Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 
 
 
 
 
 
 
 
 
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416	int sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	user = __task_cred(t)->user;
 428	sigpending = atomic_inc_return(&user->sigpending);
 429	if (sigpending == 1)
 430		get_uid(user);
 431	rcu_read_unlock();
 
 
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, flags);
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		if (atomic_dec_and_test(&user->sigpending))
 441			free_uid(user);
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = 0;
 445		q->user = user;
 446	}
 447
 448	return q;
 449}
 450
 451static void __sigqueue_free(struct sigqueue *q)
 452{
 453	if (q->flags & SIGQUEUE_PREALLOC)
 454		return;
 455	if (atomic_dec_and_test(&q->user->sigpending))
 456		free_uid(q->user);
 
 
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 
 
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !signal_pending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1116	if (q) {
1117		list_add_tail(&q->list, &pending->list);
1118		switch ((unsigned long) info) {
1119		case (unsigned long) SEND_SIG_NOINFO:
1120			clear_siginfo(&q->info);
1121			q->info.si_signo = sig;
1122			q->info.si_errno = 0;
1123			q->info.si_code = SI_USER;
1124			q->info.si_pid = task_tgid_nr_ns(current,
1125							task_active_pid_ns(t));
1126			rcu_read_lock();
1127			q->info.si_uid =
1128				from_kuid_munged(task_cred_xxx(t, user_ns),
1129						 current_uid());
1130			rcu_read_unlock();
1131			break;
1132		case (unsigned long) SEND_SIG_PRIV:
1133			clear_siginfo(&q->info);
1134			q->info.si_signo = sig;
1135			q->info.si_errno = 0;
1136			q->info.si_code = SI_KERNEL;
1137			q->info.si_pid = 0;
1138			q->info.si_uid = 0;
1139			break;
1140		default:
1141			copy_siginfo(&q->info, info);
1142			break;
1143		}
1144	} else if (!is_si_special(info) &&
1145		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146		/*
1147		 * Queue overflow, abort.  We may abort if the
1148		 * signal was rt and sent by user using something
1149		 * other than kill().
1150		 */
1151		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152		ret = -EAGAIN;
1153		goto ret;
1154	} else {
1155		/*
1156		 * This is a silent loss of information.  We still
1157		 * send the signal, but the *info bits are lost.
1158		 */
1159		result = TRACE_SIGNAL_LOSE_INFO;
1160	}
1161
1162out_set:
1163	signalfd_notify(t, sig);
1164	sigaddset(&pending->signal, sig);
1165
1166	/* Let multiprocess signals appear after on-going forks */
1167	if (type > PIDTYPE_TGID) {
1168		struct multiprocess_signals *delayed;
1169		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170			sigset_t *signal = &delayed->signal;
1171			/* Can't queue both a stop and a continue signal */
1172			if (sig == SIGCONT)
1173				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174			else if (sig_kernel_stop(sig))
1175				sigdelset(signal, SIGCONT);
1176			sigaddset(signal, sig);
1177		}
1178	}
1179
1180	complete_signal(sig, t, type);
1181ret:
1182	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183	return ret;
1184}
1185
1186static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187{
1188	bool ret = false;
1189	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190	case SIL_KILL:
1191	case SIL_CHLD:
1192	case SIL_RT:
1193		ret = true;
1194		break;
1195	case SIL_TIMER:
1196	case SIL_POLL:
1197	case SIL_FAULT:
 
1198	case SIL_FAULT_MCEERR:
1199	case SIL_FAULT_BNDERR:
1200	case SIL_FAULT_PKUERR:
 
1201	case SIL_SYS:
1202		ret = false;
1203		break;
1204	}
1205	return ret;
1206}
1207
1208static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209			enum pid_type type)
1210{
1211	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212	bool force = false;
1213
1214	if (info == SEND_SIG_NOINFO) {
1215		/* Force if sent from an ancestor pid namespace */
1216		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217	} else if (info == SEND_SIG_PRIV) {
1218		/* Don't ignore kernel generated signals */
1219		force = true;
1220	} else if (has_si_pid_and_uid(info)) {
1221		/* SIGKILL and SIGSTOP is special or has ids */
1222		struct user_namespace *t_user_ns;
1223
1224		rcu_read_lock();
1225		t_user_ns = task_cred_xxx(t, user_ns);
1226		if (current_user_ns() != t_user_ns) {
1227			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229		}
1230		rcu_read_unlock();
1231
1232		/* A kernel generated signal? */
1233		force = (info->si_code == SI_KERNEL);
1234
1235		/* From an ancestor pid namespace? */
1236		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237			info->si_pid = 0;
1238			force = true;
1239		}
1240	}
1241	return __send_signal(sig, info, t, type, force);
1242}
1243
1244static void print_fatal_signal(int signr)
1245{
1246	struct pt_regs *regs = signal_pt_regs();
1247	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248
1249#if defined(__i386__) && !defined(__arch_um__)
1250	pr_info("code at %08lx: ", regs->ip);
1251	{
1252		int i;
1253		for (i = 0; i < 16; i++) {
1254			unsigned char insn;
1255
1256			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257				break;
1258			pr_cont("%02x ", insn);
1259		}
1260	}
1261	pr_cont("\n");
1262#endif
1263	preempt_disable();
1264	show_regs(regs);
1265	preempt_enable();
1266}
1267
1268static int __init setup_print_fatal_signals(char *str)
1269{
1270	get_option (&str, &print_fatal_signals);
1271
1272	return 1;
1273}
1274
1275__setup("print-fatal-signals=", setup_print_fatal_signals);
1276
1277int
1278__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279{
1280	return send_signal(sig, info, p, PIDTYPE_TGID);
1281}
1282
1283int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284			enum pid_type type)
1285{
1286	unsigned long flags;
1287	int ret = -ESRCH;
1288
1289	if (lock_task_sighand(p, &flags)) {
1290		ret = send_signal(sig, info, p, type);
1291		unlock_task_sighand(p, &flags);
1292	}
1293
1294	return ret;
1295}
1296
 
 
 
 
 
 
1297/*
1298 * Force a signal that the process can't ignore: if necessary
1299 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300 *
1301 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302 * since we do not want to have a signal handler that was blocked
1303 * be invoked when user space had explicitly blocked it.
1304 *
1305 * We don't want to have recursive SIGSEGV's etc, for example,
1306 * that is why we also clear SIGNAL_UNKILLABLE.
1307 */
1308static int
1309force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
 
1310{
1311	unsigned long int flags;
1312	int ret, blocked, ignored;
1313	struct k_sigaction *action;
1314	int sig = info->si_signo;
1315
1316	spin_lock_irqsave(&t->sighand->siglock, flags);
1317	action = &t->sighand->action[sig-1];
1318	ignored = action->sa.sa_handler == SIG_IGN;
1319	blocked = sigismember(&t->blocked, sig);
1320	if (blocked || ignored) {
1321		action->sa.sa_handler = SIG_DFL;
 
