Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#include <stdarg.h>
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/spinlock.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/capability.h>
  17#include <linux/delay.h>
  18#include <linux/cpu.h>
  19#include <linux/sched.h>
  20#include <linux/smp.h>
  21#include <linux/completion.h>
  22#include <linux/cpumask.h>
  23#include <linux/memblock.h>
  24#include <linux/slab.h>
 
 
 
  25#include <linux/reboot.h>
 
 
 
 
 
  26#include <linux/syscalls.h>
 
 
 
  27
  28#include <asm/prom.h>
  29#include <asm/rtas.h>
  30#include <asm/hvcall.h>
  31#include <asm/machdep.h>
  32#include <asm/firmware.h>
 
 
 
  33#include <asm/page.h>
  34#include <asm/param.h>
  35#include <asm/delay.h>
  36#include <linux/uaccess.h>
  37#include <asm/udbg.h>
  38#include <asm/syscalls.h>
  39#include <asm/smp.h>
  40#include <linux/atomic.h>
  41#include <asm/time.h>
  42#include <asm/mmu.h>
  43#include <asm/topology.h>
  44#include <asm/paca.h>
  45
  46/* This is here deliberately so it's only used in this file */
  47void enter_rtas(unsigned long);
 
 
 
 
 
 
 
 
 
 
  48
  49struct rtas_t rtas = {
  50	.lock = __ARCH_SPIN_LOCK_UNLOCKED
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51};
  52EXPORT_SYMBOL(rtas);
  53
  54DEFINE_SPINLOCK(rtas_data_buf_lock);
  55EXPORT_SYMBOL(rtas_data_buf_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
  58EXPORT_SYMBOL(rtas_data_buf);
 
 
  59
  60unsigned long rtas_rmo_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62/*
  63 * If non-NULL, this gets called when the kernel terminates.
  64 * This is done like this so rtas_flash can be a module.
 
  65 */
  66void (*rtas_flash_term_hook)(int);
  67EXPORT_SYMBOL(rtas_flash_term_hook);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69/* RTAS use home made raw locking instead of spin_lock_irqsave
  70 * because those can be called from within really nasty contexts
  71 * such as having the timebase stopped which would lockup with
  72 * normal locks and spinlock debugging enabled
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73 */
  74static unsigned long lock_rtas(void)
  75{
  76	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78	local_irq_save(flags);
  79	preempt_disable();
  80	arch_spin_lock(&rtas.lock);
  81	return flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82}
  83
  84static void unlock_rtas(unsigned long flags)
  85{
  86	arch_spin_unlock(&rtas.lock);
  87	local_irq_restore(flags);
  88	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89}
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91/*
  92 * call_rtas_display_status and call_rtas_display_status_delay
  93 * are designed only for very early low-level debugging, which
  94 * is why the token is hard-coded to 10.
  95 */
  96static void call_rtas_display_status(unsigned char c)
  97{
  98	unsigned long s;
  99
 100	if (!rtas.base)
 101		return;
 102
 103	s = lock_rtas();
 104	rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
 105	unlock_rtas(s);
 106}
 107
 108static void call_rtas_display_status_delay(char c)
 109{
 110	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 111	static int width = 16;
 112
 113	if (c == '\n') {	
 114		while (width-- > 0)
 115			call_rtas_display_status(' ');
 116		width = 16;
 117		mdelay(500);
 118		pending_newline = 1;
 119	} else {
 120		if (pending_newline) {
 121			call_rtas_display_status('\r');
 122			call_rtas_display_status('\n');
 123		} 
 124		pending_newline = 0;
 125		if (width--) {
 126			call_rtas_display_status(c);
 127			udelay(10000);
 128		}
 129	}
 130}
 131
 132void __init udbg_init_rtas_panel(void)
 133{
 134	udbg_putc = call_rtas_display_status_delay;
 135}
 136
 137#ifdef CONFIG_UDBG_RTAS_CONSOLE
 138
 139/* If you think you're dying before early_init_dt_scan_rtas() does its
 140 * work, you can hard code the token values for your firmware here and
 141 * hardcode rtas.base/entry etc.
 142 */
 143static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 144static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 145
 146static void udbg_rtascon_putc(char c)
 147{
 148	int tries;
 149
 150	if (!rtas.base)
 151		return;
 152
 153	/* Add CRs before LFs */
 154	if (c == '\n')
 155		udbg_rtascon_putc('\r');
 156
 157	/* if there is more than one character to be displayed, wait a bit */
 158	for (tries = 0; tries < 16; tries++) {
 159		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 160			break;
 161		udelay(1000);
 162	}
 163}
 164
 165static int udbg_rtascon_getc_poll(void)
 166{
 167	int c;
 168
 169	if (!rtas.base)
 170		return -1;
 171
 172	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 173		return -1;
 174
 175	return c;
 176}
 177
 178static int udbg_rtascon_getc(void)
 179{
 180	int c;
 181
 182	while ((c = udbg_rtascon_getc_poll()) == -1)
 183		;
 184
 185	return c;
 186}
 187
 188
 189void __init udbg_init_rtas_console(void)
 190{
 191	udbg_putc = udbg_rtascon_putc;
 192	udbg_getc = udbg_rtascon_getc;
 193	udbg_getc_poll = udbg_rtascon_getc_poll;
 194}
 195#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 196
 197void rtas_progress(char *s, unsigned short hex)
 198{
 199	struct device_node *root;
 200	int width;
 201	const __be32 *p;
 202	char *os;
 203	static int display_character, set_indicator;
 204	static int display_width, display_lines, form_feed;
 205	static const int *row_width;
 206	static DEFINE_SPINLOCK(progress_lock);
 207	static int current_line;
 208	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 209
 210	if (!rtas.base)
 211		return;
 212
 213	if (display_width == 0) {
 214		display_width = 0x10;
 215		if ((root = of_find_node_by_path("/rtas"))) {
 216			if ((p = of_get_property(root,
 217					"ibm,display-line-length", NULL)))
 218				display_width = be32_to_cpu(*p);
 219			if ((p = of_get_property(root,
 220					"ibm,form-feed", NULL)))
 221				form_feed = be32_to_cpu(*p);
 222			if ((p = of_get_property(root,
 223					"ibm,display-number-of-lines", NULL)))
 224				display_lines = be32_to_cpu(*p);
 225			row_width = of_get_property(root,
 226					"ibm,display-truncation-length", NULL);
 227			of_node_put(root);
 228		}
 229		display_character = rtas_token("display-character");
 230		set_indicator = rtas_token("set-indicator");
 231	}
 232
 233	if (display_character == RTAS_UNKNOWN_SERVICE) {
 234		/* use hex display if available */
 235		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 236			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 237		return;
 238	}
 239
 240	spin_lock(&progress_lock);
 241
 242	/*
 243	 * Last write ended with newline, but we didn't print it since
 244	 * it would just clear the bottom line of output. Print it now
 245	 * instead.
 246	 *
 247	 * If no newline is pending and form feed is supported, clear the
 248	 * display with a form feed; otherwise, print a CR to start output
 249	 * at the beginning of the line.
 250	 */
 251	if (pending_newline) {
 252		rtas_call(display_character, 1, 1, NULL, '\r');
 253		rtas_call(display_character, 1, 1, NULL, '\n');
 254		pending_newline = 0;
 255	} else {
 256		current_line = 0;
 257		if (form_feed)
 258			rtas_call(display_character, 1, 1, NULL,
 259				  (char)form_feed);
 260		else
 261			rtas_call(display_character, 1, 1, NULL, '\r');
 262	}
 263 
 264	if (row_width)
 265		width = row_width[current_line];
 266	else
 267		width = display_width;
 268	os = s;
 269	while (*os) {
 270		if (*os == '\n' || *os == '\r') {
 271			/* If newline is the last character, save it
 272			 * until next call to avoid bumping up the
 273			 * display output.
 274			 */
 275			if (*os == '\n' && !os[1]) {
 276				pending_newline = 1;
 277				current_line++;
 278				if (current_line > display_lines-1)
 279					current_line = display_lines-1;
 280				spin_unlock(&progress_lock);
 281				return;
 282			}
 283 
 284			/* RTAS wants CR-LF, not just LF */
 285 
 286			if (*os == '\n') {
 287				rtas_call(display_character, 1, 1, NULL, '\r');
 288				rtas_call(display_character, 1, 1, NULL, '\n');
 289			} else {
 290				/* CR might be used to re-draw a line, so we'll
 291				 * leave it alone and not add LF.
 292				 */
 293				rtas_call(display_character, 1, 1, NULL, *os);
 294			}
 295 
 296			if (row_width)
 297				width = row_width[current_line];
 298			else
 299				width = display_width;
 300		} else {
 301			width--;
 302			rtas_call(display_character, 1, 1, NULL, *os);
 303		}
 304 
 305		os++;
 306 
 307		/* if we overwrite the screen length */
 308		if (width <= 0)
 309			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 310				os++;
 311	}
 312 
 313	spin_unlock(&progress_lock);
 314}
 315EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */
 316
 317int rtas_token(const char *service)
 318{
 
 319	const __be32 *tokp;
 
 320	if (rtas.dev == NULL)
 321		return RTAS_UNKNOWN_SERVICE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322	tokp = of_get_property(rtas.dev, service, NULL);
 323	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
 324}
 325EXPORT_SYMBOL(rtas_token);
 326
 327int rtas_service_present(const char *service)
 328{
 329	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
 330}
 331EXPORT_SYMBOL(rtas_service_present);
 332
 333#ifdef CONFIG_RTAS_ERROR_LOGGING
 
 
 
 334/*
 335 * Return the firmware-specified size of the error log buffer
 336 *  for all rtas calls that require an error buffer argument.
 337 *  This includes 'check-exception' and 'rtas-last-error'.
 338 */
 339int rtas_get_error_log_max(void)
 340{
 341	static int rtas_error_log_max;
 342	if (rtas_error_log_max)
 343		return rtas_error_log_max;
 344
 345	rtas_error_log_max = rtas_token ("rtas-error-log-max");
 346	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
 347	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
 348		printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
 349			rtas_error_log_max);
 350		rtas_error_log_max = RTAS_ERROR_LOG_MAX;
 351	}
 352	return rtas_error_log_max;
 353}
 354EXPORT_SYMBOL(rtas_get_error_log_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356
 357static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 358static int rtas_last_error_token;
 359
 360/** Return a copy of the detailed error text associated with the
 361 *  most recent failed call to rtas.  Because the error text
 362 *  might go stale if there are any other intervening rtas calls,
 363 *  this routine must be called atomically with whatever produced
 364 *  the error (i.e. with rtas.lock still held from the previous call).
 365 */
 366static char *__fetch_rtas_last_error(char *altbuf)
 367{
 
 368	struct rtas_args err_args, save_args;
 369	u32 bufsz;
 370	char *buf = NULL;
 371
 372	if (rtas_last_error_token == -1)
 
 
 373		return NULL;
 374
 375	bufsz = rtas_get_error_log_max();
 376
 377	err_args.token = cpu_to_be32(rtas_last_error_token);
 378	err_args.nargs = cpu_to_be32(2);
 379	err_args.nret = cpu_to_be32(1);
 380	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
 381	err_args.args[1] = cpu_to_be32(bufsz);
 382	err_args.args[2] = 0;
 383
 384	save_args = rtas.args;
 385	rtas.args = err_args;
 386
 387	enter_rtas(__pa(&rtas.args));
 388
 389	err_args = rtas.args;
 390	rtas.args = save_args;
 391
 392	/* Log the error in the unlikely case that there was one. */
 393	if (unlikely(err_args.args[2] == 0)) {
 394		if (altbuf) {
 395			buf = altbuf;
 396		} else {
 397			buf = rtas_err_buf;
 398			if (slab_is_available())
 399				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
 400		}
 401		if (buf)
 402			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
 403	}
 404
 405	return buf;
 406}
 407
 408#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
 409
 410#else /* CONFIG_RTAS_ERROR_LOGGING */
 411#define __fetch_rtas_last_error(x)	NULL
 412#define get_errorlog_buffer()		NULL
 
 413#endif
 414
 415
 416static void
 417va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
 418		      va_list list)
 419{
 420	int i;
 421
 422	args->token = cpu_to_be32(token);
 423	args->nargs = cpu_to_be32(nargs);
 424	args->nret  = cpu_to_be32(nret);
 425	args->rets  = &(args->args[nargs]);
 426
 427	for (i = 0; i < nargs; ++i)
 428		args->args[i] = cpu_to_be32(va_arg(list, __u32));
 429
 430	for (i = 0; i < nret; ++i)
 431		args->rets[i] = 0;
 432
 433	enter_rtas(__pa(args));
 434}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
 437{
 438	va_list list;
 439
 440	va_start(list, nret);
 441	va_rtas_call_unlocked(args, token, nargs, nret, list);
 442	va_end(list);
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445int rtas_call(int token, int nargs, int nret, int *outputs, ...)
 446{
 
