Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/genhd.h>
  20#include <linux/device.h>
  21#include <linux/bio.h>
  22#include <linux/blkdev.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/pm.h>
  26#include <linux/slab.h>
  27#include <linux/lzo.h>
  28#include <linux/vmalloc.h>
  29#include <linux/cpumask.h>
  30#include <linux/atomic.h>
  31#include <linux/kthread.h>
  32#include <linux/crc32.h>
  33#include <linux/ktime.h>
  34
  35#include "power.h"
  36
  37#define HIBERNATE_SIG	"S1SUSPEND"
  38
 
 
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/**
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32)];
 
 108	u32	crc32;
 109	sector_t image;
 110	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 111	char	orig_sig[10];
 112	char	sig[10];
 113} __packed;
 114
 115static struct swsusp_header *swsusp_header;
 116
 117/**
 118 *	The following functions are used for tracing the allocated
 119 *	swap pages, so that they can be freed in case of an error.
 120 */
 121
 122struct swsusp_extent {
 123	struct rb_node node;
 124	unsigned long start;
 125	unsigned long end;
 126};
 127
 128static struct rb_root swsusp_extents = RB_ROOT;
 129
 130static int swsusp_extents_insert(unsigned long swap_offset)
 131{
 132	struct rb_node **new = &(swsusp_extents.rb_node);
 133	struct rb_node *parent = NULL;
 134	struct swsusp_extent *ext;
 135
 136	/* Figure out where to put the new node */
 137	while (*new) {
 138		ext = rb_entry(*new, struct swsusp_extent, node);
 139		parent = *new;
 140		if (swap_offset < ext->start) {
 141			/* Try to merge */
 142			if (swap_offset == ext->start - 1) {
 143				ext->start--;
 144				return 0;
 145			}
 146			new = &((*new)->rb_left);
 147		} else if (swap_offset > ext->end) {
 148			/* Try to merge */
 149			if (swap_offset == ext->end + 1) {
 150				ext->end++;
 151				return 0;
 152			}
 153			new = &((*new)->rb_right);
 154		} else {
 155			/* It already is in the tree */
 156			return -EINVAL;
 157		}
 158	}
 159	/* Add the new node and rebalance the tree. */
 160	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 161	if (!ext)
 162		return -ENOMEM;
 163
 164	ext->start = swap_offset;
 165	ext->end = swap_offset;
 166	rb_link_node(&ext->node, parent, new);
 167	rb_insert_color(&ext->node, &swsusp_extents);
 168	return 0;
 169}
 170
 171/**
 172 *	alloc_swapdev_block - allocate a swap page and register that it has
 173 *	been allocated, so that it can be freed in case of an error.
 174 */
 175
 176sector_t alloc_swapdev_block(int swap)
 177{
 178	unsigned long offset;
 179
 180	offset = swp_offset(get_swap_page_of_type(swap));
 181	if (offset) {
 182		if (swsusp_extents_insert(offset))
 183			swap_free(swp_entry(swap, offset));
 184		else
 185			return swapdev_block(swap, offset);
 186	}
 187	return 0;
 188}
 189
 190/**
 191 *	free_all_swap_pages - free swap pages allocated for saving image data.
 192 *	It also frees the extents used to register which swap entries had been
 193 *	allocated.
 194 */
 195
 196void free_all_swap_pages(int swap)
 197{
 198	struct rb_node *node;
 199
 200	while ((node = swsusp_extents.rb_node)) {
 201		struct swsusp_extent *ext;
 202		unsigned long offset;
 203
 204		ext = rb_entry(node, struct swsusp_extent, node);
 205		rb_erase(node, &swsusp_extents);
 206		for (offset = ext->start; offset <= ext->end; offset++)
 207			swap_free(swp_entry(swap, offset));
 208
 209		kfree(ext);
 210	}
 211}
 212
 213int swsusp_swap_in_use(void)
 214{
 215	return (swsusp_extents.rb_node != NULL);
 216}
 217
 218/*
 219 * General things
 220 */
 221
 222static unsigned short root_swap = 0xffff;
 223static struct block_device *hib_resume_bdev;
 224
 225struct hib_bio_batch {
 226	atomic_t		count;
 227	wait_queue_head_t	wait;
 228	blk_status_t		error;
 
 229};
 230
 231static void hib_init_batch(struct hib_bio_batch *hb)
 232{
 233	atomic_set(&hb->count, 0);
 234	init_waitqueue_head(&hb->wait);
 235	hb->error = BLK_STS_OK;
 
 
 
 
 
 
 236}
 237
 238static void hib_end_io(struct bio *bio)
 239{
 240	struct hib_bio_batch *hb = bio->bi_private;
 241	struct page *page = bio_first_page_all(bio);
 242
 243	if (bio->bi_status) {
 244		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 245			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 246			 (unsigned long long)bio->bi_iter.bi_sector);
 247	}
 248
 249	if (bio_data_dir(bio) == WRITE)
 250		put_page(page);
 251	else if (clean_pages_on_read)
 252		flush_icache_range((unsigned long)page_address(page),
 253				   (unsigned long)page_address(page) + PAGE_SIZE);
 254
 255	if (bio->bi_status && !hb->error)
 256		hb->error = bio->bi_status;
 257	if (atomic_dec_and_test(&hb->count))
 258		wake_up(&hb->wait);
 259
 260	bio_put(bio);
 261}
 262
 263static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
 264		struct hib_bio_batch *hb)
 265{
 266	struct page *page = virt_to_page(addr);
 267	struct bio *bio;
 268	int error = 0;
 269
 270	bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
 
 271	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 272	bio_set_dev(bio, hib_resume_bdev);
 273	bio_set_op_attrs(bio, op, op_flags);
 274
 275	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 276		pr_err("Adding page to bio failed at %llu\n",
 277		       (unsigned long long)bio->bi_iter.bi_sector);
 278		bio_put(bio);
 279		return -EFAULT;
 280	}
 281
 282	if (hb) {
 283		bio->bi_end_io = hib_end_io;
 284		bio->bi_private = hb;
 285		atomic_inc(&hb->count);
 286		submit_bio(bio);
 287	} else {
 288		error = submit_bio_wait(bio);
 289		bio_put(bio);
 290	}
 291
 292	return error;
 293}
 294
 295static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
 296{
 
 
 
 
 297	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 298	return blk_status_to_errno(hb->error);
 299}
 300
 301/*
 302 * Saving part
 303 */
 304
 305static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 306{
 307	int error;
 308
 309	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
 310		      swsusp_header, NULL);
 311	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 312	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 313		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 314		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 315		swsusp_header->image = handle->first_sector;
 
 
 
 
 316		swsusp_header->flags = flags;
 317		if (flags & SF_CRC32_MODE)
 318			swsusp_header->crc32 = handle->crc32;
 319		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
 320				      swsusp_resume_block, swsusp_header, NULL);
 321	} else {
 322		pr_err("Swap header not found!\n");
 323		error = -ENODEV;
 324	}
 325	return error;
 326}
 327
 
 
 
 
 
 
 
 328/**
 329 *	swsusp_swap_check - check if the resume device is a swap device
 330 *	and get its index (if so)
 331 *
 332 *	This is called before saving image
 333 */
 334static int swsusp_swap_check(void)
 335{
 336	int res;
 337
 338	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 339			&hib_resume_bdev);
 
 
 340	if (res < 0)
 341		return res;
 342
 343	root_swap = res;
 344	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 345	if (res)
 346		return res;
 347
 348	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 
 
 
 
 
 349	if (res < 0)
 350		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 351
 352	/*
 353	 * Update the resume device to the one actually used,
 354	 * so the test_resume mode can use it in case it is
 355	 * invoked from hibernate() to test the snapshot.
 356	 */
 357	swsusp_resume_device = hib_resume_bdev->bd_dev;
 358	return res;
 359}
 360
 361/**
 362 *	write_page - Write one page to given swap location.
 363 *	@buf:		Address we're writing.
 364 *	@offset:	Offset of the swap page we're writing to.
 365 *	@hb:		bio completion batch
 366 */
 367
 368static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 369{
 370	void *src;
 371	int ret;
 372
 373	if (!offset)
 374		return -ENOSPC;
 375
 376	if (hb) {
 377		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 378		                              __GFP_NORETRY);
 379		if (src) {
 380			copy_page(src, buf);
 381		} else {
 382			ret = hib_wait_io(hb); /* Free pages */
 383			if (ret)
 384				return ret;
 385			src = (void *)__get_free_page(GFP_NOIO |
 386			                              __GFP_NOWARN |
 387			                              __GFP_NORETRY);
 388			if (src) {
 389				copy_page(src, buf);
 390			} else {
 391				WARN_ON_ONCE(1);
 392				hb = NULL;	/* Go synchronous */
 393				src = buf;
 394			}
 395		}
 396	} else {
 397		src = buf;
 398	}
 399	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
 400}
 401
 402static void release_swap_writer(struct swap_map_handle *handle)
 403{
 404	if (handle->cur)
 405		free_page((unsigned long)handle->cur);
 406	handle->cur = NULL;
 407}
 408
 409static int get_swap_writer(struct swap_map_handle *handle)
 410{
 411	int ret;
 412
 413	ret = swsusp_swap_check();
 414	if (ret) {
 415		if (ret != -ENOSPC)
 416			pr_err("Cannot find swap device, try swapon -a\n");
 417		return ret;
 418	}
 419	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 420	if (!handle->cur) {
 421		ret = -ENOMEM;
 422		goto err_close;
 423	}
 424	handle->cur_swap = alloc_swapdev_block(root_swap);
 425	if (!handle->cur_swap) {
 426		ret = -ENOSPC;
 427		goto err_rel;
 428	}
 429	handle->k = 0;
 430	handle->reqd_free_pages = reqd_free_pages();
 431	handle->first_sector = handle->cur_swap;
 432	return 0;
 433err_rel:
 434	release_swap_writer(handle);
 435err_close:
 436	swsusp_close(FMODE_WRITE);
 437	return ret;
 438}
 439
 440static int swap_write_page(struct swap_map_handle *handle, void *buf,
 441		struct hib_bio_batch *hb)
 442{
 443	int error = 0;
 444	sector_t offset;
 445
 446	if (!handle->cur)
 447		return -EINVAL;
 448	offset = alloc_swapdev_block(root_swap);
 449	error = write_page(buf, offset, hb);
 450	if (error)
 451		return error;
 452	handle->cur->entries[handle->k++] = offset;
 453	if (handle->k >= MAP_PAGE_ENTRIES) {
 454		offset = alloc_swapdev_block(root_swap);
 455		if (!offset)
 456			return -ENOSPC;
 457		handle->cur->next_swap = offset;
 458		error = write_page(handle->cur, handle->cur_swap, hb);
 459		if (error)
 460			goto out;
 461		clear_page(handle->cur);
 462		handle->cur_swap = offset;
 463		handle->k = 0;
 464
 465		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 466			error = hib_wait_io(hb);
 467			if (error)
 468				goto out;
 469			/*
 470			 * Recalculate the number of required free pages, to
 471			 * make sure we never take more than half.
 472			 */
 473			handle->reqd_free_pages = reqd_free_pages();
 474		}
 475	}
 476 out:
 477	return error;
 478}
 479
 480static int flush_swap_writer(struct swap_map_handle *handle)
 481{
 482	if (handle->cur && handle->cur_swap)
 483		return write_page(handle->cur, handle->cur_swap, NULL);
 484	else
 485		return -EINVAL;
 486}
 487
 488static int swap_writer_finish(struct swap_map_handle *handle,
 489		unsigned int flags, int error)
 490{
 491	if (!error) {
 492		flush_swap_writer(handle);
 493		pr_info("S");
 494		error = mark_swapfiles(handle, flags);
 495		pr_cont("|\n");
 