 
1322		if (blocked) {
1323			sigdelset(&t->blocked, sig);
1324			recalc_sigpending_and_wake(t);
1325		}
1326	}
1327	/*
1328	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329	 * debugging to leave init killable.
1330	 */
1331	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1332		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335
1336	return ret;
1337}
1338
1339int force_sig_info(struct kernel_siginfo *info)
1340{
1341	return force_sig_info_to_task(info, current);
1342}
1343
1344/*
1345 * Nuke all other threads in the group.
1346 */
1347int zap_other_threads(struct task_struct *p)
1348{
1349	struct task_struct *t = p;
1350	int count = 0;
1351
1352	p->signal->group_stop_count = 0;
1353
1354	while_each_thread(p, t) {
1355		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356		count++;
1357
1358		/* Don't bother with already dead threads */
1359		if (t->exit_state)
1360			continue;
1361		sigaddset(&t->pending.signal, SIGKILL);
1362		signal_wake_up(t, 1);
1363	}
1364
1365	return count;
1366}
1367
1368struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369					   unsigned long *flags)
1370{
1371	struct sighand_struct *sighand;
1372
1373	rcu_read_lock();
1374	for (;;) {
1375		sighand = rcu_dereference(tsk->sighand);
1376		if (unlikely(sighand == NULL))
1377			break;
1378
1379		/*
1380		 * This sighand can be already freed and even reused, but
1381		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382		 * initializes ->siglock: this slab can't go away, it has
1383		 * the same object type, ->siglock can't be reinitialized.
1384		 *
1385		 * We need to ensure that tsk->sighand is still the same
1386		 * after we take the lock, we can race with de_thread() or
1387		 * __exit_signal(). In the latter case the next iteration
1388		 * must see ->sighand == NULL.
1389		 */
1390		spin_lock_irqsave(&sighand->siglock, *flags);
1391		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392			break;
1393		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394	}
1395	rcu_read_unlock();
1396
1397	return sighand;
1398}
1399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400/*
1401 * send signal info to all the members of a group
1402 */
1403int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404			struct task_struct *p, enum pid_type type)
1405{
1406	int ret;
1407
1408	rcu_read_lock();
1409	ret = check_kill_permission(sig, info, p);
1410	rcu_read_unlock();
1411
1412	if (!ret && sig)
1413		ret = do_send_sig_info(sig, info, p, type);
1414
1415	return ret;
1416}
1417
1418/*
1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420 * control characters do (^C, ^Z etc)
1421 * - the caller must hold at least a readlock on tasklist_lock
1422 */
1423int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424{
1425	struct task_struct *p = NULL;
1426	int retval, success;
1427
1428	success = 0;
1429	retval = -ESRCH;
1430	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432		success |= !err;
1433		retval = err;
1434	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435	return success ? 0 : retval;
1436}
1437
1438int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439{
1440	int error = -ESRCH;
1441	struct task_struct *p;
1442
1443	for (;;) {
1444		rcu_read_lock();
1445		p = pid_task(pid, PIDTYPE_PID);
1446		if (p)
1447			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448		rcu_read_unlock();
1449		if (likely(!p || error != -ESRCH))
1450			return error;
1451
1452		/*
1453		 * The task was unhashed in between, try again.  If it
1454		 * is dead, pid_task() will return NULL, if we race with
1455		 * de_thread() it will find the new leader.
1456		 */
1457	}
1458}
1459
1460static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461{
1462	int error;
1463	rcu_read_lock();
1464	error = kill_pid_info(sig, info, find_vpid(pid));
1465	rcu_read_unlock();
1466	return error;
1467}
1468
1469static inline bool kill_as_cred_perm(const struct cred *cred,
1470				     struct task_struct *target)
1471{
1472	const struct cred *pcred = __task_cred(target);
1473
1474	return uid_eq(cred->euid, pcred->suid) ||
1475	       uid_eq(cred->euid, pcred->uid) ||
1476	       uid_eq(cred->uid, pcred->suid) ||
1477	       uid_eq(cred->uid, pcred->uid);
1478}
1479
1480/*
1481 * The usb asyncio usage of siginfo is wrong.  The glibc support
1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483 * AKA after the generic fields:
1484 *	kernel_pid_t	si_pid;
1485 *	kernel_uid32_t	si_uid;
1486 *	sigval_t	si_value;
1487 *
1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489 * after the generic fields is:
1490 *	void __user 	*si_addr;
1491 *
1492 * This is a practical problem when there is a 64bit big endian kernel
1493 * and a 32bit userspace.  As the 32bit address will encoded in the low
1494 * 32bits of the pointer.  Those low 32bits will be stored at higher
1495 * address than appear in a 32 bit pointer.  So userspace will not
1496 * see the address it was expecting for it's completions.
1497 *
1498 * There is nothing in the encoding that can allow
1499 * copy_siginfo_to_user32 to detect this confusion of formats, so
1500 * handle this by requiring the caller of kill_pid_usb_asyncio to
1501 * notice when this situration takes place and to store the 32bit
1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503 * parameter.
1504 */
1505int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506			 struct pid *pid, const struct cred *cred)
1507{
1508	struct kernel_siginfo info;
1509	struct task_struct *p;
1510	unsigned long flags;
1511	int ret = -EINVAL;
1512
1513	if (!valid_signal(sig))
1514		return ret;
1515
1516	clear_siginfo(&info);
1517	info.si_signo = sig;
1518	info.si_errno = errno;
1519	info.si_code = SI_ASYNCIO;
1520	*((sigval_t *)&info.si_pid) = addr;
1521
1522	rcu_read_lock();
1523	p = pid_task(pid, PIDTYPE_PID);
1524	if (!p) {
1525		ret = -ESRCH;
1526		goto out_unlock;
1527	}
1528	if (!kill_as_cred_perm(cred, p)) {
1529		ret = -EPERM;
1530		goto out_unlock;
1531	}
1532	ret = security_task_kill(p, &info, sig, cred);
1533	if (ret)
1534		goto out_unlock;
1535
1536	if (sig) {
1537		if (lock_task_sighand(p, &flags)) {
1538			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539			unlock_task_sighand(p, &flags);
1540		} else
1541			ret = -ESRCH;
1542	}
1543out_unlock:
1544	rcu_read_unlock();
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548
1549/*
1550 * kill_something_info() interprets pid in interesting ways just like kill(2).
1551 *
1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553 * is probably wrong.  Should make it like BSD or SYSV.
1554 */
1555
1556static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557{
1558	int ret;
1559
1560	if (pid > 0)
1561		return kill_proc_info(sig, info, pid);
1562
1563	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564	if (pid == INT_MIN)
1565		return -ESRCH;
1566
1567	read_lock(&tasklist_lock);
1568	if (pid != -1) {
1569		ret = __kill_pgrp_info(sig, info,
1570				pid ? find_vpid(-pid) : task_pgrp(current));
1571	} else {
1572		int retval = 0, count = 0;
1573		struct task_struct * p;
1574
1575		for_each_process(p) {
1576			if (task_pid_vnr(p) > 1 &&
1577					!same_thread_group(p, current)) {
1578				int err = group_send_sig_info(sig, info, p,
1579							      PIDTYPE_MAX);
1580				++count;
1581				if (err != -EPERM)
1582					retval = err;
1583			}
1584		}
1585		ret = count ? retval : -ESRCH;
1586	}
1587	read_unlock(&tasklist_lock);
1588
1589	return ret;
1590}
1591
1592/*
1593 * These are for backward compatibility with the rest of the kernel source.
1594 */
1595
1596int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597{
1598	/*
1599	 * Make sure legacy kernel users don't send in bad values
1600	 * (normal paths check this in check_kill_permission).
1601	 */
1602	if (!valid_signal(sig))
1603		return -EINVAL;
1604
1605	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606}
1607EXPORT_SYMBOL(send_sig_info);
1608
1609#define __si_special(priv) \
1610	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611
1612int
1613send_sig(int sig, struct task_struct *p, int priv)
1614{
1615	return send_sig_info(sig, __si_special(priv), p);
1616}
1617EXPORT_SYMBOL(send_sig);
1618
1619void force_sig(int sig)
1620{
1621	struct kernel_siginfo info;
1622
1623	clear_siginfo(&info);
1624	info.si_signo = sig;
1625	info.si_errno = 0;
1626	info.si_code = SI_KERNEL;
1627	info.si_pid = 0;
1628	info.si_uid = 0;
1629	force_sig_info(&info);
1630}
1631EXPORT_SYMBOL(force_sig);
1632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633/*
1634 * When things go south during signal handling, we
1635 * will force a SIGSEGV. And if the signal that caused
1636 * the problem was already a SIGSEGV, we'll want to
1637 * make sure we don't even try to deliver the signal..
1638 */
1639void force_sigsegv(int sig)
1640{
1641	struct task_struct *p = current;
1642
1643	if (sig == SIGSEGV) {
1644		unsigned long flags;
1645		spin_lock_irqsave(&p->sighand->siglock, flags);
1646		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648	}
1649	force_sig(SIGSEGV);
1650}
1651
1652int force_sig_fault_to_task(int sig, int code, void __user *addr
1653	___ARCH_SI_TRAPNO(int trapno)
1654	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655	, struct task_struct *t)
1656{
1657	struct kernel_siginfo info;
1658
1659	clear_siginfo(&info);
1660	info.si_signo = sig;
1661	info.si_errno = 0;
1662	info.si_code  = code;
1663	info.si_addr  = addr;
1664#ifdef __ARCH_SI_TRAPNO
1665	info.si_trapno = trapno;
1666#endif
1667#ifdef __ia64__
1668	info.si_imm = imm;
1669	info.si_flags = flags;
1670	info.si_isr = isr;
1671#endif
1672	return force_sig_info_to_task(&info, t);
1673}
1674
1675int force_sig_fault(int sig, int code, void __user *addr
1676	___ARCH_SI_TRAPNO(int trapno)
1677	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678{
1679	return force_sig_fault_to_task(sig, code, addr
1680				       ___ARCH_SI_TRAPNO(trapno)
1681				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682}
1683
1684int send_sig_fault(int sig, int code, void __user *addr
1685	___ARCH_SI_TRAPNO(int trapno)
1686	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687	, struct task_struct *t)
1688{
1689	struct kernel_siginfo info;
1690
1691	clear_siginfo(&info);
1692	info.si_signo = sig;
1693	info.si_errno = 0;
1694	info.si_code  = code;
1695	info.si_addr  = addr;
1696#ifdef __ARCH_SI_TRAPNO
1697	info.si_trapno = trapno;
1698#endif
1699#ifdef __ia64__
1700	info.si_imm = imm;
1701	info.si_flags = flags;
1702	info.si_isr = isr;
1703#endif
1704	return send_sig_info(info.si_signo, &info, t);
1705}
1706
1707int force_sig_mceerr(int code, void __user *addr, short lsb)
1708{
1709	struct kernel_siginfo info;
1710
1711	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712	clear_siginfo(&info);
1713	info.si_signo = SIGBUS;
1714	info.si_errno = 0;
1715	info.si_code = code;
1716	info.si_addr = addr;
1717	info.si_addr_lsb = lsb;
1718	return force_sig_info(&info);
1719}
1720
1721int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722{
1723	struct kernel_siginfo info;
1724
1725	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726	clear_siginfo(&info);
1727	info.si_signo = SIGBUS;
1728	info.si_errno = 0;
1729	info.si_code = code;
1730	info.si_addr = addr;
1731	info.si_addr_lsb = lsb;
1732	return send_sig_info(info.si_signo, &info, t);
1733}
1734EXPORT_SYMBOL(send_sig_mceerr);
1735
1736int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737{
1738	struct kernel_siginfo info;
1739
1740	clear_siginfo(&info);
1741	info.si_signo = SIGSEGV;
1742	info.si_errno = 0;
1743	info.si_code  = SEGV_BNDERR;
1744	info.si_addr  = addr;
1745	info.si_lower = lower;
1746	info.si_upper = upper;
1747	return force_sig_info(&info);
1748}
1749
1750#ifdef SEGV_PKUERR
1751int force_sig_pkuerr(void __user *addr, u32 pkey)
1752{
1753	struct kernel_siginfo info;
1754
1755	clear_siginfo(&info);
1756	info.si_signo = SIGSEGV;
1757	info.si_errno = 0;
1758	info.si_code  = SEGV_PKUERR;
1759	info.si_addr  = addr;
1760	info.si_pkey  = pkey;
1761	return force_sig_info(&info);
1762}
1763#endif
1764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765/* For the crazy architectures that include trap information in
1766 * the errno field, instead of an actual errno value.
1767 */
1768int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo = SIGTRAP;
1774	info.si_errno = errno;
1775	info.si_code  = TRAP_HWBKPT;
1776	info.si_addr  = addr;
1777	return force_sig_info(&info);
1778}
1779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780int kill_pgrp(struct pid *pid, int sig, int priv)
1781{
1782	int ret;
1783
1784	read_lock(&tasklist_lock);
1785	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786	read_unlock(&tasklist_lock);
1787
1788	return ret;
1789}
1790EXPORT_SYMBOL(kill_pgrp);
1791
1792int kill_pid(struct pid *pid, int sig, int priv)
1793{
1794	return kill_pid_info(sig, __si_special(priv), pid);
1795}
1796EXPORT_SYMBOL(kill_pid);
1797
1798/*
1799 * These functions support sending signals using preallocated sigqueue
1800 * structures.  This is needed "because realtime applications cannot
1801 * afford to lose notifications of asynchronous events, like timer
1802 * expirations or I/O completions".  In the case of POSIX Timers
1803 * we allocate the sigqueue structure from the timer_create.  If this
1804 * allocation fails we are able to report the failure to the application
1805 * with an EAGAIN error.
1806 */
1807struct sigqueue *sigqueue_alloc(void)
1808{
1809	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810
1811	if (q)
1812		q->flags |= SIGQUEUE_PREALLOC;
1813
1814	return q;
1815}
1816
1817void sigqueue_free(struct sigqueue *q)
1818{
1819	unsigned long flags;
1820	spinlock_t *lock = &current->sighand->siglock;
1821
1822	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823	/*
1824	 * We must hold ->siglock while testing q->list
1825	 * to serialize with collect_signal() or with
1826	 * __exit_signal()->flush_sigqueue().
1827	 */
1828	spin_lock_irqsave(lock, flags);
1829	q->flags &= ~SIGQUEUE_PREALLOC;
1830	/*
1831	 * If it is queued it will be freed when dequeued,
1832	 * like the "regular" sigqueue.
1833	 */
1834	if (!list_empty(&q->list))
1835		q = NULL;
1836	spin_unlock_irqrestore(lock, flags);
1837
1838	if (q)
1839		__sigqueue_free(q);
1840}
1841
1842int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843{
1844	int sig = q->info.si_signo;
1845	struct sigpending *pending;
1846	struct task_struct *t;
1847	unsigned long flags;
1848	int ret, result;
1849
1850	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851
1852	ret = -1;
1853	rcu_read_lock();
1854	t = pid_task(pid, type);
1855	if (!t || !likely(lock_task_sighand(t, &flags)))
1856		goto ret;
1857
1858	ret = 1; /* the signal is ignored */
1859	result = TRACE_SIGNAL_IGNORED;
1860	if (!prepare_signal(sig, t, false))
1861		goto out;
1862
1863	ret = 0;
1864	if (unlikely(!list_empty(&q->list))) {
1865		/*
1866		 * If an SI_TIMER entry is already queue just increment
1867		 * the overrun count.
1868		 */
1869		BUG_ON(q->info.si_code != SI_TIMER);
1870		q->info.si_overrun++;
1871		result = TRACE_SIGNAL_ALREADY_PENDING;
1872		goto out;
1873	}
1874	q->info.si_overrun = 0;
1875
1876	signalfd_notify(t, sig);
1877	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878	list_add_tail(&q->list, &pending->list);
1879	sigaddset(&pending->signal, sig);
1880	complete_signal(sig, t, type);
1881	result = TRACE_SIGNAL_DELIVERED;
1882out:
1883	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884	unlock_task_sighand(t, &flags);
1885ret:
1886	rcu_read_unlock();
1887	return ret;
1888}
1889
1890static void do_notify_pidfd(struct task_struct *task)
1891{
1892	struct pid *pid;
1893
1894	WARN_ON(task->exit_state == 0);
1895	pid = task_pid(task);
1896	wake_up_all(&pid->wait_pidfd);
1897}
1898
1899/*
1900 * Let a parent know about the death of a child.
1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902 *
1903 * Returns true if our parent ignored us and so we've switched to
1904 * self-reaping.
1905 */
1906bool do_notify_parent(struct task_struct *tsk, int sig)
1907{
1908	struct kernel_siginfo info;
1909	unsigned long flags;
1910	struct sighand_struct *psig;
1911	bool autoreap = false;
1912	u64 utime, stime;
1913
1914	BUG_ON(sig == -1);
1915
1916 	/* do_notify_parent_cldstop should have been called instead.  */
1917 	BUG_ON(task_is_stopped_or_traced(tsk));
1918
1919	BUG_ON(!tsk->ptrace &&
1920	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921
1922	/* Wake up all pidfd waiters */
1923	do_notify_pidfd(tsk);
1924
1925	if (sig != SIGCHLD) {
1926		/*
1927		 * This is only possible if parent == real_parent.
1928		 * Check if it has changed security domain.
1929		 */
1930		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931			sig = SIGCHLD;
1932	}
1933
1934	clear_siginfo(&info);
1935	info.si_signo = sig;
1936	info.si_errno = 0;
1937	/*
1938	 * We are under tasklist_lock here so our parent is tied to
1939	 * us and cannot change.
1940	 *
1941	 * task_active_pid_ns will always return the same pid namespace
1942	 * until a task passes through release_task.
1943	 *
1944	 * write_lock() currently calls preempt_disable() which is the
1945	 * same as rcu_read_lock(), but according to Oleg, this is not
1946	 * correct to rely on this
1947	 */
1948	rcu_read_lock();
1949	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951				       task_uid(tsk));
1952	rcu_read_unlock();
1953
1954	task_cputime(tsk, &utime, &stime);
1955	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957
1958	info.si_status = tsk->exit_code & 0x7f;
1959	if (tsk->exit_code & 0x80)
1960		info.si_code = CLD_DUMPED;
1961	else if (tsk->exit_code & 0x7f)
1962		info.si_code = CLD_KILLED;
1963	else {
1964		info.si_code = CLD_EXITED;
1965		info.si_status = tsk->exit_code >> 8;
1966	}
1967
1968	psig = tsk->parent->sighand;
1969	spin_lock_irqsave(&psig->siglock, flags);
1970	if (!tsk->ptrace && sig == SIGCHLD &&
1971	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973		/*
1974		 * We are exiting and our parent doesn't care.  POSIX.1
1975		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977		 * automatically and not left for our parent's wait4 call.
1978		 * Rather than having the parent do it as a magic kind of
1979		 * signal handler, we just set this to tell do_exit that we
1980		 * can be cleaned up without becoming a zombie.  Note that
1981		 * we still call __wake_up_parent in this case, because a
1982		 * blocked sys_wait4 might now return -ECHILD.
1983		 *
1984		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985		 * is implementation-defined: we do (if you don't want
1986		 * it, just use SIG_IGN instead).
1987		 */
1988		autoreap = true;
1989		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990			sig = 0;
1991	}
1992	/*
1993	 * Send with __send_signal as si_pid and si_uid are in the
1994	 * parent's namespaces.
1995	 */
1996	if (valid_signal(sig) && sig)
1997		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998	__wake_up_parent(tsk, tsk->parent);
1999	spin_unlock_irqrestore(&psig->siglock, flags);
2000
2001	return autoreap;
2002}
2003
2004/**
2005 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006 * @tsk: task reporting the state change
2007 * @for_ptracer: the notification is for ptracer
2008 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009 *
2010 * Notify @tsk's parent that the stopped/continued state has changed.  If
2011 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013 *
2014 * CONTEXT:
2015 * Must be called with tasklist_lock at least read locked.
2016 */
2017static void do_notify_parent_cldstop(struct task_struct *tsk,
2018				     bool for_ptracer, int why)
2019{
2020	struct kernel_siginfo info;
2021	unsigned long flags;
2022	struct task_struct *parent;
2023	struct sighand_struct *sighand;
2024	u64 utime, stime;
2025
2026	if (for_ptracer) {
2027		parent = tsk->parent;
2028	} else {
2029		tsk = tsk->group_leader;
2030		parent = tsk->real_parent;
2031	}
2032
2033	clear_siginfo(&info);
2034	info.si_signo = SIGCHLD;
2035	info.si_errno = 0;
2036	/*
2037	 * see comment in do_notify_parent() about the following 4 lines
2038	 */
2039	rcu_read_lock();
2040	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042	rcu_read_unlock();
2043
2044	task_cputime(tsk, &utime, &stime);
2045	info.si_utime = nsec_to_clock_t(utime);
2046	info.si_stime = nsec_to_clock_t(stime);
2047
2048 	info.si_code = why;
2049 	switch (why) {
2050 	case CLD_CONTINUED:
2051 		info.si_status = SIGCONT;
2052 		break;
2053 	case CLD_STOPPED:
2054 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055 		break;
2056 	case CLD_TRAPPED:
2057 		info.si_status = tsk->exit_code & 0x7f;
2058 		break;
2059 	default:
2060 		BUG();
2061 	}
2062
2063	sighand = parent->sighand;
2064	spin_lock_irqsave(&sighand->siglock, flags);
2065	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067		__group_send_sig_info(SIGCHLD, &info, parent);
2068	/*
2069	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070	 */
2071	__wake_up_parent(tsk, parent);
2072	spin_unlock_irqrestore(&sighand->siglock, flags);
2073}
2074
2075static inline bool may_ptrace_stop(void)
2076{
2077	if (!likely(current->ptrace))
2078		return false;
2079	/*
2080	 * Are we in the middle of do_coredump?
2081	 * If so and our tracer is also part of the coredump stopping
2082	 * is a deadlock situation, and pointless because our tracer
2083	 * is dead so don't allow us to stop.
2084	 * If SIGKILL was already sent before the caller unlocked
2085	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086	 * is safe to enter schedule().
2087	 *
2088	 * This is almost outdated, a task with the pending SIGKILL can't
2089	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090	 * after SIGKILL was already dequeued.
2091	 */
2092	if (unlikely(current->mm->core_state) &&
2093	    unlikely(current->mm == current->parent->mm))
2094		return false;
2095
2096	return true;
2097}
2098
2099/*
2100 * Return non-zero if there is a SIGKILL that should be waking us up.
2101 * Called with the siglock held.
2102 */
2103static bool sigkill_pending(struct task_struct *tsk)
2104{
2105	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107}
2108
2109/*
2110 * This must be called with current->sighand->siglock held.
2111 *
2112 * This should be the path for all ptrace stops.
2113 * We always set current->last_siginfo while stopped here.
2114 * That makes it a way to test a stopped process for
2115 * being ptrace-stopped vs being job-control-stopped.
2116 *
2117 * If we actually decide not to stop at all because the tracer
2118 * is gone, we keep current->exit_code unless clear_code.
 
