Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
 
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
 
 
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 
 
 
 
 
 
 
 
 
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416	int sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	user = __task_cred(t)->user;
 428	sigpending = atomic_inc_return(&user->sigpending);
 429	if (sigpending == 1)
 430		get_uid(user);
 431	rcu_read_unlock();
 
 
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, flags);
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		if (atomic_dec_and_test(&user->sigpending))
 441			free_uid(user);
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = 0;
 445		q->user = user;
 446	}
 447
 448	return q;
 449}
 450
 451static void __sigqueue_free(struct sigqueue *q)
 452{
 453	if (q->flags & SIGQUEUE_PREALLOC)
 454		return;
 455	if (atomic_dec_and_test(&q->user->sigpending))
 456		free_uid(q->user);
 
 
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 
 
 
 
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 
 
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !signal_pending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1116	if (q) {
1117		list_add_tail(&q->list, &pending->list);
1118		switch ((unsigned long) info) {
1119		case (unsigned long) SEND_SIG_NOINFO:
1120			clear_siginfo(&q->info);
1121			q->info.si_signo = sig;
1122			q->info.si_errno = 0;
1123			q->info.si_code = SI_USER;
1124			q->info.si_pid = task_tgid_nr_ns(current,
1125							task_active_pid_ns(t));
1126			rcu_read_lock();
1127			q->info.si_uid =
1128				from_kuid_munged(task_cred_xxx(t, user_ns),
1129						 current_uid());
1130			rcu_read_unlock();
1131			break;
1132		case (unsigned long) SEND_SIG_PRIV:
1133			clear_siginfo(&q->info);
1134			q->info.si_signo = sig;
1135			q->info.si_errno = 0;
1136			q->info.si_code = SI_KERNEL;
1137			q->info.si_pid = 0;
1138			q->info.si_uid = 0;
1139			break;
1140		default:
1141			copy_siginfo(&q->info, info);
1142			break;
1143		}
1144	} else if (!is_si_special(info) &&
1145		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146		/*
1147		 * Queue overflow, abort.  We may abort if the
1148		 * signal was rt and sent by user using something
1149		 * other than kill().
1150		 */
1151		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152		ret = -EAGAIN;
1153		goto ret;
1154	} else {
1155		/*
1156		 * This is a silent loss of information.  We still
1157		 * send the signal, but the *info bits are lost.
1158		 */
1159		result = TRACE_SIGNAL_LOSE_INFO;
1160	}
1161
1162out_set:
1163	signalfd_notify(t, sig);
1164	sigaddset(&pending->signal, sig);
1165
1166	/* Let multiprocess signals appear after on-going forks */
1167	if (type > PIDTYPE_TGID) {
1168		struct multiprocess_signals *delayed;
1169		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170			sigset_t *signal = &delayed->signal;
1171			/* Can't queue both a stop and a continue signal */
1172			if (sig == SIGCONT)
1173				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174			else if (sig_kernel_stop(sig))
1175				sigdelset(signal, SIGCONT);
1176			sigaddset(signal, sig);
1177		}
1178	}
1179
1180	complete_signal(sig, t, type);
1181ret:
1182	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183	return ret;
1184}
1185
1186static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187{
1188	bool ret = false;
1189	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190	case SIL_KILL:
1191	case SIL_CHLD:
1192	case SIL_RT:
1193		ret = true;
1194		break;
1195	case SIL_TIMER:
1196	case SIL_POLL:
1197	case SIL_FAULT:
 
1198	case SIL_FAULT_MCEERR:
1199	case SIL_FAULT_BNDERR:
1200	case SIL_FAULT_PKUERR:
 
1201	case SIL_SYS:
1202		ret = false;
1203		break;
1204	}
1205	return ret;
1206}
1207
1208static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209			enum pid_type type)
1210{
1211	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212	bool force = false;
1213
1214	if (info == SEND_SIG_NOINFO) {
1215		/* Force if sent from an ancestor pid namespace */
1216		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217	} else if (info == SEND_SIG_PRIV) {
1218		/* Don't ignore kernel generated signals */
1219		force = true;
1220	} else if (has_si_pid_and_uid(info)) {
1221		/* SIGKILL and SIGSTOP is special or has ids */
1222		struct user_namespace *t_user_ns;
1223
1224		rcu_read_lock();
1225		t_user_ns = task_cred_xxx(t, user_ns);
1226		if (current_user_ns() != t_user_ns) {
1227			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229		}
1230		rcu_read_unlock();
1231
1232		/* A kernel generated signal? */
1233		force = (info->si_code == SI_KERNEL);
1234
1235		/* From an ancestor pid namespace? */
1236		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237			info->si_pid = 0;
1238			force = true;
1239		}
1240	}
1241	return __send_signal(sig, info, t, type, force);
1242}
1243
1244static void print_fatal_signal(int signr)
1245{
1246	struct pt_regs *regs = signal_pt_regs();
1247	pr_info("potentially unexpected fatal signal %d.\n", signr);
 
 
 
 
 
 
 
 
 
 
1248
1249#if defined(__i386__) && !defined(__arch_um__)
1250	pr_info("code at %08lx: ", regs->ip);
1251	{
1252		int i;
1253		for (i = 0; i < 16; i++) {
1254			unsigned char insn;
1255
1256			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257				break;
1258			pr_cont("%02x ", insn);
1259		}
1260	}
1261	pr_cont("\n");
1262#endif
1263	preempt_disable();
1264	show_regs(regs);
1265	preempt_enable();
1266}
1267
1268static int __init setup_print_fatal_signals(char *str)
1269{
1270	get_option (&str, &print_fatal_signals);
1271
1272	return 1;
1273}
1274
1275__setup("print-fatal-signals=", setup_print_fatal_signals);
1276
1277int
1278__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279{
1280	return send_signal(sig, info, p, PIDTYPE_TGID);
1281}
1282
1283int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284			enum pid_type type)
1285{
1286	unsigned long flags;
1287	int ret = -ESRCH;
1288
1289	if (lock_task_sighand(p, &flags)) {
1290		ret = send_signal(sig, info, p, type);
1291		unlock_task_sighand(p, &flags);
1292	}
1293
1294	return ret;
1295}
1296
 
 
 
 
 
 
1297/*
1298 * Force a signal that the process can't ignore: if necessary
1299 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300 *
1301 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302 * since we do not want to have a signal handler that was blocked
1303 * be invoked when user space had explicitly blocked it.
1304 *
1305 * We don't want to have recursive SIGSEGV's etc, for example,
1306 * that is why we also clear SIGNAL_UNKILLABLE.
1307 */
1308static int
1309force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
 
1310{
1311	unsigned long int flags;
1312	int ret, blocked, ignored;
1313	struct k_sigaction *action;
1314	int sig = info->si_signo;
1315
1316	spin_lock_irqsave(&t->sighand->siglock, flags);
1317	action = &t->sighand->action[sig-1];
1318	ignored = action->sa.sa_handler == SIG_IGN;
1319	blocked = sigismember(&t->blocked, sig);
1320	if (blocked || ignored) {
1321		action->sa.sa_handler = SIG_DFL;
1322		if (blocked) {
 
 
1323			sigdelset(&t->blocked, sig);
1324			recalc_sigpending_and_wake(t);
1325		}
1326	}
1327	/*
1328	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329	 * debugging to leave init killable.
1330	 */
1331	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1332		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333	ret = send_signal(sig, info, t, PIDTYPE_PID);
 
 
 
1334	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335
1336	return ret;
1337}
1338
1339int force_sig_info(struct kernel_siginfo *info)
1340{
1341	return force_sig_info_to_task(info, current);
1342}
1343
1344/*
1345 * Nuke all other threads in the group.
1346 */
1347int zap_other_threads(struct task_struct *p)
1348{
1349	struct task_struct *t = p;
1350	int count = 0;
1351
1352	p->signal->group_stop_count = 0;
1353
1354	while_each_thread(p, t) {
1355		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356		count++;
 
 
1357
1358		/* Don't bother with already dead threads */
1359		if (t->exit_state)
1360			continue;
1361		sigaddset(&t->pending.signal, SIGKILL);
1362		signal_wake_up(t, 1);
1363	}
1364
1365	return count;
1366}
1367
1368struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369					   unsigned long *flags)
1370{
1371	struct sighand_struct *sighand;
1372
1373	rcu_read_lock();
1374	for (;;) {
1375		sighand = rcu_dereference(tsk->sighand);
1376		if (unlikely(sighand == NULL))
1377			break;
1378
1379		/*
1380		 * This sighand can be already freed and even reused, but
1381		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382		 * initializes ->siglock: this slab can't go away, it has
1383		 * the same object type, ->siglock can't be reinitialized.
1384		 *
1385		 * We need to ensure that tsk->sighand is still the same
1386		 * after we take the lock, we can race with de_thread() or
1387		 * __exit_signal(). In the latter case the next iteration
1388		 * must see ->sighand == NULL.
1389		 */
1390		spin_lock_irqsave(&sighand->siglock, *flags);
1391		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392			break;
1393		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394	}
1395	rcu_read_unlock();
1396
1397	return sighand;
1398}
1399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400/*
1401 * send signal info to all the members of a group
 
1402 */
1403int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404			struct task_struct *p, enum pid_type type)
1405{
1406	int ret;
1407
1408	rcu_read_lock();
1409	ret = check_kill_permission(sig, info, p);
1410	rcu_read_unlock();
1411
1412	if (!ret && sig)
1413		ret = do_send_sig_info(sig, info, p, type);
1414
1415	return ret;
1416}
1417
1418/*
1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420 * control characters do (^C, ^Z etc)
1421 * - the caller must hold at least a readlock on tasklist_lock
1422 */
1423int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424{
1425	struct task_struct *p = NULL;
1426	int retval, success;
1427
1428	success = 0;
1429	retval = -ESRCH;
1430	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432		success |= !err;
1433		retval = err;
 
 
 
 
 
 
1434	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435	return success ? 0 : retval;
 
1436}
1437
1438int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
 
1439{
1440	int error = -ESRCH;
1441	struct task_struct *p;
1442
1443	for (;;) {
1444		rcu_read_lock();
1445		p = pid_task(pid, PIDTYPE_PID);
1446		if (p)
1447			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448		rcu_read_unlock();
1449		if (likely(!p || error != -ESRCH))
1450			return error;
1451
1452		/*
1453		 * The task was unhashed in between, try again.  If it
1454		 * is dead, pid_task() will return NULL, if we race with
1455		 * de_thread() it will find the new leader.
1456		 */
1457	}
1458}
1459
 
 
 
 
 
1460static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461{
1462	int error;
1463	rcu_read_lock();
1464	error = kill_pid_info(sig, info, find_vpid(pid));
1465	rcu_read_unlock();
1466	return error;
1467}
1468
1469static inline bool kill_as_cred_perm(const struct cred *cred,
1470				     struct task_struct *target)
1471{
1472	const struct cred *pcred = __task_cred(target);
1473
1474	return uid_eq(cred->euid, pcred->suid) ||
1475	       uid_eq(cred->euid, pcred->uid) ||
1476	       uid_eq(cred->uid, pcred->suid) ||
1477	       uid_eq(cred->uid, pcred->uid);
1478}
1479
1480/*
1481 * The usb asyncio usage of siginfo is wrong.  The glibc support
1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483 * AKA after the generic fields:
1484 *	kernel_pid_t	si_pid;
1485 *	kernel_uid32_t	si_uid;
1486 *	sigval_t	si_value;
1487 *
1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489 * after the generic fields is:
1490 *	void __user 	*si_addr;
1491 *
1492 * This is a practical problem when there is a 64bit big endian kernel
1493 * and a 32bit userspace.  As the 32bit address will encoded in the low
1494 * 32bits of the pointer.  Those low 32bits will be stored at higher
1495 * address than appear in a 32 bit pointer.  So userspace will not
1496 * see the address it was expecting for it's completions.
1497 *
1498 * There is nothing in the encoding that can allow
1499 * copy_siginfo_to_user32 to detect this confusion of formats, so
1500 * handle this by requiring the caller of kill_pid_usb_asyncio to
1501 * notice when this situration takes place and to store the 32bit
1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503 * parameter.
1504 */
1505int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506			 struct pid *pid, const struct cred *cred)
1507{
1508	struct kernel_siginfo info;
1509	struct task_struct *p;
1510	unsigned long flags;
1511	int ret = -EINVAL;
1512
1513	if (!valid_signal(sig))
1514		return ret;
1515
1516	clear_siginfo(&info);
1517	info.si_signo = sig;
1518	info.si_errno = errno;
1519	info.si_code = SI_ASYNCIO;
1520	*((sigval_t *)&info.si_pid) = addr;
1521
1522	rcu_read_lock();
1523	p = pid_task(pid, PIDTYPE_PID);
1524	if (!p) {
1525		ret = -ESRCH;
1526		goto out_unlock;
1527	}
1528	if (!kill_as_cred_perm(cred, p)) {
1529		ret = -EPERM;
1530		goto out_unlock;
1531	}
1532	ret = security_task_kill(p, &info, sig, cred);
1533	if (ret)
1534		goto out_unlock;
1535
1536	if (sig) {
1537		if (lock_task_sighand(p, &flags)) {
1538			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539			unlock_task_sighand(p, &flags);
1540		} else
1541			ret = -ESRCH;
1542	}
1543out_unlock:
1544	rcu_read_unlock();
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548
1549/*
1550 * kill_something_info() interprets pid in interesting ways just like kill(2).
1551 *
1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553 * is probably wrong.  Should make it like BSD or SYSV.
1554 */
1555
1556static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557{
1558	int ret;
1559
1560	if (pid > 0)
1561		return kill_proc_info(sig, info, pid);
1562
1563	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564	if (pid == INT_MIN)
1565		return -ESRCH;
1566
1567	read_lock(&tasklist_lock);
1568	if (pid != -1) {
1569		ret = __kill_pgrp_info(sig, info,
1570				pid ? find_vpid(-pid) : task_pgrp(current));
1571	} else {
1572		int retval = 0, count = 0;
1573		struct task_struct * p;
1574
1575		for_each_process(p) {
1576			if (task_pid_vnr(p) > 1 &&
1577					!same_thread_group(p, current)) {
1578				int err = group_send_sig_info(sig, info, p,
1579							      PIDTYPE_MAX);
1580				++count;
1581				if (err != -EPERM)
1582					retval = err;
1583			}
1584		}
1585		ret = count ? retval : -ESRCH;
1586	}
1587	read_unlock(&tasklist_lock);
1588
1589	return ret;
1590}
1591
1592/*
1593 * These are for backward compatibility with the rest of the kernel source.
1594 */
1595
1596int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597{
1598	/*
1599	 * Make sure legacy kernel users don't send in bad values
1600	 * (normal paths check this in check_kill_permission).
1601	 */
1602	if (!valid_signal(sig))
1603		return -EINVAL;
1604
1605	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606}
1607EXPORT_SYMBOL(send_sig_info);
1608
1609#define __si_special(priv) \
1610	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611
1612int
1613send_sig(int sig, struct task_struct *p, int priv)
1614{
1615	return send_sig_info(sig, __si_special(priv), p);
1616}
1617EXPORT_SYMBOL(send_sig);
1618
1619void force_sig(int sig)
1620{
1621	struct kernel_siginfo info;
1622
1623	clear_siginfo(&info);
1624	info.si_signo = sig;
1625	info.si_errno = 0;
1626	info.si_code = SI_KERNEL;
1627	info.si_pid = 0;
1628	info.si_uid = 0;
1629	force_sig_info(&info);
1630}
1631EXPORT_SYMBOL(force_sig);
1632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633/*
1634 * When things go south during signal handling, we
1635 * will force a SIGSEGV. And if the signal that caused
1636 * the problem was already a SIGSEGV, we'll want to
1637 * make sure we don't even try to deliver the signal..
1638 */
1639void force_sigsegv(int sig)
1640{
1641	struct task_struct *p = current;
1642
1643	if (sig == SIGSEGV) {
1644		unsigned long flags;
1645		spin_lock_irqsave(&p->sighand->siglock, flags);
1646		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648	}
1649	force_sig(SIGSEGV);
1650}
1651
1652int force_sig_fault_to_task(int sig, int code, void __user *addr
1653	___ARCH_SI_TRAPNO(int trapno)
1654	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655	, struct task_struct *t)
1656{
1657	struct kernel_siginfo info;
1658
1659	clear_siginfo(&info);
1660	info.si_signo = sig;
1661	info.si_errno = 0;
1662	info.si_code  = code;
1663	info.si_addr  = addr;
1664#ifdef __ARCH_SI_TRAPNO
1665	info.si_trapno = trapno;
1666#endif
1667#ifdef __ia64__
1668	info.si_imm = imm;
1669	info.si_flags = flags;
1670	info.si_isr = isr;
1671#endif
1672	return force_sig_info_to_task(&info, t);
1673}
1674
1675int force_sig_fault(int sig, int code, void __user *addr
1676	___ARCH_SI_TRAPNO(int trapno)
1677	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678{
1679	return force_sig_fault_to_task(sig, code, addr
1680				       ___ARCH_SI_TRAPNO(trapno)
1681				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682}
1683
1684int send_sig_fault(int sig, int code, void __user *addr
1685	___ARCH_SI_TRAPNO(int trapno)
1686	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687	, struct task_struct *t)
1688{
1689	struct kernel_siginfo info;
1690
1691	clear_siginfo(&info);
1692	info.si_signo = sig;
1693	info.si_errno = 0;
1694	info.si_code  = code;
1695	info.si_addr  = addr;
1696#ifdef __ARCH_SI_TRAPNO
1697	info.si_trapno = trapno;
1698#endif
1699#ifdef __ia64__
1700	info.si_imm = imm;
1701	info.si_flags = flags;
1702	info.si_isr = isr;
1703#endif
1704	return send_sig_info(info.si_signo, &info, t);
1705}
1706
1707int force_sig_mceerr(int code, void __user *addr, short lsb)
1708{
1709	struct kernel_siginfo info;
1710
1711	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712	clear_siginfo(&info);
1713	info.si_signo = SIGBUS;
1714	info.si_errno = 0;
1715	info.si_code = code;
1716	info.si_addr = addr;
1717	info.si_addr_lsb = lsb;
1718	return force_sig_info(&info);
1719}
1720
1721int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722{
1723	struct kernel_siginfo info;
1724
1725	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726	clear_siginfo(&info);
1727	info.si_signo = SIGBUS;
1728	info.si_errno = 0;
1729	info.si_code = code;
1730	info.si_addr = addr;
1731	info.si_addr_lsb = lsb;
1732	return send_sig_info(info.si_signo, &info, t);
1733}
1734EXPORT_SYMBOL(send_sig_mceerr);
1735
1736int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737{
1738	struct kernel_siginfo info;
1739
1740	clear_siginfo(&info);
1741	info.si_signo = SIGSEGV;
1742	info.si_errno = 0;
1743	info.si_code  = SEGV_BNDERR;
1744	info.si_addr  = addr;
1745	info.si_lower = lower;
1746	info.si_upper = upper;
1747	return force_sig_info(&info);
1748}
1749
1750#ifdef SEGV_PKUERR
1751int force_sig_pkuerr(void __user *addr, u32 pkey)
1752{
1753	struct kernel_siginfo info;
1754
1755	clear_siginfo(&info);
1756	info.si_signo = SIGSEGV;
1757	info.si_errno = 0;
1758	info.si_code  = SEGV_PKUERR;
1759	info.si_addr  = addr;
1760	info.si_pkey  = pkey;
1761	return force_sig_info(&info);
1762}
1763#endif
1764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765/* For the crazy architectures that include trap information in
1766 * the errno field, instead of an actual errno value.
1767 */
1768int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo = SIGTRAP;
1774	info.si_errno = errno;
1775	info.si_code  = TRAP_HWBKPT;
1776	info.si_addr  = addr;
1777	return force_sig_info(&info);
1778}
1779
1780int kill_pgrp(struct pid *pid, int sig, int priv)
 
 
 
1781{
1782	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783
 
 
 
 
 
 
 
 
 
 
 
 
1784	read_lock(&tasklist_lock);
1785	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786	read_unlock(&tasklist_lock);
1787
1788	return ret;
1789}
 
 
 
 
 
1790EXPORT_SYMBOL(kill_pgrp);
1791
1792int kill_pid(struct pid *pid, int sig, int priv)
1793{
1794	return kill_pid_info(sig, __si_special(priv), pid);
1795}
1796EXPORT_SYMBOL(kill_pid);
1797
1798/*
1799 * These functions support sending signals using preallocated sigqueue
1800 * structures.  This is needed "because realtime applications cannot
1801 * afford to lose notifications of asynchronous events, like timer
1802 * expirations or I/O completions".  In the case of POSIX Timers
1803 * we allocate the sigqueue structure from the timer_create.  If this
1804 * allocation fails we are able to report the failure to the application
1805 * with an EAGAIN error.
1806 */
1807struct sigqueue *sigqueue_alloc(void)
1808{
1809	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810
1811	if (q)
1812		q->flags |= SIGQUEUE_PREALLOC;
1813
1814	return q;
1815}
1816
1817void sigqueue_free(struct sigqueue *q)
1818{
1819	unsigned long flags;
1820	spinlock_t *lock = &current->sighand->siglock;
1821
1822	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823	/*
1824	 * We must hold ->siglock while testing q->list
1825	 * to serialize with collect_signal() or with
1826	 * __exit_signal()->flush_sigqueue().
1827	 */
1828	spin_lock_irqsave(lock, flags);
1829	q->flags &= ~SIGQUEUE_PREALLOC;
1830	/*
1831	 * If it is queued it will be freed when dequeued,
1832	 * like the "regular" sigqueue.
1833	 */
1834	if (!list_empty(&q->list))
1835		q = NULL;
1836	spin_unlock_irqrestore(lock, flags);
1837
1838	if (q)
1839		__sigqueue_free(q);
1840}
1841
1842int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843{
1844	int sig = q->info.si_signo;
1845	struct sigpending *pending;
1846	struct task_struct *t;
1847	unsigned long flags;
1848	int ret, result;
1849
1850	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851
1852	ret = -1;
1853	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 
 
1854	t = pid_task(pid, type);
1855	if (!t || !likely(lock_task_sighand(t, &flags)))
 
 
 
 
1856		goto ret;
1857
1858	ret = 1; /* the signal is ignored */
1859	result = TRACE_SIGNAL_IGNORED;
1860	if (!prepare_signal(sig, t, false))
1861		goto out;
1862
1863	ret = 0;
1864	if (unlikely(!list_empty(&q->list))) {
1865		/*
1866		 * If an SI_TIMER entry is already queue just increment
1867		 * the overrun count.
1868		 */
1869		BUG_ON(q->info.si_code != SI_TIMER);
1870		q->info.si_overrun++;
1871		result = TRACE_SIGNAL_ALREADY_PENDING;
1872		goto out;
1873	}
1874	q->info.si_overrun = 0;
1875
1876	signalfd_notify(t, sig);
1877	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878	list_add_tail(&q->list, &pending->list);
1879	sigaddset(&pending->signal, sig);
1880	complete_signal(sig, t, type);
1881	result = TRACE_SIGNAL_DELIVERED;
1882out:
1883	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884	unlock_task_sighand(t, &flags);
1885ret:
1886	rcu_read_unlock();
1887	return ret;
1888}
1889
1890static void do_notify_pidfd(struct task_struct *task)
1891{
1892	struct pid *pid;
1893
1894	WARN_ON(task->exit_state == 0);
1895	pid = task_pid(task);
1896	wake_up_all(&pid->wait_pidfd);
 
1897}
1898
1899/*
1900 * Let a parent know about the death of a child.
1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902 *
1903 * Returns true if our parent ignored us and so we've switched to
1904 * self-reaping.
1905 */
1906bool do_notify_parent(struct task_struct *tsk, int sig)
1907{
1908	struct kernel_siginfo info;
1909	unsigned long flags;
1910	struct sighand_struct *psig;
1911	bool autoreap = false;
1912	u64 utime, stime;
1913
1914	BUG_ON(sig == -1);
1915
1916 	/* do_notify_parent_cldstop should have been called instead.  */
1917 	BUG_ON(task_is_stopped_or_traced(tsk));
1918
1919	BUG_ON(!tsk->ptrace &&
1920	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921
1922	/* Wake up all pidfd waiters */
1923	do_notify_pidfd(tsk);
 
 
 
1924
1925	if (sig != SIGCHLD) {
1926		/*
1927		 * This is only possible if parent == real_parent.
1928		 * Check if it has changed security domain.
1929		 */
1930		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931			sig = SIGCHLD;
1932	}
1933
1934	clear_siginfo(&info);
1935	info.si_signo = sig;
1936	info.si_errno = 0;
1937	/*
1938	 * We are under tasklist_lock here so our parent is tied to
1939	 * us and cannot change.
1940	 *
1941	 * task_active_pid_ns will always return the same pid namespace
1942	 * until a task passes through release_task.
1943	 *
1944	 * write_lock() currently calls preempt_disable() which is the
1945	 * same as rcu_read_lock(), but according to Oleg, this is not
1946	 * correct to rely on this
1947	 */
1948	rcu_read_lock();
1949	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951				       task_uid(tsk));
1952	rcu_read_unlock();
1953
1954	task_cputime(tsk, &utime, &stime);
1955	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957
1958	info.si_status = tsk->exit_code & 0x7f;
1959	if (tsk->exit_code & 0x80)
1960		info.si_code = CLD_DUMPED;
1961	else if (tsk->exit_code & 0x7f)
1962		info.si_code = CLD_KILLED;
1963	else {
1964		info.si_code = CLD_EXITED;
1965		info.si_status = tsk->exit_code >> 8;
1966	}
1967
1968	psig = tsk->parent->sighand;
1969	spin_lock_irqsave(&psig->siglock, flags);
1970	if (!tsk->ptrace && sig == SIGCHLD &&
1971	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973		/*
1974		 * We are exiting and our parent doesn't care.  POSIX.1
1975		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977		 * automatically and not left for our parent's wait4 call.
1978		 * Rather than having the parent do it as a magic kind of
1979		 * signal handler, we just set this to tell do_exit that we
1980		 * can be cleaned up without becoming a zombie.  Note that
1981		 * we still call __wake_up_parent in this case, because a
1982		 * blocked sys_wait4 might now return -ECHILD.
1983		 *
1984		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985		 * is implementation-defined: we do (if you don't want
1986		 * it, just use SIG_IGN instead).
1987		 */
1988		autoreap = true;
1989		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990			sig = 0;
1991	}
1992	/*
1993	 * Send with __send_signal as si_pid and si_uid are in the
1994	 * parent's namespaces.
1995	 */
1996	if (valid_signal(sig) && sig)
1997		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998	__wake_up_parent(tsk, tsk->parent);
1999	spin_unlock_irqrestore(&psig->siglock, flags);
2000
2001	return autoreap;
2002}
2003
2004/**
2005 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006 * @tsk: task reporting the state change
2007 * @for_ptracer: the notification is for ptracer
2008 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009 *
2010 * Notify @tsk's parent that the stopped/continued state has changed.  If
2011 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013 *
2014 * CONTEXT:
2015 * Must be called with tasklist_lock at least read locked.
2016 */
2017static void do_notify_parent_cldstop(struct task_struct *tsk,
2018				     bool for_ptracer, int why)
2019{
2020	struct kernel_siginfo info;
2021	unsigned long flags;
2022	struct task_struct *parent;
2023	struct sighand_struct *sighand;
2024	u64 utime, stime;
2025
2026	if (for_ptracer) {
2027		parent = tsk->parent;
2028	} else {
2029		tsk = tsk->group_leader;
2030		parent = tsk->real_parent;
2031	}
2032
2033	clear_siginfo(&info);
2034	info.si_signo = SIGCHLD;
2035	info.si_errno = 0;
2036	/*
2037	 * see comment in do_notify_parent() about the following 4 lines
2038	 */
2039	rcu_read_lock();
2040	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042	rcu_read_unlock();
2043
2044	task_cputime(tsk, &utime, &stime);
2045	info.si_utime = nsec_to_clock_t(utime);
2046	info.si_stime = nsec_to_clock_t(stime);
2047
2048 	info.si_code = why;
2049 	switch (why) {
2050 	case CLD_CONTINUED:
2051 		info.si_status = SIGCONT;
2052 		break;
2053 	case CLD_STOPPED:
2054 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055 		break;
2056 	case CLD_TRAPPED:
2057 		info.si_status = tsk->exit_code & 0x7f;
2058 		break;
2059 	default:
2060 		BUG();
2061 	}
2062
2063	sighand = parent->sighand;
2064	spin_lock_irqsave(&sighand->siglock, flags);
2065	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067		__group_send_sig_info(SIGCHLD, &info, parent);
2068	/*
2069	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070	 */
2071	__wake_up_parent(tsk, parent);
2072	spin_unlock_irqrestore(&sighand->siglock, flags);
2073}
2074
2075static inline bool may_ptrace_stop(void)
2076{
2077	if (!likely(current->ptrace))
2078		return false;
2079	/*
2080	 * Are we in the middle of do_coredump?
2081	 * If so and our tracer is also part of the coredump stopping
2082	 * is a deadlock situation, and pointless because our tracer
2083	 * is dead so don't allow us to stop.
2084	 * If SIGKILL was already sent before the caller unlocked
2085	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086	 * is safe to enter schedule().
2087	 *
2088	 * This is almost outdated, a task with the pending SIGKILL can't
2089	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090	 * after SIGKILL was already dequeued.
2091	 */
2092	if (unlikely(current->mm->core_state) &&
2093	    unlikely(current->mm == current->parent->mm))
2094		return false;
2095
2096	return true;
2097}
2098
2099/*
2100 * Return non-zero if there is a SIGKILL that should be waking us up.
2101 * Called with the siglock held.
2102 */
2103static bool sigkill_pending(struct task_struct *tsk)
2104{
2105	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107}
2108
2109/*
2110 * This must be called with current->sighand->siglock held.
2111 *
2112 * This should be the path for all ptrace stops.
2113 * We always set current->last_siginfo while stopped here.
2114 * That makes it a way to test a stopped process for
2115 * being ptrace-stopped vs being job-control-stopped.
2116 *
2117 * If we actually decide not to stop at all because the tracer
2118 * is gone, we keep current->exit_code unless clear_code.
 
