas_filter) {
 145			.buf_idx1 = -1, .size_idx1 = -1,
 146			.buf_idx2 = -1, .size_idx2 = -1,
 147		},
 148		/*
 149		 * PAPR+ as of v2.13 doesn't explicitly impose any
 150		 * restriction, but this typically requires multiple
 151		 * calls before success, and there's no reason to
 152		 * allow sequences to interleave.
 153		 */
 154		.lock = &rtas_ibm_activate_firmware_lock,
 155	},
 156	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
 157		.name = "ibm,cbe-start-ptcal",
 158	},
 159	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
 160		.name = "ibm,cbe-stop-ptcal",
 161	},
 162	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
 163		.name = "ibm,change-msi",
 164	},
 165	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
 166		.name = "ibm,close-errinjct",
 167		.filter = &(const struct rtas_filter) {
 168			.buf_idx1 = -1, .size_idx1 = -1,
 169			.buf_idx2 = -1, .size_idx2 = -1,
 170		},
 171	},
 172	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
 173		.name = "ibm,configure-bridge",
 174	},
 175	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
 176		.name = "ibm,configure-connector",
 177		.filter = &(const struct rtas_filter) {
 178			.buf_idx1 = 0, .size_idx1 = -1,
 179			.buf_idx2 = 1, .size_idx2 = -1,
 180			.fixed_size = 4096,
 181		},
 182	},
 183	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
 184		.name = "ibm,configure-kernel-dump",
 185	},
 186	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
 187		.name = "ibm,configure-pe",
 188	},
 189	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
 190		.name = "ibm,create-pe-dma-window",
 191	},
 192	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
 193		.name = "ibm,display-message",
 194		.filter = &(const struct rtas_filter) {
 195			.buf_idx1 = 0, .size_idx1 = -1,
 196			.buf_idx2 = -1, .size_idx2 = -1,
 197		},
 198	},
 199	[RTAS_FNIDX__IBM_ERRINJCT] = {
 200		.name = "ibm,errinjct",
 201		.filter = &(const struct rtas_filter) {
 202			.buf_idx1 = 2, .size_idx1 = -1,
 203			.buf_idx2 = -1, .size_idx2 = -1,
 204			.fixed_size = 1024,
 205		},
 206	},
 207	[RTAS_FNIDX__IBM_EXTI2C] = {
 208		.name = "ibm,exti2c",
 209	},
 210	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
 211		.name = "ibm,get-config-addr-info",
 212	},
 213	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
 214		.name = "ibm,get-config-addr-info2",
 215		.filter = &(const struct rtas_filter) {
 216			.buf_idx1 = -1, .size_idx1 = -1,
 217			.buf_idx2 = -1, .size_idx2 = -1,
 218		},
 219	},
 220	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
 221		.name = "ibm,get-dynamic-sensor-state",
 222		.filter = &(const struct rtas_filter) {
 223			.buf_idx1 = 1, .size_idx1 = -1,
 224			.buf_idx2 = -1, .size_idx2 = -1,
 225		},
 226		/*
 227		 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
 228		 * must not call ibm,get-dynamic-sensor-state with
 229		 * different inputs until a non-retry status has been
 230		 * returned.
 231		 */
 232		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
 233	},
 234	[RTAS_FNIDX__IBM_GET_INDICES] = {
 235		.name = "ibm,get-indices",
 236		.filter = &(const struct rtas_filter) {
 237			.buf_idx1 = 2, .size_idx1 = 3,
 238			.buf_idx2 = -1, .size_idx2 = -1,
 239		},
 240		/*
 241		 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
 242		 * interleave ibm,get-indices call sequences with
 243		 * different inputs.
 244		 */
 245		.lock = &rtas_ibm_get_indices_lock,
 246	},
 247	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
 248		.name = "ibm,get-rio-topology",
 249	},
 250	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
 251		.name = "ibm,get-system-parameter",
 252		.filter = &(const struct rtas_filter) {
 253			.buf_idx1 = 1, .size_idx1 = 2,
 254			.buf_idx2 = -1, .size_idx2 = -1,
 255		},
 256	},
 257	[RTAS_FNIDX__IBM_GET_VPD] = {
 258		.name = "ibm,get-vpd",
 259		.filter = &(const struct rtas_filter) {
 260			.buf_idx1 = 0, .size_idx1 = -1,
 261			.buf_idx2 = 1, .size_idx2 = 2,
 262		},
 263		/*
 264		 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
 265		 * should not be allowed to interleave.
 266		 */
 267		.lock = &rtas_ibm_get_vpd_lock,
 268	},
 269	[RTAS_FNIDX__IBM_GET_XIVE] = {
 270		.name = "ibm,get-xive",
 271	},
 272	[RTAS_FNIDX__IBM_INT_OFF] = {
 273		.name = "ibm,int-off",
 274	},
 275	[RTAS_FNIDX__IBM_INT_ON] = {
 276		.name = "ibm,int-on",
 277	},
 278	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
 279		.name = "ibm,io-quiesce-ack",
 280	},
 281	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
 282		.name = "ibm,lpar-perftools",
 283		.filter = &(const struct rtas_filter) {
 284			.buf_idx1 = 2, .size_idx1 = 3,
 285			.buf_idx2 = -1, .size_idx2 = -1,
 286		},
 287		/*
 288		 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
 289		 * only one call sequence in progress at a time.
 290		 */
 291		.lock = &rtas_ibm_lpar_perftools_lock,
 292	},
 293	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
 294		.name = "ibm,manage-flash-image",
 295	},
 296	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
 297		.name = "ibm,manage-storage-preservation",
 298	},
 299	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
 300		.name = "ibm,nmi-interlock",
 301	},
 302	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
 303		.name = "ibm,nmi-register",
 304	},
 305	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
 306		.name = "ibm,open-errinjct",
 307		.filter = &(const struct rtas_filter) {
 308			.buf_idx1 = -1, .size_idx1 = -1,
 309			.buf_idx2 = -1, .size_idx2 = -1,
 310		},
 311	},
 312	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
 313		.name = "ibm,open-sriov-allow-unfreeze",
 314	},
 315	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
 316		.name = "ibm,open-sriov-map-pe-number",
 317	},
 318	[RTAS_FNIDX__IBM_OS_TERM] = {
 319		.name = "ibm,os-term",
 320	},
 321	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
 322		.name = "ibm,partner-control",
 323	},
 324	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
 325		.name = "ibm,physical-attestation",
 326		.filter = &(const struct rtas_filter) {
 327			.buf_idx1 = 0, .size_idx1 = 1,
 328			.buf_idx2 = -1, .size_idx2 = -1,
 329		},
 330		/*
 331		 * This follows a sequence-based pattern similar to
 332		 * ibm,get-vpd et al. Since PAPR+ restricts
 333		 * interleaving call sequences for other functions of
 334		 * this style, assume the restriction applies here,
 335		 * even though it's not explicit in the spec.
 336		 */
 337		.lock = &rtas_ibm_physical_attestation_lock,
 338	},
 339	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
 340		.name = "ibm,platform-dump",
 341		.filter = &(const struct rtas_filter) {
 342			.buf_idx1 = 4, .size_idx1 = 5,
 343			.buf_idx2 = -1, .size_idx2 = -1,
 344		},
 345		/*
 346		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
 347		 * sequences of ibm,platform-dump are allowed if they
 348		 * are operating on different dump tags. So leave the
 349		 * lock pointer unset for now. This may need
 350		 * reconsideration if kernel-internal users appear.
 351		 */
 352	},
 353	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
 354		.name = "ibm,power-off-ups",
 355	},
 356	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
 357		.name = "ibm,query-interrupt-source-number",
 358	},
 359	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
 360		.name = "ibm,query-pe-dma-window",
 361	},
 362	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
 363		.name = "ibm,read-pci-config",
 364	},
 365	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
 366		.name = "ibm,read-slot-reset-state",
 367		.filter = &(const struct rtas_filter) {
 368			.buf_idx1 = -1, .size_idx1 = -1,
 369			.buf_idx2 = -1, .size_idx2 = -1,
 370		},
 371	},
 372	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
 373		.name = "ibm,read-slot-reset-state2",
 374	},
 375	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
 376		.name = "ibm,remove-pe-dma-window",
 377	},
 378	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
 379		/*
 380		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
 381		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
 382		 * implementations use the singular form in practice.
 383		 */
 384		.name = "ibm,reset-pe-dma-window",
 385	},
 386	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
 387		.name = "ibm,scan-log-dump",
 388		.filter = &(const struct rtas_filter) {
 389			.buf_idx1 = 0, .size_idx1 = 1,
 390			.buf_idx2 = -1, .size_idx2 = -1,
 391		},
 392	},
 393	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
 394		.name = "ibm,set-dynamic-indicator",
 395		.filter = &(const struct rtas_filter) {
 396			.buf_idx1 = 2, .size_idx1 = -1,
 397			.buf_idx2 = -1, .size_idx2 = -1,
 398		},
 399		/*
 400		 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
 401		 * this function with different inputs until a