 496	}
 497
 498	if (error)
 499		free_all_swap_pages(root_swap);
 500	release_swap_writer(handle);
 501	swsusp_close(FMODE_WRITE);
 502
 503	return error;
 504}
 505
 
 
 
 
 
 
 506/* We need to remember how much compressed data we need to read. */
 507#define LZO_HEADER	sizeof(size_t)
 508
 509/* Number of pages/bytes we'll compress at one time. */
 510#define LZO_UNC_PAGES	32
 511#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 512
 513/* Number of pages/bytes we need for compressed data (worst case). */
 514#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 515			             LZO_HEADER, PAGE_SIZE)
 516#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 517
 518/* Maximum number of threads for compression/decompression. */
 519#define LZO_THREADS	3
 520
 521/* Minimum/maximum number of pages for read buffering. */
 522#define LZO_MIN_RD_PAGES	1024
 523#define LZO_MAX_RD_PAGES	8192
 524
 525
 526/**
 527 *	save_image - save the suspend image data
 528 */
 529
 530static int save_image(struct swap_map_handle *handle,
 531                      struct snapshot_handle *snapshot,
 532                      unsigned int nr_to_write)
 533{
 534	unsigned int m;
 535	int ret;
 536	int nr_pages;
 537	int err2;
 538	struct hib_bio_batch hb;
 539	ktime_t start;
 540	ktime_t stop;
 541
 542	hib_init_batch(&hb);
 543
 544	pr_info("Saving image data pages (%u pages)...\n",
 545		nr_to_write);
 546	m = nr_to_write / 10;
 547	if (!m)
 548		m = 1;
 549	nr_pages = 0;
 550	start = ktime_get();
 551	while (1) {
 552		ret = snapshot_read_next(snapshot);
 553		if (ret <= 0)
 554			break;
 555		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 556		if (ret)
 557			break;
 558		if (!(nr_pages % m))
 559			pr_info("Image saving progress: %3d%%\n",
 560				nr_pages / m * 10);
 561		nr_pages++;
 562	}
 563	err2 = hib_wait_io(&hb);
 
 564	stop = ktime_get();
 565	if (!ret)
 566		ret = err2;
 567	if (!ret)
 568		pr_info("Image saving done\n");
 569	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 570	return ret;
 571}
 572
 573/**
 574 * Structure used for CRC32.
 575 */
 576struct crc_data {
 577	struct task_struct *thr;                  /* thread */
 578	atomic_t ready;                           /* ready to start flag */
 579	atomic_t stop;                            /* ready to stop flag */
 580	unsigned run_threads;                     /* nr current threads */
 581	wait_queue_head_t go;                     /* start crc update */
 582	wait_queue_head_t done;                   /* crc update done */
 583	u32 *crc32;                               /* points to handle's crc32 */
 584	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 585	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 586};
 587
 588/**
 589 * CRC32 update function that runs in its own thread.
 590 */
 591static int crc32_threadfn(void *data)
 592{
 593	struct crc_data *d = data;
 594	unsigned i;
 595
 596	while (1) {
 597		wait_event(d->go, atomic_read(&d->ready) ||
 598		                  kthread_should_stop());
 599		if (kthread_should_stop()) {
 600			d->thr = NULL;
 601			atomic_set(&d->stop, 1);
 602			wake_up(&d->done);
 603			break;
 604		}
 605		atomic_set(&d->ready, 0);
 606
 607		for (i = 0; i < d->run_threads; i++)
 608			*d->crc32 = crc32_le(*d->crc32,
 609			                     d->unc[i], *d->unc_len[i]);
 610		atomic_set(&d->stop, 1);
 611		wake_up(&d->done);
 612	}
 613	return 0;
 614}
 615/**
 616 * Structure used for LZO data compression.
 617 */
 618struct cmp_data {
 619	struct task_struct *thr;                  /* thread */
 
 620	atomic_t ready;                           /* ready to start flag */
 621	atomic_t stop;                            /* ready to stop flag */
 622	int ret;                                  /* return code */
 623	wait_queue_head_t go;                     /* start compression */
 624	wait_queue_head_t done;                   /* compression done */
 625	size_t unc_len;                           /* uncompressed length */
 626	size_t cmp_len;                           /* compressed length */
 627	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 628	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 629	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 630};
 631
 632/**
 
 
 
 633 * Compression function that runs in its own thread.
 634 */
 635static int lzo_compress_threadfn(void *data)
 636{
 637	struct cmp_data *d = data;
 
 638
 639	while (1) {
 640		wait_event(d->go, atomic_read(&d->ready) ||
 641		                  kthread_should_stop());
 642		if (kthread_should_stop()) {
 643			d->thr = NULL;
 644			d->ret = -1;
 645			atomic_set(&d->stop, 1);
 646			wake_up(&d->done);
 647			break;
 648		}
 649		atomic_set(&d->ready, 0);
 650
 651		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 652		                          d->cmp + LZO_HEADER, &d->cmp_len,
 653		                          d->wrk);
 654		atomic_set(&d->stop, 1);
 
 
 
 
 655		wake_up(&d->done);
 656	}
 657	return 0;
 658}
 659
 660/**
 661 * save_image_lzo - Save the suspend image data compressed with LZO.
 662 * @handle: Swap map handle to use for saving the image.
 663 * @snapshot: Image to read data from.
 664 * @nr_to_write: Number of pages to save.
 665 */
 666static int save_image_lzo(struct swap_map_handle *handle,
 667                          struct snapshot_handle *snapshot,
 668                          unsigned int nr_to_write)
 669{
 670	unsigned int m;
 671	int ret = 0;
 672	int nr_pages;
 673	int err2;
 674	struct hib_bio_batch hb;
 675	ktime_t start;
 676	ktime_t stop;
 677	size_t off;
 678	unsigned thr, run_threads, nr_threads;
 679	unsigned char *page = NULL;
 680	struct cmp_data *data = NULL;
 681	struct crc_data *crc = NULL;
 682
 683	hib_init_batch(&hb);
 684
 
 
 685	/*
 686	 * We'll limit the number of threads for compression to limit memory
 687	 * footprint.
 688	 */
 689	nr_threads = num_online_cpus() - 1;
 690	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 691
 692	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 693	if (!page) {
 694		pr_err("Failed to allocate LZO page\n");
 695		ret = -ENOMEM;
 696		goto out_clean;
 697	}
 698
 699	data = vmalloc(array_size(nr_threads, sizeof(*data)));
 700	if (!data) {
 701		pr_err("Failed to allocate LZO data\n");
 702		ret = -ENOMEM;
 703		goto out_clean;
 704	}
 705	for (thr = 0; thr < nr_threads; thr++)
 706		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 707
 708	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 709	if (!crc) {
 710		pr_err("Failed to allocate crc\n");
 711		ret = -ENOMEM;
 712		goto out_clean;
 713	}
 714	memset(crc, 0, offsetof(struct crc_data, go));
 715
 716	/*
 717	 * Start the compression threads.
 718	 */
 719	for (thr = 0; thr < nr_threads; thr++) {
 720		init_waitqueue_head(&data[thr].go);
 721		init_waitqueue_head(&data[thr].done);
 722
 723		data[thr].thr = kthread_run(lzo_compress_threadfn,
 
 
 
 
 
 
 
 724		                            &data[thr],
 725		                            "image_compress/%u", thr);
 726		if (IS_ERR(data[thr].thr)) {
 727			data[thr].thr = NULL;
 728			pr_err("Cannot start compression threads\n");
 729			ret = -ENOMEM;
 730			goto out_clean;
 731		}
 732	}
 733
 734	/*
 735	 * Start the CRC32 thread.
 736	 */
 737	init_waitqueue_head(&crc->go);
 738	init_waitqueue_head(&crc->done);
 739
 740	handle->crc32 = 0;
 741	crc->crc32 = &handle->crc32;
 742	for (thr = 0; thr < nr_threads; thr++) {
 743		crc->unc[thr] = data[thr].unc;
 744		crc->unc_len[thr] = &data[thr].unc_len;
 745	}
 746
 747	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 748	if (IS_ERR(crc->thr)) {
 749		crc->thr = NULL;
 750		pr_err("Cannot start CRC32 thread\n");
 751		ret = -ENOMEM;
 752		goto out_clean;
 753	}
 754
 755	/*
 756	 * Adjust the number of required free pages after all allocations have
 757	 * been done. We don't want to run out of pages when writing.
 758	 */
 759	handle->reqd_free_pages = reqd_free_pages();
 760
 761	pr_info("Using %u thread(s) for compression\n", nr_threads);
 762	pr_info("Compressing and saving image data (%u pages)...\n",
 763		nr_to_write);
 764	m = nr_to_write / 10;
 765	if (!m)
 766		m = 1;
 767	nr_pages = 0;
 768	start = ktime_get();
 769	for (;;) {
 770		for (thr = 0; thr < nr_threads; thr++) {
 771			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 772				ret = snapshot_read_next(snapshot);
 773				if (ret < 0)
 774					goto out_finish;
 775
 776				if (!ret)
 777					break;
 778
 779				memcpy(data[thr].unc + off,
 780				       data_of(*snapshot), PAGE_SIZE);
 781
 782				if (!(nr_pages % m))
 783					pr_info("Image saving progress: %3d%%\n",
 784						nr_pages / m * 10);
 785				nr_pages++;
 786			}
 787			if (!off)
 788				break;
 789
 790			data[thr].unc_len = off;
 791
 792			atomic_set(&data[thr].ready, 1);
 793			wake_up(&data[thr].go);
 794		}
 795
 796		if (!thr)
 797			break;
 798
 799		crc->run_threads = thr;
 800		atomic_set(&crc->ready, 1);
 801		wake_up(&crc->go);
 802
 803		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 804			wait_event(data[thr].done,
 805			           atomic_read(&data[thr].stop));
 806			atomic_set(&data[thr].stop, 0);
 807
 808			ret = data[thr].ret;
 809
 810			if (ret < 0) {
 811				pr_err("LZO compression failed\n");
 812				goto out_finish;
 813			}
 814
 815			if (unlikely(!data[thr].cmp_len ||
 816			             data[thr].cmp_len >
 817			             lzo1x_worst_compress(data[thr].unc_len))) {
 818				pr_err("Invalid LZO compressed length\n");
 819				ret = -1;
 820				goto out_finish;
 821			}
 822
 823			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 824
 825			/*
 826			 * Given we are writing one page at a time to disk, we
 827			 * copy that much from the buffer, although the last
 828			 * bit will likely be smaller than full page. This is
 829			 * OK - we saved the length of the compressed data, so
 830			 * any garbage at the end will be discarded when we
 831			 * read it.
 832			 */
 833			for (off = 0;
 834			     off < LZO_HEADER + data[thr].cmp_len;
 835			     off += PAGE_SIZE) {
 836				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 837
 838				ret = swap_write_page(handle, page, &hb);
 839				if (ret)
 840					goto out_finish;
 841			}
 842		}
 843
 844		wait_event(crc->done, atomic_read(&crc->stop));
 845		atomic_set(&crc->stop, 0);
 846	}
 847
 848out_finish:
 849	err2 = hib_wait_io(&hb);
 850	stop = ktime_get();
 851	if (!ret)
 852		ret = err2;
 853	if (!ret)
 854		pr_info("Image saving done\n");
 855	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 
 
 
 856out_clean:
 