2119 */
2120static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
 
2121	__releases(&current->sighand->siglock)
2122	__acquires(&current->sighand->siglock)
2123{
2124	bool gstop_done = false;
2125
2126	if (arch_ptrace_stop_needed(exit_code, info)) {
2127		/*
2128		 * The arch code has something special to do before a
2129		 * ptrace stop.  This is allowed to block, e.g. for faults
2130		 * on user stack pages.  We can't keep the siglock while
2131		 * calling arch_ptrace_stop, so we must release it now.
2132		 * To preserve proper semantics, we must do this before
2133		 * any signal bookkeeping like checking group_stop_count.
2134		 * Meanwhile, a SIGKILL could come in before we retake the
2135		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136		 * So after regaining the lock, we must check for SIGKILL.
2137		 */
2138		spin_unlock_irq(&current->sighand->siglock);
2139		arch_ptrace_stop(exit_code, info);
2140		spin_lock_irq(&current->sighand->siglock);
2141		if (sigkill_pending(current))
2142			return;
2143	}
2144
 
 
 
 
 
 
 
 
 
2145	set_special_state(TASK_TRACED);
 
2146
2147	/*
2148	 * We're committing to trapping.  TRACED should be visible before
2149	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150	 * Also, transition to TRACED and updates to ->jobctl should be
2151	 * atomic with respect to siglock and should be done after the arch
2152	 * hook as siglock is released and regrabbed across it.
2153	 *
2154	 *     TRACER				    TRACEE
2155	 *
2156	 *     ptrace_attach()
2157	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158	 *     do_wait()
2159	 *       set_current_state()                smp_wmb();
2160	 *       ptrace_do_wait()
2161	 *         wait_task_stopped()
2162	 *           task_stopped_code()
2163	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164	 */
2165	smp_wmb();
2166
 
2167	current->last_siginfo = info;
2168	current->exit_code = exit_code;
2169
2170	/*
2171	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174	 * could be clear now.  We act as if SIGCONT is received after
2175	 * TASK_TRACED is entered - ignore it.
2176	 */
2177	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178		gstop_done = task_participate_group_stop(current);
2179
2180	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184
2185	/* entering a trap, clear TRAPPING */
2186	task_clear_jobctl_trapping(current);
2187
2188	spin_unlock_irq(&current->sighand->siglock);
2189	read_lock(&tasklist_lock);
2190	if (may_ptrace_stop()) {
2191		/*
2192		 * Notify parents of the stop.
2193		 *
2194		 * While ptraced, there are two parents - the ptracer and
2195		 * the real_parent of the group_leader.  The ptracer should
2196		 * know about every stop while the real parent is only
2197		 * interested in the completion of group stop.  The states
2198		 * for the two don't interact with each other.  Notify
2199		 * separately unless they're gonna be duplicates.
2200		 */
2201		do_notify_parent_cldstop(current, true, why);
2202		if (gstop_done && ptrace_reparented(current))
2203			do_notify_parent_cldstop(current, false, why);
2204
2205		/*
2206		 * Don't want to allow preemption here, because
2207		 * sys_ptrace() needs this task to be inactive.
2208		 *
2209		 * XXX: implement read_unlock_no_resched().
2210		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211		preempt_disable();
2212		read_unlock(&tasklist_lock);
2213		cgroup_enter_frozen();
 
2214		preempt_enable_no_resched();
2215		freezable_schedule();
2216		cgroup_leave_frozen(true);
2217	} else {
2218		/*
2219		 * By the time we got the lock, our tracer went away.
2220		 * Don't drop the lock yet, another tracer may come.
2221		 *
2222		 * If @gstop_done, the ptracer went away between group stop
2223		 * completion and here.  During detach, it would have set
2224		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226		 * the real parent of the group stop completion is enough.
2227		 */
2228		if (gstop_done)
2229			do_notify_parent_cldstop(current, false, why);
2230
2231		/* tasklist protects us from ptrace_freeze_traced() */
2232		__set_current_state(TASK_RUNNING);
2233		if (clear_code)
2234			current->exit_code = 0;
2235		read_unlock(&tasklist_lock);
2236	}
2237
2238	/*
2239	 * We are back.  Now reacquire the siglock before touching
2240	 * last_siginfo, so that we are sure to have synchronized with
2241	 * any signal-sending on another CPU that wants to examine it.
2242	 */
2243	spin_lock_irq(&current->sighand->siglock);
 
2244	current->last_siginfo = NULL;
 
 
2245
2246	/* LISTENING can be set only during STOP traps, clear it */
2247	current->jobctl &= ~JOBCTL_LISTENING;
2248
2249	/*
2250	 * Queued signals ignored us while we were stopped for tracing.
2251	 * So check for any that we should take before resuming user mode.
2252	 * This sets TIF_SIGPENDING, but never clears it.
2253	 */
2254	recalc_sigpending_tsk(current);
 
2255}
2256
2257static void ptrace_do_notify(int signr, int exit_code, int why)
2258{
2259	kernel_siginfo_t info;
2260
2261	clear_siginfo(&info);
2262	info.si_signo = signr;
2263	info.si_code = exit_code;
2264	info.si_pid = task_pid_vnr(current);
2265	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266
2267	/* Let the debugger run.  */
2268	ptrace_stop(exit_code, why, 1, &info);
2269}
2270
2271void ptrace_notify(int exit_code)
2272{
 
 
2273	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274	if (unlikely(current->task_works))
2275		task_work_run();
2276
2277	spin_lock_irq(&current->sighand->siglock);
2278	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279	spin_unlock_irq(&current->sighand->siglock);
 
2280}
2281
2282/**
2283 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284 * @signr: signr causing group stop if initiating
2285 *
2286 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287 * and participate in it.  If already set, participate in the existing
2288 * group stop.  If participated in a group stop (and thus slept), %true is
2289 * returned with siglock released.
2290 *
2291 * If ptraced, this function doesn't handle stop itself.  Instead,
2292 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294 * places afterwards.
2295 *
2296 * CONTEXT:
2297 * Must be called with @current->sighand->siglock held, which is released
2298 * on %true return.
2299 *
2300 * RETURNS:
2301 * %false if group stop is already cancelled or ptrace trap is scheduled.
2302 * %true if participated in group stop.
2303 */
2304static bool do_signal_stop(int signr)
2305	__releases(&current->sighand->siglock)
2306{
2307	struct signal_struct *sig = current->signal;
2308
2309	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311		struct task_struct *t;
2312
2313		/* signr will be recorded in task->jobctl for retries */
2314		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315
2316		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317		    unlikely(signal_group_exit(sig)))
 
2318			return false;
2319		/*
2320		 * There is no group stop already in progress.  We must
2321		 * initiate one now.
2322		 *
2323		 * While ptraced, a task may be resumed while group stop is
2324		 * still in effect and then receive a stop signal and
2325		 * initiate another group stop.  This deviates from the
2326		 * usual behavior as two consecutive stop signals can't
2327		 * cause two group stops when !ptraced.  That is why we
2328		 * also check !task_is_stopped(t) below.
2329		 *
2330		 * The condition can be distinguished by testing whether
2331		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332		 * group_exit_code in such case.
2333		 *
2334		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335		 * an intervening stop signal is required to cause two
2336		 * continued events regardless of ptrace.
2337		 */
2338		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339			sig->group_exit_code = signr;
2340
2341		sig->group_stop_count = 0;
2342
2343		if (task_set_jobctl_pending(current, signr | gstop))
2344			sig->group_stop_count++;
2345
2346		t = current;
2347		while_each_thread(current, t) {
2348			/*
2349			 * Setting state to TASK_STOPPED for a group
2350			 * stop is always done with the siglock held,
2351			 * so this check has no races.
2352			 */
2353			if (!task_is_stopped(t) &&
2354			    task_set_jobctl_pending(t, signr | gstop)) {
2355				sig->group_stop_count++;
2356				if (likely(!(t->ptrace & PT_SEIZED)))
2357					signal_wake_up(t, 0);
2358				else
2359					ptrace_trap_notify(t);
2360			}
2361		}
2362	}
2363
2364	if (likely(!current->ptrace)) {
2365		int notify = 0;
2366
2367		/*
2368		 * If there are no other threads in the group, or if there
2369		 * is a group stop in progress and we are the last to stop,
2370		 * report to the parent.
2371		 */
2372		if (task_participate_group_stop(current))
2373			notify = CLD_STOPPED;
2374
 
2375		set_special_state(TASK_STOPPED);
2376		spin_unlock_irq(&current->sighand->siglock);
2377
2378		/*
2379		 * Notify the parent of the group stop completion.  Because
2380		 * we're not holding either the siglock or tasklist_lock
2381		 * here, ptracer may attach inbetween; however, this is for
2382		 * group stop and should always be delivered to the real
2383		 * parent of the group leader.  The new ptracer will get
2384		 * its notification when this task transitions into
2385		 * TASK_TRACED.
2386		 */
2387		if (notify) {
2388			read_lock(&tasklist_lock);
2389			do_notify_parent_cldstop(current, false, notify);
2390			read_unlock(&tasklist_lock);
2391		}
2392
2393		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394		cgroup_enter_frozen();
2395		freezable_schedule();
2396		return true;
2397	} else {
2398		/*
2399		 * While ptraced, group stop is handled by STOP trap.
2400		 * Schedule it and let the caller deal with it.
2401		 */
2402		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403		return false;
2404	}
2405}
2406
2407/**
2408 * do_jobctl_trap - take care of ptrace jobctl traps
2409 *
2410 * When PT_SEIZED, it's used for both group stop and explicit
2411 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413 * the stop signal; otherwise, %SIGTRAP.
2414 *
2415 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416 * number as exit_code and no siginfo.
2417 *
2418 * CONTEXT:
2419 * Must be called with @current->sighand->siglock held, which may be
2420 * released and re-acquired before returning with intervening sleep.
2421 */
2422static void do_jobctl_trap(void)
2423{
2424	struct signal_struct *signal = current->signal;
2425	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426
2427	if (current->ptrace & PT_SEIZED) {
2428		if (!signal->group_stop_count &&
2429		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430			signr = SIGTRAP;
2431		WARN_ON_ONCE(!signr);
2432		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433				 CLD_STOPPED);
2434	} else {
2435		WARN_ON_ONCE(!signr);
2436		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437		current->exit_code = 0;
2438	}
2439}
2440
2441/**
2442 * do_freezer_trap - handle the freezer jobctl trap
2443 *
2444 * Puts the task into frozen state, if only the task is not about to quit.
2445 * In this case it drops JOBCTL_TRAP_FREEZE.
2446 *
2447 * CONTEXT:
2448 * Must be called with @current->sighand->siglock held,
2449 * which is always released before returning.
2450 */
2451static void do_freezer_trap(void)
2452	__releases(&current->sighand->siglock)
2453{
2454	/*
2455	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456	 * let's make another loop to give it a chance to be handled.
2457	 * In any case, we'll return back.
2458	 */
2459	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460	     JOBCTL_TRAP_FREEZE) {
2461		spin_unlock_irq(&current->sighand->siglock);
2462		return;
2463	}
2464
2465	/*
2466	 * Now we're sure that there is no pending fatal signal and no
2467	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468	 * immediately (if there is a non-fatal signal pending), and
2469	 * put the task into sleep.
2470	 */
2471	__set_current_state(TASK_INTERRUPTIBLE);
2472	clear_thread_flag(TIF_SIGPENDING);
2473	spin_unlock_irq(&current->sighand->siglock);
2474	cgroup_enter_frozen();
2475	freezable_schedule();
2476}
2477
2478static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479{
2480	/*
2481	 * We do not check sig_kernel_stop(signr) but set this marker
2482	 * unconditionally because we do not know whether debugger will
2483	 * change signr. This flag has no meaning unless we are going
2484	 * to stop after return from ptrace_stop(). In this case it will
2485	 * be checked in do_signal_stop(), we should only stop if it was
2486	 * not cleared by SIGCONT while we were sleeping. See also the
2487	 * comment in dequeue_signal().
2488	 */
2489	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491
2492	/* We're back.  Did the debugger cancel the sig?  */
2493	signr = current->exit_code;
2494	if (signr == 0)
2495		return signr;
2496
2497	current->exit_code = 0;
2498
2499	/*
2500	 * Update the siginfo structure if the signal has
2501	 * changed.  If the debugger wanted something
2502	 * specific in the siginfo structure then it should
2503	 * have updated *info via PTRACE_SETSIGINFO.
2504	 */
2505	if (signr != info->si_signo) {
2506		clear_siginfo(info);
2507		info->si_signo = signr;
2508		info->si_errno = 0;
2509		info->si_code = SI_USER;
2510		rcu_read_lock();
2511		info->si_pid = task_pid_vnr(current->parent);
2512		info->si_uid = from_kuid_munged(current_user_ns(),
2513						task_uid(current->parent));
2514		rcu_read_unlock();
2515	}
2516
2517	/* If the (new) signal is now blocked, requeue it.  */
2518	if (sigismember(&current->blocked, signr)) {
2519		send_signal(signr, info, current, PIDTYPE_PID);
 
2520		signr = 0;
2521	}
2522
2523	return signr;
2524}
2525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526bool get_signal(struct ksignal *ksig)
2527{
2528	struct sighand_struct *sighand = current->sighand;
2529	struct signal_struct *signal = current->signal;
2530	int signr;
2531
 
 
 
 
 
 
 
2532	if (unlikely(uprobe_deny_signal()))
2533		return false;
2534
2535	/*
2536	 * Do this once, we can't return to user-mode if freezing() == T.
2537	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2538	 * thus do not need another check after return.
2539	 */
2540	try_to_freeze();
2541
2542relock:
2543	spin_lock_irq(&sighand->siglock);
2544	/*
2545	 * Make sure we can safely read ->jobctl() in task_work add. As Oleg
2546	 * states:
2547	 *
2548	 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we
2549	 * roughly have
2550	 *
2551	 *	task_work_add:				get_signal:
2552	 *	STORE(task->task_works, new_work);	STORE(task->jobctl);
2553	 *	mb();					mb();
2554	 *	LOAD(task->jobctl);			LOAD(task->task_works);
2555	 *
2556	 * and we can rely on STORE-MB-LOAD [ in task_work_add].
2557	 */
2558	smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK);
2559	if (unlikely(current->task_works)) {
2560		spin_unlock_irq(&sighand->siglock);
2561		task_work_run();
2562		goto relock;
2563	}
2564
2565	/*
2566	 * Every stopped thread goes here after wakeup. Check to see if
2567	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2568	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2569	 */
2570	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2571		int why;
2572
2573		if (signal->flags & SIGNAL_CLD_CONTINUED)
2574			why = CLD_CONTINUED;
2575		else
2576			why = CLD_STOPPED;
2577
2578		signal->flags &= ~SIGNAL_CLD_MASK;
2579
2580		spin_unlock_irq(&sighand->siglock);
2581
2582		/*
2583		 * Notify the parent that we're continuing.  This event is
2584		 * always per-process and doesn't make whole lot of sense
2585		 * for ptracers, who shouldn't consume the state via
2586		 * wait(2) either, but, for backward compatibility, notify
2587		 * the ptracer of the group leader too unless it's gonna be
2588		 * a duplicate.
2589		 */
2590		read_lock(&tasklist_lock);
2591		do_notify_parent_cldstop(current, false, why);
2592
2593		if (ptrace_reparented(current->group_leader))
2594			do_notify_parent_cldstop(current->group_leader,
2595						true, why);
2596		read_unlock(&tasklist_lock);
2597
2598		goto relock;
2599	}
2600
2601	/* Has this task already been marked for death? */
2602	if (signal_group_exit(signal)) {
2603		ksig->info.si_signo = signr = SIGKILL;
2604		sigdelset(&current->pending.signal, SIGKILL);
2605		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2606				&sighand->action[SIGKILL - 1]);
2607		recalc_sigpending();
2608		goto fatal;
2609	}
2610
2611	for (;;) {
2612		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613
2614		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2615		    do_signal_stop(0))
2616			goto relock;
2617
2618		if (unlikely(current->jobctl &
2619			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2620			if (current->jobctl & JOBCTL_TRAP_MASK) {
2621				do_jobctl_trap();
2622				spin_unlock_irq(&sighand->siglock);
2623			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2624				do_freezer_trap();
2625
2626			goto relock;
2627		}
2628
2629		/*
2630		 * If the task is leaving the frozen state, let's update
2631		 * cgroup counters and reset the frozen bit.
2632		 */
2633		if (unlikely(cgroup_task_frozen(current))) {
2634			spin_unlock_irq(&sighand->siglock);
2635			cgroup_leave_frozen(false);
2636			goto relock;
2637		}
2638
2639		/*
2640		 * Signals generated by the execution of an instruction
2641		 * need to be delivered before any other pending signals
2642		 * so that the instruction pointer in the signal stack
2643		 * frame points to the faulting instruction.
2644		 */
 
2645		signr = dequeue_synchronous_signal(&ksig->info);
2646		if (!signr)
2647			signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
2648
2649		if (!signr)
2650			break; /* will return 0 */
2651
2652		if (unlikely(current->ptrace) && signr != SIGKILL) {
2653			signr = ptrace_signal(signr, &ksig->info);
 
2654			if (!signr)
2655				continue;
2656		}
2657
2658		ka = &sighand->action[signr-1];
2659
2660		/* Trace actually delivered signals. */
2661		trace_signal_deliver(signr, &ksig->info, ka);
2662
2663		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2664			continue;
2665		if (ka->sa.sa_handler != SIG_DFL) {
2666			/* Run the handler.  */
2667			ksig->ka = *ka;
2668
2669			if (ka->sa.sa_flags & SA_ONESHOT)
2670				ka->sa.sa_handler = SIG_DFL;
2671
2672			break; /* will return non-zero "signr" value */
2673		}
2674
2675		/*
2676		 * Now we are doing the default action for this signal.
2677		 */
2678		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2679			continue;
2680
2681		/*
2682		 * Global init gets no signals it doesn't want.
2683		 * Container-init gets no signals it doesn't want from same
2684		 * container.
2685		 *
2686		 * Note that if global/container-init sees a sig_kernel_only()
2687		 * signal here, the signal must have been generated internally
2688		 * or must have come from an ancestor namespace. In either
2689		 * case, the signal cannot be dropped.
2690		 */
2691		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2692				!sig_kernel_only(signr))
2693			continue;
2694
2695		if (sig_kernel_stop(signr)) {
2696			/*
2697			 * The default action is to stop all threads in
2698			 * the thread group.  The job control signals
2699			 * do nothing in an orphaned pgrp, but SIGSTOP
2700			 * always works.  Note that siglock needs to be
2701			 * dropped during the call to is_orphaned_pgrp()
2702			 * because of lock ordering with tasklist_lock.
2703			 * This allows an intervening SIGCONT to be posted.
2704			 * We need to check for that and bail out if necessary.
2705			 */
2706			if (signr != SIGSTOP) {
2707				spin_unlock_irq(&sighand->siglock);
2708
2709				/* signals can be posted during this window */
2710
2711				if (is_current_pgrp_orphaned())
2712					goto relock;
2713
2714				spin_lock_irq(&sighand->siglock);
2715			}
2716
2717			if (likely(do_signal_stop(ksig->info.si_signo))) {
2718				/* It released the siglock.  */
2719				goto relock;
2720			}
2721
2722			/*
2723			 * We didn't actually stop, due to a race
2724			 * with SIGCONT or something like that.
2725			 */
2726			continue;
2727		}
2728
2729	fatal:
2730		spin_unlock_irq(&sighand->siglock);
2731		if (unlikely(cgroup_task_frozen(current)))
2732			cgroup_leave_frozen(true);
2733
2734		/*
2735		 * Anything else is fatal, maybe with a core dump.
2736		 */
2737		current->flags |= PF_SIGNALED;
2738
2739		if (sig_kernel_coredump(signr)) {
2740			if (print_fatal_signals)
2741				print_fatal_signal(ksig->info.si_signo);
2742			proc_coredump_connector(current);
2743			/*
2744			 * If it was able to dump core, this kills all
2745			 * other threads in the group and synchronizes with
2746			 * their demise.  If we lost the race with another
2747			 * thread getting here, it set group_exit_code
2748			 * first and our do_group_exit call below will use
2749			 * that value and ignore the one we pass it.
2750			 */
2751			do_coredump(&ksig->info);
2752		}
2753
2754		/*
 
 
 
 
 
 
 
 
 
2755		 * Death signals, no core dump.
2756		 */
2757		do_group_exit(ksig->info.si_signo);
2758		/* NOTREACHED */
2759	}
2760	spin_unlock_irq(&sighand->siglock);
2761
2762	ksig->sig = signr;
2763	return ksig->sig > 0;
 
 
 
 
2764}
2765
2766/**
2767 * signal_delivered - 
2768 * @ksig:		kernel signal struct
2769 * @stepping:		nonzero if debugger single-step or block-step in use
2770 *
2771 * This function should be called when a signal has successfully been
2772 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2773 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2774 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2775 */
2776static void signal_delivered(struct ksignal *ksig, int stepping)
2777{
2778	sigset_t blocked;
2779
2780	/* A signal was successfully delivered, and the
2781	   saved sigmask was stored on the signal frame,
2782	   and will be restored by sigreturn.  So we can
2783	   simply clear the restore sigmask flag.  */
2784	clear_restore_sigmask();
2785
2786	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2787	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2788		sigaddset(&blocked, ksig->sig);
2789	set_current_blocked(&blocked);
2790	tracehook_signal_handler(stepping);
 
 
 
2791}
2792
2793void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2794{
2795	if (failed)
2796		force_sigsegv(ksig->sig);
2797	else
2798		signal_delivered(ksig, stepping);
2799}
2800
2801/*
2802 * It could be that complete_signal() picked us to notify about the
2803 * group-wide signal. Other threads should be notified now to take
2804 * the shared signals in @which since we will not.
2805 */
2806static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2807{
2808	sigset_t retarget;
2809	struct task_struct *t;
2810
2811	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2812	if (sigisemptyset(&retarget))
2813		return;
2814
2815	t = tsk;
2816	while_each_thread(tsk, t) {
2817		if (t->flags & PF_EXITING)
2818			continue;
2819
2820		if (!has_pending_signals(&retarget, &t->blocked))
2821			continue;
2822		/* Remove the signals this thread can handle. */
2823		sigandsets(&retarget, &retarget, &t->blocked);
2824
2825		if (!signal_pending(t))
2826			signal_wake_up(t, 0);
2827
2828		if (sigisemptyset(&retarget))
2829			break;
2830	}
2831}
2832
2833void exit_signals(struct task_struct *tsk)
2834{
2835	int group_stop = 0;
2836	sigset_t unblocked;
2837
2838	/*
2839	 * @tsk is about to have PF_EXITING set - lock out users which
2840	 * expect stable threadgroup.
2841	 */
2842	cgroup_threadgroup_change_begin(tsk);
2843
2844	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
2845		tsk->flags |= PF_EXITING;
2846		cgroup_threadgroup_change_end(tsk);
2847		return;
2848	}
2849
2850	spin_lock_irq(&tsk->sighand->siglock);
2851	/*
2852	 * From now this task is not visible for group-wide signals,
2853	 * see wants_signal(), do_signal_stop().
2854	 */
 
2855	tsk->flags |= PF_EXITING;
2856
2857	cgroup_threadgroup_change_end(tsk);
2858
2859	if (!signal_pending(tsk))
2860		goto out;
2861
2862	unblocked = tsk->blocked;
2863	signotset(&unblocked);
2864	retarget_shared_pending(tsk, &unblocked);
2865
2866	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2867	    task_participate_group_stop(tsk))
2868		group_stop = CLD_STOPPED;
2869out:
2870	spin_unlock_irq(&tsk->sighand->siglock);
2871
2872	/*
2873	 * If group stop has completed, deliver the notification.  This
2874	 * should always go to the real parent of the group leader.
2875	 */
2876	if (unlikely(group_stop)) {
2877		read_lock(&tasklist_lock);
2878		do_notify_parent_cldstop(tsk, false, group_stop);
2879		read_unlock(&tasklist_lock);
2880	}
2881}
2882
2883/*
2884 * System call entry points.
2885 */
2886
2887/**
2888 *  sys_restart_syscall - restart a system call
2889 */
2890SYSCALL_DEFINE0(restart_syscall)
2891{
2892	struct restart_block *restart = &current->restart_block;
2893	return restart->fn(restart);
2894}
2895
2896long do_no_restart_syscall(struct restart_block *param)
2897{
2898	return -EINTR;
2899}
2900
2901static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2902{
2903	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2904		sigset_t newblocked;
2905		/* A set of now blocked but previously unblocked signals. */
2906		sigandnsets(&newblocked, newset, &current->blocked);
2907		retarget_shared_pending(tsk, &newblocked);
2908	}
2909	tsk->blocked = *newset;
2910	recalc_sigpending();
2911}
2912
2913/**
2914 * set_current_blocked - change current->blocked mask
2915 * @newset: new mask
2916 *
2917 * It is wrong to change ->blocked directly, this helper should be used
2918 * to ensure the process can't miss a shared signal we are going to block.
2919 */
2920void set_current_blocked(sigset_t *newset)
2921{
2922	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2923	__set_current_blocked(newset);
2924}
2925
2926void __set_current_blocked(const sigset_t *newset)
2927{
2928	struct task_struct *tsk = current;
2929
2930	/*
2931	 * In case the signal mask hasn't changed, there is nothing we need
2932	 * to do. The current->blocked shouldn't be modified by other task.
2933	 */
2934	if (sigequalsets(&tsk->blocked, newset))
2935		return;
2936
2937	spin_lock_irq(&tsk->sighand->siglock);
2938	__set_task_blocked(tsk, newset);
2939	spin_unlock_irq(&tsk->sighand->siglock);
2940}
2941
2942/*
2943 * This is also useful for kernel threads that want to temporarily
2944 * (or permanently) block certain signals.
2945 *
2946 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2947 * interface happily blocks "unblockable" signals like SIGKILL
2948 * and friends.
2949 */
2950int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2951{
2952	struct task_struct *tsk = current;
2953	sigset_t newset;
2954
2955	/* Lockless, only current can change ->blocked, never from irq */
2956	if (oldset)
2957		*oldset = tsk->blocked;
2958
2959	switch (how) {
2960	case SIG_BLOCK:
2961		sigorsets(&newset, &tsk->blocked, set);
2962		break;
2963	case SIG_UNBLOCK:
2964		sigandnsets(&newset, &tsk->blocked, set);
2965		break;
2966	case SIG_SETMASK:
2967		newset = *set;
2968		break;
2969	default:
2970		return -EINVAL;
2971	}
2972
2973	__set_current_blocked(&newset);
2974	return 0;
2975}
2976EXPORT_SYMBOL(sigprocmask);
2977
2978/*
2979 * The api helps set app-provided sigmasks.
2980 *
2981 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2982 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2983 *
2984 * Note that it does set_restore_sigmask() in advance, so it must be always
2985 * paired with restore_saved_sigmask_unless() before return from syscall.
2986 */
2987int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2988{
2989	sigset_t kmask;
2990
2991	if (!umask)
2992		return 0;
2993	if (sigsetsize != sizeof(sigset_t))
2994		return -EINVAL;
2995	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2996		return -EFAULT;
2997
2998	set_restore_sigmask();
2999	current->saved_sigmask = current->blocked;
3000	set_current_blocked(&kmask);
3001
3002	return 0;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3007			    size_t sigsetsize)
3008{
3009	sigset_t kmask;
3010
3011	if (!umask)
3012		return 0;
3013	if (sigsetsize != sizeof(compat_sigset_t))
3014		return -EINVAL;
3015	if (get_compat_sigset(&kmask, umask))
3016		return -EFAULT;
3017
3018	set_restore_sigmask();
3019	current->saved_sigmask = current->blocked;
3020	set_current_blocked(&kmask);
3021
3022	return 0;
3023}
3024#endif
3025
3026/**
3027 *  sys_rt_sigprocmask - change the list of currently blocked signals
3028 *  @how: whether to add, remove, or set signals
3029 *  @nset: stores pending signals
3030 *  @oset: previous value of signal mask if non-null
3031 *  @sigsetsize: size of sigset_t type
3032 */
3033SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3034		sigset_t __user *, oset, size_t, sigsetsize)
3035{
3036	sigset_t old_set, new_set;
3037	int error;
3038
3039	/* XXX: Don't preclude handling different sized sigset_t's.  */
3040	if (sigsetsize != sizeof(sigset_t))
3041		return -EINVAL;
3042
3043	old_set = current->blocked;
3044
3045	if (nset) {
3046		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3047			return -EFAULT;
3048		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3049
3050		error = sigprocmask(how, &new_set, NULL);
3051		if (error)
3052			return error;
3053	}
3054
3055	if (oset) {
3056		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3057			return -EFAULT;
3058	}
3059
3060	return 0;
3061}
3062
3063#ifdef CONFIG_COMPAT
3064COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3065		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3066{
3067	sigset_t old_set = current->blocked;
3068
3069	/* XXX: Don't preclude handling different sized sigset_t's.  */
3070	if (sigsetsize != sizeof(sigset_t))
3071		return -EINVAL;
3072
3073	if (nset) {
3074		sigset_t new_set;
3075		int error;
3076		if (get_compat_sigset(&new_set, nset))
3077			return -EFAULT;
3078		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3079
3080		error = sigprocmask(how, &new_set, NULL);
3081		if (error)
3082			return error;
3083	}
3084	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3085}
3086#endif
3087
3088static void do_sigpending(sigset_t *set)
3089{
3090	spin_lock_irq(&current->sighand->siglock);
3091	sigorsets(set, &current->pending.signal,
3092		  &current->signal->shared_pending.signal);
3093	spin_unlock_irq(&current->sighand->siglock);
3094
3095	/* Outside the lock because only this thread touches it.  */
3096	sigandsets(set, &current->blocked, set);
3097}
3098
3099/**
3100 *  sys_rt_sigpending - examine a pending signal that has been raised
3101 *			while blocked
3102 *  @uset: stores pending signals
3103 *  @sigsetsize: size of sigset_t type or larger
3104 */
3105SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3106{
3107	sigset_t set;
3108
3109	if (sigsetsize > sizeof(*uset))
3110		return -EINVAL;
3111
3112	do_sigpending(&set);
3113
3114	if (copy_to_user(uset, &set, sigsetsize))
3115		return -EFAULT;
3116
3117	return 0;
3118}
3119
3120#ifdef CONFIG_COMPAT
3121COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3122		compat_size_t, sigsetsize)
3123{
3124	sigset_t set;
3125
3126	if (sigsetsize > sizeof(*uset))
3127		return -EINVAL;
3128
3129	do_sigpending(&set);
3130
3131	return put_compat_sigset(uset, &set, sigsetsize);
3132}
3133#endif
3134
3135static const struct {
3136	unsigned char limit, layout;
3137} sig_sicodes[] = {
3138	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3139	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3140	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3141	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3142	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3143#if defined(SIGEMT)
3144	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3145#endif
3146	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3147	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3148	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3149};
3150
3151static bool known_siginfo_layout(unsigned sig, int si_code)
3152{
3153	if (si_code == SI_KERNEL)
3154		return true;
3155	else if ((si_code > SI_USER)) {
3156		if (sig_specific_sicodes(sig)) {
3157			if (si_code <= sig_sicodes[sig].limit)
3158				return true;
3159		}
3160		else if (si_code <= NSIGPOLL)
3161			return true;
3162	}
3163	else if (si_code >= SI_DETHREAD)
3164		return true;
3165	else if (si_code == SI_ASYNCNL)
3166		return true;
3167	return false;
3168}
3169
3170enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3171{
3172	enum siginfo_layout layout = SIL_KILL;
3173	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3174		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3175		    (si_code <= sig_sicodes[sig].limit)) {
3176			layout = sig_sicodes[sig].layout;
3177			/* Handle the exceptions */
3178			if ((sig == SIGBUS) &&
3179			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3180				layout = SIL_FAULT_MCEERR;
3181			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3182				layout = SIL_FAULT_BNDERR;
3183#ifdef SEGV_PKUERR
3184			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3185				layout = SIL_FAULT_PKUERR;
3186#endif
 