2119 */
2120static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
 
2121	__releases(&current->sighand->siglock)
2122	__acquires(&current->sighand->siglock)
2123{
2124	bool gstop_done = false;
2125
2126	if (arch_ptrace_stop_needed(exit_code, info)) {
2127		/*
2128		 * The arch code has something special to do before a
2129		 * ptrace stop.  This is allowed to block, e.g. for faults
2130		 * on user stack pages.  We can't keep the siglock while
2131		 * calling arch_ptrace_stop, so we must release it now.
2132		 * To preserve proper semantics, we must do this before
2133		 * any signal bookkeeping like checking group_stop_count.
2134		 * Meanwhile, a SIGKILL could come in before we retake the
2135		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136		 * So after regaining the lock, we must check for SIGKILL.
2137		 */
2138		spin_unlock_irq(&current->sighand->siglock);
2139		arch_ptrace_stop(exit_code, info);
2140		spin_lock_irq(&current->sighand->siglock);
2141		if (sigkill_pending(current))
2142			return;
2143	}
2144
 
 
 
 
 
 
 
 
 
2145	set_special_state(TASK_TRACED);
 
2146
2147	/*
2148	 * We're committing to trapping.  TRACED should be visible before
2149	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150	 * Also, transition to TRACED and updates to ->jobctl should be
2151	 * atomic with respect to siglock and should be done after the arch
2152	 * hook as siglock is released and regrabbed across it.
2153	 *
2154	 *     TRACER				    TRACEE
2155	 *
2156	 *     ptrace_attach()
2157	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158	 *     do_wait()
2159	 *       set_current_state()                smp_wmb();
2160	 *       ptrace_do_wait()
2161	 *         wait_task_stopped()
2162	 *           task_stopped_code()
2163	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164	 */
2165	smp_wmb();
2166
 
2167	current->last_siginfo = info;
2168	current->exit_code = exit_code;
2169
2170	/*
2171	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174	 * could be clear now.  We act as if SIGCONT is received after
2175	 * TASK_TRACED is entered - ignore it.
2176	 */
2177	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178		gstop_done = task_participate_group_stop(current);
2179
2180	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184
2185	/* entering a trap, clear TRAPPING */
2186	task_clear_jobctl_trapping(current);
2187
2188	spin_unlock_irq(&current->sighand->siglock);
2189	read_lock(&tasklist_lock);
2190	if (may_ptrace_stop()) {
2191		/*
2192		 * Notify parents of the stop.
2193		 *
2194		 * While ptraced, there are two parents - the ptracer and
2195		 * the real_parent of the group_leader.  The ptracer should
2196		 * know about every stop while the real parent is only
2197		 * interested in the completion of group stop.  The states
2198		 * for the two don't interact with each other.  Notify
2199		 * separately unless they're gonna be duplicates.
2200		 */
2201		do_notify_parent_cldstop(current, true, why);
2202		if (gstop_done && ptrace_reparented(current))
2203			do_notify_parent_cldstop(current, false, why);
2204
2205		/*
2206		 * Don't want to allow preemption here, because
2207		 * sys_ptrace() needs this task to be inactive.
2208		 *
2209		 * XXX: implement read_unlock_no_resched().
2210		 */
2211		preempt_disable();
2212		read_unlock(&tasklist_lock);
2213		cgroup_enter_frozen();
2214		preempt_enable_no_resched();
2215		freezable_schedule();
2216		cgroup_leave_frozen(true);
2217	} else {
2218		/*
2219		 * By the time we got the lock, our tracer went away.
2220		 * Don't drop the lock yet, another tracer may come.
2221		 *
2222		 * If @gstop_done, the ptracer went away between group stop
2223		 * completion and here.  During detach, it would have set
2224		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226		 * the real parent of the group stop completion is enough.
2227		 */
2228		if (gstop_done)
2229			do_notify_parent_cldstop(current, false, why);
2230
2231		/* tasklist protects us from ptrace_freeze_traced() */
2232		__set_current_state(TASK_RUNNING);
2233		if (clear_code)
2234			current->exit_code = 0;
2235		read_unlock(&tasklist_lock);
2236	}
 
 
 
 
 
 
2237
2238	/*
2239	 * We are back.  Now reacquire the siglock before touching
2240	 * last_siginfo, so that we are sure to have synchronized with
2241	 * any signal-sending on another CPU that wants to examine it.
2242	 */
2243	spin_lock_irq(&current->sighand->siglock);
 
2244	current->last_siginfo = NULL;
 
 
2245
2246	/* LISTENING can be set only during STOP traps, clear it */
2247	current->jobctl &= ~JOBCTL_LISTENING;
2248
2249	/*
2250	 * Queued signals ignored us while we were stopped for tracing.
2251	 * So check for any that we should take before resuming user mode.
2252	 * This sets TIF_SIGPENDING, but never clears it.
2253	 */
2254	recalc_sigpending_tsk(current);
 
2255}
2256
2257static void ptrace_do_notify(int signr, int exit_code, int why)
2258{
2259	kernel_siginfo_t info;
2260
2261	clear_siginfo(&info);
2262	info.si_signo = signr;
2263	info.si_code = exit_code;
2264	info.si_pid = task_pid_vnr(current);
2265	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266
2267	/* Let the debugger run.  */
2268	ptrace_stop(exit_code, why, 1, &info);
2269}
2270
2271void ptrace_notify(int exit_code)
2272{
 
 
2273	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274	if (unlikely(current->task_works))
2275		task_work_run();
2276
2277	spin_lock_irq(&current->sighand->siglock);
2278	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279	spin_unlock_irq(&current->sighand->siglock);
 
2280}
2281
2282/**
2283 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284 * @signr: signr causing group stop if initiating
2285 *
2286 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287 * and participate in it.  If already set, participate in the existing
2288 * group stop.  If participated in a group stop (and thus slept), %true is
2289 * returned with siglock released.
2290 *
2291 * If ptraced, this function doesn't handle stop itself.  Instead,
2292 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294 * places afterwards.
2295 *
2296 * CONTEXT:
2297 * Must be called with @current->sighand->siglock held, which is released
2298 * on %true return.
2299 *
2300 * RETURNS:
2301 * %false if group stop is already cancelled or ptrace trap is scheduled.
2302 * %true if participated in group stop.
2303 */
2304static bool do_signal_stop(int signr)
2305	__releases(&current->sighand->siglock)
2306{
2307	struct signal_struct *sig = current->signal;
2308
2309	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311		struct task_struct *t;
2312
2313		/* signr will be recorded in task->jobctl for retries */
2314		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315
2316		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317		    unlikely(signal_group_exit(sig)))
 
2318			return false;
2319		/*
2320		 * There is no group stop already in progress.  We must
2321		 * initiate one now.
2322		 *
2323		 * While ptraced, a task may be resumed while group stop is
2324		 * still in effect and then receive a stop signal and
2325		 * initiate another group stop.  This deviates from the
2326		 * usual behavior as two consecutive stop signals can't
2327		 * cause two group stops when !ptraced.  That is why we
2328		 * also check !task_is_stopped(t) below.
2329		 *
2330		 * The condition can be distinguished by testing whether
2331		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332		 * group_exit_code in such case.
2333		 *
2334		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335		 * an intervening stop signal is required to cause two
2336		 * continued events regardless of ptrace.
2337		 */
2338		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339			sig->group_exit_code = signr;
2340
2341		sig->group_stop_count = 0;
2342
2343		if (task_set_jobctl_pending(current, signr | gstop))
2344			sig->group_stop_count++;
2345
2346		t = current;
2347		while_each_thread(current, t) {
2348			/*
2349			 * Setting state to TASK_STOPPED for a group
2350			 * stop is always done with the siglock held,
2351			 * so this check has no races.
2352			 */
2353			if (!task_is_stopped(t) &&
2354			    task_set_jobctl_pending(t, signr | gstop)) {
2355				sig->group_stop_count++;
2356				if (likely(!(t->ptrace & PT_SEIZED)))
2357					signal_wake_up(t, 0);
2358				else
2359					ptrace_trap_notify(t);
2360			}
2361		}
2362	}
2363
2364	if (likely(!current->ptrace)) {
2365		int notify = 0;
2366
2367		/*
2368		 * If there are no other threads in the group, or if there
2369		 * is a group stop in progress and we are the last to stop,
2370		 * report to the parent.
2371		 */
2372		if (task_participate_group_stop(current))
2373			notify = CLD_STOPPED;
2374
 