 857	if (crc) {
 858		if (crc->thr)
 859			kthread_stop(crc->thr);
 860		kfree(crc);
 861	}
 862	if (data) {
 863		for (thr = 0; thr < nr_threads; thr++)
 864			if (data[thr].thr)
 865				kthread_stop(data[thr].thr);
 
 
 
 866		vfree(data);
 867	}
 868	if (page) free_page((unsigned long)page);
 869
 870	return ret;
 871}
 872
 873/**
 874 *	enough_swap - Make sure we have enough swap to save the image.
 875 *
 876 *	Returns TRUE or FALSE after checking the total amount of swap
 877 *	space avaiable from the resume partition.
 878 */
 879
 880static int enough_swap(unsigned int nr_pages)
 881{
 882	unsigned int free_swap = count_swap_pages(root_swap, 1);
 883	unsigned int required;
 884
 885	pr_debug("Free swap pages: %u\n", free_swap);
 886
 887	required = PAGES_FOR_IO + nr_pages;
 888	return free_swap > required;
 889}
 890
 891/**
 892 *	swsusp_write - Write entire image and metadata.
 893 *	@flags: flags to pass to the "boot" kernel in the image header
 894 *
 895 *	It is important _NOT_ to umount filesystems at this point. We want
 896 *	them synced (in case something goes wrong) but we DO not want to mark
 897 *	filesystem clean: it is not. (And it does not matter, if we resume
 898 *	correctly, we'll mark system clean, anyway.)
 899 */
 900
 901int swsusp_write(unsigned int flags)
 902{
 903	struct swap_map_handle handle;
 904	struct snapshot_handle snapshot;
 905	struct swsusp_info *header;
 906	unsigned long pages;
 907	int error;
 908
 909	pages = snapshot_get_image_size();
 910	error = get_swap_writer(&handle);
 911	if (error) {
 912		pr_err("Cannot get swap writer\n");
 913		return error;
 914	}
 915	if (flags & SF_NOCOMPRESS_MODE) {
 916		if (!enough_swap(pages)) {
 917			pr_err("Not enough free swap\n");
 918			error = -ENOSPC;
 919			goto out_finish;
 920		}
 921	}
 922	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 923	error = snapshot_read_next(&snapshot);
 924	if (error < (int)PAGE_SIZE) {
 925		if (error >= 0)
 926			error = -EFAULT;
 927
 928		goto out_finish;
 929	}
 930	header = (struct swsusp_info *)data_of(snapshot);
 931	error = swap_write_page(&handle, header, NULL);
 932	if (!error) {
 933		error = (flags & SF_NOCOMPRESS_MODE) ?
 934			save_image(&handle, &snapshot, pages - 1) :
 935			save_image_lzo(&handle, &snapshot, pages - 1);
 936	}
 937out_finish:
 938	error = swap_writer_finish(&handle, flags, error);
 939	return error;
 940}
 941
 942/**
 943 *	The following functions allow us to read data using a swap map
 944 *	in a file-alike way
 945 */
 946
 947static void release_swap_reader(struct swap_map_handle *handle)
 948{
 949	struct swap_map_page_list *tmp;
 950
 951	while (handle->maps) {
 952		if (handle->maps->map)
 953			free_page((unsigned long)handle->maps->map);
 954		tmp = handle->maps;
 955		handle->maps = handle->maps->next;
 956		kfree(tmp);
 957	}
 958	handle->cur = NULL;
 959}
 960
 961static int get_swap_reader(struct swap_map_handle *handle,
 962		unsigned int *flags_p)
 963{
 964	int error;
 965	struct swap_map_page_list *tmp, *last;
 966	sector_t offset;
 967
 968	*flags_p = swsusp_header->flags;
 969
 970	if (!swsusp_header->image) /* how can this happen? */
 971		return -EINVAL;
 972
 973	handle->cur = NULL;
 974	last = handle->maps = NULL;
 975	offset = swsusp_header->image;
 976	while (offset) {
 977		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
 978		if (!tmp) {
 979			release_swap_reader(handle);
 980			return -ENOMEM;
 981		}
 982		if (!handle->maps)
 983			handle->maps = tmp;
 984		if (last)
 985			last->next = tmp;
 986		last = tmp;
 987
 988		tmp->map = (struct swap_map_page *)
 989			   __get_free_page(GFP_NOIO | __GFP_HIGH);
 990		if (!tmp->map) {
 991			release_swap_reader(handle);
 992			return -ENOMEM;
 993		}
 994
 995		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
 996		if (error) {
 997			release_swap_reader(handle);
 998			return error;
 999		}
1000		offset = tmp->map->next_swap;
1001	}
1002	handle->k = 0;
1003	handle->cur = handle->maps->map;
1004	return 0;
1005}
1006
1007static int swap_read_page(struct swap_map_handle *handle, void *buf,
1008		struct hib_bio_batch *hb)
1009{
1010	sector_t offset;
1011	int error;
1012	struct swap_map_page_list *tmp;
1013
1014	if (!handle->cur)
1015		return -EINVAL;
1016	offset = handle->cur->entries[handle->k];
1017	if (!offset)
1018		return -EFAULT;
1019	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1020	if (error)
1021		return error;
1022	if (++handle->k >= MAP_PAGE_ENTRIES) {
1023		handle->k = 0;
1024		free_page((unsigned long)handle->maps->map);
1025		tmp = handle->maps;
1026		handle->maps = handle->maps->next;
1027		kfree(tmp);
1028		if (!handle->maps)
1029			release_swap_reader(handle);
1030		else
1031			handle->cur = handle->maps->map;
1032	}
1033	return error;
1034}
1035
1036static int swap_reader_finish(struct swap_map_handle *handle)
1037{
1038	release_swap_reader(handle);
1039
1040	return 0;
1041}
1042
1043/**
1044 *	load_image - load the image using the swap map handle
1045 *	@handle and the snapshot handle @snapshot
1046 *	(assume there are @nr_pages pages to load)
1047 */
1048
1049static int load_image(struct swap_map_handle *handle,
1050                      struct snapshot_handle *snapshot,
1051                      unsigned int nr_to_read)
1052{
1053	unsigned int m;
1054	int ret = 0;
1055	ktime_t start;
1056	ktime_t stop;
1057	struct hib_bio_batch hb;
1058	int err2;
1059	unsigned nr_pages;
1060
1061	hib_init_batch(&hb);
1062
1063	clean_pages_on_read = true;
1064	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1065	m = nr_to_read / 10;
1066	if (!m)
1067		m = 1;
1068	nr_pages = 0;
1069	start = ktime_get();
1070	for ( ; ; ) {
1071		ret = snapshot_write_next(snapshot);
1072		if (ret <= 0)
1073			break;
1074		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1075		if (ret)
1076			break;
1077		if (snapshot->sync_read)
1078			ret = hib_wait_io(&hb);
1079		if (ret)
1080			break;
1081		if (!(nr_pages % m))
1082			pr_info("Image loading progress: %3d%%\n",
1083				nr_pages / m * 10);
1084		nr_pages++;
1085	}
1086	err2 = hib_wait_io(&hb);
 
1087	stop = ktime_get();
1088	if (!ret)
1089		ret = err2;
1090	if (!ret) {
1091		pr_info("Image loading done\n");
1092		snapshot_write_finalize(snapshot);
1093		if (!snapshot_image_loaded(snapshot))
1094			ret = -ENODATA;
1095	}
1096	swsusp_show_speed(start, stop, nr_to_read, "Read");
1097	return ret;
1098}
1099
1100/**
1101 * Structure used for LZO data decompression.
1102 */
1103struct dec_data {
1104	struct task_struct *thr;                  /* thread */
 
1105	atomic_t ready;                           /* ready to start flag */
1106	atomic_t stop;                            /* ready to stop flag */
1107	int ret;                                  /* return code */
1108	wait_queue_head_t go;                     /* start decompression */
1109	wait_queue_head_t done;                   /* decompression done */
1110	size_t unc_len;                           /* uncompressed length */
1111	size_t cmp_len;                           /* compressed length */
1112	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1113	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1114};
1115
1116/**
1117 * Deompression function that runs in its own thread.
1118 */
1119static int lzo_decompress_threadfn(void *data)
1120{
1121	struct dec_data *d = data;
 
1122
1123	while (1) {
1124		wait_event(d->go, atomic_read(&d->ready) ||
1125		                  kthread_should_stop());
1126		if (kthread_should_stop()) {
1127			d->thr = NULL;
1128			d->ret = -1;
1129			atomic_set(&d->stop, 1);
1130			wake_up(&d->done);
1131			break;
1132		}
1133		atomic_set(&d->ready, 0);
1134
1135		d->unc_len = LZO_UNC_SIZE;
1136		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1137		                               d->unc, &d->unc_len);
 
 
1138		if (clean_pages_on_decompress)
1139			flush_icache_range((unsigned long)d->unc,
1140					   (unsigned long)d->unc + d->unc_len);
1141
1142		atomic_set(&d->stop, 1);
1143		wake_up(&d->done);
1144	}
1145	return 0;
1146}
1147
1148/**
1149 * load_image_lzo - Load compressed image data and decompress them with LZO.
1150 * @handle: Swap map handle to use for loading data.
1151 * @snapshot: Image to copy uncompressed data into.
1152 * @nr_to_read: Number of pages to load.
1153 */
1154static int load_image_lzo(struct swap_map_handle *handle,
1155                          struct snapshot_handle *snapshot,
1156                          unsigned int nr_to_read)
1157{
1158	unsigned int m;
1159	int ret = 0;
1160	int eof = 0;
1161	struct hib_bio_batch hb;
1162	ktime_t start;
1163	ktime_t stop;
1164	unsigned nr_pages;
1165	size_t off;
1166	unsigned i, thr, run_threads, nr_threads;
1167	unsigned ring = 0, pg = 0, ring_size = 0,
1168	         have = 0, want, need, asked = 0;
1169	unsigned long read_pages = 0;
1170	unsigned char **page = NULL;
1171	struct dec_data *data = NULL;
1172	struct crc_data *crc = NULL;
1173
1174	hib_init_batch(&hb);
1175
1176	/*
1177	 * We'll limit the number of threads for decompression to limit memory
1178	 * footprint.
1179	 */
1180	nr_threads = num_online_cpus() - 1;
1181	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1182
1183	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1184	if (!page) {
1185		pr_err("Failed to allocate LZO page\n");
1186		ret = -ENOMEM;
1187		goto out_clean;
1188	}
1189
1190	data = vmalloc(array_size(nr_threads, sizeof(*data)));
1191	if (!data) {
1192		pr_err("Failed to allocate LZO data\n");
1193		ret = -ENOMEM;
1194		goto out_clean;
1195	}
1196	for (thr = 0; thr < nr_threads; thr++)
1197		memset(&data[thr], 0, offsetof(struct dec_data, go));
1198
1199	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1200	if (!crc) {
1201		pr_err("Failed to allocate crc\n");
1202		ret = -ENOMEM;
1203		goto out_clean;
1204	}
1205	memset(crc, 0, offsetof(struct crc_data, go));
1206
1207	clean_pages_on_decompress = true;
1208
1209	/*
1210	 * Start the decompression threads.
1211	 */
1212	for (thr = 0; thr < nr_threads; thr++) {
1213		init_waitqueue_head(&data[thr].go);
1214		init_waitqueue_head(&data[thr].done);
1215
1216		data[thr].thr = kthread_run(lzo_decompress_threadfn,
 
 
 
 
 
 
 
