Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/genhd.h>
  20#include <linux/device.h>
  21#include <linux/bio.h>
  22#include <linux/blkdev.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/pm.h>
  26#include <linux/slab.h>
  27#include <linux/lzo.h>
  28#include <linux/vmalloc.h>
  29#include <linux/cpumask.h>
  30#include <linux/atomic.h>
  31#include <linux/kthread.h>
  32#include <linux/crc32.h>
  33#include <linux/ktime.h>
  34
  35#include "power.h"
  36
  37#define HIBERNATE_SIG	"S1SUSPEND"
  38
 
 
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/**
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32)];
 
 108	u32	crc32;
 109	sector_t image;
 110	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 111	char	orig_sig[10];
 112	char	sig[10];
 113} __packed;
 114
 115static struct swsusp_header *swsusp_header;
 116
 117/**
 118 *	The following functions are used for tracing the allocated
 119 *	swap pages, so that they can be freed in case of an error.
 120 */
 121
 122struct swsusp_extent {
 123	struct rb_node node;
 124	unsigned long start;
 125	unsigned long end;
 126};
 127
 128static struct rb_root swsusp_extents = RB_ROOT;
 129
 130static int swsusp_extents_insert(unsigned long swap_offset)
 131{
 132	struct rb_node **new = &(swsusp_extents.rb_node);
 133	struct rb_node *parent = NULL;
 134	struct swsusp_extent *ext;
 135
 136	/* Figure out where to put the new node */
 137	while (*new) {
 138		ext = rb_entry(*new, struct swsusp_extent, node);
 139		parent = *new;
 140		if (swap_offset < ext->start) {
 141			/* Try to merge */
 142			if (swap_offset == ext->start - 1) {
 143				ext->start--;
 144				return 0;
 145			}
 146			new = &((*new)->rb_left);
 147		} else if (swap_offset > ext->end) {
 148			/* Try to merge */
 149			if (swap_offset == ext->end + 1) {
 150				ext->end++;
 151				return 0;
 152			}
 153			new = &((*new)->rb_right);
 154		} else {
 155			/* It already is in the tree */
 156			return -EINVAL;
 157		}
 158	}
 159	/* Add the new node and rebalance the tree. */
 160	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 161	if (!ext)
 162		return -ENOMEM;
 163
 164	ext->start = swap_offset;
 165	ext->end = swap_offset;
 166	rb_link_node(&ext->node, parent, new);
 167	rb_insert_color(&ext->node, &swsusp_extents);
 168	return 0;
 169}
 170
 171/**
 172 *	alloc_swapdev_block - allocate a swap page and register that it has
 173 *	been allocated, so that it can be freed in case of an error.
 174 */
 175
 176sector_t alloc_swapdev_block(int swap)
 177{
 178	unsigned long offset;
 179
 180	offset = swp_offset(get_swap_page_of_type(swap));
 181	if (offset) {
 182		if (swsusp_extents_insert(offset))
 183			swap_free(swp_entry(swap, offset));
 184		else
 185			return swapdev_block(swap, offset);
 186	}
 187	return 0;
 188}
 189
 190/**
 191 *	free_all_swap_pages - free swap pages allocated for saving image data.
 192 *	It also frees the extents used to register which swap entries had been
 193 *	allocated.
 194 */
 195
 196void free_all_swap_pages(int swap)
 197{
 198	struct rb_node *node;
 199
 200	while ((node = swsusp_extents.rb_node)) {
 201		struct swsusp_extent *ext;
 202		unsigned long offset;
 203
 204		ext = rb_entry(node, struct swsusp_extent, node);
 205		rb_erase(node, &swsusp_extents);
 206		for (offset = ext->start; offset <= ext->end; offset++)
 207			swap_free(swp_entry(swap, offset));
 208
 209		kfree(ext);
 210	}
 211}
 212
 213int swsusp_swap_in_use(void)
 214{
 215	return (swsusp_extents.rb_node != NULL);
 216}
 217
 218/*
 219 * General things
 220 */
 221
 222static unsigned short root_swap = 0xffff;
 223static struct block_device *hib_resume_bdev;
 224
 225struct hib_bio_batch {
 226	atomic_t		count;
 227	wait_queue_head_t	wait;
 228	blk_status_t		error;
 
 229};
 230
 231static void hib_init_batch(struct hib_bio_batch *hb)
 232{
 233	atomic_set(&hb->count, 0);
 234	init_waitqueue_head(&hb->wait);
 235	hb->error = BLK_STS_OK;
 
 
 
 
 
 
 236}
 237
 238static void hib_end_io(struct bio *bio)
 239{
 240	struct hib_bio_batch *hb = bio->bi_private;
 241	struct page *page = bio_first_page_all(bio);
 242
 243	if (bio->bi_status) {
 244		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 245			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 246			 (unsigned long long)bio->bi_iter.bi_sector);
 247	}
 248
 249	if (bio_data_dir(bio) == WRITE)
 250		put_page(page);
 251	else if (clean_pages_on_read)
 252		flush_icache_range((unsigned long)page_address(page),
 253				   (unsigned long)page_address(page) + PAGE_SIZE);
 254
 255	if (bio->bi_status && !hb->error)
 256		hb->error = bio->bi_status;
 257	if (atomic_dec_and_test(&hb->count))
 258		wake_up(&hb->wait);
 259
 260	bio_put(bio);
 261}
 262
 263static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
 264		struct hib_bio_batch *hb)
 265{
 266	struct page *page = virt_to_page(addr);
 267	struct bio *bio;
 268	int error = 0;
 269
 270	bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
 
 271	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 272	bio_set_dev(bio, hib_resume_bdev);
 273	bio_set_op_attrs(bio, op, op_flags);
 274
 275	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 276		pr_err("Adding page to bio failed at %llu\n",
 277		       (unsigned long long)bio->bi_iter.bi_sector);
 278		bio_put(bio);
 279		return -EFAULT;
 280	}
 281
 282	if (hb) {
 283		bio->bi_end_io = hib_end_io;
 284		bio->bi_private = hb;
 285		atomic_inc(&hb->count);
 286		submit_bio(bio);
 287	} else {
 288		error = submit_bio_wait(bio);
 289		bio_put(bio);
 290	}
 291
 292	return error;
 293}
 294
 295static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
 296{
 
 
 
 
 297	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 298	return blk_status_to_errno(hb->error);
 299}
 300
 301/*
 302 * Saving part
 303 */
 304
 305static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 306{
 307	int error;
 308
 309	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
 310		      swsusp_header, NULL);
 311	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 312	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 313		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 314		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 315		swsusp_header->image = handle->first_sector;
 
 
 
 
 316		swsusp_header->flags = flags;
 317		if (flags & SF_CRC32_MODE)
 318			swsusp_header->crc32 = handle->crc32;
 319		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
 320				      swsusp_resume_block, swsusp_header, NULL);
 321	} else {
 322		pr_err("Swap header not found!\n");
 323		error = -ENODEV;
 324	}
 325	return error;
 326}
 327
 
 
 
 
 
 
 
 328/**
 329 *	swsusp_swap_check - check if the resume device is a swap device
 330 *	and get its index (if so)
 331 *
 332 *	This is called before saving image
 333 */
 334static int swsusp_swap_check(void)
 335{
 336	int res;
 337
 338	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 339			&hib_resume_bdev);
 
 
 340	if (res < 0)
 341		return res;
 342
 343	root_swap = res;
 344	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 345	if (res)
 346		return res;
 347
 348	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 349	if (res < 0)
 350		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 
 351
 352	/*
 353	 * Update the resume device to the one actually used,
 354	 * so the test_resume mode can use it in case it is
 355	 * invoked from hibernate() to test the snapshot.
 356	 */
 357	swsusp_resume_device = hib_resume_bdev->bd_dev;
 358	return res;
 359}
 360
 361/**
 362 *	write_page - Write one page to given swap location.
 363 *	@buf:		Address we're writing.
 364 *	@offset:	Offset of the swap page we're writing to.
 365 *	@hb:		bio completion batch
 366 */
 367
 368static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 369{
 370	void *src;
 371	int ret;
 372
 373	if (!offset)
 374		return -ENOSPC;
 375
 376	if (hb) {
 377		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 378		                              __GFP_NORETRY);
 379		if (src) {
 380			copy_page(src, buf);
 381		} else {
 382			ret = hib_wait_io(hb); /* Free pages */
 383			if (ret)
 384				return ret;
 385			src = (void *)__get_free_page(GFP_NOIO |
 386			                              __GFP_NOWARN |
 387			                              __GFP_NORETRY);
 388			if (src) {
 389				copy_page(src, buf);
 390			} else {
 391				WARN_ON_ONCE(1);
 392				hb = NULL;	/* Go synchronous */
 393				src = buf;
 394			}
 395		}
 396	} else {
 397		src = buf;
 398	}
 399	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
 400}
 401
 402static void release_swap_writer(struct swap_map_handle *handle)
 403{
 404	if (handle->cur)
 405		free_page((unsigned long)handle->cur);
 406	handle->cur = NULL;
 407}
 408
 409static int get_swap_writer(struct swap_map_handle *handle)
 410{
 411	int ret;
 412
 413	ret = swsusp_swap_check();
 414	if (ret) {
 415		if (ret != -ENOSPC)
 416			pr_err("Cannot find swap device, try swapon -a\n");
 417		return ret;
 418	}
 419	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 420	if (!handle->cur) {
 421		ret = -ENOMEM;
 422		goto err_close;
 423	}
 424	handle->cur_swap = alloc_swapdev_block(root_swap);
 425	if (!handle->cur_swap) {
 426		ret = -ENOSPC;
 427		goto err_rel;
 428	}
 429	handle->k = 0;
 430	handle->reqd_free_pages = reqd_free_pages();
 431	handle->first_sector = handle->cur_swap;
 432	return 0;
 433err_rel:
 434	release_swap_writer(handle);
 435err_close:
 436	swsusp_close(FMODE_WRITE);
 437	return ret;
 438}
 439
 440static int swap_write_page(struct swap_map_handle *handle, void *buf,
 441		struct hib_bio_batch *hb)
 442{
 443	int error = 0;
 444	sector_t offset;
 445
 446	if (!handle->cur)
 447		return -EINVAL;
 448	offset = alloc_swapdev_block(root_swap);
 449	error = write_page(buf, offset, hb);
 450	if (error)
 451		return error;
 452	handle->cur->entries[handle->k++] = offset;
 453	if (handle->k >= MAP_PAGE_ENTRIES) {
 454		offset = alloc_swapdev_block(root_swap);
 455		if (!offset)
 456			return -ENOSPC;
 457		handle->cur->next_swap = offset;
 458		error = write_page(handle->cur, handle->cur_swap, hb);
 459		if (error)
 460			goto out;
 461		clear_page(handle->cur);
 462		handle->cur_swap = offset;
 463		handle->k = 0;
 464
 465		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 466			error = hib_wait_io(hb);
 467			if (error)
 468				goto out;
 469			/*
 470			 * Recalculate the number of required free pages, to
 471			 * make sure we never take more than half.
 472			 */
 473			handle->reqd_free_pages = reqd_free_pages();
 474		}
 475	}
 476 out:
 477	return error;
 478}
 479
 480static int flush_swap_writer(struct swap_map_handle *handle)
 481{
 482	if (handle->cur && handle->cur_swap)
 483		return write_page(handle->cur, handle->cur_swap, NULL);
 484	else
 485		return -EINVAL;
 486}
 487
 488static int swap_writer_finish(struct swap_map_handle *handle,
 489		unsigned int flags, int error)
 490{
 491	if (!error) {
 492		flush_swap_writer(handle);
 493		pr_info("S");
 494		error = mark_swapfiles(handle, flags);
 495		pr_cont("|\n");
 