2375		set_special_state(TASK_STOPPED);
2376		spin_unlock_irq(&current->sighand->siglock);
2377
2378		/*
2379		 * Notify the parent of the group stop completion.  Because
2380		 * we're not holding either the siglock or tasklist_lock
2381		 * here, ptracer may attach inbetween; however, this is for
2382		 * group stop and should always be delivered to the real
2383		 * parent of the group leader.  The new ptracer will get
2384		 * its notification when this task transitions into
2385		 * TASK_TRACED.
2386		 */
2387		if (notify) {
2388			read_lock(&tasklist_lock);
2389			do_notify_parent_cldstop(current, false, notify);
2390			read_unlock(&tasklist_lock);
2391		}
2392
2393		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394		cgroup_enter_frozen();
2395		freezable_schedule();
2396		return true;
2397	} else {
2398		/*
2399		 * While ptraced, group stop is handled by STOP trap.
2400		 * Schedule it and let the caller deal with it.
2401		 */
2402		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403		return false;
2404	}
2405}
2406
2407/**
2408 * do_jobctl_trap - take care of ptrace jobctl traps
2409 *
2410 * When PT_SEIZED, it's used for both group stop and explicit
2411 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413 * the stop signal; otherwise, %SIGTRAP.
2414 *
2415 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416 * number as exit_code and no siginfo.
2417 *
2418 * CONTEXT:
2419 * Must be called with @current->sighand->siglock held, which may be
2420 * released and re-acquired before returning with intervening sleep.
2421 */
2422static void do_jobctl_trap(void)
2423{
2424	struct signal_struct *signal = current->signal;
2425	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426
2427	if (current->ptrace & PT_SEIZED) {
2428		if (!signal->group_stop_count &&
2429		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430			signr = SIGTRAP;
2431		WARN_ON_ONCE(!signr);
2432		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433				 CLD_STOPPED);
2434	} else {
2435		WARN_ON_ONCE(!signr);
2436		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437		current->exit_code = 0;
2438	}
2439}
2440
2441/**
2442 * do_freezer_trap - handle the freezer jobctl trap
2443 *
2444 * Puts the task into frozen state, if only the task is not about to quit.
2445 * In this case it drops JOBCTL_TRAP_FREEZE.
2446 *
2447 * CONTEXT:
2448 * Must be called with @current->sighand->siglock held,
2449 * which is always released before returning.
2450 */
2451static void do_freezer_trap(void)
2452	__releases(&current->sighand->siglock)
2453{
2454	/*
2455	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456	 * let's make another loop to give it a chance to be handled.
2457	 * In any case, we'll return back.
2458	 */
2459	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460	     JOBCTL_TRAP_FREEZE) {
2461		spin_unlock_irq(&current->sighand->siglock);
2462		return;
2463	}
2464
2465	/*
2466	 * Now we're sure that there is no pending fatal signal and no
2467	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468	 * immediately (if there is a non-fatal signal pending), and
2469	 * put the task into sleep.
2470	 */
2471	__set_current_state(TASK_INTERRUPTIBLE);
2472	clear_thread_flag(TIF_SIGPENDING);
2473	spin_unlock_irq(&current->sighand->siglock);
2474	cgroup_enter_frozen();
2475	freezable_schedule();
2476}
2477
2478static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479{
2480	/*
2481	 * We do not check sig_kernel_stop(signr) but set this marker
2482	 * unconditionally because we do not know whether debugger will
2483	 * change signr. This flag has no meaning unless we are going
2484	 * to stop after return from ptrace_stop(). In this case it will
2485	 * be checked in do_signal_stop(), we should only stop if it was
2486	 * not cleared by SIGCONT while we were sleeping. See also the
2487	 * comment in dequeue_signal().
2488	 */
2489	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491
2492	/* We're back.  Did the debugger cancel the sig?  */
2493	signr = current->exit_code;
2494	if (signr == 0)
2495		return signr;
2496
2497	current->exit_code = 0;
2498
2499	/*
2500	 * Update the siginfo structure if the signal has
2501	 * changed.  If the debugger wanted something
2502	 * specific in the siginfo structure then it should
2503	 * have updated *info via PTRACE_SETSIGINFO.
2504	 */
2505	if (signr != info->si_signo) {
2506		clear_siginfo(info);
2507		info->si_signo = signr;
2508		info->si_errno = 0;
2509		info->si_code = SI_USER;
2510		rcu_read_lock();
2511		info->si_pid = task_pid_vnr(current->parent);
2512		info->si_uid = from_kuid_munged(current_user_ns(),
2513						task_uid(current->parent));
2514		rcu_read_unlock();
2515	}
2516
2517	/* If the (new) signal is now blocked, requeue it.  */
2518	if (sigismember(&current->blocked, signr)) {
2519		send_signal(signr, info, current, PIDTYPE_PID);
 
2520		signr = 0;
2521	}
2522
2523	return signr;
2524}
2525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526bool get_signal(struct ksignal *ksig)
2527{
2528	struct sighand_struct *sighand = current->sighand;
2529	struct signal_struct *signal = current->signal;
2530	int signr;
2531
 
 
 
 
 
 
 
2532	if (unlikely(uprobe_deny_signal()))
2533		return false;
2534
2535	/*
2536	 * Do this once, we can't return to user-mode if freezing() == T.
2537	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2538	 * thus do not need another check after return.
2539	 */
2540	try_to_freeze();
2541
2542relock:
2543	spin_lock_irq(&sighand->siglock);
2544	/*
2545	 * Make sure we can safely read ->jobctl() in task_work add. As Oleg
2546	 * states:
2547	 *
2548	 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we
2549	 * roughly have
2550	 *
2551	 *	task_work_add:				get_signal:
2552	 *	STORE(task->task_works, new_work);	STORE(task->jobctl);
2553	 *	mb();					mb();
2554	 *	LOAD(task->jobctl);			LOAD(task->task_works);
2555	 *
2556	 * and we can rely on STORE-MB-LOAD [ in task_work_add].
2557	 */
2558	smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK);
2559	if (unlikely(current->task_works)) {
2560		spin_unlock_irq(&sighand->siglock);
2561		task_work_run();
2562		goto relock;
2563	}
2564
2565	/*
2566	 * Every stopped thread goes here after wakeup. Check to see if
2567	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2568	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2569	 */
2570	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2571		int why;
2572
2573		if (signal->flags & SIGNAL_CLD_CONTINUED)
2574			why = CLD_CONTINUED;
2575		else
2576			why = CLD_STOPPED;
2577
2578		signal->flags &= ~SIGNAL_CLD_MASK;
2579
2580		spin_unlock_irq(&sighand->siglock);
2581
2582		/*
2583		 * Notify the parent that we're continuing.  This event is
2584		 * always per-process and doesn't make whole lot of sense
2585		 * for ptracers, who shouldn't consume the state via
2586		 * wait(2) either, but, for backward compatibility, notify
2587		 * the ptracer of the group leader too unless it's gonna be
2588		 * a duplicate.
2589		 */
2590		read_lock(&tasklist_lock);
2591		do_notify_parent_cldstop(current, false, why);
2592
2593		if (ptrace_reparented(current->group_leader))
2594			do_notify_parent_cldstop(current->group_leader,
2595						true, why);
2596		read_unlock(&tasklist_lock);
2597
2598		goto relock;
2599	}
2600
2601	/* Has this task already been marked for death? */
2602	if (signal_group_exit(signal)) {
2603		ksig->info.si_signo = signr = SIGKILL;
2604		sigdelset(&current->pending.signal, SIGKILL);
2605		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2606				&sighand->action[SIGKILL - 1]);
2607		recalc_sigpending();
2608		goto fatal;
2609	}
2610
2611	for (;;) {
2612		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2613
2614		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2615		    do_signal_stop(0))
2616			goto relock;
2617
2618		if (unlikely(current->jobctl &
2619			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2620			if (current->jobctl & JOBCTL_TRAP_MASK) {
2621				do_jobctl_trap();
2622				spin_unlock_irq(&sighand->siglock);
2623			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2624				do_freezer_trap();
2625
2626			goto relock;
2627		}
2628
2629		/*
2630		 * If the task is leaving the frozen state, let's update
2631		 * cgroup counters and reset the frozen bit.
2632		 */
2633		if (unlikely(cgroup_task_frozen(current))) {
2634			spin_unlock_irq(&sighand->siglock);
2635			cgroup_leave_frozen(false);
2636			goto relock;
2637		}
2638
2639		/*
2640		 * Signals generated by the execution of an instruction
2641		 * need to be delivered before any other pending signals
2642		 * so that the instruction pointer in the signal stack
2643		 * frame points to the faulting instruction.
2644		 */
 
2645		signr = dequeue_synchronous_signal(&ksig->info);
2646		if (!signr)
2647			signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
2648
2649		if (!signr)
2650			break; /* will return 0 */
2651
2652		if (unlikely(current->ptrace) && signr != SIGKILL) {
2653			signr = ptrace_signal(signr, &ksig->info);
 
2654			if (!signr)
2655				continue;
2656		}
2657
2658		ka = &sighand->action[signr-1];
2659
2660		/* Trace actually delivered signals. */
2661		trace_signal_deliver(signr, &ksig->info, ka);
2662
2663		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2664			continue;
2665		if (ka->sa.sa_handler != SIG_DFL) {
2666			/* Run the handler.  */
2667			ksig->ka = *ka;
2668
2669			if (ka->sa.sa_flags & SA_ONESHOT)
2670				ka->sa.sa_handler = SIG_DFL;
2671
2672			break; /* will return non-zero "signr" value */
2673		}
2674
2675		/*
2676		 * Now we are doing the default action for this signal.
2677		 */
2678		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2679			continue;
2680
2681		/*
2682		 * Global init gets no signals it doesn't want.
2683		 * Container-init gets no signals it doesn't want from same
2684		 * container.
2685		 *
2686		 * Note that if global/container-init sees a sig_kernel_only()
2687		 * signal here, the signal must have been generated internally
2688		 * or must have come from an ancestor namespace. In either
2689		 * case, the signal cannot be dropped.
2690		 */
2691		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2692				!sig_kernel_only(signr))
2693			continue;
2694
2695		if (sig_kernel_stop(signr)) {
2696			/*
2697			 * The default action is to stop all threads in
2698			 * the thread group.  The job control signals
2699			 * do nothing in an orphaned pgrp, but SIGSTOP
2700			 * always works.  Note that siglock needs to be
2701			 * dropped during the call to is_orphaned_pgrp()
2702			 * because of lock ordering with tasklist_lock.
2703			 * This allows an intervening SIGCONT to be posted.
2704			 * We need to check for that and bail out if necessary.
2705			 */
2706			if (signr != SIGSTOP) {
2707				spin_unlock_irq(&sighand->siglock);
2708
2709				/* signals can be posted during this window */
2710
2711				if (is_current_pgrp_orphaned())
2712					goto relock;
2713
2714				spin_lock_irq(&sighand->siglock);
2715			}
2716
2717			if (likely(do_signal_stop(ksig->info.si_signo))) {
2718				/* It released the siglock.  */
2719				goto relock;
2720			}
2721
2722			/*
2723			 * We didn't actually stop, due to a race
2724			 * with SIGCONT or something like that.
2725			 */
2726			continue;
2727		}
2728
2729	fatal:
2730		spin_unlock_irq(&sighand->siglock);
2731		if (unlikely(cgroup_task_frozen(current)))
2732			cgroup_leave_frozen(true);
2733
2734		/*
2735		 * Anything else is fatal, maybe with a core dump.
2736		 */
2737		current->flags |= PF_SIGNALED;
2738
2739		if (sig_kernel_coredump(signr)) {
2740			if (print_fatal_signals)
2741				print_fatal_signal(ksig->info.si_signo);
2742			proc_coredump_connector(current);
2743			/*
2744			 * If it was able to dump core, this kills all
2745			 * other threads in the group and synchronizes with
2746			 * their demise.  If we lost the race with another
2747			 * thread getting here, it set group_exit_code
2748			 * first and our do_group_exit call below will use
2749			 * that value and ignore the one we pass it.
2750			 */
2751			do_coredump(&ksig->info);
2752		}
2753
2754		/*
 
 
 
 
 
 
 
 
2755		 * Death signals, no core dump.
2756		 */
2757		do_group_exit(ksig->info.si_signo);
2758		/* NOTREACHED */
2759	}
2760	spin_unlock_irq(&sighand->siglock);
2761
2762	ksig->sig = signr;
 
 
 
 
2763	return ksig->sig > 0;
2764}
2765
2766/**
2767 * signal_delivered - 
2768 * @ksig:		kernel signal struct
2769 * @stepping:		nonzero if debugger single-step or block-step in use
2770 *
2771 * This function should be called when a signal has successfully been
2772 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2773 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2774 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2775 */
2776static void signal_delivered(struct ksignal *ksig, int stepping)
2777{
2778	sigset_t blocked;
2779
2780	/* A signal was successfully delivered, and the
2781	   saved sigmask was stored on the signal frame,
2782	   and will be restored by sigreturn.  So we can
2783	   simply clear the restore sigmask flag.  */
2784	clear_restore_sigmask();
2785
2786	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2787	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2788		sigaddset(&blocked, ksig->sig);
2789	set_current_blocked(&blocked);
2790	tracehook_signal_handler(stepping);
 
 
 