 
 
 
 
 
 
 
 
3187		}
3188		else if (si_code <= NSIGPOLL)
3189			layout = SIL_POLL;
3190	} else {
3191		if (si_code == SI_TIMER)
3192			layout = SIL_TIMER;
3193		else if (si_code == SI_SIGIO)
3194			layout = SIL_POLL;
3195		else if (si_code < 0)
3196			layout = SIL_RT;
3197	}
3198	return layout;
3199}
3200
3201static inline char __user *si_expansion(const siginfo_t __user *info)
3202{
3203	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3204}
3205
3206int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3207{
3208	char __user *expansion = si_expansion(to);
3209	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3210		return -EFAULT;
3211	if (clear_user(expansion, SI_EXPANSION_SIZE))
3212		return -EFAULT;
3213	return 0;
3214}
3215
3216static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3217				       const siginfo_t __user *from)
3218{
3219	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3220		char __user *expansion = si_expansion(from);
3221		char buf[SI_EXPANSION_SIZE];
3222		int i;
3223		/*
3224		 * An unknown si_code might need more than
3225		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3226		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3227		 * will return this data to userspace exactly.
3228		 */
3229		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3230			return -EFAULT;
3231		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3232			if (buf[i] != 0)
3233				return -E2BIG;
3234		}
3235	}
3236	return 0;
3237}
3238
3239static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3240				    const siginfo_t __user *from)
3241{
3242	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3243		return -EFAULT;
3244	to->si_signo = signo;
3245	return post_copy_siginfo_from_user(to, from);
3246}
3247
3248int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3249{
3250	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3251		return -EFAULT;
3252	return post_copy_siginfo_from_user(to, from);
3253}
3254
3255#ifdef CONFIG_COMPAT
3256/**
3257 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3258 * @to: compat siginfo destination
3259 * @from: kernel siginfo source
3260 *
3261 * Note: This function does not work properly for the SIGCHLD on x32, but
3262 * fortunately it doesn't have to.  The only valid callers for this function are
3263 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3264 * The latter does not care because SIGCHLD will never cause a coredump.
3265 */
3266void copy_siginfo_to_external32(struct compat_siginfo *to,
3267		const struct kernel_siginfo *from)
3268{
3269	memset(to, 0, sizeof(*to));
3270
3271	to->si_signo = from->si_signo;
3272	to->si_errno = from->si_errno;
3273	to->si_code  = from->si_code;
3274	switch(siginfo_layout(from->si_signo, from->si_code)) {
3275	case SIL_KILL:
3276		to->si_pid = from->si_pid;
3277		to->si_uid = from->si_uid;
3278		break;
3279	case SIL_TIMER:
3280		to->si_tid     = from->si_tid;
3281		to->si_overrun = from->si_overrun;
3282		to->si_int     = from->si_int;
3283		break;
3284	case SIL_POLL:
3285		to->si_band = from->si_band;
3286		to->si_fd   = from->si_fd;
3287		break;
3288	case SIL_FAULT:
3289		to->si_addr = ptr_to_compat(from->si_addr);
3290#ifdef __ARCH_SI_TRAPNO
 
 
3291		to->si_trapno = from->si_trapno;
3292#endif
3293		break;
3294	case SIL_FAULT_MCEERR:
3295		to->si_addr = ptr_to_compat(from->si_addr);
3296#ifdef __ARCH_SI_TRAPNO
3297		to->si_trapno = from->si_trapno;
3298#endif
3299		to->si_addr_lsb = from->si_addr_lsb;
3300		break;
3301	case SIL_FAULT_BNDERR:
3302		to->si_addr = ptr_to_compat(from->si_addr);
3303#ifdef __ARCH_SI_TRAPNO
3304		to->si_trapno = from->si_trapno;
3305#endif
3306		to->si_lower = ptr_to_compat(from->si_lower);
3307		to->si_upper = ptr_to_compat(from->si_upper);
3308		break;
3309	case SIL_FAULT_PKUERR:
3310		to->si_addr = ptr_to_compat(from->si_addr);
3311#ifdef __ARCH_SI_TRAPNO
3312		to->si_trapno = from->si_trapno;
3313#endif
3314		to->si_pkey = from->si_pkey;
3315		break;
 
 
 
 
 
 
3316	case SIL_CHLD:
3317		to->si_pid = from->si_pid;
3318		to->si_uid = from->si_uid;
3319		to->si_status = from->si_status;
3320		to->si_utime = from->si_utime;
3321		to->si_stime = from->si_stime;
3322		break;
3323	case SIL_RT:
3324		to->si_pid = from->si_pid;
3325		to->si_uid = from->si_uid;
3326		to->si_int = from->si_int;
3327		break;
3328	case SIL_SYS:
3329		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3330		to->si_syscall   = from->si_syscall;
3331		to->si_arch      = from->si_arch;
3332		break;
3333	}
3334}
3335
3336int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3337			   const struct kernel_siginfo *from)
3338{
3339	struct compat_siginfo new;
3340
3341	copy_siginfo_to_external32(&new, from);
3342	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3343		return -EFAULT;
3344	return 0;
3345}
3346
3347static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3348					 const struct compat_siginfo *from)
3349{
3350	clear_siginfo(to);
3351	to->si_signo = from->si_signo;
3352	to->si_errno = from->si_errno;
3353	to->si_code  = from->si_code;
3354	switch(siginfo_layout(from->si_signo, from->si_code)) {
3355	case SIL_KILL:
3356		to->si_pid = from->si_pid;
3357		to->si_uid = from->si_uid;
3358		break;
3359	case SIL_TIMER:
3360		to->si_tid     = from->si_tid;
3361		to->si_overrun = from->si_overrun;
3362		to->si_int     = from->si_int;
3363		break;
3364	case SIL_POLL:
3365		to->si_band = from->si_band;
3366		to->si_fd   = from->si_fd;
3367		break;
3368	case SIL_FAULT:
3369		to->si_addr = compat_ptr(from->si_addr);
3370#ifdef __ARCH_SI_TRAPNO
 
 
3371		to->si_trapno = from->si_trapno;
3372#endif
3373		break;
3374	case SIL_FAULT_MCEERR:
3375		to->si_addr = compat_ptr(from->si_addr);
3376#ifdef __ARCH_SI_TRAPNO
3377		to->si_trapno = from->si_trapno;
3378#endif
3379		to->si_addr_lsb = from->si_addr_lsb;
3380		break;
3381	case SIL_FAULT_BNDERR:
3382		to->si_addr = compat_ptr(from->si_addr);
3383#ifdef __ARCH_SI_TRAPNO
3384		to->si_trapno = from->si_trapno;
3385#endif
3386		to->si_lower = compat_ptr(from->si_lower);
3387		to->si_upper = compat_ptr(from->si_upper);
3388		break;
3389	case SIL_FAULT_PKUERR:
3390		to->si_addr = compat_ptr(from->si_addr);
3391#ifdef __ARCH_SI_TRAPNO
3392		to->si_trapno = from->si_trapno;
3393#endif
3394		to->si_pkey = from->si_pkey;
3395		break;
 
 
 
 
 
 
3396	case SIL_CHLD:
3397		to->si_pid    = from->si_pid;
3398		to->si_uid    = from->si_uid;
3399		to->si_status = from->si_status;
3400#ifdef CONFIG_X86_X32_ABI
3401		if (in_x32_syscall()) {
3402			to->si_utime = from->_sifields._sigchld_x32._utime;
3403			to->si_stime = from->_sifields._sigchld_x32._stime;
3404		} else
3405#endif
3406		{
3407			to->si_utime = from->si_utime;
3408			to->si_stime = from->si_stime;
3409		}
3410		break;
3411	case SIL_RT:
3412		to->si_pid = from->si_pid;
3413		to->si_uid = from->si_uid;
3414		to->si_int = from->si_int;
3415		break;
3416	case SIL_SYS:
3417		to->si_call_addr = compat_ptr(from->si_call_addr);
3418		to->si_syscall   = from->si_syscall;
3419		to->si_arch      = from->si_arch;
3420		break;
3421	}
3422	return 0;
3423}
3424
3425static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3426				      const struct compat_siginfo __user *ufrom)
3427{
3428	struct compat_siginfo from;
3429
3430	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3431		return -EFAULT;
3432
3433	from.si_signo = signo;
3434	return post_copy_siginfo_from_user32(to, &from);
3435}
3436
3437int copy_siginfo_from_user32(struct kernel_siginfo *to,
3438			     const struct compat_siginfo __user *ufrom)
3439{
3440	struct compat_siginfo from;
3441
3442	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3443		return -EFAULT;
3444
3445	return post_copy_siginfo_from_user32(to, &from);
3446}
3447#endif /* CONFIG_COMPAT */
3448
3449/**
3450 *  do_sigtimedwait - wait for queued signals specified in @which
3451 *  @which: queued signals to wait for
3452 *  @info: if non-null, the signal's siginfo is returned here
3453 *  @ts: upper bound on process time suspension
3454 */
3455static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3456		    const struct timespec64 *ts)
3457{
3458	ktime_t *to = NULL, timeout = KTIME_MAX;
3459	struct task_struct *tsk = current;
3460	sigset_t mask = *which;
 
3461	int sig, ret = 0;
3462
3463	if (ts) {
3464		if (!timespec64_valid(ts))
3465			return -EINVAL;
3466		timeout = timespec64_to_ktime(*ts);
3467		to = &timeout;
3468	}
3469
3470	/*
3471	 * Invert the set of allowed signals to get those we want to block.
3472	 */
3473	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3474	signotset(&mask);
3475
3476	spin_lock_irq(&tsk->sighand->siglock);
3477	sig = dequeue_signal(tsk, &mask, info);
3478	if (!sig && timeout) {
3479		/*
3480		 * None ready, temporarily unblock those we're interested
3481		 * while we are sleeping in so that we'll be awakened when
3482		 * they arrive. Unblocking is always fine, we can avoid
3483		 * set_current_blocked().
3484		 */
3485		tsk->real_blocked = tsk->blocked;
3486		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3487		recalc_sigpending();
3488		spin_unlock_irq(&tsk->sighand->siglock);
3489
3490		__set_current_state(TASK_INTERRUPTIBLE);
3491		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3492							 HRTIMER_MODE_REL);
3493		spin_lock_irq(&tsk->sighand->siglock);
3494		__set_task_blocked(tsk, &tsk->real_blocked);
3495		sigemptyset(&tsk->real_blocked);
3496		sig = dequeue_signal(tsk, &mask, info);
3497	}
3498	spin_unlock_irq(&tsk->sighand->siglock);
3499
3500	if (sig)
3501		return sig;
3502	return ret ? -EINTR : -EAGAIN;
3503}
3504
3505/**
3506 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3507 *			in @uthese
3508 *  @uthese: queued signals to wait for
3509 *  @uinfo: if non-null, the signal's siginfo is returned here
3510 *  @uts: upper bound on process time suspension
3511 *  @sigsetsize: size of sigset_t type
3512 */
3513SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3514		siginfo_t __user *, uinfo,
3515		const struct __kernel_timespec __user *, uts,
3516		size_t, sigsetsize)
3517{
3518	sigset_t these;
3519	struct timespec64 ts;
3520	kernel_siginfo_t info;
3521	int ret;
3522
3523	/* XXX: Don't preclude handling different sized sigset_t's.  */
3524	if (sigsetsize != sizeof(sigset_t))
3525		return -EINVAL;
3526
3527	if (copy_from_user(&these, uthese, sizeof(these)))
3528		return -EFAULT;
3529
3530	if (uts) {
3531		if (get_timespec64(&ts, uts))
3532			return -EFAULT;
3533	}
3534
3535	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3536
3537	if (ret > 0 && uinfo) {
3538		if (copy_siginfo_to_user(uinfo, &info))
3539			ret = -EFAULT;
3540	}
3541
3542	return ret;
3543}
3544
3545#ifdef CONFIG_COMPAT_32BIT_TIME
3546SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3547		siginfo_t __user *, uinfo,
3548		const struct old_timespec32 __user *, uts,
3549		size_t, sigsetsize)
3550{
3551	sigset_t these;
3552	struct timespec64 ts;
3553	kernel_siginfo_t info;
3554	int ret;
3555
3556	if (sigsetsize != sizeof(sigset_t))
3557		return -EINVAL;
3558
3559	if (copy_from_user(&these, uthese, sizeof(these)))
3560		return -EFAULT;
3561
3562	if (uts) {
3563		if (get_old_timespec32(&ts, uts))
3564			return -EFAULT;
3565	}
3566
3567	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3568
3569	if (ret > 0 && uinfo) {
3570		if (copy_siginfo_to_user(uinfo, &info))
3571			ret = -EFAULT;
3572	}
3573
3574	return ret;
3575}
3576#endif
3577
3578#ifdef CONFIG_COMPAT
3579COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3580		struct compat_siginfo __user *, uinfo,
3581		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3582{
3583	sigset_t s;
3584	struct timespec64 t;
3585	kernel_siginfo_t info;
3586	long ret;
3587
3588	if (sigsetsize != sizeof(sigset_t))
3589		return -EINVAL;
3590
3591	if (get_compat_sigset(&s, uthese))
3592		return -EFAULT;
3593
3594	if (uts) {
3595		if (get_timespec64(&t, uts))
3596			return -EFAULT;
3597	}
3598
3599	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3600
3601	if (ret > 0 && uinfo) {
3602		if (copy_siginfo_to_user32(uinfo, &info))
3603			ret = -EFAULT;
3604	}
3605
3606	return ret;
3607}
3608
3609#ifdef CONFIG_COMPAT_32BIT_TIME
3610COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3611		struct compat_siginfo __user *, uinfo,
3612		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3613{
3614	sigset_t s;
3615	struct timespec64 t;
3616	kernel_siginfo_t info;
3617	long ret;
3618
3619	if (sigsetsize != sizeof(sigset_t))
3620		return -EINVAL;
3621
3622	if (get_compat_sigset(&s, uthese))
3623		return -EFAULT;
3624
3625	if (uts) {
3626		if (get_old_timespec32(&t, uts))
3627			return -EFAULT;
3628	}
3629
3630	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3631
3632	if (ret > 0 && uinfo) {
3633		if (copy_siginfo_to_user32(uinfo, &info))
3634			ret = -EFAULT;
3635	}
3636
3637	return ret;
3638}
3639#endif
3640#endif
3641
3642static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
 
3643{
3644	clear_siginfo(info);
3645	info->si_signo = sig;
3646	info->si_errno = 0;
3647	info->si_code = SI_USER;
3648	info->si_pid = task_tgid_vnr(current);
3649	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3650}
3651
3652/**
3653 *  sys_kill - send a signal to a process
3654 *  @pid: the PID of the process
3655 *  @sig: signal to be sent
3656 */
3657SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3658{
3659	struct kernel_siginfo info;
3660
3661	prepare_kill_siginfo(sig, &info);
3662
3663	return kill_something_info(sig, &info, pid);
3664}
3665
3666/*
3667 * Verify that the signaler and signalee either are in the same pid namespace
3668 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3669 * namespace.
3670 */
3671static bool access_pidfd_pidns(struct pid *pid)
3672{
3673	struct pid_namespace *active = task_active_pid_ns(current);
3674	struct pid_namespace *p = ns_of_pid(pid);
3675
3676	for (;;) {
3677		if (!p)
3678			return false;
3679		if (p == active)
3680			break;
3681		p = p->parent;
3682	}
3683
3684	return true;
3685}
3686
3687static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
 
3688{
3689#ifdef CONFIG_COMPAT
3690	/*
3691	 * Avoid hooking up compat syscalls and instead handle necessary
3692	 * conversions here. Note, this is a stop-gap measure and should not be
3693	 * considered a generic solution.
3694	 */
3695	if (in_compat_syscall())
3696		return copy_siginfo_from_user32(
3697			kinfo, (struct compat_siginfo __user *)info);
3698#endif
3699	return copy_siginfo_from_user(kinfo, info);
3700}
3701
3702static struct pid *pidfd_to_pid(const struct file *file)
3703{
3704	struct pid *pid;
3705
3706	pid = pidfd_pid(file);
3707	if (!IS_ERR(pid))
3708		return pid;
3709
3710	return tgid_pidfd_to_pid(file);
3711}
3712
 
 
 
 
3713/**
3714 * sys_pidfd_send_signal - Signal a process through a pidfd
3715 * @pidfd:  file descriptor of the process
3716 * @sig:    signal to send
3717 * @info:   signal info
3718 * @flags:  future flags
3719 *
3720 * The syscall currently only signals via PIDTYPE_PID which covers
3721 * kill(<positive-pid>, <signal>. It does not signal threads or process
3722 * groups.
3723 * In order to extend the syscall to threads and process groups the @flags
3724 * argument should be used. In essence, the @flags argument will determine
3725 * what is signaled and not the file descriptor itself. Put in other words,
3726 * grouping is a property of the flags argument not a property of the file
3727 * descriptor.
3728 *
3729 * Return: 0 on success, negative errno on failure
3730 */
3731SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3732		siginfo_t __user *, info, unsigned int, flags)
3733{
3734	int ret;
3735	struct fd f;
3736	struct pid *pid;
3737	kernel_siginfo_t kinfo;
 
3738
3739	/* Enforce flags be set to 0 until we add an extension. */
3740	if (flags)
 
 
 
 
3741		return -EINVAL;
3742
3743	f = fdget(pidfd);
3744	if (!f.file)
3745		return -EBADF;
3746
3747	/* Is this a pidfd? */
3748	pid = pidfd_to_pid(f.file);
3749	if (IS_ERR(pid)) {
3750		ret = PTR_ERR(pid);
3751		goto err;
3752	}
3753
3754	ret = -EINVAL;
3755	if (!access_pidfd_pidns(pid))
3756		goto err;
3757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3758	if (info) {
3759		ret = copy_siginfo_from_user_any(&kinfo, info);
3760		if (unlikely(ret))
3761			goto err;
3762
3763		ret = -EINVAL;
3764		if (unlikely(sig != kinfo.si_signo))
3765			goto err;
3766
3767		/* Only allow sending arbitrary signals to yourself. */
3768		ret = -EPERM;
3769		if ((task_pid(current) != pid) &&
3770		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3771			goto err;
3772	} else {
3773		prepare_kill_siginfo(sig, &kinfo);
3774	}
3775
3776	ret = kill_pid_info(sig, &kinfo, pid);
3777
 
 
3778err:
3779	fdput(f);
3780	return ret;
3781}
3782
3783static int
3784do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3785{
3786	struct task_struct *p;
3787	int error = -ESRCH;
3788
3789	rcu_read_lock();
3790	p = find_task_by_vpid(pid);
3791	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3792		error = check_kill_permission(sig, info, p);
3793		/*
3794		 * The null signal is a permissions and process existence
3795		 * probe.  No signal is actually delivered.
3796		 */
3797		if (!error && sig) {
3798			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3799			/*
3800			 * If lock_task_sighand() failed we pretend the task
3801			 * dies after receiving the signal. The window is tiny,
3802			 * and the signal is private anyway.
3803			 */
3804			if (unlikely(error == -ESRCH))
3805				error = 0;
3806		}
3807	}
3808	rcu_read_unlock();
3809
3810	return error;
3811}
3812
3813static int do_tkill(pid_t tgid, pid_t pid, int sig)
3814{
3815	struct kernel_siginfo info;
3816
3817	clear_siginfo(&info);
3818	info.si_signo = sig;
3819	info.si_errno = 0;
3820	info.si_code = SI_TKILL;
3821	info.si_pid = task_tgid_vnr(current);
3822	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3823
3824	return do_send_specific(tgid, pid, sig, &info);
3825}
3826
3827/**
3828 *  sys_tgkill - send signal to one specific thread
3829 *  @tgid: the thread group ID of the thread
3830 *  @pid: the PID of the thread
3831 *  @sig: signal to be sent
3832 *
3833 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3834 *  exists but it's not belonging to the target process anymore. This
3835 *  method solves the problem of threads exiting and PIDs getting reused.
3836 */
3837SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3838{
3839	/* This is only valid for single tasks */
3840	if (pid <= 0 || tgid <= 0)
3841		return -EINVAL;
3842
3843	return do_tkill(tgid, pid, sig);
3844}
3845
3846/**
3847 *  sys_tkill - send signal to one specific task
3848 *  @pid: the PID of the task
3849 *  @sig: signal to be sent
3850 *
3851 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3852 */
3853SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3854{
3855	/* This is only valid for single tasks */
3856	if (pid <= 0)
3857		return -EINVAL;
3858
3859	return do_tkill(0, pid, sig);
3860}
3861
3862static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3863{
3864	/* Not even root can pretend to send signals from the kernel.
3865	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3866	 */
3867	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3868	    (task_pid_vnr(current) != pid))
3869		return -EPERM;
3870
3871	/* POSIX.1b doesn't mention process groups.  */
3872	return kill_proc_info(sig, info, pid);
3873}
3874
3875/**
3876 *  sys_rt_sigqueueinfo - send signal information to a signal
3877 *  @pid: the PID of the thread
3878 *  @sig: signal to be sent
3879 *  @uinfo: signal info to be sent
3880 */
3881SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3882		siginfo_t __user *, uinfo)
3883{
3884	kernel_siginfo_t info;
3885	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3886	if (unlikely(ret))
3887		return ret;
3888	return do_rt_sigqueueinfo(pid, sig, &info);
3889}
3890
3891#ifdef CONFIG_COMPAT
3892COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3893			compat_pid_t, pid,
3894			int, sig,
3895			struct compat_siginfo __user *, uinfo)
3896{
3897	kernel_siginfo_t info;
3898	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3899	if (unlikely(ret))
3900		return ret;
3901	return do_rt_sigqueueinfo(pid, sig, &info);
3902}
3903#endif
3904
3905static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3906{
3907	/* This is only valid for single tasks */
3908	if (pid <= 0 || tgid <= 0)
3909		return -EINVAL;
3910
3911	/* Not even root can pretend to send signals from the kernel.
3912	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3913	 */
3914	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3915	    (task_pid_vnr(current) != pid))
3916		return -EPERM;
3917
3918	return do_send_specific(tgid, pid, sig, info);
3919}
3920
3921SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3922		siginfo_t __user *, uinfo)
3923{
3924	kernel_siginfo_t info;
3925	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3926	if (unlikely(ret))
3927		return ret;
3928	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929}
3930
3931#ifdef CONFIG_COMPAT
3932COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3933			compat_pid_t, tgid,
3934			compat_pid_t, pid,
3935			int, sig,
3936			struct compat_siginfo __user *, uinfo)
3937{
3938	kernel_siginfo_t info;
3939	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3940	if (unlikely(ret))
3941		return ret;
3942	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3943}
3944#endif
3945
3946/*
3947 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3948 */
3949void kernel_sigaction(int sig, __sighandler_t action)
3950{
3951	spin_lock_irq(&current->sighand->siglock);
3952	current->sighand->action[sig - 1].sa.sa_handler = action;
3953	if (action == SIG_IGN) {
3954		sigset_t mask;
3955
3956		sigemptyset(&mask);
3957		sigaddset(&mask, sig);
3958
3959		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3960		flush_sigqueue_mask(&mask, &current->pending);
3961		recalc_sigpending();
3962	}
3963	spin_unlock_irq(&current->sighand->siglock);
3964}
3965EXPORT_SYMBOL(kernel_sigaction);
3966
3967void __weak sigaction_compat_abi(struct k_sigaction *act,
3968		struct k_sigaction *oact)
3969{
3970}
3971
3972int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3973{
3974	struct task_struct *p = current, *t;
3975	struct k_sigaction *k;
3976	sigset_t mask;
3977
3978	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3979		return -EINVAL;
3980
3981	k = &p->sighand->action[sig-1];
3982
3983	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3984	if (oact)
3985		*oact = *k;
3986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3987	sigaction_compat_abi(act, oact);
3988
3989	if (act) {
3990		sigdelsetmask(&act->sa.sa_mask,
3991			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3992		*k = *act;
3993		/*
3994		 * POSIX 3.3.1.3:
3995		 *  "Setting a signal action to SIG_IGN for a signal that is
3996		 *   pending shall cause the pending signal to be discarded,
3997		 *   whether or not it is blocked."
3998		 *
3999		 *  "Setting a signal action to SIG_DFL for a signal that is
4000		 *   pending and whose default action is to ignore the signal
4001		 *   (for example, SIGCHLD), shall cause the pending signal to
4002		 *   be discarded, whether or not it is blocked"
4003		 */
4004		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4005			sigemptyset(&mask);
4006			sigaddset(&mask, sig);
4007			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4008			for_each_thread(p, t)
4009				flush_sigqueue_mask(&mask, &t->pending);
4010		}
4011	}
4012
4013	spin_unlock_irq(&p->sighand->siglock);
4014	return 0;
4015}
4016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4017static int
4018do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4019		size_t min_ss_size)
4020{
4021	struct task_struct *t = current;
 
4022
4023	if (oss) {
4024		memset(oss, 0, sizeof(stack_t));
4025		oss->ss_sp = (void __user *) t->sas_ss_sp;
4026		oss->ss_size = t->sas_ss_size;
4027		oss->ss_flags = sas_ss_flags(sp) |
4028			(current->sas_ss_flags & SS_FLAG_BITS);
4029	}
4030
4031	if (ss) {
4032		void __user *ss_sp = ss->ss_sp;
4033		size_t ss_size = ss->ss_size;
4034		unsigned ss_flags = ss->ss_flags;
4035		int ss_mode;
4036
4037		if (unlikely(on_sig_stack(sp)))
4038			return -EPERM;
4039
4040		ss_mode = ss_flags & ~SS_FLAG_BITS;
4041		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4042				ss_mode != 0))
4043			return -EINVAL;
4044
 
 
 
 
 
 
 
 
 
 
4045		if (ss_mode == SS_DISABLE) {
4046			ss_size = 0;
4047			ss_sp = NULL;
4048		} else {
4049			if (unlikely(ss_size < min_ss_size))
4050				return -ENOMEM;
 
 
4051		}
4052
4053		t->sas_ss_sp = (unsigned long) ss_sp;
4054		t->sas_ss_size = ss_size;
4055		t->sas_ss_flags = ss_flags;
 