 447	va_list list;
 448	int i;
 449	unsigned long s;
 450	struct rtas_args *rtas_args;
 451	char *buff_copy = NULL;
 452	int ret;
 453
 454	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
 455		return -1;
 456
 457	s = lock_rtas();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458
 459	/* We use the global rtas args buffer */
 460	rtas_args = &rtas.args;
 461
 462	va_start(list, outputs);
 463	va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
 464	va_end(list);
 465
 466	/* A -1 return code indicates that the last command couldn't
 467	   be completed due to a hardware error. */
 468	if (be32_to_cpu(rtas_args->rets[0]) == -1)
 469		buff_copy = __fetch_rtas_last_error(NULL);
 470
 471	if (nret > 1 && outputs != NULL)
 472		for (i = 0; i < nret-1; ++i)
 473			outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
 474	ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
 475
 476	unlock_rtas(s);
 
 477
 478	if (buff_copy) {
 479		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
 480		if (slab_is_available())
 481			kfree(buff_copy);
 482	}
 483	return ret;
 484}
 485EXPORT_SYMBOL(rtas_call);
 486
 487/* For RTAS_BUSY (-2), delay for 1 millisecond.  For an extended busy status
 488 * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489 */
 490unsigned int rtas_busy_delay_time(int status)
 491{
 492	int order;
 493	unsigned int ms = 0;
 494
 495	if (status == RTAS_BUSY) {
 496		ms = 1;
 497	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
 498		   status <= RTAS_EXTENDED_DELAY_MAX) {
 499		order = status - RTAS_EXTENDED_DELAY_MIN;
 500		for (ms = 1; order > 0; order--)
 501			ms *= 10;
 502	}
 503
 504	return ms;
 505}
 506EXPORT_SYMBOL(rtas_busy_delay_time);
 507
 508/* For an RTAS busy status code, perform the hinted delay. */
 509unsigned int rtas_busy_delay(int status)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	unsigned int ms;
 
 512
 513	might_sleep();
 514	ms = rtas_busy_delay_time(status);
 515	if (ms && need_resched())
 516		msleep(ms);
 
 517
 518	return ms;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519}
 520EXPORT_SYMBOL(rtas_busy_delay);
 521
 522static int rtas_error_rc(int rtas_rc)
 523{
 524	int rc;
 525
 526	switch (rtas_rc) {
 527		case -1: 		/* Hardware Error */
 528			rc = -EIO;
 529			break;
 530		case -3:		/* Bad indicator/domain/etc */
 531			rc = -EINVAL;
 532			break;
 533		case -9000:		/* Isolation error */
 534			rc = -EFAULT;
 535			break;
 536		case -9001:		/* Outstanding TCE/PTE */
 537			rc = -EEXIST;
 538			break;
 539		case -9002:		/* No usable slot */
 540			rc = -ENODEV;
 541			break;
 542		default:
 543			printk(KERN_ERR "%s: unexpected RTAS error %d\n",
 544					__func__, rtas_rc);
 545			rc = -ERANGE;
 546			break;
 547	}
 548	return rc;
 549}
 
 550
 551int rtas_get_power_level(int powerdomain, int *level)
 552{
 553	int token = rtas_token("get-power-level");
 554	int rc;
 555
 556	if (token == RTAS_UNKNOWN_SERVICE)
 557		return -ENOENT;
 558
 559	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
 560		udelay(1);
 561
 562	if (rc < 0)
 563		return rtas_error_rc(rc);
 564	return rc;
 565}
 566EXPORT_SYMBOL(rtas_get_power_level);
 567
 568int rtas_set_power_level(int powerdomain, int level, int *setlevel)
 569{
 570	int token = rtas_token("set-power-level");
 571	int rc;
 572
 573	if (token == RTAS_UNKNOWN_SERVICE)
 574		return -ENOENT;
 575
 576	do {
 577		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
 578	} while (rtas_busy_delay(rc));
 579
 580	if (rc < 0)
 581		return rtas_error_rc(rc);
 582	return rc;
 583}
 584EXPORT_SYMBOL(rtas_set_power_level);
 585
 586int rtas_get_sensor(int sensor, int index, int *state)
 587{
 588	int token = rtas_token("get-sensor-state");
 589	int rc;
 590
 591	if (token == RTAS_UNKNOWN_SERVICE)
 592		return -ENOENT;
 593
 594	do {
 595		rc = rtas_call(token, 2, 2, state, sensor, index);
 596	} while (rtas_busy_delay(rc));
 597
 598	if (rc < 0)
 599		return rtas_error_rc(rc);
 600	return rc;
 601}
 602EXPORT_SYMBOL(rtas_get_sensor);
 603
 604int rtas_get_sensor_fast(int sensor, int index, int *state)
 605{
 606	int token = rtas_token("get-sensor-state");
 607	int rc;
 608
 609	if (token == RTAS_UNKNOWN_SERVICE)
 610		return -ENOENT;
 611
 612	rc = rtas_call(token, 2, 2, state, sensor, index);
 613	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 614				    rc <= RTAS_EXTENDED_DELAY_MAX));
 615
 616	if (rc < 0)
 617		return rtas_error_rc(rc);
 618	return rc;
 619}
 620
 621bool rtas_indicator_present(int token, int *maxindex)
 622{
 623	int proplen, count, i;
 624	const struct indicator_elem {
 625		__be32 token;
 626		__be32 maxindex;
 627	} *indicators;
 628
 629	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
 630	if (!indicators)
 631		return false;
 632
 633	count = proplen / sizeof(struct indicator_elem);
 634
 635	for (i = 0; i < count; i++) {
 636		if (__be32_to_cpu(indicators[i].token) != token)
 637			continue;
 638		if (maxindex)
 639			*maxindex = __be32_to_cpu(indicators[i].maxindex);
 640		return true;
 641	}
 642
 643	return false;
 644}
 645EXPORT_SYMBOL(rtas_indicator_present);
 646
 647int rtas_set_indicator(int indicator, int index, int new_value)
 648{
 649	int token = rtas_token("set-indicator");
 650	int rc;
 651
 652	if (token == RTAS_UNKNOWN_SERVICE)
 653		return -ENOENT;
 654
 655	do {
 656		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 657	} while (rtas_busy_delay(rc));
 658
 659	if (rc < 0)
 660		return rtas_error_rc(rc);
 661	return rc;
 662}
 663EXPORT_SYMBOL(rtas_set_indicator);
 664
 665/*
 666 * Ignoring RTAS extended delay
 667 */
 668int rtas_set_indicator_fast(int indicator, int index, int new_value)
 669{
 
 670	int rc;
 671	int token = rtas_token("set-indicator");
 672
 673	if (token == RTAS_UNKNOWN_SERVICE)
 674		return -ENOENT;
 675
 676	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 677
 678	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 679				    rc <= RTAS_EXTENDED_DELAY_MAX));
 680
 681	if (rc < 0)
 682		return rtas_error_rc(rc);
 683
 684	return rc;
 685}
 686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687void __noreturn rtas_restart(char *cmd)
 688{
 689	if (rtas_flash_term_hook)
 690		rtas_flash_term_hook(SYS_RESTART);
 691	printk("RTAS system-reboot returned %d\n",
 692	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
 693	for (;;);
 694}
 695
 696void rtas_power_off(void)
 697{
 698	if (rtas_flash_term_hook)
 699		rtas_flash_term_hook(SYS_POWER_OFF);
 700	/* allow power on only with power button press */
 701	printk("RTAS power-off returned %d\n",
 702	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 703	for (;;);
 704}
 705
 706void __noreturn rtas_halt(void)
 707{
 708	if (rtas_flash_term_hook)
 709		rtas_flash_term_hook(SYS_HALT);
 710	/* allow power on only with power button press */
 711	printk("RTAS power-off returned %d\n",
 712	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 713	for (;;);
 714}
 715
 716/* Must be in the RMO region, so we place it here */
 717static char rtas_os_term_buf[2048];
 
 718
 719void rtas_os_term(char *str)
 720{
 
 
 721	int status;
 722
 723	/*
 724	 * Firmware with the ibm,extended-os-term property is guaranteed
 725	 * to always return from an ibm,os-term call. Earlier versions without
 726	 * this property may terminate the partition which we want to avoid
 727	 * since it interferes with panic_timeout.
 728	 */
 729	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") ||
 730	    RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term"))
 731		return;
 732
 733	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
 734
 
 
 
 
 
 735	do {
 736		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
 737				   __pa(rtas_os_term_buf));
 738	} while (rtas_busy_delay(status));
 739
 740	if (status != 0)
 741		printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
 742}
 743
 744static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE;
 745#ifdef CONFIG_PPC_PSERIES
 746static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
 747{
 748	u16 slb_size = mmu_slb_size;
 749	int rc = H_MULTI_THREADS_ACTIVE;
 750	int cpu;
 751
 752	slb_set_size(SLB_MIN_SIZE);
 753	printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id());
 754
 755	while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) &&
 756	       !atomic_read(&data->error))
 757		rc = rtas_call(data->token, 0, 1, NULL);
 758
 759	if (rc || atomic_read(&data->error)) {
 760		printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc);
 761		slb_set_size(slb_size);
 762	}
 763
 764	if (atomic_read(&data->error))
 765		rc = atomic_read(&data->error);
 766
 767	atomic_set(&data->error, rc);
 768	pSeries_coalesce_init();
 769
 770	if (wake_when_done) {
 771		atomic_set(&data->done, 1);
 772
 773		for_each_online_cpu(cpu)
 774			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
 775	}
 776
 777	if (atomic_dec_return(&data->working) == 0)
 778		complete(data->complete);
 779
 780	return rc;
 781}
 782
 783int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data)
 784{
 785	atomic_inc(&data->working);
 786	return __rtas_suspend_last_cpu(data, 0);
 787}
 788
 789static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
 790{
 791	long rc = H_SUCCESS;
 792	unsigned long msr_save;
 793	int cpu;
 794
 795	atomic_inc(&data->working);
 796
 797	/* really need to ensure MSR.EE is off for H_JOIN */
 798	msr_save = mfmsr();
 799	mtmsr(msr_save & ~(MSR_EE));
 800
 801	while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error))
 802		rc = plpar_hcall_norets(H_JOIN);
 803
 804	mtmsr(msr_save);
 805
 806	if (rc == H_SUCCESS) {
 807		/* This cpu was prodded and the suspend is complete. */
 808		goto out;
 809	} else if (rc == H_CONTINUE) {
 810		/* All other cpus are in H_JOIN, this cpu does
 811		 * the suspend.
 812		 */
 813		return __rtas_suspend_last_cpu(data, wake_when_done);
 814	} else {
 815		printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n",
 816		       smp_processor_id(), rc);
 817		atomic_set(&data->error, rc);
 818	}
 819
 820	if (wake_when_done) {
 821		atomic_set(&data->done, 1);
 822
 823		/* This cpu did the suspend or got an error; in either case,
 824		 * we need to prod all other other cpus out of join state.
 825		 * Extra prods are harmless.
 826		 */
 827		for_each_online_cpu(cpu)
 828			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
 829	}
 830out:
 831	if (atomic_dec_return(&data->working) == 0)
 832		complete(data->complete);
 833	return rc;
 834}
 835
 836int rtas_suspend_cpu(struct rtas_suspend_me_data *data)
 837{
 838	return __rtas_suspend_cpu(data, 0);
 839}
 840
 841static void rtas_percpu_suspend_me(void *info)
 842{
 843	__rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1);
 844}
 845
 846int rtas_ibm_suspend_me(u64 handle)
 847{
 848	long state;
 849	long rc;
 850	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
 851	struct rtas_suspend_me_data data;
 852	DECLARE_COMPLETION_ONSTACK(done);
 853
 854	if (!rtas_service_present("ibm,suspend-me"))
 855		return -ENOSYS;
 856
 857	/* Make sure the state is valid */
 858	rc = plpar_hcall(H_VASI_STATE, retbuf, handle);
 859
 860	state = retbuf[0];
 861
 862	if (rc) {
 863		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
 864		return rc;
 865	} else if (state == H_VASI_ENABLED) {
 866		return -EAGAIN;
 867	} else if (state != H_VASI_SUSPENDING) {
 868		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
 869		       state);
 870		return -EIO;
 871	}
 872
 873	atomic_set(&data.working, 0);
 874	atomic_set(&data.done, 0);
 875	atomic_set(&data.error, 0);
 876	data.token = rtas_token("ibm,suspend-me");
 877	data.complete = &done;
 878
 879	lock_device_hotplug();
 880
 881	cpu_hotplug_disable();
 882
 883	/* Call function on all CPUs.  One of us will make the
 884	 * rtas call
 885	 */
 886	on_each_cpu(rtas_percpu_suspend_me, &data, 0);
 887
 888	wait_for_completion(&done);
 889
 890	if (atomic_read(&data.error) != 0)
 891		printk(KERN_ERR "Error doing global join\n");
 892
 893
 894	cpu_hotplug_enable();
 895
 896	unlock_device_hotplug();
 897
 898	return atomic_read(&data.error);
 899}
 900
 901/**
 902 * rtas_call_reentrant() - Used for reentrant rtas calls
 903 * @token:	Token for desired reentrant RTAS call
 904 * @nargs:	Number of Input Parameters
 905 * @nret:	Number of Output Parameters
 906 * @outputs:	Array of outputs
 907 * @...:	Inputs for desired RTAS call
 908 *
 909 * According to LoPAR documentation, only "ibm,int-on", "ibm,int-off",
 910 * "ibm,get-xive" and "ibm,set-xive" are currently reentrant.
 911 * Reentrant calls need their own rtas_args buffer, so not using rtas.args, but
 912 * PACA one instead.
 913 *
 914 * Return:	-1 on error,
 915 *		First output value of RTAS call if (nret > 0),
 916 *		0 otherwise,
 917 */
 918int rtas_call_reentrant(int token, int nargs, int nret, int *outputs, ...)
 919{
 920	va_list list;
 921	struct rtas_args *args;
 922	unsigned long flags;
 923	int i, ret = 0;
 924
 925	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
 926		return -1;
 927
 928	local_irq_save(flags);
 929	preempt_disable();
 930
 931	/* We use the per-cpu (PACA) rtas args buffer */
 932	args = local_paca->rtas_args_reentrant;
 933
 934	va_start(list, outputs);
 935	va_rtas_call_unlocked(args, token, nargs, nret, list);
 936	va_end(list);
 937
 938	if (nret > 1 && outputs)
 939		for (i = 0; i < nret - 1; ++i)
 940			outputs[i] = be32_to_cpu(args->rets[i + 1]);
 941
 942	if (nret > 0)
 943		ret = be32_to_cpu(args->rets[0]);
 944
 945	local_irq_restore(flags);
 946	preempt_enable();
 