1217		                            &data[thr],
1218		                            "image_decompress/%u", thr);
1219		if (IS_ERR(data[thr].thr)) {
1220			data[thr].thr = NULL;
1221			pr_err("Cannot start decompression threads\n");
1222			ret = -ENOMEM;
1223			goto out_clean;
1224		}
1225	}
1226
1227	/*
1228	 * Start the CRC32 thread.
1229	 */
1230	init_waitqueue_head(&crc->go);
1231	init_waitqueue_head(&crc->done);
1232
1233	handle->crc32 = 0;
1234	crc->crc32 = &handle->crc32;
1235	for (thr = 0; thr < nr_threads; thr++) {
1236		crc->unc[thr] = data[thr].unc;
1237		crc->unc_len[thr] = &data[thr].unc_len;
1238	}
1239
1240	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1241	if (IS_ERR(crc->thr)) {
1242		crc->thr = NULL;
1243		pr_err("Cannot start CRC32 thread\n");
1244		ret = -ENOMEM;
1245		goto out_clean;
1246	}
1247
1248	/*
1249	 * Set the number of pages for read buffering.
1250	 * This is complete guesswork, because we'll only know the real
1251	 * picture once prepare_image() is called, which is much later on
1252	 * during the image load phase. We'll assume the worst case and
1253	 * say that none of the image pages are from high memory.
1254	 */
1255	if (low_free_pages() > snapshot_get_image_size())
1256		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1257	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1258
1259	for (i = 0; i < read_pages; i++) {
1260		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1261						  GFP_NOIO | __GFP_HIGH :
1262						  GFP_NOIO | __GFP_NOWARN |
1263						  __GFP_NORETRY);
1264
1265		if (!page[i]) {
1266			if (i < LZO_CMP_PAGES) {
1267				ring_size = i;
1268				pr_err("Failed to allocate LZO pages\n");
1269				ret = -ENOMEM;
1270				goto out_clean;
1271			} else {
1272				break;
1273			}
1274		}
1275	}
1276	want = ring_size = i;
1277
1278	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1279	pr_info("Loading and decompressing image data (%u pages)...\n",
1280		nr_to_read);
1281	m = nr_to_read / 10;
1282	if (!m)
1283		m = 1;
1284	nr_pages = 0;
1285	start = ktime_get();
1286
1287	ret = snapshot_write_next(snapshot);
1288	if (ret <= 0)
1289		goto out_finish;
1290
1291	for(;;) {
1292		for (i = 0; !eof && i < want; i++) {
1293			ret = swap_read_page(handle, page[ring], &hb);
1294			if (ret) {
1295				/*
1296				 * On real read error, finish. On end of data,
1297				 * set EOF flag and just exit the read loop.
1298				 */
1299				if (handle->cur &&
1300				    handle->cur->entries[handle->k]) {
1301					goto out_finish;
1302				} else {
1303					eof = 1;
1304					break;
1305				}
1306			}
1307			if (++ring >= ring_size)
1308				ring = 0;
1309		}
1310		asked += i;
1311		want -= i;
1312
1313		/*
1314		 * We are out of data, wait for some more.
1315		 */
1316		if (!have) {
1317			if (!asked)
1318				break;
1319
1320			ret = hib_wait_io(&hb);
1321			if (ret)
1322				goto out_finish;
1323			have += asked;
1324			asked = 0;
1325			if (eof)
1326				eof = 2;
1327		}
1328
1329		if (crc->run_threads) {
1330			wait_event(crc->done, atomic_read(&crc->stop));
1331			atomic_set(&crc->stop, 0);
1332			crc->run_threads = 0;
1333		}
1334
1335		for (thr = 0; have && thr < nr_threads; thr++) {
1336			data[thr].cmp_len = *(size_t *)page[pg];
1337			if (unlikely(!data[thr].cmp_len ||
1338			             data[thr].cmp_len >
1339			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1340				pr_err("Invalid LZO compressed length\n");
1341				ret = -1;
1342				goto out_finish;
1343			}
1344
1345			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1346			                    PAGE_SIZE);
1347			if (need > have) {
1348				if (eof > 1) {
1349					ret = -1;
1350					goto out_finish;
1351				}
1352				break;
1353			}
1354
1355			for (off = 0;
1356			     off < LZO_HEADER + data[thr].cmp_len;
1357			     off += PAGE_SIZE) {
1358				memcpy(data[thr].cmp + off,
1359				       page[pg], PAGE_SIZE);
1360				have--;
1361				want++;
1362				if (++pg >= ring_size)
1363					pg = 0;
1364			}
1365
1366			atomic_set(&data[thr].ready, 1);
1367			wake_up(&data[thr].go);
1368		}
1369
1370		/*
1371		 * Wait for more data while we are decompressing.
1372		 */
1373		if (have < LZO_CMP_PAGES && asked) {
1374			ret = hib_wait_io(&hb);
1375			if (ret)
1376				goto out_finish;
1377			have += asked;
1378			asked = 0;
1379			if (eof)
1380				eof = 2;
1381		}
1382
1383		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1384			wait_event(data[thr].done,
1385			           atomic_read(&data[thr].stop));
1386			atomic_set(&data[thr].stop, 0);
1387
1388			ret = data[thr].ret;
1389
1390			if (ret < 0) {
1391				pr_err("LZO decompression failed\n");
1392				goto out_finish;
1393			}
1394
1395			if (unlikely(!data[thr].unc_len ||
1396			             data[thr].unc_len > LZO_UNC_SIZE ||
1397			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1398				pr_err("Invalid LZO uncompressed length\n");
1399				ret = -1;
1400				goto out_finish;
1401			}
1402
1403			for (off = 0;
1404			     off < data[thr].unc_len; off += PAGE_SIZE) {
1405				memcpy(data_of(*snapshot),
1406				       data[thr].unc + off, PAGE_SIZE);
1407
1408				if (!(nr_pages % m))
1409					pr_info("Image loading progress: %3d%%\n",
1410						nr_pages / m * 10);
1411				nr_pages++;
1412
1413				ret = snapshot_write_next(snapshot);
1414				if (ret <= 0) {
1415					crc->run_threads = thr + 1;
1416					atomic_set(&crc->ready, 1);
1417					wake_up(&crc->go);
1418					goto out_finish;
1419				}
1420			}
1421		}
1422
1423		crc->run_threads = thr;
1424		atomic_set(&crc->ready, 1);
1425		wake_up(&crc->go);
1426	}
1427
1428out_finish:
1429	if (crc->run_threads) {
1430		wait_event(crc->done, atomic_read(&crc->stop));
1431		atomic_set(&crc->stop, 0);
1432	}
1433	stop = ktime_get();
1434	if (!ret) {
1435		pr_info("Image loading done\n");
1436		snapshot_write_finalize(snapshot);
1437		if (!snapshot_image_loaded(snapshot))
1438			ret = -ENODATA;
1439		if (!ret) {
1440			if (swsusp_header->flags & SF_CRC32_MODE) {
1441				if(handle->crc32 != swsusp_header->crc32) {
1442					pr_err("Invalid image CRC32!\n");
1443					ret = -ENODATA;
1444				}
1445			}
1446		}
1447	}
1448	swsusp_show_speed(start, stop, nr_to_read, "Read");
1449out_clean:
 
1450	for (i = 0; i < ring_size; i++)
1451		free_page((unsigned long)page[i]);
1452	if (crc) {
1453		if (crc->thr)
1454			kthread_stop(crc->thr);
1455		kfree(crc);
1456	}
1457	if (data) {
1458		for (thr = 0; thr < nr_threads; thr++)
1459			if (data[thr].thr)
1460				kthread_stop(data[thr].thr);
 
 
 
1461		vfree(data);
1462	}
1463	vfree(page);
1464
1465	return ret;
1466}
1467
1468/**
1469 *	swsusp_read - read the hibernation image.
1470 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1471 *		  be written into this memory location
1472 */
1473
1474int swsusp_read(unsigned int *flags_p)
1475{
1476	int error;
1477	struct swap_map_handle handle;
1478	struct snapshot_handle snapshot;
1479	struct swsusp_info *header;
1480
1481	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1482	error = snapshot_write_next(&snapshot);
1483	if (error < (int)PAGE_SIZE)
1484		return error < 0 ? error : -EFAULT;
1485	header = (struct swsusp_info *)data_of(snapshot);
1486	error = get_swap_reader(&handle, flags_p);
1487	if (error)
1488		goto end;
1489	if (!error)
1490		error = swap_read_page(&handle, header, NULL);
1491	if (!error) {
1492		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1493			load_image(&handle, &snapshot, header->pages - 1) :
1494			load_image_lzo(&handle, &snapshot, header->pages - 1);
1495	}
1496	swap_reader_finish(&handle);
1497end:
1498	if (!error)
1499		pr_debug("Image successfully loaded\n");
1500	else
1501		pr_debug("Error %d resuming\n", error);
1502	return error;
1503}
1504
 
 
1505/**
1506 *      swsusp_check - Check for swsusp signature in the resume device
 
1507 */
1508
1509int swsusp_check(void)
1510{
 
1511	int error;
1512
1513	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1514					    FMODE_READ, NULL);
1515	if (!IS_ERR(hib_resume_bdev)) {
1516		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1517		clear_page(swsusp_header);
1518		error = hib_submit_io(REQ_OP_READ, 0,
1519					swsusp_resume_block,
1520					swsusp_header, NULL);
1521		if (error)
1522			goto put;
1523
1524		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1525			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
 
1526			/* Reset swap signature now */
1527			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1528						swsusp_resume_block,
1529						swsusp_header, NULL);
1530		} else {
1531			error = -EINVAL;
1532		}
 
 
 
 
 
 
1533
1534put:
1535		if (error)
1536			blkdev_put(hib_resume_bdev, FMODE_READ);
1537		else
1538			pr_debug("Image signature found, resuming\n");
1539	} else {
1540		error = PTR_ERR(hib_resume_bdev);
1541	}
1542
1543	if (error)
1544		pr_debug("Image not found (code %d)\n", error);
1545
1546	return error;
1547}
1548
1549/**
1550 *	swsusp_close - close swap device.
1551 */
1552
1553void swsusp_close(fmode_t mode)
1554{
1555	if (IS_ERR(hib_resume_bdev)) {
1556		pr_debug("Image device not initialised\n");
1557		return;
1558	}
1559
1560	blkdev_put(hib_resume_bdev, mode);
1561}
1562
1563/**
1564 *      swsusp_unmark - Unmark swsusp signature in the resume device
1565 */
1566
1567#ifdef CONFIG_SUSPEND
1568int swsusp_unmark(void)
1569{
1570	int error;
1571
1572	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1573		      swsusp_header, NULL);
1574	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1575		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1576		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1577					swsusp_resume_block,
1578					swsusp_header, NULL);
1579	} else {
1580		pr_err("Cannot find swsusp signature!\n");
1581		error = -ENODEV;
1582	}
1583
1584	/*
1585	 * We just returned from suspend, we don't need the image any more.
1586	 */
1587	free_all_swap_pages(root_swap);
1588
1589	return error;
1590}
1591#endif
1592
1593static int __init swsusp_header_init(void)
1594{
1595	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1596	if (!swsusp_header)
1597		panic("Could not allocate memory for swsusp_header\n");
1598	return 0;
1599}
1600
1601core_initcall(swsusp_header_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
 