 402		 * non-retry status has been returned.
 403		 */
 404		.lock = &rtas_ibm_set_dynamic_indicator_lock,
 405	},
 406	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
 407		.name = "ibm,set-eeh-option",
 408		.filter = &(const struct rtas_filter) {
 409			.buf_idx1 = -1, .size_idx1 = -1,
 410			.buf_idx2 = -1, .size_idx2 = -1,
 411		},
 412	},
 413	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
 414		.name = "ibm,set-slot-reset",
 415	},
 416	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
 417		.name = "ibm,set-system-parameter",
 418		.filter = &(const struct rtas_filter) {
 419			.buf_idx1 = 1, .size_idx1 = -1,
 420			.buf_idx2 = -1, .size_idx2 = -1,
 421		},
 422	},
 423	[RTAS_FNIDX__IBM_SET_XIVE] = {
 424		.name = "ibm,set-xive",
 425	},
 426	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
 427		.name = "ibm,slot-error-detail",
 428	},
 429	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
 430		.name = "ibm,suspend-me",
 431		.banned_for_syscall_on_le = true,
 432		.filter = &(const struct rtas_filter) {
 433			.buf_idx1 = -1, .size_idx1 = -1,
 434			.buf_idx2 = -1, .size_idx2 = -1,
 435		},
 436	},
 437	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
 438		.name = "ibm,tune-dma-parms",
 439	},
 440	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
 441		.name = "ibm,update-flash-64-and-reboot",
 442	},
 443	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
 444		.name = "ibm,update-nodes",
 445		.banned_for_syscall_on_le = true,
 446		.filter = &(const struct rtas_filter) {
 447			.buf_idx1 = 0, .size_idx1 = -1,
 448			.buf_idx2 = -1, .size_idx2 = -1,
 449			.fixed_size = 4096,
 450		},
 451	},
 452	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
 453		.name = "ibm,update-properties",
 454		.banned_for_syscall_on_le = true,
 455		.filter = &(const struct rtas_filter) {
 456			.buf_idx1 = 0, .size_idx1 = -1,
 457			.buf_idx2 = -1, .size_idx2 = -1,
 458			.fixed_size = 4096,
 459		},
 460	},
 461	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
 462		.name = "ibm,validate-flash-image",
 463	},
 464	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
 465		.name = "ibm,write-pci-config",
 466	},
 467	[RTAS_FNIDX__NVRAM_FETCH] = {
 468		.name = "nvram-fetch",
 469	},
 470	[RTAS_FNIDX__NVRAM_STORE] = {
 471		.name = "nvram-store",
 472	},
 473	[RTAS_FNIDX__POWER_OFF] = {
 474		.name = "power-off",
 475	},
 476	[RTAS_FNIDX__PUT_TERM_CHAR] = {
 477		.name = "put-term-char",
 478	},
 479	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
 480		.name = "query-cpu-stopped-state",
 481	},
 482	[RTAS_FNIDX__READ_PCI_CONFIG] = {
 483		.name = "read-pci-config",
 484	},
 485	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
 486		.name = "rtas-last-error",
 487	},
 488	[RTAS_FNIDX__SET_INDICATOR] = {
 489		.name = "set-indicator",
 490		.filter = &(const struct rtas_filter) {
 491			.buf_idx1 = -1, .size_idx1 = -1,
 492			.buf_idx2 = -1, .size_idx2 = -1,
 493		},
 494	},
 495	[RTAS_FNIDX__SET_POWER_LEVEL] = {
 496		.name = "set-power-level",
 497		.filter = &(const struct rtas_filter) {
 498			.buf_idx1 = -1, .size_idx1 = -1,
 499			.buf_idx2 = -1, .size_idx2 = -1,
 500		},
 501	},
 502	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
 503		.name = "set-time-for-power-on",
 504		.filter = &(const struct rtas_filter) {
 505			.buf_idx1 = -1, .size_idx1 = -1,
 506			.buf_idx2 = -1, .size_idx2 = -1,
 507		},
 508	},
 509	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
 510		.name = "set-time-of-day",
 511		.filter = &(const struct rtas_filter) {
 512			.buf_idx1 = -1, .size_idx1 = -1,
 513			.buf_idx2 = -1, .size_idx2 = -1,
 514		},
 515	},
 516	[RTAS_FNIDX__START_CPU] = {
 517		.name = "start-cpu",
 518	},
 519	[RTAS_FNIDX__STOP_SELF] = {
 520		.name = "stop-self",
 521	},
 522	[RTAS_FNIDX__SYSTEM_REBOOT] = {
 523		.name = "system-reboot",
 524	},
 525	[RTAS_FNIDX__THAW_TIME_BASE] = {
 526		.name = "thaw-time-base",
 527	},
 528	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
 529		.name = "write-pci-config",
 530	},
 531};
 532
 533#define for_each_rtas_function(funcp)                                       \
 534	for (funcp = &rtas_function_table[0];                               \
 535	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
 536	     ++funcp)
 537
 538/*
 539 * Nearly all RTAS calls need to be serialized. All uses of the
 540 * default rtas_args block must hold rtas_lock.
 541 *
 542 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
 543 * must use a separate rtas_args structure.
 544 */
 545static DEFINE_RAW_SPINLOCK(rtas_lock);
 546static struct rtas_args rtas_args;
 547
 548/**
 549 * rtas_function_token() - RTAS function token lookup.
 550 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
 551 *
 552 * Context: Any context.
 553 * Return: the token value for the function if implemented by this platform,
 554 *         otherwise RTAS_UNKNOWN_SERVICE.
 555 */
 556s32 rtas_function_token(const rtas_fn_handle_t handle)
 557{
 558	const size_t index = handle.index;
 559	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
 560
 561	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
 562		return RTAS_UNKNOWN_SERVICE;
 563	/*
 564	 * Various drivers attempt token lookups on non-RTAS
 565	 * platforms.
 566	 */
 567	if (!rtas.dev)
 568		return RTAS_UNKNOWN_SERVICE;
 569
 570	return rtas_function_table[index].token;
 571}
 572EXPORT_SYMBOL_GPL(rtas_function_token);
 573
 574static int rtas_function_cmp(const void *a, const void *b)
 575{
 576	const struct rtas_function *f1 = a;
 577	const struct rtas_function *f2 = b;
 578
 579	return strcmp(f1->name, f2->name);
 580}
 581
 582/*
 583 * Boot-time initialization of the function table needs the lookup to
 584 * return a non-const-qualified object. Use rtas_name_to_function()
 585 * in all other contexts.
 586 */
 587static struct rtas_function *__rtas_name_to_function(const char *name)
 588{
 589	const struct rtas_function key = {
 590		.name = name,
 591	};
 592	struct rtas_function *found;
 593
 594	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
 595			sizeof(rtas_function_table[0]), rtas_function_cmp);
 596
 597	return found;
 598}
 599
 600static const struct rtas_function *rtas_name_to_function(const char *name)
 601{
 602	return __rtas_name_to_function(name);
 603}
 604
 605static DEFINE_XARRAY(rtas_token_to_function_xarray);
 606
 607static int __init rtas_token_to_function_xarray_init(void)
 608{
 609	const struct rtas_function *func;
 610	int err = 0;
 611
 612	for_each_rtas_function(func) {
 613		const s32 token = func->token;
 614
 615		if (token == RTAS_UNKNOWN_SERVICE)
 616			continue;
 617
 618		err = xa_err(xa_store(&rtas_token_to_function_xarray,
 619				      token, (void *)func, GFP_KERNEL));
 620		if (err)
 621			break;
 622	}
 623
 624	return err;
 625}
 626arch_initcall(rtas_token_to_function_xarray_init);
 627
 628/*
 629 * For use by sys_rtas(), where the token value is provided by user
 630 * space and we don't want to warn on failed lookups.
 631 */
 632static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
 633{
 634	return xa_load(&rtas_token_to_function_xarray, token);
 635}
 636
 637/*
 638 * Reverse lookup for deriving the function descriptor from a
 639 * known-good token value in contexts where the former is not already
 640 * available. @token must be valid, e.g. derived from the result of a
 641 * prior lookup against the function table.
 642 */
 643static const struct rtas_function *rtas_token_to_function(s32 token)
 644{
 645	const struct rtas_function *func;
 646
 647	if (WARN_ONCE(token < 0, "invalid token %d", token))
 648		return NULL;
 649
 650	func = rtas_token_to_function_untrusted(token);
 651	if (func)
 652		return func;
 653	/*
 654	 * Fall back to linear scan in case the reverse mapping hasn't
 655	 * been initialized yet.
 656	 */
 657	if (xa_empty(&rtas_token_to_function_xarray)) {
 658		for_each_rtas_function(func) {
 659			if (func->token == token)
 660				return func;
 661		}
 662	}
 663
 664	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
 665	return NULL;
 666}
 667
 668/* This is here deliberately so it's only used in this file */
 669void enter_rtas(unsigned long);
 670
 671static void __do_enter_rtas(struct rtas_args *args)
 672{
 673	enter_rtas(__pa(args));
 674	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
 675}
 676
 677static void __do_enter_rtas_trace(struct rtas_args *args)
 678{
 679	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
 680
 681	/*
 682	 * If there is a per-function lock, it must be held by the
 683	 * caller.
 684	 */
 685	if (func->lock)
 686		lockdep_assert_held(func->lock);
 687
 688	if (args == &rtas_args)
 689		lockdep_assert_held(&rtas_lock);
 690
 691	trace_rtas_input(args, func->name);
 692	trace_rtas_ll_entry(args);
 693
 694	__do_enter_rtas(args);