 947
 948	return ret;
 949}
 950
 951#else /* CONFIG_PPC_PSERIES */
 952int rtas_ibm_suspend_me(u64 handle)
 953{
 954	return -ENOSYS;
 955}
 956#endif
 957
 958/**
 959 * Find a specific pseries error log in an RTAS extended event log.
 
 960 * @log: RTAS error/event log
 961 * @section_id: two character section identifier
 962 *
 963 * Returns a pointer to the specified errorlog or NULL if not found.
 964 */
 965struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
 966					      uint16_t section_id)
 967{
 968	struct rtas_ext_event_log_v6 *ext_log =
 969		(struct rtas_ext_event_log_v6 *)log->buffer;
 970	struct pseries_errorlog *sect;
 971	unsigned char *p, *log_end;
 972	uint32_t ext_log_length = rtas_error_extended_log_length(log);
 973	uint8_t log_format = rtas_ext_event_log_format(ext_log);
 974	uint32_t company_id = rtas_ext_event_company_id(ext_log);
 975
 976	/* Check that we understand the format */
 977	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
 978	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
 979	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
 980		return NULL;
 981
 982	log_end = log->buffer + ext_log_length;
 983	p = ext_log->vendor_log;
 984
 985	while (p < log_end) {
 986		sect = (struct pseries_errorlog *)p;
 987		if (pseries_errorlog_id(sect) == section_id)
 988			return sect;
 989		p += pseries_errorlog_length(sect);
 990	}
 991
 992	return NULL;
 993}
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995/* We assume to be passed big endian arguments */
 996SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
 997{
 
 
 998	struct rtas_args args;
 999	unsigned long flags;
1000	char *buff_copy, *errbuf = NULL;
1001	int nargs, nret, token;
1002
1003	if (!capable(CAP_SYS_ADMIN))
1004		return -EPERM;
1005
1006	if (!rtas.entry)
1007		return -EINVAL;
1008
1009	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1010		return -EFAULT;
1011
1012	nargs = be32_to_cpu(args.nargs);
1013	nret  = be32_to_cpu(args.nret);
1014	token = be32_to_cpu(args.token);
1015
1016	if (nargs >= ARRAY_SIZE(args.args)
1017	    || nret > ARRAY_SIZE(args.args)
1018	    || nargs + nret > ARRAY_SIZE(args.args))
1019		return -EINVAL;
1020
 
 
 
1021	/* Copy in args. */
1022	if (copy_from_user(args.args, uargs->args,
1023			   nargs * sizeof(rtas_arg_t)) != 0)
1024		return -EFAULT;
1025
1026	if (token == RTAS_UNKNOWN_SERVICE)
 
 
 
 
 
1027		return -EINVAL;
1028
1029	args.rets = &args.args[nargs];
1030	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1031
 
 
 
 
 
 
 
 
 
 
 
1032	/* Need to handle ibm,suspend_me call specially */
1033	if (token == ibm_suspend_me_token) {
1034
1035		/*
1036		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1037		 * endian, or at least the hcall within it requires it.
1038		 */
1039		int rc = 0;
1040		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1041		              | be32_to_cpu(args.args[1]);
1042		rc = rtas_ibm_suspend_me(handle);
1043		if (rc == -EAGAIN)
1044			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1045		else if (rc == -EIO)
1046			args.rets[0] = cpu_to_be32(-1);
1047		else if (rc)
1048			return rc;
1049		goto copy_return;
1050	}
1051
1052	buff_copy = get_errorlog_buffer();
1053
1054	flags = lock_rtas();
 
 
 
 
 
 
 
 
 
 
1055
1056	rtas.args = args;
1057	enter_rtas(__pa(&rtas.args));
1058	args = rtas.args;
1059
1060	/* A -1 return code indicates that the last command couldn't
1061	   be completed due to a hardware error. */
1062	if (be32_to_cpu(args.rets[0]) == -1)
1063		errbuf = __fetch_rtas_last_error(buff_copy);
1064
1065	unlock_rtas(flags);
 
 
 
 
1066
1067	if (buff_copy) {
1068		if (errbuf)
1069			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1070		kfree(buff_copy);
1071	}
1072
1073 copy_return:
1074	/* Copy out args. */
1075	if (copy_to_user(uargs->args + nargs,
1076			 args.args + nargs,
1077			 nret * sizeof(rtas_arg_t)) != 0)
1078		return -EFAULT;
1079
1080	return 0;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083/*
1084 * Call early during boot, before mem init, to retrieve the RTAS
1085 * information from the device-tree and allocate the RMO buffer for userland
1086 * accesses.
1087 */
1088void __init rtas_initialize(void)
1089{
1090	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1091	u32 base, size, entry;
1092	int no_base, no_size, no_entry;
1093
1094	/* Get RTAS dev node and fill up our "rtas" structure with infos
1095	 * about it.
1096	 */
1097	rtas.dev = of_find_node_by_name(NULL, "rtas");
1098	if (!rtas.dev)
1099		return;
1100
1101	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1102	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1103	if (no_base || no_size) {
1104		of_node_put(rtas.dev);
1105		rtas.dev = NULL;
1106		return;
1107	}
1108
1109	rtas.base = base;
1110	rtas.size = size;
1111	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1112	rtas.entry = no_entry ? rtas.base : entry;
1113
 
 
 
 
 
 
 
 
 
 
 
1114	/* If RTAS was found, allocate the RMO buffer for it and look for
1115	 * the stop-self token if any
1116	 */
1117#ifdef CONFIG_PPC64
1118	if (firmware_has_feature(FW_FEATURE_LPAR)) {
1119		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1120		ibm_suspend_me_token = rtas_token("ibm,suspend-me");
1121	}
1122#endif
1123	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE,
1124						 0, rtas_region);
1125	if (!rtas_rmo_buf)
1126		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1127		      PAGE_SIZE, &rtas_region);
1128
1129#ifdef CONFIG_RTAS_ERROR_LOGGING
1130	rtas_last_error_token = rtas_token("rtas-last-error");
1131#endif
1132}
1133
1134int __init early_init_dt_scan_rtas(unsigned long node,
1135		const char *uname, int depth, void *data)
1136{
1137	const u32 *basep, *entryp, *sizep;
1138
1139	if (depth != 1 || strcmp(uname, "rtas") != 0)
1140		return 0;
1141
1142	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1143	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1144	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
1145
 
 
 
 
 
 
1146	if (basep && entryp && sizep) {
1147		rtas.base = *basep;
1148		rtas.entry = *entryp;
1149		rtas.size = *sizep;
1150	}
1151
1152#ifdef CONFIG_UDBG_RTAS_CONSOLE
1153	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1154	if (basep)
1155		rtas_putchar_token = *basep;
1156
1157	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
1158	if (basep)
1159		rtas_getchar_token = *basep;
1160
1161	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
1162	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
1163		udbg_init_rtas_console();
1164
1165#endif
1166
1167	/* break now */
1168	return 1;
1169}
1170
1171static arch_spinlock_t timebase_lock;
1172static u64 timebase = 0;
1173
1174void rtas_give_timebase(void)
1175{
1176	unsigned long flags;
1177
1178	local_irq_save(flags);
1179	hard_irq_disable();
1180	arch_spin_lock(&timebase_lock);
1181	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
1182	timebase = get_tb();
1183	arch_spin_unlock(&timebase_lock);
1184
1185	while (timebase)
1186		barrier();
1187	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
1188	local_irq_restore(flags);
1189}
1190
1191void rtas_take_timebase(void)
1192{
1193	while (!timebase)
1194		barrier();
1195	arch_spin_lock(&timebase_lock);
1196	set_tb(timebase >> 32, timebase & 0xffffffff);
1197	timebase = 0;
1198	arch_spin_unlock(&timebase_lock);
1199}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#define pr_fmt(fmt)	"rtas: " fmt
  11
  12#include <linux/bsearch.h>
 
 
 
  13#include <linux/capability.h>
  14#include <linux/delay.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/kconfig.h>
  18#include <linux/kernel.h>
  19#include <linux/lockdep.h>
  20#include <linux/memblock.h>
  21#include <linux/mutex.h>
  22#include <linux/nospec.h>
  23#include <linux/of.h>
  24#include <linux/of_fdt.h>
  25#include <linux/reboot.h>
  26#include <linux/sched.h>
  27#include <linux/security.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30#include <linux/stdarg.h>
  31#include <linux/syscalls.h>
  32#include <linux/types.h>
  33#include <linux/uaccess.h>
  34#include <linux/xarray.h>
  35
  36#include <asm/delay.h>
 
 
 
  37#include <asm/firmware.h>
  38#include <asm/interrupt.h>
  39#include <asm/machdep.h>
  40#include <asm/mmu.h>
  41#include <asm/page.h>
  42#include <asm/rtas-work-area.h>
  43#include <asm/rtas.h>
 
 
 
 
 
  44#include <asm/time.h>
  45#include <asm/trace.h>
  46#include <asm/udbg.h>
 
  47
  48struct rtas_filter {
  49	/* Indexes into the args buffer, -1 if not used */
  50	const int buf_idx1;
  51	const int size_idx1;
  52	const int buf_idx2;
  53	const int size_idx2;
  54	/*
  55	 * Assumed buffer size per the spec if the function does not
  56	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
  57	 */
  58	const int fixed_size;
  59};
  60
  61/**
  62 * struct rtas_function - Descriptor for RTAS functions.
  63 *
  64 * @token: Value of @name if it exists under the /rtas node.
  65 * @name: Function name.
  66 * @filter: If non-NULL, invoking this function via the rtas syscall is
  67 *          generally allowed, and @filter describes constraints on the
  68 *          arguments. See also @banned_for_syscall_on_le.
  69 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
  70 *                            but specifically restricted on ppc64le. Such
  71 *                            functions are believed to have no users on
  72 *                            ppc64le, and we want to keep it that way. It does
  73 *                            not make sense for this to be set when @filter
  74 *                            is NULL.
  75 * @lock: Pointer to an optional dedicated per-function mutex. This
  76 *        should be set for functions that require multiple calls in
  77 *        sequence to complete a single operation, and such sequences
  78 *        will disrupt each other if allowed to interleave. Users of
  79 *        this function are required to hold the associated lock for
  80 *        the duration of the call sequence. Add an explanatory
  81 *        comment to the function table entry if setting this member.
  82 */
  83struct rtas_function {
  84	s32 token;
  85	const bool banned_for_syscall_on_le:1;
  86	const char * const name;
  87	const struct rtas_filter *filter;
  88	struct mutex *lock;
  89};
 