2791}
2792
2793void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2794{
2795	if (failed)
2796		force_sigsegv(ksig->sig);
2797	else
2798		signal_delivered(ksig, stepping);
2799}
2800
2801/*
2802 * It could be that complete_signal() picked us to notify about the
2803 * group-wide signal. Other threads should be notified now to take
2804 * the shared signals in @which since we will not.
2805 */
2806static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2807{
2808	sigset_t retarget;
2809	struct task_struct *t;
2810
2811	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2812	if (sigisemptyset(&retarget))
2813		return;
2814
2815	t = tsk;
2816	while_each_thread(tsk, t) {
2817		if (t->flags & PF_EXITING)
2818			continue;
2819
2820		if (!has_pending_signals(&retarget, &t->blocked))
2821			continue;
2822		/* Remove the signals this thread can handle. */
2823		sigandsets(&retarget, &retarget, &t->blocked);
2824
2825		if (!signal_pending(t))
2826			signal_wake_up(t, 0);
2827
2828		if (sigisemptyset(&retarget))
2829			break;
2830	}
2831}
2832
2833void exit_signals(struct task_struct *tsk)
2834{
2835	int group_stop = 0;
2836	sigset_t unblocked;
2837
2838	/*
2839	 * @tsk is about to have PF_EXITING set - lock out users which
2840	 * expect stable threadgroup.
2841	 */
2842	cgroup_threadgroup_change_begin(tsk);
2843
2844	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2845		tsk->flags |= PF_EXITING;
2846		cgroup_threadgroup_change_end(tsk);
2847		return;
2848	}
2849
2850	spin_lock_irq(&tsk->sighand->siglock);
2851	/*
2852	 * From now this task is not visible for group-wide signals,
2853	 * see wants_signal(), do_signal_stop().
2854	 */
2855	tsk->flags |= PF_EXITING;
2856
2857	cgroup_threadgroup_change_end(tsk);
2858
2859	if (!signal_pending(tsk))
2860		goto out;
2861
2862	unblocked = tsk->blocked;
2863	signotset(&unblocked);
2864	retarget_shared_pending(tsk, &unblocked);
2865
2866	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2867	    task_participate_group_stop(tsk))
2868		group_stop = CLD_STOPPED;
2869out:
2870	spin_unlock_irq(&tsk->sighand->siglock);
2871
2872	/*
2873	 * If group stop has completed, deliver the notification.  This
2874	 * should always go to the real parent of the group leader.
2875	 */
2876	if (unlikely(group_stop)) {
2877		read_lock(&tasklist_lock);
2878		do_notify_parent_cldstop(tsk, false, group_stop);
2879		read_unlock(&tasklist_lock);
2880	}
2881}
2882
2883/*
2884 * System call entry points.
2885 */
2886
2887/**
2888 *  sys_restart_syscall - restart a system call
2889 */
2890SYSCALL_DEFINE0(restart_syscall)
2891{
2892	struct restart_block *restart = &current->restart_block;
2893	return restart->fn(restart);
2894}
2895
2896long do_no_restart_syscall(struct restart_block *param)
2897{
2898	return -EINTR;
2899}
2900
2901static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2902{
2903	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2904		sigset_t newblocked;
2905		/* A set of now blocked but previously unblocked signals. */
2906		sigandnsets(&newblocked, newset, &current->blocked);
2907		retarget_shared_pending(tsk, &newblocked);
2908	}
2909	tsk->blocked = *newset;
2910	recalc_sigpending();
2911}
2912
2913/**
2914 * set_current_blocked - change current->blocked mask
2915 * @newset: new mask
2916 *
2917 * It is wrong to change ->blocked directly, this helper should be used
2918 * to ensure the process can't miss a shared signal we are going to block.
2919 */
2920void set_current_blocked(sigset_t *newset)
2921{
2922	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2923	__set_current_blocked(newset);
2924}
2925
2926void __set_current_blocked(const sigset_t *newset)
2927{
2928	struct task_struct *tsk = current;
2929
2930	/*
2931	 * In case the signal mask hasn't changed, there is nothing we need
2932	 * to do. The current->blocked shouldn't be modified by other task.
2933	 */
2934	if (sigequalsets(&tsk->blocked, newset))
2935		return;
2936
2937	spin_lock_irq(&tsk->sighand->siglock);
2938	__set_task_blocked(tsk, newset);
2939	spin_unlock_irq(&tsk->sighand->siglock);
2940}
2941
2942/*
2943 * This is also useful for kernel threads that want to temporarily
2944 * (or permanently) block certain signals.
2945 *
2946 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2947 * interface happily blocks "unblockable" signals like SIGKILL
2948 * and friends.
2949 */
2950int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2951{
2952	struct task_struct *tsk = current;
2953	sigset_t newset;
2954
2955	/* Lockless, only current can change ->blocked, never from irq */
2956	if (oldset)
2957		*oldset = tsk->blocked;
2958
2959	switch (how) {
2960	case SIG_BLOCK:
2961		sigorsets(&newset, &tsk->blocked, set);
2962		break;
2963	case SIG_UNBLOCK:
2964		sigandnsets(&newset, &tsk->blocked, set);
2965		break;
2966	case SIG_SETMASK:
2967		newset = *set;
2968		break;
2969	default:
2970		return -EINVAL;
2971	}
2972
2973	__set_current_blocked(&newset);
2974	return 0;
2975}
2976EXPORT_SYMBOL(sigprocmask);
2977
2978/*
2979 * The api helps set app-provided sigmasks.
2980 *
2981 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2982 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2983 *
2984 * Note that it does set_restore_sigmask() in advance, so it must be always
2985 * paired with restore_saved_sigmask_unless() before return from syscall.
2986 */
2987int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2988{
2989	sigset_t kmask;
2990
2991	if (!umask)
2992		return 0;
2993	if (sigsetsize != sizeof(sigset_t))
2994		return -EINVAL;
2995	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2996		return -EFAULT;
2997
2998	set_restore_sigmask();
2999	current->saved_sigmask = current->blocked;
3000	set_current_blocked(&kmask);
3001
3002	return 0;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3007			    size_t sigsetsize)
3008{
3009	sigset_t kmask;
3010
3011	if (!umask)
3012		return 0;
3013	if (sigsetsize != sizeof(compat_sigset_t))
3014		return -EINVAL;
3015	if (get_compat_sigset(&kmask, umask))
3016		return -EFAULT;
3017
3018	set_restore_sigmask();
3019	current->saved_sigmask = current->blocked;
3020	set_current_blocked(&kmask);
3021
3022	return 0;
3023}
3024#endif
3025
3026/**
3027 *  sys_rt_sigprocmask - change the list of currently blocked signals
3028 *  @how: whether to add, remove, or set signals
3029 *  @nset: stores pending signals
3030 *  @oset: previous value of signal mask if non-null
3031 *  @sigsetsize: size of sigset_t type
3032 */
3033SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3034		sigset_t __user *, oset, size_t, sigsetsize)
3035{
3036	sigset_t old_set, new_set;
3037	int error;
3038
3039	/* XXX: Don't preclude handling different sized sigset_t's.  */
3040	if (sigsetsize != sizeof(sigset_t))
3041		return -EINVAL;
3042
3043	old_set = current->blocked;
3044
3045	if (nset) {
3046		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3047			return -EFAULT;
3048		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3049
3050		error = sigprocmask(how, &new_set, NULL);
3051		if (error)
3052			return error;
3053	}
3054
3055	if (oset) {
3056		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3057			return -EFAULT;
3058	}
3059
3060	return 0;
3061}
3062
3063#ifdef CONFIG_COMPAT
3064COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3065		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3066{
3067	sigset_t old_set = current->blocked;
3068
3069	/* XXX: Don't preclude handling different sized sigset_t's.  */
3070	if (sigsetsize != sizeof(sigset_t))
3071		return -EINVAL;
3072
3073	if (nset) {
3074		sigset_t new_set;
3075		int error;
3076		if (get_compat_sigset(&new_set, nset))
3077			return -EFAULT;
3078		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3079
3080		error = sigprocmask(how, &new_set, NULL);
3081		if (error)
3082			return error;
3083	}
3084	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3085}
3086#endif
3087
3088static void do_sigpending(sigset_t *set)
3089{
3090	spin_lock_irq(&current->sighand->siglock);
3091	sigorsets(set, &current->pending.signal,
3092		  &current->signal->shared_pending.signal);
3093	spin_unlock_irq(&current->sighand->siglock);
3094
3095	/* Outside the lock because only this thread touches it.  */
3096	sigandsets(set, &current->blocked, set);
3097}
3098
3099/**
3100 *  sys_rt_sigpending - examine a pending signal that has been raised
3101 *			while blocked
3102 *  @uset: stores pending signals
3103 *  @sigsetsize: size of sigset_t type or larger
3104 */
3105SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3106{
3107	sigset_t set;
3108
3109	if (sigsetsize > sizeof(*uset))
3110		return -EINVAL;
3111
3112	do_sigpending(&set);
3113
3114	if (copy_to_user(uset, &set, sigsetsize))
3115		return -EFAULT;
3116
3117	return 0;
3118}
3119
3120#ifdef CONFIG_COMPAT
3121COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3122		compat_size_t, sigsetsize)
3123{
3124	sigset_t set;
3125
3126	if (sigsetsize > sizeof(*uset))
3127		return -EINVAL;
3128
3129	do_sigpending(&set);
3130
3131	return put_compat_sigset(uset, &set, sigsetsize);
3132}
3133#endif
3134
3135static const struct {
3136	unsigned char limit, layout;
3137} sig_sicodes[] = {
3138	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3139	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3140	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3141	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3142	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3143#if defined(SIGEMT)
3144	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3145#endif
3146	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3147	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3148	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3149};
3150
3151static bool known_siginfo_layout(unsigned sig, int si_code)
3152{
3153	if (si_code == SI_KERNEL)
3154		return true;
3155	else if ((si_code > SI_USER)) {
3156		if (sig_specific_sicodes(sig)) {
3157			if (si_code <= sig_sicodes[sig].limit)
3158				return true;
3159		}
3160		else if (si_code <= NSIGPOLL)
3161			return true;
3162	}
3163	else if (si_code >= SI_DETHREAD)
3164		return true;
3165	else if (si_code == SI_ASYNCNL)
3166		return true;
3167	return false;
3168}
3169
3170enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3171{
3172	enum siginfo_layout layout = SIL_KILL;
3173	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3174		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3175		    (si_code <= sig_sicodes[sig].limit)) {
3176			layout = sig_sicodes[sig].layout;
3177			/* Handle the exceptions */
3178			if ((sig == SIGBUS) &&
3179			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3180				layout = SIL_FAULT_MCEERR;
3181			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3182				layout = SIL_FAULT_BNDERR;
3183#ifdef SEGV_PKUERR
3184			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3185				layout = SIL_FAULT_PKUERR;
3186#endif
 
 
 
 
 
 
 
 
 
3187		}
3188		else if (si_code <= NSIGPOLL)
3189			layout = SIL_POLL;
3190	} else {
3191		if (si_code == SI_TIMER)
3192			layout = SIL_TIMER;
3193		else if (si_code == SI_SIGIO)
3194			layout = SIL_POLL;
3195		else if (si_code < 0)
3196			layout = SIL_RT;
3197	}
3198	return layout;
3199}
3200
3201static inline char __user *si_expansion(const siginfo_t __user *info)
3202{
3203	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3204}
3205
3206int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3207{
3208	char __user *expansion = si_expansion(to);
3209	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3210		return -EFAULT;
3211	if (clear_user(expansion, SI_EXPANSION_SIZE))
3212		return -EFAULT;
3213	return 0;
3214}
3215
3216static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3217				       const siginfo_t __user *from)
3218{
3219	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3220		char __user *expansion = si_expansion(from);
3221		char buf[SI_EXPANSION_SIZE];
3222		int i;
3223		/*
3224		 * An unknown si_code might need more than
3225		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3226		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3227		 * will return this data to userspace exactly.
3228		 */
3229		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3230			return -EFAULT;
3231		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3232			if (buf[i] != 0)
3233				return -E2BIG;
3234		}
3235	}
3236	return 0;
3237}
3238
3239static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3240				    const siginfo_t __user *from)
3241{
3242	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3243		return -EFAULT;
3244	to->si_signo = signo;
3245	return post_copy_siginfo_from_user(to, from);
3246}
3247
3248int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3249{
3250	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3251		return -EFAULT;
3252	return post_copy_siginfo_from_user(to, from);
3253}
3254
3255#ifdef CONFIG_COMPAT
3256/**
3257 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3258 * @to: compat siginfo destination
3259 * @from: kernel siginfo source
3260 *
3261 * Note: This function does not work properly for the SIGCHLD on x32, but
3262 * fortunately it doesn't have to.  The only valid callers for this function are
3263 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3264 * The latter does not care because SIGCHLD will never cause a coredump.
3265 */
3266void copy_siginfo_to_external32(struct compat_siginfo *to,
3267		const struct kernel_siginfo *from)
3268{
3269	memset(to, 0, sizeof(*to));
3270
3271	to->si_signo = from->si_signo;
3272	to->si_errno = from->si_errno;
3273	to->si_code  = from->si_code;
3274	switch(siginfo_layout(from->si_signo, from->si_code)) {
3275	case SIL_KILL:
3276		to->si_pid = from->si_pid;
3277		to->si_uid = from->si_uid;
3278		break;
3279	case SIL_TIMER:
3280		to->si_tid     = from->si_tid;
3281		to->si_overrun = from->si_overrun;
3282		to->si_int     = from->si_int;
3283		break;
3284	case SIL_POLL:
3285		to->si_band = from->si_band;
3286		to->si_fd   = from->si_fd;
3287		break;
3288	case SIL_FAULT:
3289		to->si_addr = ptr_to_compat(from->si_addr);
3290#ifdef __ARCH_SI_TRAPNO
 
 
3291		to->si_trapno = from->si_trapno;
3292#endif
3293		break;
3294	case SIL_FAULT_MCEERR:
3295		to->si_addr = ptr_to_compat(from->si_addr);
3296#ifdef __ARCH_SI_TRAPNO
3297		to->si_trapno = from->si_trapno;
3298#endif
3299		to->si_addr_lsb = from->si_addr_lsb;
3300		break;
3301	case SIL_FAULT_BNDERR:
3302		to->si_addr = ptr_to_compat(from->si_addr);
3303#ifdef __ARCH_SI_TRAPNO
3304		to->si_trapno = from->si_trapno;
3305#endif
3306		to->si_lower = ptr_to_compat(from->si_lower);
3307		to->si_upper = ptr_to_compat(from->si_upper);
3308		break;
3309	case SIL_FAULT_PKUERR:
3310		to->si_addr = ptr_to_compat(from->si_addr);
3311#ifdef __ARCH_SI_TRAPNO
3312		to->si_trapno = from->si_trapno;
3313#endif
3314		to->si_pkey = from->si_pkey;
3315		break;
 
 
 
 
 