 496	}
 497
 498	if (error)
 499		free_all_swap_pages(root_swap);
 500	release_swap_writer(handle);
 501	swsusp_close(FMODE_WRITE);
 502
 503	return error;
 504}
 505
 
 
 
 
 
 
 506/* We need to remember how much compressed data we need to read. */
 507#define LZO_HEADER	sizeof(size_t)
 508
 509/* Number of pages/bytes we'll compress at one time. */
 510#define LZO_UNC_PAGES	32
 511#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 512
 513/* Number of pages/bytes we need for compressed data (worst case). */
 514#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 515			             LZO_HEADER, PAGE_SIZE)
 516#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 517
 518/* Maximum number of threads for compression/decompression. */
 519#define LZO_THREADS	3
 520
 521/* Minimum/maximum number of pages for read buffering. */
 522#define LZO_MIN_RD_PAGES	1024
 523#define LZO_MAX_RD_PAGES	8192
 524
 525
 526/**
 527 *	save_image - save the suspend image data
 528 */
 529
 530static int save_image(struct swap_map_handle *handle,
 531                      struct snapshot_handle *snapshot,
 532                      unsigned int nr_to_write)
 533{
 534	unsigned int m;
 535	int ret;
 536	int nr_pages;
 537	int err2;
 538	struct hib_bio_batch hb;
 539	ktime_t start;
 540	ktime_t stop;
 541
 542	hib_init_batch(&hb);
 543
 544	pr_info("Saving image data pages (%u pages)...\n",
 545		nr_to_write);
 546	m = nr_to_write / 10;
 547	if (!m)
 548		m = 1;
 549	nr_pages = 0;
 550	start = ktime_get();
 551	while (1) {
 552		ret = snapshot_read_next(snapshot);
 553		if (ret <= 0)
 554			break;
 555		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 556		if (ret)
 557			break;
 558		if (!(nr_pages % m))
 559			pr_info("Image saving progress: %3d%%\n",
 560				nr_pages / m * 10);
 561		nr_pages++;
 562	}
 563	err2 = hib_wait_io(&hb);
 
 564	stop = ktime_get();
 565	if (!ret)
 566		ret = err2;
 567	if (!ret)
 568		pr_info("Image saving done\n");
 569	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 570	return ret;
 571}
 572
 573/**
 574 * Structure used for CRC32.
 575 */
 576struct crc_data {
 577	struct task_struct *thr;                  /* thread */
 578	atomic_t ready;                           /* ready to start flag */
 579	atomic_t stop;                            /* ready to stop flag */
 580	unsigned run_threads;                     /* nr current threads */
 581	wait_queue_head_t go;                     /* start crc update */
 582	wait_queue_head_t done;                   /* crc update done */
 583	u32 *crc32;                               /* points to handle's crc32 */
 584	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 585	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 586};
 587
 588/**
 589 * CRC32 update function that runs in its own thread.
 590 */
 591static int crc32_threadfn(void *data)
 592{
 593	struct crc_data *d = data;
 594	unsigned i;
 595
 596	while (1) {
 597		wait_event(d->go, atomic_read(&d->ready) ||
 598		                  kthread_should_stop());
 599		if (kthread_should_stop()) {
 600			d->thr = NULL;
 601			atomic_set(&d->stop, 1);
 602			wake_up(&d->done);
 603			break;
 604		}
 605		atomic_set(&d->ready, 0);
 606
 607		for (i = 0; i < d->run_threads; i++)
 608			*d->crc32 = crc32_le(*d->crc32,
 609			                     d->unc[i], *d->unc_len[i]);
 610		atomic_set(&d->stop, 1);
 611		wake_up(&d->done);
 612	}
 613	return 0;
 614}
 615/**
 616 * Structure used for LZO data compression.
 617 */
 618struct cmp_data {
 619	struct task_struct *thr;                  /* thread */
 
 620	atomic_t ready;                           /* ready to start flag */
 621	atomic_t stop;                            /* ready to stop flag */
 622	int ret;                                  /* return code */
 623	wait_queue_head_t go;                     /* start compression */
 624	wait_queue_head_t done;                   /* compression done */
 625	size_t unc_len;                           /* uncompressed length */
 626	size_t cmp_len;                           /* compressed length */
 627	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 628	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 629	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 630};
 631
 632/**
 
 
 
 633 * Compression function that runs in its own thread.
 634 */
 635static int lzo_compress_threadfn(void *data)
 636{
 637	struct cmp_data *d = data;
 
 638
 639	while (1) {
 640		wait_event(d->go, atomic_read(&d->ready) ||
 641		                  kthread_should_stop());
 642		if (kthread_should_stop()) {
 643			d->thr = NULL;
 644			d->ret = -1;
 645			atomic_set(&d->stop, 1);
 646			wake_up(&d->done);
 647			break;
 648		}
 649		atomic_set(&d->ready, 0);
 650
 651		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 652		                          d->cmp + LZO_HEADER, &d->cmp_len,
 653		                          d->wrk);
 654		atomic_set(&d->stop, 1);
 
 
 
 
 655		wake_up(&d->done);
 656	}
 657	return 0;
 658}
 659
 660/**
 661 * save_image_lzo - Save the suspend image data compressed with LZO.
 662 * @handle: Swap map handle to use for saving the image.
 663 * @snapshot: Image to read data from.
 664 * @nr_to_write: Number of pages to save.
 665 */
 666static int save_image_lzo(struct swap_map_handle *handle,
 667                          struct snapshot_handle *snapshot,
 668                          unsigned int nr_to_write)
 669{
 670	unsigned int m;
 671	int ret = 0;
 672	int nr_pages;
 673	int err2;
 674	struct hib_bio_batch hb;
 675	ktime_t start;
 676	ktime_t stop;
 677	size_t off;
 678	unsigned thr, run_threads, nr_threads;
 679	unsigned char *page = NULL;
 680	struct cmp_data *data = NULL;
 681	struct crc_data *crc = NULL;
 682
 683	hib_init_batch(&hb);
 684
 
 
 685	/*
 686	 * We'll limit the number of threads for compression to limit memory
 687	 * footprint.
 688	 */
 689	nr_threads = num_online_cpus() - 1;
 690	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 691
 692	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 693	if (!page) {
 694		pr_err("Failed to allocate LZO page\n");
 695		ret = -ENOMEM;
 696		goto out_clean;
 697	}
 698
 699	data = vmalloc(array_size(nr_threads, sizeof(*data)));
 700	if (!data) {
 701		pr_err("Failed to allocate LZO data\n");
 702		ret = -ENOMEM;
 703		goto out_clean;
 704	}
 705	for (thr = 0; thr < nr_threads; thr++)
 706		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 707
 708	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 709	if (!crc) {
 710		pr_err("Failed to allocate crc\n");
 711		ret = -ENOMEM;
 712		goto out_clean;
 713	}
 714	memset(crc, 0, offsetof(struct crc_data, go));
 715
 716	/*
 717	 * Start the compression threads.
 718	 */
 719	for (thr = 0; thr < nr_threads; thr++) {
 720		init_waitqueue_head(&data[thr].go);
 721		init_waitqueue_head(&data[thr].done);
 722
 723		data[thr].thr = kthread_run(lzo_compress_threadfn,
 
 
 
 
 
 
 
 724		                            &data[thr],
 725		                            "image_compress/%u", thr);
 726		if (IS_ERR(data[thr].thr)) {
 727			data[thr].thr = NULL;
 728			pr_err("Cannot start compression threads\n");
 729			ret = -ENOMEM;
 730			goto out_clean;
 731		}
 732	}
 733
 734	/*
 735	 * Start the CRC32 thread.
 736	 */
 737	init_waitqueue_head(&crc->go);
 738	init_waitqueue_head(&crc->done);
 739
 740	handle->crc32 = 0;
 741	crc->crc32 = &handle->crc32;
 742	for (thr = 0; thr < nr_threads; thr++) {
 743		crc->unc[thr] = data[thr].unc;
 744		crc->unc_len[thr] = &data[thr].unc_len;
 745	}
 746
 747	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 748	if (IS_ERR(crc->thr)) {
 749		crc->thr = NULL;
 750		pr_err("Cannot start CRC32 thread\n");
 751		ret = -ENOMEM;
 752		goto out_clean;
 753	}
 754
 755	/*
 756	 * Adjust the number of required free pages after all allocations have
 757	 * been done. We don't want to run out of pages when writing.
 758	 */
 759	handle->reqd_free_pages = reqd_free_pages();
 760
 761	pr_info("Using %u thread(s) for compression\n", nr_threads);
 762	pr_info("Compressing and saving image data (%u pages)...\n",
 763		nr_to_write);
 764	m = nr_to_write / 10;
 765	if (!m)
 766		m = 1;
 767	nr_pages = 0;
 768	start = ktime_get();
 769	for (;;) {
 770		for (thr = 0; thr < nr_threads; thr++) {
 771			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 772				ret = snapshot_read_next(snapshot);
 773				if (ret < 0)
 774					goto out_finish;
 775
 776				if (!ret)
 777					break;
 778
 779				memcpy(data[thr].unc + off,
 780				       data_of(*snapshot), PAGE_SIZE);
 781
 782				if (!(nr_pages % m))
 783					pr_info("Image saving progress: %3d%%\n",
 784						nr_pages / m * 10);
 785				nr_pages++;
 786			}
 787			if (!off)
 788				break;
 789
 790			data[thr].unc_len = off;
 791
 792			atomic_set(&data[thr].ready, 1);
 793			wake_up(&data[thr].go);
 794		}
 795
 796		if (!thr)
 797			break;
 798
 799		crc->run_threads = thr;
 800		atomic_set(&crc->ready, 1);
 801		wake_up(&crc->go);
 802
 803		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 804			wait_event(data[thr].done,
 805			           atomic_read(&data[thr].stop));
 806			atomic_set(&data[thr].stop, 0);
 807
 808			ret = data[thr].ret;
 809
 810			if (ret < 0) {
 811				pr_err("LZO compression failed\n");
 812				goto out_finish;
 813			}
 814
 815			if (unlikely(!data[thr].cmp_len ||
 816			             data[thr].cmp_len >
 817			             lzo1x_worst_compress(data[thr].unc_len))) {
 818				pr_err("Invalid LZO compressed length\n");
 819				ret = -1;
 820				goto out_finish;
 821			}
 822
 823			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 824
 825			/*
 826			 * Given we are writing one page at a time to disk, we
 827			 * copy that much from the buffer, although the last
 828			 * bit will likely be smaller than full page. This is
 829			 * OK - we saved the length of the compressed data, so
 830			 * any garbage at the end will be discarded when we
 831			 * read it.
 832			 */
 833			for (off = 0;
 834			     off < LZO_HEADER + data[thr].cmp_len;
 835			     off += PAGE_SIZE) {
 836				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 837
 838				ret = swap_write_page(handle, page, &hb);
 839				if (ret)
 840					goto out_finish;
 841			}
 842		}
 843
 844		wait_event(crc->done, atomic_read(&crc->stop));
 845		atomic_set(&crc->stop, 0);
 846	}
 847
 848out_finish:
 849	err2 = hib_wait_io(&hb);
 850	stop = ktime_get();
 851	if (!ret)
 852		ret = err2;
 853	if (!ret)
 854		pr_info("Image saving done\n");
 855	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 
 
 
 856out_clean:
 