 695
 696	trace_rtas_ll_exit(args);
 697	trace_rtas_output(args, func->name);
 698}
 699
 700static void do_enter_rtas(struct rtas_args *args)
 701{
 702	const unsigned long msr = mfmsr();
 703	/*
 704	 * Situations where we want to skip any active tracepoints for
 705	 * safety reasons:
 706	 *
 707	 * 1. The last code executed on an offline CPU as it stops,
 708	 *    i.e. we're about to call stop-self. The tracepoints'
 709	 *    function name lookup uses xarray, which uses RCU, which
 710	 *    isn't valid to call on an offline CPU.  Any events
 711	 *    emitted on an offline CPU will be discarded anyway.
 712	 *
 713	 * 2. In real mode, as when invoking ibm,nmi-interlock from
 714	 *    the pseries MCE handler. We cannot count on trace
 715	 *    buffers or the entries in rtas_token_to_function_xarray
 716	 *    to be contained in the RMO.
 717	 */
 718	const unsigned long mask = MSR_IR | MSR_DR;
 719	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
 720				      (msr & mask) == mask);
 721	/*
 722	 * Make sure MSR[RI] is currently enabled as it will be forced later
 723	 * in enter_rtas.
 724	 */
 725	BUG_ON(!(msr & MSR_RI));
 726
 727	BUG_ON(!irqs_disabled());
 728
 729	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
 730
 731	if (can_trace)
 732		__do_enter_rtas_trace(args);
 733	else
 734		__do_enter_rtas(args);
 735}
 736
 737struct rtas_t rtas;
 738
 739DEFINE_SPINLOCK(rtas_data_buf_lock);
 740EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
 741
 742char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
 743EXPORT_SYMBOL_GPL(rtas_data_buf);
 744
 745unsigned long rtas_rmo_buf;
 746
 747/*
 748 * If non-NULL, this gets called when the kernel terminates.
 749 * This is done like this so rtas_flash can be a module.
 750 */
 751void (*rtas_flash_term_hook)(int);
 752EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
 753
 754/*
 755 * call_rtas_display_status and call_rtas_display_status_delay
 756 * are designed only for very early low-level debugging, which
 757 * is why the token is hard-coded to 10.
 758 */
 759static void call_rtas_display_status(unsigned char c)
 760{
 761	unsigned long flags;
 762
 763	if (!rtas.base)
 764		return;
 765
 766	raw_spin_lock_irqsave(&rtas_lock, flags);
 767	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
 768	raw_spin_unlock_irqrestore(&rtas_lock, flags);
 769}
 770
 771static void call_rtas_display_status_delay(char c)
 772{
 773	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 774	static int width = 16;
 775
 776	if (c == '\n') {
 777		while (width-- > 0)
 778			call_rtas_display_status(' ');
 779		width = 16;
 780		mdelay(500);
 781		pending_newline = 1;
 782	} else {
 783		if (pending_newline) {
 784			call_rtas_display_status('\r');
 785			call_rtas_display_status('\n');
 786		}
 787		pending_newline = 0;
 788		if (width--) {
 789			call_rtas_display_status(c);
 790			udelay(10000);
 791		}
 792	}
 793}
 794
 795void __init udbg_init_rtas_panel(void)
 796{
 797	udbg_putc = call_rtas_display_status_delay;
 798}
 799
 800#ifdef CONFIG_UDBG_RTAS_CONSOLE
 801
 802/* If you think you're dying before early_init_dt_scan_rtas() does its
 803 * work, you can hard code the token values for your firmware here and
 804 * hardcode rtas.base/entry etc.
 805 */
 806static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 807static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 808
 809static void udbg_rtascon_putc(char c)
 810{
 811	int tries;
 812
 813	if (!rtas.base)
 814		return;
 815
 816	/* Add CRs before LFs */
 817	if (c == '\n')
 818		udbg_rtascon_putc('\r');
 819
 820	/* if there is more than one character to be displayed, wait a bit */
 821	for (tries = 0; tries < 16; tries++) {
 822		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 823			break;
 824		udelay(1000);
 825	}
 826}
 827
 828static int udbg_rtascon_getc_poll(void)
 829{
 830	int c;
 831
 832	if (!rtas.base)
 833		return -1;
 834
 835	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 836		return -1;
 837
 838	return c;
 839}
 840
 841static int udbg_rtascon_getc(void)
 842{
 843	int c;
 844
 845	while ((c = udbg_rtascon_getc_poll()) == -1)
 846		;
 847
 848	return c;
 849}
 850
 851
 852void __init udbg_init_rtas_console(void)
 853{
 854	udbg_putc = udbg_rtascon_putc;
 855	udbg_getc = udbg_rtascon_getc;
 856	udbg_getc_poll = udbg_rtascon_getc_poll;
 857}
 858#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 859
 860void rtas_progress(char *s, unsigned short hex)
 861{
 862	struct device_node *root;
 863	int width;
 864	const __be32 *p;
 865	char *os;
 866	static int display_character, set_indicator;
 867	static int display_width, display_lines, form_feed;
 868	static const int *row_width;
 869	static DEFINE_SPINLOCK(progress_lock);
 870	static int current_line;
 871	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 872
 873	if (!rtas.base)
 874		return;
 875
 876	if (display_width == 0) {
 877		display_width = 0x10;
 878		if ((root = of_find_node_by_path("/rtas"))) {
 879			if ((p = of_get_property(root,
 880					"ibm,display-line-length", NULL)))
 881				display_width = be32_to_cpu(*p);
 882			if ((p = of_get_property(root,
 883					"ibm,form-feed", NULL)))
 884				form_feed = be32_to_cpu(*p);
 885			if ((p = of_get_property(root,
 886					"ibm,display-number-of-lines", NULL)))
 887				display_lines = be32_to_cpu(*p);
 888			row_width = of_get_property(root,
 889					"ibm,display-truncation-length", NULL);
 890			of_node_put(root);
 891		}
 892		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
 893		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
 894	}
 895
 896	if (display_character == RTAS_UNKNOWN_SERVICE) {
 897		/* use hex display if available */
 898		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 899			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 900		return;
 901	}
 902
 903	spin_lock(&progress_lock);
 904
 905	/*
 906	 * Last write ended with newline, but we didn't print it since
 907	 * it would just clear the bottom line of output. Print it now
 908	 * instead.
 909	 *
 910	 * If no newline is pending and form feed is supported, clear the
 911	 * display with a form feed; otherwise, print a CR to start output
 912	 * at the beginning of the line.
 913	 */
 914	if (pending_newline) {
 915		rtas_call(display_character, 1, 1, NULL, '\r');
 916		rtas_call(display_character, 1, 1, NULL, '\n');
 917		pending_newline = 0;
 918	} else {
 919		current_line = 0;
 920		if (form_feed)
 921			rtas_call(display_character, 1, 1, NULL,
 922				  (char)form_feed);
 923		else
 924			rtas_call(display_character, 1, 1, NULL, '\r');
 925	}
 926
 927	if (row_width)
 928		width = row_width[current_line];
 929	else
 930		width = display_width;
 931	os = s;
 932	while (*os) {
 933		if (*os == '\n' || *os == '\r') {
 934			/* If newline is the last character, save it
 935			 * until next call to avoid bumping up the
 936			 * display output.
 937			 */
 938			if (*os == '\n' && !os[1]) {
 939				pending_newline = 1;
 940				current_line++;
 941				if (current_line > display_lines-1)
 942					current_line = display_lines-1;
 943				spin_unlock(&progress_lock);
 944				return;
 945			}
 946
 947			/* RTAS wants CR-LF, not just LF */
 948
 949			if (*os == '\n') {
 950				rtas_call(display_character, 1, 1, NULL, '\r');
 951				rtas_call(display_character, 1, 1, NULL, '\n');
 952			} else {
 953				/* CR might be used to re-draw a line, so we'll
 954				 * leave it alone and not add LF.
 955				 */
 956				rtas_call(display_character, 1, 1, NULL, *os);
 957			}
 958
 959			if (row_width)
 960				width = row_width[current_line];
 961			else
 962				width = display_width;
 963		} else {
 964			width--;
 965			rtas_call(display_character, 1, 1, NULL, *os);
 966		}
 967
 968		os++;
 969
 970		/* if we overwrite the screen length */
 971		if (width <= 0)
 972			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 973				os++;
 974	}
 975
 976	spin_unlock(&progress_lock);
 977}
 978EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
 979
 980int rtas_token(const char *service)
 981{
 982	const struct rtas_function *func;
 983	const __be32 *tokp;
 984
 985	if (rtas.dev == NULL)
 986		return RTAS_UNKNOWN_SERVICE;
 987
 988	func = rtas_name_to_function(service);
 989	if (func)
 990		return func->token;
 991	/*
 992	 * The caller is looking up a name that is not known to be an
 993	 * RTAS function. Either it's a function that needs to be
 994	 * added to the table, or they're misusing rtas_token() to
 995	 * access non-function properties of the /rtas node. Warn and
 996	 * fall back to the legacy behavior.
 997	 */
 998	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
 999		  service);
1000
1001	tokp = of_get_property(rtas.dev, service, NULL);
1002	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1003}
1004EXPORT_SYMBOL_GPL(rtas_token);
 