 
4056	}
4057	return 0;
4058}
4059
4060SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4061{
4062	stack_t new, old;
4063	int err;
4064	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4065		return -EFAULT;
4066	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4067			      current_user_stack_pointer(),
4068			      MINSIGSTKSZ);
4069	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4070		err = -EFAULT;
4071	return err;
4072}
4073
4074int restore_altstack(const stack_t __user *uss)
4075{
4076	stack_t new;
4077	if (copy_from_user(&new, uss, sizeof(stack_t)))
4078		return -EFAULT;
4079	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4080			     MINSIGSTKSZ);
4081	/* squash all but EFAULT for now */
4082	return 0;
4083}
4084
4085int __save_altstack(stack_t __user *uss, unsigned long sp)
4086{
4087	struct task_struct *t = current;
4088	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4089		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4090		__put_user(t->sas_ss_size, &uss->ss_size);
4091	if (err)
4092		return err;
4093	if (t->sas_ss_flags & SS_AUTODISARM)
4094		sas_ss_reset(t);
4095	return 0;
4096}
4097
4098#ifdef CONFIG_COMPAT
4099static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4100				 compat_stack_t __user *uoss_ptr)
4101{
4102	stack_t uss, uoss;
4103	int ret;
4104
4105	if (uss_ptr) {
4106		compat_stack_t uss32;
4107		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4108			return -EFAULT;
4109		uss.ss_sp = compat_ptr(uss32.ss_sp);
4110		uss.ss_flags = uss32.ss_flags;
4111		uss.ss_size = uss32.ss_size;
4112	}
4113	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4114			     compat_user_stack_pointer(),
4115			     COMPAT_MINSIGSTKSZ);
4116	if (ret >= 0 && uoss_ptr)  {
4117		compat_stack_t old;
4118		memset(&old, 0, sizeof(old));
4119		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4120		old.ss_flags = uoss.ss_flags;
4121		old.ss_size = uoss.ss_size;
4122		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4123			ret = -EFAULT;
4124	}
4125	return ret;
4126}
4127
4128COMPAT_SYSCALL_DEFINE2(sigaltstack,
4129			const compat_stack_t __user *, uss_ptr,
4130			compat_stack_t __user *, uoss_ptr)
4131{
4132	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4133}
4134
4135int compat_restore_altstack(const compat_stack_t __user *uss)
4136{
4137	int err = do_compat_sigaltstack(uss, NULL);
4138	/* squash all but -EFAULT for now */
4139	return err == -EFAULT ? err : 0;
4140}
4141
4142int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4143{
4144	int err;
4145	struct task_struct *t = current;
4146	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4147			 &uss->ss_sp) |
4148		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4149		__put_user(t->sas_ss_size, &uss->ss_size);
4150	if (err)
4151		return err;
4152	if (t->sas_ss_flags & SS_AUTODISARM)
4153		sas_ss_reset(t);
4154	return 0;
4155}
4156#endif
4157
4158#ifdef __ARCH_WANT_SYS_SIGPENDING
4159
4160/**
4161 *  sys_sigpending - examine pending signals
4162 *  @uset: where mask of pending signal is returned
4163 */
4164SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4165{
4166	sigset_t set;
4167
4168	if (sizeof(old_sigset_t) > sizeof(*uset))
4169		return -EINVAL;
4170
4171	do_sigpending(&set);
4172
4173	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4174		return -EFAULT;
4175
4176	return 0;
4177}
4178
4179#ifdef CONFIG_COMPAT
4180COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4181{
4182	sigset_t set;
4183
4184	do_sigpending(&set);
4185
4186	return put_user(set.sig[0], set32);
4187}
4188#endif
4189
4190#endif
4191
4192#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4193/**
4194 *  sys_sigprocmask - examine and change blocked signals
4195 *  @how: whether to add, remove, or set signals
4196 *  @nset: signals to add or remove (if non-null)
4197 *  @oset: previous value of signal mask if non-null
4198 *
4199 * Some platforms have their own version with special arguments;
4200 * others support only sys_rt_sigprocmask.
4201 */
4202
4203SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4204		old_sigset_t __user *, oset)
4205{
4206	old_sigset_t old_set, new_set;
4207	sigset_t new_blocked;
4208
4209	old_set = current->blocked.sig[0];
4210
4211	if (nset) {
4212		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4213			return -EFAULT;
4214
4215		new_blocked = current->blocked;
4216
4217		switch (how) {
4218		case SIG_BLOCK:
4219			sigaddsetmask(&new_blocked, new_set);
4220			break;
4221		case SIG_UNBLOCK:
4222			sigdelsetmask(&new_blocked, new_set);
4223			break;
4224		case SIG_SETMASK:
4225			new_blocked.sig[0] = new_set;
4226			break;
4227		default:
4228			return -EINVAL;
4229		}
4230
4231		set_current_blocked(&new_blocked);
4232	}
4233
4234	if (oset) {
4235		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4236			return -EFAULT;
4237	}
4238
4239	return 0;
4240}
4241#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4242
4243#ifndef CONFIG_ODD_RT_SIGACTION
4244/**
4245 *  sys_rt_sigaction - alter an action taken by a process
4246 *  @sig: signal to be sent
4247 *  @act: new sigaction
4248 *  @oact: used to save the previous sigaction
4249 *  @sigsetsize: size of sigset_t type
4250 */
4251SYSCALL_DEFINE4(rt_sigaction, int, sig,
4252		const struct sigaction __user *, act,
4253		struct sigaction __user *, oact,
4254		size_t, sigsetsize)
4255{
4256	struct k_sigaction new_sa, old_sa;
4257	int ret;
4258
4259	/* XXX: Don't preclude handling different sized sigset_t's.  */
4260	if (sigsetsize != sizeof(sigset_t))
4261		return -EINVAL;
4262
4263	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4264		return -EFAULT;
4265
4266	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4267	if (ret)
4268		return ret;
4269
4270	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4271		return -EFAULT;
4272
4273	return 0;
4274}
4275#ifdef CONFIG_COMPAT
4276COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4277		const struct compat_sigaction __user *, act,
4278		struct compat_sigaction __user *, oact,
4279		compat_size_t, sigsetsize)
4280{
4281	struct k_sigaction new_ka, old_ka;
4282#ifdef __ARCH_HAS_SA_RESTORER
4283	compat_uptr_t restorer;
4284#endif
4285	int ret;
4286
4287	/* XXX: Don't preclude handling different sized sigset_t's.  */
4288	if (sigsetsize != sizeof(compat_sigset_t))
4289		return -EINVAL;
4290
4291	if (act) {
4292		compat_uptr_t handler;
4293		ret = get_user(handler, &act->sa_handler);
4294		new_ka.sa.sa_handler = compat_ptr(handler);
4295#ifdef __ARCH_HAS_SA_RESTORER
4296		ret |= get_user(restorer, &act->sa_restorer);
4297		new_ka.sa.sa_restorer = compat_ptr(restorer);
4298#endif
4299		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4300		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4301		if (ret)
4302			return -EFAULT;
4303	}
4304
4305	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4306	if (!ret && oact) {
4307		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4308			       &oact->sa_handler);
4309		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4310					 sizeof(oact->sa_mask));
4311		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4312#ifdef __ARCH_HAS_SA_RESTORER
4313		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4314				&oact->sa_restorer);
4315#endif
4316	}
4317	return ret;
4318}
4319#endif
4320#endif /* !CONFIG_ODD_RT_SIGACTION */
4321
4322#ifdef CONFIG_OLD_SIGACTION
4323SYSCALL_DEFINE3(sigaction, int, sig,
4324		const struct old_sigaction __user *, act,
4325	        struct old_sigaction __user *, oact)
4326{
4327	struct k_sigaction new_ka, old_ka;
4328	int ret;
4329
4330	if (act) {
4331		old_sigset_t mask;
4332		if (!access_ok(act, sizeof(*act)) ||
4333		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4334		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4335		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4336		    __get_user(mask, &act->sa_mask))
4337			return -EFAULT;
4338#ifdef __ARCH_HAS_KA_RESTORER
4339		new_ka.ka_restorer = NULL;
4340#endif
4341		siginitset(&new_ka.sa.sa_mask, mask);
4342	}
4343
4344	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4345
4346	if (!ret && oact) {
4347		if (!access_ok(oact, sizeof(*oact)) ||
4348		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4349		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4350		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4351		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4352			return -EFAULT;
4353	}
4354
4355	return ret;
4356}
4357#endif
4358#ifdef CONFIG_COMPAT_OLD_SIGACTION
4359COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4360		const struct compat_old_sigaction __user *, act,
4361	        struct compat_old_sigaction __user *, oact)
4362{
4363	struct k_sigaction new_ka, old_ka;
4364	int ret;
4365	compat_old_sigset_t mask;
4366	compat_uptr_t handler, restorer;
4367
4368	if (act) {
4369		if (!access_ok(act, sizeof(*act)) ||
4370		    __get_user(handler, &act->sa_handler) ||
4371		    __get_user(restorer, &act->sa_restorer) ||
4372		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4373		    __get_user(mask, &act->sa_mask))
4374			return -EFAULT;
4375
4376#ifdef __ARCH_HAS_KA_RESTORER
4377		new_ka.ka_restorer = NULL;
4378#endif
4379		new_ka.sa.sa_handler = compat_ptr(handler);
4380		new_ka.sa.sa_restorer = compat_ptr(restorer);
4381		siginitset(&new_ka.sa.sa_mask, mask);
4382	}
4383
4384	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4385
4386	if (!ret && oact) {
4387		if (!access_ok(oact, sizeof(*oact)) ||
4388		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4389			       &oact->sa_handler) ||
4390		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4391			       &oact->sa_restorer) ||
4392		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4393		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4394			return -EFAULT;
4395	}
4396	return ret;
4397}
4398#endif
4399
4400#ifdef CONFIG_SGETMASK_SYSCALL
4401
4402/*
4403 * For backwards compatibility.  Functionality superseded by sigprocmask.
4404 */
4405SYSCALL_DEFINE0(sgetmask)
4406{
4407	/* SMP safe */
4408	return current->blocked.sig[0];
4409}
4410
4411SYSCALL_DEFINE1(ssetmask, int, newmask)
4412{
4413	int old = current->blocked.sig[0];
4414	sigset_t newset;
4415
4416	siginitset(&newset, newmask);
4417	set_current_blocked(&newset);
4418
4419	return old;
4420}
4421#endif /* CONFIG_SGETMASK_SYSCALL */
4422
4423#ifdef __ARCH_WANT_SYS_SIGNAL
4424/*
4425 * For backwards compatibility.  Functionality superseded by sigaction.
4426 */
4427SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4428{
4429	struct k_sigaction new_sa, old_sa;
4430	int ret;
4431
4432	new_sa.sa.sa_handler = handler;
4433	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4434	sigemptyset(&new_sa.sa.sa_mask);
4435
4436	ret = do_sigaction(sig, &new_sa, &old_sa);
4437
4438	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4439}
4440#endif /* __ARCH_WANT_SYS_SIGNAL */
4441
4442#ifdef __ARCH_WANT_SYS_PAUSE
4443
4444SYSCALL_DEFINE0(pause)
4445{
4446	while (!signal_pending(current)) {
4447		__set_current_state(TASK_INTERRUPTIBLE);
4448		schedule();
4449	}
4450	return -ERESTARTNOHAND;
4451}
4452
4453#endif
4454
4455static int sigsuspend(sigset_t *set)
4456{
4457	current->saved_sigmask = current->blocked;
4458	set_current_blocked(set);
4459
4460	while (!signal_pending(current)) {
4461		__set_current_state(TASK_INTERRUPTIBLE);
4462		schedule();
4463	}
4464	set_restore_sigmask();
4465	return -ERESTARTNOHAND;
4466}
4467
4468/**
4469 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4470 *	@unewset value until a signal is received
4471 *  @unewset: new signal mask value
4472 *  @sigsetsize: size of sigset_t type
4473 */
4474SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4475{
4476	sigset_t newset;
4477
4478	/* XXX: Don't preclude handling different sized sigset_t's.  */
4479	if (sigsetsize != sizeof(sigset_t))
4480		return -EINVAL;
4481
4482	if (copy_from_user(&newset, unewset, sizeof(newset)))
4483		return -EFAULT;
4484	return sigsuspend(&newset);
4485}
4486 
4487#ifdef CONFIG_COMPAT
4488COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4489{
4490	sigset_t newset;
4491
4492	/* XXX: Don't preclude handling different sized sigset_t's.  */
4493	if (sigsetsize != sizeof(sigset_t))
4494		return -EINVAL;
4495
4496	if (get_compat_sigset(&newset, unewset))
4497		return -EFAULT;
4498	return sigsuspend(&newset);
4499}
4500#endif
4501
4502#ifdef CONFIG_OLD_SIGSUSPEND
4503SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4504{
4505	sigset_t blocked;
4506	siginitset(&blocked, mask);
4507	return sigsuspend(&blocked);
4508}
4509#endif
4510#ifdef CONFIG_OLD_SIGSUSPEND3
4511SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4512{
4513	sigset_t blocked;
4514	siginitset(&blocked, mask);
4515	return sigsuspend(&blocked);
4516}
4517#endif
4518
4519__weak const char *arch_vma_name(struct vm_area_struct *vma)
4520{
4521	return NULL;
4522}
4523
4524static inline void siginfo_buildtime_checks(void)
4525{
4526	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4527
4528	/* Verify the offsets in the two siginfos match */
4529#define CHECK_OFFSET(field) \
4530	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4531
4532	/* kill */
4533	CHECK_OFFSET(si_pid);
4534	CHECK_OFFSET(si_uid);
4535
4536	/* timer */
4537	CHECK_OFFSET(si_tid);
4538	CHECK_OFFSET(si_overrun);
4539	CHECK_OFFSET(si_value);
4540
4541	/* rt */
4542	CHECK_OFFSET(si_pid);
4543	CHECK_OFFSET(si_uid);
4544	CHECK_OFFSET(si_value);
4545
4546	/* sigchld */
4547	CHECK_OFFSET(si_pid);
4548	CHECK_OFFSET(si_uid);
4549	CHECK_OFFSET(si_status);
4550	CHECK_OFFSET(si_utime);
4551	CHECK_OFFSET(si_stime);
4552
4553	/* sigfault */
4554	CHECK_OFFSET(si_addr);
 
4555	CHECK_OFFSET(si_addr_lsb);
4556	CHECK_OFFSET(si_lower);
4557	CHECK_OFFSET(si_upper);
4558	CHECK_OFFSET(si_pkey);
 
 
 
4559
4560	/* sigpoll */
4561	CHECK_OFFSET(si_band);
4562	CHECK_OFFSET(si_fd);
4563
4564	/* sigsys */
4565	CHECK_OFFSET(si_call_addr);
4566	CHECK_OFFSET(si_syscall);
4567	CHECK_OFFSET(si_arch);
4568#undef CHECK_OFFSET
4569
4570	/* usb asyncio */
4571	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4572		     offsetof(struct siginfo, si_addr));
4573	if (sizeof(int) == sizeof(void __user *)) {
4574		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4575			     sizeof(void __user *));
4576	} else {
4577		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4578			      sizeof_field(struct siginfo, si_uid)) !=
4579			     sizeof(void __user *));
4580		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4581			     offsetof(struct siginfo, si_uid));
4582	}
4583#ifdef CONFIG_COMPAT
4584	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4585		     offsetof(struct compat_siginfo, si_addr));
4586	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4587		     sizeof(compat_uptr_t));
4588	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4589		     sizeof_field(struct siginfo, si_pid));
4590#endif
4591}
4592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4593void __init signals_init(void)
4594{
4595	siginfo_buildtime_checks();
4596
4597	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4598}
4599
4600#ifdef CONFIG_KGDB_KDB
4601#include <linux/kdb.h>
4602/*
4603 * kdb_send_sig - Allows kdb to send signals without exposing
4604 * signal internals.  This function checks if the required locks are
4605 * available before calling the main signal code, to avoid kdb
4606 * deadlocks.
4607 */
4608void kdb_send_sig(struct task_struct *t, int sig)
4609{
4610	static struct task_struct *kdb_prev_t;
4611	int new_t, ret;
4612	if (!spin_trylock(&t->sighand->siglock)) {
4613		kdb_printf("Can't do kill command now.\n"
4614			   "The sigmask lock is held somewhere else in "
4615			   "kernel, try again later\n");
4616		return;
4617	}
4618	new_t = kdb_prev_t != t;
4619	kdb_prev_t = t;
4620	if (t->state != TASK_RUNNING && new_t) {
4621		spin_unlock(&t->sighand->siglock);
4622		kdb_printf("Process is not RUNNING, sending a signal from "
4623			   "kdb risks deadlock\n"
4624			   "on the run queue locks. "
4625			   "The signal has _not_ been sent.\n"
4626			   "Reissue the kill command if you want to risk "
4627			   "the deadlock.\n");
4628		return;
4629	}
4630	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4631	spin_unlock(&t->sighand->siglock);
4632	if (ret)
4633		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4634			   sig, t->pid);
4635	else
4636		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4637}
4638#endif	/* CONFIG_KGDB_KDB */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
 
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
  62/*
  63 * SLAB caches for signal bits.
  64 */
  65
  66static struct kmem_cache *sigqueue_cachep;
  67
  68int print_fatal_signals __read_mostly;
  69
  70static void __user *sig_handler(struct task_struct *t, int sig)
  71{
  72	return t->sighand->action[sig - 1].sa.sa_handler;
  73}
  74
  75static inline bool sig_handler_ignored(void __user *handler, int sig)
  76{
  77	/* Is it explicitly or implicitly ignored? */
  78	return handler == SIG_IGN ||
  79	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  80}
  81
  82static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  83{
  84	void __user *handler;
  85
  86	handler = sig_handler(t, sig);
  87
  88	/* SIGKILL and SIGSTOP may not be sent to the global init */
  89	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  90		return true;
  91
  92	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  93	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  94		return true;
  95
  96	/* Only allow kernel generated signals to this kthread */
  97	if (unlikely((t->flags & PF_KTHREAD) &&
  98		     (handler == SIG_KTHREAD_KERNEL) && !force))
  99		return true;
 100
 101	return sig_handler_ignored(handler, sig);
 102}
 103
 104static bool sig_ignored(struct task_struct *t, int sig, bool force)
 105{
 106	/*
 107	 * Blocked signals are never ignored, since the
 108	 * signal handler may change by the time it is
 109	 * unblocked.
 110	 */
 111	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 112		return false;
 113
 114	/*
 115	 * Tracers may want to know about even ignored signal unless it
 116	 * is SIGKILL which can't be reported anyway but can be ignored
 117	 * by SIGNAL_UNKILLABLE task.
 118	 */
 119	if (t->ptrace && sig != SIGKILL)
 120		return false;
 121
 122	return sig_task_ignored(t, sig, force);
 123}
 124
 125/*
 126 * Re-calculate pending state from the set of locally pending
 127 * signals, globally pending signals, and blocked signals.
 128 */
 129static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 130{
 131	unsigned long ready;
 132	long i;
 133
 134	switch (_NSIG_WORDS) {
 135	default:
 136		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 137			ready |= signal->sig[i] &~ blocked->sig[i];
 138		break;
 139
 140	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 141		ready |= signal->sig[2] &~ blocked->sig[2];
 142		ready |= signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 147		ready |= signal->sig[0] &~ blocked->sig[0];
 148		break;
 149
 150	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 151	}
 152	return ready !=	0;
 153}
 154
 155#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 156
 157static bool recalc_sigpending_tsk(struct task_struct *t)
 158{
 159	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 160	    PENDING(&t->pending, &t->blocked) ||
 161	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 162	    cgroup_task_frozen(t)) {
 163		set_tsk_thread_flag(t, TIF_SIGPENDING);
 164		return true;
 165	}
 166
 167	/*
 168	 * We must never clear the flag in another thread, or in current
 169	 * when it's possible the current syscall is returning -ERESTART*.
 170	 * So we don't clear it here, and only callers who know they should do.
 171	 */
 172	return false;
 173}
 174
 
 
 
 
 
 
 
 
 
 
 175void recalc_sigpending(void)
 176{
 177	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 178		clear_thread_flag(TIF_SIGPENDING);
 179
 180}
 181EXPORT_SYMBOL(recalc_sigpending);
 182
 183void calculate_sigpending(void)
 184{
 185	/* Have any signals or users of TIF_SIGPENDING been delayed
 186	 * until after fork?
 187	 */
 188	spin_lock_irq(&current->sighand->siglock);
 189	set_tsk_thread_flag(current, TIF_SIGPENDING);
 190	recalc_sigpending();
 191	spin_unlock_irq(&current->sighand->siglock);
 192}
 193
 194/* Given the mask, find the first available signal that should be serviced. */
 195
 196#define SYNCHRONOUS_MASK \
 197	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 198	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 199
 200int next_signal(struct sigpending *pending, sigset_t *mask)
 201{
 202	unsigned long i, *s, *m, x;
 203	int sig = 0;
 204
 205	s = pending->signal.sig;
 206	m = mask->sig;
 207
 208	/*
 209	 * Handle the first word specially: it contains the
 210	 * synchronous signals that need to be dequeued first.
 211	 */
 212	x = *s &~ *m;
 213	if (x) {
 214		if (x & SYNCHRONOUS_MASK)
 215			x &= SYNCHRONOUS_MASK;
 216		sig = ffz(~x) + 1;
 217		return sig;
 218	}
 219
 220	switch (_NSIG_WORDS) {
 221	default:
 222		for (i = 1; i < _NSIG_WORDS; ++i) {
 223			x = *++s &~ *++m;
 224			if (!x)
 225				continue;
 226			sig = ffz(~x) + i*_NSIG_BPW + 1;
 227			break;
 228		}
 229		break;
 230
 231	case 2:
 232		x = s[1] &~ m[1];
 233		if (!x)
 234			break;
 235		sig = ffz(~x) + _NSIG_BPW + 1;
 236		break;
 237
 238	case 1:
 239		/* Nothing to do */
 240		break;
 241	}
 242
 243	return sig;
 244}
 245
 246static inline void print_dropped_signal(int sig)
 247{
 248	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 249
 250	if (!print_fatal_signals)
 251		return;
 252
 253	if (!__ratelimit(&ratelimit_state))
 254		return;
 255
 256	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 257				current->comm, current->pid, sig);
 258}
 259
 260/**
 261 * task_set_jobctl_pending - set jobctl pending bits
 262 * @task: target task
 263 * @mask: pending bits to set
 264 *
 265 * Clear @mask from @task->jobctl.  @mask must be subset of
 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 267 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 268 * cleared.  If @task is already being killed or exiting, this function
 269 * becomes noop.
 270 *
 271 * CONTEXT:
 272 * Must be called with @task->sighand->siglock held.
 273 *
 274 * RETURNS:
 275 * %true if @mask is set, %false if made noop because @task was dying.
 276 */
 277bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 278{
 279	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 280			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 281	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 282
 283	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 284		return false;
 285
 286	if (mask & JOBCTL_STOP_SIGMASK)
 287		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 288
 289	task->jobctl |= mask;
 290	return true;
 291}
 292
 293/**
 294 * task_clear_jobctl_trapping - clear jobctl trapping bit
 295 * @task: target task
 296 *
 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 298 * Clear it and wake up the ptracer.  Note that we don't need any further
 299 * locking.  @task->siglock guarantees that @task->parent points to the
 300 * ptracer.
 301 *
 302 * CONTEXT:
 303 * Must be called with @task->sighand->siglock held.
 304 */
 305void task_clear_jobctl_trapping(struct task_struct *task)
 306{
 307	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 308		task->jobctl &= ~JOBCTL_TRAPPING;
 309		smp_mb();	/* advised by wake_up_bit() */
 310		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 311	}
 312}
 313
 314/**
 315 * task_clear_jobctl_pending - clear jobctl pending bits
 316 * @task: target task
 317 * @mask: pending bits to clear
 318 *
 319 * Clear @mask from @task->jobctl.  @mask must be subset of
 320 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 321 * STOP bits are cleared together.
 322 *
 323 * If clearing of @mask leaves no stop or trap pending, this function calls
 324 * task_clear_jobctl_trapping().
 325 *
 326 * CONTEXT:
 327 * Must be called with @task->sighand->siglock held.
 328 */
 329void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 330{
 331	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 332
 333	if (mask & JOBCTL_STOP_PENDING)
 334		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 335
 336	task->jobctl &= ~mask;
 337
 338	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 339		task_clear_jobctl_trapping(task);
 340}
 341
 342/**
 343 * task_participate_group_stop - participate in a group stop
 344 * @task: task participating in a group stop
 345 *
 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 347 * Group stop states are cleared and the group stop count is consumed if
 348 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 349 * stop, the appropriate `SIGNAL_*` flags are set.
 350 *
 351 * CONTEXT:
 352 * Must be called with @task->sighand->siglock held.
 353 *
 354 * RETURNS:
 355 * %true if group stop completion should be notified to the parent, %false
 356 * otherwise.
 357 */
 358static bool task_participate_group_stop(struct task_struct *task)
 359{
 360	struct signal_struct *sig = task->signal;
 361	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 362
 363	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 364
 365	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 366
 367	if (!consume)
 368		return false;
 369
 370	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 371		sig->group_stop_count--;
 372
 373	/*
 374	 * Tell the caller to notify completion iff we are entering into a
 375	 * fresh group stop.  Read comment in do_signal_stop() for details.
 376	 */
 377	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 378		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 379		return true;
 380	}
 381	return false;
 382}
 383
 384void task_join_group_stop(struct task_struct *task)
 385{
 386	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 387	struct signal_struct *sig = current->signal;
 388
 389	if (sig->group_stop_count) {
 390		sig->group_stop_count++;
 391		mask |= JOBCTL_STOP_CONSUME;
 392	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 393		return;
 394
 395	/* Have the new thread join an on-going signal group stop */
 396	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 
 
 
 
 
 
 
 
 397}
 398
 399/*
 400 * allocate a new signal queue record
 401 * - this may be called without locks if and only if t == current, otherwise an
 402 *   appropriate lock must be held to stop the target task from exiting
 403 */
 404static struct sigqueue *
 405__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 406		 int override_rlimit, const unsigned int sigqueue_flags)
 407{
 408	struct sigqueue *q = NULL;
 409	struct ucounts *ucounts;
 410	long sigpending;
 411
 412	/*
 413	 * Protect access to @t credentials. This can go away when all
 414	 * callers hold rcu read lock.
 415	 *
 416	 * NOTE! A pending signal will hold on to the user refcount,
 417	 * and we get/put the refcount only when the sigpending count
 418	 * changes from/to zero.
 419	 */
 420	rcu_read_lock();
 421	ucounts = task_ucounts(t);
 422	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 
 423	rcu_read_unlock();
 424	if (!sigpending)
 425		return NULL;
 426
 427	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 428		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 429	} else {
 430		print_dropped_signal(sig);
 431	}
 432
 433	if (unlikely(q == NULL)) {
 434		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 435	} else {
 436		INIT_LIST_HEAD(&q->list);
 437		q->flags = sigqueue_flags;
 438		q->ucounts = ucounts;
 439	}
 