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
 
  26#include <linux/vmalloc.h>
  27#include <linux/cpumask.h>
  28#include <linux/atomic.h>
  29#include <linux/kthread.h>
  30#include <linux/crc32.h>
  31#include <linux/ktime.h>
  32
  33#include "power.h"
  34
  35#define HIBERNATE_SIG	"S1SUSPEND"
  36
  37u32 swsusp_hardware_signature;
  38
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/*
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32) - sizeof(u32)];
 108	u32	hw_sig;
 109	u32	crc32;
 110	sector_t image;
 111	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 112	char	orig_sig[10];
 113	char	sig[10];
 114} __packed;
 115
 116static struct swsusp_header *swsusp_header;
 117
 118/*
 119 *	The following functions are used for tracing the allocated
 120 *	swap pages, so that they can be freed in case of an error.
 121 */
 122
 123struct swsusp_extent {
 124	struct rb_node node;
 125	unsigned long start;
 126	unsigned long end;
 127};
 128
 129static struct rb_root swsusp_extents = RB_ROOT;
 130
 131static int swsusp_extents_insert(unsigned long swap_offset)
 132{
 133	struct rb_node **new = &(swsusp_extents.rb_node);
 134	struct rb_node *parent = NULL;
 135	struct swsusp_extent *ext;
 136
 137	/* Figure out where to put the new node */
 138	while (*new) {
 139		ext = rb_entry(*new, struct swsusp_extent, node);
 140		parent = *new;
 141		if (swap_offset < ext->start) {
 142			/* Try to merge */
 143			if (swap_offset == ext->start - 1) {
 144				ext->start--;
 145				return 0;
 146			}
 147			new = &((*new)->rb_left);
 148		} else if (swap_offset > ext->end) {
 149			/* Try to merge */
 150			if (swap_offset == ext->end + 1) {
 151				ext->end++;
 152				return 0;
 153			}
 154			new = &((*new)->rb_right);
 155		} else {
 156			/* It already is in the tree */
 157			return -EINVAL;
 158		}
 159	}
 160	/* Add the new node and rebalance the tree. */
 161	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 162	if (!ext)
 163		return -ENOMEM;
 164
 165	ext->start = swap_offset;
 166	ext->end = swap_offset;
 167	rb_link_node(&ext->node, parent, new);
 168	rb_insert_color(&ext->node, &swsusp_extents);
 169	return 0;
 170}
 171
 172/*
 173 *	alloc_swapdev_block - allocate a swap page and register that it has
 174 *	been allocated, so that it can be freed in case of an error.
 175 */
 176
 177sector_t alloc_swapdev_block(int swap)
 178{
 179	unsigned long offset;
 180
 181	offset = swp_offset(get_swap_page_of_type(swap));
 182	if (offset) {
 183		if (swsusp_extents_insert(offset))
 184			swap_free(swp_entry(swap, offset));
 185		else
 186			return swapdev_block(swap, offset);
 187	}
 188	return 0;
 189}
 190
 191/*
 192 *	free_all_swap_pages - free swap pages allocated for saving image data.
 193 *	It also frees the extents used to register which swap entries had been
 194 *	allocated.
 195 */
 196
 197void free_all_swap_pages(int swap)
 198{
 199	struct rb_node *node;
 200
 201	while ((node = swsusp_extents.rb_node)) {
 202		struct swsusp_extent *ext;
 203		unsigned long offset;
 204
 205		ext = rb_entry(node, struct swsusp_extent, node);
 206		rb_erase(node, &swsusp_extents);
 207		for (offset = ext->start; offset <= ext->end; offset++)
 208			swap_free(swp_entry(swap, offset));
 209
 210		kfree(ext);
 211	}
 212}
 213
 214int swsusp_swap_in_use(void)
 215{
 216	return (swsusp_extents.rb_node != NULL);
 217}
 218
 219/*
 220 * General things
 221 */
 222
 223static unsigned short root_swap = 0xffff;
 224static struct file *hib_resume_bdev_file;
 225
 226struct hib_bio_batch {
 227	atomic_t		count;
 228	wait_queue_head_t	wait;
 229	blk_status_t		error;
 230	struct blk_plug		plug;
 231};
 232
 233static void hib_init_batch(struct hib_bio_batch *hb)
 234{
 235	atomic_set(&hb->count, 0);
 236	init_waitqueue_head(&hb->wait);
 237	hb->error = BLK_STS_OK;
 238	blk_start_plug(&hb->plug);
 239}
 240
 241static void hib_finish_batch(struct hib_bio_batch *hb)
 242{
 243	blk_finish_plug(&hb->plug);
 244}
 245
 246static void hib_end_io(struct bio *bio)
 247{
 248	struct hib_bio_batch *hb = bio->bi_private;
 249	struct page *page = bio_first_page_all(bio);
 250
 251	if (bio->bi_status) {
 252		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 253			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 254			 (unsigned long long)bio->bi_iter.bi_sector);
 255	}
 256
 257	if (bio_data_dir(bio) == WRITE)
 258		put_page(page);
 259	else if (clean_pages_on_read)
 260		flush_icache_range((unsigned long)page_address(page),
 261				   (unsigned long)page_address(page) + PAGE_SIZE);
 262
 263	if (bio->bi_status && !hb->error)
 264		hb->error = bio->bi_status;
 265	if (atomic_dec_and_test(&hb->count))
 266		wake_up(&hb->wait);
 267
 268	bio_put(bio);
 269}
 270
 271static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 272			 struct hib_bio_batch *hb)
 273{
 274	struct page *page = virt_to_page(addr);
 275	struct bio *bio;
 276	int error = 0;
 277
 278	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
 279			GFP_NOIO | __GFP_HIGH);
 280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 
 
 281
 282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 283		pr_err("Adding page to bio failed at %llu\n",
 284		       (unsigned long long)bio->bi_iter.bi_sector);
 285		bio_put(bio);
 286		return -EFAULT;
 287	}
 288
 289	if (hb) {
 290		bio->bi_end_io = hib_end_io;
 291		bio->bi_private = hb;
 292		atomic_inc(&hb->count);
 293		submit_bio(bio);
 294	} else {
 295		error = submit_bio_wait(bio);
 296		bio_put(bio);
 297	}
 298
 299	return error;
 300}
 301
 302static int hib_wait_io(struct hib_bio_batch *hb)
 303{
 304	/*
 305	 * We are relying on the behavior of blk_plug that a thread with
 306	 * a plug will flush the plug list before sleeping.
 307	 */
 308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 309	return blk_status_to_errno(hb->error);
 310}
 311
 312/*
 313 * Saving part
 314 */
 
 315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 316{
 317	int error;
 318
 319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 
 320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 324		swsusp_header->image = handle->first_sector;
 325		if (swsusp_hardware_signature) {
 326			swsusp_header->hw_sig = swsusp_hardware_signature;
 327			flags |= SF_HW_SIG;
 328		}
 329		swsusp_header->flags = flags;
 330		if (flags & SF_CRC32_MODE)
 331			swsusp_header->crc32 = handle->crc32;
 332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 333				      swsusp_resume_block, swsusp_header, NULL);
 334	} else {
 335		pr_err("Swap header not found!\n");
 336		error = -ENODEV;
 337	}
 338	return error;
 339}
 340
 341/*
 342 * Hold the swsusp_header flag. This is used in software_resume() in
 343 * 'kernel/power/hibernate' to check if the image is compressed and query
 344 * for the compression algorithm support(if so).
 345 */
 346unsigned int swsusp_header_flags;
 347
 348/**
 349 *	swsusp_swap_check - check if the resume device is a swap device
 350 *	and get its index (if so)
 351 *
 352 *	This is called before saving image
 353 */
 354static int swsusp_swap_check(void)
 355{
 356	int res;
 357
 358	if (swsusp_resume_device)
 359		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 360	else
 361		res = find_first_swap(&swsusp_resume_device);
 362	if (res < 0)
 363		return res;
 
 364	root_swap = res;
 
 
 
 365
 366	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
 367			BLK_OPEN_WRITE, NULL, NULL);
 368	if (IS_ERR(hib_resume_bdev_file))
 369		return PTR_ERR(hib_resume_bdev_file);
 370
 371	res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
 372	if (res < 0)
 373		fput(hib_resume_bdev_file);
 374
 
 
 
 
 
 
 375	return res;
 376}
 377
 378/**
 379 *	write_page - Write one page to given swap location.
 380 *	@buf:		Address we're writing.
 381 *	@offset:	Offset of the swap page we're writing to.
 382 *	@hb:		bio completion batch
 383 */
 384
 385static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 386{
 387	void *src;
 388	int ret;
 389
 390	if (!offset)
 391		return -ENOSPC;
 392
 393	if (hb) {
 394		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 395		                              __GFP_NORETRY);
 396		if (src) {
 397			copy_page(src, buf);
 398		} else {
 399			ret = hib_wait_io(hb); /* Free pages */
 400			if (ret)
 401				return ret;
 402			src = (void *)__get_free_page(GFP_NOIO |
 403			                              __GFP_NOWARN |
 404			                              __GFP_NORETRY);
 405			if (src) {
 406				copy_page(src, buf);
 407			} else {
 408				WARN_ON_ONCE(1);
 409				hb = NULL;	/* Go synchronous */
 410				src = buf;
 411			}
 412		}
 413	} else {
 414		src = buf;
 415	}
 416	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 417}
 418
 419static void release_swap_writer(struct swap_map_handle *handle)
 420{
 421	if (handle->cur)
 422		free_page((unsigned long)handle->cur);
 423	handle->cur = NULL;
 424}
 425
 426static int get_swap_writer(struct swap_map_handle *handle)
 427{
 428	int ret;
 429
 430	ret = swsusp_swap_check();
 431	if (ret) {
 432		if (ret != -ENOSPC)
 433			pr_err("Cannot find swap device, try swapon -a\n");
 434		return ret;
 435	}
 436	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 437	if (!handle->cur) {
 438		ret = -ENOMEM;
 439		goto err_close;
 440	}
 441	handle->cur_swap = alloc_swapdev_block(root_swap);
 442	if (!handle->cur_swap) {
 443		ret = -ENOSPC;
 444		goto err_rel;
 445	}
 446	handle->k = 0;
 447	handle->reqd_free_pages = reqd_free_pages();
 448	handle->first_sector = handle->cur_swap;
 449	return 0;
 450err_rel:
 451	release_swap_writer(handle);
 452err_close:
 453	swsusp_close();
 454	return ret;
 455}
 456
 457static int swap_write_page(struct swap_map_handle *handle, void *buf,
 458		struct hib_bio_batch *hb)
 459{
 460	int error;
 461	sector_t offset;
 462
 463	if (!handle->cur)
 464		return -EINVAL;
 465	offset = alloc_swapdev_block(root_swap);
 466	error = write_page(buf, offset, hb);
 467	if (error)
 468		return error;
 469	handle->cur->entries[handle->k++] = offset;
 470	if (handle->k >= MAP_PAGE_ENTRIES) {
 471		offset = alloc_swapdev_block(root_swap);
 472		if (!offset)
 473			return -ENOSPC;
 474		handle->cur->next_swap = offset;
 475		error = write_page(handle->cur, handle->cur_swap, hb);
 476		if (error)
 477			goto out;
 478		clear_page(handle->cur);
 479		handle->cur_swap = offset;
 480		handle->k = 0;
 481
 482		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 483			error = hib_wait_io(hb);
 484			if (error)
 485				goto out;
 486			/*
 487			 * Recalculate the number of required free pages, to
 488			 * make sure we never take more than half.
 489			 */
 490			handle->reqd_free_pages = reqd_free_pages();
 491		}
 492	}
 493 out:
 494	return error;
 495}
 496
 497static int flush_swap_writer(struct swap_map_handle *handle)
 498{
 499	if (handle->cur && handle->cur_swap)
 500		return write_page(handle->cur, handle->cur_swap, NULL);
 501	else
 502		return -EINVAL;
 503}
 504
 505static int swap_writer_finish(struct swap_map_handle *handle,
 506		unsigned int flags, int error)
 507{
 508	if (!error) {
 