  90
  91/*
  92 * Per-function locks for sequence-based RTAS functions.
  93 */
  94static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
  95static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
  96static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
  97static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
  98static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
  99static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
 100DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
 101
 102static struct rtas_function rtas_function_table[] __ro_after_init = {
 103	[RTAS_FNIDX__CHECK_EXCEPTION] = {
 104		.name = "check-exception",
 105	},
 106	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
 107		.name = "display-character",
 108		.filter = &(const struct rtas_filter) {
 109			.buf_idx1 = -1, .size_idx1 = -1,
 110			.buf_idx2 = -1, .size_idx2 = -1,
 111		},
 112	},
 113	[RTAS_FNIDX__EVENT_SCAN] = {
 114		.name = "event-scan",
 115	},
 116	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
 117		.name = "freeze-time-base",
 118	},
 119	[RTAS_FNIDX__GET_POWER_LEVEL] = {
 120		.name = "get-power-level",
 121		.filter = &(const struct rtas_filter) {
 122			.buf_idx1 = -1, .size_idx1 = -1,
 123			.buf_idx2 = -1, .size_idx2 = -1,
 124		},
 125	},
 126	[RTAS_FNIDX__GET_SENSOR_STATE] = {
 127		.name = "get-sensor-state",
 128		.filter = &(const struct rtas_filter) {
 129			.buf_idx1 = -1, .size_idx1 = -1,
 130			.buf_idx2 = -1, .size_idx2 = -1,
 131		},
 132	},
 133	[RTAS_FNIDX__GET_TERM_CHAR] = {
 134		.name = "get-term-char",
 135	},
 136	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
 137		.name = "get-time-of-day",
 138		.filter = &(const struct rtas_filter) {
 139			.buf_idx1 = -1, .size_idx1 = -1,
 140			.buf_idx2 = -1, .size_idx2 = -1,
 141		},
 142	},
 143	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
 144		.name = "ibm,activate-firmware",
 145		.filter = &(const struct rtas_filter) {
 146			.buf_idx1 = -1, .size_idx1 = -1,
 147			.buf_idx2 = -1, .size_idx2 = -1,
 148		},
 149		/*
 150		 * PAPR+ as of v2.13 doesn't explicitly impose any
 151		 * restriction, but this typically requires multiple
 152		 * calls before success, and there's no reason to
 153		 * allow sequences to interleave.
 154		 */
 155		.lock = &rtas_ibm_activate_firmware_lock,
 156	},
 157	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
 158		.name = "ibm,cbe-start-ptcal",
 159	},
 160	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
 161		.name = "ibm,cbe-stop-ptcal",
 162	},
 163	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
 164		.name = "ibm,change-msi",
 165	},
 166	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
 167		.name = "ibm,close-errinjct",
 168		.filter = &(const struct rtas_filter) {
 169			.buf_idx1 = -1, .size_idx1 = -1,
 170			.buf_idx2 = -1, .size_idx2 = -1,
 171		},
 172	},
 173	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
 174		.name = "ibm,configure-bridge",
 175	},
 176	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
 177		.name = "ibm,configure-connector",
 178		.filter = &(const struct rtas_filter) {
 179			.buf_idx1 = 0, .size_idx1 = -1,
 180			.buf_idx2 = 1, .size_idx2 = -1,
 181			.fixed_size = 4096,
 182		},
 183	},
 184	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
 185		.name = "ibm,configure-kernel-dump",
 186	},
 187	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
 188		.name = "ibm,configure-pe",
 189	},
 190	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
 191		.name = "ibm,create-pe-dma-window",
 192	},
 193	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
 194		.name = "ibm,display-message",
 195		.filter = &(const struct rtas_filter) {
 196			.buf_idx1 = 0, .size_idx1 = -1,
 197			.buf_idx2 = -1, .size_idx2 = -1,
 198		},
 199	},
 200	[RTAS_FNIDX__IBM_ERRINJCT] = {
 201		.name = "ibm,errinjct",
 202		.filter = &(const struct rtas_filter) {
 203			.buf_idx1 = 2, .size_idx1 = -1,
 204			.buf_idx2 = -1, .size_idx2 = -1,
 205			.fixed_size = 1024,
 206		},
 207	},
 208	[RTAS_FNIDX__IBM_EXTI2C] = {
 209		.name = "ibm,exti2c",
 210	},
 211	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
 212		.name = "ibm,get-config-addr-info",
 213	},
 214	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
 215		.name = "ibm,get-config-addr-info2",
 216		.filter = &(const struct rtas_filter) {
 217			.buf_idx1 = -1, .size_idx1 = -1,
 218			.buf_idx2 = -1, .size_idx2 = -1,
 219		},
 220	},
 221	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
 222		.name = "ibm,get-dynamic-sensor-state",
 223		.filter = &(const struct rtas_filter) {
 224			.buf_idx1 = 1, .size_idx1 = -1,
 225			.buf_idx2 = -1, .size_idx2 = -1,
 226		},
 227		/*
 228		 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
 229		 * must not call ibm,get-dynamic-sensor-state with
 230		 * different inputs until a non-retry status has been
 231		 * returned.
 232		 */
 233		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
 234	},
 235	[RTAS_FNIDX__IBM_GET_INDICES] = {
 236		.name = "ibm,get-indices",
 237		.filter = &(const struct rtas_filter) {
 238			.buf_idx1 = 2, .size_idx1 = 3,
 239			.buf_idx2 = -1, .size_idx2 = -1,
 240		},
 241		/*
 242		 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
 243		 * interleave ibm,get-indices call sequences with
 244		 * different inputs.
 245		 */
 246		.lock = &rtas_ibm_get_indices_lock,
 247	},
 248	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
 249		.name = "ibm,get-rio-topology",
 250	},
 251	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
 252		.name = "ibm,get-system-parameter",
 253		.filter = &(const struct rtas_filter) {
 254			.buf_idx1 = 1, .size_idx1 = 2,
 255			.buf_idx2 = -1, .size_idx2 = -1,
 256		},
 257	},
 258	[RTAS_FNIDX__IBM_GET_VPD] = {
 259		.name = "ibm,get-vpd",
 260		.filter = &(const struct rtas_filter) {
 261			.buf_idx1 = 0, .size_idx1 = -1,
 262			.buf_idx2 = 1, .size_idx2 = 2,
 263		},
 264		/*
 265		 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
 266		 * should not be allowed to interleave.
 267		 */
 268		.lock = &rtas_ibm_get_vpd_lock,
 269	},
 270	[RTAS_FNIDX__IBM_GET_XIVE] = {
 271		.name = "ibm,get-xive",
 272	},
 273	[RTAS_FNIDX__IBM_INT_OFF] = {
 274		.name = "ibm,int-off",
 275	},
 276	[RTAS_FNIDX__IBM_INT_ON] = {
 277		.name = "ibm,int-on",
 278	},
 279	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
 280		.name = "ibm,io-quiesce-ack",
 281	},
 282	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
 283		.name = "ibm,lpar-perftools",
 284		.filter = &(const struct rtas_filter) {
 285			.buf_idx1 = 2, .size_idx1 = 3,
 286			.buf_idx2 = -1, .size_idx2 = -1,
 287		},
 288		/*
 289		 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
 290		 * only one call sequence in progress at a time.
 291		 */
 292		.lock = &rtas_ibm_lpar_perftools_lock,
 293	},
 294	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
 295		.name = "ibm,manage-flash-image",
 296	},
 297	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
 298		.name = "ibm,manage-storage-preservation",
 299	},
 300	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
 301		.name = "ibm,nmi-interlock",
 302	},
 303	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
 304		.name = "ibm,nmi-register",
 305	},
 306	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
 307		.name = "ibm,open-errinjct",
 308		.filter = &(const struct rtas_filter) {
 309			.buf_idx1 = -1, .size_idx1 = -1,
 310			.buf_idx2 = -1, .size_idx2 = -1,
 311		},
 312	},
 313	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
 314		.name = "ibm,open-sriov-allow-unfreeze",
 315	},
 316	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
 317		.name = "ibm,open-sriov-map-pe-number",
 318	},
 319	[RTAS_FNIDX__IBM_OS_TERM] = {
 320		.name = "ibm,os-term",
 321	},
 322	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
 323		.name = "ibm,partner-control",
 324	},
 325	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
 326		.name = "ibm,physical-attestation",
 327		.filter = &(const struct rtas_filter) {
 328			.buf_idx1 = 0, .size_idx1 = 1,
 329			.buf_idx2 = -1, .size_idx2 = -1,
 330		},
 331		/*
 332		 * This follows a sequence-based pattern similar to
 333		 * ibm,get-vpd et al. Since PAPR+ restricts
 334		 * interleaving call sequences for other functions of
 335		 * this style, assume the restriction applies here,
 336		 * even though it's not explicit in the spec.
 337		 */
 338		.lock = &rtas_ibm_physical_attestation_lock,
 339	},
 340	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
 341		.name = "ibm,platform-dump",
 342		.filter = &(const struct rtas_filter) {
 343			.buf_idx1 = 4, .size_idx1 = 5,
 344			.buf_idx2 = -1, .size_idx2 = -1,
 345		},
 346		/*
 347		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
 348		 * sequences of ibm,platform-dump are allowed if they
 349		 * are operating on different dump tags. So leave the
 350		 * lock pointer unset for now. This may need
 351		 * reconsideration if kernel-internal users appear.
 352		 */
 353	},
 354	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
 355		.name = "ibm,power-off-ups",
 356	},
 357	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
 358		.name = "ibm,query-interrupt-source-number",
 359	},
 360	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
 361		.name = "ibm,query-pe-dma-window",
 362	},
 363	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
 364		.name = "ibm,read-pci-config",
 365	},
 366	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
 367		.name = "ibm,read-slot-reset-state",
 368		.filter = &(const struct rtas_filter) {
 369			.buf_idx1 = -1, .size_idx1 = -1,
 370			.buf_idx2 = -1, .size_idx2 = -1,
 371		},
 372	},
 373	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
 374		.name = "ibm,read-slot-reset-state2",
 375	},
 376	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
 377		.name = "ibm,remove-pe-dma-window",
 378	},
 379	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
 380		/*
 381		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
 382		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
 383		 * implementations use the singular form in practice.
 384		 */
 385		.name = "ibm,reset-pe-dma-window",
 386	},
 387	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
 388		.name = "ibm,scan-log-dump",
 389		.filter = &(const struct rtas_filter) {
 390			.buf_idx1 = 0, .size_idx1 = 1,
 391			.buf_idx2 = -1, .size_idx2 = -1,
 392		},
 393	},
 394	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
 395		.name = "ibm,set-dynamic-indicator",
 396		.filter = &(const struct rtas_filter) {
 397			.buf_idx1 = 2, .size_idx1 = -1,
 398			.buf_idx2 = -1, .size_idx2 = -1,
 399		},
 400		/*
 401		 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
 402		 * this function with different inputs until a
 403		 * non-retry status has been returned.
 404		 */
 405		.lock = &rtas_ibm_set_dynamic_indicator_lock,
 406	},
 407	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
 408		.name = "ibm,set-eeh-option",
 409		.filter = &(const struct rtas_filter) {
 410			.buf_idx1 = -1, .size_idx1 = -1,
 411			.buf_idx2 = -1, .size_idx2 = -1,
 412		},
 413	},
 414	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
 415		.name = "ibm,set-slot-reset",
 416	},
 417	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
 418		.name = "ibm,set-system-parameter",
 419		.filter = &(const struct rtas_filter) {
 420			.buf_idx1 = 1, .size_idx1 = -1,
 421			.buf_idx2 = -1, .size_idx2 = -1,
 422		},
 423	},
 424	[RTAS_FNIDX__IBM_SET_XIVE] = {
 425		.name = "ibm,set-xive",
 426	},
 427	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
 428		.name = "ibm,slot-error-detail",
 429	},
 430	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
 431		.name = "ibm,suspend-me",
 432		.banned_for_syscall_on_le = true,
 433		.filter = &(const struct rtas_filter) {
 434			.buf_idx1 = -1, .size_idx1 = -1,
 435			.buf_idx2 = -1, .size_idx2 = -1,
 436		},
 437	},
 438	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
 439		.name = "ibm,tune-dma-parms",
 440	},
 441	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
 442		.name = "ibm,update-flash-64-and-reboot",
 443	},
 444	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
 445		.name = "ibm,update-nodes",
 446		.banned_for_syscall_on_le = true,
 447		.filter = &(const struct rtas_filter) {
 448			.buf_idx1 = 0, .size_idx1 = -1,
 449			.buf_idx2 = -1, .size_idx2 = -1,
 450			.fixed_size = 4096,
 451		},
 452	},
 453	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
 454		.name = "ibm,update-properties",
 455		.banned_for_syscall_on_le = true,
 456		.filter = &(const struct rtas_filter) {
 457			.buf_idx1 = 0, .size_idx1 = -1,
 458			.buf_idx2 = -1, .size_idx2 = -1,
 459			.fixed_size = 4096,
 460		},
 461	},
 462	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
 463		.name = "ibm,validate-flash-image",
 464	},
 465	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
 466		.name = "ibm,write-pci-config",
 467	},
 468	[RTAS_FNIDX__NVRAM_FETCH] = {
 469		.name = "nvram-fetch",
 470	},
 471	[RTAS_FNIDX__NVRAM_STORE] = {
 472		.name = "nvram-store",
 473	},
 474	[RTAS_FNIDX__POWER_OFF] = {
 475		.name = "power-off",
 476	},
 477	[RTAS_FNIDX__PUT_TERM_CHAR] = {
 478		.name = "put-term-char",
 479	},
 480	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
 481		.name = "query-cpu-stopped-state",
 482	},
 483	[RTAS_FNIDX__READ_PCI_CONFIG] = {
 484		.name = "read-pci-config",
 485	},
 486	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
 487		.name = "rtas-last-error",
 488	},
 489	[RTAS_FNIDX__SET_INDICATOR] = {
 490		.name = "set-indicator",
 491		.filter = &(const struct rtas_filter) {
 492			.buf_idx1 = -1, .size_idx1 = -1,
 493			.buf_idx2 = -1, .size_idx2 = -1,
 494		},
 495	},
 496	[RTAS_FNIDX__SET_POWER_LEVEL] = {
 497		.name = "set-power-level",
 498		.filter = &(const struct rtas_filter) {
 499			.buf_idx1 = -1, .size_idx1 = -1,
 500			.buf_idx2 = -1, .size_idx2 = -1,
 501		},
 502	},
 503	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
 504		.name = "set-time-for-power-on",
 505		.filter = &(const struct rtas_filter) {
 506			.buf_idx1 = -1, .size_idx1 = -1,
 507			.buf_idx2 = -1, .size_idx2 = -1,
 508		},
 509	},