 440	return q;
 441}
 442
 443static void __sigqueue_free(struct sigqueue *q)
 444{
 445	if (q->flags & SIGQUEUE_PREALLOC)
 446		return;
 447	if (q->ucounts) {
 448		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 449		q->ucounts = NULL;
 450	}
 451	kmem_cache_free(sigqueue_cachep, q);
 452}
 453
 454void flush_sigqueue(struct sigpending *queue)
 455{
 456	struct sigqueue *q;
 457
 458	sigemptyset(&queue->signal);
 459	while (!list_empty(&queue->list)) {
 460		q = list_entry(queue->list.next, struct sigqueue , list);
 461		list_del_init(&q->list);
 462		__sigqueue_free(q);
 463	}
 464}
 465
 466/*
 467 * Flush all pending signals for this kthread.
 468 */
 469void flush_signals(struct task_struct *t)
 470{
 471	unsigned long flags;
 472
 473	spin_lock_irqsave(&t->sighand->siglock, flags);
 474	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 475	flush_sigqueue(&t->pending);
 476	flush_sigqueue(&t->signal->shared_pending);
 477	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 478}
 479EXPORT_SYMBOL(flush_signals);
 480
 481#ifdef CONFIG_POSIX_TIMERS
 482static void __flush_itimer_signals(struct sigpending *pending)
 483{
 484	sigset_t signal, retain;
 485	struct sigqueue *q, *n;
 486
 487	signal = pending->signal;
 488	sigemptyset(&retain);
 489
 490	list_for_each_entry_safe(q, n, &pending->list, list) {
 491		int sig = q->info.si_signo;
 492
 493		if (likely(q->info.si_code != SI_TIMER)) {
 494			sigaddset(&retain, sig);
 495		} else {
 496			sigdelset(&signal, sig);
 497			list_del_init(&q->list);
 498			__sigqueue_free(q);
 499		}
 500	}
 501
 502	sigorsets(&pending->signal, &signal, &retain);
 503}
 504
 505void flush_itimer_signals(void)
 506{
 507	struct task_struct *tsk = current;
 508	unsigned long flags;
 509
 510	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 511	__flush_itimer_signals(&tsk->pending);
 512	__flush_itimer_signals(&tsk->signal->shared_pending);
 513	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 514}
 515#endif
 516
 517void ignore_signals(struct task_struct *t)
 518{
 519	int i;
 520
 521	for (i = 0; i < _NSIG; ++i)
 522		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 523
 524	flush_signals(t);
 525}
 526
 527/*
 528 * Flush all handlers for a task.
 529 */
 530
 531void
 532flush_signal_handlers(struct task_struct *t, int force_default)
 533{
 534	int i;
 535	struct k_sigaction *ka = &t->sighand->action[0];
 536	for (i = _NSIG ; i != 0 ; i--) {
 537		if (force_default || ka->sa.sa_handler != SIG_IGN)
 538			ka->sa.sa_handler = SIG_DFL;
 539		ka->sa.sa_flags = 0;
 540#ifdef __ARCH_HAS_SA_RESTORER
 541		ka->sa.sa_restorer = NULL;
 542#endif
 543		sigemptyset(&ka->sa.sa_mask);
 544		ka++;
 545	}
 546}
 547
 548bool unhandled_signal(struct task_struct *tsk, int sig)
 549{
 550	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 551	if (is_global_init(tsk))
 552		return true;
 553
 554	if (handler != SIG_IGN && handler != SIG_DFL)
 555		return false;
 556
 557	/* If dying, we handle all new signals by ignoring them */
 558	if (fatal_signal_pending(tsk))
 559		return false;
 560
 561	/* if ptraced, let the tracer determine */
 562	return !tsk->ptrace;
 563}
 564
 565static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 566			   bool *resched_timer)
 567{
 568	struct sigqueue *q, *first = NULL;
 569
 570	/*
 571	 * Collect the siginfo appropriate to this signal.  Check if
 572	 * there is another siginfo for the same signal.
 573	*/
 574	list_for_each_entry(q, &list->list, list) {
 575		if (q->info.si_signo == sig) {
 576			if (first)
 577				goto still_pending;
 578			first = q;
 579		}
 580	}
 581
 582	sigdelset(&list->signal, sig);
 583
 584	if (first) {
 585still_pending:
 586		list_del_init(&first->list);
 587		copy_siginfo(info, &first->info);
 588
 589		*resched_timer =
 590			(first->flags & SIGQUEUE_PREALLOC) &&
 591			(info->si_code == SI_TIMER) &&
 592			(info->si_sys_private);
 593
 594		__sigqueue_free(first);
 595	} else {
 596		/*
 597		 * Ok, it wasn't in the queue.  This must be
 598		 * a fast-pathed signal or we must have been
 599		 * out of queue space.  So zero out the info.
 600		 */
 601		clear_siginfo(info);
 602		info->si_signo = sig;
 603		info->si_errno = 0;
 604		info->si_code = SI_USER;
 605		info->si_pid = 0;
 606		info->si_uid = 0;
 607	}
 608}
 609
 610static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 611			kernel_siginfo_t *info, bool *resched_timer)
 612{
 613	int sig = next_signal(pending, mask);
 614
 615	if (sig)
 616		collect_signal(sig, pending, info, resched_timer);
 617	return sig;
 618}
 619
 620/*
 621 * Dequeue a signal and return the element to the caller, which is
 622 * expected to free it.
 623 *
 624 * All callers have to hold the siglock.
 625 */
 626int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 627		   kernel_siginfo_t *info, enum pid_type *type)
 628{
 629	bool resched_timer = false;
 630	int signr;
 631
 632	/* We only dequeue private signals from ourselves, we don't let
 633	 * signalfd steal them
 634	 */
 635	*type = PIDTYPE_PID;
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		*type = PIDTYPE_TGID;
 639		signr = __dequeue_signal(&tsk->signal->shared_pending,
 640					 mask, info, &resched_timer);
 641#ifdef CONFIG_POSIX_TIMERS
 642		/*
 643		 * itimer signal ?
 644		 *
 645		 * itimers are process shared and we restart periodic
 646		 * itimers in the signal delivery path to prevent DoS
 647		 * attacks in the high resolution timer case. This is
 648		 * compliant with the old way of self-restarting
 649		 * itimers, as the SIGALRM is a legacy signal and only
 650		 * queued once. Changing the restart behaviour to
 651		 * restart the timer in the signal dequeue path is
 652		 * reducing the timer noise on heavy loaded !highres
 653		 * systems too.
 654		 */
 655		if (unlikely(signr == SIGALRM)) {
 656			struct hrtimer *tmr = &tsk->signal->real_timer;
 657
 658			if (!hrtimer_is_queued(tmr) &&
 659			    tsk->signal->it_real_incr != 0) {
 660				hrtimer_forward(tmr, tmr->base->get_time(),
 661						tsk->signal->it_real_incr);
 662				hrtimer_restart(tmr);
 663			}
 664		}
 665#endif
 666	}
 667
 668	recalc_sigpending();
 669	if (!signr)
 670		return 0;
 671
 672	if (unlikely(sig_kernel_stop(signr))) {
 673		/*
 674		 * Set a marker that we have dequeued a stop signal.  Our
 675		 * caller might release the siglock and then the pending
 676		 * stop signal it is about to process is no longer in the
 677		 * pending bitmasks, but must still be cleared by a SIGCONT
 678		 * (and overruled by a SIGKILL).  So those cases clear this
 679		 * shared flag after we've set it.  Note that this flag may
 680		 * remain set after the signal we return is ignored or
 681		 * handled.  That doesn't matter because its only purpose
 682		 * is to alert stop-signal processing code when another
 683		 * processor has come along and cleared the flag.
 684		 */
 685		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 686	}
 687#ifdef CONFIG_POSIX_TIMERS
 688	if (resched_timer) {
 689		/*
 690		 * Release the siglock to ensure proper locking order
 691		 * of timer locks outside of siglocks.  Note, we leave
 692		 * irqs disabled here, since the posix-timers code is
 693		 * about to disable them again anyway.
 694		 */
 695		spin_unlock(&tsk->sighand->siglock);
 696		posixtimer_rearm(info);
 697		spin_lock(&tsk->sighand->siglock);
 698
 699		/* Don't expose the si_sys_private value to userspace */
 700		info->si_sys_private = 0;
 701	}
 702#endif
 703	return signr;
 704}
 705EXPORT_SYMBOL_GPL(dequeue_signal);
 706
 707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 708{
 709	struct task_struct *tsk = current;
 710	struct sigpending *pending = &tsk->pending;
 711	struct sigqueue *q, *sync = NULL;
 712
 713	/*
 714	 * Might a synchronous signal be in the queue?
 715	 */
 716	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 717		return 0;
 718
 719	/*
 720	 * Return the first synchronous signal in the queue.
 721	 */
 722	list_for_each_entry(q, &pending->list, list) {
 723		/* Synchronous signals have a positive si_code */
 724		if ((q->info.si_code > SI_USER) &&
 725		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 726			sync = q;
 727			goto next;
 728		}
 729	}
 730	return 0;
 731next:
 732	/*
 733	 * Check if there is another siginfo for the same signal.
 734	 */
 735	list_for_each_entry_continue(q, &pending->list, list) {
 736		if (q->info.si_signo == sync->info.si_signo)
 737			goto still_pending;
 738	}
 739
 740	sigdelset(&pending->signal, sync->info.si_signo);
 741	recalc_sigpending();
 742still_pending:
 743	list_del_init(&sync->list);
 744	copy_siginfo(info, &sync->info);
 745	__sigqueue_free(sync);
 746	return info->si_signo;
 747}
 748
 749/*
 750 * Tell a process that it has a new active signal..
 751 *
 752 * NOTE! we rely on the previous spin_lock to
 753 * lock interrupts for us! We can only be called with
 754 * "siglock" held, and the local interrupt must
 755 * have been disabled when that got acquired!
 756 *
 757 * No need to set need_resched since signal event passing
 758 * goes through ->blocked
 759 */
 760void signal_wake_up_state(struct task_struct *t, unsigned int state)
 761{
 762	lockdep_assert_held(&t->sighand->siglock);
 763
 764	set_tsk_thread_flag(t, TIF_SIGPENDING);
 765
 766	/*
 767	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 768	 * case. We don't check t->state here because there is a race with it
 769	 * executing another processor and just now entering stopped state.
 770	 * By using wake_up_state, we ensure the process will wake up and
 771	 * handle its death signal.
 772	 */
 773	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 774		kick_process(t);
 775}
 776
 777/*
 778 * Remove signals in mask from the pending set and queue.
 779 * Returns 1 if any signals were found.
 780 *
 781 * All callers must be holding the siglock.
 782 */
 783static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 784{
 785	struct sigqueue *q, *n;
 786	sigset_t m;
 787
 788	sigandsets(&m, mask, &s->signal);
 789	if (sigisemptyset(&m))
 790		return;
 791
 792	sigandnsets(&s->signal, &s->signal, mask);
 793	list_for_each_entry_safe(q, n, &s->list, list) {
 794		if (sigismember(mask, q->info.si_signo)) {
 795			list_del_init(&q->list);
 796			__sigqueue_free(q);
 797		}
 798	}
 799}
 800
 801static inline int is_si_special(const struct kernel_siginfo *info)
 802{
 803	return info <= SEND_SIG_PRIV;
 804}
 805
 806static inline bool si_fromuser(const struct kernel_siginfo *info)
 807{
 808	return info == SEND_SIG_NOINFO ||
 809		(!is_si_special(info) && SI_FROMUSER(info));
 810}
 811
 812/*
 813 * called with RCU read lock from check_kill_permission()
 814 */
 815static bool kill_ok_by_cred(struct task_struct *t)
 816{
 817	const struct cred *cred = current_cred();
 818	const struct cred *tcred = __task_cred(t);
 819
 820	return uid_eq(cred->euid, tcred->suid) ||
 821	       uid_eq(cred->euid, tcred->uid) ||
 822	       uid_eq(cred->uid, tcred->suid) ||
 823	       uid_eq(cred->uid, tcred->uid) ||
 824	       ns_capable(tcred->user_ns, CAP_KILL);
 825}
 826
 827/*
 828 * Bad permissions for sending the signal
 829 * - the caller must hold the RCU read lock
 830 */
 831static int check_kill_permission(int sig, struct kernel_siginfo *info,
 832				 struct task_struct *t)
 833{
 834	struct pid *sid;
 835	int error;
 836
 837	if (!valid_signal(sig))
 838		return -EINVAL;
 839
 840	if (!si_fromuser(info))
 841		return 0;
 842
 843	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 844	if (error)
 845		return error;
 846
 847	if (!same_thread_group(current, t) &&
 848	    !kill_ok_by_cred(t)) {
 849		switch (sig) {
 850		case SIGCONT:
 851			sid = task_session(t);
 852			/*
 853			 * We don't return the error if sid == NULL. The
 854			 * task was unhashed, the caller must notice this.
 855			 */
 856			if (!sid || sid == task_session(current))
 857				break;
 858			fallthrough;
 859		default:
 860			return -EPERM;
 861		}
 862	}
 863
 864	return security_task_kill(t, info, sig, NULL);
 865}
 866
 867/**
 868 * ptrace_trap_notify - schedule trap to notify ptracer
 869 * @t: tracee wanting to notify tracer
 870 *
 871 * This function schedules sticky ptrace trap which is cleared on the next
 872 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 873 * ptracer.
 874 *
 875 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 876 * ptracer is listening for events, tracee is woken up so that it can
 877 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 878 * eventually taken without returning to userland after the existing traps
 879 * are finished by PTRACE_CONT.
 880 *
 881 * CONTEXT:
 882 * Must be called with @task->sighand->siglock held.
 883 */
 884static void ptrace_trap_notify(struct task_struct *t)
 885{
 886	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 887	lockdep_assert_held(&t->sighand->siglock);
 888
 889	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 890	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 891}
 892
 893/*
 894 * Handle magic process-wide effects of stop/continue signals. Unlike
 895 * the signal actions, these happen immediately at signal-generation
 896 * time regardless of blocking, ignoring, or handling.  This does the
 897 * actual continuing for SIGCONT, but not the actual stopping for stop
 898 * signals. The process stop is done as a signal action for SIG_DFL.
 899 *
 900 * Returns true if the signal should be actually delivered, otherwise
 901 * it should be dropped.
 902 */
 903static bool prepare_signal(int sig, struct task_struct *p, bool force)
 904{
 905	struct signal_struct *signal = p->signal;
 906	struct task_struct *t;
 907	sigset_t flush;
 908
 909	if (signal->flags & SIGNAL_GROUP_EXIT) {
 910		if (signal->core_state)
 911			return sig == SIGKILL;
 912		/*
 913		 * The process is in the middle of dying, drop the signal.
 914		 */
 915		return false;
 916	} else if (sig_kernel_stop(sig)) {
 917		/*
 918		 * This is a stop signal.  Remove SIGCONT from all queues.
 919		 */
 920		siginitset(&flush, sigmask(SIGCONT));
 921		flush_sigqueue_mask(&flush, &signal->shared_pending);
 922		for_each_thread(p, t)
 923			flush_sigqueue_mask(&flush, &t->pending);
 924	} else if (sig == SIGCONT) {
 925		unsigned int why;
 926		/*
 927		 * Remove all stop signals from all queues, wake all threads.
 928		 */
 929		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 930		flush_sigqueue_mask(&flush, &signal->shared_pending);
 931		for_each_thread(p, t) {
 932			flush_sigqueue_mask(&flush, &t->pending);
 933			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 934			if (likely(!(t->ptrace & PT_SEIZED))) {
 935				t->jobctl &= ~JOBCTL_STOPPED;
 936				wake_up_state(t, __TASK_STOPPED);
 937			} else
 938				ptrace_trap_notify(t);
 939		}
 940
 941		/*
 942		 * Notify the parent with CLD_CONTINUED if we were stopped.
 943		 *
 944		 * If we were in the middle of a group stop, we pretend it
 945		 * was already finished, and then continued. Since SIGCHLD
 946		 * doesn't queue we report only CLD_STOPPED, as if the next
 947		 * CLD_CONTINUED was dropped.
 948		 */
 949		why = 0;
 950		if (signal->flags & SIGNAL_STOP_STOPPED)
 951			why |= SIGNAL_CLD_CONTINUED;
 952		else if (signal->group_stop_count)
 953			why |= SIGNAL_CLD_STOPPED;
 954
 955		if (why) {
 956			/*
 957			 * The first thread which returns from do_signal_stop()
 958			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 959			 * notify its parent. See get_signal().
 960			 */
 961			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 962			signal->group_stop_count = 0;
 963			signal->group_exit_code = 0;
 964		}
 965	}
 966
 967	return !sig_ignored(p, sig, force);
 968}
 969
 970/*
 971 * Test if P wants to take SIG.  After we've checked all threads with this,
 972 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 973 * blocking SIG were ruled out because they are not running and already
 974 * have pending signals.  Such threads will dequeue from the shared queue
 975 * as soon as they're available, so putting the signal on the shared queue
 976 * will be equivalent to sending it to one such thread.
 977 */
 978static inline bool wants_signal(int sig, struct task_struct *p)
 979{
 980	if (sigismember(&p->blocked, sig))
 981		return false;
 982
 983	if (p->flags & PF_EXITING)
 984		return false;
 985
 986	if (sig == SIGKILL)
 987		return true;
 988
 989	if (task_is_stopped_or_traced(p))
 990		return false;
 991
 992	return task_curr(p) || !task_sigpending(p);
 993}
 994
 995static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 996{
 997	struct signal_struct *signal = p->signal;
 998	struct task_struct *t;
 999
1000	/*
1001	 * Now find a thread we can wake up to take the signal off the queue.
1002	 *
1003	 * Try the suggested task first (may or may not be the main thread).
 
1004	 */
1005	if (wants_signal(sig, p))
1006		t = p;
1007	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008		/*
1009		 * There is just one thread and it does not need to be woken.
1010		 * It will dequeue unblocked signals before it runs again.
1011		 */
1012		return;
1013	else {
1014		/*
1015		 * Otherwise try to find a suitable thread.
1016		 */
1017		t = signal->curr_target;
1018		while (!wants_signal(sig, t)) {
1019			t = next_thread(t);
1020			if (t == signal->curr_target)
1021				/*
1022				 * No thread needs to be woken.
1023				 * Any eligible threads will see
1024				 * the signal in the queue soon.
1025				 */
1026				return;
1027		}
1028		signal->curr_target = t;
1029	}
1030
1031	/*
1032	 * Found a killable thread.  If the signal will be fatal,
1033	 * then start taking the whole group down immediately.
1034	 */
1035	if (sig_fatal(p, sig) &&
1036	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037	    !sigismember(&t->real_blocked, sig) &&
1038	    (sig == SIGKILL || !p->ptrace)) {
1039		/*
1040		 * This signal will be fatal to the whole group.
1041		 */
1042		if (!sig_kernel_coredump(sig)) {
1043			/*
1044			 * Start a group exit and wake everybody up.
1045			 * This way we don't have other threads
1046			 * running and doing things after a slower
1047			 * thread has the fatal signal pending.
1048			 */
1049			signal->flags = SIGNAL_GROUP_EXIT;
1050			signal->group_exit_code = sig;
1051			signal->group_stop_count = 0;
1052			__for_each_thread(signal, t) {
 
1053				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054				sigaddset(&t->pending.signal, SIGKILL);
1055				signal_wake_up(t, 1);
1056			}
1057			return;
1058		}
1059	}
1060
1061	/*
1062	 * The signal is already in the shared-pending queue.
1063	 * Tell the chosen thread to wake up and dequeue it.
1064	 */
1065	signal_wake_up(t, sig == SIGKILL);
1066	return;
1067}
1068
1069static inline bool legacy_queue(struct sigpending *signals, int sig)
1070{
1071	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072}
1073
1074static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075				struct task_struct *t, enum pid_type type, bool force)
1076{
1077	struct sigpending *pending;
1078	struct sigqueue *q;
1079	int override_rlimit;
1080	int ret = 0, result;
1081
1082	lockdep_assert_held(&t->sighand->siglock);
1083
1084	result = TRACE_SIGNAL_IGNORED;
1085	if (!prepare_signal(sig, t, force))
1086		goto ret;
1087
1088	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089	/*
1090	 * Short-circuit ignored signals and support queuing
1091	 * exactly one non-rt signal, so that we can get more
1092	 * detailed information about the cause of the signal.
1093	 */
1094	result = TRACE_SIGNAL_ALREADY_PENDING;
1095	if (legacy_queue(pending, sig))
1096		goto ret;
1097
1098	result = TRACE_SIGNAL_DELIVERED;
1099	/*
1100	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101	 */
1102	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103		goto out_set;
1104
1105	/*
1106	 * Real-time signals must be queued if sent by sigqueue, or
1107	 * some other real-time mechanism.  It is implementation
1108	 * defined whether kill() does so.  We attempt to do so, on
1109	 * the principle of least surprise, but since kill is not
1110	 * allowed to fail with EAGAIN when low on memory we just
1111	 * make sure at least one signal gets delivered and don't
1112	 * pass on the info struct.
1113	 */
1114	if (sig < SIGRTMIN)
1115		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116	else
1117		override_rlimit = 0;
1118
1119	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120
1121	if (q) {
1122		list_add_tail(&q->list, &pending->list);
1123		switch ((unsigned long) info) {
1124		case (unsigned long) SEND_SIG_NOINFO:
1125			clear_siginfo(&q->info);
1126			q->info.si_signo = sig;
1127			q->info.si_errno = 0;
1128			q->info.si_code = SI_USER;
1129			q->info.si_pid = task_tgid_nr_ns(current,
1130							task_active_pid_ns(t));
1131			rcu_read_lock();
1132			q->info.si_uid =
1133				from_kuid_munged(task_cred_xxx(t, user_ns),
1134						 current_uid());
1135			rcu_read_unlock();
1136			break;
1137		case (unsigned long) SEND_SIG_PRIV:
1138			clear_siginfo(&q->info);
1139			q->info.si_signo = sig;
1140			q->info.si_errno = 0;
1141			q->info.si_code = SI_KERNEL;
1142			q->info.si_pid = 0;
1143			q->info.si_uid = 0;
1144			break;
1145		default:
1146			copy_siginfo(&q->info, info);
1147			break;
1148		}
1149	} else if (!is_si_special(info) &&
1150		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151		/*
1152		 * Queue overflow, abort.  We may abort if the
1153		 * signal was rt and sent by user using something
1154		 * other than kill().
1155		 */
1156		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157		ret = -EAGAIN;
1158		goto ret;
1159	} else {
1160		/*
1161		 * This is a silent loss of information.  We still
1162		 * send the signal, but the *info bits are lost.
1163		 */
1164		result = TRACE_SIGNAL_LOSE_INFO;
1165	}
1166
1167out_set:
1168	signalfd_notify(t, sig);
1169	sigaddset(&pending->signal, sig);
1170
1171	/* Let multiprocess signals appear after on-going forks */
1172	if (type > PIDTYPE_TGID) {
1173		struct multiprocess_signals *delayed;
1174		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175			sigset_t *signal = &delayed->signal;
1176			/* Can't queue both a stop and a continue signal */
1177			if (sig == SIGCONT)
1178				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179			else if (sig_kernel_stop(sig))
1180				sigdelset(signal, SIGCONT);
1181			sigaddset(signal, sig);
1182		}
1183	}
1184
1185	complete_signal(sig, t, type);
1186ret:
1187	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188	return ret;
1189}
1190
1191static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192{
1193	bool ret = false;
1194	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195	case SIL_KILL:
1196	case SIL_CHLD:
1197	case SIL_RT:
1198		ret = true;
1199		break;
1200	case SIL_TIMER:
1201	case SIL_POLL:
1202	case SIL_FAULT:
1203	case SIL_FAULT_TRAPNO:
1204	case SIL_FAULT_MCEERR:
1205	case SIL_FAULT_BNDERR:
1206	case SIL_FAULT_PKUERR:
1207	case SIL_FAULT_PERF_EVENT:
1208	case SIL_SYS:
1209		ret = false;
1210		break;
1211	}
1212	return ret;
1213}
1214
1215int send_signal_locked(int sig, struct kernel_siginfo *info,
1216		       struct task_struct *t, enum pid_type type)
1217{
1218	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219	bool force = false;
1220
1221	if (info == SEND_SIG_NOINFO) {
1222		/* Force if sent from an ancestor pid namespace */
1223		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224	} else if (info == SEND_SIG_PRIV) {
1225		/* Don't ignore kernel generated signals */
1226		force = true;
1227	} else if (has_si_pid_and_uid(info)) {
1228		/* SIGKILL and SIGSTOP is special or has ids */
1229		struct user_namespace *t_user_ns;
1230
1231		rcu_read_lock();
1232		t_user_ns = task_cred_xxx(t, user_ns);
1233		if (current_user_ns() != t_user_ns) {
1234			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236		}
1237		rcu_read_unlock();
1238
1239		/* A kernel generated signal? */
1240		force = (info->si_code == SI_KERNEL);
1241
1242		/* From an ancestor pid namespace? */
1243		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244			info->si_pid = 0;
1245			force = true;
1246		}
1247	}
1248	return __send_signal_locked(sig, info, t, type, force);
1249}
1250
1251static void print_fatal_signal(int signr)
1252{
1253	struct pt_regs *regs = task_pt_regs(current);
1254	struct file *exe_file;
1255
1256	exe_file = get_task_exe_file(current);
1257	if (exe_file) {
1258		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259			exe_file, current->comm, signr);
1260		fput(exe_file);
1261	} else {
1262		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263			current->comm, signr);
1264	}
1265
1266#if defined(__i386__) && !defined(__arch_um__)
1267	pr_info("code at %08lx: ", regs->ip);
1268	{
1269		int i;
1270		for (i = 0; i < 16; i++) {
1271			unsigned char insn;
1272
1273			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274				break;
1275			pr_cont("%02x ", insn);
1276		}
1277	}
1278	pr_cont("\n");
1279#endif
1280	preempt_disable();
1281	show_regs(regs);
1282	preempt_enable();
1283}
1284
1285static int __init setup_print_fatal_signals(char *str)
1286{
1287	get_option (&str, &print_fatal_signals);
1288
1289	return 1;
1290}
1291
1292__setup("print-fatal-signals=", setup_print_fatal_signals);
1293
 
 
 
 
 
 
1294int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295			enum pid_type type)
1296{
1297	unsigned long flags;
1298	int ret = -ESRCH;
1299
1300	if (lock_task_sighand(p, &flags)) {
1301		ret = send_signal_locked(sig, info, p, type);
1302		unlock_task_sighand(p, &flags);
1303	}
1304
1305	return ret;
1306}
1307
1308enum sig_handler {
1309	HANDLER_CURRENT, /* If reachable use the current handler */
1310	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312};
1313
1314/*
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 *
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1321 *
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1324 */
1325static int
1326force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327	enum sig_handler handler)
1328{
1329	unsigned long int flags;
1330	int ret, blocked, ignored;
1331	struct k_sigaction *action;
1332	int sig = info->si_signo;
1333
1334	spin_lock_irqsave(&t->sighand->siglock, flags);
1335	action = &t->sighand->action[sig-1];
1336	ignored = action->sa.sa_handler == SIG_IGN;
1337	blocked = sigismember(&t->blocked, sig);
1338	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339		action->sa.sa_handler = SIG_DFL;
1340		if (handler == HANDLER_EXIT)
1341			action->sa.sa_flags |= SA_IMMUTABLE;
1342		if (blocked)
1343			sigdelset(&t->blocked, sig);
 
 
1344	}
1345	/*
1346	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348	 */
1349	if (action->sa.sa_handler == SIG_DFL &&
1350	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353	/* This can happen if the signal was already pending and blocked */
1354	if (!task_sigpending(t))
1355		signal_wake_up(t, 0);
1356	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357
1358	return ret;
1359}
1360
1361int force_sig_info(struct kernel_siginfo *info)
1362{
1363	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364}
1365
1366/*
1367 * Nuke all other threads in the group.
1368 */
1369int zap_other_threads(struct task_struct *p)
1370{
1371	struct task_struct *t;
1372	int count = 0;
1373
1374	p->signal->group_stop_count = 0;
1375
1376	for_other_threads(p, t) {
1377		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378		/* Don't require de_thread to wait for the vhost_worker */
1379		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380			count++;
1381
1382		/* Don't bother with already dead threads */
1383		if (t->exit_state)
1384			continue;
1385		sigaddset(&t->pending.signal, SIGKILL);
1386		signal_wake_up(t, 1);
1387	}
1388
1389	return count;
1390}
1391
1392struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393					   unsigned long *flags)
1394{
1395	struct sighand_struct *sighand;
1396
1397	rcu_read_lock();
1398	for (;;) {
1399		sighand = rcu_dereference(tsk->sighand);
1400		if (unlikely(sighand == NULL))
1401			break;
1402
1403		/*
1404		 * This sighand can be already freed and even reused, but
1405		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406		 * initializes ->siglock: this slab can't go away, it has
1407		 * the same object type, ->siglock can't be reinitialized.
1408		 *
1409		 * We need to ensure that tsk->sighand is still the same
1410		 * after we take the lock, we can race with de_thread() or
1411		 * __exit_signal(). In the latter case the next iteration
1412		 * must see ->sighand == NULL.
1413		 */
1414		spin_lock_irqsave(&sighand->siglock, *flags);
1415		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416			break;
1417		spin_unlock_irqrestore(&sighand->siglock, *flags);
1418	}
1419	rcu_read_unlock();
1420
1421	return sighand;
1422}
1423
1424#ifdef CONFIG_LOCKDEP
1425void lockdep_assert_task_sighand_held(struct task_struct *task)
1426{
1427	struct sighand_struct *sighand;
1428
1429	rcu_read_lock();
1430	sighand = rcu_dereference(task->sighand);
1431	if (sighand)
1432		lockdep_assert_held(&sighand->siglock);
1433	else
1434		WARN_ON_ONCE(1);
1435	rcu_read_unlock();
1436}
1437#endif
1438
1439/*
1440 * send signal info to all the members of a thread group or to the
1441 * individual thread if type == PIDTYPE_PID.
1442 */
1443int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444			struct task_struct *p, enum pid_type type)
1445{
1446	int ret;
1447
1448	rcu_read_lock();
1449	ret = check_kill_permission(sig, info, p);
1450	rcu_read_unlock();
1451
1452	if (!ret && sig)
1453		ret = do_send_sig_info(sig, info, p, type);
1454
1455	return ret;
1456}
1457
1458/*
1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460 * control characters do (^C, ^Z etc)
1461 * - the caller must hold at least a readlock on tasklist_lock
1462 */
1463int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464{
1465	struct task_struct *p = NULL;
1466	int ret = -ESRCH;
1467
 
 
1468	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470		/*
1471		 * If group_send_sig_info() succeeds at least once ret
1472		 * becomes 0 and after that the code below has no effect.
1473		 * Otherwise we return the last err or -ESRCH if this
1474		 * process group is empty.
1475		 */
1476		if (ret)
1477			ret = err;
1478	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479
1480	return ret;
1481}
1482
1483static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484				struct pid *pid, enum pid_type type)
1485{
1486	int error = -ESRCH;
1487	struct task_struct *p;
1488
1489	for (;;) {
1490		rcu_read_lock();
1491		p = pid_task(pid, PIDTYPE_PID);
1492		if (p)
1493			error = group_send_sig_info(sig, info, p, type);
1494		rcu_read_unlock();
1495		if (likely(!p || error != -ESRCH))
1496			return error;
 
1497		/*
1498		 * The task was unhashed in between, try again.  If it
1499		 * is dead, pid_task() will return NULL, if we race with
1500		 * de_thread() it will find the new leader.
1501		 */
1502	}
1503}
1504
1505int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506{
1507	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508}
1509
1510static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511{
1512	int error;
1513	rcu_read_lock();
1514	error = kill_pid_info(sig, info, find_vpid(pid));
1515	rcu_read_unlock();
1516	return error;
1517}
1518
1519static inline bool kill_as_cred_perm(const struct cred *cred,
1520				     struct task_struct *target)
1521{
1522	const struct cred *pcred = __task_cred(target);
1523
1524	return uid_eq(cred->euid, pcred->suid) ||
1525	       uid_eq(cred->euid, pcred->uid) ||
1526	       uid_eq(cred->uid, pcred->suid) ||
1527	       uid_eq(cred->uid, pcred->uid);
1528}
1529
1530/*
1531 * The usb asyncio usage of siginfo is wrong.  The glibc support
1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533 * AKA after the generic fields:
1534 *	kernel_pid_t	si_pid;
1535 *	kernel_uid32_t	si_uid;
1536 *	sigval_t	si_value;
1537 *
1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539 * after the generic fields is:
1540 *	void __user 	*si_addr;
1541 *
1542 * This is a practical problem when there is a 64bit big endian kernel
1543 * and a 32bit userspace.  As the 32bit address will encoded in the low
1544 * 32bits of the pointer.  Those low 32bits will be stored at higher
1545 * address than appear in a 32 bit pointer.  So userspace will not
1546 * see the address it was expecting for it's completions.
1547 *
1548 * There is nothing in the encoding that can allow
1549 * copy_siginfo_to_user32 to detect this confusion of formats, so
1550 * handle this by requiring the caller of kill_pid_usb_asyncio to
1551 * notice when this situration takes place and to store the 32bit
1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 * parameter.
1554 */
1555int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556			 struct pid *pid, const struct cred *cred)
1557{
1558	struct kernel_siginfo info;
1559	struct task_struct *p;
1560	unsigned long flags;
1561	int ret = -EINVAL;
1562
1563	if (!valid_signal(sig))
1564		return ret;
1565
1566	clear_siginfo(&info);
1567	info.si_signo = sig;
1568	info.si_errno = errno;
1569	info.si_code = SI_ASYNCIO;
1570	*((sigval_t *)&info.si_pid) = addr;
1571
1572	rcu_read_lock();
1573	p = pid_task(pid, PIDTYPE_PID);
1574	if (!p) {
1575		ret = -ESRCH;
1576		goto out_unlock;
1577	}
1578	if (!kill_as_cred_perm(cred, p)) {
1579		ret = -EPERM;
1580		goto out_unlock;
1581	}
1582	ret = security_task_kill(p, &info, sig, cred);
1583	if (ret)
1584		goto out_unlock;
1585
1586	if (sig) {
1587		if (lock_task_sighand(p, &flags)) {
1588			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589			unlock_task_sighand(p, &flags);
1590		} else
1591			ret = -ESRCH;
1592	}
1593out_unlock:
1594	rcu_read_unlock();
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598
1599/*
1600 * kill_something_info() interprets pid in interesting ways just like kill(2).
1601 *
1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603 * is probably wrong.  Should make it like BSD or SYSV.
1604 */
1605
1606static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607{
1608	int ret;
1609
1610	if (pid > 0)
1611		return kill_proc_info(sig, info, pid);
1612
1613	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1614	if (pid == INT_MIN)
1615		return -ESRCH;
1616
1617	read_lock(&tasklist_lock);
1618	if (pid != -1) {
1619		ret = __kill_pgrp_info(sig, info,
1620				pid ? find_vpid(-pid) : task_pgrp(current));
1621	} else {
1622		int retval = 0, count = 0;
1623		struct task_struct * p;
1624
1625		for_each_process(p) {
1626			if (task_pid_vnr(p) > 1 &&
1627					!same_thread_group(p, current)) {
1628				int err = group_send_sig_info(sig, info, p,
1629							      PIDTYPE_MAX);
1630				++count;
1631				if (err != -EPERM)
1632					retval = err;
1633			}
1634		}
1635		ret = count ? retval : -ESRCH;
1636	}
1637	read_unlock(&tasklist_lock);
1638
1639	return ret;
1640}
1641
1642/*
1643 * These are for backward compatibility with the rest of the kernel source.
1644 */
1645
1646int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647{
1648	/*
1649	 * Make sure legacy kernel users don't send in bad values
1650	 * (normal paths check this in check_kill_permission).
1651	 */
1652	if (!valid_signal(sig))
1653		return -EINVAL;
1654
1655	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656}
1657EXPORT_SYMBOL(send_sig_info);
1658
1659#define __si_special(priv) \
1660	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661
1662int
1663send_sig(int sig, struct task_struct *p, int priv)
1664{
1665	return send_sig_info(sig, __si_special(priv), p);
1666}
1667EXPORT_SYMBOL(send_sig);
1668
1669void force_sig(int sig)
1670{
1671	struct kernel_siginfo info;
1672
1673	clear_siginfo(&info);
1674	info.si_signo = sig;
1675	info.si_errno = 0;
1676	info.si_code = SI_KERNEL;
1677	info.si_pid = 0;
1678	info.si_uid = 0;
1679	force_sig_info(&info);
1680}
1681EXPORT_SYMBOL(force_sig);
1682
1683void force_fatal_sig(int sig)
1684{
1685	struct kernel_siginfo info;
1686
1687	clear_siginfo(&info);
1688	info.si_signo = sig;
1689	info.si_errno = 0;
1690	info.si_code = SI_KERNEL;
1691	info.si_pid = 0;
1692	info.si_uid = 0;
1693	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694}
1695
1696void force_exit_sig(int sig)
1697{
1698	struct kernel_siginfo info;
1699
1700	clear_siginfo(&info);
1701	info.si_signo = sig;
1702	info.si_errno = 0;
1703	info.si_code = SI_KERNEL;
1704	info.si_pid = 0;
1705	info.si_uid = 0;
1706	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707}
1708
1709/*
1710 * When things go south during signal handling, we
1711 * will force a SIGSEGV. And if the signal that caused
1712 * the problem was already a SIGSEGV, we'll want to
1713 * make sure we don't even try to deliver the signal..
1714 */
1715void force_sigsegv(int sig)
1716{
1717	if (sig == SIGSEGV)
1718		force_fatal_sig(SIGSEGV);
1719	else
1720		force_sig(SIGSEGV);
 
 
 
 
 
1721}
1722
1723int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724			    struct task_struct *t)
 
 
1725{
1726	struct kernel_siginfo info;
1727
1728	clear_siginfo(&info);
1729	info.si_signo = sig;
1730	info.si_errno = 0;
1731	info.si_code  = code;
1732	info.si_addr  = addr;
1733	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
 
 
 
 
 
 
 
 
1734}
1735
1736int force_sig_fault(int sig, int code, void __user *addr)
 
 
1737{
1738	return force_sig_fault_to_task(sig, code, addr, current);
 
 
1739}
1740
1741int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
 
 
 
1742{
1743	struct kernel_siginfo info;
1744
1745	clear_siginfo(&info);
1746	info.si_signo = sig;
1747	info.si_errno = 0;
1748	info.si_code  = code;
1749	info.si_addr  = addr;
 
 
 
 
 
 
 