 857	if (crc) {
 858		if (crc->thr)
 859			kthread_stop(crc->thr);
 860		kfree(crc);
 861	}
 862	if (data) {
 863		for (thr = 0; thr < nr_threads; thr++)
 864			if (data[thr].thr)
 865				kthread_stop(data[thr].thr);
 
 
 
 866		vfree(data);
 867	}
 868	if (page) free_page((unsigned long)page);
 869
 870	return ret;
 871}
 872
 873/**
 874 *	enough_swap - Make sure we have enough swap to save the image.
 875 *
 876 *	Returns TRUE or FALSE after checking the total amount of swap
 877 *	space avaiable from the resume partition.
 878 */
 879
 880static int enough_swap(unsigned int nr_pages)
 881{
 882	unsigned int free_swap = count_swap_pages(root_swap, 1);
 883	unsigned int required;
 884
 885	pr_debug("Free swap pages: %u\n", free_swap);
 886
 887	required = PAGES_FOR_IO + nr_pages;
 888	return free_swap > required;
 889}
 890
 891/**
 892 *	swsusp_write - Write entire image and metadata.
 893 *	@flags: flags to pass to the "boot" kernel in the image header
 894 *
 895 *	It is important _NOT_ to umount filesystems at this point. We want
 896 *	them synced (in case something goes wrong) but we DO not want to mark
 897 *	filesystem clean: it is not. (And it does not matter, if we resume
 898 *	correctly, we'll mark system clean, anyway.)
 899 */
 900
 901int swsusp_write(unsigned int flags)
 902{
 903	struct swap_map_handle handle;
 904	struct snapshot_handle snapshot;
 905	struct swsusp_info *header;
 906	unsigned long pages;
 907	int error;
 908
 909	pages = snapshot_get_image_size();
 910	error = get_swap_writer(&handle);
 911	if (error) {
 912		pr_err("Cannot get swap writer\n");
 913		return error;
 914	}
 915	if (flags & SF_NOCOMPRESS_MODE) {
 916		if (!enough_swap(pages)) {
 917			pr_err("Not enough free swap\n");
 918			error = -ENOSPC;
 919			goto out_finish;
 920		}
 921	}
 922	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 923	error = snapshot_read_next(&snapshot);
 924	if (error < (int)PAGE_SIZE) {
 925		if (error >= 0)
 926			error = -EFAULT;
 927
 928		goto out_finish;
 929	}
 930	header = (struct swsusp_info *)data_of(snapshot);
 931	error = swap_write_page(&handle, header, NULL);
 932	if (!error) {
 933		error = (flags & SF_NOCOMPRESS_MODE) ?
 934			save_image(&handle, &snapshot, pages - 1) :
 935			save_image_lzo(&handle, &snapshot, pages - 1);
 936	}
 937out_finish:
 938	error = swap_writer_finish(&handle, flags, error);
 939	return error;
 940}
 941
 942/**
 943 *	The following functions allow us to read data using a swap map
 944 *	in a file-alike way
 945 */
 946
 947static void release_swap_reader(struct swap_map_handle *handle)
 948{
 949	struct swap_map_page_list *tmp;
 950
 951	while (handle->maps) {
 952		if (handle->maps->map)
 953			free_page((unsigned long)handle->maps->map);
 954		tmp = handle->maps;
 955		handle->maps = handle->maps->next;
 956		kfree(tmp);
 957	}
 958	handle->cur = NULL;
 959}
 960
 961static int get_swap_reader(struct swap_map_handle *handle,
 962		unsigned int *flags_p)
 963{
 964	int error;
 965	struct swap_map_page_list *tmp, *last;
 966	sector_t offset;
 967
 968	*flags_p = swsusp_header->flags;
 969
 970	if (!swsusp_header->image) /* how can this happen? */
 971		return -EINVAL;
 972
 973	handle->cur = NULL;
 974	last = handle->maps = NULL;
 975	offset = swsusp_header->image;
 976	while (offset) {
 977		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
 978		if (!tmp) {
 979			release_swap_reader(handle);
 980			return -ENOMEM;
 981		}
 982		if (!handle->maps)
 983			handle->maps = tmp;
 984		if (last)
 985			last->next = tmp;
 986		last = tmp;
 987
 988		tmp->map = (struct swap_map_page *)
 989			   __get_free_page(GFP_NOIO | __GFP_HIGH);
 990		if (!tmp->map) {
 991			release_swap_reader(handle);
 992			return -ENOMEM;
 993		}
 994
 995		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
 996		if (error) {
 997			release_swap_reader(handle);
 998			return error;
 999		}
1000		offset = tmp->map->next_swap;
1001	}
1002	handle->k = 0;
1003	handle->cur = handle->maps->map;
1004	return 0;
1005}
1006
1007static int swap_read_page(struct swap_map_handle *handle, void *buf,
1008		struct hib_bio_batch *hb)
1009{
1010	sector_t offset;
1011	int error;
1012	struct swap_map_page_list *tmp;
1013
1014	if (!handle->cur)
1015		return -EINVAL;
1016	offset = handle->cur->entries[handle->k];
1017	if (!offset)
1018		return -EFAULT;
1019	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1020	if (error)
1021		return error;
1022	if (++handle->k >= MAP_PAGE_ENTRIES) {
1023		handle->k = 0;
1024		free_page((unsigned long)handle->maps->map);
1025		tmp = handle->maps;
1026		handle->maps = handle->maps->next;
1027		kfree(tmp);
1028		if (!handle->maps)
1029			release_swap_reader(handle);
1030		else
1031			handle->cur = handle->maps->map;
1032	}
1033	return error;
1034}
1035
1036static int swap_reader_finish(struct swap_map_handle *handle)
1037{
1038	release_swap_reader(handle);
1039
1040	return 0;
1041}
1042
1043/**
1044 *	load_image - load the image using the swap map handle
1045 *	@handle and the snapshot handle @snapshot
1046 *	(assume there are @nr_pages pages to load)
1047 */
1048
1049static int load_image(struct swap_map_handle *handle,
1050                      struct snapshot_handle *snapshot,
1051                      unsigned int nr_to_read)
1052{
1053	unsigned int m;
1054	int ret = 0;
1055	ktime_t start;
1056	ktime_t stop;
1057	struct hib_bio_batch hb;
1058	int err2;
1059	unsigned nr_pages;
1060
1061	hib_init_batch(&hb);
1062
1063	clean_pages_on_read = true;
1064	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1065	m = nr_to_read / 10;
1066	if (!m)
1067		m = 1;
1068	nr_pages = 0;
1069	start = ktime_get();
1070	for ( ; ; ) {
1071		ret = snapshot_write_next(snapshot);
1072		if (ret <= 0)
1073			break;
1074		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1075		if (ret)
1076			break;
1077		if (snapshot->sync_read)
1078			ret = hib_wait_io(&hb);
1079		if (ret)
1080			break;
1081		if (!(nr_pages % m))
1082			pr_info("Image loading progress: %3d%%\n",
1083				nr_pages / m * 10);
1084		nr_pages++;
1085	}
1086	err2 = hib_wait_io(&hb);
 
1087	stop = ktime_get();
1088	if (!ret)
1089		ret = err2;
1090	if (!ret) {
1091		pr_info("Image loading done\n");
1092		snapshot_write_finalize(snapshot);
1093		if (!snapshot_image_loaded(snapshot))
1094			ret = -ENODATA;
1095	}
1096	swsusp_show_speed(start, stop, nr_to_read, "Read");
1097	return ret;
1098}
1099
1100/**
1101 * Structure used for LZO data decompression.
1102 */
1103struct dec_data {
1104	struct task_struct *thr;                  /* thread */
 
1105	atomic_t ready;                           /* ready to start flag */
1106	atomic_t stop;                            /* ready to stop flag */
1107	int ret;                                  /* return code */
1108	wait_queue_head_t go;                     /* start decompression */
1109	wait_queue_head_t done;                   /* decompression done */
1110	size_t unc_len;                           /* uncompressed length */
1111	size_t cmp_len;                           /* compressed length */
1112	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1113	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1114};
1115
1116/**
1117 * Deompression function that runs in its own thread.
1118 */
1119static int lzo_decompress_threadfn(void *data)
1120{
1121	struct dec_data *d = data;
 
1122
1123	while (1) {
1124		wait_event(d->go, atomic_read(&d->ready) ||
1125		                  kthread_should_stop());
1126		if (kthread_should_stop()) {
1127			d->thr = NULL;
1128			d->ret = -1;
1129			atomic_set(&d->stop, 1);
1130			wake_up(&d->done);
1131			break;
1132		}
1133		atomic_set(&d->ready, 0);
1134
1135		d->unc_len = LZO_UNC_SIZE;
1136		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1137		                               d->unc, &d->unc_len);
 
 
1138		if (clean_pages_on_decompress)
1139			flush_icache_range((unsigned long)d->unc,
1140					   (unsigned long)d->unc + d->unc_len);
1141
1142		atomic_set(&d->stop, 1);
1143		wake_up(&d->done);
1144	}
1145	return 0;
1146}
1147
1148/**
1149 * load_image_lzo - Load compressed image data and decompress them with LZO.
1150 * @handle: Swap map handle to use for loading data.
1151 * @snapshot: Image to copy uncompressed data into.
1152 * @nr_to_read: Number of pages to load.
1153 */
1154static int load_image_lzo(struct swap_map_handle *handle,
1155                          struct snapshot_handle *snapshot,
1156                          unsigned int nr_to_read)
1157{
1158	unsigned int m;
1159	int ret = 0;
1160	int eof = 0;
1161	struct hib_bio_batch hb;
1162	ktime_t start;
1163	ktime_t stop;
1164	unsigned nr_pages;
1165	size_t off;
1166	unsigned i, thr, run_threads, nr_threads;
1167	unsigned ring = 0, pg = 0, ring_size = 0,
1168	         have = 0, want, need, asked = 0;
1169	unsigned long read_pages = 0;
1170	unsigned char **page = NULL;
1171	struct dec_data *data = NULL;
1172	struct crc_data *crc = NULL;
1173
1174	hib_init_batch(&hb);
1175
1176	/*
1177	 * We'll limit the number of threads for decompression to limit memory
1178	 * footprint.
1179	 */
1180	nr_threads = num_online_cpus() - 1;
1181	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1182
1183	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1184	if (!page) {
1185		pr_err("Failed to allocate LZO page\n");
1186		ret = -ENOMEM;
1187		goto out_clean;
1188	}
1189
1190	data = vmalloc(array_size(nr_threads, sizeof(*data)));
1191	if (!data) {
1192		pr_err("Failed to allocate LZO data\n");
1193		ret = -ENOMEM;
1194		goto out_clean;
1195	}
1196	for (thr = 0; thr < nr_threads; thr++)
1197		memset(&data[thr], 0, offsetof(struct dec_data, go));
1198
1199	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1200	if (!crc) {
1201		pr_err("Failed to allocate crc\n");
1202		ret = -ENOMEM;
1203		goto out_clean;
1204	}
1205	memset(crc, 0, offsetof(struct crc_data, go));
1206
1207	clean_pages_on_decompress = true;
1208
1209	/*
1210	 * Start the decompression threads.
1211	 */
1212	for (thr = 0; thr < nr_threads; thr++) {
1213		init_waitqueue_head(&data[thr].go);
1214		init_waitqueue_head(&data[thr].done);
1215
1216		data[thr].thr = kthread_run(lzo_decompress_threadfn,
 
 
 
 
 
 
 