 510	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
 511		.name = "set-time-of-day",
 512		.filter = &(const struct rtas_filter) {
 513			.buf_idx1 = -1, .size_idx1 = -1,
 514			.buf_idx2 = -1, .size_idx2 = -1,
 515		},
 516	},
 517	[RTAS_FNIDX__START_CPU] = {
 518		.name = "start-cpu",
 519	},
 520	[RTAS_FNIDX__STOP_SELF] = {
 521		.name = "stop-self",
 522	},
 523	[RTAS_FNIDX__SYSTEM_REBOOT] = {
 524		.name = "system-reboot",
 525	},
 526	[RTAS_FNIDX__THAW_TIME_BASE] = {
 527		.name = "thaw-time-base",
 528	},
 529	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
 530		.name = "write-pci-config",
 531	},
 532};
 533
 534#define for_each_rtas_function(funcp)                                       \
 535	for (funcp = &rtas_function_table[0];                               \
 536	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
 537	     ++funcp)
 538
 539/*
 540 * Nearly all RTAS calls need to be serialized. All uses of the
 541 * default rtas_args block must hold rtas_lock.
 542 *
 543 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
 544 * must use a separate rtas_args structure.
 545 */
 546static DEFINE_RAW_SPINLOCK(rtas_lock);
 547static struct rtas_args rtas_args;
 548
 549/**
 550 * rtas_function_token() - RTAS function token lookup.
 551 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
 552 *
 553 * Context: Any context.
 554 * Return: the token value for the function if implemented by this platform,
 555 *         otherwise RTAS_UNKNOWN_SERVICE.
 556 */
 557s32 rtas_function_token(const rtas_fn_handle_t handle)
 558{
 559	const size_t index = handle.index;
 560	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
 561
 562	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
 563		return RTAS_UNKNOWN_SERVICE;
 564	/*
 565	 * Various drivers attempt token lookups on non-RTAS
 566	 * platforms.
 567	 */
 568	if (!rtas.dev)
 569		return RTAS_UNKNOWN_SERVICE;
 570
 571	return rtas_function_table[index].token;
 572}
 573EXPORT_SYMBOL_GPL(rtas_function_token);
 574
 575static int rtas_function_cmp(const void *a, const void *b)
 576{
 577	const struct rtas_function *f1 = a;
 578	const struct rtas_function *f2 = b;
 579
 580	return strcmp(f1->name, f2->name);
 581}
 582
 583/*
 584 * Boot-time initialization of the function table needs the lookup to
 585 * return a non-const-qualified object. Use rtas_name_to_function()
 586 * in all other contexts.
 587 */
 588static struct rtas_function *__rtas_name_to_function(const char *name)
 589{
 590	const struct rtas_function key = {
 591		.name = name,
 592	};
 593	struct rtas_function *found;
 594
 595	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
 596			sizeof(rtas_function_table[0]), rtas_function_cmp);
 597
 598	return found;
 599}
 600
 601static const struct rtas_function *rtas_name_to_function(const char *name)
 602{
 603	return __rtas_name_to_function(name);
 604}
 605
 606static DEFINE_XARRAY(rtas_token_to_function_xarray);
 607
 608static int __init rtas_token_to_function_xarray_init(void)
 609{
 610	const struct rtas_function *func;
 611	int err = 0;
 612
 613	for_each_rtas_function(func) {
 614		const s32 token = func->token;
 615
 616		if (token == RTAS_UNKNOWN_SERVICE)
 617			continue;
 618
 619		err = xa_err(xa_store(&rtas_token_to_function_xarray,
 620				      token, (void *)func, GFP_KERNEL));
 621		if (err)
 622			break;
 623	}
 624
 625	return err;
 626}
 627arch_initcall(rtas_token_to_function_xarray_init);
 628
 629/*
 630 * For use by sys_rtas(), where the token value is provided by user
 631 * space and we don't want to warn on failed lookups.
 632 */
 633static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
 634{
 635	return xa_load(&rtas_token_to_function_xarray, token);
 636}
 637
 638/*
 639 * Reverse lookup for deriving the function descriptor from a
 640 * known-good token value in contexts where the former is not already
 641 * available. @token must be valid, e.g. derived from the result of a
 642 * prior lookup against the function table.
 643 */
 644static const struct rtas_function *rtas_token_to_function(s32 token)
 645{
 646	const struct rtas_function *func;
 647
 648	if (WARN_ONCE(token < 0, "invalid token %d", token))
 649		return NULL;
 650
 651	func = rtas_token_to_function_untrusted(token);
 652	if (func)
 653		return func;
 654	/*
 655	 * Fall back to linear scan in case the reverse mapping hasn't
 656	 * been initialized yet.
 657	 */
 658	if (xa_empty(&rtas_token_to_function_xarray)) {
 659		for_each_rtas_function(func) {
 660			if (func->token == token)
 661				return func;
 662		}
 663	}
 664
 665	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
 666	return NULL;
 667}
 668
 669/* This is here deliberately so it's only used in this file */
 670void enter_rtas(unsigned long);
 671
 672static void __do_enter_rtas(struct rtas_args *args)
 673{
 674	enter_rtas(__pa(args));
 675	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
 676}
 677
 678static void __do_enter_rtas_trace(struct rtas_args *args)
 679{
 680	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
 681
 682	/*
 683	 * If there is a per-function lock, it must be held by the
 684	 * caller.
 685	 */
 686	if (func->lock)
 687		lockdep_assert_held(func->lock);
 688
 689	if (args == &rtas_args)
 690		lockdep_assert_held(&rtas_lock);
 691
 692	trace_rtas_input(args, func->name);
 693	trace_rtas_ll_entry(args);
 694
 695	__do_enter_rtas(args);
 696
 697	trace_rtas_ll_exit(args);
 698	trace_rtas_output(args, func->name);
 699}
 700
 701static void do_enter_rtas(struct rtas_args *args)
 702{
 703	const unsigned long msr = mfmsr();
 704	/*
 705	 * Situations where we want to skip any active tracepoints for
 706	 * safety reasons:
 707	 *
 708	 * 1. The last code executed on an offline CPU as it stops,
 709	 *    i.e. we're about to call stop-self. The tracepoints'
 710	 *    function name lookup uses xarray, which uses RCU, which
 711	 *    isn't valid to call on an offline CPU.  Any events
 712	 *    emitted on an offline CPU will be discarded anyway.
 713	 *
 714	 * 2. In real mode, as when invoking ibm,nmi-interlock from
 715	 *    the pseries MCE handler. We cannot count on trace
 716	 *    buffers or the entries in rtas_token_to_function_xarray
 717	 *    to be contained in the RMO.
 718	 */
 719	const unsigned long mask = MSR_IR | MSR_DR;
 720	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
 721				      (msr & mask) == mask);
 722	/*
 723	 * Make sure MSR[RI] is currently enabled as it will be forced later
 724	 * in enter_rtas.
 725	 */
 726	BUG_ON(!(msr & MSR_RI));
 727
 728	BUG_ON(!irqs_disabled());
 729
 730	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
 731
 732	if (can_trace)
 733		__do_enter_rtas_trace(args);
 734	else
 735		__do_enter_rtas(args);
 736}
 737
 738struct rtas_t rtas;
 739
 740DEFINE_SPINLOCK(rtas_data_buf_lock);
 741EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
 742
 743char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
 744EXPORT_SYMBOL_GPL(rtas_data_buf);
 745
 746unsigned long rtas_rmo_buf;
 747
 748/*
 749 * If non-NULL, this gets called when the kernel terminates.
 750 * This is done like this so rtas_flash can be a module.
 751 */
 752void (*rtas_flash_term_hook)(int);
 753EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
 754
 755/*
 756 * call_rtas_display_status and call_rtas_display_status_delay
 757 * are designed only for very early low-level debugging, which
 758 * is why the token is hard-coded to 10.
 759 */
 760static void call_rtas_display_status(unsigned char c)
 761{
 762	unsigned long flags;
 763
 764	if (!rtas.base)
 765		return;
 766
 767	raw_spin_lock_irqsave(&rtas_lock, flags);
 768	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
 769	raw_spin_unlock_irqrestore(&rtas_lock, flags);
 770}
 771
 772static void call_rtas_display_status_delay(char c)
 773{
 774	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 775	static int width = 16;
 776
 777	if (c == '\n') {
 778		while (width-- > 0)
 779			call_rtas_display_status(' ');
 780		width = 16;
 781		mdelay(500);
 782		pending_newline = 1;
 783	} else {
 784		if (pending_newline) {
 785			call_rtas_display_status('\r');
 786			call_rtas_display_status('\n');
 787		}
 788		pending_newline = 0;
 789		if (width--) {
 790			call_rtas_display_status(c);
 791			udelay(10000);
 792		}
 793	}
 794}
 795
 796void __init udbg_init_rtas_panel(void)
 797{
 798	udbg_putc = call_rtas_display_status_delay;
 799}
 800
 801#ifdef CONFIG_UDBG_RTAS_CONSOLE
 802
 803/* If you think you're dying before early_init_dt_scan_rtas() does its
 804 * work, you can hard code the token values for your firmware here and
 805 * hardcode rtas.base/entry etc.
 806 */
 807static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 808static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 809
 810static void udbg_rtascon_putc(char c)
 811{
 812	int tries;
 813
 814	if (!rtas.base)
 815		return;
 816
 817	/* Add CRs before LFs */
 818	if (c == '\n')
 819		udbg_rtascon_putc('\r');
 820
 821	/* if there is more than one character to be displayed, wait a bit */
 822	for (tries = 0; tries < 16; tries++) {
 823		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 824			break;
 825		udelay(1000);
 826	}
 827}
 828
 829static int udbg_rtascon_getc_poll(void)
 830{
 831	int c;
 832
 833	if (!rtas.base)
 834		return -1;
 835
 836	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 837		return -1;
 838
 839	return c;
 840}
 841
 842static int udbg_rtascon_getc(void)
 843{
 844	int c;
 845
 846	while ((c = udbg_rtascon_getc_poll()) == -1)
 847		;
 848
 849	return c;
 850}
 851
 852
 853void __init udbg_init_rtas_console(void)
 854{
 855	udbg_putc = udbg_rtascon_putc;
 856	udbg_getc = udbg_rtascon_getc;
 857	udbg_getc_poll = udbg_rtascon_getc_poll;
 858}
 859#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 860
 861void rtas_progress(char *s, unsigned short hex)
 862{
 863	struct device_node *root;
 864	int width;
 865	const __be32 *p;
 866	char *os;
 867	static int display_character, set_indicator;
 868	static int display_width, display_lines, form_feed;
 869	static const int *row_width;
 870	static DEFINE_SPINLOCK(progress_lock);
 871	static int current_line;
 872	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 873
 874	if (!rtas.base)
 875		return;
 876
 877	if (display_width == 0) {
 878		display_width = 0x10;
 879		if ((root = of_find_node_by_path("/rtas"))) {
 880			if ((p = of_get_property(root,
 881					"ibm,display-line-length", NULL)))
 882				display_width = be32_to_cpu(*p);
 883			if ((p = of_get_property(root,
 884					"ibm,form-feed", NULL)))
 885				form_feed = be32_to_cpu(*p);
 886			if ((p = of_get_property(root,
 887					"ibm,display-number-of-lines", NULL)))
 888				display_lines = be32_to_cpu(*p);
 889			row_width = of_get_property(root,
 890					"ibm,display-truncation-length", NULL);
 891			of_node_put(root);
 892		}
 893		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
 894		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
 895	}
 896
 897	if (display_character == RTAS_UNKNOWN_SERVICE) {
 898		/* use hex display if available */
 899		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 900			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 901		return;
 902	}
 903
 904	spin_lock(&progress_lock);
 905
 906	/*
 907	 * Last write ended with newline, but we didn't print it since
 908	 * it would just clear the bottom line of output. Print it now
 909	 * instead.
 910	 *
 911	 * If no newline is pending and form feed is supported, clear the
 912	 * display with a form feed; otherwise, print a CR to start output
 913	 * at the beginning of the line.
 914	 */
 915	if (pending_newline) {
 916		rtas_call(display_character, 1, 1, NULL, '\r');
 917		rtas_call(display_character, 1, 1, NULL, '\n');
 918		pending_newline = 0;
 919	} else {
 920		current_line = 0;
 921		if (form_feed)
 922			rtas_call(display_character, 1, 1, NULL,
 923				  (char)form_feed);
 924		else
 925			rtas_call(display_character, 1, 1, NULL, '\r');
 926	}
 927
 928	if (row_width)
 929		width = row_width[current_line];
 930	else
 931		width = display_width;
 932	os = s;
 933	while (*os) {
 934		if (*os == '\n' || *os == '\r') {
 935			/* If newline is the last character, save it
 936			 * until next call to avoid bumping up the
 937			 * display output.
 938			 */
 939			if (*os == '\n' && !os[1]) {
 940				pending_newline = 1;
 941				current_line++;
 942				if (current_line > display_lines-1)
 943					current_line = display_lines-1;
 944				spin_unlock(&progress_lock);
 945				return;
 946			}
 947
 948			/* RTAS wants CR-LF, not just LF */
 949
 950			if (*os == '\n') {
 951				rtas_call(display_character, 1, 1, NULL, '\r');
 952				rtas_call(display_character, 1, 1, NULL, '\n');
 953			} else {
 954				/* CR might be used to re-draw a line, so we'll
 955				 * leave it alone and not add LF.
 956				 */
 957				rtas_call(display_character, 1, 1, NULL, *os);
 958			}
 959
 960			if (row_width)
 961				width = row_width[current_line];
 962			else
 963				width = display_width;
 964		} else {
 965			width--;
 966			rtas_call(display_character, 1, 1, NULL, *os);
 967		}
 968
 969		os++;
 970
 971		/* if we overwrite the screen length */
 972		if (width <= 0)
 973			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 974				os++;
 975	}
 976
 977	spin_unlock(&progress_lock);
 978}
 979EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
 980
 981int rtas_token(const char *service)
 982{
 983	const struct rtas_function *func;
 984	const __be32 *tokp;
 985
 986	if (rtas.dev == NULL)
 987		return RTAS_UNKNOWN_SERVICE;
 988
 989	func = rtas_name_to_function(service);
 990	if (func)
 991		return func->token;
 992	/*
 993	 * The caller is looking up a name that is not known to be an
 994	 * RTAS function. Either it's a function that needs to be
 995	 * added to the table, or they're misusing rtas_token() to
 996	 * access non-function properties of the /rtas node. Warn and
 997	 * fall back to the legacy behavior.
 998	 */
 999	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
1000		  service);
1001
1002	tokp = of_get_property(rtas.dev, service, NULL);
1003	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1004}
1005EXPORT_SYMBOL_GPL(rtas_token);
 
 
 
 
 
 
1006
1007#ifdef CONFIG_RTAS_ERROR_LOGGING
1008
1009static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1010
1011/*
1012 * Return the firmware-specified size of the error log buffer
1013 *  for all rtas calls that require an error buffer argument.
1014 *  This includes 'check-exception' and 'rtas-last-error'.
1015 */
1016int rtas_get_error_log_max(void)
1017{
 
 
 
 
 
 
 
 
 
 
 
1018	return rtas_error_log_max;
1019}
1020
1021static void __init init_error_log_max(void)
1022{
1023	static const char propname[] __initconst = "rtas-error-log-max";
1024	u32 max;
1025
1026	if (of_property_read_u32(rtas.dev, propname, &max)) {
1027		pr_warn("%s not found, using default of %u\n",
1028			propname, RTAS_ERROR_LOG_MAX);
1029		max = RTAS_ERROR_LOG_MAX;
1030	}
1031
1032	if (max > RTAS_ERROR_LOG_MAX) {
1033		pr_warn("%s = %u, clamping max error log size to %u\n",
1034			propname, max, RTAS_ERROR_LOG_MAX);
1035		max = RTAS_ERROR_LOG_MAX;
1036	}
1037
1038	rtas_error_log_max = max;
1039}
1040
1041
1042static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 
1043
1044/** Return a copy of the detailed error text associated with the
1045 *  most recent failed call to rtas.  Because the error text
1046 *  might go stale if there are any other intervening rtas calls,
1047 *  this routine must be called atomically with whatever produced
1048 *  the error (i.e. with rtas_lock still held from the previous call).
1049 */
1050static char *__fetch_rtas_last_error(char *altbuf)
1051{
1052	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1053	struct rtas_args err_args, save_args;
1054	u32 bufsz;
1055	char *buf = NULL;
1056
1057	lockdep_assert_held(&rtas_lock);
1058
1059	if (token == -1)
1060		return NULL;
1061
1062	bufsz = rtas_get_error_log_max();
1063
1064	err_args.token = cpu_to_be32(token);
1065	err_args.nargs = cpu_to_be32(2);
1066	err_args.nret = cpu_to_be32(1);
1067	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1068	err_args.args[1] = cpu_to_be32(bufsz);
1069	err_args.args[2] = 0;
1070
1071	save_args = rtas_args;
1072	rtas_args = err_args;
1073
1074	do_enter_rtas(&rtas_args);
1075
1076	err_args = rtas_args;
1077	rtas_args = save_args;
1078
1079	/* Log the error in the unlikely case that there was one. */
1080	if (unlikely(err_args.args[2] == 0)) {
1081		if (altbuf) {
1082			buf = altbuf;
1083		} else {
1084			buf = rtas_err_buf;
1085			if (slab_is_available())
1086				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1087		}
1088		if (buf)
1089			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1090	}
1091
1092	return buf;
1093}
1094
1095#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1096
1097#else /* CONFIG_RTAS_ERROR_LOGGING */
1098#define __fetch_rtas_last_error(x)	NULL
1099#define get_errorlog_buffer()		NULL
1100static void __init init_error_log_max(void) {}
1101#endif
1102
1103
1104static void
1105va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1106		      va_list list)
1107{
1108	int i;
1109
1110	args->token = cpu_to_be32(token);
1111	args->nargs = cpu_to_be32(nargs);
1112	args->nret  = cpu_to_be32(nret);
1113	args->rets  = &(args->args[nargs]);
1114
1115	for (i = 0; i < nargs; ++i)
1116		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1117
1118	for (i = 0; i < nret; ++i)
1119		args->rets[i] = 0;
1120
1121	do_enter_rtas(args);
1122}
1123
1124/**
1125 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1126 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1127 *        constraints.
1128 * @token: Identifies the function being invoked.
1129 * @nargs: Number of input parameters. Does not include token.
1130 * @nret: Number of output parameters, including the call status.
1131 * @....: List of @nargs input parameters.
1132 *
1133 * Invokes the RTAS function indicated by @token, which the caller
1134 * should obtain via rtas_function_token().
1135 *
1136 * This function is similar to rtas_call(), but must be used with a
1137 * limited set of RTAS calls specifically exempted from the general
1138 * requirement that only one RTAS call may be in progress at any
1139 * time. Examples include stop-self and ibm,nmi-interlock.
1140 */
1141void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1142{
1143	va_list list;
1144
1145	va_start(list, nret);
1146	va_rtas_call_unlocked(args, token, nargs, nret, list);
1147	va_end(list);
1148}
1149
1150static bool token_is_restricted_errinjct(s32 token)
1151{
1152	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1153	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1154}
1155
1156/**
1157 * rtas_call() - Invoke an RTAS firmware function.
1158 * @token: Identifies the function being invoked.
1159 * @nargs: Number of input parameters. Does not include token.
1160 * @nret: Number of output parameters, including the call status.
1161 * @outputs: Array of @nret output words.
1162 * @....: List of @nargs input parameters.
1163 *
1164 * Invokes the RTAS function indicated by @token, which the caller
1165 * should obtain via rtas_function_token().
1166 *
1167 * The @nargs and @nret arguments must match the number of input and
1168 * output parameters specified for the RTAS function.
1169 *
1170 * rtas_call() returns RTAS status codes, not conventional Linux errno
1171 * values. Callers must translate any failure to an appropriate errno
1172 * in syscall context. Most callers of RTAS functions that can return
1173 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1174 * statuses before calling again.
1175 *
1176 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1177 * Codes of the PAPR and CHRP specifications.
1178 *
1179 * Context: Process context preferably, interrupt context if
1180 *          necessary.  Acquires an internal spinlock and may perform
1181 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1182 *          context.
1183 * Return:
1184 * *                          0 - RTAS function call succeeded.
1185 * *                         -1 - RTAS function encountered a hardware or
1186 *                                platform error, or the token is invalid,
1187 *                                or the function is restricted by kernel policy.
1188 * *                         -2 - Specs say "A necessary hardware device was busy,
1189 *                                and the requested function could not be
1190 *                                performed. The operation should be retried at
1191 *                                a later time." This is misleading, at least with
1192 *                                respect to current RTAS implementations. What it
1193 *                                usually means in practice is that the function
1194 *                                could not be completed while meeting RTAS's
1195 *                                deadline for returning control to the OS (250us
1196 *                                for PAPR/PowerVM, typically), but the call may be
1197 *                                immediately reattempted to resume work on it.
1198 * *                         -3 - Parameter error.
1199 * *                         -7 - Unexpected state change.
1200 * *                9000...9899 - Vendor-specific success codes.
1201 * *                9900...9905 - Advisory extended delay. Caller should try
1202 *                                again after ~10^x ms has elapsed, where x is
1203 *                                the last digit of the status [0-5]. Again going
1204 *                                beyond the PAPR text, 990x on PowerVM indicates
1205 *                                contention for RTAS-internal resources. Other
1206 *                                RTAS call sequences in progress should be
1207 *                                allowed to complete before reattempting the
1208 *                                call.
1209 * *                      -9000 - Multi-level isolation error.
1210 * *              -9999...-9004 - Vendor-specific error codes.
1211 * * Additional negative values - Function-specific error.
1212 * * Additional positive values - Function-specific success.
1213 */
1214int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1215{
1216	struct pin_cookie cookie;
1217	va_list list;
1218	int i;
1219	unsigned long flags;
1220	struct rtas_args *args;
1221	char *buff_copy = NULL;
1222	int ret;
1223
1224	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1225		return -1;
1226
1227	if (token_is_restricted_errinjct(token)) {
1228		/*
1229		 * It would be nicer to not discard the error value
1230		 * from security_locked_down(), but callers expect an
1231		 * RTAS status, not an errno.
1232		 */
1233		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1234			return -1;
1235	}
1236
1237	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1238		WARN_ON_ONCE(1);
1239		return -1;
1240	}
1241
1242	raw_spin_lock_irqsave(&rtas_lock, flags);
1243	cookie = lockdep_pin_lock(&rtas_lock);
1244
1245	/* We use the global rtas args buffer */
1246	args = &rtas_args;
1247
1248	va_start(list, outputs);
1249	va_rtas_call_unlocked(args, token, nargs, nret, list);
1250	va_end(list);
1251
1252	/* A -1 return code indicates that the last command couldn't
1253	   be completed due to a hardware error. */
1254	if (be32_to_cpu(args->rets[0]) == -1)
1255		buff_copy = __fetch_rtas_last_error(NULL);
1256
1257	if (nret > 1 && outputs != NULL)
1258		for (i = 0; i < nret-1; ++i)
1259			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1260	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1261
1262	lockdep_unpin_lock(&rtas_lock, cookie);
1263	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1264
1265	if (buff_copy) {
1266		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1267		if (slab_is_available())
1268			kfree(buff_copy);
1269	}
1270	return ret;
1271}
1272EXPORT_SYMBOL_GPL(rtas_call);
1273
1274/**
1275 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1276 *                          suggested delay time in milliseconds.
1277 *
1278 * @status: a value returned from rtas_call() or similar APIs which return
1279 *          the status of a RTAS function call.
1280 *
1281 * Context: Any context.
1282 *
1283 * Return:
1284 * * 100000 - If @status is 9905.
1285 * * 10000  - If @status is 9904.
1286 * * 1000   - If @status is 9903.
1287 * * 100    - If @status is 9902.
1288 * * 10     - If @status is 9901.
1289 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1290 *            some callers depend on this behavior, and the worst outcome
1291 *            is that they will delay for longer than necessary.
1292 * * 0      - If @status is not a busy or extended delay value.
1293 */
1294unsigned int rtas_busy_delay_time(int status)
1295{
1296	int order;
1297	unsigned int ms = 0;
1298
1299	if (status == RTAS_BUSY) {
1300		ms = 1;
1301	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1302		   status <= RTAS_EXTENDED_DELAY_MAX) {
1303		order = status - RTAS_EXTENDED_DELAY_MIN;
1304		for (ms = 1; order > 0; order--)
1305			ms *= 10;
1306	}
1307
1308	return ms;
1309}
 