 
3316	case SIL_CHLD:
3317		to->si_pid = from->si_pid;
3318		to->si_uid = from->si_uid;
3319		to->si_status = from->si_status;
3320		to->si_utime = from->si_utime;
3321		to->si_stime = from->si_stime;
3322		break;
3323	case SIL_RT:
3324		to->si_pid = from->si_pid;
3325		to->si_uid = from->si_uid;
3326		to->si_int = from->si_int;
3327		break;
3328	case SIL_SYS:
3329		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3330		to->si_syscall   = from->si_syscall;
3331		to->si_arch      = from->si_arch;
3332		break;
3333	}
3334}
3335
3336int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3337			   const struct kernel_siginfo *from)
3338{
3339	struct compat_siginfo new;
3340
3341	copy_siginfo_to_external32(&new, from);
3342	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3343		return -EFAULT;
3344	return 0;
3345}
3346
3347static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3348					 const struct compat_siginfo *from)
3349{
3350	clear_siginfo(to);
3351	to->si_signo = from->si_signo;
3352	to->si_errno = from->si_errno;
3353	to->si_code  = from->si_code;
3354	switch(siginfo_layout(from->si_signo, from->si_code)) {
3355	case SIL_KILL:
3356		to->si_pid = from->si_pid;
3357		to->si_uid = from->si_uid;
3358		break;
3359	case SIL_TIMER:
3360		to->si_tid     = from->si_tid;
3361		to->si_overrun = from->si_overrun;
3362		to->si_int     = from->si_int;
3363		break;
3364	case SIL_POLL:
3365		to->si_band = from->si_band;
3366		to->si_fd   = from->si_fd;
3367		break;
3368	case SIL_FAULT:
3369		to->si_addr = compat_ptr(from->si_addr);
3370#ifdef __ARCH_SI_TRAPNO
 
 
3371		to->si_trapno = from->si_trapno;
3372#endif
3373		break;
3374	case SIL_FAULT_MCEERR:
3375		to->si_addr = compat_ptr(from->si_addr);
3376#ifdef __ARCH_SI_TRAPNO
3377		to->si_trapno = from->si_trapno;
3378#endif
3379		to->si_addr_lsb = from->si_addr_lsb;
3380		break;
3381	case SIL_FAULT_BNDERR:
3382		to->si_addr = compat_ptr(from->si_addr);
3383#ifdef __ARCH_SI_TRAPNO
3384		to->si_trapno = from->si_trapno;
3385#endif
3386		to->si_lower = compat_ptr(from->si_lower);
3387		to->si_upper = compat_ptr(from->si_upper);
3388		break;
3389	case SIL_FAULT_PKUERR:
3390		to->si_addr = compat_ptr(from->si_addr);
3391#ifdef __ARCH_SI_TRAPNO
3392		to->si_trapno = from->si_trapno;
3393#endif
3394		to->si_pkey = from->si_pkey;
3395		break;
 
 
 
 
 
 
3396	case SIL_CHLD:
3397		to->si_pid    = from->si_pid;
3398		to->si_uid    = from->si_uid;
3399		to->si_status = from->si_status;
3400#ifdef CONFIG_X86_X32_ABI
3401		if (in_x32_syscall()) {
3402			to->si_utime = from->_sifields._sigchld_x32._utime;
3403			to->si_stime = from->_sifields._sigchld_x32._stime;
3404		} else
3405#endif
3406		{
3407			to->si_utime = from->si_utime;
3408			to->si_stime = from->si_stime;
3409		}
3410		break;
3411	case SIL_RT:
3412		to->si_pid = from->si_pid;
3413		to->si_uid = from->si_uid;
3414		to->si_int = from->si_int;
3415		break;
3416	case SIL_SYS:
3417		to->si_call_addr = compat_ptr(from->si_call_addr);
3418		to->si_syscall   = from->si_syscall;
3419		to->si_arch      = from->si_arch;
3420		break;
3421	}
3422	return 0;
3423}
3424
3425static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3426				      const struct compat_siginfo __user *ufrom)
3427{
3428	struct compat_siginfo from;
3429
3430	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3431		return -EFAULT;
3432
3433	from.si_signo = signo;
3434	return post_copy_siginfo_from_user32(to, &from);
3435}
3436
3437int copy_siginfo_from_user32(struct kernel_siginfo *to,
3438			     const struct compat_siginfo __user *ufrom)
3439{
3440	struct compat_siginfo from;
3441
3442	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3443		return -EFAULT;
3444
3445	return post_copy_siginfo_from_user32(to, &from);
3446}
3447#endif /* CONFIG_COMPAT */
3448
3449/**
3450 *  do_sigtimedwait - wait for queued signals specified in @which
3451 *  @which: queued signals to wait for
3452 *  @info: if non-null, the signal's siginfo is returned here
3453 *  @ts: upper bound on process time suspension
3454 */
3455static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3456		    const struct timespec64 *ts)
3457{
3458	ktime_t *to = NULL, timeout = KTIME_MAX;
3459	struct task_struct *tsk = current;
3460	sigset_t mask = *which;
 
3461	int sig, ret = 0;
3462
3463	if (ts) {
3464		if (!timespec64_valid(ts))
3465			return -EINVAL;
3466		timeout = timespec64_to_ktime(*ts);
3467		to = &timeout;
3468	}
3469
3470	/*
3471	 * Invert the set of allowed signals to get those we want to block.
3472	 */
3473	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3474	signotset(&mask);
3475
3476	spin_lock_irq(&tsk->sighand->siglock);
3477	sig = dequeue_signal(tsk, &mask, info);
3478	if (!sig && timeout) {
3479		/*
3480		 * None ready, temporarily unblock those we're interested
3481		 * while we are sleeping in so that we'll be awakened when
3482		 * they arrive. Unblocking is always fine, we can avoid
3483		 * set_current_blocked().
3484		 */
3485		tsk->real_blocked = tsk->blocked;
3486		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3487		recalc_sigpending();
3488		spin_unlock_irq(&tsk->sighand->siglock);
3489
3490		__set_current_state(TASK_INTERRUPTIBLE);
3491		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3492							 HRTIMER_MODE_REL);
3493		spin_lock_irq(&tsk->sighand->siglock);
3494		__set_task_blocked(tsk, &tsk->real_blocked);
3495		sigemptyset(&tsk->real_blocked);
3496		sig = dequeue_signal(tsk, &mask, info);
3497	}
3498	spin_unlock_irq(&tsk->sighand->siglock);
3499
3500	if (sig)
3501		return sig;
3502	return ret ? -EINTR : -EAGAIN;
3503}
3504
3505/**
3506 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3507 *			in @uthese
3508 *  @uthese: queued signals to wait for
3509 *  @uinfo: if non-null, the signal's siginfo is returned here
3510 *  @uts: upper bound on process time suspension
3511 *  @sigsetsize: size of sigset_t type
3512 */
3513SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3514		siginfo_t __user *, uinfo,
3515		const struct __kernel_timespec __user *, uts,
3516		size_t, sigsetsize)
3517{
3518	sigset_t these;
3519	struct timespec64 ts;
3520	kernel_siginfo_t info;
3521	int ret;
3522
3523	/* XXX: Don't preclude handling different sized sigset_t's.  */
3524	if (sigsetsize != sizeof(sigset_t))
3525		return -EINVAL;
3526
3527	if (copy_from_user(&these, uthese, sizeof(these)))
3528		return -EFAULT;
3529
3530	if (uts) {
3531		if (get_timespec64(&ts, uts))
3532			return -EFAULT;
3533	}
3534
3535	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3536
3537	if (ret > 0 && uinfo) {
3538		if (copy_siginfo_to_user(uinfo, &info))
3539			ret = -EFAULT;
3540	}
3541
3542	return ret;
3543}
3544
3545#ifdef CONFIG_COMPAT_32BIT_TIME
3546SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3547		siginfo_t __user *, uinfo,
3548		const struct old_timespec32 __user *, uts,
3549		size_t, sigsetsize)
3550{
3551	sigset_t these;
3552	struct timespec64 ts;
3553	kernel_siginfo_t info;
3554	int ret;
3555
3556	if (sigsetsize != sizeof(sigset_t))
3557		return -EINVAL;
3558
3559	if (copy_from_user(&these, uthese, sizeof(these)))
3560		return -EFAULT;
3561
3562	if (uts) {
3563		if (get_old_timespec32(&ts, uts))
3564			return -EFAULT;
3565	}
3566
3567	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3568
3569	if (ret > 0 && uinfo) {
3570		if (copy_siginfo_to_user(uinfo, &info))
3571			ret = -EFAULT;
3572	}
3573
3574	return ret;
3575}
3576#endif
3577
3578#ifdef CONFIG_COMPAT
3579COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3580		struct compat_siginfo __user *, uinfo,
3581		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3582{
3583	sigset_t s;
3584	struct timespec64 t;
3585	kernel_siginfo_t info;
3586	long ret;
3587
3588	if (sigsetsize != sizeof(sigset_t))
3589		return -EINVAL;
3590
3591	if (get_compat_sigset(&s, uthese))
3592		return -EFAULT;
3593
3594	if (uts) {
3595		if (get_timespec64(&t, uts))
3596			return -EFAULT;
3597	}
3598
3599	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3600
3601	if (ret > 0 && uinfo) {
3602		if (copy_siginfo_to_user32(uinfo, &info))
3603			ret = -EFAULT;
3604	}
3605
3606	return ret;
3607}
3608
3609#ifdef CONFIG_COMPAT_32BIT_TIME
3610COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3611		struct compat_siginfo __user *, uinfo,
3612		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3613{
3614	sigset_t s;
3615	struct timespec64 t;
3616	kernel_siginfo_t info;
3617	long ret;
3618
3619	if (sigsetsize != sizeof(sigset_t))
3620		return -EINVAL;
3621
3622	if (get_compat_sigset(&s, uthese))
3623		return -EFAULT;
3624
3625	if (uts) {
3626		if (get_old_timespec32(&t, uts))
3627			return -EFAULT;
3628	}
3629
3630	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3631
3632	if (ret > 0 && uinfo) {
3633		if (copy_siginfo_to_user32(uinfo, &info))
3634			ret = -EFAULT;
3635	}
3636
3637	return ret;
3638}
3639#endif
3640#endif
3641
3642static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3643{
3644	clear_siginfo(info);
3645	info->si_signo = sig;
3646	info->si_errno = 0;
3647	info->si_code = SI_USER;
3648	info->si_pid = task_tgid_vnr(current);
3649	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3650}
3651
3652/**
3653 *  sys_kill - send a signal to a process
3654 *  @pid: the PID of the process
3655 *  @sig: signal to be sent
3656 */
3657SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3658{
3659	struct kernel_siginfo info;
3660
3661	prepare_kill_siginfo(sig, &info);
3662
3663	return kill_something_info(sig, &info, pid);
3664}
3665
3666/*
3667 * Verify that the signaler and signalee either are in the same pid namespace
3668 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3669 * namespace.
3670 */
3671static bool access_pidfd_pidns(struct pid *pid)
3672{
3673	struct pid_namespace *active = task_active_pid_ns(current);
3674	struct pid_namespace *p = ns_of_pid(pid);
3675
3676	for (;;) {
3677		if (!p)
3678			return false;
3679		if (p == active)
3680			break;
3681		p = p->parent;
3682	}
3683
3684	return true;
3685}
3686
3687static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
 