 
1750	return send_sig_info(info.si_signo, &info, t);
1751}
1752
1753int force_sig_mceerr(int code, void __user *addr, short lsb)
1754{
1755	struct kernel_siginfo info;
1756
1757	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758	clear_siginfo(&info);
1759	info.si_signo = SIGBUS;
1760	info.si_errno = 0;
1761	info.si_code = code;
1762	info.si_addr = addr;
1763	info.si_addr_lsb = lsb;
1764	return force_sig_info(&info);
1765}
1766
1767int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768{
1769	struct kernel_siginfo info;
1770
1771	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772	clear_siginfo(&info);
1773	info.si_signo = SIGBUS;
1774	info.si_errno = 0;
1775	info.si_code = code;
1776	info.si_addr = addr;
1777	info.si_addr_lsb = lsb;
1778	return send_sig_info(info.si_signo, &info, t);
1779}
1780EXPORT_SYMBOL(send_sig_mceerr);
1781
1782int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783{
1784	struct kernel_siginfo info;
1785
1786	clear_siginfo(&info);
1787	info.si_signo = SIGSEGV;
1788	info.si_errno = 0;
1789	info.si_code  = SEGV_BNDERR;
1790	info.si_addr  = addr;
1791	info.si_lower = lower;
1792	info.si_upper = upper;
1793	return force_sig_info(&info);
1794}
1795
1796#ifdef SEGV_PKUERR
1797int force_sig_pkuerr(void __user *addr, u32 pkey)
1798{
1799	struct kernel_siginfo info;
1800
1801	clear_siginfo(&info);
1802	info.si_signo = SIGSEGV;
1803	info.si_errno = 0;
1804	info.si_code  = SEGV_PKUERR;
1805	info.si_addr  = addr;
1806	info.si_pkey  = pkey;
1807	return force_sig_info(&info);
1808}
1809#endif
1810
1811int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812{
1813	struct kernel_siginfo info;
1814
1815	clear_siginfo(&info);
1816	info.si_signo     = SIGTRAP;
1817	info.si_errno     = 0;
1818	info.si_code      = TRAP_PERF;
1819	info.si_addr      = addr;
1820	info.si_perf_data = sig_data;
1821	info.si_perf_type = type;
1822
1823	/*
1824	 * Signals generated by perf events should not terminate the whole
1825	 * process if SIGTRAP is blocked, however, delivering the signal
1826	 * asynchronously is better than not delivering at all. But tell user
1827	 * space if the signal was asynchronous, so it can clearly be
1828	 * distinguished from normal synchronous ones.
1829	 */
1830	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831				     TRAP_PERF_FLAG_ASYNC :
1832				     0;
1833
1834	return send_sig_info(info.si_signo, &info, current);
1835}
1836
1837/**
1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839 * @syscall: syscall number to send to userland
1840 * @reason: filter-supplied reason code to send to userland (via si_errno)
1841 * @force_coredump: true to trigger a coredump
1842 *
1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844 */
1845int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846{
1847	struct kernel_siginfo info;
1848
1849	clear_siginfo(&info);
1850	info.si_signo = SIGSYS;
1851	info.si_code = SYS_SECCOMP;
1852	info.si_call_addr = (void __user *)KSTK_EIP(current);
1853	info.si_errno = reason;
1854	info.si_arch = syscall_get_arch(current);
1855	info.si_syscall = syscall;
1856	return force_sig_info_to_task(&info, current,
1857		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858}
1859
1860/* For the crazy architectures that include trap information in
1861 * the errno field, instead of an actual errno value.
1862 */
1863int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864{
1865	struct kernel_siginfo info;
1866
1867	clear_siginfo(&info);
1868	info.si_signo = SIGTRAP;
1869	info.si_errno = errno;
1870	info.si_code  = TRAP_HWBKPT;
1871	info.si_addr  = addr;
1872	return force_sig_info(&info);
1873}
1874
1875/* For the rare architectures that include trap information using
1876 * si_trapno.
1877 */
1878int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879{
1880	struct kernel_siginfo info;
1881
1882	clear_siginfo(&info);
1883	info.si_signo = sig;
1884	info.si_errno = 0;
1885	info.si_code  = code;
1886	info.si_addr  = addr;
1887	info.si_trapno = trapno;
1888	return force_sig_info(&info);
1889}
1890
1891/* For the rare architectures that include trap information using
1892 * si_trapno.
1893 */
1894int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895			  struct task_struct *t)
1896{
1897	struct kernel_siginfo info;
1898
1899	clear_siginfo(&info);
1900	info.si_signo = sig;
1901	info.si_errno = 0;
1902	info.si_code  = code;
1903	info.si_addr  = addr;
1904	info.si_trapno = trapno;
1905	return send_sig_info(info.si_signo, &info, t);
1906}
1907
1908static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909{
1910	int ret;
1911	read_lock(&tasklist_lock);
1912	ret = __kill_pgrp_info(sig, info, pgrp);
1913	read_unlock(&tasklist_lock);
 
1914	return ret;
1915}
1916
1917int kill_pgrp(struct pid *pid, int sig, int priv)
1918{
1919	return kill_pgrp_info(sig, __si_special(priv), pid);
1920}
1921EXPORT_SYMBOL(kill_pgrp);
1922
1923int kill_pid(struct pid *pid, int sig, int priv)
1924{
1925	return kill_pid_info(sig, __si_special(priv), pid);
1926}
1927EXPORT_SYMBOL(kill_pid);
1928
1929/*
1930 * These functions support sending signals using preallocated sigqueue
1931 * structures.  This is needed "because realtime applications cannot
1932 * afford to lose notifications of asynchronous events, like timer
1933 * expirations or I/O completions".  In the case of POSIX Timers
1934 * we allocate the sigqueue structure from the timer_create.  If this
1935 * allocation fails we are able to report the failure to the application
1936 * with an EAGAIN error.
1937 */
1938struct sigqueue *sigqueue_alloc(void)
1939{
1940	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1941}
1942
1943void sigqueue_free(struct sigqueue *q)
1944{
1945	unsigned long flags;
1946	spinlock_t *lock = &current->sighand->siglock;
1947
1948	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949	/*
1950	 * We must hold ->siglock while testing q->list
1951	 * to serialize with collect_signal() or with
1952	 * __exit_signal()->flush_sigqueue().
1953	 */
1954	spin_lock_irqsave(lock, flags);
1955	q->flags &= ~SIGQUEUE_PREALLOC;
1956	/*
1957	 * If it is queued it will be freed when dequeued,
1958	 * like the "regular" sigqueue.
1959	 */
1960	if (!list_empty(&q->list))
1961		q = NULL;
1962	spin_unlock_irqrestore(lock, flags);
1963
1964	if (q)
1965		__sigqueue_free(q);
1966}
1967
1968int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969{
1970	int sig = q->info.si_signo;
1971	struct sigpending *pending;
1972	struct task_struct *t;
1973	unsigned long flags;
1974	int ret, result;
1975
1976	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977
1978	ret = -1;
1979	rcu_read_lock();
1980
1981	/*
1982	 * This function is used by POSIX timers to deliver a timer signal.
1983	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984	 * set), the signal must be delivered to the specific thread (queues
1985	 * into t->pending).
1986	 *
1987	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988	 * process. In this case, prefer to deliver to current if it is in
1989	 * the same thread group as the target process, which avoids
1990	 * unnecessarily waking up a potentially idle task.
1991	 */
1992	t = pid_task(pid, type);
1993	if (!t)
1994		goto ret;
1995	if (type != PIDTYPE_PID && same_thread_group(t, current))
1996		t = current;
1997	if (!likely(lock_task_sighand(t, &flags)))
1998		goto ret;
1999
2000	ret = 1; /* the signal is ignored */
2001	result = TRACE_SIGNAL_IGNORED;
2002	if (!prepare_signal(sig, t, false))
2003		goto out;
2004
2005	ret = 0;
2006	if (unlikely(!list_empty(&q->list))) {
2007		/*
2008		 * If an SI_TIMER entry is already queue just increment
2009		 * the overrun count.
2010		 */
2011		BUG_ON(q->info.si_code != SI_TIMER);
2012		q->info.si_overrun++;
2013		result = TRACE_SIGNAL_ALREADY_PENDING;
2014		goto out;
2015	}
2016	q->info.si_overrun = 0;
2017
2018	signalfd_notify(t, sig);
2019	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020	list_add_tail(&q->list, &pending->list);
2021	sigaddset(&pending->signal, sig);
2022	complete_signal(sig, t, type);
2023	result = TRACE_SIGNAL_DELIVERED;
2024out:
2025	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026	unlock_task_sighand(t, &flags);
2027ret:
2028	rcu_read_unlock();
2029	return ret;
2030}
2031
2032void do_notify_pidfd(struct task_struct *task)
2033{
2034	struct pid *pid = task_pid(task);
2035
2036	WARN_ON(task->exit_state == 0);
2037
2038	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039			poll_to_key(EPOLLIN | EPOLLRDNORM));
2040}
2041
2042/*
2043 * Let a parent know about the death of a child.
2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 *
2046 * Returns true if our parent ignored us and so we've switched to
2047 * self-reaping.
2048 */
2049bool do_notify_parent(struct task_struct *tsk, int sig)
2050{
2051	struct kernel_siginfo info;
2052	unsigned long flags;
2053	struct sighand_struct *psig;
2054	bool autoreap = false;
2055	u64 utime, stime;
2056
2057	WARN_ON_ONCE(sig == -1);
2058
2059	/* do_notify_parent_cldstop should have been called instead.  */
2060	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061
2062	WARN_ON_ONCE(!tsk->ptrace &&
2063	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064	/*
2065	 * tsk is a group leader and has no threads, wake up the
2066	 * non-PIDFD_THREAD waiters.
2067	 */
2068	if (thread_group_empty(tsk))
2069		do_notify_pidfd(tsk);
2070
2071	if (sig != SIGCHLD) {
2072		/*
2073		 * This is only possible if parent == real_parent.
2074		 * Check if it has changed security domain.
2075		 */
2076		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077			sig = SIGCHLD;
2078	}
2079
2080	clear_siginfo(&info);
2081	info.si_signo = sig;
2082	info.si_errno = 0;
2083	/*
2084	 * We are under tasklist_lock here so our parent is tied to
2085	 * us and cannot change.
2086	 *
2087	 * task_active_pid_ns will always return the same pid namespace
2088	 * until a task passes through release_task.
2089	 *
2090	 * write_lock() currently calls preempt_disable() which is the
2091	 * same as rcu_read_lock(), but according to Oleg, this is not
2092	 * correct to rely on this
2093	 */
2094	rcu_read_lock();
2095	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097				       task_uid(tsk));
2098	rcu_read_unlock();
2099
2100	task_cputime(tsk, &utime, &stime);
2101	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103
2104	info.si_status = tsk->exit_code & 0x7f;
2105	if (tsk->exit_code & 0x80)
2106		info.si_code = CLD_DUMPED;
2107	else if (tsk->exit_code & 0x7f)
2108		info.si_code = CLD_KILLED;
2109	else {
2110		info.si_code = CLD_EXITED;
2111		info.si_status = tsk->exit_code >> 8;
2112	}
2113
2114	psig = tsk->parent->sighand;
2115	spin_lock_irqsave(&psig->siglock, flags);
2116	if (!tsk->ptrace && sig == SIGCHLD &&
2117	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119		/*
2120		 * We are exiting and our parent doesn't care.  POSIX.1
2121		 * defines special semantics for setting SIGCHLD to SIG_IGN
2122		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123		 * automatically and not left for our parent's wait4 call.
2124		 * Rather than having the parent do it as a magic kind of
2125		 * signal handler, we just set this to tell do_exit that we
2126		 * can be cleaned up without becoming a zombie.  Note that
2127		 * we still call __wake_up_parent in this case, because a
2128		 * blocked sys_wait4 might now return -ECHILD.
2129		 *
2130		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131		 * is implementation-defined: we do (if you don't want
2132		 * it, just use SIG_IGN instead).
2133		 */
2134		autoreap = true;
2135		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136			sig = 0;
2137	}
2138	/*
2139	 * Send with __send_signal as si_pid and si_uid are in the
2140	 * parent's namespaces.
2141	 */
2142	if (valid_signal(sig) && sig)
2143		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144	__wake_up_parent(tsk, tsk->parent);
2145	spin_unlock_irqrestore(&psig->siglock, flags);
2146
2147	return autoreap;
2148}
2149
2150/**
2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152 * @tsk: task reporting the state change
2153 * @for_ptracer: the notification is for ptracer
2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 *
2156 * Notify @tsk's parent that the stopped/continued state has changed.  If
2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 *
2160 * CONTEXT:
2161 * Must be called with tasklist_lock at least read locked.
2162 */
2163static void do_notify_parent_cldstop(struct task_struct *tsk,
2164				     bool for_ptracer, int why)
2165{
2166	struct kernel_siginfo info;
2167	unsigned long flags;
2168	struct task_struct *parent;
2169	struct sighand_struct *sighand;
2170	u64 utime, stime;
2171
2172	if (for_ptracer) {
2173		parent = tsk->parent;
2174	} else {
2175		tsk = tsk->group_leader;
2176		parent = tsk->real_parent;
2177	}
2178
2179	clear_siginfo(&info);
2180	info.si_signo = SIGCHLD;
2181	info.si_errno = 0;
2182	/*
2183	 * see comment in do_notify_parent() about the following 4 lines
2184	 */
2185	rcu_read_lock();
2186	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188	rcu_read_unlock();
2189
2190	task_cputime(tsk, &utime, &stime);
2191	info.si_utime = nsec_to_clock_t(utime);
2192	info.si_stime = nsec_to_clock_t(stime);
2193
2194 	info.si_code = why;
2195 	switch (why) {
2196 	case CLD_CONTINUED:
2197 		info.si_status = SIGCONT;
2198 		break;
2199 	case CLD_STOPPED:
2200 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 		break;
2202 	case CLD_TRAPPED:
2203 		info.si_status = tsk->exit_code & 0x7f;
2204 		break;
2205 	default:
2206 		BUG();
2207 	}
2208
2209	sighand = parent->sighand;
2210	spin_lock_irqsave(&sighand->siglock, flags);
2211	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214	/*
2215	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216	 */
2217	__wake_up_parent(tsk, parent);
2218	spin_unlock_irqrestore(&sighand->siglock, flags);
2219}
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221/*
2222 * This must be called with current->sighand->siglock held.
2223 *
2224 * This should be the path for all ptrace stops.
2225 * We always set current->last_siginfo while stopped here.
2226 * That makes it a way to test a stopped process for
2227 * being ptrace-stopped vs being job-control-stopped.
2228 *
2229 * Returns the signal the ptracer requested the code resume
2230 * with.  If the code did not stop because the tracer is gone,
2231 * the stop signal remains unchanged unless clear_code.
2232 */
2233static int ptrace_stop(int exit_code, int why, unsigned long message,
2234		       kernel_siginfo_t *info)
2235	__releases(&current->sighand->siglock)
2236	__acquires(&current->sighand->siglock)
2237{
2238	bool gstop_done = false;
2239
2240	if (arch_ptrace_stop_needed()) {
2241		/*
2242		 * The arch code has something special to do before a
2243		 * ptrace stop.  This is allowed to block, e.g. for faults
2244		 * on user stack pages.  We can't keep the siglock while
2245		 * calling arch_ptrace_stop, so we must release it now.
2246		 * To preserve proper semantics, we must do this before
2247		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2248		 */
2249		spin_unlock_irq(&current->sighand->siglock);
2250		arch_ptrace_stop();
2251		spin_lock_irq(&current->sighand->siglock);
 
 
2252	}
2253
2254	/*
2255	 * After this point ptrace_signal_wake_up or signal_wake_up
2256	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2258	 * signals here to prevent ptrace_stop sleeping in schedule.
2259	 */
2260	if (!current->ptrace || __fatal_signal_pending(current))
2261		return exit_code;
2262
2263	set_special_state(TASK_TRACED);
2264	current->jobctl |= JOBCTL_TRACED;
2265
2266	/*
2267	 * We're committing to trapping.  TRACED should be visible before
2268	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269	 * Also, transition to TRACED and updates to ->jobctl should be
2270	 * atomic with respect to siglock and should be done after the arch
2271	 * hook as siglock is released and regrabbed across it.
2272	 *
2273	 *     TRACER				    TRACEE
2274	 *
2275	 *     ptrace_attach()
2276	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2277	 *     do_wait()
2278	 *       set_current_state()                smp_wmb();
2279	 *       ptrace_do_wait()
2280	 *         wait_task_stopped()
2281	 *           task_stopped_code()
2282	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2283	 */
2284	smp_wmb();
2285
2286	current->ptrace_message = message;
2287	current->last_siginfo = info;
2288	current->exit_code = exit_code;
2289
2290	/*
2291	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2293	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294	 * could be clear now.  We act as if SIGCONT is received after
2295	 * TASK_TRACED is entered - ignore it.
2296	 */
2297	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298		gstop_done = task_participate_group_stop(current);
2299
2300	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304
2305	/* entering a trap, clear TRAPPING */
2306	task_clear_jobctl_trapping(current);
2307
2308	spin_unlock_irq(&current->sighand->siglock);
2309	read_lock(&tasklist_lock);
2310	/*
2311	 * Notify parents of the stop.
2312	 *
2313	 * While ptraced, there are two parents - the ptracer and
2314	 * the real_parent of the group_leader.  The ptracer should
2315	 * know about every stop while the real parent is only
2316	 * interested in the completion of group stop.  The states
2317	 * for the two don't interact with each other.  Notify
2318	 * separately unless they're gonna be duplicates.
2319	 */
2320	if (current->ptrace)
2321		do_notify_parent_cldstop(current, true, why);
2322	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323		do_notify_parent_cldstop(current, false, why);
2324
2325	/*
2326	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327	 * One a PREEMPTION kernel this can result in preemption requirement
2328	 * which will be fulfilled after read_unlock() and the ptracer will be
2329	 * put on the CPU.
2330	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331	 * this task wait in schedule(). If this task gets preempted then it
2332	 * remains enqueued on the runqueue. The ptracer will observe this and
2333	 * then sleep for a delay of one HZ tick. In the meantime this task
2334	 * gets scheduled, enters schedule() and will wait for the ptracer.
2335	 *
2336	 * This preemption point is not bad from a correctness point of
2337	 * view but extends the runtime by one HZ tick time due to the
2338	 * ptracer's sleep.  The preempt-disable section ensures that there
2339	 * will be no preemption between unlock and schedule() and so
2340	 * improving the performance since the ptracer will observe that
2341	 * the tracee is scheduled out once it gets on the CPU.
2342	 *
2343	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345	 * before unlocking tasklist_lock so there is no benefit in doing this.
2346	 *
2347	 * In fact disabling preemption is harmful on PREEMPT_RT because
2348	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349	 * with preemption disabled due to the 'sleeping' spinlock
2350	 * substitution of RT.
2351	 */
2352	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353		preempt_disable();
2354	read_unlock(&tasklist_lock);
2355	cgroup_enter_frozen();
2356	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357		preempt_enable_no_resched();
2358	schedule();
2359	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361	/*
2362	 * We are back.  Now reacquire the siglock before touching
2363	 * last_siginfo, so that we are sure to have synchronized with
2364	 * any signal-sending on another CPU that wants to examine it.
2365	 */
2366	spin_lock_irq(&current->sighand->siglock);
2367	exit_code = current->exit_code;
2368	current->last_siginfo = NULL;
2369	current->ptrace_message = 0;
2370	current->exit_code = 0;
2371
2372	/* LISTENING can be set only during STOP traps, clear it */
2373	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374
2375	/*
2376	 * Queued signals ignored us while we were stopped for tracing.
2377	 * So check for any that we should take before resuming user mode.
2378	 * This sets TIF_SIGPENDING, but never clears it.
2379	 */
2380	recalc_sigpending_tsk(current);
2381	return exit_code;
2382}
2383
2384static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385{
2386	kernel_siginfo_t info;
2387
2388	clear_siginfo(&info);
2389	info.si_signo = signr;
2390	info.si_code = exit_code;
2391	info.si_pid = task_pid_vnr(current);
2392	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393
2394	/* Let the debugger run.  */
2395	return ptrace_stop(exit_code, why, message, &info);
2396}
2397
2398int ptrace_notify(int exit_code, unsigned long message)
2399{
2400	int signr;
2401
2402	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403	if (unlikely(task_work_pending(current)))
2404		task_work_run();
2405
2406	spin_lock_irq(&current->sighand->siglock);
2407	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408	spin_unlock_irq(&current->sighand->siglock);
2409	return signr;
2410}
2411
2412/**
2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414 * @signr: signr causing group stop if initiating
2415 *
2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417 * and participate in it.  If already set, participate in the existing
2418 * group stop.  If participated in a group stop (and thus slept), %true is
2419 * returned with siglock released.
2420 *
2421 * If ptraced, this function doesn't handle stop itself.  Instead,
2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2424 * places afterwards.
2425 *
2426 * CONTEXT:
2427 * Must be called with @current->sighand->siglock held, which is released
2428 * on %true return.
2429 *
2430 * RETURNS:
2431 * %false if group stop is already cancelled or ptrace trap is scheduled.
2432 * %true if participated in group stop.
2433 */
2434static bool do_signal_stop(int signr)
2435	__releases(&current->sighand->siglock)
2436{
2437	struct signal_struct *sig = current->signal;
2438
2439	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441		struct task_struct *t;
2442
2443		/* signr will be recorded in task->jobctl for retries */
2444		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445
2446		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448		    unlikely(sig->group_exec_task))
2449			return false;
2450		/*
2451		 * There is no group stop already in progress.  We must
2452		 * initiate one now.
2453		 *
2454		 * While ptraced, a task may be resumed while group stop is
2455		 * still in effect and then receive a stop signal and
2456		 * initiate another group stop.  This deviates from the
2457		 * usual behavior as two consecutive stop signals can't
2458		 * cause two group stops when !ptraced.  That is why we
2459		 * also check !task_is_stopped(t) below.
2460		 *
2461		 * The condition can be distinguished by testing whether
2462		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2463		 * group_exit_code in such case.
2464		 *
2465		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466		 * an intervening stop signal is required to cause two
2467		 * continued events regardless of ptrace.
2468		 */
2469		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470			sig->group_exit_code = signr;
2471
2472		sig->group_stop_count = 0;
 
2473		if (task_set_jobctl_pending(current, signr | gstop))
2474			sig->group_stop_count++;
2475
2476		for_other_threads(current, t) {
 
2477			/*
2478			 * Setting state to TASK_STOPPED for a group
2479			 * stop is always done with the siglock held,
2480			 * so this check has no races.
2481			 */
2482			if (!task_is_stopped(t) &&
2483			    task_set_jobctl_pending(t, signr | gstop)) {
2484				sig->group_stop_count++;
2485				if (likely(!(t->ptrace & PT_SEIZED)))
2486					signal_wake_up(t, 0);
2487				else
2488					ptrace_trap_notify(t);
2489			}
2490		}
2491	}
2492
2493	if (likely(!current->ptrace)) {
2494		int notify = 0;
2495
2496		/*
2497		 * If there are no other threads in the group, or if there
2498		 * is a group stop in progress and we are the last to stop,
2499		 * report to the parent.
2500		 */
2501		if (task_participate_group_stop(current))
2502			notify = CLD_STOPPED;
2503
2504		current->jobctl |= JOBCTL_STOPPED;
2505		set_special_state(TASK_STOPPED);
2506		spin_unlock_irq(&current->sighand->siglock);
2507
2508		/*
2509		 * Notify the parent of the group stop completion.  Because
2510		 * we're not holding either the siglock or tasklist_lock
2511		 * here, ptracer may attach inbetween; however, this is for
2512		 * group stop and should always be delivered to the real
2513		 * parent of the group leader.  The new ptracer will get
2514		 * its notification when this task transitions into
2515		 * TASK_TRACED.
2516		 */
2517		if (notify) {
2518			read_lock(&tasklist_lock);
2519			do_notify_parent_cldstop(current, false, notify);
2520			read_unlock(&tasklist_lock);
2521		}
2522
2523		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2524		cgroup_enter_frozen();
2525		schedule();
2526		return true;
2527	} else {
2528		/*
2529		 * While ptraced, group stop is handled by STOP trap.
2530		 * Schedule it and let the caller deal with it.
2531		 */
2532		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533		return false;
2534	}
2535}
2536
2537/**
2538 * do_jobctl_trap - take care of ptrace jobctl traps
2539 *
2540 * When PT_SEIZED, it's used for both group stop and explicit
2541 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2542 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2543 * the stop signal; otherwise, %SIGTRAP.
2544 *
2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546 * number as exit_code and no siginfo.
2547 *
2548 * CONTEXT:
2549 * Must be called with @current->sighand->siglock held, which may be
2550 * released and re-acquired before returning with intervening sleep.
2551 */
2552static void do_jobctl_trap(void)
2553{
2554	struct signal_struct *signal = current->signal;
2555	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556
2557	if (current->ptrace & PT_SEIZED) {
2558		if (!signal->group_stop_count &&
2559		    !(signal->flags & SIGNAL_STOP_STOPPED))
2560			signr = SIGTRAP;
2561		WARN_ON_ONCE(!signr);
2562		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563				 CLD_STOPPED, 0);
2564	} else {
2565		WARN_ON_ONCE(!signr);
2566		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2567	}
2568}
2569
2570/**
2571 * do_freezer_trap - handle the freezer jobctl trap
2572 *
2573 * Puts the task into frozen state, if only the task is not about to quit.
2574 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 *
2576 * CONTEXT:
2577 * Must be called with @current->sighand->siglock held,
2578 * which is always released before returning.
2579 */
2580static void do_freezer_trap(void)
2581	__releases(&current->sighand->siglock)
2582{
2583	/*
2584	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585	 * let's make another loop to give it a chance to be handled.
2586	 * In any case, we'll return back.
2587	 */
2588	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589	     JOBCTL_TRAP_FREEZE) {
2590		spin_unlock_irq(&current->sighand->siglock);
2591		return;
2592	}
2593
2594	/*
2595	 * Now we're sure that there is no pending fatal signal and no
2596	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597	 * immediately (if there is a non-fatal signal pending), and
2598	 * put the task into sleep.
2599	 */
2600	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601	clear_thread_flag(TIF_SIGPENDING);
2602	spin_unlock_irq(&current->sighand->siglock);
2603	cgroup_enter_frozen();
2604	schedule();
2605}
2606
2607static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608{
2609	/*
2610	 * We do not check sig_kernel_stop(signr) but set this marker
2611	 * unconditionally because we do not know whether debugger will
2612	 * change signr. This flag has no meaning unless we are going
2613	 * to stop after return from ptrace_stop(). In this case it will
2614	 * be checked in do_signal_stop(), we should only stop if it was
2615	 * not cleared by SIGCONT while we were sleeping. See also the
2616	 * comment in dequeue_signal().
2617	 */
2618	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620
2621	/* We're back.  Did the debugger cancel the sig?  */
 
2622	if (signr == 0)
2623		return signr;
2624
 
 
2625	/*
2626	 * Update the siginfo structure if the signal has
2627	 * changed.  If the debugger wanted something
2628	 * specific in the siginfo structure then it should
2629	 * have updated *info via PTRACE_SETSIGINFO.
2630	 */
2631	if (signr != info->si_signo) {
2632		clear_siginfo(info);
2633		info->si_signo = signr;
2634		info->si_errno = 0;
2635		info->si_code = SI_USER;
2636		rcu_read_lock();
2637		info->si_pid = task_pid_vnr(current->parent);
2638		info->si_uid = from_kuid_munged(current_user_ns(),
2639						task_uid(current->parent));
2640		rcu_read_unlock();
2641	}
2642
2643	/* If the (new) signal is now blocked, requeue it.  */
2644	if (sigismember(&current->blocked, signr) ||
2645	    fatal_signal_pending(current)) {
2646		send_signal_locked(signr, info, current, type);
2647		signr = 0;
2648	}
2649
2650	return signr;
2651}
2652
2653static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654{
2655	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656	case SIL_FAULT:
2657	case SIL_FAULT_TRAPNO:
2658	case SIL_FAULT_MCEERR:
2659	case SIL_FAULT_BNDERR:
2660	case SIL_FAULT_PKUERR:
2661	case SIL_FAULT_PERF_EVENT:
2662		ksig->info.si_addr = arch_untagged_si_addr(
2663			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664		break;
2665	case SIL_KILL:
2666	case SIL_TIMER:
2667	case SIL_POLL:
2668	case SIL_CHLD:
2669	case SIL_RT:
2670	case SIL_SYS:
2671		break;
2672	}
2673}
2674
2675bool get_signal(struct ksignal *ksig)
2676{
2677	struct sighand_struct *sighand = current->sighand;
2678	struct signal_struct *signal = current->signal;
2679	int signr;
2680
2681	clear_notify_signal();
2682	if (unlikely(task_work_pending(current)))
2683		task_work_run();
2684
2685	if (!task_sigpending(current))
2686		return false;
2687
2688	if (unlikely(uprobe_deny_signal()))
2689		return false;
2690
2691	/*
2692	 * Do this once, we can't return to user-mode if freezing() == T.
2693	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694	 * thus do not need another check after return.
2695	 */
2696	try_to_freeze();
2697
2698relock:
2699	spin_lock_irq(&sighand->siglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700
2701	/*
2702	 * Every stopped thread goes here after wakeup. Check to see if
2703	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705	 */
2706	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707		int why;
2708
2709		if (signal->flags & SIGNAL_CLD_CONTINUED)
2710			why = CLD_CONTINUED;
2711		else
2712			why = CLD_STOPPED;
2713
2714		signal->flags &= ~SIGNAL_CLD_MASK;
2715
2716		spin_unlock_irq(&sighand->siglock);
2717
2718		/*
2719		 * Notify the parent that we're continuing.  This event is
2720		 * always per-process and doesn't make whole lot of sense
2721		 * for ptracers, who shouldn't consume the state via
2722		 * wait(2) either, but, for backward compatibility, notify
2723		 * the ptracer of the group leader too unless it's gonna be
2724		 * a duplicate.
2725		 */
2726		read_lock(&tasklist_lock);
2727		do_notify_parent_cldstop(current, false, why);
2728
2729		if (ptrace_reparented(current->group_leader))
2730			do_notify_parent_cldstop(current->group_leader,
2731						true, why);
2732		read_unlock(&tasklist_lock);
2733
2734		goto relock;
2735	}
2736
 
 
 
 
 
 
 
 
 