1217		                            &data[thr],
1218		                            "image_decompress/%u", thr);
1219		if (IS_ERR(data[thr].thr)) {
1220			data[thr].thr = NULL;
1221			pr_err("Cannot start decompression threads\n");
1222			ret = -ENOMEM;
1223			goto out_clean;
1224		}
1225	}
1226
1227	/*
1228	 * Start the CRC32 thread.
1229	 */
1230	init_waitqueue_head(&crc->go);
1231	init_waitqueue_head(&crc->done);
1232
1233	handle->crc32 = 0;
1234	crc->crc32 = &handle->crc32;
1235	for (thr = 0; thr < nr_threads; thr++) {
1236		crc->unc[thr] = data[thr].unc;
1237		crc->unc_len[thr] = &data[thr].unc_len;
1238	}
1239
1240	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1241	if (IS_ERR(crc->thr)) {
1242		crc->thr = NULL;
1243		pr_err("Cannot start CRC32 thread\n");
1244		ret = -ENOMEM;
1245		goto out_clean;
1246	}
1247
1248	/*
1249	 * Set the number of pages for read buffering.
1250	 * This is complete guesswork, because we'll only know the real
1251	 * picture once prepare_image() is called, which is much later on
1252	 * during the image load phase. We'll assume the worst case and
1253	 * say that none of the image pages are from high memory.
1254	 */
1255	if (low_free_pages() > snapshot_get_image_size())
1256		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1257	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1258
1259	for (i = 0; i < read_pages; i++) {
1260		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1261						  GFP_NOIO | __GFP_HIGH :
1262						  GFP_NOIO | __GFP_NOWARN |
1263						  __GFP_NORETRY);
1264
1265		if (!page[i]) {
1266			if (i < LZO_CMP_PAGES) {
1267				ring_size = i;
1268				pr_err("Failed to allocate LZO pages\n");
1269				ret = -ENOMEM;
1270				goto out_clean;
1271			} else {
1272				break;
1273			}
1274		}
1275	}
1276	want = ring_size = i;
1277
1278	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1279	pr_info("Loading and decompressing image data (%u pages)...\n",
1280		nr_to_read);
1281	m = nr_to_read / 10;
1282	if (!m)
1283		m = 1;
1284	nr_pages = 0;
1285	start = ktime_get();
1286
1287	ret = snapshot_write_next(snapshot);
1288	if (ret <= 0)
1289		goto out_finish;
1290
1291	for(;;) {
1292		for (i = 0; !eof && i < want; i++) {
1293			ret = swap_read_page(handle, page[ring], &hb);
1294			if (ret) {
1295				/*
1296				 * On real read error, finish. On end of data,
1297				 * set EOF flag and just exit the read loop.
1298				 */
1299				if (handle->cur &&
1300				    handle->cur->entries[handle->k]) {
1301					goto out_finish;
1302				} else {
1303					eof = 1;
1304					break;
1305				}
1306			}
1307			if (++ring >= ring_size)
1308				ring = 0;
1309		}
1310		asked += i;
1311		want -= i;
1312
1313		/*
1314		 * We are out of data, wait for some more.
1315		 */
1316		if (!have) {
1317			if (!asked)
1318				break;
1319
1320			ret = hib_wait_io(&hb);
1321			if (ret)
1322				goto out_finish;
1323			have += asked;
1324			asked = 0;
1325			if (eof)
1326				eof = 2;
1327		}
1328
1329		if (crc->run_threads) {
1330			wait_event(crc->done, atomic_read(&crc->stop));
1331			atomic_set(&crc->stop, 0);
1332			crc->run_threads = 0;
1333		}
1334
1335		for (thr = 0; have && thr < nr_threads; thr++) {
1336			data[thr].cmp_len = *(size_t *)page[pg];
1337			if (unlikely(!data[thr].cmp_len ||
1338			             data[thr].cmp_len >
1339			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1340				pr_err("Invalid LZO compressed length\n");
1341				ret = -1;
1342				goto out_finish;
1343			}
1344
1345			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1346			                    PAGE_SIZE);
1347			if (need > have) {
1348				if (eof > 1) {
1349					ret = -1;
1350					goto out_finish;
1351				}
1352				break;
1353			}
1354
1355			for (off = 0;
1356			     off < LZO_HEADER + data[thr].cmp_len;
1357			     off += PAGE_SIZE) {
1358				memcpy(data[thr].cmp + off,
1359				       page[pg], PAGE_SIZE);
1360				have--;
1361				want++;
1362				if (++pg >= ring_size)
1363					pg = 0;
1364			}
1365
1366			atomic_set(&data[thr].ready, 1);
1367			wake_up(&data[thr].go);
1368		}
1369
1370		/*
1371		 * Wait for more data while we are decompressing.
1372		 */
1373		if (have < LZO_CMP_PAGES && asked) {
1374			ret = hib_wait_io(&hb);
1375			if (ret)
1376				goto out_finish;
1377			have += asked;
1378			asked = 0;
1379			if (eof)
1380				eof = 2;
1381		}
1382
1383		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1384			wait_event(data[thr].done,
1385			           atomic_read(&data[thr].stop));
1386			atomic_set(&data[thr].stop, 0);
1387
1388			ret = data[thr].ret;
1389
1390			if (ret < 0) {
1391				pr_err("LZO decompression failed\n");
1392				goto out_finish;
1393			}
1394
1395			if (unlikely(!data[thr].unc_len ||
1396			             data[thr].unc_len > LZO_UNC_SIZE ||
1397			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1398				pr_err("Invalid LZO uncompressed length\n");
1399				ret = -1;
1400				goto out_finish;
1401			}
1402
1403			for (off = 0;
1404			     off < data[thr].unc_len; off += PAGE_SIZE) {
1405				memcpy(data_of(*snapshot),
1406				       data[thr].unc + off, PAGE_SIZE);
1407
1408				if (!(nr_pages % m))
1409					pr_info("Image loading progress: %3d%%\n",
1410						nr_pages / m * 10);
1411				nr_pages++;
1412
1413				ret = snapshot_write_next(snapshot);
1414				if (ret <= 0) {
1415					crc->run_threads = thr + 1;
1416					atomic_set(&crc->ready, 1);
1417					wake_up(&crc->go);
1418					goto out_finish;
1419				}
1420			}
1421		}
1422
1423		crc->run_threads = thr;
1424		atomic_set(&crc->ready, 1);
1425		wake_up(&crc->go);
1426	}
1427
1428out_finish:
1429	if (crc->run_threads) {
1430		wait_event(crc->done, atomic_read(&crc->stop));
1431		atomic_set(&crc->stop, 0);
1432	}
1433	stop = ktime_get();
1434	if (!ret) {
1435		pr_info("Image loading done\n");
1436		snapshot_write_finalize(snapshot);
1437		if (!snapshot_image_loaded(snapshot))
1438			ret = -ENODATA;
1439		if (!ret) {
1440			if (swsusp_header->flags & SF_CRC32_MODE) {
1441				if(handle->crc32 != swsusp_header->crc32) {
1442					pr_err("Invalid image CRC32!\n");
1443					ret = -ENODATA;
1444				}
1445			}
1446		}
1447	}
1448	swsusp_show_speed(start, stop, nr_to_read, "Read");
1449out_clean:
 
1450	for (i = 0; i < ring_size; i++)
1451		free_page((unsigned long)page[i]);
1452	if (crc) {
1453		if (crc->thr)
1454			kthread_stop(crc->thr);
1455		kfree(crc);
1456	}
1457	if (data) {
1458		for (thr = 0; thr < nr_threads; thr++)
1459			if (data[thr].thr)
1460				kthread_stop(data[thr].thr);
 
 
 
1461		vfree(data);
1462	}
1463	vfree(page);
1464
1465	return ret;
1466}
1467
1468/**
1469 *	swsusp_read - read the hibernation image.
1470 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1471 *		  be written into this memory location
1472 */
1473
1474int swsusp_read(unsigned int *flags_p)
1475{
1476	int error;
1477	struct swap_map_handle handle;
1478	struct snapshot_handle snapshot;
1479	struct swsusp_info *header;
1480
1481	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1482	error = snapshot_write_next(&snapshot);
1483	if (error < (int)PAGE_SIZE)
1484		return error < 0 ? error : -EFAULT;
1485	header = (struct swsusp_info *)data_of(snapshot);
1486	error = get_swap_reader(&handle, flags_p);
1487	if (error)
1488		goto end;
1489	if (!error)
1490		error = swap_read_page(&handle, header, NULL);
1491	if (!error) {
1492		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1493			load_image(&handle, &snapshot, header->pages - 1) :
1494			load_image_lzo(&handle, &snapshot, header->pages - 1);
1495	}
1496	swap_reader_finish(&handle);
1497end:
1498	if (!error)
1499		pr_debug("Image successfully loaded\n");
1500	else
1501		pr_debug("Error %d resuming\n", error);
1502	return error;
1503}
1504
 
 
1505/**
1506 *      swsusp_check - Check for swsusp signature in the resume device
 
1507 */
1508
1509int swsusp_check(void)
1510{
 
1511	int error;
1512
1513	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1514					    FMODE_READ, NULL);
1515	if (!IS_ERR(hib_resume_bdev)) {
1516		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1517		clear_page(swsusp_header);
1518		error = hib_submit_io(REQ_OP_READ, 0,
1519					swsusp_resume_block,
1520					swsusp_header, NULL);
1521		if (error)
1522			goto put;
1523
1524		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1525			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
 
1526			/* Reset swap signature now */
1527			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1528						swsusp_resume_block,
1529						swsusp_header, NULL);
1530		} else {
1531			error = -EINVAL;
1532		}
 
 
 
 
 
 
1533
1534put:
1535		if (error)
1536			blkdev_put(hib_resume_bdev, FMODE_READ);
1537		else
1538			pr_debug("Image signature found, resuming\n");
1539	} else {
1540		error = PTR_ERR(hib_resume_bdev);
1541	}
1542
1543	if (error)
1544		pr_debug("Image not found (code %d)\n", error);
1545
1546	return error;
1547}
1548
1549/**
1550 *	swsusp_close - close swap device.
1551 */
1552
1553void swsusp_close(fmode_t mode)
1554{
1555	if (IS_ERR(hib_resume_bdev)) {
1556		pr_debug("Image device not initialised\n");
1557		return;
1558	}
1559
1560	blkdev_put(hib_resume_bdev, mode);
1561}
1562
1563/**
1564 *      swsusp_unmark - Unmark swsusp signature in the resume device
1565 */
1566
1567#ifdef CONFIG_SUSPEND
1568int swsusp_unmark(void)
1569{
1570	int error;
1571
1572	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1573		      swsusp_header, NULL);
1574	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1575		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1576		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1577					swsusp_resume_block,
1578					swsusp_header, NULL);
1579	} else {
1580		pr_err("Cannot find swsusp signature!\n");
1581		error = -ENODEV;
1582	}
1583
1584	/*
1585	 * We just returned from suspend, we don't need the image any more.
1586	 */
1587	free_all_swap_pages(root_swap);
1588
1589	return error;
1590}
1591#endif
1592
1593static int __init swsusp_header_init(void)
1594{
1595	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1596	if (!swsusp_header)
1597		panic("Could not allocate memory for swsusp_header\n");
1598	return 0;
1599}
1600
1601core_initcall(swsusp_header_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
 