3688{
3689#ifdef CONFIG_COMPAT
3690	/*
3691	 * Avoid hooking up compat syscalls and instead handle necessary
3692	 * conversions here. Note, this is a stop-gap measure and should not be
3693	 * considered a generic solution.
3694	 */
3695	if (in_compat_syscall())
3696		return copy_siginfo_from_user32(
3697			kinfo, (struct compat_siginfo __user *)info);
3698#endif
3699	return copy_siginfo_from_user(kinfo, info);
3700}
3701
3702static struct pid *pidfd_to_pid(const struct file *file)
3703{
3704	struct pid *pid;
3705
3706	pid = pidfd_pid(file);
3707	if (!IS_ERR(pid))
3708		return pid;
3709
3710	return tgid_pidfd_to_pid(file);
3711}
3712
3713/**
3714 * sys_pidfd_send_signal - Signal a process through a pidfd
3715 * @pidfd:  file descriptor of the process
3716 * @sig:    signal to send
3717 * @info:   signal info
3718 * @flags:  future flags
3719 *
3720 * The syscall currently only signals via PIDTYPE_PID which covers
3721 * kill(<positive-pid>, <signal>. It does not signal threads or process
3722 * groups.
3723 * In order to extend the syscall to threads and process groups the @flags
3724 * argument should be used. In essence, the @flags argument will determine
3725 * what is signaled and not the file descriptor itself. Put in other words,
3726 * grouping is a property of the flags argument not a property of the file
3727 * descriptor.
3728 *
3729 * Return: 0 on success, negative errno on failure
3730 */
3731SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3732		siginfo_t __user *, info, unsigned int, flags)
3733{
3734	int ret;
3735	struct fd f;
3736	struct pid *pid;
3737	kernel_siginfo_t kinfo;
3738
3739	/* Enforce flags be set to 0 until we add an extension. */
3740	if (flags)
3741		return -EINVAL;
3742
3743	f = fdget(pidfd);
3744	if (!f.file)
3745		return -EBADF;
3746
3747	/* Is this a pidfd? */
3748	pid = pidfd_to_pid(f.file);
3749	if (IS_ERR(pid)) {
3750		ret = PTR_ERR(pid);
3751		goto err;
3752	}
3753
3754	ret = -EINVAL;
3755	if (!access_pidfd_pidns(pid))
3756		goto err;
3757
3758	if (info) {
3759		ret = copy_siginfo_from_user_any(&kinfo, info);
3760		if (unlikely(ret))
3761			goto err;
3762
3763		ret = -EINVAL;
3764		if (unlikely(sig != kinfo.si_signo))
3765			goto err;
3766
3767		/* Only allow sending arbitrary signals to yourself. */
3768		ret = -EPERM;
3769		if ((task_pid(current) != pid) &&
3770		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3771			goto err;
3772	} else {
3773		prepare_kill_siginfo(sig, &kinfo);
3774	}
3775
3776	ret = kill_pid_info(sig, &kinfo, pid);
3777
3778err:
3779	fdput(f);
3780	return ret;
3781}
3782
3783static int
3784do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3785{
3786	struct task_struct *p;
3787	int error = -ESRCH;
3788
3789	rcu_read_lock();
3790	p = find_task_by_vpid(pid);
3791	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3792		error = check_kill_permission(sig, info, p);
3793		/*
3794		 * The null signal is a permissions and process existence
3795		 * probe.  No signal is actually delivered.
3796		 */
3797		if (!error && sig) {
3798			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3799			/*
3800			 * If lock_task_sighand() failed we pretend the task
3801			 * dies after receiving the signal. The window is tiny,
3802			 * and the signal is private anyway.
3803			 */
3804			if (unlikely(error == -ESRCH))
3805				error = 0;
3806		}
3807	}
3808	rcu_read_unlock();
3809
3810	return error;
3811}
3812
3813static int do_tkill(pid_t tgid, pid_t pid, int sig)
3814{
3815	struct kernel_siginfo info;
3816
3817	clear_siginfo(&info);
3818	info.si_signo = sig;
3819	info.si_errno = 0;
3820	info.si_code = SI_TKILL;
3821	info.si_pid = task_tgid_vnr(current);
3822	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3823
3824	return do_send_specific(tgid, pid, sig, &info);
3825}
3826
3827/**
3828 *  sys_tgkill - send signal to one specific thread
3829 *  @tgid: the thread group ID of the thread
3830 *  @pid: the PID of the thread
3831 *  @sig: signal to be sent
3832 *
3833 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3834 *  exists but it's not belonging to the target process anymore. This
3835 *  method solves the problem of threads exiting and PIDs getting reused.
3836 */
3837SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3838{
3839	/* This is only valid for single tasks */
3840	if (pid <= 0 || tgid <= 0)
3841		return -EINVAL;
3842
3843	return do_tkill(tgid, pid, sig);
3844}
3845
3846/**
3847 *  sys_tkill - send signal to one specific task
3848 *  @pid: the PID of the task
3849 *  @sig: signal to be sent
3850 *
3851 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3852 */
3853SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3854{
3855	/* This is only valid for single tasks */
3856	if (pid <= 0)
3857		return -EINVAL;
3858
3859	return do_tkill(0, pid, sig);
3860}
3861
3862static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3863{
3864	/* Not even root can pretend to send signals from the kernel.
3865	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3866	 */
3867	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3868	    (task_pid_vnr(current) != pid))
3869		return -EPERM;
3870
3871	/* POSIX.1b doesn't mention process groups.  */
3872	return kill_proc_info(sig, info, pid);
3873}
3874
3875/**
3876 *  sys_rt_sigqueueinfo - send signal information to a signal
3877 *  @pid: the PID of the thread
3878 *  @sig: signal to be sent
3879 *  @uinfo: signal info to be sent
3880 */
3881SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3882		siginfo_t __user *, uinfo)
3883{
3884	kernel_siginfo_t info;
3885	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3886	if (unlikely(ret))
3887		return ret;
3888	return do_rt_sigqueueinfo(pid, sig, &info);
3889}
3890
3891#ifdef CONFIG_COMPAT
3892COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3893			compat_pid_t, pid,
3894			int, sig,
3895			struct compat_siginfo __user *, uinfo)
3896{
3897	kernel_siginfo_t info;
3898	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3899	if (unlikely(ret))
3900		return ret;
3901	return do_rt_sigqueueinfo(pid, sig, &info);
3902}
3903#endif
3904
3905static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3906{
3907	/* This is only valid for single tasks */
3908	if (pid <= 0 || tgid <= 0)
3909		return -EINVAL;
3910
3911	/* Not even root can pretend to send signals from the kernel.
3912	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3913	 */
3914	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3915	    (task_pid_vnr(current) != pid))
3916		return -EPERM;
3917
3918	return do_send_specific(tgid, pid, sig, info);
3919}
3920
3921SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3922		siginfo_t __user *, uinfo)
3923{
3924	kernel_siginfo_t info;
3925	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3926	if (unlikely(ret))
3927		return ret;
3928	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929}
3930
3931#ifdef CONFIG_COMPAT
3932COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3933			compat_pid_t, tgid,
3934			compat_pid_t, pid,
3935			int, sig,
3936			struct compat_siginfo __user *, uinfo)
3937{
3938	kernel_siginfo_t info;
3939	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3940	if (unlikely(ret))
3941		return ret;
3942	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3943}
3944#endif
3945
3946/*
3947 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3948 */
3949void kernel_sigaction(int sig, __sighandler_t action)
3950{
3951	spin_lock_irq(&current->sighand->siglock);
3952	current->sighand->action[sig - 1].sa.sa_handler = action;
3953	if (action == SIG_IGN) {
3954		sigset_t mask;
3955
3956		sigemptyset(&mask);
3957		sigaddset(&mask, sig);
3958
3959		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3960		flush_sigqueue_mask(&mask, &current->pending);
3961		recalc_sigpending();
3962	}
3963	spin_unlock_irq(&current->sighand->siglock);
3964}
3965EXPORT_SYMBOL(kernel_sigaction);
3966
3967void __weak sigaction_compat_abi(struct k_sigaction *act,
3968		struct k_sigaction *oact)
3969{
3970}
3971
3972int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3973{
3974	struct task_struct *p = current, *t;
3975	struct k_sigaction *k;
3976	sigset_t mask;
3977
3978	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3979		return -EINVAL;
3980
3981	k = &p->sighand->action[sig-1];
3982
3983	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3984	if (oact)
3985		*oact = *k;
3986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3987	sigaction_compat_abi(act, oact);
3988
3989	if (act) {
3990		sigdelsetmask(&act->sa.sa_mask,
3991			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3992		*k = *act;
3993		/*
3994		 * POSIX 3.3.1.3:
3995		 *  "Setting a signal action to SIG_IGN for a signal that is
3996		 *   pending shall cause the pending signal to be discarded,
3997		 *   whether or not it is blocked."
3998		 *
3999		 *  "Setting a signal action to SIG_DFL for a signal that is
4000		 *   pending and whose default action is to ignore the signal
4001		 *   (for example, SIGCHLD), shall cause the pending signal to
4002		 *   be discarded, whether or not it is blocked"
4003		 */
4004		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4005			sigemptyset(&mask);
4006			sigaddset(&mask, sig);
4007			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4008			for_each_thread(p, t)
4009				flush_sigqueue_mask(&mask, &t->pending);
4010		}
4011	}
4012
4013	spin_unlock_irq(&p->sighand->siglock);
4014	return 0;
4015}
4016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4017static int
4018do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4019		size_t min_ss_size)
4020{
4021	struct task_struct *t = current;
 
4022
4023	if (oss) {
4024		memset(oss, 0, sizeof(stack_t));
4025		oss->ss_sp = (void __user *) t->sas_ss_sp;
4026		oss->ss_size = t->sas_ss_size;
4027		oss->ss_flags = sas_ss_flags(sp) |
4028			(current->sas_ss_flags & SS_FLAG_BITS);
4029	}
4030
4031	if (ss) {
4032		void __user *ss_sp = ss->ss_sp;
4033		size_t ss_size = ss->ss_size;
4034		unsigned ss_flags = ss->ss_flags;
4035		int ss_mode;
4036
4037		if (unlikely(on_sig_stack(sp)))
4038			return -EPERM;
4039
4040		ss_mode = ss_flags & ~SS_FLAG_BITS;
4041		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4042				ss_mode != 0))
4043			return -EINVAL;
4044
 
 
 
 
 
 
 
 
 
 
4045		if (ss_mode == SS_DISABLE) {
4046			ss_size = 0;
4047			ss_sp = NULL;
4048		} else {
4049			if (unlikely(ss_size < min_ss_size))
4050				return -ENOMEM;
 
 
4051		}
4052
4053		t->sas_ss_sp = (unsigned long) ss_sp;
4054		t->sas_ss_size = ss_size;
4055		t->sas_ss_flags = ss_flags;
 