 
2737	for (;;) {
2738		struct k_sigaction *ka;
2739		enum pid_type type;
2740
2741		/* Has this task already been marked for death? */
2742		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743		     signal->group_exec_task) {
2744			signr = SIGKILL;
2745			sigdelset(&current->pending.signal, SIGKILL);
2746			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2747					     &sighand->action[SIGKILL-1]);
2748			recalc_sigpending();
2749			/*
2750			 * implies do_group_exit() or return to PF_USER_WORKER,
2751			 * no need to initialize ksig->info/etc.
2752			 */
2753			goto fatal;
2754		}
2755
2756		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2757		    do_signal_stop(0))
2758			goto relock;
2759
2760		if (unlikely(current->jobctl &
2761			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2762			if (current->jobctl & JOBCTL_TRAP_MASK) {
2763				do_jobctl_trap();
2764				spin_unlock_irq(&sighand->siglock);
2765			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766				do_freezer_trap();
2767
2768			goto relock;
2769		}
2770
2771		/*
2772		 * If the task is leaving the frozen state, let's update
2773		 * cgroup counters and reset the frozen bit.
2774		 */
2775		if (unlikely(cgroup_task_frozen(current))) {
2776			spin_unlock_irq(&sighand->siglock);
2777			cgroup_leave_frozen(false);
2778			goto relock;
2779		}
2780
2781		/*
2782		 * Signals generated by the execution of an instruction
2783		 * need to be delivered before any other pending signals
2784		 * so that the instruction pointer in the signal stack
2785		 * frame points to the faulting instruction.
2786		 */
2787		type = PIDTYPE_PID;
2788		signr = dequeue_synchronous_signal(&ksig->info);
2789		if (!signr)
2790			signr = dequeue_signal(current, &current->blocked,
2791					       &ksig->info, &type);
2792
2793		if (!signr)
2794			break; /* will return 0 */
2795
2796		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2797		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2798			signr = ptrace_signal(signr, &ksig->info, type);
2799			if (!signr)
2800				continue;
2801		}
2802
2803		ka = &sighand->action[signr-1];
2804
2805		/* Trace actually delivered signals. */
2806		trace_signal_deliver(signr, &ksig->info, ka);
2807
2808		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2809			continue;
2810		if (ka->sa.sa_handler != SIG_DFL) {
2811			/* Run the handler.  */
2812			ksig->ka = *ka;
2813
2814			if (ka->sa.sa_flags & SA_ONESHOT)
2815				ka->sa.sa_handler = SIG_DFL;
2816
2817			break; /* will return non-zero "signr" value */
2818		}
2819
2820		/*
2821		 * Now we are doing the default action for this signal.
2822		 */
2823		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2824			continue;
2825
2826		/*
2827		 * Global init gets no signals it doesn't want.
2828		 * Container-init gets no signals it doesn't want from same
2829		 * container.
2830		 *
2831		 * Note that if global/container-init sees a sig_kernel_only()
2832		 * signal here, the signal must have been generated internally
2833		 * or must have come from an ancestor namespace. In either
2834		 * case, the signal cannot be dropped.
2835		 */
2836		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2837				!sig_kernel_only(signr))
2838			continue;
2839
2840		if (sig_kernel_stop(signr)) {
2841			/*
2842			 * The default action is to stop all threads in
2843			 * the thread group.  The job control signals
2844			 * do nothing in an orphaned pgrp, but SIGSTOP
2845			 * always works.  Note that siglock needs to be
2846			 * dropped during the call to is_orphaned_pgrp()
2847			 * because of lock ordering with tasklist_lock.
2848			 * This allows an intervening SIGCONT to be posted.
2849			 * We need to check for that and bail out if necessary.
2850			 */
2851			if (signr != SIGSTOP) {
2852				spin_unlock_irq(&sighand->siglock);
2853
2854				/* signals can be posted during this window */
2855
2856				if (is_current_pgrp_orphaned())
2857					goto relock;
2858
2859				spin_lock_irq(&sighand->siglock);
2860			}
2861
2862			if (likely(do_signal_stop(signr))) {
2863				/* It released the siglock.  */
2864				goto relock;
2865			}
2866
2867			/*
2868			 * We didn't actually stop, due to a race
2869			 * with SIGCONT or something like that.
2870			 */
2871			continue;
2872		}
2873
2874	fatal:
2875		spin_unlock_irq(&sighand->siglock);
2876		if (unlikely(cgroup_task_frozen(current)))
2877			cgroup_leave_frozen(true);
2878
2879		/*
2880		 * Anything else is fatal, maybe with a core dump.
2881		 */
2882		current->flags |= PF_SIGNALED;
2883
2884		if (sig_kernel_coredump(signr)) {
2885			if (print_fatal_signals)
2886				print_fatal_signal(signr);
2887			proc_coredump_connector(current);
2888			/*
2889			 * If it was able to dump core, this kills all
2890			 * other threads in the group and synchronizes with
2891			 * their demise.  If we lost the race with another
2892			 * thread getting here, it set group_exit_code
2893			 * first and our do_group_exit call below will use
2894			 * that value and ignore the one we pass it.
2895			 */
2896			do_coredump(&ksig->info);
2897		}
2898
2899		/*
2900		 * PF_USER_WORKER threads will catch and exit on fatal signals
2901		 * themselves. They have cleanup that must be performed, so we
2902		 * cannot call do_exit() on their behalf. Note that ksig won't
2903		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2904		 */
2905		if (current->flags & PF_USER_WORKER)
2906			goto out;
2907
2908		/*
2909		 * Death signals, no core dump.
2910		 */
2911		do_group_exit(signr);
2912		/* NOTREACHED */
2913	}
2914	spin_unlock_irq(&sighand->siglock);
2915
2916	ksig->sig = signr;
2917
2918	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2919		hide_si_addr_tag_bits(ksig);
2920out:
2921	return signr > 0;
2922}
2923
2924/**
2925 * signal_delivered - called after signal delivery to update blocked signals
2926 * @ksig:		kernel signal struct
2927 * @stepping:		nonzero if debugger single-step or block-step in use
2928 *
2929 * This function should be called when a signal has successfully been
2930 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2931 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2932 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2933 */
2934static void signal_delivered(struct ksignal *ksig, int stepping)
2935{
2936	sigset_t blocked;
2937
2938	/* A signal was successfully delivered, and the
2939	   saved sigmask was stored on the signal frame,
2940	   and will be restored by sigreturn.  So we can
2941	   simply clear the restore sigmask flag.  */
2942	clear_restore_sigmask();
2943
2944	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2945	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2946		sigaddset(&blocked, ksig->sig);
2947	set_current_blocked(&blocked);
2948	if (current->sas_ss_flags & SS_AUTODISARM)
2949		sas_ss_reset(current);
2950	if (stepping)
2951		ptrace_notify(SIGTRAP, 0);
2952}
2953
2954void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955{
2956	if (failed)
2957		force_sigsegv(ksig->sig);
2958	else
2959		signal_delivered(ksig, stepping);
2960}
2961
2962/*
2963 * It could be that complete_signal() picked us to notify about the
2964 * group-wide signal. Other threads should be notified now to take
2965 * the shared signals in @which since we will not.
2966 */
2967static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968{
2969	sigset_t retarget;
2970	struct task_struct *t;
2971
2972	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2973	if (sigisemptyset(&retarget))
2974		return;
2975
2976	for_other_threads(tsk, t) {
 
2977		if (t->flags & PF_EXITING)
2978			continue;
2979
2980		if (!has_pending_signals(&retarget, &t->blocked))
2981			continue;
2982		/* Remove the signals this thread can handle. */
2983		sigandsets(&retarget, &retarget, &t->blocked);
2984
2985		if (!task_sigpending(t))
2986			signal_wake_up(t, 0);
2987
2988		if (sigisemptyset(&retarget))
2989			break;
2990	}
2991}
2992
2993void exit_signals(struct task_struct *tsk)
2994{
2995	int group_stop = 0;
2996	sigset_t unblocked;
2997
2998	/*
2999	 * @tsk is about to have PF_EXITING set - lock out users which
3000	 * expect stable threadgroup.
3001	 */
3002	cgroup_threadgroup_change_begin(tsk);
3003
3004	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3005		sched_mm_cid_exit_signals(tsk);
3006		tsk->flags |= PF_EXITING;
3007		cgroup_threadgroup_change_end(tsk);
3008		return;
3009	}
3010
3011	spin_lock_irq(&tsk->sighand->siglock);
3012	/*
3013	 * From now this task is not visible for group-wide signals,
3014	 * see wants_signal(), do_signal_stop().
3015	 */
3016	sched_mm_cid_exit_signals(tsk);
3017	tsk->flags |= PF_EXITING;
3018
3019	cgroup_threadgroup_change_end(tsk);
3020
3021	if (!task_sigpending(tsk))
3022		goto out;
3023
3024	unblocked = tsk->blocked;
3025	signotset(&unblocked);
3026	retarget_shared_pending(tsk, &unblocked);
3027
3028	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3029	    task_participate_group_stop(tsk))
3030		group_stop = CLD_STOPPED;
3031out:
3032	spin_unlock_irq(&tsk->sighand->siglock);
3033
3034	/*
3035	 * If group stop has completed, deliver the notification.  This
3036	 * should always go to the real parent of the group leader.
3037	 */
3038	if (unlikely(group_stop)) {
3039		read_lock(&tasklist_lock);
3040		do_notify_parent_cldstop(tsk, false, group_stop);
3041		read_unlock(&tasklist_lock);
3042	}
3043}
3044
3045/*
3046 * System call entry points.
3047 */
3048
3049/**
3050 *  sys_restart_syscall - restart a system call
3051 */
3052SYSCALL_DEFINE0(restart_syscall)
3053{
3054	struct restart_block *restart = &current->restart_block;
3055	return restart->fn(restart);
3056}
3057
3058long do_no_restart_syscall(struct restart_block *param)
3059{
3060	return -EINTR;
3061}
3062
3063static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3064{
3065	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3066		sigset_t newblocked;
3067		/* A set of now blocked but previously unblocked signals. */
3068		sigandnsets(&newblocked, newset, &current->blocked);
3069		retarget_shared_pending(tsk, &newblocked);
3070	}
3071	tsk->blocked = *newset;
3072	recalc_sigpending();
3073}
3074
3075/**
3076 * set_current_blocked - change current->blocked mask
3077 * @newset: new mask
3078 *
3079 * It is wrong to change ->blocked directly, this helper should be used
3080 * to ensure the process can't miss a shared signal we are going to block.
3081 */
3082void set_current_blocked(sigset_t *newset)
3083{
3084	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3085	__set_current_blocked(newset);
3086}
3087
3088void __set_current_blocked(const sigset_t *newset)
3089{
3090	struct task_struct *tsk = current;
3091
3092	/*
3093	 * In case the signal mask hasn't changed, there is nothing we need
3094	 * to do. The current->blocked shouldn't be modified by other task.
3095	 */
3096	if (sigequalsets(&tsk->blocked, newset))
3097		return;
3098
3099	spin_lock_irq(&tsk->sighand->siglock);
3100	__set_task_blocked(tsk, newset);
3101	spin_unlock_irq(&tsk->sighand->siglock);
3102}
3103
3104/*
3105 * This is also useful for kernel threads that want to temporarily
3106 * (or permanently) block certain signals.
3107 *
3108 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3109 * interface happily blocks "unblockable" signals like SIGKILL
3110 * and friends.
3111 */
3112int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3113{
3114	struct task_struct *tsk = current;
3115	sigset_t newset;
3116
3117	/* Lockless, only current can change ->blocked, never from irq */
3118	if (oldset)
3119		*oldset = tsk->blocked;
3120
3121	switch (how) {
3122	case SIG_BLOCK:
3123		sigorsets(&newset, &tsk->blocked, set);
3124		break;
3125	case SIG_UNBLOCK:
3126		sigandnsets(&newset, &tsk->blocked, set);
3127		break;
3128	case SIG_SETMASK:
3129		newset = *set;
3130		break;
3131	default:
3132		return -EINVAL;
3133	}
3134
3135	__set_current_blocked(&newset);
3136	return 0;
3137}
3138EXPORT_SYMBOL(sigprocmask);
3139
3140/*
3141 * The api helps set app-provided sigmasks.
3142 *
3143 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3144 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3145 *
3146 * Note that it does set_restore_sigmask() in advance, so it must be always
3147 * paired with restore_saved_sigmask_unless() before return from syscall.
3148 */
3149int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3150{
3151	sigset_t kmask;
3152
3153	if (!umask)
3154		return 0;
3155	if (sigsetsize != sizeof(sigset_t))
3156		return -EINVAL;
3157	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158		return -EFAULT;
3159
3160	set_restore_sigmask();
3161	current->saved_sigmask = current->blocked;
3162	set_current_blocked(&kmask);
3163
3164	return 0;
3165}
3166
3167#ifdef CONFIG_COMPAT
3168int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169			    size_t sigsetsize)
3170{
3171	sigset_t kmask;
3172
3173	if (!umask)
3174		return 0;
3175	if (sigsetsize != sizeof(compat_sigset_t))
3176		return -EINVAL;
3177	if (get_compat_sigset(&kmask, umask))
3178		return -EFAULT;
3179
3180	set_restore_sigmask();
3181	current->saved_sigmask = current->blocked;
3182	set_current_blocked(&kmask);
3183
3184	return 0;
3185}
3186#endif
3187
3188/**
3189 *  sys_rt_sigprocmask - change the list of currently blocked signals
3190 *  @how: whether to add, remove, or set signals
3191 *  @nset: stores pending signals
3192 *  @oset: previous value of signal mask if non-null
3193 *  @sigsetsize: size of sigset_t type
3194 */
3195SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3196		sigset_t __user *, oset, size_t, sigsetsize)
3197{
3198	sigset_t old_set, new_set;
3199	int error;
3200
3201	/* XXX: Don't preclude handling different sized sigset_t's.  */
3202	if (sigsetsize != sizeof(sigset_t))
3203		return -EINVAL;
3204
3205	old_set = current->blocked;
3206
3207	if (nset) {
3208		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3209			return -EFAULT;
3210		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3211
3212		error = sigprocmask(how, &new_set, NULL);
3213		if (error)
3214			return error;
3215	}
3216
3217	if (oset) {
3218		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219			return -EFAULT;
3220	}
3221
3222	return 0;
3223}
3224
3225#ifdef CONFIG_COMPAT
3226COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3227		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3228{
3229	sigset_t old_set = current->blocked;
3230
3231	/* XXX: Don't preclude handling different sized sigset_t's.  */
3232	if (sigsetsize != sizeof(sigset_t))
3233		return -EINVAL;
3234
3235	if (nset) {
3236		sigset_t new_set;
3237		int error;
3238		if (get_compat_sigset(&new_set, nset))
3239			return -EFAULT;
3240		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3241
3242		error = sigprocmask(how, &new_set, NULL);
3243		if (error)
3244			return error;
3245	}
3246	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3247}
3248#endif
3249
3250static void do_sigpending(sigset_t *set)
3251{
3252	spin_lock_irq(&current->sighand->siglock);
3253	sigorsets(set, &current->pending.signal,
3254		  &current->signal->shared_pending.signal);
3255	spin_unlock_irq(&current->sighand->siglock);
3256
3257	/* Outside the lock because only this thread touches it.  */
3258	sigandsets(set, &current->blocked, set);
3259}
3260
3261/**
3262 *  sys_rt_sigpending - examine a pending signal that has been raised
3263 *			while blocked
3264 *  @uset: stores pending signals
3265 *  @sigsetsize: size of sigset_t type or larger
3266 */
3267SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3268{
3269	sigset_t set;
3270
3271	if (sigsetsize > sizeof(*uset))
3272		return -EINVAL;
3273
3274	do_sigpending(&set);
3275
3276	if (copy_to_user(uset, &set, sigsetsize))
3277		return -EFAULT;
3278
3279	return 0;
3280}
3281
3282#ifdef CONFIG_COMPAT
3283COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3284		compat_size_t, sigsetsize)
3285{
3286	sigset_t set;
3287
3288	if (sigsetsize > sizeof(*uset))
3289		return -EINVAL;
3290
3291	do_sigpending(&set);
3292
3293	return put_compat_sigset(uset, &set, sigsetsize);
3294}
3295#endif
3296
3297static const struct {
3298	unsigned char limit, layout;
3299} sig_sicodes[] = {
3300	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3301	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3302	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3303	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3304	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3305#if defined(SIGEMT)
3306	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3307#endif
3308	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3309	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3310	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3311};
3312
3313static bool known_siginfo_layout(unsigned sig, int si_code)
3314{
3315	if (si_code == SI_KERNEL)
3316		return true;
3317	else if ((si_code > SI_USER)) {
3318		if (sig_specific_sicodes(sig)) {
3319			if (si_code <= sig_sicodes[sig].limit)
3320				return true;
3321		}
3322		else if (si_code <= NSIGPOLL)
3323			return true;
3324	}
3325	else if (si_code >= SI_DETHREAD)
3326		return true;
3327	else if (si_code == SI_ASYNCNL)
3328		return true;
3329	return false;
3330}
3331
3332enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3333{
3334	enum siginfo_layout layout = SIL_KILL;
3335	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3336		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3337		    (si_code <= sig_sicodes[sig].limit)) {
3338			layout = sig_sicodes[sig].layout;
3339			/* Handle the exceptions */
3340			if ((sig == SIGBUS) &&
3341			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3342				layout = SIL_FAULT_MCEERR;
3343			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3344				layout = SIL_FAULT_BNDERR;
3345#ifdef SEGV_PKUERR
3346			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3347				layout = SIL_FAULT_PKUERR;
3348#endif
3349			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3350				layout = SIL_FAULT_PERF_EVENT;
3351			else if (IS_ENABLED(CONFIG_SPARC) &&
3352				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3353				layout = SIL_FAULT_TRAPNO;
3354			else if (IS_ENABLED(CONFIG_ALPHA) &&
3355				 ((sig == SIGFPE) ||
3356				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3357				layout = SIL_FAULT_TRAPNO;
3358		}
3359		else if (si_code <= NSIGPOLL)
3360			layout = SIL_POLL;
3361	} else {
3362		if (si_code == SI_TIMER)
3363			layout = SIL_TIMER;
3364		else if (si_code == SI_SIGIO)
3365			layout = SIL_POLL;
3366		else if (si_code < 0)
3367			layout = SIL_RT;
3368	}
3369	return layout;
3370}
3371
3372static inline char __user *si_expansion(const siginfo_t __user *info)
3373{
3374	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375}
3376
3377int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3378{
3379	char __user *expansion = si_expansion(to);
3380	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3381		return -EFAULT;
3382	if (clear_user(expansion, SI_EXPANSION_SIZE))
3383		return -EFAULT;
3384	return 0;
3385}
3386
3387static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3388				       const siginfo_t __user *from)
3389{
3390	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3391		char __user *expansion = si_expansion(from);
3392		char buf[SI_EXPANSION_SIZE];
3393		int i;
3394		/*
3395		 * An unknown si_code might need more than
3396		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3397		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3398		 * will return this data to userspace exactly.
3399		 */
3400		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3401			return -EFAULT;
3402		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3403			if (buf[i] != 0)
3404				return -E2BIG;
3405		}
3406	}
3407	return 0;
3408}
3409
3410static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3411				    const siginfo_t __user *from)
3412{
3413	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414		return -EFAULT;
3415	to->si_signo = signo;
3416	return post_copy_siginfo_from_user(to, from);
3417}
3418
3419int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3420{
3421	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3422		return -EFAULT;
3423	return post_copy_siginfo_from_user(to, from);
3424}
3425
3426#ifdef CONFIG_COMPAT
3427/**
3428 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3429 * @to: compat siginfo destination
3430 * @from: kernel siginfo source
3431 *
3432 * Note: This function does not work properly for the SIGCHLD on x32, but
3433 * fortunately it doesn't have to.  The only valid callers for this function are
3434 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3435 * The latter does not care because SIGCHLD will never cause a coredump.
3436 */
3437void copy_siginfo_to_external32(struct compat_siginfo *to,
3438		const struct kernel_siginfo *from)
3439{
3440	memset(to, 0, sizeof(*to));
3441
3442	to->si_signo = from->si_signo;
3443	to->si_errno = from->si_errno;
3444	to->si_code  = from->si_code;
3445	switch(siginfo_layout(from->si_signo, from->si_code)) {
3446	case SIL_KILL:
3447		to->si_pid = from->si_pid;
3448		to->si_uid = from->si_uid;
3449		break;
3450	case SIL_TIMER:
3451		to->si_tid     = from->si_tid;
3452		to->si_overrun = from->si_overrun;
3453		to->si_int     = from->si_int;
3454		break;
3455	case SIL_POLL:
3456		to->si_band = from->si_band;
3457		to->si_fd   = from->si_fd;
3458		break;
3459	case SIL_FAULT:
3460		to->si_addr = ptr_to_compat(from->si_addr);
3461		break;
3462	case SIL_FAULT_TRAPNO:
3463		to->si_addr = ptr_to_compat(from->si_addr);
3464		to->si_trapno = from->si_trapno;
 
3465		break;
3466	case SIL_FAULT_MCEERR:
3467		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3468		to->si_addr_lsb = from->si_addr_lsb;
3469		break;
3470	case SIL_FAULT_BNDERR:
3471		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3472		to->si_lower = ptr_to_compat(from->si_lower);
3473		to->si_upper = ptr_to_compat(from->si_upper);
3474		break;
3475	case SIL_FAULT_PKUERR:
3476		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3477		to->si_pkey = from->si_pkey;
3478		break;
3479	case SIL_FAULT_PERF_EVENT:
3480		to->si_addr = ptr_to_compat(from->si_addr);
3481		to->si_perf_data = from->si_perf_data;
3482		to->si_perf_type = from->si_perf_type;
3483		to->si_perf_flags = from->si_perf_flags;
3484		break;
3485	case SIL_CHLD:
3486		to->si_pid = from->si_pid;
3487		to->si_uid = from->si_uid;
3488		to->si_status = from->si_status;
3489		to->si_utime = from->si_utime;
3490		to->si_stime = from->si_stime;
3491		break;
3492	case SIL_RT:
3493		to->si_pid = from->si_pid;
3494		to->si_uid = from->si_uid;
3495		to->si_int = from->si_int;
3496		break;
3497	case SIL_SYS:
3498		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3499		to->si_syscall   = from->si_syscall;
3500		to->si_arch      = from->si_arch;
3501		break;
3502	}
3503}
3504
3505int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3506			   const struct kernel_siginfo *from)
3507{
3508	struct compat_siginfo new;
3509
3510	copy_siginfo_to_external32(&new, from);
3511	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3512		return -EFAULT;
3513	return 0;
3514}
3515
3516static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3517					 const struct compat_siginfo *from)
3518{
3519	clear_siginfo(to);
3520	to->si_signo = from->si_signo;
3521	to->si_errno = from->si_errno;
3522	to->si_code  = from->si_code;
3523	switch(siginfo_layout(from->si_signo, from->si_code)) {
3524	case SIL_KILL:
3525		to->si_pid = from->si_pid;
3526		to->si_uid = from->si_uid;
3527		break;
3528	case SIL_TIMER:
3529		to->si_tid     = from->si_tid;
3530		to->si_overrun = from->si_overrun;
3531		to->si_int     = from->si_int;
3532		break;
3533	case SIL_POLL:
3534		to->si_band = from->si_band;
3535		to->si_fd   = from->si_fd;
3536		break;
3537	case SIL_FAULT:
3538		to->si_addr = compat_ptr(from->si_addr);
3539		break;
3540	case SIL_FAULT_TRAPNO:
3541		to->si_addr = compat_ptr(from->si_addr);
3542		to->si_trapno = from->si_trapno;
 
3543		break;
3544	case SIL_FAULT_MCEERR:
3545		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3546		to->si_addr_lsb = from->si_addr_lsb;
3547		break;
3548	case SIL_FAULT_BNDERR:
3549		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3550		to->si_lower = compat_ptr(from->si_lower);
3551		to->si_upper = compat_ptr(from->si_upper);
3552		break;
3553	case SIL_FAULT_PKUERR:
3554		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3555		to->si_pkey = from->si_pkey;
3556		break;
3557	case SIL_FAULT_PERF_EVENT:
3558		to->si_addr = compat_ptr(from->si_addr);
3559		to->si_perf_data = from->si_perf_data;
3560		to->si_perf_type = from->si_perf_type;
3561		to->si_perf_flags = from->si_perf_flags;
3562		break;
3563	case SIL_CHLD:
3564		to->si_pid    = from->si_pid;
3565		to->si_uid    = from->si_uid;
3566		to->si_status = from->si_status;
3567#ifdef CONFIG_X86_X32_ABI
3568		if (in_x32_syscall()) {
3569			to->si_utime = from->_sifields._sigchld_x32._utime;
3570			to->si_stime = from->_sifields._sigchld_x32._stime;
3571		} else
3572#endif
3573		{
3574			to->si_utime = from->si_utime;
3575			to->si_stime = from->si_stime;
3576		}
3577		break;
3578	case SIL_RT:
3579		to->si_pid = from->si_pid;
3580		to->si_uid = from->si_uid;
3581		to->si_int = from->si_int;
3582		break;
3583	case SIL_SYS:
3584		to->si_call_addr = compat_ptr(from->si_call_addr);
3585		to->si_syscall   = from->si_syscall;
3586		to->si_arch      = from->si_arch;
3587		break;
3588	}
3589	return 0;
3590}
3591
3592static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3593				      const struct compat_siginfo __user *ufrom)
3594{
3595	struct compat_siginfo from;
3596
3597	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598		return -EFAULT;
3599
3600	from.si_signo = signo;
3601	return post_copy_siginfo_from_user32(to, &from);
3602}
3603
3604int copy_siginfo_from_user32(struct kernel_siginfo *to,
3605			     const struct compat_siginfo __user *ufrom)
3606{
3607	struct compat_siginfo from;
3608
3609	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610		return -EFAULT;
3611
3612	return post_copy_siginfo_from_user32(to, &from);
3613}
3614#endif /* CONFIG_COMPAT */
3615
3616/**
3617 *  do_sigtimedwait - wait for queued signals specified in @which
3618 *  @which: queued signals to wait for
3619 *  @info: if non-null, the signal's siginfo is returned here
3620 *  @ts: upper bound on process time suspension
3621 */
3622static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3623		    const struct timespec64 *ts)
3624{
3625	ktime_t *to = NULL, timeout = KTIME_MAX;
3626	struct task_struct *tsk = current;
3627	sigset_t mask = *which;
3628	enum pid_type type;
3629	int sig, ret = 0;
3630
3631	if (ts) {
3632		if (!timespec64_valid(ts))
3633			return -EINVAL;
3634		timeout = timespec64_to_ktime(*ts);
3635		to = &timeout;
3636	}
3637
3638	/*
3639	 * Invert the set of allowed signals to get those we want to block.
3640	 */
3641	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642	signotset(&mask);
3643
3644	spin_lock_irq(&tsk->sighand->siglock);
3645	sig = dequeue_signal(tsk, &mask, info, &type);
3646	if (!sig && timeout) {
3647		/*
3648		 * None ready, temporarily unblock those we're interested
3649		 * while we are sleeping in so that we'll be awakened when
3650		 * they arrive. Unblocking is always fine, we can avoid
3651		 * set_current_blocked().
3652		 */
3653		tsk->real_blocked = tsk->blocked;
3654		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3655		recalc_sigpending();
3656		spin_unlock_irq(&tsk->sighand->siglock);
3657
3658		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3659		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3660					       HRTIMER_MODE_REL);
3661		spin_lock_irq(&tsk->sighand->siglock);
3662		__set_task_blocked(tsk, &tsk->real_blocked);
3663		sigemptyset(&tsk->real_blocked);
3664		sig = dequeue_signal(tsk, &mask, info, &type);
3665	}
3666	spin_unlock_irq(&tsk->sighand->siglock);
3667
3668	if (sig)
3669		return sig;
3670	return ret ? -EINTR : -EAGAIN;
3671}
3672
3673/**
3674 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3675 *			in @uthese
3676 *  @uthese: queued signals to wait for
3677 *  @uinfo: if non-null, the signal's siginfo is returned here
3678 *  @uts: upper bound on process time suspension
3679 *  @sigsetsize: size of sigset_t type
3680 */
3681SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3682		siginfo_t __user *, uinfo,
3683		const struct __kernel_timespec __user *, uts,
3684		size_t, sigsetsize)
3685{
3686	sigset_t these;
3687	struct timespec64 ts;
3688	kernel_siginfo_t info;
3689	int ret;
3690
3691	/* XXX: Don't preclude handling different sized sigset_t's.  */
3692	if (sigsetsize != sizeof(sigset_t))
3693		return -EINVAL;
3694
3695	if (copy_from_user(&these, uthese, sizeof(these)))
3696		return -EFAULT;
3697
3698	if (uts) {
3699		if (get_timespec64(&ts, uts))
3700			return -EFAULT;
3701	}
3702
3703	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3704
3705	if (ret > 0 && uinfo) {
3706		if (copy_siginfo_to_user(uinfo, &info))
3707			ret = -EFAULT;
3708	}
3709
3710	return ret;
3711}
3712
3713#ifdef CONFIG_COMPAT_32BIT_TIME
3714SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3715		siginfo_t __user *, uinfo,
3716		const struct old_timespec32 __user *, uts,
3717		size_t, sigsetsize)
3718{
3719	sigset_t these;
3720	struct timespec64 ts;
3721	kernel_siginfo_t info;
3722	int ret;
3723
3724	if (sigsetsize != sizeof(sigset_t))
3725		return -EINVAL;
3726
3727	if (copy_from_user(&these, uthese, sizeof(these)))
3728		return -EFAULT;
3729
3730	if (uts) {
3731		if (get_old_timespec32(&ts, uts))
3732			return -EFAULT;
3733	}
3734
3735	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3736
3737	if (ret > 0 && uinfo) {
3738		if (copy_siginfo_to_user(uinfo, &info))
3739			ret = -EFAULT;
3740	}
3741
3742	return ret;
3743}
3744#endif
3745
3746#ifdef CONFIG_COMPAT
3747COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3748		struct compat_siginfo __user *, uinfo,
3749		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750{
3751	sigset_t s;
3752	struct timespec64 t;
3753	kernel_siginfo_t info;
3754	long ret;
3755
3756	if (sigsetsize != sizeof(sigset_t))
3757		return -EINVAL;
3758
3759	if (get_compat_sigset(&s, uthese))
3760		return -EFAULT;
3761
3762	if (uts) {
3763		if (get_timespec64(&t, uts))
3764			return -EFAULT;
3765	}
3766
3767	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3768
3769	if (ret > 0 && uinfo) {
3770		if (copy_siginfo_to_user32(uinfo, &info))
3771			ret = -EFAULT;
3772	}
3773
3774	return ret;
3775}
3776
3777#ifdef CONFIG_COMPAT_32BIT_TIME
3778COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3779		struct compat_siginfo __user *, uinfo,
3780		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781{
3782	sigset_t s;
3783	struct timespec64 t;
3784	kernel_siginfo_t info;
3785	long ret;
3786
3787	if (sigsetsize != sizeof(sigset_t))
3788		return -EINVAL;
3789
3790	if (get_compat_sigset(&s, uthese))
3791		return -EFAULT;
3792
3793	if (uts) {
3794		if (get_old_timespec32(&t, uts))
3795			return -EFAULT;
3796	}
3797
3798	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3799
3800	if (ret > 0 && uinfo) {
3801		if (copy_siginfo_to_user32(uinfo, &info))
3802			ret = -EFAULT;
3803	}
3804
3805	return ret;
3806}
3807#endif
3808#endif
3809
3810static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811				 enum pid_type type)
3812{
3813	clear_siginfo(info);
3814	info->si_signo = sig;
3815	info->si_errno = 0;
3816	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3817	info->si_pid = task_tgid_vnr(current);
3818	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3819}
3820
3821/**
3822 *  sys_kill - send a signal to a process
3823 *  @pid: the PID of the process
3824 *  @sig: signal to be sent
3825 */
3826SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3827{
3828	struct kernel_siginfo info;
3829
3830	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3831
3832	return kill_something_info(sig, &info, pid);
3833}
3834
3835/*
3836 * Verify that the signaler and signalee either are in the same pid namespace
3837 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838 * namespace.
3839 */
3840static bool access_pidfd_pidns(struct pid *pid)
3841{
3842	struct pid_namespace *active = task_active_pid_ns(current);
3843	struct pid_namespace *p = ns_of_pid(pid);
3844
3845	for (;;) {
3846		if (!p)
3847			return false;
3848		if (p == active)
3849			break;
3850		p = p->parent;
3851	}
3852
3853	return true;
3854}
3855
3856static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3857		siginfo_t __user *info)
3858{
3859#ifdef CONFIG_COMPAT
3860	/*
3861	 * Avoid hooking up compat syscalls and instead handle necessary
3862	 * conversions here. Note, this is a stop-gap measure and should not be
3863	 * considered a generic solution.
3864	 */
3865	if (in_compat_syscall())
3866		return copy_siginfo_from_user32(
3867			kinfo, (struct compat_siginfo __user *)info);
3868#endif
3869	return copy_siginfo_from_user(kinfo, info);
3870}
3871
3872static struct pid *pidfd_to_pid(const struct file *file)
3873{
3874	struct pid *pid;
3875
3876	pid = pidfd_pid(file);
3877	if (!IS_ERR(pid))
3878		return pid;
3879
3880	return tgid_pidfd_to_pid(file);
3881}
3882
3883#define PIDFD_SEND_SIGNAL_FLAGS                            \
3884	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3885	 PIDFD_SIGNAL_PROCESS_GROUP)
3886
3887/**
3888 * sys_pidfd_send_signal - Signal a process through a pidfd
3889 * @pidfd:  file descriptor of the process
3890 * @sig:    signal to send
3891 * @info:   signal info
3892 * @flags:  future flags
3893 *
3894 * Send the signal to the thread group or to the individual thread depending
3895 * on PIDFD_THREAD.
3896 * In the future extension to @flags may be used to override the default scope
3897 * of @pidfd.
 