1310
1311/*
1312 * Early boot fallback for rtas_busy_delay().
1313 */
1314static bool __init rtas_busy_delay_early(int status)
1315{
1316	static size_t successive_ext_delays __initdata;
1317	bool retry;
1318
1319	switch (status) {
1320	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1321		/*
1322		 * In the unlikely case that we receive an extended
1323		 * delay status in early boot, the OS is probably not
1324		 * the cause, and there's nothing we can do to clear
1325		 * the condition. Best we can do is delay for a bit
1326		 * and hope it's transient. Lie to the caller if it
1327		 * seems like we're stuck in a retry loop.
1328		 */
1329		mdelay(1);
1330		retry = true;
1331		successive_ext_delays += 1;
1332		if (successive_ext_delays > 1000) {
1333			pr_err("too many extended delays, giving up\n");
1334			dump_stack();
1335			retry = false;
1336			successive_ext_delays = 0;
1337		}
1338		break;
1339	case RTAS_BUSY:
1340		retry = true;
1341		successive_ext_delays = 0;
1342		break;
1343	default:
1344		retry = false;
1345		successive_ext_delays = 0;
1346		break;
1347	}
1348
1349	return retry;
1350}
1351
1352/**
1353 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1354 *
1355 * @status: a value returned from rtas_call() or similar APIs which return
1356 *          the status of a RTAS function call.
1357 *
1358 * Context: Process context. May sleep or schedule.
1359 *
1360 * Return:
1361 * * true  - @status is RTAS_BUSY or an extended delay hint. The
1362 *           caller may assume that the CPU has been yielded if necessary,
1363 *           and that an appropriate delay for @status has elapsed.
1364 *           Generally the caller should reattempt the RTAS call which
1365 *           yielded @status.
1366 *
1367 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1368 *           caller is responsible for handling @status.
1369 */
1370bool __ref rtas_busy_delay(int status)
1371{
1372	unsigned int ms;
1373	bool ret;
1374
1375	/*
1376	 * Can't do timed sleeps before timekeeping is up.
1377	 */
1378	if (system_state < SYSTEM_SCHEDULING)
1379		return rtas_busy_delay_early(status);
1380
1381	switch (status) {
1382	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1383		ret = true;
1384		ms = rtas_busy_delay_time(status);
1385		/*
1386		 * The extended delay hint can be as high as 100 seconds.
1387		 * Surely any function returning such a status is either
1388		 * buggy or isn't going to be significantly slowed by us
1389		 * polling at 1HZ. Clamp the sleep time to one second.
1390		 */
1391		ms = clamp(ms, 1U, 1000U);
1392		/*
1393		 * The delay hint is an order-of-magnitude suggestion, not a
1394		 * minimum. It is fine, possibly even advantageous, for us to
1395		 * pause for less time than hinted. To make sure pause time will
1396		 * not be way longer than requested independent of HZ
1397		 * configuration, use fsleep(). See fsleep() for details of
1398		 * used sleeping functions.
1399		 */
1400		fsleep(ms * 1000);
1401		break;
1402	case RTAS_BUSY:
1403		ret = true;
1404		/*
1405		 * We should call again immediately if there's no other
1406		 * work to do.
1407		 */
1408		cond_resched();
1409		break;
1410	default:
1411		ret = false;
1412		/*
1413		 * Not a busy or extended delay status; the caller should
1414		 * handle @status itself. Ensure we warn on misuses in
1415		 * atomic context regardless.
1416		 */
1417		might_sleep();
1418		break;
1419	}
1420
1421	return ret;
1422}
1423EXPORT_SYMBOL_GPL(rtas_busy_delay);
1424
1425int rtas_error_rc(int rtas_rc)
1426{
1427	int rc;
1428
1429	switch (rtas_rc) {
1430	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1431		rc = -EIO;
1432		break;
1433	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1434		rc = -EINVAL;
1435		break;
1436	case -9000:			/* Isolation error */
1437		rc = -EFAULT;
1438		break;
1439	case -9001:			/* Outstanding TCE/PTE */
1440		rc = -EEXIST;
1441		break;
1442	case -9002:			/* No usable slot */
1443		rc = -ENODEV;
1444		break;
1445	default:
1446		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1447		rc = -ERANGE;
1448		break;
 
1449	}
1450	return rc;
1451}
1452EXPORT_SYMBOL_GPL(rtas_error_rc);
1453
1454int rtas_get_power_level(int powerdomain, int *level)
1455{
1456	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1457	int rc;
1458
1459	if (token == RTAS_UNKNOWN_SERVICE)
1460		return -ENOENT;
1461
1462	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1463		udelay(1);
1464
1465	if (rc < 0)
1466		return rtas_error_rc(rc);
1467	return rc;
1468}
1469EXPORT_SYMBOL_GPL(rtas_get_power_level);
1470
1471int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1472{
1473	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1474	int rc;
1475
1476	if (token == RTAS_UNKNOWN_SERVICE)
1477		return -ENOENT;
1478
1479	do {
1480		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1481	} while (rtas_busy_delay(rc));
1482
1483	if (rc < 0)
1484		return rtas_error_rc(rc);
1485	return rc;
1486}
1487EXPORT_SYMBOL_GPL(rtas_set_power_level);
1488
1489int rtas_get_sensor(int sensor, int index, int *state)
1490{
1491	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1492	int rc;
1493
1494	if (token == RTAS_UNKNOWN_SERVICE)
1495		return -ENOENT;
1496
1497	do {
1498		rc = rtas_call(token, 2, 2, state, sensor, index);
1499	} while (rtas_busy_delay(rc));
1500
1501	if (rc < 0)
1502		return rtas_error_rc(rc);
1503	return rc;
1504}
1505EXPORT_SYMBOL_GPL(rtas_get_sensor);
1506
1507int rtas_get_sensor_fast(int sensor, int index, int *state)
1508{
1509	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1510	int rc;
1511
1512	if (token == RTAS_UNKNOWN_SERVICE)
1513		return -ENOENT;
1514
1515	rc = rtas_call(token, 2, 2, state, sensor, index);
1516	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1517				    rc <= RTAS_EXTENDED_DELAY_MAX));
1518
1519	if (rc < 0)
1520		return rtas_error_rc(rc);
1521	return rc;
1522}
1523
1524bool rtas_indicator_present(int token, int *maxindex)
1525{
1526	int proplen, count, i;
1527	const struct indicator_elem {
1528		__be32 token;
1529		__be32 maxindex;
1530	} *indicators;
1531
1532	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1533	if (!indicators)
1534		return false;
1535
1536	count = proplen / sizeof(struct indicator_elem);
1537
1538	for (i = 0; i < count; i++) {
1539		if (__be32_to_cpu(indicators[i].token) != token)
1540			continue;
1541		if (maxindex)
1542			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1543		return true;
1544	}
1545
1546	return false;
1547}
 
1548
1549int rtas_set_indicator(int indicator, int index, int new_value)
1550{
1551	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1552	int rc;
1553
1554	if (token == RTAS_UNKNOWN_SERVICE)
1555		return -ENOENT;
1556
1557	do {
1558		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1559	} while (rtas_busy_delay(rc));
1560
1561	if (rc < 0)
1562		return rtas_error_rc(rc);
1563	return rc;
1564}
1565EXPORT_SYMBOL_GPL(rtas_set_indicator);
1566
1567/*
1568 * Ignoring RTAS extended delay
1569 */
1570int rtas_set_indicator_fast(int indicator, int index, int new_value)
1571{
1572	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1573	int rc;
 
1574
1575	if (token == RTAS_UNKNOWN_SERVICE)
1576		return -ENOENT;
1577
1578	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1579
1580	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1581				    rc <= RTAS_EXTENDED_DELAY_MAX));
1582
1583	if (rc < 0)
1584		return rtas_error_rc(rc);
1585
1586	return rc;
1587}
1588
1589/**
1590 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1591 *
1592 * @fw_status: RTAS call status will be placed here if not NULL.
1593 *
1594 * rtas_ibm_suspend_me() should be called only on a CPU which has
1595 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1596 * should be waiting to return from H_JOIN.
1597 *
1598 * rtas_ibm_suspend_me() may suspend execution of the OS
1599 * indefinitely. Callers should take appropriate measures upon return, such as
1600 * resetting watchdog facilities.
1601 *
1602 * Callers may choose to retry this call if @fw_status is
1603 * %RTAS_THREADS_ACTIVE.
1604 *
1605 * Return:
1606 * 0          - The partition has resumed from suspend, possibly after
1607 *              migration to a different host.
1608 * -ECANCELED - The operation was aborted.
1609 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1610 * -EBUSY     - Some other condition prevented the suspend from succeeding.
1611 * -EIO       - Hardware/platform error.
1612 */
1613int rtas_ibm_suspend_me(int *fw_status)
1614{
1615	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1616	int fwrc;
1617	int ret;
1618
1619	fwrc = rtas_call(token, 0, 1, NULL);
1620
1621	switch (fwrc) {
1622	case 0:
1623		ret = 0;
1624		break;
1625	case RTAS_SUSPEND_ABORTED:
1626		ret = -ECANCELED;
1627		break;
1628	case RTAS_THREADS_ACTIVE:
1629		ret = -EAGAIN;
1630		break;
1631	case RTAS_NOT_SUSPENDABLE:
1632	case RTAS_OUTSTANDING_COPROC:
1633		ret = -EBUSY;
1634		break;
1635	case -1:
1636	default:
1637		ret = -EIO;
1638		break;
1639	}
1640
1641	if (fw_status)
1642		*fw_status = fwrc;
1643
1644	return ret;
1645}
1646
1647void __noreturn rtas_restart(char *cmd)
1648{
1649	if (rtas_flash_term_hook)
1650		rtas_flash_term_hook(SYS_RESTART);
1651	pr_emerg("system-reboot returned %d\n",
1652		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1653	for (;;);
1654}
1655
1656void rtas_power_off(void)
1657{
1658	if (rtas_flash_term_hook)
1659		rtas_flash_term_hook(SYS_POWER_OFF);
1660	/* allow power on only with power button press */
1661	pr_emerg("power-off returned %d\n",
1662		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1663	for (;;);
1664}
1665
1666void __noreturn rtas_halt(void)
1667{
1668	if (rtas_flash_term_hook)
1669		rtas_flash_term_hook(SYS_HALT);
1670	/* allow power on only with power button press */
1671	pr_emerg("power-off returned %d\n",
1672		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1673	for (;;);
1674}
1675
1676/* Must be in the RMO region, so we place it here */
1677static char rtas_os_term_buf[2048];
1678static bool ibm_extended_os_term;
1679
1680void rtas_os_term(char *str)
1681{
1682	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1683	static struct rtas_args args;
1684	int status;
1685
1686	/*
1687	 * Firmware with the ibm,extended-os-term property is guaranteed
1688	 * to always return from an ibm,os-term call. Earlier versions without
1689	 * this property may terminate the partition which we want to avoid
1690	 * since it interferes with panic_timeout.
1691	 */
1692
1693	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1694		return;
1695
1696	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1697
1698	/*
1699	 * Keep calling as long as RTAS returns a "try again" status,
1700	 * but don't use rtas_busy_delay(), which potentially
1701	 * schedules.
1702	 */
1703	do {
1704		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1705		status = be32_to_cpu(args.rets[0]);
1706	} while (rtas_busy_delay_time(status));
1707
1708	if (status != 0)
1709		pr_emerg("ibm,os-term call failed %d\n", status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710}
1711
1712/**
1713 * rtas_activate_firmware() - Activate a new version of firmware.
1714 *
1715 * Context: This function may sleep.
1716 *
1717 * Activate a new version of partition firmware. The OS must call this
1718 * after resuming from a partition hibernation or migration in order
1719 * to maintain the ability to perform live firmware updates. It's not
1720 * catastrophic for this method to be absent or to fail; just log the
1721 * condition in that case.
 