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
 
  26#include <linux/vmalloc.h>
  27#include <linux/cpumask.h>
  28#include <linux/atomic.h>
  29#include <linux/kthread.h>
  30#include <linux/crc32.h>
  31#include <linux/ktime.h>
  32
  33#include "power.h"
  34
  35#define HIBERNATE_SIG	"S1SUSPEND"
  36
  37u32 swsusp_hardware_signature;
  38
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/*
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32) - sizeof(u32)];
 108	u32	hw_sig;
 109	u32	crc32;
 110	sector_t image;
 111	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 112	char	orig_sig[10];
 113	char	sig[10];
 114} __packed;
 115
 116static struct swsusp_header *swsusp_header;
 117
 118/*
 119 *	The following functions are used for tracing the allocated
 120 *	swap pages, so that they can be freed in case of an error.
 121 */
 122
 123struct swsusp_extent {
 124	struct rb_node node;
 125	unsigned long start;
 126	unsigned long end;
 127};
 128
 129static struct rb_root swsusp_extents = RB_ROOT;
 130
 131static int swsusp_extents_insert(unsigned long swap_offset)
 132{
 133	struct rb_node **new = &(swsusp_extents.rb_node);
 134	struct rb_node *parent = NULL;
 135	struct swsusp_extent *ext;
 136
 137	/* Figure out where to put the new node */
 138	while (*new) {
 139		ext = rb_entry(*new, struct swsusp_extent, node);
 140		parent = *new;
 141		if (swap_offset < ext->start) {
 142			/* Try to merge */
 143			if (swap_offset == ext->start - 1) {
 144				ext->start--;
 145				return 0;
 146			}
 147			new = &((*new)->rb_left);
 148		} else if (swap_offset > ext->end) {
 149			/* Try to merge */
 150			if (swap_offset == ext->end + 1) {
 151				ext->end++;
 152				return 0;
 153			}
 154			new = &((*new)->rb_right);
 155		} else {
 156			/* It already is in the tree */
 157			return -EINVAL;
 158		}
 159	}
 160	/* Add the new node and rebalance the tree. */
 161	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 162	if (!ext)
 163		return -ENOMEM;
 164
 165	ext->start = swap_offset;
 166	ext->end = swap_offset;
 167	rb_link_node(&ext->node, parent, new);
 168	rb_insert_color(&ext->node, &swsusp_extents);
 169	return 0;
 170}
 171
 172/*
 173 *	alloc_swapdev_block - allocate a swap page and register that it has
 174 *	been allocated, so that it can be freed in case of an error.
 175 */
 176
 177sector_t alloc_swapdev_block(int swap)
 178{
 179	unsigned long offset;
 180
 181	offset = swp_offset(get_swap_page_of_type(swap));
 182	if (offset) {
 183		if (swsusp_extents_insert(offset))
 184			swap_free(swp_entry(swap, offset));
 185		else
 186			return swapdev_block(swap, offset);
 187	}
 188	return 0;
 189}
 190
 191/*
 192 *	free_all_swap_pages - free swap pages allocated for saving image data.
 193 *	It also frees the extents used to register which swap entries had been
 194 *	allocated.
 195 */
 196
 197void free_all_swap_pages(int swap)
 198{
 199	struct rb_node *node;
 200
 201	while ((node = swsusp_extents.rb_node)) {
 202		struct swsusp_extent *ext;
 
 203
 204		ext = rb_entry(node, struct swsusp_extent, node);
 205		rb_erase(node, &swsusp_extents);
 206		swap_free_nr(swp_entry(swap, ext->start),
 207			     ext->end - ext->start + 1);
 208
 209		kfree(ext);
 210	}
 211}
 212
 213int swsusp_swap_in_use(void)
 214{
 215	return (swsusp_extents.rb_node != NULL);
 216}
 217
 218/*
 219 * General things
 220 */
 221
 222static unsigned short root_swap = 0xffff;
 223static struct file *hib_resume_bdev_file;
 224
 225struct hib_bio_batch {
 226	atomic_t		count;
 227	wait_queue_head_t	wait;
 228	blk_status_t		error;
 229	struct blk_plug		plug;
 230};
 231
 232static void hib_init_batch(struct hib_bio_batch *hb)
 233{
 234	atomic_set(&hb->count, 0);
 235	init_waitqueue_head(&hb->wait);
 236	hb->error = BLK_STS_OK;
 237	blk_start_plug(&hb->plug);
 238}
 239
 240static void hib_finish_batch(struct hib_bio_batch *hb)
 241{
 242	blk_finish_plug(&hb->plug);
 243}
 244
 245static void hib_end_io(struct bio *bio)
 246{
 247	struct hib_bio_batch *hb = bio->bi_private;
 248	struct page *page = bio_first_page_all(bio);
 249
 250	if (bio->bi_status) {
 251		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 252			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 253			 (unsigned long long)bio->bi_iter.bi_sector);
 254	}
 255
 256	if (bio_data_dir(bio) == WRITE)
 257		put_page(page);
 258	else if (clean_pages_on_read)
 259		flush_icache_range((unsigned long)page_address(page),
 260				   (unsigned long)page_address(page) + PAGE_SIZE);
 261
 262	if (bio->bi_status && !hb->error)
 263		hb->error = bio->bi_status;
 264	if (atomic_dec_and_test(&hb->count))
 265		wake_up(&hb->wait);
 266
 267	bio_put(bio);
 268}
 269
 270static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 271			 struct hib_bio_batch *hb)
 272{
 273	struct page *page = virt_to_page(addr);
 274	struct bio *bio;
 275	int error = 0;
 276
 277	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
 278			GFP_NOIO | __GFP_HIGH);
 279	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 
 
 280
 281	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 282		pr_err("Adding page to bio failed at %llu\n",
 283		       (unsigned long long)bio->bi_iter.bi_sector);
 284		bio_put(bio);
 285		return -EFAULT;
 286	}
 287
 288	if (hb) {
 289		bio->bi_end_io = hib_end_io;
 290		bio->bi_private = hb;
 291		atomic_inc(&hb->count);
 292		submit_bio(bio);
 293	} else {
 294		error = submit_bio_wait(bio);
 295		bio_put(bio);
 296	}
 297
 298	return error;
 299}
 300
 301static int hib_wait_io(struct hib_bio_batch *hb)
 302{
 303	/*
 304	 * We are relying on the behavior of blk_plug that a thread with
 305	 * a plug will flush the plug list before sleeping.
 306	 */
 307	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 308	return blk_status_to_errno(hb->error);
 309}
 310
 311/*
 312 * Saving part
 313 */
 
 314static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 315{
 316	int error;
 317
 318	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 
 319	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 320	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 321		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 322		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 323		swsusp_header->image = handle->first_sector;
 324		if (swsusp_hardware_signature) {
 325			swsusp_header->hw_sig = swsusp_hardware_signature;
 326			flags |= SF_HW_SIG;
 327		}
 328		swsusp_header->flags = flags;
 329		if (flags & SF_CRC32_MODE)
 330			swsusp_header->crc32 = handle->crc32;
 331		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 332				      swsusp_resume_block, swsusp_header, NULL);
 333	} else {
 334		pr_err("Swap header not found!\n");
 335		error = -ENODEV;
 336	}
 337	return error;
 338}
 339
 340/*
 341 * Hold the swsusp_header flag. This is used in software_resume() in
 342 * 'kernel/power/hibernate' to check if the image is compressed and query
 343 * for the compression algorithm support(if so).
 344 */
 345unsigned int swsusp_header_flags;
 346
 347/**
 348 *	swsusp_swap_check - check if the resume device is a swap device
 349 *	and get its index (if so)
 350 *
 351 *	This is called before saving image
 352 */
 353static int swsusp_swap_check(void)
 354{
 355	int res;
 356
 357	if (swsusp_resume_device)
 358		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 359	else
 360		res = find_first_swap(&swsusp_resume_device);
 361	if (res < 0)
 362		return res;
 
 363	root_swap = res;
 
 
 
 364
 365	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
 366			BLK_OPEN_WRITE, NULL, NULL);
 367	if (IS_ERR(hib_resume_bdev_file))
 368		return PTR_ERR(hib_resume_bdev_file);
 369
 370	return 0;
 
 
 
 
 
 
 371}
 372
 373/**
 374 *	write_page - Write one page to given swap location.
 375 *	@buf:		Address we're writing.
 376 *	@offset:	Offset of the swap page we're writing to.
 377 *	@hb:		bio completion batch
 378 */
 379
 380static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 381{
 382	void *src;
 383	int ret;
 384
 385	if (!offset)
 386		return -ENOSPC;
 387
 388	if (hb) {
 389		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 390		                              __GFP_NORETRY);
 391		if (src) {
 392			copy_page(src, buf);
 393		} else {
 394			ret = hib_wait_io(hb); /* Free pages */
 395			if (ret)
 396				return ret;
 397			src = (void *)__get_free_page(GFP_NOIO |
 398			                              __GFP_NOWARN |
 399			                              __GFP_NORETRY);
 400			if (src) {
 401				copy_page(src, buf);
 402			} else {
 403				WARN_ON_ONCE(1);
 404				hb = NULL;	/* Go synchronous */
 405				src = buf;
 406			}
 407		}
 408	} else {
 409		src = buf;
 410	}
 411	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 412}
 413
 414static void release_swap_writer(struct swap_map_handle *handle)
 415{
 416	if (handle->cur)
 417		free_page((unsigned long)handle->cur);
 418	handle->cur = NULL;
 419}
 420
 421static int get_swap_writer(struct swap_map_handle *handle)
 422{
 423	int ret;
 424
 425	ret = swsusp_swap_check();
 426	if (ret) {
 427		if (ret != -ENOSPC)
 428			pr_err("Cannot find swap device, try swapon -a\n");
 429		return ret;
 430	}
 431	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 432	if (!handle->cur) {
 433		ret = -ENOMEM;
 434		goto err_close;
 435	}
 436	handle->cur_swap = alloc_swapdev_block(root_swap);
 437	if (!handle->cur_swap) {
 438		ret = -ENOSPC;
 439		goto err_rel;
 440	}
 441	handle->k = 0;
 442	handle->reqd_free_pages = reqd_free_pages();
 443	handle->first_sector = handle->cur_swap;
 444	return 0;
 445err_rel:
 446	release_swap_writer(handle);
 447err_close:
 448	swsusp_close();
 449	return ret;
 450}
 451
 452static int swap_write_page(struct swap_map_handle *handle, void *buf,
 453		struct hib_bio_batch *hb)
 454{
 455	int error;
 456	sector_t offset;
 457
 458	if (!handle->cur)
 459		return -EINVAL;
 460	offset = alloc_swapdev_block(root_swap);
 461	error = write_page(buf, offset, hb);
 462	if (error)
 463		return error;
 464	handle->cur->entries[handle->k++] = offset;
 465	if (handle->k >= MAP_PAGE_ENTRIES) {
 466		offset = alloc_swapdev_block(root_swap);
 467		if (!offset)
 468			return -ENOSPC;
 469		handle->cur->next_swap = offset;
 470		error = write_page(handle->cur, handle->cur_swap, hb);
 471		if (error)
 472			goto out;
 473		clear_page(handle->cur);
 474		handle->cur_swap = offset;
 475		handle->k = 0;
 476
 477		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 478			error = hib_wait_io(hb);
 479			if (error)
 480				goto out;
 481			/*
 482			 * Recalculate the number of required free pages, to
 483			 * make sure we never take more than half.
 484			 */
 485			handle->reqd_free_pages = reqd_free_pages();
 486		}
 487	}
 488 out:
 489	return error;
 490}
 491
 492static int flush_swap_writer(struct swap_map_handle *handle)
 493{
 494	if (handle->cur && handle->cur_swap)
 495		return write_page(handle->cur, handle->cur_swap, NULL);
 496	else
 497		return -EINVAL;
 498}
 499
 500static int swap_writer_finish(struct swap_map_handle *handle,
 501		unsigned int flags, int error)
 502{
 503	if (!error) {
 