 
 
 
 
 
1005
1006#ifdef CONFIG_RTAS_ERROR_LOGGING
1007
1008static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1009
1010/*
1011 * Return the firmware-specified size of the error log buffer
1012 *  for all rtas calls that require an error buffer argument.
1013 *  This includes 'check-exception' and 'rtas-last-error'.
1014 */
1015int rtas_get_error_log_max(void)
1016{
 
 
 
 
 
 
 
 
 
 
 
1017	return rtas_error_log_max;
1018}
1019
1020static void __init init_error_log_max(void)
1021{
1022	static const char propname[] __initconst = "rtas-error-log-max";
1023	u32 max;
1024
1025	if (of_property_read_u32(rtas.dev, propname, &max)) {
1026		pr_warn("%s not found, using default of %u\n",
1027			propname, RTAS_ERROR_LOG_MAX);
1028		max = RTAS_ERROR_LOG_MAX;
1029	}
1030
1031	if (max > RTAS_ERROR_LOG_MAX) {
1032		pr_warn("%s = %u, clamping max error log size to %u\n",
1033			propname, max, RTAS_ERROR_LOG_MAX);
1034		max = RTAS_ERROR_LOG_MAX;
1035	}
1036
1037	rtas_error_log_max = max;
1038}
1039
1040
1041static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 
1042
1043/** Return a copy of the detailed error text associated with the
1044 *  most recent failed call to rtas.  Because the error text
1045 *  might go stale if there are any other intervening rtas calls,
1046 *  this routine must be called atomically with whatever produced
1047 *  the error (i.e. with rtas_lock still held from the previous call).
1048 */
1049static char *__fetch_rtas_last_error(char *altbuf)
1050{
1051	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1052	struct rtas_args err_args, save_args;
1053	u32 bufsz;
1054	char *buf = NULL;
1055
1056	lockdep_assert_held(&rtas_lock);
1057
1058	if (token == -1)
1059		return NULL;
1060
1061	bufsz = rtas_get_error_log_max();
1062
1063	err_args.token = cpu_to_be32(token);
1064	err_args.nargs = cpu_to_be32(2);
1065	err_args.nret = cpu_to_be32(1);
1066	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1067	err_args.args[1] = cpu_to_be32(bufsz);
1068	err_args.args[2] = 0;
1069
1070	save_args = rtas_args;
1071	rtas_args = err_args;
1072
1073	do_enter_rtas(&rtas_args);
1074
1075	err_args = rtas_args;
1076	rtas_args = save_args;
1077
1078	/* Log the error in the unlikely case that there was one. */
1079	if (unlikely(err_args.args[2] == 0)) {
1080		if (altbuf) {
1081			buf = altbuf;
1082		} else {
1083			buf = rtas_err_buf;
1084			if (slab_is_available())
1085				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1086		}
1087		if (buf)
1088			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1089	}
1090
1091	return buf;
1092}
1093
1094#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1095
1096#else /* CONFIG_RTAS_ERROR_LOGGING */
1097#define __fetch_rtas_last_error(x)	NULL
1098#define get_errorlog_buffer()		NULL
1099static void __init init_error_log_max(void) {}
1100#endif
1101
1102
1103static void
1104va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1105		      va_list list)
1106{
1107	int i;
1108
1109	args->token = cpu_to_be32(token);
1110	args->nargs = cpu_to_be32(nargs);
1111	args->nret  = cpu_to_be32(nret);
1112	args->rets  = &(args->args[nargs]);
1113
1114	for (i = 0; i < nargs; ++i)
1115		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1116
1117	for (i = 0; i < nret; ++i)
1118		args->rets[i] = 0;
1119
1120	do_enter_rtas(args);
1121}
1122
1123/**
1124 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1125 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1126 *        constraints.
1127 * @token: Identifies the function being invoked.
1128 * @nargs: Number of input parameters. Does not include token.
1129 * @nret: Number of output parameters, including the call status.
1130 * @....: List of @nargs input parameters.
1131 *
1132 * Invokes the RTAS function indicated by @token, which the caller
1133 * should obtain via rtas_function_token().
1134 *
1135 * This function is similar to rtas_call(), but must be used with a
1136 * limited set of RTAS calls specifically exempted from the general
1137 * requirement that only one RTAS call may be in progress at any
1138 * time. Examples include stop-self and ibm,nmi-interlock.
1139 */
1140void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1141{
1142	va_list list;
1143
1144	va_start(list, nret);
1145	va_rtas_call_unlocked(args, token, nargs, nret, list);
1146	va_end(list);
1147}
1148
1149static bool token_is_restricted_errinjct(s32 token)
1150{
1151	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1152	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1153}
1154
1155/**
1156 * rtas_call() - Invoke an RTAS firmware function.
1157 * @token: Identifies the function being invoked.
1158 * @nargs: Number of input parameters. Does not include token.
1159 * @nret: Number of output parameters, including the call status.
1160 * @outputs: Array of @nret output words.
1161 * @....: List of @nargs input parameters.
1162 *
1163 * Invokes the RTAS function indicated by @token, which the caller
1164 * should obtain via rtas_function_token().
1165 *
1166 * The @nargs and @nret arguments must match the number of input and
1167 * output parameters specified for the RTAS function.
1168 *
1169 * rtas_call() returns RTAS status codes, not conventional Linux errno
1170 * values. Callers must translate any failure to an appropriate errno
1171 * in syscall context. Most callers of RTAS functions that can return
1172 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1173 * statuses before calling again.
1174 *
1175 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1176 * Codes of the PAPR and CHRP specifications.
1177 *
1178 * Context: Process context preferably, interrupt context if
1179 *          necessary.  Acquires an internal spinlock and may perform
1180 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1181 *          context.
1182 * Return:
1183 * *                          0 - RTAS function call succeeded.
1184 * *                         -1 - RTAS function encountered a hardware or
1185 *                                platform error, or the token is invalid,
1186 *                                or the function is restricted by kernel policy.
1187 * *                         -2 - Specs say "A necessary hardware device was busy,
1188 *                                and the requested function could not be
1189 *                                performed. The operation should be retried at
1190 *                                a later time." This is misleading, at least with
1191 *                                respect to current RTAS implementations. What it
1192 *                                usually means in practice is that the function
1193 *                                could not be completed while meeting RTAS's
1194 *                                deadline for returning control to the OS (250us
1195 *                                for PAPR/PowerVM, typically), but the call may be
1196 *                                immediately reattempted to resume work on it.
1197 * *                         -3 - Parameter error.
1198 * *                         -7 - Unexpected state change.
1199 * *                9000...9899 - Vendor-specific success codes.
1200 * *                9900...9905 - Advisory extended delay. Caller should try
1201 *                                again after ~10^x ms has elapsed, where x is
1202 *                                the last digit of the status [0-5]. Again going
1203 *                                beyond the PAPR text, 990x on PowerVM indicates
1204 *                                contention for RTAS-internal resources. Other
1205 *                                RTAS call sequences in progress should be
1206 *                                allowed to complete before reattempting the
1207 *                                call.
1208 * *                      -9000 - Multi-level isolation error.
1209 * *              -9999...-9004 - Vendor-specific error codes.
1210 * * Additional negative values - Function-specific error.
1211 * * Additional positive values - Function-specific success.
1212 */
1213int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1214{
1215	struct pin_cookie cookie;
1216	va_list list;
1217	int i;
1218	unsigned long flags;
1219	struct rtas_args *args;
1220	char *buff_copy = NULL;
1221	int ret;
1222
1223	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1224		return -1;
1225
1226	if (token_is_restricted_errinjct(token)) {
1227		/*
1228		 * It would be nicer to not discard the error value
1229		 * from security_locked_down(), but callers expect an
1230		 * RTAS status, not an errno.
1231		 */
1232		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1233			return -1;
1234	}
1235
1236	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1237		WARN_ON_ONCE(1);
1238		return -1;
1239	}
1240
1241	raw_spin_lock_irqsave(&rtas_lock, flags);
1242	cookie = lockdep_pin_lock(&rtas_lock);
1243
1244	/* We use the global rtas args buffer */
1245	args = &rtas_args;
1246
1247	va_start(list, outputs);
1248	va_rtas_call_unlocked(args, token, nargs, nret, list);
1249	va_end(list);
1250
1251	/* A -1 return code indicates that the last command couldn't
1252	   be completed due to a hardware error. */
1253	if (be32_to_cpu(args->rets[0]) == -1)
1254		buff_copy = __fetch_rtas_last_error(NULL);
1255
1256	if (nret > 1 && outputs != NULL)
1257		for (i = 0; i < nret-1; ++i)
1258			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1259	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1260
1261	lockdep_unpin_lock(&rtas_lock, cookie);
1262	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1263
1264	if (buff_copy) {
1265		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1266		if (slab_is_available())
1267			kfree(buff_copy);
1268	}
1269	return ret;
1270}
1271EXPORT_SYMBOL_GPL(rtas_call);
1272
1273/**
1274 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1275 *                          suggested delay time in milliseconds.
1276 *
1277 * @status: a value returned from rtas_call() or similar APIs which return
1278 *          the status of a RTAS function call.
1279 *
1280 * Context: Any context.
1281 *
1282 * Return:
1283 * * 100000 - If @status is 9905.
1284 * * 10000  - If @status is 9904.
1285 * * 1000   - If @status is 9903.
1286 * * 100    - If @status is 9902.
1287 * * 10     - If @status is 9901.
1288 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1289 *            some callers depend on this behavior, and the worst outcome
1290 *            is that they will delay for longer than necessary.
1291 * * 0      - If @status is not a busy or extended delay value.
1292 */
1293unsigned int rtas_busy_delay_time(int status)
1294{
1295	int order;
1296	unsigned int ms = 0;
1297
1298	if (status == RTAS_BUSY) {
1299		ms = 1;
1300	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1301		   status <= RTAS_EXTENDED_DELAY_MAX) {
1302		order = status - RTAS_EXTENDED_DELAY_MIN;
1303		for (ms = 1; order > 0; order--)
1304			ms *= 10;
1305	}
1306
1307	return ms;
1308}
 
1309
1310/*
1311 * Early boot fallback for rtas_busy_delay().
1312 */
1313static bool __init rtas_busy_delay_early(int status)
1314{
1315	static size_t successive_ext_delays __initdata;
1316	bool retry;
1317
1318	switch (status) {
1319	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1320		/*
1321		 * In the unlikely case that we receive an extended
1322		 * delay status in early boot, the OS is probably not
1323		 * the cause, and there's nothing we can do to clear
1324		 * the condition. Best we can do is delay for a bit
1325		 * and hope it's transient. Lie to the caller if it
1326		 * seems like we're stuck in a retry loop.
1327		 */
1328		mdelay(1);
1329		retry = true;
1330		successive_ext_delays += 1;
1331		if (successive_ext_delays > 1000) {
1332			pr_err("too many extended delays, giving up\n");
1333			dump_stack();
1334			retry = false;
1335			successive_ext_delays = 0;
1336		}
1337		break;
1338	case RTAS_BUSY:
1339		retry = true;
1340		successive_ext_delays = 0;
1341		break;
1342	default:
1343		retry = false;
1344		successive_ext_delays = 0;
1345		break;
1346	}
1347
1348	return retry;
1349}
1350
1351/**
1352 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1353 *
1354 * @status: a value returned from rtas_call() or similar APIs which return
1355 *          the status of a RTAS function call.
1356 *
1357 * Context: Process context. May sleep or schedule.
1358 *
1359 * Return:
1360 * * true  - @status is RTAS_BUSY or an extended delay hint. The
1361 *           caller may assume that the CPU has been yielded if necessary,
1362 *           and that an appropriate delay for @status has elapsed.
1363 *           Generally the caller should reattempt the RTAS call which
1364 *           yielded @status.
1365 *
1366 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1367 *           caller is responsible for handling @status.
1368 */
1369bool __ref rtas_busy_delay(int status)
1370{
1371	unsigned int ms;
1372	bool ret;
1373
1374	/*
1375	 * Can't do timed sleeps before timekeeping is up.
1376	 */
1377	if (system_state < SYSTEM_SCHEDULING)
1378		return rtas_busy_delay_early(status);
1379
1380	switch (status) {
1381	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1382		ret = true;
1383		ms = rtas_busy_delay_time(status);
1384		/*
1385		 * The extended delay hint can be as high as 100 seconds.
1386		 * Surely any function returning such a status is either
1387		 * buggy or isn't going to be significantly slowed by us
1388		 * polling at 1HZ. Clamp the sleep time to one second.
1389		 */
1390		ms = clamp(ms, 1U, 1000U);
1391		/*
1392		 * The delay hint is an order-of-magnitude suggestion, not
1393		 * a minimum. It is fine, possibly even advantageous, for
1394		 * us to pause for less time than hinted. For small values,
1395		 * use usleep_range() to ensure we don't sleep much longer
1396		 * than actually needed.
1397		 *
1398		 * See Documentation/timers/timers-howto.rst for
1399		 * explanation of the threshold used here. In effect we use
1400		 * usleep_range() for 9900 and 9901, msleep() for
1401		 * 9902-9905.
1402		 */
1403		if (ms <= 20)
1404			usleep_range(ms * 100, ms * 1000);
1405		else
1406			msleep(ms);
1407		break;
1408	case RTAS_BUSY:
1409		ret = true;
1410		/*
1411		 * We should call again immediately if there's no other
1412		 * work to do.
1413		 */
1414		cond_resched();
1415		break;
1416	default:
1417		ret = false;
1418		/*
1419		 * Not a busy or extended delay status; the caller should
1420		 * handle @status itself. Ensure we warn on misuses in
1421		 * atomic context regardless.
1422		 */
1423		might_sleep();
1424		break;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(rtas_busy_delay);
1430
1431int rtas_error_rc(int rtas_rc)
1432{
1433	int rc;
1434
1435	switch (rtas_rc) {
1436	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1437		rc = -EIO;
1438		break;
1439	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1440		rc = -EINVAL;
1441		break;
1442	case -9000:			/* Isolation error */
1443		rc = -EFAULT;
1444		break;
1445	case -9001:			/* Outstanding TCE/PTE */
1446		rc = -EEXIST;
1447		break;
1448	case -9002:			/* No usable slot */
1449		rc = -ENODEV;
1450		break;
1451	default:
1452		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1453		rc = -ERANGE;
1454		break;
 
1455	}
1456	return rc;
1457}
1458EXPORT_SYMBOL_GPL(rtas_error_rc);
1459
1460int rtas_get_power_level(int powerdomain, int *level)
1461{
1462	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1463	int rc;
1464
1465	if (token == RTAS_UNKNOWN_SERVICE)
1466		return -ENOENT;
1467
1468	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1469		udelay(1);
1470
1471	if (rc < 0)
1472		return rtas_error_rc(rc);
1473	return rc;
1474}
1475EXPORT_SYMBOL_GPL(rtas_get_power_level);
1476
1477int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1478{
1479	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1480	int rc;
1481
1482	if (token == RTAS_UNKNOWN_SERVICE)
1483		return -ENOENT;
1484
1485	do {
1486		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1487	} while (rtas_busy_delay(rc));
1488
1489	if (rc < 0)
1490		return rtas_error_rc(rc);
1491	return rc;
1492}
1493EXPORT_SYMBOL_GPL(rtas_set_power_level);
1494
1495int rtas_get_sensor(int sensor, int index, int *state)
1496{
1497	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1498	int rc;
1499
1500	if (token == RTAS_UNKNOWN_SERVICE)
1501		return -ENOENT;
1502
1503	do {
1504		rc = rtas_call(token, 2, 2, state, sensor, index);
1505	} while (rtas_busy_delay(rc));
1506
1507	if (rc < 0)
1508		return rtas_error_rc(rc);
1509	return rc;
1510}
1511EXPORT_SYMBOL_GPL(rtas_get_sensor);
1512
1513int rtas_get_sensor_fast(int sensor, int index, int *state)
1514{
1515	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1516	int rc;
1517
1518	if (token == RTAS_UNKNOWN_SERVICE)
1519		return -ENOENT;
1520
1521	rc = rtas_call(token, 2, 2, state, sensor, index);
1522	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1523				    rc <= RTAS_EXTENDED_DELAY_MAX));
1524
1525	if (rc < 0)
1526		return rtas_error_rc(rc);
1527	return rc;
1528}
1529
1530bool rtas_indicator_present(int token, int *maxindex)
1531{
1532	int proplen, count, i;
1533	const struct indicator_elem {
1534		__be32 token;
1535		__be32 maxindex;
1536	} *indicators;
1537
1538	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1539	if (!indicators)
1540		return false;
1541
1542	count = proplen / sizeof(struct indicator_elem);
1543
1544	for (i = 0; i < count; i++) {
1545		if (__be32_to_cpu(indicators[i].token) != token)
1546			continue;
1547		if (maxindex)
1548			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1549		return true;
1550	}
1551
1552	return false;
1553}
 
1554
1555int rtas_set_indicator(int indicator, int index, int new_value)
1556{
1557	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1558	int rc;
1559
1560	if (token == RTAS_UNKNOWN_SERVICE)
1561		return -ENOENT;
1562
1563	do {
1564		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1565	} while (rtas_busy_delay(rc));
1566
1567	if (rc < 0)
1568		return rtas_error_rc(rc);
1569	return rc;
1570}
1571EXPORT_SYMBOL_GPL(rtas_set_indicator);
1572
1573/*
1574 * Ignoring RTAS extended delay
1575 */
1576int rtas_set_indicator_fast(int indicator, int index, int new_value)
1577{
1578	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1579	int rc;
 