 509		pr_info("S");
 510		error = mark_swapfiles(handle, flags);
 511		pr_cont("|\n");
 512		flush_swap_writer(handle);
 513	}
 514
 515	if (error)
 516		free_all_swap_pages(root_swap);
 517	release_swap_writer(handle);
 518	swsusp_close();
 519
 520	return error;
 521}
 522
 523/*
 524 * Bytes we need for compressed data in worst case. We assume(limitation)
 525 * this is the worst of all the compression algorithms.
 526 */
 527#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
 528
 529/* We need to remember how much compressed data we need to read. */
 530#define CMP_HEADER	sizeof(size_t)
 531
 532/* Number of pages/bytes we'll compress at one time. */
 533#define UNC_PAGES	32
 534#define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
 535
 536/* Number of pages we need for compressed data (worst case). */
 537#define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
 538				CMP_HEADER, PAGE_SIZE)
 539#define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
 540
 541/* Maximum number of threads for compression/decompression. */
 542#define CMP_THREADS	3
 543
 544/* Minimum/maximum number of pages for read buffering. */
 545#define CMP_MIN_RD_PAGES	1024
 546#define CMP_MAX_RD_PAGES	8192
 
 547
 548/**
 549 *	save_image - save the suspend image data
 550 */
 551
 552static int save_image(struct swap_map_handle *handle,
 553                      struct snapshot_handle *snapshot,
 554                      unsigned int nr_to_write)
 555{
 556	unsigned int m;
 557	int ret;
 558	int nr_pages;
 559	int err2;
 560	struct hib_bio_batch hb;
 561	ktime_t start;
 562	ktime_t stop;
 563
 564	hib_init_batch(&hb);
 565
 566	pr_info("Saving image data pages (%u pages)...\n",
 567		nr_to_write);
 568	m = nr_to_write / 10;
 569	if (!m)
 570		m = 1;
 571	nr_pages = 0;
 572	start = ktime_get();
 573	while (1) {
 574		ret = snapshot_read_next(snapshot);
 575		if (ret <= 0)
 576			break;
 577		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 578		if (ret)
 579			break;
 580		if (!(nr_pages % m))
 581			pr_info("Image saving progress: %3d%%\n",
 582				nr_pages / m * 10);
 583		nr_pages++;
 584	}
 585	err2 = hib_wait_io(&hb);
 586	hib_finish_batch(&hb);
 587	stop = ktime_get();
 588	if (!ret)
 589		ret = err2;
 590	if (!ret)
 591		pr_info("Image saving done\n");
 592	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 593	return ret;
 594}
 595
 596/*
 597 * Structure used for CRC32.
 598 */
 599struct crc_data {
 600	struct task_struct *thr;                  /* thread */
 601	atomic_t ready;                           /* ready to start flag */
 602	atomic_t stop;                            /* ready to stop flag */
 603	unsigned run_threads;                     /* nr current threads */
 604	wait_queue_head_t go;                     /* start crc update */
 605	wait_queue_head_t done;                   /* crc update done */
 606	u32 *crc32;                               /* points to handle's crc32 */
 607	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
 608	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
 609};
 610
 611/*
 612 * CRC32 update function that runs in its own thread.
 613 */
 614static int crc32_threadfn(void *data)
 615{
 616	struct crc_data *d = data;
 617	unsigned i;
 618
 619	while (1) {
 620		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 621		                  kthread_should_stop());
 622		if (kthread_should_stop()) {
 623			d->thr = NULL;
 624			atomic_set_release(&d->stop, 1);
 625			wake_up(&d->done);
 626			break;
 627		}
 628		atomic_set(&d->ready, 0);
 629
 630		for (i = 0; i < d->run_threads; i++)
 631			*d->crc32 = crc32_le(*d->crc32,
 632			                     d->unc[i], *d->unc_len[i]);
 633		atomic_set_release(&d->stop, 1);
 634		wake_up(&d->done);
 635	}
 636	return 0;
 637}
 638/*
 639 * Structure used for data compression.
 640 */
 641struct cmp_data {
 642	struct task_struct *thr;                  /* thread */
 643	struct crypto_comp *cc;                   /* crypto compressor stream */
 644	atomic_t ready;                           /* ready to start flag */
 645	atomic_t stop;                            /* ready to stop flag */
 646	int ret;                                  /* return code */
 647	wait_queue_head_t go;                     /* start compression */
 648	wait_queue_head_t done;                   /* compression done */
 649	size_t unc_len;                           /* uncompressed length */
 650	size_t cmp_len;                           /* compressed length */
 651	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
 652	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
 
 653};
 654
 655/* Indicates the image size after compression */
 656static atomic_t compressed_size = ATOMIC_INIT(0);
 657
 658/*
 659 * Compression function that runs in its own thread.
 660 */
 661static int compress_threadfn(void *data)
 662{
 663	struct cmp_data *d = data;
 664	unsigned int cmp_len = 0;
 665
 666	while (1) {
 667		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 668		                  kthread_should_stop());
 669		if (kthread_should_stop()) {
 670			d->thr = NULL;
 671			d->ret = -1;
 672			atomic_set_release(&d->stop, 1);
 673			wake_up(&d->done);
 674			break;
 675		}
 676		atomic_set(&d->ready, 0);
 677
 678		cmp_len = CMP_SIZE - CMP_HEADER;
 679		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
 680					      d->cmp + CMP_HEADER,
 681					      &cmp_len);
 682		d->cmp_len = cmp_len;
 683
 684		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
 685		atomic_set_release(&d->stop, 1);
 686		wake_up(&d->done);
 687	}
 688	return 0;
 689}
 690
 691/**
 692 * save_compressed_image - Save the suspend image data after compression.
 693 * @handle: Swap map handle to use for saving the image.
 694 * @snapshot: Image to read data from.
 695 * @nr_to_write: Number of pages to save.
 696 */
 697static int save_compressed_image(struct swap_map_handle *handle,
 698				 struct snapshot_handle *snapshot,
 699				 unsigned int nr_to_write)
 700{
 701	unsigned int m;
 702	int ret = 0;
 703	int nr_pages;
 704	int err2;
 705	struct hib_bio_batch hb;
 706	ktime_t start;
 707	ktime_t stop;
 708	size_t off;
 709	unsigned thr, run_threads, nr_threads;
 710	unsigned char *page = NULL;
 711	struct cmp_data *data = NULL;
 712	struct crc_data *crc = NULL;
 713
 714	hib_init_batch(&hb);
 715
 716	atomic_set(&compressed_size, 0);
 717
 718	/*
 719	 * We'll limit the number of threads for compression to limit memory
 720	 * footprint.
 721	 */
 722	nr_threads = num_online_cpus() - 1;
 723	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
 724
 725	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 726	if (!page) {
 727		pr_err("Failed to allocate %s page\n", hib_comp_algo);
 728		ret = -ENOMEM;
 729		goto out_clean;
 730	}
 731
 732	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 733	if (!data) {
 734		pr_err("Failed to allocate %s data\n", hib_comp_algo);
 735		ret = -ENOMEM;
 736		goto out_clean;
 737	}
 
 
 738
 739	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 740	if (!crc) {
 741		pr_err("Failed to allocate crc\n");
 742		ret = -ENOMEM;
 743		goto out_clean;
 744	}
 