 504		pr_info("S");
 505		error = mark_swapfiles(handle, flags);
 506		pr_cont("|\n");
 507		flush_swap_writer(handle);
 508	}
 509
 510	if (error)
 511		free_all_swap_pages(root_swap);
 512	release_swap_writer(handle);
 513	swsusp_close();
 514
 515	return error;
 516}
 517
 518/*
 519 * Bytes we need for compressed data in worst case. We assume(limitation)
 520 * this is the worst of all the compression algorithms.
 521 */
 522#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
 523
 524/* We need to remember how much compressed data we need to read. */
 525#define CMP_HEADER	sizeof(size_t)
 526
 527/* Number of pages/bytes we'll compress at one time. */
 528#define UNC_PAGES	32
 529#define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
 530
 531/* Number of pages we need for compressed data (worst case). */
 532#define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
 533				CMP_HEADER, PAGE_SIZE)
 534#define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
 535
 536/* Maximum number of threads for compression/decompression. */
 537#define CMP_THREADS	3
 538
 539/* Minimum/maximum number of pages for read buffering. */
 540#define CMP_MIN_RD_PAGES	1024
 541#define CMP_MAX_RD_PAGES	8192
 
 542
 543/**
 544 *	save_image - save the suspend image data
 545 */
 546
 547static int save_image(struct swap_map_handle *handle,
 548                      struct snapshot_handle *snapshot,
 549                      unsigned int nr_to_write)
 550{
 551	unsigned int m;
 552	int ret;
 553	int nr_pages;
 554	int err2;
 555	struct hib_bio_batch hb;
 556	ktime_t start;
 557	ktime_t stop;
 558
 559	hib_init_batch(&hb);
 560
 561	pr_info("Saving image data pages (%u pages)...\n",
 562		nr_to_write);
 563	m = nr_to_write / 10;
 564	if (!m)
 565		m = 1;
 566	nr_pages = 0;
 567	start = ktime_get();
 568	while (1) {
 569		ret = snapshot_read_next(snapshot);
 570		if (ret <= 0)
 571			break;
 572		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 573		if (ret)
 574			break;
 575		if (!(nr_pages % m))
 576			pr_info("Image saving progress: %3d%%\n",
 577				nr_pages / m * 10);
 578		nr_pages++;
 579	}
 580	err2 = hib_wait_io(&hb);
 581	hib_finish_batch(&hb);
 582	stop = ktime_get();
 583	if (!ret)
 584		ret = err2;
 585	if (!ret)
 586		pr_info("Image saving done\n");
 587	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 588	return ret;
 589}
 590
 591/*
 592 * Structure used for CRC32.
 593 */
 594struct crc_data {
 595	struct task_struct *thr;                  /* thread */
 596	atomic_t ready;                           /* ready to start flag */
 597	atomic_t stop;                            /* ready to stop flag */
 598	unsigned run_threads;                     /* nr current threads */
 599	wait_queue_head_t go;                     /* start crc update */
 600	wait_queue_head_t done;                   /* crc update done */
 601	u32 *crc32;                               /* points to handle's crc32 */
 602	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
 603	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
 604};
 605
 606/*
 607 * CRC32 update function that runs in its own thread.
 608 */
 609static int crc32_threadfn(void *data)
 610{
 611	struct crc_data *d = data;
 612	unsigned i;
 613
 614	while (1) {
 615		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 616		                  kthread_should_stop());
 617		if (kthread_should_stop()) {
 618			d->thr = NULL;
 619			atomic_set_release(&d->stop, 1);
 620			wake_up(&d->done);
 621			break;
 622		}
 623		atomic_set(&d->ready, 0);
 624
 625		for (i = 0; i < d->run_threads; i++)
 626			*d->crc32 = crc32_le(*d->crc32,
 627			                     d->unc[i], *d->unc_len[i]);
 628		atomic_set_release(&d->stop, 1);
 629		wake_up(&d->done);
 630	}
 631	return 0;
 632}
 633/*
 634 * Structure used for data compression.
 635 */
 636struct cmp_data {
 637	struct task_struct *thr;                  /* thread */
 638	struct crypto_comp *cc;                   /* crypto compressor stream */
 639	atomic_t ready;                           /* ready to start flag */
 640	atomic_t stop;                            /* ready to stop flag */
 641	int ret;                                  /* return code */
 642	wait_queue_head_t go;                     /* start compression */
 643	wait_queue_head_t done;                   /* compression done */
 644	size_t unc_len;                           /* uncompressed length */
 645	size_t cmp_len;                           /* compressed length */
 646	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
 647	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
 
 648};
 649
 650/* Indicates the image size after compression */
 651static atomic_t compressed_size = ATOMIC_INIT(0);
 652
 653/*
 654 * Compression function that runs in its own thread.
 655 */
 656static int compress_threadfn(void *data)
 657{
 658	struct cmp_data *d = data;
 659	unsigned int cmp_len = 0;
 660
 661	while (1) {
 662		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 663		                  kthread_should_stop());
 664		if (kthread_should_stop()) {
 665			d->thr = NULL;
 666			d->ret = -1;
 667			atomic_set_release(&d->stop, 1);
 668			wake_up(&d->done);
 669			break;
 670		}
 671		atomic_set(&d->ready, 0);
 672
 673		cmp_len = CMP_SIZE - CMP_HEADER;
 674		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
 675					      d->cmp + CMP_HEADER,
 676					      &cmp_len);
 677		d->cmp_len = cmp_len;
 678
 679		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
 680		atomic_set_release(&d->stop, 1);
 681		wake_up(&d->done);
 682	}
 683	return 0;
 684}
 685
 686/**
 687 * save_compressed_image - Save the suspend image data after compression.
 688 * @handle: Swap map handle to use for saving the image.
 689 * @snapshot: Image to read data from.
 690 * @nr_to_write: Number of pages to save.
 691 */
 692static int save_compressed_image(struct swap_map_handle *handle,
 693				 struct snapshot_handle *snapshot,
 694				 unsigned int nr_to_write)
 695{
 696	unsigned int m;
 697	int ret = 0;
 698	int nr_pages;
 699	int err2;
 700	struct hib_bio_batch hb;
 701	ktime_t start;
 702	ktime_t stop;
 703	size_t off;
 704	unsigned thr, run_threads, nr_threads;
 705	unsigned char *page = NULL;
 706	struct cmp_data *data = NULL;
 707	struct crc_data *crc = NULL;
 708
 709	hib_init_batch(&hb);
 710
 711	atomic_set(&compressed_size, 0);
 712
 713	/*
 714	 * We'll limit the number of threads for compression to limit memory
 715	 * footprint.
 716	 */
 717	nr_threads = num_online_cpus() - 1;
 718	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
 719
 720	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 721	if (!page) {
 722		pr_err("Failed to allocate %s page\n", hib_comp_algo);
 723		ret = -ENOMEM;
 724		goto out_clean;
 725	}
 726
 727	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 728	if (!data) {
 729		pr_err("Failed to allocate %s data\n", hib_comp_algo);
 730		ret = -ENOMEM;
 731		goto out_clean;
 732	}
 
 
 733
 734	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 735	if (!crc) {
 736		pr_err("Failed to allocate crc\n");
 737		ret = -ENOMEM;
 738		goto out_clean;
 739	}
 