1580
1581	if (token == RTAS_UNKNOWN_SERVICE)
1582		return -ENOENT;
1583
1584	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1585
1586	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1587				    rc <= RTAS_EXTENDED_DELAY_MAX));
1588
1589	if (rc < 0)
1590		return rtas_error_rc(rc);
1591
1592	return rc;
1593}
1594
1595/**
1596 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1597 *
1598 * @fw_status: RTAS call status will be placed here if not NULL.
1599 *
1600 * rtas_ibm_suspend_me() should be called only on a CPU which has
1601 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1602 * should be waiting to return from H_JOIN.
1603 *
1604 * rtas_ibm_suspend_me() may suspend execution of the OS
1605 * indefinitely. Callers should take appropriate measures upon return, such as
1606 * resetting watchdog facilities.
1607 *
1608 * Callers may choose to retry this call if @fw_status is
1609 * %RTAS_THREADS_ACTIVE.
1610 *
1611 * Return:
1612 * 0          - The partition has resumed from suspend, possibly after
1613 *              migration to a different host.
1614 * -ECANCELED - The operation was aborted.
1615 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1616 * -EBUSY     - Some other condition prevented the suspend from succeeding.
1617 * -EIO       - Hardware/platform error.
1618 */
1619int rtas_ibm_suspend_me(int *fw_status)
1620{
1621	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1622	int fwrc;
1623	int ret;
1624
1625	fwrc = rtas_call(token, 0, 1, NULL);
1626
1627	switch (fwrc) {
1628	case 0:
1629		ret = 0;
1630		break;
1631	case RTAS_SUSPEND_ABORTED:
1632		ret = -ECANCELED;
1633		break;
1634	case RTAS_THREADS_ACTIVE:
1635		ret = -EAGAIN;
1636		break;
1637	case RTAS_NOT_SUSPENDABLE:
1638	case RTAS_OUTSTANDING_COPROC:
1639		ret = -EBUSY;
1640		break;
1641	case -1:
1642	default:
1643		ret = -EIO;
1644		break;
1645	}
1646
1647	if (fw_status)
1648		*fw_status = fwrc;
1649
1650	return ret;
1651}
1652
1653void __noreturn rtas_restart(char *cmd)
1654{
1655	if (rtas_flash_term_hook)
1656		rtas_flash_term_hook(SYS_RESTART);
1657	pr_emerg("system-reboot returned %d\n",
1658		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1659	for (;;);
1660}
1661
1662void rtas_power_off(void)
1663{
1664	if (rtas_flash_term_hook)
1665		rtas_flash_term_hook(SYS_POWER_OFF);
1666	/* allow power on only with power button press */
1667	pr_emerg("power-off returned %d\n",
1668		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1669	for (;;);
1670}
1671
1672void __noreturn rtas_halt(void)
1673{
1674	if (rtas_flash_term_hook)
1675		rtas_flash_term_hook(SYS_HALT);
1676	/* allow power on only with power button press */
1677	pr_emerg("power-off returned %d\n",
1678		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1679	for (;;);
1680}
1681
1682/* Must be in the RMO region, so we place it here */
1683static char rtas_os_term_buf[2048];
1684static bool ibm_extended_os_term;
1685
1686void rtas_os_term(char *str)
1687{
1688	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1689	static struct rtas_args args;
1690	int status;
1691
1692	/*
1693	 * Firmware with the ibm,extended-os-term property is guaranteed
1694	 * to always return from an ibm,os-term call. Earlier versions without
1695	 * this property may terminate the partition which we want to avoid
1696	 * since it interferes with panic_timeout.
1697	 */
1698
1699	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1700		return;
1701
1702	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1703
1704	/*
1705	 * Keep calling as long as RTAS returns a "try again" status,
1706	 * but don't use rtas_busy_delay(), which potentially
1707	 * schedules.
1708	 */
1709	do {
1710		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1711		status = be32_to_cpu(args.rets[0]);
1712	} while (rtas_busy_delay_time(status));
1713
1714	if (status != 0)
1715		pr_emerg("ibm,os-term call failed %d\n", status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716}
1717
1718/**
1719 * rtas_activate_firmware() - Activate a new version of firmware.
1720 *
1721 * Context: This function may sleep.
1722 *
1723 * Activate a new version of partition firmware. The OS must call this
1724 * after resuming from a partition hibernation or migration in order
1725 * to maintain the ability to perform live firmware updates. It's not
1726 * catastrophic for this method to be absent or to fail; just log the
1727 * condition in that case.
 
 
 
 
 
 
1728 */
1729void rtas_activate_firmware(void)
1730{
1731	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1732	int fwrc;
 
 
1733
1734	if (token == RTAS_UNKNOWN_SERVICE) {
1735		pr_notice("ibm,activate-firmware method unavailable\n");
1736		return;
1737	}
 
 
 
 
 
 
 
 
 
 
 
 
1738
1739	mutex_lock(&rtas_ibm_activate_firmware_lock);
 
1740
1741	do {
1742		fwrc = rtas_call(token, 0, 1, NULL);
1743	} while (rtas_busy_delay(fwrc));
1744
1745	mutex_unlock(&rtas_ibm_activate_firmware_lock);
 