 745
 746	/*
 747	 * Start the compression threads.
 748	 */
 749	for (thr = 0; thr < nr_threads; thr++) {
 750		init_waitqueue_head(&data[thr].go);
 751		init_waitqueue_head(&data[thr].done);
 752
 753		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
 754		if (IS_ERR_OR_NULL(data[thr].cc)) {
 755			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
 756			ret = -EFAULT;
 757			goto out_clean;
 758		}
 759
 760		data[thr].thr = kthread_run(compress_threadfn,
 761		                            &data[thr],
 762		                            "image_compress/%u", thr);
 763		if (IS_ERR(data[thr].thr)) {
 764			data[thr].thr = NULL;
 765			pr_err("Cannot start compression threads\n");
 766			ret = -ENOMEM;
 767			goto out_clean;
 768		}
 769	}
 770
 771	/*
 772	 * Start the CRC32 thread.
 773	 */
 774	init_waitqueue_head(&crc->go);
 775	init_waitqueue_head(&crc->done);
 776
 777	handle->crc32 = 0;
 778	crc->crc32 = &handle->crc32;
 779	for (thr = 0; thr < nr_threads; thr++) {
 780		crc->unc[thr] = data[thr].unc;
 781		crc->unc_len[thr] = &data[thr].unc_len;
 782	}
 783
 784	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 785	if (IS_ERR(crc->thr)) {
 786		crc->thr = NULL;
 787		pr_err("Cannot start CRC32 thread\n");
 788		ret = -ENOMEM;
 789		goto out_clean;
 790	}
 791
 792	/*
 793	 * Adjust the number of required free pages after all allocations have
 794	 * been done. We don't want to run out of pages when writing.
 795	 */
 796	handle->reqd_free_pages = reqd_free_pages();
 797
 798	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
 799	pr_info("Compressing and saving image data (%u pages)...\n",
 800		nr_to_write);
 801	m = nr_to_write / 10;
 802	if (!m)
 803		m = 1;
 804	nr_pages = 0;
 805	start = ktime_get();
 806	for (;;) {
 807		for (thr = 0; thr < nr_threads; thr++) {
 808			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
 809				ret = snapshot_read_next(snapshot);
 810				if (ret < 0)
 811					goto out_finish;
 812
 813				if (!ret)
 814					break;
 815
 816				memcpy(data[thr].unc + off,
 817				       data_of(*snapshot), PAGE_SIZE);
 818
 819				if (!(nr_pages % m))
 820					pr_info("Image saving progress: %3d%%\n",
 821						nr_pages / m * 10);
 822				nr_pages++;
 823			}
 824			if (!off)
 825				break;
 826
 827			data[thr].unc_len = off;
 828
 829			atomic_set_release(&data[thr].ready, 1);
 830			wake_up(&data[thr].go);
 831		}
 832
 833		if (!thr)
 834			break;
 835
 836		crc->run_threads = thr;
 837		atomic_set_release(&crc->ready, 1);
 838		wake_up(&crc->go);
 839
 840		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 841			wait_event(data[thr].done,
 842				atomic_read_acquire(&data[thr].stop));
 843			atomic_set(&data[thr].stop, 0);
 844
 845			ret = data[thr].ret;
 846
 847			if (ret < 0) {
 848				pr_err("%s compression failed\n", hib_comp_algo);
 849				goto out_finish;
 850			}
 851
 852			if (unlikely(!data[thr].cmp_len ||
 853			             data[thr].cmp_len >
 854				     bytes_worst_compress(data[thr].unc_len))) {
 855				pr_err("Invalid %s compressed length\n", hib_comp_algo);
 856				ret = -1;
 857				goto out_finish;
 858			}
 859
 860			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 861
 862			/*
 863			 * Given we are writing one page at a time to disk, we
 864			 * copy that much from the buffer, although the last
 865			 * bit will likely be smaller than full page. This is
 866			 * OK - we saved the length of the compressed data, so
 867			 * any garbage at the end will be discarded when we
 868			 * read it.
 869			 */
 870			for (off = 0;
 871			     off < CMP_HEADER + data[thr].cmp_len;
 872			     off += PAGE_SIZE) {
 873				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 874
 875				ret = swap_write_page(handle, page, &hb);
 876				if (ret)
 877					goto out_finish;
 878			}
 879		}
 880
 881		wait_event(crc->done, atomic_read_acquire(&crc->stop));
 882		atomic_set(&crc->stop, 0);
 883	}
 884
 885out_finish:
 886	err2 = hib_wait_io(&hb);
 887	stop = ktime_get();
 888	if (!ret)
 889		ret = err2;
 890	if (!ret)
 891		pr_info("Image saving done\n");
 892	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 893	pr_info("Image size after compression: %d kbytes\n",
 894		(atomic_read(&compressed_size) / 1024));
 895
 896out_clean:
 897	hib_finish_batch(&hb);
 898	if (crc) {
 899		if (crc->thr)
 900			kthread_stop(crc->thr);
 901		kfree(crc);
 902	}
 903	if (data) {
 904		for (thr = 0; thr < nr_threads; thr++) {
 905			if (data[thr].thr)
 906				kthread_stop(data[thr].thr);
 907			if (data[thr].cc)
 908				crypto_free_comp(data[thr].cc);
 909		}
 910		vfree(data);
 911	}
 912	if (page) free_page((unsigned long)page);
 913
 914	return ret;
 915}
 916
 917/**
 918 *	enough_swap - Make sure we have enough swap to save the image.
 919 *
 920 *	Returns TRUE or FALSE after checking the total amount of swap
 921 *	space available from the resume partition.
 922 */
 923
 924static int enough_swap(unsigned int nr_pages)
 925{
 926	unsigned int free_swap = count_swap_pages(root_swap, 1);
 927	unsigned int required;
 928
 929	pr_debug("Free swap pages: %u\n", free_swap);
 930
 931	required = PAGES_FOR_IO + nr_pages;
 932	return free_swap > required;
 933}
 934
 935/**
 936 *	swsusp_write - Write entire image and metadata.
 937 *	@flags: flags to pass to the "boot" kernel in the image header
 938 *
 939 *	It is important _NOT_ to umount filesystems at this point. We want
 940 *	them synced (in case something goes wrong) but we DO not want to mark
 941 *	filesystem clean: it is not. (And it does not matter, if we resume
 942 *	correctly, we'll mark system clean, anyway.)
 943 */
 944
 945int swsusp_write(unsigned int flags)
 946{
 947	struct swap_map_handle handle;
 948	struct snapshot_handle snapshot;
 949	struct swsusp_info *header;
 950	unsigned long pages;
 951	int error;
 952
 953	pages = snapshot_get_image_size();
 954	error = get_swap_writer(&handle);
 955	if (error) {
 956		pr_err("Cannot get swap writer\n");
 957		return error;
 958	}
 959	if (flags & SF_NOCOMPRESS_MODE) {
 960		if (!enough_swap(pages)) {
 961			pr_err("Not enough free swap\n");
 962			error = -ENOSPC;
 963			goto out_finish;
 964		}
 965	}
 966	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 967	error = snapshot_read_next(&snapshot);
 968	if (error < (int)PAGE_SIZE) {
 969		if (error >= 0)
 970			error = -EFAULT;
 971
 972		goto out_finish;
 973	}
 974	header = (struct swsusp_info *)data_of(snapshot);
 975	error = swap_write_page(&handle, header, NULL);
 976	if (!error) {
 977		error = (flags & SF_NOCOMPRESS_MODE) ?
 978			save_image(&handle, &snapshot, pages - 1) :
 979			save_compressed_image(&handle, &snapshot, pages - 1);
 980	}
 981out_finish:
 982	error = swap_writer_finish(&handle, flags, error);
 983	return error;
 984}
 985
 986/*
 987 *	The following functions allow us to read data using a swap map
 988 *	in a file-like way.
 989 */
 990
 991static void release_swap_reader(struct swap_map_handle *handle)
 992{
 993	struct swap_map_page_list *tmp;
 994
 995	while (handle->maps) {
 996		if (handle->maps->map)
 997			free_page((unsigned long)handle->maps->map);
 998		tmp = handle->maps;
 999		handle->maps = handle->maps->next;
1000		kfree(tmp);
1001	}
1002	handle->cur = NULL;
1003}
1004
1005static int get_swap_reader(struct swap_map_handle *handle,
1006		unsigned int *flags_p)
1007{
1008	int error;
1009	struct swap_map_page_list *tmp, *last;
1010	sector_t offset;
1011
1012	*flags_p = swsusp_header->flags;
1013
1014	if (!swsusp_header->image) /* how can this happen? */
1015		return -EINVAL;
1016
1017	handle->cur = NULL;
1018	last = handle->maps = NULL;
1019	offset = swsusp_header->image;
1020	while (offset) {
1021		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1022		if (!tmp) {
1023			release_swap_reader(handle);
1024			return -ENOMEM;
1025		}
1026		if (!handle->maps)
1027			handle->maps = tmp;
1028		if (last)
1029			last->next = tmp;
1030		last = tmp;
1031
1032		tmp->map = (struct swap_map_page *)
1033			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1034		if (!tmp->map) {
1035			release_swap_reader(handle);
1036			return -ENOMEM;
1037		}
1038
1039		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1040		if (error) {
1041			release_swap_reader(handle);
1042			return error;
1043		}
1044		offset = tmp->map->next_swap;
1045	}
1046	handle->k = 0;
1047	handle->cur = handle->maps->map;
1048	return 0;
1049}
1050
1051static int swap_read_page(struct swap_map_handle *handle, void *buf,
1052		struct hib_bio_batch *hb)
1053{
1054	sector_t offset;
1055	int error;
1056	struct swap_map_page_list *tmp;
1057
1058	if (!handle->cur)
1059		return -EINVAL;
1060	offset = handle->cur->entries[handle->k];
1061	if (!offset)
1062		return -EFAULT;
1063	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1064	if (error)
1065		return error;
1066	if (++handle->k >= MAP_PAGE_ENTRIES) {
1067		handle->k = 0;
1068		free_page((unsigned long)handle->maps->map);
1069		tmp = handle->maps;
1070		handle->maps = handle->maps->next;
1071		kfree(tmp);
1072		if (!handle->maps)
1073			release_swap_reader(handle);
1074		else
1075			handle->cur = handle->maps->map;
1076	}
1077	return error;
1078}
1079
1080static int swap_reader_finish(struct swap_map_handle *handle)
1081{
1082	release_swap_reader(handle);
1083
1084	return 0;
1085}
1086
1087/**
1088 *	load_image - load the image using the swap map handle
1089 *	@handle and the snapshot handle @snapshot
1090 *	(assume there are @nr_pages pages to load)
1091 */
1092
1093static int load_image(struct swap_map_handle *handle,
1094                      struct snapshot_handle *snapshot,
1095                      unsigned int nr_to_read)
1096{
1097	unsigned int m;
1098	int ret = 0;
1099	ktime_t start;
1100	ktime_t stop;
1101	struct hib_bio_batch hb;
1102	int err2;
1103	unsigned nr_pages;
1104
1105	hib_init_batch(&hb);
1106
1107	clean_pages_on_read = true;
1108	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1109	m = nr_to_read / 10;
1110	if (!m)
1111		m = 1;
1112	nr_pages = 0;
1113	start = ktime_get();
1114	for ( ; ; ) {
1115		ret = snapshot_write_next(snapshot);
1116		if (ret <= 0)
1117			break;
1118		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1119		if (ret)
1120			break;
1121		if (snapshot->sync_read)
1122			ret = hib_wait_io(&hb);
1123		if (ret)
1124			break;
1125		if (!(nr_pages % m))
1126			pr_info("Image loading progress: %3d%%\n",
1127				nr_pages / m * 10);
1128		nr_pages++;
1129	}
1130	err2 = hib_wait_io(&hb);
1131	hib_finish_batch(&hb);
1132	stop = ktime_get();
1133	if (!ret)
1134		ret = err2;
1135	if (!ret) {
1136		pr_info("Image loading done\n");
1137		ret = snapshot_write_finalize(snapshot);
1138		if (!ret && !snapshot_image_loaded(snapshot))
1139			ret = -ENODATA;
1140	}
1141	swsusp_show_speed(start, stop, nr_to_read, "Read");
1142	return ret;
1143}
1144
1145/*
1146 * Structure used for data decompression.
1147 */
1148struct dec_data {
1149	struct task_struct *thr;                  /* thread */
1150	struct crypto_comp *cc;                   /* crypto compressor stream */
1151	atomic_t ready;                           /* ready to start flag */
1152	atomic_t stop;                            /* ready to stop flag */
1153	int ret;                                  /* return code */
1154	wait_queue_head_t go;                     /* start decompression */
1155	wait_queue_head_t done;                   /* decompression done */
1156	size_t unc_len;                           /* uncompressed length */
1157	size_t cmp_len;                           /* compressed length */
1158	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1159	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1160};
1161
1162/*
1163 * Decompression function that runs in its own thread.
1164 */
1165static int decompress_threadfn(void *data)
1166{
1167	struct dec_data *d = data;
1168	unsigned int unc_len = 0;
1169
1170	while (1) {
1171		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1172		                  kthread_should_stop());
1173		if (kthread_should_stop()) {
1174			d->thr = NULL;
1175			d->ret = -1;
1176			atomic_set_release(&d->stop, 1);
1177			wake_up(&d->done);
1178			break;
1179		}
1180		atomic_set(&d->ready, 0);
1181
1182		unc_len = UNC_SIZE;
1183		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1184						d->unc, &unc_len);
1185		d->unc_len = unc_len;
1186
1187		if (clean_pages_on_decompress)
1188			flush_icache_range((unsigned long)d->unc,
1189					   (unsigned long)d->unc + d->unc_len);
1190
1191		atomic_set_release(&d->stop, 1);
1192		wake_up(&d->done);
1193	}
1194	return 0;
1195}
1196
1197/**
1198 * load_compressed_image - Load compressed image data and decompress it.
1199 * @handle: Swap map handle to use for loading data.
1200 * @snapshot: Image to copy uncompressed data into.
1201 * @nr_to_read: Number of pages to load.
1202 */
1203static int load_compressed_image(struct swap_map_handle *handle,
1204				 struct snapshot_handle *snapshot,
1205				 unsigned int nr_to_read)
1206{
1207	unsigned int m;
1208	int ret = 0;
1209	int eof = 0;
1210	struct hib_bio_batch hb;
1211	ktime_t start;
1212	ktime_t stop;
1213	unsigned nr_pages;
1214	size_t off;
1215	unsigned i, thr, run_threads, nr_threads;
1216	unsigned ring = 0, pg = 0, ring_size = 0,
1217	         have = 0, want, need, asked = 0;
1218	unsigned long read_pages = 0;
1219	unsigned char **page = NULL;
1220	struct dec_data *data = NULL;
1221	struct crc_data *crc = NULL;
1222
1223	hib_init_batch(&hb);
1224
1225	/*
1226	 * We'll limit the number of threads for decompression to limit memory
1227	 * footprint.
1228	 */
1229	nr_threads = num_online_cpus() - 1;
1230	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1231
1232	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1233	if (!page) {
1234		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1235		ret = -ENOMEM;
1236		goto out_clean;
1237	}
1238
1239	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1240	if (!data) {
1241		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1242		ret = -ENOMEM;
1243		goto out_clean;
1244	}
 
 
1245
1246	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1247	if (!crc) {
1248		pr_err("Failed to allocate crc\n");
1249		ret = -ENOMEM;
1250		goto out_clean;
1251	}
 