 
 
 
 
 
1722 */
1723void rtas_activate_firmware(void)
1724{
1725	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1726	int fwrc;
 
 
1727
1728	if (token == RTAS_UNKNOWN_SERVICE) {
1729		pr_notice("ibm,activate-firmware method unavailable\n");
1730		return;
1731	}
 
 
 
 
 
 
 
 
 
 
 
 
1732
1733	mutex_lock(&rtas_ibm_activate_firmware_lock);
 
1734
1735	do {
1736		fwrc = rtas_call(token, 0, 1, NULL);
1737	} while (rtas_busy_delay(fwrc));
1738
1739	mutex_unlock(&rtas_ibm_activate_firmware_lock);
 
1740
1741	if (fwrc)
1742		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
 
 
1743}
 
1744
1745/**
1746 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1747 *                          extended event log.
1748 * @log: RTAS error/event log
1749 * @section_id: two character section identifier
1750 *
1751 * Return: A pointer to the specified errorlog or NULL if not found.
1752 */
1753noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1754						      uint16_t section_id)
1755{
1756	struct rtas_ext_event_log_v6 *ext_log =
1757		(struct rtas_ext_event_log_v6 *)log->buffer;
1758	struct pseries_errorlog *sect;
1759	unsigned char *p, *log_end;
1760	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1761	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1762	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1763
1764	/* Check that we understand the format */
1765	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1766	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1767	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1768		return NULL;
1769
1770	log_end = log->buffer + ext_log_length;
1771	p = ext_log->vendor_log;
1772
1773	while (p < log_end) {
1774		sect = (struct pseries_errorlog *)p;
1775		if (pseries_errorlog_id(sect) == section_id)
1776			return sect;
1777		p += pseries_errorlog_length(sect);
1778	}
1779
1780	return NULL;
1781}
1782
1783/*
1784 * The sys_rtas syscall, as originally designed, allows root to pass
1785 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1786 * can be abused to write to arbitrary memory and do other things that
1787 * are potentially harmful to system integrity, and thus should only
1788 * be used inside the kernel and not exposed to userspace.
1789 *
1790 * All known legitimate users of the sys_rtas syscall will only ever
1791 * pass addresses that fall within the RMO buffer, and use a known
1792 * subset of RTAS calls.
1793 *
1794 * Accordingly, we filter RTAS requests to check that the call is
1795 * permitted, and that provided pointers fall within the RMO buffer.
1796 * If a function is allowed to be invoked via the syscall, then its
1797 * entry in the rtas_functions table points to a rtas_filter that
1798 * describes its constraints, with the indexes of the parameters which
1799 * are expected to contain addresses and sizes of buffers allocated
1800 * inside the RMO buffer.
1801 */
1802
1803static bool in_rmo_buf(u32 base, u32 end)
1804{
1805	return base >= rtas_rmo_buf &&
1806		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1807		base <= end &&
1808		end >= rtas_rmo_buf &&
1809		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1810}
1811
1812static bool block_rtas_call(const struct rtas_function *func, int nargs,
1813			    struct rtas_args *args)
1814{
1815	const struct rtas_filter *f;
1816	const bool is_platform_dump =
1817		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1818	const bool is_config_conn =
1819		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1820	u32 base, size, end;
1821
1822	/*
1823	 * Only functions with filters attached are allowed.
1824	 */
1825	f = func->filter;
1826	if (!f)
1827		goto err;
1828	/*
1829	 * And some functions aren't allowed on LE.
1830	 */
1831	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1832		goto err;
1833
1834	if (f->buf_idx1 != -1) {
1835		base = be32_to_cpu(args->args[f->buf_idx1]);
1836		if (f->size_idx1 != -1)
1837			size = be32_to_cpu(args->args[f->size_idx1]);
1838		else if (f->fixed_size)
1839			size = f->fixed_size;
1840		else
1841			size = 1;
1842
1843		end = base + size - 1;
1844
1845		/*
1846		 * Special case for ibm,platform-dump - NULL buffer
1847		 * address is used to indicate end of dump processing
1848		 */
1849		if (is_platform_dump && base == 0)
1850			return false;
1851
1852		if (!in_rmo_buf(base, end))
1853			goto err;
1854	}
1855
1856	if (f->buf_idx2 != -1) {
1857		base = be32_to_cpu(args->args[f->buf_idx2]);
1858		if (f->size_idx2 != -1)
1859			size = be32_to_cpu(args->args[f->size_idx2]);
1860		else if (f->fixed_size)
1861			size = f->fixed_size;
1862		else
1863			size = 1;
1864		end = base + size - 1;
1865
1866		/*
1867		 * Special case for ibm,configure-connector where the
1868		 * address can be 0
1869		 */
1870		if (is_config_conn && base == 0)
1871			return false;
1872
1873		if (!in_rmo_buf(base, end))
1874			goto err;
1875	}
1876
1877	return false;
1878err:
1879	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1880	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1881			   func->name, nargs, current->comm);
1882	return true;
1883}
1884
1885/* We assume to be passed big endian arguments */
1886SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1887{
1888	const struct rtas_function *func;
1889	struct pin_cookie cookie;
1890	struct rtas_args args;
1891	unsigned long flags;
1892	char *buff_copy, *errbuf = NULL;
1893	int nargs, nret, token;
1894
1895	if (!capable(CAP_SYS_ADMIN))
1896		return -EPERM;
1897
1898	if (!rtas.entry)
1899		return -EINVAL;
1900
1901	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1902		return -EFAULT;
1903
1904	nargs = be32_to_cpu(args.nargs);
1905	nret  = be32_to_cpu(args.nret);
1906	token = be32_to_cpu(args.token);
1907
1908	if (nargs >= ARRAY_SIZE(args.args)
1909	    || nret > ARRAY_SIZE(args.args)
1910	    || nargs + nret > ARRAY_SIZE(args.args))
1911		return -EINVAL;
1912
1913	nargs = array_index_nospec(nargs, ARRAY_SIZE(args.args));
1914	nret = array_index_nospec(nret, ARRAY_SIZE(args.args) - nargs);
1915
1916	/* Copy in args. */
1917	if (copy_from_user(args.args, uargs->args,
1918			   nargs * sizeof(rtas_arg_t)) != 0)
1919		return -EFAULT;
1920
1921	/*
1922	 * If this token doesn't correspond to a function the kernel
1923	 * understands, you're not allowed to call it.
1924	 */
1925	func = rtas_token_to_function_untrusted(token);
1926	if (!func)
1927		return -EINVAL;
1928
1929	args.rets = &args.args[nargs];
1930	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1931
1932	if (block_rtas_call(func, nargs, &args))
1933		return -EINVAL;
1934
1935	if (token_is_restricted_errinjct(token)) {
1936		int err;
1937
1938		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1939		if (err)
1940			return err;
1941	}
1942
1943	/* Need to handle ibm,suspend_me call specially */
1944	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1945
1946		/*
1947		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1948		 * endian, or at least the hcall within it requires it.
1949		 */
1950		int rc = 0;
1951		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1952		              | be32_to_cpu(args.args[1]);
1953		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1954		if (rc == -EAGAIN)
1955			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1956		else if (rc == -EIO)
1957			args.rets[0] = cpu_to_be32(-1);
1958		else if (rc)
1959			return rc;
1960		goto copy_return;
1961	}
1962
1963	buff_copy = get_errorlog_buffer();
1964
1965	/*
1966	 * If this function has a mutex assigned to it, we must
1967	 * acquire it to avoid interleaving with any kernel-based uses
1968	 * of the same function. Kernel-based sequences acquire the
1969	 * appropriate mutex explicitly.
1970	 */
1971	if (func->lock)
1972		mutex_lock(func->lock);
1973
1974	raw_spin_lock_irqsave(&rtas_lock, flags);
1975	cookie = lockdep_pin_lock(&rtas_lock);
1976
1977	rtas_args = args;
1978	do_enter_rtas(&rtas_args);
1979	args = rtas_args;
1980
1981	/* A -1 return code indicates that the last command couldn't
1982	   be completed due to a hardware error. */
1983	if (be32_to_cpu(args.rets[0]) == -1)
1984		errbuf = __fetch_rtas_last_error(buff_copy);
1985
1986	lockdep_unpin_lock(&rtas_lock, cookie);
1987	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1988
1989	if (func->lock)
1990		mutex_unlock(func->lock);
1991
1992	if (buff_copy) {
1993		if (errbuf)
1994			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1995		kfree(buff_copy);
1996	}
1997
1998 copy_return:
1999	/* Copy out args. */
2000	if (copy_to_user(uargs->args + nargs,
2001			 args.args + nargs,
2002			 nret * sizeof(rtas_arg_t)) != 0)
2003		return -EFAULT;
2004
2005	return 0;
2006}
2007
2008static void __init rtas_function_table_init(void)
2009{
2010	struct property *prop;
2011
2012	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2013		struct rtas_function *curr = &rtas_function_table[i];
2014		struct rtas_function *prior;
2015		int cmp;
2016
2017		curr->token = RTAS_UNKNOWN_SERVICE;
2018
2019		if (i == 0)
2020			continue;
2021		/*
2022		 * Ensure table is sorted correctly for binary search
2023		 * on function names.
2024		 */
2025		prior = &rtas_function_table[i - 1];
2026
2027		cmp = strcmp(prior->name, curr->name);
2028		if (cmp < 0)
2029			continue;
2030
2031		if (cmp == 0) {
2032			pr_err("'%s' has duplicate function table entries\n",
2033			       curr->name);
2034		} else {
2035			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2036			       prior->name, curr->name);
2037		}
2038	}
2039
2040	for_each_property_of_node(rtas.dev, prop) {
2041		struct rtas_function *func;
2042
2043		if (prop->length != sizeof(u32))
2044			continue;
2045
2046		func = __rtas_name_to_function(prop->name);
2047		if (!func)
2048			continue;
2049
2050		func->token = be32_to_cpup((__be32 *)prop->value);
2051
2052		pr_debug("function %s has token %u\n", func->name, func->token);
2053	}
2054}
2055
2056/*
2057 * Call early during boot, before mem init, to retrieve the RTAS
2058 * information from the device-tree and allocate the RMO buffer for userland
2059 * accesses.
2060 */
2061void __init rtas_initialize(void)
2062{
2063	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2064	u32 base, size, entry;
2065	int no_base, no_size, no_entry;
2066
2067	/* Get RTAS dev node and fill up our "rtas" structure with infos
2068	 * about it.
2069	 */
2070	rtas.dev = of_find_node_by_name(NULL, "rtas");
2071	if (!rtas.dev)
2072		return;
2073
2074	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2075	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2076	if (no_base || no_size) {
2077		of_node_put(rtas.dev);
2078		rtas.dev = NULL;
2079		return;
2080	}
2081
2082	rtas.base = base;
2083	rtas.size = size;
2084	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2085	rtas.entry = no_entry ? rtas.base : entry;
2086
2087	init_error_log_max();
2088
2089	/* Must be called before any function token lookups */
2090	rtas_function_table_init();
2091
2092	/*
2093	 * Discover this now to avoid a device tree lookup in the
2094	 * panic path.
2095	 */
2096	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2097
2098	/* If RTAS was found, allocate the RMO buffer for it and look for
2099	 * the stop-self token if any
2100	 */
2101#ifdef CONFIG_PPC64
2102	if (firmware_has_feature(FW_FEATURE_LPAR))
2103		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
 
 
2104#endif
2105	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2106						 0, rtas_region);
2107	if (!rtas_rmo_buf)
2108		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2109		      PAGE_SIZE, &rtas_region);
2110
2111	rtas_work_area_reserve_arena(rtas_region);
 
 
2112}
2113
2114int __init early_init_dt_scan_rtas(unsigned long node,
2115		const char *uname, int depth, void *data)
2116{
2117	const u32 *basep, *entryp, *sizep;
2118
2119	if (depth != 1 || strcmp(uname, "rtas") != 0)
2120		return 0;
2121
2122	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2123	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2124	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2125
2126#ifdef CONFIG_PPC64
2127	/* need this feature to decide the crashkernel offset */
2128	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2129		powerpc_firmware_features |= FW_FEATURE_LPAR;
2130#endif
2131
2132	if (basep && entryp && sizep) {
2133		rtas.base = *basep;
2134		rtas.entry = *entryp;
2135		rtas.size = *sizep;
2136	}
2137
2138#ifdef CONFIG_UDBG_RTAS_CONSOLE
2139	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2140	if (basep)
2141		rtas_putchar_token = *basep;
2142
2143	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2144	if (basep)
2145		rtas_getchar_token = *basep;
2146
2147	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2148	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2149		udbg_init_rtas_console();
2150
2151#endif
2152
2153	/* break now */
2154	return 1;
2155}
2156
2157static DEFINE_RAW_SPINLOCK(timebase_lock);
2158static u64 timebase = 0;
2159
2160void rtas_give_timebase(void)
2161{
2162	unsigned long flags;
2163
2164	raw_spin_lock_irqsave(&timebase_lock, flags);
2165	hard_irq_disable();
2166	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
 
2167	timebase = get_tb();
2168	raw_spin_unlock(&timebase_lock);
2169
2170	while (timebase)
2171		barrier();
2172	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2173	local_irq_restore(flags);
2174}
2175
2176void rtas_take_timebase(void)
2177{
2178	while (!timebase)
2179		barrier();
2180	raw_spin_lock(&timebase_lock);
2181	set_tb(timebase >> 32, timebase & 0xffffffff);
2182	timebase = 0;
2183	raw_spin_unlock(&timebase_lock);
2184}