1746
1747	if (fwrc)
1748		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
 
 
1749}
 
1750
1751/**
1752 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1753 *                          extended event log.
1754 * @log: RTAS error/event log
1755 * @section_id: two character section identifier
1756 *
1757 * Return: A pointer to the specified errorlog or NULL if not found.
1758 */
1759noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1760						      uint16_t section_id)
1761{
1762	struct rtas_ext_event_log_v6 *ext_log =
1763		(struct rtas_ext_event_log_v6 *)log->buffer;
1764	struct pseries_errorlog *sect;
1765	unsigned char *p, *log_end;
1766	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1767	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1768	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1769
1770	/* Check that we understand the format */
1771	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1772	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1773	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1774		return NULL;
1775
1776	log_end = log->buffer + ext_log_length;
1777	p = ext_log->vendor_log;
1778
1779	while (p < log_end) {
1780		sect = (struct pseries_errorlog *)p;
1781		if (pseries_errorlog_id(sect) == section_id)
1782			return sect;
1783		p += pseries_errorlog_length(sect);
1784	}
1785
1786	return NULL;
1787}
1788
1789/*
1790 * The sys_rtas syscall, as originally designed, allows root to pass
1791 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1792 * can be abused to write to arbitrary memory and do other things that
1793 * are potentially harmful to system integrity, and thus should only
1794 * be used inside the kernel and not exposed to userspace.
1795 *
1796 * All known legitimate users of the sys_rtas syscall will only ever
1797 * pass addresses that fall within the RMO buffer, and use a known
1798 * subset of RTAS calls.
1799 *
1800 * Accordingly, we filter RTAS requests to check that the call is
1801 * permitted, and that provided pointers fall within the RMO buffer.
1802 * If a function is allowed to be invoked via the syscall, then its
1803 * entry in the rtas_functions table points to a rtas_filter that
1804 * describes its constraints, with the indexes of the parameters which
1805 * are expected to contain addresses and sizes of buffers allocated
1806 * inside the RMO buffer.
1807 */
1808
1809static bool in_rmo_buf(u32 base, u32 end)
1810{
1811	return base >= rtas_rmo_buf &&
1812		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1813		base <= end &&
1814		end >= rtas_rmo_buf &&
1815		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1816}
1817
1818static bool block_rtas_call(const struct rtas_function *func, int nargs,
1819			    struct rtas_args *args)
1820{
1821	const struct rtas_filter *f;
1822	const bool is_platform_dump =
1823		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1824	const bool is_config_conn =
1825		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1826	u32 base, size, end;
1827
1828	/*
1829	 * Only functions with filters attached are allowed.
1830	 */
1831	f = func->filter;
1832	if (!f)
1833		goto err;
1834	/*
1835	 * And some functions aren't allowed on LE.
1836	 */
1837	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1838		goto err;
1839
1840	if (f->buf_idx1 != -1) {
1841		base = be32_to_cpu(args->args[f->buf_idx1]);
1842		if (f->size_idx1 != -1)
1843			size = be32_to_cpu(args->args[f->size_idx1]);
1844		else if (f->fixed_size)
1845			size = f->fixed_size;
1846		else
1847			size = 1;
1848
1849		end = base + size - 1;
1850
1851		/*
1852		 * Special case for ibm,platform-dump - NULL buffer
1853		 * address is used to indicate end of dump processing
1854		 */
1855		if (is_platform_dump && base == 0)
1856			return false;
1857
1858		if (!in_rmo_buf(base, end))
1859			goto err;
1860	}
1861
1862	if (f->buf_idx2 != -1) {
1863		base = be32_to_cpu(args->args[f->buf_idx2]);
1864		if (f->size_idx2 != -1)
1865			size = be32_to_cpu(args->args[f->size_idx2]);
1866		else if (f->fixed_size)
1867			size = f->fixed_size;
1868		else
1869			size = 1;
1870		end = base + size - 1;
1871
1872		/*
1873		 * Special case for ibm,configure-connector where the
1874		 * address can be 0
1875		 */
1876		if (is_config_conn && base == 0)
1877			return false;
1878
1879		if (!in_rmo_buf(base, end))
1880			goto err;
1881	}
1882
1883	return false;
1884err:
1885	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1886	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1887			   func->name, nargs, current->comm);
1888	return true;
1889}
1890
1891/* We assume to be passed big endian arguments */
1892SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1893{
1894	const struct rtas_function *func;
1895	struct pin_cookie cookie;
1896	struct rtas_args args;
1897	unsigned long flags;
1898	char *buff_copy, *errbuf = NULL;
1899	int nargs, nret, token;
1900
1901	if (!capable(CAP_SYS_ADMIN))
1902		return -EPERM;
1903
1904	if (!rtas.entry)
1905		return -EINVAL;
1906
1907	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1908		return -EFAULT;
1909
1910	nargs = be32_to_cpu(args.nargs);
1911	nret  = be32_to_cpu(args.nret);
1912	token = be32_to_cpu(args.token);
1913
1914	if (nargs >= ARRAY_SIZE(args.args)
1915	    || nret > ARRAY_SIZE(args.args)
1916	    || nargs + nret > ARRAY_SIZE(args.args))
1917		return -EINVAL;
1918
1919	/* Copy in args. */
1920	if (copy_from_user(args.args, uargs->args,
1921			   nargs * sizeof(rtas_arg_t)) != 0)
1922		return -EFAULT;
1923
1924	/*
1925	 * If this token doesn't correspond to a function the kernel
1926	 * understands, you're not allowed to call it.
1927	 */
1928	func = rtas_token_to_function_untrusted(token);
1929	if (!func)
1930		return -EINVAL;
1931
1932	args.rets = &args.args[nargs];
1933	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1934
1935	if (block_rtas_call(func, nargs, &args))
1936		return -EINVAL;
1937
1938	if (token_is_restricted_errinjct(token)) {
1939		int err;
1940
1941		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1942		if (err)
1943			return err;
1944	}
1945
1946	/* Need to handle ibm,suspend_me call specially */
1947	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1948
1949		/*
1950		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1951		 * endian, or at least the hcall within it requires it.
1952		 */
1953		int rc = 0;
1954		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1955		              | be32_to_cpu(args.args[1]);