 740
 741	/*
 742	 * Start the compression threads.
 743	 */
 744	for (thr = 0; thr < nr_threads; thr++) {
 745		init_waitqueue_head(&data[thr].go);
 746		init_waitqueue_head(&data[thr].done);
 747
 748		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
 749		if (IS_ERR_OR_NULL(data[thr].cc)) {
 750			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
 751			ret = -EFAULT;
 752			goto out_clean;
 753		}
 754
 755		data[thr].thr = kthread_run(compress_threadfn,
 756		                            &data[thr],
 757		                            "image_compress/%u", thr);
 758		if (IS_ERR(data[thr].thr)) {
 759			data[thr].thr = NULL;
 760			pr_err("Cannot start compression threads\n");
 761			ret = -ENOMEM;
 762			goto out_clean;
 763		}
 764	}
 765
 766	/*
 767	 * Start the CRC32 thread.
 768	 */
 769	init_waitqueue_head(&crc->go);
 770	init_waitqueue_head(&crc->done);
 771
 772	handle->crc32 = 0;
 773	crc->crc32 = &handle->crc32;
 774	for (thr = 0; thr < nr_threads; thr++) {
 775		crc->unc[thr] = data[thr].unc;
 776		crc->unc_len[thr] = &data[thr].unc_len;
 777	}
 778
 779	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 780	if (IS_ERR(crc->thr)) {
 781		crc->thr = NULL;
 782		pr_err("Cannot start CRC32 thread\n");
 783		ret = -ENOMEM;
 784		goto out_clean;
 785	}
 786
 787	/*
 788	 * Adjust the number of required free pages after all allocations have
 789	 * been done. We don't want to run out of pages when writing.
 790	 */
 791	handle->reqd_free_pages = reqd_free_pages();
 792
 793	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
 794	pr_info("Compressing and saving image data (%u pages)...\n",
 795		nr_to_write);
 796	m = nr_to_write / 10;
 797	if (!m)
 798		m = 1;
 799	nr_pages = 0;
 800	start = ktime_get();
 801	for (;;) {
 802		for (thr = 0; thr < nr_threads; thr++) {
 803			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
 804				ret = snapshot_read_next(snapshot);
 805				if (ret < 0)
 806					goto out_finish;
 807
 808				if (!ret)
 809					break;
 810
 811				memcpy(data[thr].unc + off,
 812				       data_of(*snapshot), PAGE_SIZE);
 813
 814				if (!(nr_pages % m))
 815					pr_info("Image saving progress: %3d%%\n",
 816						nr_pages / m * 10);
 817				nr_pages++;
 818			}
 819			if (!off)
 820				break;
 821
 822			data[thr].unc_len = off;
 823
 824			atomic_set_release(&data[thr].ready, 1);
 825			wake_up(&data[thr].go);
 826		}
 827
 828		if (!thr)
 829			break;
 830
 831		crc->run_threads = thr;
 832		atomic_set_release(&crc->ready, 1);
 833		wake_up(&crc->go);
 834
 835		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 836			wait_event(data[thr].done,
 837				atomic_read_acquire(&data[thr].stop));
 838			atomic_set(&data[thr].stop, 0);
 839
 840			ret = data[thr].ret;
 841
 842			if (ret < 0) {
 843				pr_err("%s compression failed\n", hib_comp_algo);
 844				goto out_finish;
 845			}
 846
 847			if (unlikely(!data[thr].cmp_len ||
 848			             data[thr].cmp_len >
 849				     bytes_worst_compress(data[thr].unc_len))) {
 850				pr_err("Invalid %s compressed length\n", hib_comp_algo);
 851				ret = -1;
 852				goto out_finish;
 853			}
 854
 855			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 856
 857			/*
 858			 * Given we are writing one page at a time to disk, we
 859			 * copy that much from the buffer, although the last
 860			 * bit will likely be smaller than full page. This is
 861			 * OK - we saved the length of the compressed data, so
 862			 * any garbage at the end will be discarded when we
 863			 * read it.
 864			 */
 865			for (off = 0;
 866			     off < CMP_HEADER + data[thr].cmp_len;
 867			     off += PAGE_SIZE) {
 868				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 869
 870				ret = swap_write_page(handle, page, &hb);
 871				if (ret)
 872					goto out_finish;
 873			}
 874		}
 875
 876		wait_event(crc->done, atomic_read_acquire(&crc->stop));
 877		atomic_set(&crc->stop, 0);
 878	}
 879
 880out_finish:
 881	err2 = hib_wait_io(&hb);
 882	stop = ktime_get();
 883	if (!ret)
 884		ret = err2;
 885	if (!ret)
 886		pr_info("Image saving done\n");
 887	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 888	pr_info("Image size after compression: %d kbytes\n",
 889		(atomic_read(&compressed_size) / 1024));
 890
 891out_clean:
 892	hib_finish_batch(&hb);
 893	if (crc) {
 894		if (crc->thr)
 895			kthread_stop(crc->thr);
 896		kfree(crc);
 897	}
 898	if (data) {
 899		for (thr = 0; thr < nr_threads; thr++) {
 900			if (data[thr].thr)
 901				kthread_stop(data[thr].thr);
 902			if (data[thr].cc)
 903				crypto_free_comp(data[thr].cc);
 904		}
 905		vfree(data);
 906	}
 907	if (page) free_page((unsigned long)page);
 908
 909	return ret;
 910}
 911
 912/**
 913 *	enough_swap - Make sure we have enough swap to save the image.
 914 *
 915 *	Returns TRUE or FALSE after checking the total amount of swap
 916 *	space available from the resume partition.
 917 */
 918
 919static int enough_swap(unsigned int nr_pages)
 920{
 921	unsigned int free_swap = count_swap_pages(root_swap, 1);
 922	unsigned int required;
 923
 924	pr_debug("Free swap pages: %u\n", free_swap);
 925
 926	required = PAGES_FOR_IO + nr_pages;
 927	return free_swap > required;
 928}
 929
 930/**
 931 *	swsusp_write - Write entire image and metadata.
 932 *	@flags: flags to pass to the "boot" kernel in the image header
 933 *
 934 *	It is important _NOT_ to umount filesystems at this point. We want
 935 *	them synced (in case something goes wrong) but we DO not want to mark
 936 *	filesystem clean: it is not. (And it does not matter, if we resume
 937 *	correctly, we'll mark system clean, anyway.)
 938 */
 939
 940int swsusp_write(unsigned int flags)
 941{
 942	struct swap_map_handle handle;
 943	struct snapshot_handle snapshot;
 944	struct swsusp_info *header;
 945	unsigned long pages;
 946	int error;
 947
 948	pages = snapshot_get_image_size();
 949	error = get_swap_writer(&handle);
 950	if (error) {
 951		pr_err("Cannot get swap writer\n");
 952		return error;
 953	}
 954	if (flags & SF_NOCOMPRESS_MODE) {
 955		if (!enough_swap(pages)) {
 956			pr_err("Not enough free swap\n");
 957			error = -ENOSPC;
 958			goto out_finish;
 959		}
 960	}
 961	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 962	error = snapshot_read_next(&snapshot);
 963	if (error < (int)PAGE_SIZE) {
 964		if (error >= 0)
 965			error = -EFAULT;
 966
 967		goto out_finish;
 968	}
 969	header = (struct swsusp_info *)data_of(snapshot);
 970	error = swap_write_page(&handle, header, NULL);
 971	if (!error) {
 972		error = (flags & SF_NOCOMPRESS_MODE) ?
 973			save_image(&handle, &snapshot, pages - 1) :
 974			save_compressed_image(&handle, &snapshot, pages - 1);
 975	}
 976out_finish:
 977	error = swap_writer_finish(&handle, flags, error);
 978	return error;
 979}
 980
 981/*
 982 *	The following functions allow us to read data using a swap map
 983 *	in a file-like way.
 984 */
 985
 986static void release_swap_reader(struct swap_map_handle *handle)
 987{
 988	struct swap_map_page_list *tmp;
 989
 990	while (handle->maps) {
 991		if (handle->maps->map)
 992			free_page((unsigned long)handle->maps->map);
 993		tmp = handle->maps;
 994		handle->maps = handle->maps->next;
 995		kfree(tmp);
 996	}
 997	handle->cur = NULL;
 998}
 999
1000static int get_swap_reader(struct swap_map_handle *handle,
1001		unsigned int *flags_p)
1002{
1003	int error;
1004	struct swap_map_page_list *tmp, *last;
1005	sector_t offset;
1006
1007	*flags_p = swsusp_header->flags;
1008
1009	if (!swsusp_header->image) /* how can this happen? */
1010		return -EINVAL;
1011
1012	handle->cur = NULL;
1013	last = handle->maps = NULL;
1014	offset = swsusp_header->image;
1015	while (offset) {
1016		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1017		if (!tmp) {
1018			release_swap_reader(handle);
1019			return -ENOMEM;
1020		}
1021		if (!handle->maps)
1022			handle->maps = tmp;
1023		if (last)
1024			last->next = tmp;
1025		last = tmp;
1026
1027		tmp->map = (struct swap_map_page *)
1028			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1029		if (!tmp->map) {
1030			release_swap_reader(handle);
1031			return -ENOMEM;
1032		}
1033
1034		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1035		if (error) {
1036			release_swap_reader(handle);
1037			return error;
1038		}
1039		offset = tmp->map->next_swap;
1040	}
1041	handle->k = 0;
1042	handle->cur = handle->maps->map;
1043	return 0;
1044}
1045
1046static int swap_read_page(struct swap_map_handle *handle, void *buf,
1047		struct hib_bio_batch *hb)
1048{
1049	sector_t offset;
1050	int error;
1051	struct swap_map_page_list *tmp;
1052
1053	if (!handle->cur)
1054		return -EINVAL;
1055	offset = handle->cur->entries[handle->k];
1056	if (!offset)
1057		return -EFAULT;
1058	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1059	if (error)
1060		return error;
1061	if (++handle->k >= MAP_PAGE_ENTRIES) {
1062		handle->k = 0;
1063		free_page((unsigned long)handle->maps->map);
1064		tmp = handle->maps;
1065		handle->maps = handle->maps->next;
1066		kfree(tmp);
1067		if (!handle->maps)
1068			release_swap_reader(handle);
1069		else
1070			handle->cur = handle->maps->map;
1071	}
1072	return error;
1073}
1074
1075static int swap_reader_finish(struct swap_map_handle *handle)
1076{
1077	release_swap_reader(handle);
1078
1079	return 0;
1080}
1081
1082/**
1083 *	load_image - load the image using the swap map handle
1084 *	@handle and the snapshot handle @snapshot
1085 *	(assume there are @nr_pages pages to load)
1086 */
1087
1088static int load_image(struct swap_map_handle *handle,
1089                      struct snapshot_handle *snapshot,
1090                      unsigned int nr_to_read)
1091{
1092	unsigned int m;
1093	int ret = 0;
1094	ktime_t start;
1095	ktime_t stop;
1096	struct hib_bio_batch hb;
1097	int err2;
1098	unsigned nr_pages;
1099
1100	hib_init_batch(&hb);
1101
1102	clean_pages_on_read = true;
1103	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1104	m = nr_to_read / 10;
1105	if (!m)
1106		m = 1;
1107	nr_pages = 0;
1108	start = ktime_get();
1109	for ( ; ; ) {
1110		ret = snapshot_write_next(snapshot);
1111		if (ret <= 0)
1112			break;
1113		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1114		if (ret)
1115			break;
1116		if (snapshot->sync_read)
1117			ret = hib_wait_io(&hb);
1118		if (ret)
1119			break;
1120		if (!(nr_pages % m))
1121			pr_info("Image loading progress: %3d%%\n",
1122				nr_pages / m * 10);
1123		nr_pages++;
1124	}
1125	err2 = hib_wait_io(&hb);
1126	hib_finish_batch(&hb);
1127	stop = ktime_get();
1128	if (!ret)
1129		ret = err2;
1130	if (!ret) {
1131		pr_info("Image loading done\n");
1132		ret = snapshot_write_finalize(snapshot);
1133		if (!ret && !snapshot_image_loaded(snapshot))
1134			ret = -ENODATA;
1135	}
1136	swsusp_show_speed(start, stop, nr_to_read, "Read");
1137	return ret;
1138}
1139
1140/*
1141 * Structure used for data decompression.
1142 */
1143struct dec_data {
1144	struct task_struct *thr;                  /* thread */
1145	struct crypto_comp *cc;                   /* crypto compressor stream */
1146	atomic_t ready;                           /* ready to start flag */
1147	atomic_t stop;                            /* ready to stop flag */
1148	int ret;                                  /* return code */
1149	wait_queue_head_t go;                     /* start decompression */
1150	wait_queue_head_t done;                   /* decompression done */
1151	size_t unc_len;                           /* uncompressed length */
1152	size_t cmp_len;                           /* compressed length */
1153	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1154	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1155};
1156
1157/*
1158 * Decompression function that runs in its own thread.
1159 */
1160static int decompress_threadfn(void *data)
1161{
1162	struct dec_data *d = data;
1163	unsigned int unc_len = 0;
1164
1165	while (1) {
1166		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1167		                  kthread_should_stop());
1168		if (kthread_should_stop()) {
1169			d->thr = NULL;
1170			d->ret = -1;
1171			atomic_set_release(&d->stop, 1);
1172			wake_up(&d->done);
1173			break;
1174		}
1175		atomic_set(&d->ready, 0);
1176
1177		unc_len = UNC_SIZE;
1178		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1179						d->unc, &unc_len);
1180		d->unc_len = unc_len;
1181
1182		if (clean_pages_on_decompress)
1183			flush_icache_range((unsigned long)d->unc,
1184					   (unsigned long)d->unc + d->unc_len);
1185
1186		atomic_set_release(&d->stop, 1);
1187		wake_up(&d->done);
1188	}
1189	return 0;
1190}
1191
1192/**
1193 * load_compressed_image - Load compressed image data and decompress it.
1194 * @handle: Swap map handle to use for loading data.
1195 * @snapshot: Image to copy uncompressed data into.
1196 * @nr_to_read: Number of pages to load.
1197 */
1198static int load_compressed_image(struct swap_map_handle *handle,
1199				 struct snapshot_handle *snapshot,
1200				 unsigned int nr_to_read)
1201{
1202	unsigned int m;
1203	int ret = 0;
1204	int eof = 0;
1205	struct hib_bio_batch hb;
1206	ktime_t start;
1207	ktime_t stop;
1208	unsigned nr_pages;
1209	size_t off;
1210	unsigned i, thr, run_threads, nr_threads;
1211	unsigned ring = 0, pg = 0, ring_size = 0,
1212	         have = 0, want, need, asked = 0;
1213	unsigned long read_pages = 0;
1214	unsigned char **page = NULL;
1215	struct dec_data *data = NULL;
1216	struct crc_data *crc = NULL;
1217
1218	hib_init_batch(&hb);
1219
1220	/*
1221	 * We'll limit the number of threads for decompression to limit memory
1222	 * footprint.
1223	 */
1224	nr_threads = num_online_cpus() - 1;
1225	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1226
1227	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1228	if (!page) {
1229		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1230		ret = -ENOMEM;
1231		goto out_clean;
1232	}
1233
1234	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1235	if (!data) {
1236		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1237		ret = -ENOMEM;
1238		goto out_clean;
1239	}
 
 
1240
1241	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1242	if (!crc) {
1243		pr_err("Failed to allocate crc\n");
1244		ret = -ENOMEM;
1245		goto out_clean;
1246	}
 