1252
1253	clean_pages_on_decompress = true;
1254
1255	/*
1256	 * Start the decompression threads.
1257	 */
1258	for (thr = 0; thr < nr_threads; thr++) {
1259		init_waitqueue_head(&data[thr].go);
1260		init_waitqueue_head(&data[thr].done);
1261
1262		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1263		if (IS_ERR_OR_NULL(data[thr].cc)) {
1264			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1265			ret = -EFAULT;
1266			goto out_clean;
1267		}
1268
1269		data[thr].thr = kthread_run(decompress_threadfn,
1270		                            &data[thr],
1271		                            "image_decompress/%u", thr);
1272		if (IS_ERR(data[thr].thr)) {
1273			data[thr].thr = NULL;
1274			pr_err("Cannot start decompression threads\n");
1275			ret = -ENOMEM;
1276			goto out_clean;
1277		}
1278	}
1279
1280	/*
1281	 * Start the CRC32 thread.
1282	 */
1283	init_waitqueue_head(&crc->go);
1284	init_waitqueue_head(&crc->done);
1285
1286	handle->crc32 = 0;
1287	crc->crc32 = &handle->crc32;
1288	for (thr = 0; thr < nr_threads; thr++) {
1289		crc->unc[thr] = data[thr].unc;
1290		crc->unc_len[thr] = &data[thr].unc_len;
1291	}
1292
1293	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1294	if (IS_ERR(crc->thr)) {
1295		crc->thr = NULL;
1296		pr_err("Cannot start CRC32 thread\n");
1297		ret = -ENOMEM;
1298		goto out_clean;
1299	}
1300
1301	/*
1302	 * Set the number of pages for read buffering.
1303	 * This is complete guesswork, because we'll only know the real
1304	 * picture once prepare_image() is called, which is much later on
1305	 * during the image load phase. We'll assume the worst case and
1306	 * say that none of the image pages are from high memory.
1307	 */
1308	if (low_free_pages() > snapshot_get_image_size())
1309		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1310	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1311
1312	for (i = 0; i < read_pages; i++) {
1313		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1314						  GFP_NOIO | __GFP_HIGH :
1315						  GFP_NOIO | __GFP_NOWARN |
1316						  __GFP_NORETRY);
1317
1318		if (!page[i]) {
1319			if (i < CMP_PAGES) {
1320				ring_size = i;
1321				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1322				ret = -ENOMEM;
1323				goto out_clean;
1324			} else {
1325				break;
1326			}
1327		}
1328	}
1329	want = ring_size = i;
1330
1331	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1332	pr_info("Loading and decompressing image data (%u pages)...\n",
1333		nr_to_read);
1334	m = nr_to_read / 10;
1335	if (!m)
1336		m = 1;
1337	nr_pages = 0;
1338	start = ktime_get();
1339
1340	ret = snapshot_write_next(snapshot);
1341	if (ret <= 0)
1342		goto out_finish;
1343
1344	for(;;) {
1345		for (i = 0; !eof && i < want; i++) {
1346			ret = swap_read_page(handle, page[ring], &hb);
1347			if (ret) {
1348				/*
1349				 * On real read error, finish. On end of data,
1350				 * set EOF flag and just exit the read loop.
1351				 */
1352				if (handle->cur &&
1353				    handle->cur->entries[handle->k]) {
1354					goto out_finish;
1355				} else {
1356					eof = 1;
1357					break;
1358				}
1359			}
1360			if (++ring >= ring_size)
1361				ring = 0;
1362		}
1363		asked += i;
1364		want -= i;
1365
1366		/*
1367		 * We are out of data, wait for some more.
1368		 */
1369		if (!have) {
1370			if (!asked)
1371				break;
1372
1373			ret = hib_wait_io(&hb);
1374			if (ret)
1375				goto out_finish;
1376			have += asked;
1377			asked = 0;
1378			if (eof)
1379				eof = 2;
1380		}
1381
1382		if (crc->run_threads) {
1383			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1384			atomic_set(&crc->stop, 0);
1385			crc->run_threads = 0;
1386		}
1387
1388		for (thr = 0; have && thr < nr_threads; thr++) {
1389			data[thr].cmp_len = *(size_t *)page[pg];
1390			if (unlikely(!data[thr].cmp_len ||
1391			             data[thr].cmp_len >
1392					bytes_worst_compress(UNC_SIZE))) {
1393				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1394				ret = -1;
1395				goto out_finish;
1396			}
1397
1398			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1399			                    PAGE_SIZE);
1400			if (need > have) {
1401				if (eof > 1) {
1402					ret = -1;
1403					goto out_finish;
1404				}
1405				break;
1406			}
1407
1408			for (off = 0;
1409			     off < CMP_HEADER + data[thr].cmp_len;
1410			     off += PAGE_SIZE) {
1411				memcpy(data[thr].cmp + off,
1412				       page[pg], PAGE_SIZE);
1413				have--;
1414				want++;
1415				if (++pg >= ring_size)
1416					pg = 0;
1417			}
1418
1419			atomic_set_release(&data[thr].ready, 1);
1420			wake_up(&data[thr].go);
1421		}
1422
1423		/*
1424		 * Wait for more data while we are decompressing.
1425		 */
1426		if (have < CMP_PAGES && asked) {
1427			ret = hib_wait_io(&hb);
1428			if (ret)
1429				goto out_finish;
1430			have += asked;
1431			asked = 0;
1432			if (eof)
1433				eof = 2;
1434		}
1435
1436		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1437			wait_event(data[thr].done,
1438				atomic_read_acquire(&data[thr].stop));
1439			atomic_set(&data[thr].stop, 0);
1440
1441			ret = data[thr].ret;
1442
1443			if (ret < 0) {
1444				pr_err("%s decompression failed\n", hib_comp_algo);
1445				goto out_finish;
1446			}
1447
1448			if (unlikely(!data[thr].unc_len ||
1449				data[thr].unc_len > UNC_SIZE ||
1450				data[thr].unc_len & (PAGE_SIZE - 1))) {
1451				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1452				ret = -1;
1453				goto out_finish;
1454			}
1455
1456			for (off = 0;
1457			     off < data[thr].unc_len; off += PAGE_SIZE) {
1458				memcpy(data_of(*snapshot),
1459				       data[thr].unc + off, PAGE_SIZE);
1460
1461				if (!(nr_pages % m))
1462					pr_info("Image loading progress: %3d%%\n",
1463						nr_pages / m * 10);
1464				nr_pages++;
1465
1466				ret = snapshot_write_next(snapshot);
1467				if (ret <= 0) {
1468					crc->run_threads = thr + 1;
1469					atomic_set_release(&crc->ready, 1);
1470					wake_up(&crc->go);
1471					goto out_finish;
1472				}
1473			}
1474		}
1475
1476		crc->run_threads = thr;
1477		atomic_set_release(&crc->ready, 1);
1478		wake_up(&crc->go);
1479	}
1480
1481out_finish:
1482	if (crc->run_threads) {
1483		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1484		atomic_set(&crc->stop, 0);
1485	}
1486	stop = ktime_get();
1487	if (!ret) {
1488		pr_info("Image loading done\n");
1489		ret = snapshot_write_finalize(snapshot);
1490		if (!ret && !snapshot_image_loaded(snapshot))
1491			ret = -ENODATA;
1492		if (!ret) {
1493			if (swsusp_header->flags & SF_CRC32_MODE) {
1494				if(handle->crc32 != swsusp_header->crc32) {
1495					pr_err("Invalid image CRC32!\n");
1496					ret = -ENODATA;
1497				}
1498			}
1499		}
1500	}
1501	swsusp_show_speed(start, stop, nr_to_read, "Read");
1502out_clean:
1503	hib_finish_batch(&hb);
1504	for (i = 0; i < ring_size; i++)
1505		free_page((unsigned long)page[i]);
1506	if (crc) {
1507		if (crc->thr)
1508			kthread_stop(crc->thr);
1509		kfree(crc);
1510	}
1511	if (data) {
1512		for (thr = 0; thr < nr_threads; thr++) {
1513			if (data[thr].thr)
1514				kthread_stop(data[thr].thr);
1515			if (data[thr].cc)
1516				crypto_free_comp(data[thr].cc);
1517		}
1518		vfree(data);
1519	}
1520	vfree(page);
1521
1522	return ret;
1523}
1524
1525/**
1526 *	swsusp_read - read the hibernation image.
1527 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1528 *		  be written into this memory location
1529 */
1530
1531int swsusp_read(unsigned int *flags_p)
1532{
1533	int error;
1534	struct swap_map_handle handle;
1535	struct snapshot_handle snapshot;
1536	struct swsusp_info *header;
1537
1538	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1539	error = snapshot_write_next(&snapshot);
1540	if (error < (int)PAGE_SIZE)
1541		return error < 0 ? error : -EFAULT;
1542	header = (struct swsusp_info *)data_of(snapshot);
1543	error = get_swap_reader(&handle, flags_p);
1544	if (error)
1545		goto end;
1546	if (!error)
1547		error = swap_read_page(&handle, header, NULL);
1548	if (!error) {
1549		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1550			load_image(&handle, &snapshot, header->pages - 1) :
1551			load_compressed_image(&handle, &snapshot, header->pages - 1);
1552	}
1553	swap_reader_finish(&handle);
1554end:
1555	if (!error)
1556		pr_debug("Image successfully loaded\n");
1557	else
1558		pr_debug("Error %d resuming\n", error);
1559	return error;
1560}
1561
1562static void *swsusp_holder;
1563
1564/**
1565 * swsusp_check - Open the resume device and check for the swsusp signature.
1566 * @exclusive: Open the resume device exclusively.
1567 */
1568
1569int swsusp_check(bool exclusive)
1570{
1571	void *holder = exclusive ? &swsusp_holder : NULL;
1572	int error;
1573
1574	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1575				BLK_OPEN_READ, holder, NULL);
1576	if (!IS_ERR(hib_resume_bdev_file)) {
1577		set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
1578		clear_page(swsusp_header);
1579		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
 
1580					swsusp_header, NULL);
1581		if (error)
1582			goto put;
1583
1584		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1585			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1586			swsusp_header_flags = swsusp_header->flags;
1587			/* Reset swap signature now */
1588			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1589						swsusp_resume_block,
1590						swsusp_header, NULL);
1591		} else {
1592			error = -EINVAL;
1593		}
1594		if (!error && swsusp_header->flags & SF_HW_SIG &&
1595		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1596			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1597				swsusp_header->hw_sig, swsusp_hardware_signature);
1598			error = -EINVAL;
1599		}
1600
1601put:
1602		if (error)
1603			fput(hib_resume_bdev_file);
1604		else
1605			pr_debug("Image signature found, resuming\n");
1606	} else {
1607		error = PTR_ERR(hib_resume_bdev_file);
1608	}
1609
1610	if (error)
1611		pr_debug("Image not found (code %d)\n", error);
1612
1613	return error;
1614}
1615
1616/**
1617 * swsusp_close - close resume device.
1618 */
1619
1620void swsusp_close(void)
1621{
1622	if (IS_ERR(hib_resume_bdev_file)) {
1623		pr_debug("Image device not initialised\n");
1624		return;
1625	}
1626
1627	fput(hib_resume_bdev_file);
1628}
1629
1630/**
1631 *      swsusp_unmark - Unmark swsusp signature in the resume device
1632 */
1633
1634#ifdef CONFIG_SUSPEND
1635int swsusp_unmark(void)
1636{
1637	int error;
1638
1639	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1640			swsusp_header, NULL);
1641	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1642		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1643		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1644					swsusp_resume_block,
1645					swsusp_header, NULL);
1646	} else {
1647		pr_err("Cannot find swsusp signature!\n");
1648		error = -ENODEV;
1649	}
1650
1651	/*
1652	 * We just returned from suspend, we don't need the image any more.
1653	 */
1654	free_all_swap_pages(root_swap);
1655
1656	return error;
1657}
1658#endif
1659
1660static int __init swsusp_header_init(void)
1661{
1662	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1663	if (!swsusp_header)
1664		panic("Could not allocate memory for swsusp_header\n");
1665	return 0;
1666}
1667
1668core_initcall(swsusp_header_init);