1956		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1957		if (rc == -EAGAIN)
1958			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1959		else if (rc == -EIO)
1960			args.rets[0] = cpu_to_be32(-1);
1961		else if (rc)
1962			return rc;
1963		goto copy_return;
1964	}
1965
1966	buff_copy = get_errorlog_buffer();
1967
1968	/*
1969	 * If this function has a mutex assigned to it, we must
1970	 * acquire it to avoid interleaving with any kernel-based uses
1971	 * of the same function. Kernel-based sequences acquire the
1972	 * appropriate mutex explicitly.
1973	 */
1974	if (func->lock)
1975		mutex_lock(func->lock);
1976
1977	raw_spin_lock_irqsave(&rtas_lock, flags);
1978	cookie = lockdep_pin_lock(&rtas_lock);
1979
1980	rtas_args = args;
1981	do_enter_rtas(&rtas_args);
1982	args = rtas_args;
1983
1984	/* A -1 return code indicates that the last command couldn't
1985	   be completed due to a hardware error. */
1986	if (be32_to_cpu(args.rets[0]) == -1)
1987		errbuf = __fetch_rtas_last_error(buff_copy);
1988
1989	lockdep_unpin_lock(&rtas_lock, cookie);
1990	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1991
1992	if (func->lock)
1993		mutex_unlock(func->lock);
1994
1995	if (buff_copy) {
1996		if (errbuf)
1997			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1998		kfree(buff_copy);
1999	}
2000
2001 copy_return:
2002	/* Copy out args. */
2003	if (copy_to_user(uargs->args + nargs,
2004			 args.args + nargs,
2005			 nret * sizeof(rtas_arg_t)) != 0)
2006		return -EFAULT;
2007
2008	return 0;
2009}
2010
2011static void __init rtas_function_table_init(void)
2012{
2013	struct property *prop;
2014
2015	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2016		struct rtas_function *curr = &rtas_function_table[i];
2017		struct rtas_function *prior;
2018		int cmp;
2019
2020		curr->token = RTAS_UNKNOWN_SERVICE;
2021
2022		if (i == 0)
2023			continue;
2024		/*
2025		 * Ensure table is sorted correctly for binary search
2026		 * on function names.
2027		 */
2028		prior = &rtas_function_table[i - 1];
2029
2030		cmp = strcmp(prior->name, curr->name);
2031		if (cmp < 0)
2032			continue;
2033
2034		if (cmp == 0) {
2035			pr_err("'%s' has duplicate function table entries\n",
2036			       curr->name);
2037		} else {
2038			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2039			       prior->name, curr->name);
2040		}
2041	}
2042
2043	for_each_property_of_node(rtas.dev, prop) {
2044		struct rtas_function *func;
2045
2046		if (prop->length != sizeof(u32))
2047			continue;
2048
2049		func = __rtas_name_to_function(prop->name);
2050		if (!func)
2051			continue;
2052
2053		func->token = be32_to_cpup((__be32 *)prop->value);
2054
2055		pr_debug("function %s has token %u\n", func->name, func->token);
2056	}
2057}
2058
2059/*
2060 * Call early during boot, before mem init, to retrieve the RTAS
2061 * information from the device-tree and allocate the RMO buffer for userland
2062 * accesses.
2063 */
2064void __init rtas_initialize(void)
2065{
2066	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2067	u32 base, size, entry;
2068	int no_base, no_size, no_entry;
2069
2070	/* Get RTAS dev node and fill up our "rtas" structure with infos
2071	 * about it.
2072	 */
2073	rtas.dev = of_find_node_by_name(NULL, "rtas");
2074	if (!rtas.dev)
2075		return;
2076
2077	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2078	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2079	if (no_base || no_size) {
2080		of_node_put(rtas.dev);
2081		rtas.dev = NULL;
2082		return;
2083	}
2084
2085	rtas.base = base;
2086	rtas.size = size;
2087	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2088	rtas.entry = no_entry ? rtas.base : entry;
2089
2090	init_error_log_max();
2091
2092	/* Must be called before any function token lookups */
2093	rtas_function_table_init();
2094
2095	/*
2096	 * Discover this now to avoid a device tree lookup in the
2097	 * panic path.
2098	 */
2099	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2100
2101	/* If RTAS was found, allocate the RMO buffer for it and look for
2102	 * the stop-self token if any
2103	 */
2104#ifdef CONFIG_PPC64
2105	if (firmware_has_feature(FW_FEATURE_LPAR))
2106		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
 
 
2107#endif
2108	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2109						 0, rtas_region);
2110	if (!rtas_rmo_buf)
2111		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2112		      PAGE_SIZE, &rtas_region);
2113
2114	rtas_work_area_reserve_arena(rtas_region);
 
 
2115}
2116
2117int __init early_init_dt_scan_rtas(unsigned long node,
2118		const char *uname, int depth, void *data)
2119{
2120	const u32 *basep, *entryp, *sizep;
2121
2122	if (depth != 1 || strcmp(uname, "rtas") != 0)
2123		return 0;
2124
2125	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2126	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2127	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2128
2129#ifdef CONFIG_PPC64
2130	/* need this feature to decide the crashkernel offset */
2131	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2132		powerpc_firmware_features |= FW_FEATURE_LPAR;
2133#endif
2134
2135	if (basep && entryp && sizep) {
2136		rtas.base = *basep;
2137		rtas.entry = *entryp;
2138		rtas.size = *sizep;
2139	}
2140
2141#ifdef CONFIG_UDBG_RTAS_CONSOLE
2142	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2143	if (basep)
2144		rtas_putchar_token = *basep;
2145
2146	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2147	if (basep)
2148		rtas_getchar_token = *basep;
2149
2150	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2151	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2152		udbg_init_rtas_console();
2153
2154#endif
2155
2156	/* break now */
2157	return 1;
2158}
2159
2160static DEFINE_RAW_SPINLOCK(timebase_lock);
2161static u64 timebase = 0;
2162
2163void rtas_give_timebase(void)
2164{
2165	unsigned long flags;
2166
2167	raw_spin_lock_irqsave(&timebase_lock, flags);
2168	hard_irq_disable();
2169	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
 
2170	timebase = get_tb();
2171	raw_spin_unlock(&timebase_lock);
2172
2173	while (timebase)
2174		barrier();
2175	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2176	local_irq_restore(flags);
2177}
2178
2179void rtas_take_timebase(void)
2180{
2181	while (!timebase)
2182		barrier();
2183	raw_spin_lock(&timebase_lock);
2184	set_tb(timebase >> 32, timebase & 0xffffffff);
2185	timebase = 0;
2186	raw_spin_unlock(&timebase_lock);
2187}