1247
1248	clean_pages_on_decompress = true;
1249
1250	/*
1251	 * Start the decompression threads.
1252	 */
1253	for (thr = 0; thr < nr_threads; thr++) {
1254		init_waitqueue_head(&data[thr].go);
1255		init_waitqueue_head(&data[thr].done);
1256
1257		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1258		if (IS_ERR_OR_NULL(data[thr].cc)) {
1259			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1260			ret = -EFAULT;
1261			goto out_clean;
1262		}
1263
1264		data[thr].thr = kthread_run(decompress_threadfn,
1265		                            &data[thr],
1266		                            "image_decompress/%u", thr);
1267		if (IS_ERR(data[thr].thr)) {
1268			data[thr].thr = NULL;
1269			pr_err("Cannot start decompression threads\n");
1270			ret = -ENOMEM;
1271			goto out_clean;
1272		}
1273	}
1274
1275	/*
1276	 * Start the CRC32 thread.
1277	 */
1278	init_waitqueue_head(&crc->go);
1279	init_waitqueue_head(&crc->done);
1280
1281	handle->crc32 = 0;
1282	crc->crc32 = &handle->crc32;
1283	for (thr = 0; thr < nr_threads; thr++) {
1284		crc->unc[thr] = data[thr].unc;
1285		crc->unc_len[thr] = &data[thr].unc_len;
1286	}
1287
1288	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1289	if (IS_ERR(crc->thr)) {
1290		crc->thr = NULL;
1291		pr_err("Cannot start CRC32 thread\n");
1292		ret = -ENOMEM;
1293		goto out_clean;
1294	}
1295
1296	/*
1297	 * Set the number of pages for read buffering.
1298	 * This is complete guesswork, because we'll only know the real
1299	 * picture once prepare_image() is called, which is much later on
1300	 * during the image load phase. We'll assume the worst case and
1301	 * say that none of the image pages are from high memory.
1302	 */
1303	if (low_free_pages() > snapshot_get_image_size())
1304		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1305	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1306
1307	for (i = 0; i < read_pages; i++) {
1308		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1309						  GFP_NOIO | __GFP_HIGH :
1310						  GFP_NOIO | __GFP_NOWARN |
1311						  __GFP_NORETRY);
1312
1313		if (!page[i]) {
1314			if (i < CMP_PAGES) {
1315				ring_size = i;
1316				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1317				ret = -ENOMEM;
1318				goto out_clean;
1319			} else {
1320				break;
1321			}
1322		}
1323	}
1324	want = ring_size = i;
1325
1326	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1327	pr_info("Loading and decompressing image data (%u pages)...\n",
1328		nr_to_read);
1329	m = nr_to_read / 10;
1330	if (!m)
1331		m = 1;
1332	nr_pages = 0;
1333	start = ktime_get();
1334
1335	ret = snapshot_write_next(snapshot);
1336	if (ret <= 0)
1337		goto out_finish;
1338
1339	for(;;) {
1340		for (i = 0; !eof && i < want; i++) {
1341			ret = swap_read_page(handle, page[ring], &hb);
1342			if (ret) {
1343				/*
1344				 * On real read error, finish. On end of data,
1345				 * set EOF flag and just exit the read loop.
1346				 */
1347				if (handle->cur &&
1348				    handle->cur->entries[handle->k]) {
1349					goto out_finish;
1350				} else {
1351					eof = 1;
1352					break;
1353				}
1354			}
1355			if (++ring >= ring_size)
1356				ring = 0;
1357		}
1358		asked += i;
1359		want -= i;
1360
1361		/*
1362		 * We are out of data, wait for some more.
1363		 */
1364		if (!have) {
1365			if (!asked)
1366				break;
1367
1368			ret = hib_wait_io(&hb);
1369			if (ret)
1370				goto out_finish;
1371			have += asked;
1372			asked = 0;
1373			if (eof)
1374				eof = 2;
1375		}
1376
1377		if (crc->run_threads) {
1378			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1379			atomic_set(&crc->stop, 0);
1380			crc->run_threads = 0;
1381		}
1382
1383		for (thr = 0; have && thr < nr_threads; thr++) {
1384			data[thr].cmp_len = *(size_t *)page[pg];
1385			if (unlikely(!data[thr].cmp_len ||
1386			             data[thr].cmp_len >
1387					bytes_worst_compress(UNC_SIZE))) {
1388				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1389				ret = -1;
1390				goto out_finish;
1391			}
1392
1393			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1394			                    PAGE_SIZE);
1395			if (need > have) {
1396				if (eof > 1) {
1397					ret = -1;
1398					goto out_finish;
1399				}
1400				break;
1401			}
1402
1403			for (off = 0;
1404			     off < CMP_HEADER + data[thr].cmp_len;
1405			     off += PAGE_SIZE) {
1406				memcpy(data[thr].cmp + off,
1407				       page[pg], PAGE_SIZE);
1408				have--;
1409				want++;
1410				if (++pg >= ring_size)
1411					pg = 0;
1412			}
1413
1414			atomic_set_release(&data[thr].ready, 1);
1415			wake_up(&data[thr].go);
1416		}
1417
1418		/*
1419		 * Wait for more data while we are decompressing.
1420		 */
1421		if (have < CMP_PAGES && asked) {
1422			ret = hib_wait_io(&hb);
1423			if (ret)
1424				goto out_finish;
1425			have += asked;
1426			asked = 0;
1427			if (eof)
1428				eof = 2;
1429		}
1430
1431		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1432			wait_event(data[thr].done,
1433				atomic_read_acquire(&data[thr].stop));
1434			atomic_set(&data[thr].stop, 0);
1435
1436			ret = data[thr].ret;
1437
1438			if (ret < 0) {
1439				pr_err("%s decompression failed\n", hib_comp_algo);
1440				goto out_finish;
1441			}
1442
1443			if (unlikely(!data[thr].unc_len ||
1444				data[thr].unc_len > UNC_SIZE ||
1445				data[thr].unc_len & (PAGE_SIZE - 1))) {
1446				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1447				ret = -1;
1448				goto out_finish;
1449			}
1450
1451			for (off = 0;
1452			     off < data[thr].unc_len; off += PAGE_SIZE) {
1453				memcpy(data_of(*snapshot),
1454				       data[thr].unc + off, PAGE_SIZE);
1455
1456				if (!(nr_pages % m))
1457					pr_info("Image loading progress: %3d%%\n",
1458						nr_pages / m * 10);
1459				nr_pages++;
1460
1461				ret = snapshot_write_next(snapshot);
1462				if (ret <= 0) {
1463					crc->run_threads = thr + 1;
1464					atomic_set_release(&crc->ready, 1);
1465					wake_up(&crc->go);
1466					goto out_finish;
1467				}
1468			}
1469		}
1470
1471		crc->run_threads = thr;
1472		atomic_set_release(&crc->ready, 1);
1473		wake_up(&crc->go);
1474	}
1475
1476out_finish:
1477	if (crc->run_threads) {
1478		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1479		atomic_set(&crc->stop, 0);
1480	}
1481	stop = ktime_get();
1482	if (!ret) {
1483		pr_info("Image loading done\n");
1484		ret = snapshot_write_finalize(snapshot);
1485		if (!ret && !snapshot_image_loaded(snapshot))
1486			ret = -ENODATA;
1487		if (!ret) {
1488			if (swsusp_header->flags & SF_CRC32_MODE) {
1489				if(handle->crc32 != swsusp_header->crc32) {
1490					pr_err("Invalid image CRC32!\n");
1491					ret = -ENODATA;
1492				}
1493			}
1494		}
1495	}
1496	swsusp_show_speed(start, stop, nr_to_read, "Read");
1497out_clean:
1498	hib_finish_batch(&hb);
1499	for (i = 0; i < ring_size; i++)
1500		free_page((unsigned long)page[i]);
1501	if (crc) {
1502		if (crc->thr)
1503			kthread_stop(crc->thr);
1504		kfree(crc);
1505	}
1506	if (data) {
1507		for (thr = 0; thr < nr_threads; thr++) {
1508			if (data[thr].thr)
1509				kthread_stop(data[thr].thr);
1510			if (data[thr].cc)
1511				crypto_free_comp(data[thr].cc);
1512		}
1513		vfree(data);
1514	}
1515	vfree(page);
1516
1517	return ret;
1518}
1519
1520/**
1521 *	swsusp_read - read the hibernation image.
1522 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1523 *		  be written into this memory location
1524 */
1525
1526int swsusp_read(unsigned int *flags_p)
1527{
1528	int error;
1529	struct swap_map_handle handle;
1530	struct snapshot_handle snapshot;
1531	struct swsusp_info *header;
1532
1533	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1534	error = snapshot_write_next(&snapshot);
1535	if (error < (int)PAGE_SIZE)
1536		return error < 0 ? error : -EFAULT;
1537	header = (struct swsusp_info *)data_of(snapshot);
1538	error = get_swap_reader(&handle, flags_p);
1539	if (error)
1540		goto end;
1541	if (!error)
1542		error = swap_read_page(&handle, header, NULL);
1543	if (!error) {
1544		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1545			load_image(&handle, &snapshot, header->pages - 1) :
1546			load_compressed_image(&handle, &snapshot, header->pages - 1);
1547	}
1548	swap_reader_finish(&handle);
1549end:
1550	if (!error)
1551		pr_debug("Image successfully loaded\n");
1552	else
1553		pr_debug("Error %d resuming\n", error);
1554	return error;
1555}
1556
1557static void *swsusp_holder;
1558
1559/**
1560 * swsusp_check - Open the resume device and check for the swsusp signature.
1561 * @exclusive: Open the resume device exclusively.
1562 */
1563
1564int swsusp_check(bool exclusive)
1565{
1566	void *holder = exclusive ? &swsusp_holder : NULL;
1567	int error;
1568
1569	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1570				BLK_OPEN_READ, holder, NULL);
1571	if (!IS_ERR(hib_resume_bdev_file)) {
 
1572		clear_page(swsusp_header);
1573		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
 
1574					swsusp_header, NULL);
1575		if (error)
1576			goto put;
1577
1578		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1579			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1580			swsusp_header_flags = swsusp_header->flags;
1581			/* Reset swap signature now */
1582			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1583						swsusp_resume_block,
1584						swsusp_header, NULL);
1585		} else {
1586			error = -EINVAL;
1587		}
1588		if (!error && swsusp_header->flags & SF_HW_SIG &&
1589		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1590			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1591				swsusp_header->hw_sig, swsusp_hardware_signature);
1592			error = -EINVAL;
1593		}
1594
1595put:
1596		if (error)
1597			bdev_fput(hib_resume_bdev_file);
1598		else
1599			pr_debug("Image signature found, resuming\n");
1600	} else {
1601		error = PTR_ERR(hib_resume_bdev_file);
1602	}
1603
1604	if (error)
1605		pr_debug("Image not found (code %d)\n", error);
1606
1607	return error;
1608}
1609
1610/**
1611 * swsusp_close - close resume device.
1612 */
1613
1614void swsusp_close(void)
1615{
1616	if (IS_ERR(hib_resume_bdev_file)) {
1617		pr_debug("Image device not initialised\n");
1618		return;
1619	}
1620
1621	fput(hib_resume_bdev_file);
1622}
1623
1624/**
1625 *      swsusp_unmark - Unmark swsusp signature in the resume device
1626 */
1627
1628#ifdef CONFIG_SUSPEND
1629int swsusp_unmark(void)
1630{
1631	int error;
1632
1633	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1634			swsusp_header, NULL);
1635	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1636		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1637		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1638					swsusp_resume_block,
1639					swsusp_header, NULL);
1640	} else {
1641		pr_err("Cannot find swsusp signature!\n");
1642		error = -ENODEV;
1643	}
1644
1645	/*
1646	 * We just returned from suspend, we don't need the image any more.
1647	 */
1648	free_all_swap_pages(root_swap);
1649
1650	return error;
1651}
1652#endif
1653
1654static int __init swsusp_header_init(void)
1655{
1656	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1657	if (!swsusp_header)
1658		panic("Could not allocate memory for swsusp_header\n");
1659	return 0;
1660}
1661
1662core_initcall(swsusp_header_init);