 
 
 
3898 *
3899 * Return: 0 on success, negative errno on failure
3900 */
3901SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3902		siginfo_t __user *, info, unsigned int, flags)
3903{
3904	int ret;
3905	struct fd f;
3906	struct pid *pid;
3907	kernel_siginfo_t kinfo;
3908	enum pid_type type;
3909
3910	/* Enforce flags be set to 0 until we add an extension. */
3911	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912		return -EINVAL;
3913
3914	/* Ensure that only a single signal scope determining flag is set. */
3915	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3916		return -EINVAL;
3917
3918	f = fdget(pidfd);
3919	if (!f.file)
3920		return -EBADF;
3921
3922	/* Is this a pidfd? */
3923	pid = pidfd_to_pid(f.file);
3924	if (IS_ERR(pid)) {
3925		ret = PTR_ERR(pid);
3926		goto err;
3927	}
3928
3929	ret = -EINVAL;
3930	if (!access_pidfd_pidns(pid))
3931		goto err;
3932
3933	switch (flags) {
3934	case 0:
3935		/* Infer scope from the type of pidfd. */
3936		if (f.file->f_flags & PIDFD_THREAD)
3937			type = PIDTYPE_PID;
3938		else
3939			type = PIDTYPE_TGID;
3940		break;
3941	case PIDFD_SIGNAL_THREAD:
3942		type = PIDTYPE_PID;
3943		break;
3944	case PIDFD_SIGNAL_THREAD_GROUP:
3945		type = PIDTYPE_TGID;
3946		break;
3947	case PIDFD_SIGNAL_PROCESS_GROUP:
3948		type = PIDTYPE_PGID;
3949		break;
3950	}
3951
3952	if (info) {
3953		ret = copy_siginfo_from_user_any(&kinfo, info);
3954		if (unlikely(ret))
3955			goto err;
3956
3957		ret = -EINVAL;
3958		if (unlikely(sig != kinfo.si_signo))
3959			goto err;
3960
3961		/* Only allow sending arbitrary signals to yourself. */
3962		ret = -EPERM;
3963		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3964		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965			goto err;
3966	} else {
3967		prepare_kill_siginfo(sig, &kinfo, type);
3968	}
3969
3970	if (type == PIDTYPE_PGID)
3971		ret = kill_pgrp_info(sig, &kinfo, pid);
3972	else
3973		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3974err:
3975	fdput(f);
3976	return ret;
3977}
3978
3979static int
3980do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3981{
3982	struct task_struct *p;
3983	int error = -ESRCH;
3984
3985	rcu_read_lock();
3986	p = find_task_by_vpid(pid);
3987	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3988		error = check_kill_permission(sig, info, p);
3989		/*
3990		 * The null signal is a permissions and process existence
3991		 * probe.  No signal is actually delivered.
3992		 */
3993		if (!error && sig) {
3994			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3995			/*
3996			 * If lock_task_sighand() failed we pretend the task
3997			 * dies after receiving the signal. The window is tiny,
3998			 * and the signal is private anyway.
3999			 */
4000			if (unlikely(error == -ESRCH))
4001				error = 0;
4002		}
4003	}
4004	rcu_read_unlock();
4005
4006	return error;
4007}
4008
4009static int do_tkill(pid_t tgid, pid_t pid, int sig)
4010{
4011	struct kernel_siginfo info;
4012
4013	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
 
 
 
 
 
4014
4015	return do_send_specific(tgid, pid, sig, &info);
4016}
4017
4018/**
4019 *  sys_tgkill - send signal to one specific thread
4020 *  @tgid: the thread group ID of the thread
4021 *  @pid: the PID of the thread
4022 *  @sig: signal to be sent
4023 *
4024 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4025 *  exists but it's not belonging to the target process anymore. This
4026 *  method solves the problem of threads exiting and PIDs getting reused.
4027 */
4028SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4029{
4030	/* This is only valid for single tasks */
4031	if (pid <= 0 || tgid <= 0)
4032		return -EINVAL;
4033
4034	return do_tkill(tgid, pid, sig);
4035}
4036
4037/**
4038 *  sys_tkill - send signal to one specific task
4039 *  @pid: the PID of the task
4040 *  @sig: signal to be sent
4041 *
4042 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4043 */
4044SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4045{
4046	/* This is only valid for single tasks */
4047	if (pid <= 0)
4048		return -EINVAL;
4049
4050	return do_tkill(0, pid, sig);
4051}
4052
4053static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4054{
4055	/* Not even root can pretend to send signals from the kernel.
4056	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057	 */
4058	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059	    (task_pid_vnr(current) != pid))
4060		return -EPERM;
4061
4062	/* POSIX.1b doesn't mention process groups.  */
4063	return kill_proc_info(sig, info, pid);
4064}
4065
4066/**
4067 *  sys_rt_sigqueueinfo - send signal information to a signal
4068 *  @pid: the PID of the thread
4069 *  @sig: signal to be sent
4070 *  @uinfo: signal info to be sent
4071 */
4072SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4073		siginfo_t __user *, uinfo)
4074{
4075	kernel_siginfo_t info;
4076	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077	if (unlikely(ret))
4078		return ret;
4079	return do_rt_sigqueueinfo(pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084			compat_pid_t, pid,
4085			int, sig,
4086			struct compat_siginfo __user *, uinfo)
4087{
4088	kernel_siginfo_t info;
4089	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090	if (unlikely(ret))
4091		return ret;
4092	return do_rt_sigqueueinfo(pid, sig, &info);
4093}
4094#endif
4095
4096static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4097{
4098	/* This is only valid for single tasks */
4099	if (pid <= 0 || tgid <= 0)
4100		return -EINVAL;
4101
4102	/* Not even root can pretend to send signals from the kernel.
4103	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4104	 */
4105	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4106	    (task_pid_vnr(current) != pid))
4107		return -EPERM;
4108
4109	return do_send_specific(tgid, pid, sig, info);
4110}
4111
4112SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4113		siginfo_t __user *, uinfo)
4114{
4115	kernel_siginfo_t info;
4116	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117	if (unlikely(ret))
4118		return ret;
4119	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120}
4121
4122#ifdef CONFIG_COMPAT
4123COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4124			compat_pid_t, tgid,
4125			compat_pid_t, pid,
4126			int, sig,
4127			struct compat_siginfo __user *, uinfo)
4128{
4129	kernel_siginfo_t info;
4130	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131	if (unlikely(ret))
4132		return ret;
4133	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4134}
4135#endif
4136
4137/*
4138 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4139 */
4140void kernel_sigaction(int sig, __sighandler_t action)
4141{
4142	spin_lock_irq(&current->sighand->siglock);
4143	current->sighand->action[sig - 1].sa.sa_handler = action;
4144	if (action == SIG_IGN) {
4145		sigset_t mask;
4146
4147		sigemptyset(&mask);
4148		sigaddset(&mask, sig);
4149
4150		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4151		flush_sigqueue_mask(&mask, &current->pending);
4152		recalc_sigpending();
4153	}
4154	spin_unlock_irq(&current->sighand->siglock);
4155}
4156EXPORT_SYMBOL(kernel_sigaction);
4157
4158void __weak sigaction_compat_abi(struct k_sigaction *act,
4159		struct k_sigaction *oact)
4160{
4161}
4162
4163int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4164{
4165	struct task_struct *p = current, *t;
4166	struct k_sigaction *k;
4167	sigset_t mask;
4168
4169	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170		return -EINVAL;
4171
4172	k = &p->sighand->action[sig-1];
4173
4174	spin_lock_irq(&p->sighand->siglock);
4175	if (k->sa.sa_flags & SA_IMMUTABLE) {
4176		spin_unlock_irq(&p->sighand->siglock);
4177		return -EINVAL;
4178	}
4179	if (oact)
4180		*oact = *k;
4181
4182	/*
4183	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4184	 * e.g. by having an architecture use the bit in their uapi.
4185	 */
4186	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187
4188	/*
4189	 * Clear unknown flag bits in order to allow userspace to detect missing
4190	 * support for flag bits and to allow the kernel to use non-uapi bits
4191	 * internally.
4192	 */
4193	if (act)
4194		act->sa.sa_flags &= UAPI_SA_FLAGS;
4195	if (oact)
4196		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4197
4198	sigaction_compat_abi(act, oact);
4199
4200	if (act) {
4201		sigdelsetmask(&act->sa.sa_mask,
4202			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4203		*k = *act;
4204		/*
4205		 * POSIX 3.3.1.3:
4206		 *  "Setting a signal action to SIG_IGN for a signal that is
4207		 *   pending shall cause the pending signal to be discarded,
4208		 *   whether or not it is blocked."
4209		 *
4210		 *  "Setting a signal action to SIG_DFL for a signal that is
4211		 *   pending and whose default action is to ignore the signal
4212		 *   (for example, SIGCHLD), shall cause the pending signal to
4213		 *   be discarded, whether or not it is blocked"
4214		 */
4215		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4216			sigemptyset(&mask);
4217			sigaddset(&mask, sig);
4218			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4219			for_each_thread(p, t)
4220				flush_sigqueue_mask(&mask, &t->pending);
4221		}
4222	}
4223
4224	spin_unlock_irq(&p->sighand->siglock);
4225	return 0;
4226}
4227
4228#ifdef CONFIG_DYNAMIC_SIGFRAME
4229static inline void sigaltstack_lock(void)
4230	__acquires(&current->sighand->siglock)
4231{
4232	spin_lock_irq(&current->sighand->siglock);
4233}
4234
4235static inline void sigaltstack_unlock(void)
4236	__releases(&current->sighand->siglock)
4237{
4238	spin_unlock_irq(&current->sighand->siglock);
4239}
4240#else
4241static inline void sigaltstack_lock(void) { }
4242static inline void sigaltstack_unlock(void) { }
4243#endif
4244
4245static int
4246do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247		size_t min_ss_size)
4248{
4249	struct task_struct *t = current;
4250	int ret = 0;
4251
4252	if (oss) {
4253		memset(oss, 0, sizeof(stack_t));
4254		oss->ss_sp = (void __user *) t->sas_ss_sp;
4255		oss->ss_size = t->sas_ss_size;
4256		oss->ss_flags = sas_ss_flags(sp) |
4257			(current->sas_ss_flags & SS_FLAG_BITS);
4258	}
4259
4260	if (ss) {
4261		void __user *ss_sp = ss->ss_sp;
4262		size_t ss_size = ss->ss_size;
4263		unsigned ss_flags = ss->ss_flags;
4264		int ss_mode;
4265
4266		if (unlikely(on_sig_stack(sp)))
4267			return -EPERM;
4268
4269		ss_mode = ss_flags & ~SS_FLAG_BITS;
4270		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4271				ss_mode != 0))
4272			return -EINVAL;
4273
4274		/*
4275		 * Return before taking any locks if no actual
4276		 * sigaltstack changes were requested.
4277		 */
4278		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4279		    t->sas_ss_size == ss_size &&
4280		    t->sas_ss_flags == ss_flags)
4281			return 0;
4282
4283		sigaltstack_lock();
4284		if (ss_mode == SS_DISABLE) {
4285			ss_size = 0;
4286			ss_sp = NULL;
4287		} else {
4288			if (unlikely(ss_size < min_ss_size))
4289				ret = -ENOMEM;
4290			if (!sigaltstack_size_valid(ss_size))
4291				ret = -ENOMEM;
4292		}
4293		if (!ret) {
4294			t->sas_ss_sp = (unsigned long) ss_sp;
4295			t->sas_ss_size = ss_size;
4296			t->sas_ss_flags = ss_flags;
4297		}
4298		sigaltstack_unlock();
4299	}
4300	return ret;
4301}
4302
4303SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4304{
4305	stack_t new, old;
4306	int err;
4307	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4308		return -EFAULT;
4309	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4310			      current_user_stack_pointer(),
4311			      MINSIGSTKSZ);
4312	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4313		err = -EFAULT;
4314	return err;
4315}
4316
4317int restore_altstack(const stack_t __user *uss)
4318{
4319	stack_t new;
4320	if (copy_from_user(&new, uss, sizeof(stack_t)))
4321		return -EFAULT;
4322	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4323			     MINSIGSTKSZ);
4324	/* squash all but EFAULT for now */
4325	return 0;
4326}
4327
4328int __save_altstack(stack_t __user *uss, unsigned long sp)
4329{
4330	struct task_struct *t = current;
4331	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4332		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4333		__put_user(t->sas_ss_size, &uss->ss_size);
4334	return err;
 
 
 
 
4335}
4336
4337#ifdef CONFIG_COMPAT
4338static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4339				 compat_stack_t __user *uoss_ptr)
4340{
4341	stack_t uss, uoss;
4342	int ret;
4343
4344	if (uss_ptr) {
4345		compat_stack_t uss32;
4346		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4347			return -EFAULT;
4348		uss.ss_sp = compat_ptr(uss32.ss_sp);
4349		uss.ss_flags = uss32.ss_flags;
4350		uss.ss_size = uss32.ss_size;
4351	}
4352	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4353			     compat_user_stack_pointer(),
4354			     COMPAT_MINSIGSTKSZ);
4355	if (ret >= 0 && uoss_ptr)  {
4356		compat_stack_t old;
4357		memset(&old, 0, sizeof(old));
4358		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4359		old.ss_flags = uoss.ss_flags;
4360		old.ss_size = uoss.ss_size;
4361		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4362			ret = -EFAULT;
4363	}
4364	return ret;
4365}
4366
4367COMPAT_SYSCALL_DEFINE2(sigaltstack,
4368			const compat_stack_t __user *, uss_ptr,
4369			compat_stack_t __user *, uoss_ptr)
4370{
4371	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372}
4373
4374int compat_restore_altstack(const compat_stack_t __user *uss)
4375{
4376	int err = do_compat_sigaltstack(uss, NULL);
4377	/* squash all but -EFAULT for now */
4378	return err == -EFAULT ? err : 0;
4379}
4380
4381int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382{
4383	int err;
4384	struct task_struct *t = current;
4385	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4386			 &uss->ss_sp) |
4387		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4388		__put_user(t->sas_ss_size, &uss->ss_size);
4389	return err;
 
 
 
 
4390}
4391#endif
4392
4393#ifdef __ARCH_WANT_SYS_SIGPENDING
4394
4395/**
4396 *  sys_sigpending - examine pending signals
4397 *  @uset: where mask of pending signal is returned
4398 */
4399SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4400{
4401	sigset_t set;
4402
4403	if (sizeof(old_sigset_t) > sizeof(*uset))
4404		return -EINVAL;
4405
4406	do_sigpending(&set);
4407
4408	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4409		return -EFAULT;
4410
4411	return 0;
4412}
4413
4414#ifdef CONFIG_COMPAT
4415COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4416{
4417	sigset_t set;
4418
4419	do_sigpending(&set);
4420
4421	return put_user(set.sig[0], set32);
4422}
4423#endif
4424
4425#endif
4426
4427#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4428/**
4429 *  sys_sigprocmask - examine and change blocked signals
4430 *  @how: whether to add, remove, or set signals
4431 *  @nset: signals to add or remove (if non-null)
4432 *  @oset: previous value of signal mask if non-null
4433 *
4434 * Some platforms have their own version with special arguments;
4435 * others support only sys_rt_sigprocmask.
4436 */
4437
4438SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4439		old_sigset_t __user *, oset)
4440{
4441	old_sigset_t old_set, new_set;
4442	sigset_t new_blocked;
4443
4444	old_set = current->blocked.sig[0];
4445
4446	if (nset) {
4447		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448			return -EFAULT;
4449
4450		new_blocked = current->blocked;
4451
4452		switch (how) {
4453		case SIG_BLOCK:
4454			sigaddsetmask(&new_blocked, new_set);
4455			break;
4456		case SIG_UNBLOCK:
4457			sigdelsetmask(&new_blocked, new_set);
4458			break;
4459		case SIG_SETMASK:
4460			new_blocked.sig[0] = new_set;
4461			break;
4462		default:
4463			return -EINVAL;
4464		}
4465
4466		set_current_blocked(&new_blocked);
4467	}
4468
4469	if (oset) {
4470		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4471			return -EFAULT;
4472	}
4473
4474	return 0;
4475}
4476#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4477
4478#ifndef CONFIG_ODD_RT_SIGACTION
4479/**
4480 *  sys_rt_sigaction - alter an action taken by a process
4481 *  @sig: signal to be sent
4482 *  @act: new sigaction
4483 *  @oact: used to save the previous sigaction
4484 *  @sigsetsize: size of sigset_t type
4485 */
4486SYSCALL_DEFINE4(rt_sigaction, int, sig,
4487		const struct sigaction __user *, act,
4488		struct sigaction __user *, oact,
4489		size_t, sigsetsize)
4490{
4491	struct k_sigaction new_sa, old_sa;
4492	int ret;
4493
4494	/* XXX: Don't preclude handling different sized sigset_t's.  */
4495	if (sigsetsize != sizeof(sigset_t))
4496		return -EINVAL;
4497
4498	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499		return -EFAULT;
4500
4501	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4502	if (ret)
4503		return ret;
4504
4505	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4506		return -EFAULT;
4507
4508	return 0;
4509}
4510#ifdef CONFIG_COMPAT
4511COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512		const struct compat_sigaction __user *, act,
4513		struct compat_sigaction __user *, oact,
4514		compat_size_t, sigsetsize)
4515{
4516	struct k_sigaction new_ka, old_ka;
4517#ifdef __ARCH_HAS_SA_RESTORER
4518	compat_uptr_t restorer;
4519#endif
4520	int ret;
4521
4522	/* XXX: Don't preclude handling different sized sigset_t's.  */
4523	if (sigsetsize != sizeof(compat_sigset_t))
4524		return -EINVAL;
4525
4526	if (act) {
4527		compat_uptr_t handler;
4528		ret = get_user(handler, &act->sa_handler);
4529		new_ka.sa.sa_handler = compat_ptr(handler);
4530#ifdef __ARCH_HAS_SA_RESTORER
4531		ret |= get_user(restorer, &act->sa_restorer);
4532		new_ka.sa.sa_restorer = compat_ptr(restorer);
4533#endif
4534		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4535		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4536		if (ret)
4537			return -EFAULT;
4538	}
4539
4540	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4541	if (!ret && oact) {
4542		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4543			       &oact->sa_handler);
4544		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4545					 sizeof(oact->sa_mask));
4546		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4547#ifdef __ARCH_HAS_SA_RESTORER
4548		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549				&oact->sa_restorer);
4550#endif
4551	}
4552	return ret;
4553}
4554#endif
4555#endif /* !CONFIG_ODD_RT_SIGACTION */
4556
4557#ifdef CONFIG_OLD_SIGACTION
4558SYSCALL_DEFINE3(sigaction, int, sig,
4559		const struct old_sigaction __user *, act,
4560	        struct old_sigaction __user *, oact)
4561{
4562	struct k_sigaction new_ka, old_ka;
4563	int ret;
4564
4565	if (act) {
4566		old_sigset_t mask;
4567		if (!access_ok(act, sizeof(*act)) ||
4568		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4569		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4570		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4571		    __get_user(mask, &act->sa_mask))
4572			return -EFAULT;
4573#ifdef __ARCH_HAS_KA_RESTORER
4574		new_ka.ka_restorer = NULL;
4575#endif
4576		siginitset(&new_ka.sa.sa_mask, mask);
4577	}
4578
4579	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581	if (!ret && oact) {
4582		if (!access_ok(oact, sizeof(*oact)) ||
4583		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4584		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4585		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4586		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4587			return -EFAULT;
4588	}
4589
4590	return ret;
4591}
4592#endif
4593#ifdef CONFIG_COMPAT_OLD_SIGACTION
4594COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4595		const struct compat_old_sigaction __user *, act,
4596	        struct compat_old_sigaction __user *, oact)
4597{
4598	struct k_sigaction new_ka, old_ka;
4599	int ret;
4600	compat_old_sigset_t mask;
4601	compat_uptr_t handler, restorer;
4602
4603	if (act) {
4604		if (!access_ok(act, sizeof(*act)) ||
4605		    __get_user(handler, &act->sa_handler) ||
4606		    __get_user(restorer, &act->sa_restorer) ||
4607		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4608		    __get_user(mask, &act->sa_mask))
4609			return -EFAULT;
4610
4611#ifdef __ARCH_HAS_KA_RESTORER
4612		new_ka.ka_restorer = NULL;
4613#endif
4614		new_ka.sa.sa_handler = compat_ptr(handler);
4615		new_ka.sa.sa_restorer = compat_ptr(restorer);
4616		siginitset(&new_ka.sa.sa_mask, mask);
4617	}
4618
4619	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620
4621	if (!ret && oact) {
4622		if (!access_ok(oact, sizeof(*oact)) ||
4623		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4624			       &oact->sa_handler) ||
4625		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4626			       &oact->sa_restorer) ||
4627		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4628		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4629			return -EFAULT;
4630	}
4631	return ret;
4632}
4633#endif
4634
4635#ifdef CONFIG_SGETMASK_SYSCALL
4636
4637/*
4638 * For backwards compatibility.  Functionality superseded by sigprocmask.
4639 */
4640SYSCALL_DEFINE0(sgetmask)
4641{
4642	/* SMP safe */
4643	return current->blocked.sig[0];
4644}
4645
4646SYSCALL_DEFINE1(ssetmask, int, newmask)
4647{
4648	int old = current->blocked.sig[0];
4649	sigset_t newset;
4650
4651	siginitset(&newset, newmask);
4652	set_current_blocked(&newset);
4653
4654	return old;
4655}
4656#endif /* CONFIG_SGETMASK_SYSCALL */
4657
4658#ifdef __ARCH_WANT_SYS_SIGNAL
4659/*
4660 * For backwards compatibility.  Functionality superseded by sigaction.
4661 */
4662SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4663{
4664	struct k_sigaction new_sa, old_sa;
4665	int ret;
4666
4667	new_sa.sa.sa_handler = handler;
4668	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4669	sigemptyset(&new_sa.sa.sa_mask);
4670
4671	ret = do_sigaction(sig, &new_sa, &old_sa);
4672
4673	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4674}
4675#endif /* __ARCH_WANT_SYS_SIGNAL */
4676
4677#ifdef __ARCH_WANT_SYS_PAUSE
4678
4679SYSCALL_DEFINE0(pause)
4680{
4681	while (!signal_pending(current)) {
4682		__set_current_state(TASK_INTERRUPTIBLE);
4683		schedule();
4684	}
4685	return -ERESTARTNOHAND;
4686}
4687
4688#endif
4689
4690static int sigsuspend(sigset_t *set)
4691{
4692	current->saved_sigmask = current->blocked;
4693	set_current_blocked(set);
4694
4695	while (!signal_pending(current)) {
4696		__set_current_state(TASK_INTERRUPTIBLE);
4697		schedule();
4698	}
4699	set_restore_sigmask();
4700	return -ERESTARTNOHAND;
4701}
4702
4703/**
4704 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4705 *	@unewset value until a signal is received
4706 *  @unewset: new signal mask value
4707 *  @sigsetsize: size of sigset_t type
4708 */
4709SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4710{
4711	sigset_t newset;
4712
4713	/* XXX: Don't preclude handling different sized sigset_t's.  */
4714	if (sigsetsize != sizeof(sigset_t))
4715		return -EINVAL;
4716
4717	if (copy_from_user(&newset, unewset, sizeof(newset)))
4718		return -EFAULT;
4719	return sigsuspend(&newset);
4720}
4721 
4722#ifdef CONFIG_COMPAT
4723COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4724{
4725	sigset_t newset;
4726
4727	/* XXX: Don't preclude handling different sized sigset_t's.  */
4728	if (sigsetsize != sizeof(sigset_t))
4729		return -EINVAL;
4730
4731	if (get_compat_sigset(&newset, unewset))
4732		return -EFAULT;
4733	return sigsuspend(&newset);
4734}
4735#endif
4736
4737#ifdef CONFIG_OLD_SIGSUSPEND
4738SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739{
4740	sigset_t blocked;
4741	siginitset(&blocked, mask);
4742	return sigsuspend(&blocked);
4743}
4744#endif
4745#ifdef CONFIG_OLD_SIGSUSPEND3
4746SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747{
4748	sigset_t blocked;
4749	siginitset(&blocked, mask);
4750	return sigsuspend(&blocked);
4751}
4752#endif
4753
4754__weak const char *arch_vma_name(struct vm_area_struct *vma)
4755{
4756	return NULL;
4757}
4758
4759static inline void siginfo_buildtime_checks(void)
4760{
4761	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4762
4763	/* Verify the offsets in the two siginfos match */
4764#define CHECK_OFFSET(field) \
4765	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766
4767	/* kill */
4768	CHECK_OFFSET(si_pid);
4769	CHECK_OFFSET(si_uid);
4770
4771	/* timer */
4772	CHECK_OFFSET(si_tid);
4773	CHECK_OFFSET(si_overrun);
4774	CHECK_OFFSET(si_value);
4775
4776	/* rt */
4777	CHECK_OFFSET(si_pid);
4778	CHECK_OFFSET(si_uid);
4779	CHECK_OFFSET(si_value);
4780
4781	/* sigchld */
4782	CHECK_OFFSET(si_pid);
4783	CHECK_OFFSET(si_uid);
4784	CHECK_OFFSET(si_status);
4785	CHECK_OFFSET(si_utime);
4786	CHECK_OFFSET(si_stime);
4787
4788	/* sigfault */
4789	CHECK_OFFSET(si_addr);
4790	CHECK_OFFSET(si_trapno);
4791	CHECK_OFFSET(si_addr_lsb);
4792	CHECK_OFFSET(si_lower);
4793	CHECK_OFFSET(si_upper);
4794	CHECK_OFFSET(si_pkey);
4795	CHECK_OFFSET(si_perf_data);
4796	CHECK_OFFSET(si_perf_type);
4797	CHECK_OFFSET(si_perf_flags);
4798
4799	/* sigpoll */
4800	CHECK_OFFSET(si_band);
4801	CHECK_OFFSET(si_fd);
4802
4803	/* sigsys */
4804	CHECK_OFFSET(si_call_addr);
4805	CHECK_OFFSET(si_syscall);
4806	CHECK_OFFSET(si_arch);
4807#undef CHECK_OFFSET
4808
4809	/* usb asyncio */
4810	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4811		     offsetof(struct siginfo, si_addr));
4812	if (sizeof(int) == sizeof(void __user *)) {
4813		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4814			     sizeof(void __user *));
4815	} else {
4816		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4817			      sizeof_field(struct siginfo, si_uid)) !=
4818			     sizeof(void __user *));
4819		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4820			     offsetof(struct siginfo, si_uid));
4821	}
4822#ifdef CONFIG_COMPAT
4823	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4824		     offsetof(struct compat_siginfo, si_addr));
4825	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826		     sizeof(compat_uptr_t));
4827	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4828		     sizeof_field(struct siginfo, si_pid));
4829#endif
4830}
4831
4832#if defined(CONFIG_SYSCTL)
4833static struct ctl_table signal_debug_table[] = {
4834#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4835	{
4836		.procname	= "exception-trace",
4837		.data		= &show_unhandled_signals,
4838		.maxlen		= sizeof(int),
4839		.mode		= 0644,
4840		.proc_handler	= proc_dointvec
4841	},
4842#endif
4843	{ }
4844};
4845
4846static int __init init_signal_sysctls(void)
4847{
4848	register_sysctl_init("debug", signal_debug_table);
4849	return 0;
4850}
4851early_initcall(init_signal_sysctls);
4852#endif /* CONFIG_SYSCTL */
4853
4854void __init signals_init(void)
4855{
4856	siginfo_buildtime_checks();
4857
4858	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4859}
4860
4861#ifdef CONFIG_KGDB_KDB
4862#include <linux/kdb.h>
4863/*
4864 * kdb_send_sig - Allows kdb to send signals without exposing
4865 * signal internals.  This function checks if the required locks are
4866 * available before calling the main signal code, to avoid kdb
4867 * deadlocks.
4868 */
4869void kdb_send_sig(struct task_struct *t, int sig)
4870{
4871	static struct task_struct *kdb_prev_t;
4872	int new_t, ret;
4873	if (!spin_trylock(&t->sighand->siglock)) {
4874		kdb_printf("Can't do kill command now.\n"
4875			   "The sigmask lock is held somewhere else in "
4876			   "kernel, try again later\n");
4877		return;
4878	}
4879	new_t = kdb_prev_t != t;
4880	kdb_prev_t = t;
4881	if (!task_is_running(t) && new_t) {
4882		spin_unlock(&t->sighand->siglock);
4883		kdb_printf("Process is not RUNNING, sending a signal from "
4884			   "kdb risks deadlock\n"
4885			   "on the run queue locks. "
4886			   "The signal has _not_ been sent.\n"
4887			   "Reissue the kill command if you want to risk "
4888			   "the deadlock.\n");
4889		return;
4890	}
4891	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4892	spin_unlock(&t->sighand->siglock);
4893	if (ret)
4894		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4895			   sig, t->pid);
4896	else
4897		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4898}
4899#endif	/* CONFIG_KGDB_KDB */