 
4056	}
4057	return 0;
4058}
4059
4060SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4061{
4062	stack_t new, old;
4063	int err;
4064	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4065		return -EFAULT;
4066	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4067			      current_user_stack_pointer(),
4068			      MINSIGSTKSZ);
4069	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4070		err = -EFAULT;
4071	return err;
4072}
4073
4074int restore_altstack(const stack_t __user *uss)
4075{
4076	stack_t new;
4077	if (copy_from_user(&new, uss, sizeof(stack_t)))
4078		return -EFAULT;
4079	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4080			     MINSIGSTKSZ);
4081	/* squash all but EFAULT for now */
4082	return 0;
4083}
4084
4085int __save_altstack(stack_t __user *uss, unsigned long sp)
4086{
4087	struct task_struct *t = current;
4088	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4089		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4090		__put_user(t->sas_ss_size, &uss->ss_size);
4091	if (err)
4092		return err;
4093	if (t->sas_ss_flags & SS_AUTODISARM)
4094		sas_ss_reset(t);
4095	return 0;
4096}
4097
4098#ifdef CONFIG_COMPAT
4099static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4100				 compat_stack_t __user *uoss_ptr)
4101{
4102	stack_t uss, uoss;
4103	int ret;
4104
4105	if (uss_ptr) {
4106		compat_stack_t uss32;
4107		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4108			return -EFAULT;
4109		uss.ss_sp = compat_ptr(uss32.ss_sp);
4110		uss.ss_flags = uss32.ss_flags;
4111		uss.ss_size = uss32.ss_size;
4112	}
4113	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4114			     compat_user_stack_pointer(),
4115			     COMPAT_MINSIGSTKSZ);
4116	if (ret >= 0 && uoss_ptr)  {
4117		compat_stack_t old;
4118		memset(&old, 0, sizeof(old));
4119		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4120		old.ss_flags = uoss.ss_flags;
4121		old.ss_size = uoss.ss_size;
4122		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4123			ret = -EFAULT;
4124	}
4125	return ret;
4126}
4127
4128COMPAT_SYSCALL_DEFINE2(sigaltstack,
4129			const compat_stack_t __user *, uss_ptr,
4130			compat_stack_t __user *, uoss_ptr)
4131{
4132	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4133}
4134
4135int compat_restore_altstack(const compat_stack_t __user *uss)
4136{
4137	int err = do_compat_sigaltstack(uss, NULL);
4138	/* squash all but -EFAULT for now */
4139	return err == -EFAULT ? err : 0;
4140}
4141
4142int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4143{
4144	int err;
4145	struct task_struct *t = current;
4146	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4147			 &uss->ss_sp) |
4148		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4149		__put_user(t->sas_ss_size, &uss->ss_size);
4150	if (err)
4151		return err;
4152	if (t->sas_ss_flags & SS_AUTODISARM)
4153		sas_ss_reset(t);
4154	return 0;
4155}
4156#endif
4157
4158#ifdef __ARCH_WANT_SYS_SIGPENDING
4159
4160/**
4161 *  sys_sigpending - examine pending signals
4162 *  @uset: where mask of pending signal is returned
4163 */
4164SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4165{
4166	sigset_t set;
4167
4168	if (sizeof(old_sigset_t) > sizeof(*uset))
4169		return -EINVAL;
4170
4171	do_sigpending(&set);
4172
4173	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4174		return -EFAULT;
4175
4176	return 0;
4177}
4178
4179#ifdef CONFIG_COMPAT
4180COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4181{
4182	sigset_t set;
4183
4184	do_sigpending(&set);
4185
4186	return put_user(set.sig[0], set32);
4187}
4188#endif
4189
4190#endif
4191
4192#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4193/**
4194 *  sys_sigprocmask - examine and change blocked signals
4195 *  @how: whether to add, remove, or set signals
4196 *  @nset: signals to add or remove (if non-null)
4197 *  @oset: previous value of signal mask if non-null
4198 *
4199 * Some platforms have their own version with special arguments;
4200 * others support only sys_rt_sigprocmask.
4201 */
4202
4203SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4204		old_sigset_t __user *, oset)
4205{
4206	old_sigset_t old_set, new_set;
4207	sigset_t new_blocked;
4208
4209	old_set = current->blocked.sig[0];
4210
4211	if (nset) {
4212		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4213			return -EFAULT;
4214
4215		new_blocked = current->blocked;
4216
4217		switch (how) {
4218		case SIG_BLOCK:
4219			sigaddsetmask(&new_blocked, new_set);
4220			break;
4221		case SIG_UNBLOCK:
4222			sigdelsetmask(&new_blocked, new_set);
4223			break;
4224		case SIG_SETMASK:
4225			new_blocked.sig[0] = new_set;
4226			break;
4227		default:
4228			return -EINVAL;
4229		}
4230
4231		set_current_blocked(&new_blocked);
4232	}
4233
4234	if (oset) {
4235		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4236			return -EFAULT;
4237	}
4238
4239	return 0;
4240}
4241#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4242
4243#ifndef CONFIG_ODD_RT_SIGACTION
4244/**
4245 *  sys_rt_sigaction - alter an action taken by a process
4246 *  @sig: signal to be sent
4247 *  @act: new sigaction
4248 *  @oact: used to save the previous sigaction
4249 *  @sigsetsize: size of sigset_t type
4250 */
4251SYSCALL_DEFINE4(rt_sigaction, int, sig,
4252		const struct sigaction __user *, act,
4253		struct sigaction __user *, oact,
4254		size_t, sigsetsize)
4255{
4256	struct k_sigaction new_sa, old_sa;
4257	int ret;
4258
4259	/* XXX: Don't preclude handling different sized sigset_t's.  */
4260	if (sigsetsize != sizeof(sigset_t))
4261		return -EINVAL;
4262
4263	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4264		return -EFAULT;
4265
4266	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4267	if (ret)
4268		return ret;
4269
4270	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4271		return -EFAULT;
4272
4273	return 0;
4274}
4275#ifdef CONFIG_COMPAT
4276COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4277		const struct compat_sigaction __user *, act,
4278		struct compat_sigaction __user *, oact,
4279		compat_size_t, sigsetsize)
4280{
4281	struct k_sigaction new_ka, old_ka;
4282#ifdef __ARCH_HAS_SA_RESTORER
4283	compat_uptr_t restorer;
4284#endif
4285	int ret;
4286
4287	/* XXX: Don't preclude handling different sized sigset_t's.  */
4288	if (sigsetsize != sizeof(compat_sigset_t))
4289		return -EINVAL;
4290
4291	if (act) {
4292		compat_uptr_t handler;
4293		ret = get_user(handler, &act->sa_handler);
4294		new_ka.sa.sa_handler = compat_ptr(handler);
4295#ifdef __ARCH_HAS_SA_RESTORER
4296		ret |= get_user(restorer, &act->sa_restorer);
4297		new_ka.sa.sa_restorer = compat_ptr(restorer);
4298#endif
4299		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4300		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4301		if (ret)
4302			return -EFAULT;
4303	}
4304
4305	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4306	if (!ret && oact) {
4307		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4308			       &oact->sa_handler);
4309		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4310					 sizeof(oact->sa_mask));
4311		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4312#ifdef __ARCH_HAS_SA_RESTORER
4313		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4314				&oact->sa_restorer);
4315#endif
4316	}
4317	return ret;
4318}
4319#endif
4320#endif /* !CONFIG_ODD_RT_SIGACTION */
4321
4322#ifdef CONFIG_OLD_SIGACTION
4323SYSCALL_DEFINE3(sigaction, int, sig,
4324		const struct old_sigaction __user *, act,
4325	        struct old_sigaction __user *, oact)
4326{
4327	struct k_sigaction new_ka, old_ka;
4328	int ret;
4329
4330	if (act) {
4331		old_sigset_t mask;
4332		if (!access_ok(act, sizeof(*act)) ||
4333		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4334		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4335		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4336		    __get_user(mask, &act->sa_mask))
4337			return -EFAULT;
4338#ifdef __ARCH_HAS_KA_RESTORER
4339		new_ka.ka_restorer = NULL;
4340#endif
4341		siginitset(&new_ka.sa.sa_mask, mask);
4342	}
4343
4344	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4345
4346	if (!ret && oact) {
4347		if (!access_ok(oact, sizeof(*oact)) ||
4348		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4349		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4350		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4351		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4352			return -EFAULT;
4353	}
4354
4355	return ret;
4356}
4357#endif
4358#ifdef CONFIG_COMPAT_OLD_SIGACTION
4359COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4360		const struct compat_old_sigaction __user *, act,
4361	        struct compat_old_sigaction __user *, oact)
4362{
4363	struct k_sigaction new_ka, old_ka;
4364	int ret;
4365	compat_old_sigset_t mask;
4366	compat_uptr_t handler, restorer;
4367
4368	if (act) {
4369		if (!access_ok(act, sizeof(*act)) ||
4370		    __get_user(handler, &act->sa_handler) ||
4371		    __get_user(restorer, &act->sa_restorer) ||
4372		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4373		    __get_user(mask, &act->sa_mask))
4374			return -EFAULT;
4375
4376#ifdef __ARCH_HAS_KA_RESTORER
4377		new_ka.ka_restorer = NULL;
4378#endif
4379		new_ka.sa.sa_handler = compat_ptr(handler);
4380		new_ka.sa.sa_restorer = compat_ptr(restorer);
4381		siginitset(&new_ka.sa.sa_mask, mask);
4382	}
4383
4384	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4385
4386	if (!ret && oact) {
4387		if (!access_ok(oact, sizeof(*oact)) ||
4388		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4389			       &oact->sa_handler) ||
4390		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4391			       &oact->sa_restorer) ||
4392		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4393		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4394			return -EFAULT;
4395	}
4396	return ret;
4397}
4398#endif
4399
4400#ifdef CONFIG_SGETMASK_SYSCALL
4401
4402/*
4403 * For backwards compatibility.  Functionality superseded by sigprocmask.
4404 */
4405SYSCALL_DEFINE0(sgetmask)
4406{
4407	/* SMP safe */
4408	return current->blocked.sig[0];
4409}
4410
4411SYSCALL_DEFINE1(ssetmask, int, newmask)
4412{
4413	int old = current->blocked.sig[0];
4414	sigset_t newset;
4415
4416	siginitset(&newset, newmask);
4417	set_current_blocked(&newset);
4418
4419	return old;
4420}
4421#endif /* CONFIG_SGETMASK_SYSCALL */
4422
4423#ifdef __ARCH_WANT_SYS_SIGNAL
4424/*
4425 * For backwards compatibility.  Functionality superseded by sigaction.
4426 */
4427SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4428{
4429	struct k_sigaction new_sa, old_sa;
4430	int ret;
4431
4432	new_sa.sa.sa_handler = handler;
4433	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4434	sigemptyset(&new_sa.sa.sa_mask);
4435
4436	ret = do_sigaction(sig, &new_sa, &old_sa);
4437
4438	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4439}
4440#endif /* __ARCH_WANT_SYS_SIGNAL */
4441
4442#ifdef __ARCH_WANT_SYS_PAUSE
4443
4444SYSCALL_DEFINE0(pause)
4445{
4446	while (!signal_pending(current)) {
4447		__set_current_state(TASK_INTERRUPTIBLE);
4448		schedule();
4449	}
4450	return -ERESTARTNOHAND;
4451}
4452
4453#endif
4454
4455static int sigsuspend(sigset_t *set)
4456{
4457	current->saved_sigmask = current->blocked;
4458	set_current_blocked(set);
4459
4460	while (!signal_pending(current)) {
4461		__set_current_state(TASK_INTERRUPTIBLE);
4462		schedule();
4463	}
4464	set_restore_sigmask();
4465	return -ERESTARTNOHAND;
4466}
4467
4468/**
4469 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4470 *	@unewset value until a signal is received
4471 *  @unewset: new signal mask value
4472 *  @sigsetsize: size of sigset_t type
4473 */
4474SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4475{
4476	sigset_t newset;
4477
4478	/* XXX: Don't preclude handling different sized sigset_t's.  */
4479	if (sigsetsize != sizeof(sigset_t))
4480		return -EINVAL;
4481
4482	if (copy_from_user(&newset, unewset, sizeof(newset)))
4483		return -EFAULT;
4484	return sigsuspend(&newset);
4485}
4486 
4487#ifdef CONFIG_COMPAT
4488COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4489{
4490	sigset_t newset;
4491
4492	/* XXX: Don't preclude handling different sized sigset_t's.  */
4493	if (sigsetsize != sizeof(sigset_t))
4494		return -EINVAL;
4495
4496	if (get_compat_sigset(&newset, unewset))
4497		return -EFAULT;
4498	return sigsuspend(&newset);
4499}
4500#endif
4501
4502#ifdef CONFIG_OLD_SIGSUSPEND
4503SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4504{
4505	sigset_t blocked;
4506	siginitset(&blocked, mask);
4507	return sigsuspend(&blocked);
4508}
4509#endif
4510#ifdef CONFIG_OLD_SIGSUSPEND3
4511SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4512{
4513	sigset_t blocked;
4514	siginitset(&blocked, mask);
4515	return sigsuspend(&blocked);
4516}
4517#endif
4518
4519__weak const char *arch_vma_name(struct vm_area_struct *vma)
4520{
4521	return NULL;
4522}
4523
4524static inline void siginfo_buildtime_checks(void)
4525{
4526	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4527
4528	/* Verify the offsets in the two siginfos match */
4529#define CHECK_OFFSET(field) \
4530	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4531
4532	/* kill */
4533	CHECK_OFFSET(si_pid);
4534	CHECK_OFFSET(si_uid);
4535
4536	/* timer */
4537	CHECK_OFFSET(si_tid);
4538	CHECK_OFFSET(si_overrun);
4539	CHECK_OFFSET(si_value);
4540
4541	/* rt */
4542	CHECK_OFFSET(si_pid);
4543	CHECK_OFFSET(si_uid);
4544	CHECK_OFFSET(si_value);
4545
4546	/* sigchld */
4547	CHECK_OFFSET(si_pid);
4548	CHECK_OFFSET(si_uid);
4549	CHECK_OFFSET(si_status);
4550	CHECK_OFFSET(si_utime);
4551	CHECK_OFFSET(si_stime);
4552
4553	/* sigfault */
4554	CHECK_OFFSET(si_addr);
 
4555	CHECK_OFFSET(si_addr_lsb);
4556	CHECK_OFFSET(si_lower);
4557	CHECK_OFFSET(si_upper);
4558	CHECK_OFFSET(si_pkey);
 
 
 
4559
4560	/* sigpoll */
4561	CHECK_OFFSET(si_band);
4562	CHECK_OFFSET(si_fd);
4563
4564	/* sigsys */
4565	CHECK_OFFSET(si_call_addr);
4566	CHECK_OFFSET(si_syscall);
4567	CHECK_OFFSET(si_arch);
4568#undef CHECK_OFFSET
4569
4570	/* usb asyncio */
4571	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4572		     offsetof(struct siginfo, si_addr));
4573	if (sizeof(int) == sizeof(void __user *)) {
4574		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4575			     sizeof(void __user *));
4576	} else {
4577		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4578			      sizeof_field(struct siginfo, si_uid)) !=
4579			     sizeof(void __user *));
4580		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4581			     offsetof(struct siginfo, si_uid));
4582	}
4583#ifdef CONFIG_COMPAT
4584	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4585		     offsetof(struct compat_siginfo, si_addr));
4586	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4587		     sizeof(compat_uptr_t));
4588	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4589		     sizeof_field(struct siginfo, si_pid));
4590#endif
4591}
4592
4593void __init signals_init(void)
4594{
4595	siginfo_buildtime_checks();
4596
4597	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4598}
4599
4600#ifdef CONFIG_KGDB_KDB
4601#include <linux/kdb.h>
4602/*
4603 * kdb_send_sig - Allows kdb to send signals without exposing
4604 * signal internals.  This function checks if the required locks are
4605 * available before calling the main signal code, to avoid kdb
4606 * deadlocks.
4607 */
4608void kdb_send_sig(struct task_struct *t, int sig)
4609{
4610	static struct task_struct *kdb_prev_t;
4611	int new_t, ret;
4612	if (!spin_trylock(&t->sighand->siglock)) {
4613		kdb_printf("Can't do kill command now.\n"
4614			   "The sigmask lock is held somewhere else in "
4615			   "kernel, try again later\n");
4616		return;
4617	}
4618	new_t = kdb_prev_t != t;
4619	kdb_prev_t = t;
4620	if (t->state != TASK_RUNNING && new_t) {
4621		spin_unlock(&t->sighand->siglock);
4622		kdb_printf("Process is not RUNNING, sending a signal from "
4623			   "kdb risks deadlock\n"
4624			   "on the run queue locks. "
4625			   "The signal has _not_ been sent.\n"
4626			   "Reissue the kill command if you want to risk "
4627			   "the deadlock.\n");
4628		return;
4629	}
4630	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4631	spin_unlock(&t->sighand->siglock);
4632	if (ret)
4633		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4634			   sig, t->pid);
4635	else
4636		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4637}
4638#endif	/* CONFIG_KGDB_KDB */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
 
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 
 
 
 
 
 
 
 
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 802}
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
 
 
 
 
 
 
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
1393			break;
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
 
 
 
 
 
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
 
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
 
 
 
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
 
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
 
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
 
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
 
 
 
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
 
 
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
2303	 */
2304	preempt_disable();
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
2308	schedule();
2309	cgroup_leave_frozen(true);
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
 
2574	if (signr == 0)
2575		return signr;
2576
 
 
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
 
 
 
 
 
 
 
 
 
 
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
3233	sigset_t set;
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
 
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3415		to->si_addr_lsb = from->si_addr_lsb;
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
 
 
 
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
3454{
3455	struct compat_siginfo new;
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
 
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
3985		return -EPERM;
3986
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
4032		return -EPERM;
4033
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
4224	}
4225	return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
 
 
 
 
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
4265{
4266	stack_t uss, uoss;
4267	int ret;
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
 
 
 
 
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650	sigset_t newset;
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
4658	return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */