Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_PAGEMAP_H
  3#define _LINUX_PAGEMAP_H
  4
  5/*
  6 * Copyright 1995 Linus Torvalds
  7 */
  8#include <linux/mm.h>
  9#include <linux/fs.h>
 10#include <linux/list.h>
 11#include <linux/highmem.h>
 12#include <linux/compiler.h>
 13#include <linux/uaccess.h>
 14#include <linux/gfp.h>
 15#include <linux/bitops.h>
 16#include <linux/hardirq.h> /* for in_interrupt() */
 17#include <linux/hugetlb_inline.h>
 18
 19struct pagevec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21/*
 22 * Bits in mapping->flags.
 23 */
 24enum mapping_flags {
 25	AS_EIO		= 0,	/* IO error on async write */
 26	AS_ENOSPC	= 1,	/* ENOSPC on async write */
 27	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
 28	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
 29	AS_EXITING	= 4, 	/* final truncate in progress */
 30	/* writeback related tags are not used */
 31	AS_NO_WRITEBACK_TAGS = 5,
 
 
 
 
 
 32};
 33
 34/**
 35 * mapping_set_error - record a writeback error in the address_space
 36 * @mapping: the mapping in which an error should be set
 37 * @error: the error to set in the mapping
 38 *
 39 * When writeback fails in some way, we must record that error so that
 40 * userspace can be informed when fsync and the like are called.  We endeavor
 41 * to report errors on any file that was open at the time of the error.  Some
 42 * internal callers also need to know when writeback errors have occurred.
 43 *
 44 * When a writeback error occurs, most filesystems will want to call
 45 * mapping_set_error to record the error in the mapping so that it can be
 46 * reported when the application calls fsync(2).
 47 */
 48static inline void mapping_set_error(struct address_space *mapping, int error)
 49{
 50	if (likely(!error))
 51		return;
 52
 53	/* Record in wb_err for checkers using errseq_t based tracking */
 54	__filemap_set_wb_err(mapping, error);
 55
 56	/* Record it in superblock */
 57	if (mapping->host)
 58		errseq_set(&mapping->host->i_sb->s_wb_err, error);
 59
 60	/* Record it in flags for now, for legacy callers */
 61	if (error == -ENOSPC)
 62		set_bit(AS_ENOSPC, &mapping->flags);
 63	else
 64		set_bit(AS_EIO, &mapping->flags);
 65}
 66
 67static inline void mapping_set_unevictable(struct address_space *mapping)
 68{
 69	set_bit(AS_UNEVICTABLE, &mapping->flags);
 70}
 71
 72static inline void mapping_clear_unevictable(struct address_space *mapping)
 73{
 74	clear_bit(AS_UNEVICTABLE, &mapping->flags);
 75}
 76
 77static inline bool mapping_unevictable(struct address_space *mapping)
 78{
 79	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
 80}
 81
 82static inline void mapping_set_exiting(struct address_space *mapping)
 83{
 84	set_bit(AS_EXITING, &mapping->flags);
 85}
 86
 87static inline int mapping_exiting(struct address_space *mapping)
 88{
 89	return test_bit(AS_EXITING, &mapping->flags);
 90}
 91
 92static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
 93{
 94	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 95}
 96
 97static inline int mapping_use_writeback_tags(struct address_space *mapping)
 98{
 99	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
100}
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
103{
104	return mapping->gfp_mask;
105}
106
107/* Restricts the given gfp_mask to what the mapping allows. */
108static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
109		gfp_t gfp_mask)
110{
111	return mapping_gfp_mask(mapping) & gfp_mask;
112}
113
114/*
115 * This is non-atomic.  Only to be used before the mapping is activated.
116 * Probably needs a barrier...
117 */
118static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
119{
120	m->gfp_mask = mask;
121}
122
123void release_pages(struct page **pages, int nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125/*
126 * speculatively take a reference to a page.
127 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
128 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
129 *
130 * This function must be called inside the same rcu_read_lock() section as has
131 * been used to lookup the page in the pagecache radix-tree (or page table):
132 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
133 *
134 * Unless an RCU grace period has passed, the count of all pages coming out
135 * of the allocator must be considered unstable. page_count may return higher
136 * than expected, and put_page must be able to do the right thing when the
137 * page has been finished with, no matter what it is subsequently allocated
138 * for (because put_page is what is used here to drop an invalid speculative
139 * reference).
140 *
141 * This is the interesting part of the lockless pagecache (and lockless
142 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
143 * has the following pattern:
144 * 1. find page in radix tree
145 * 2. conditionally increment refcount
146 * 3. check the page is still in pagecache (if no, goto 1)
147 *
148 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
149 * following (with the i_pages lock held):
150 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
151 * B. remove page from pagecache
152 * C. free the page
153 *
154 * There are 2 critical interleavings that matter:
155 * - 2 runs before A: in this case, A sees elevated refcount and bails out
156 * - A runs before 2: in this case, 2 sees zero refcount and retries;
157 *   subsequently, B will complete and 1 will find no page, causing the
158 *   lookup to return NULL.
159 *
160 * It is possible that between 1 and 2, the page is removed then the exact same
161 * page is inserted into the same position in pagecache. That's OK: the
162 * old find_get_page using a lock could equally have run before or after
163 * such a re-insertion, depending on order that locks are granted.
164 *
165 * Lookups racing against pagecache insertion isn't a big problem: either 1
166 * will find the page or it will not. Likewise, the old find_get_page could run
167 * either before the insertion or afterwards, depending on timing.
168 */
169static inline int __page_cache_add_speculative(struct page *page, int count)
170{
171#ifdef CONFIG_TINY_RCU
172# ifdef CONFIG_PREEMPT_COUNT
173	VM_BUG_ON(!in_atomic() && !irqs_disabled());
174# endif
175	/*
176	 * Preempt must be disabled here - we rely on rcu_read_lock doing
177	 * this for us.
178	 *
179	 * Pagecache won't be truncated from interrupt context, so if we have
180	 * found a page in the radix tree here, we have pinned its refcount by
181	 * disabling preempt, and hence no need for the "speculative get" that
182	 * SMP requires.
183	 */
184	VM_BUG_ON_PAGE(page_count(page) == 0, page);
185	page_ref_add(page, count);
186
 
 
 
 
187#else
188	if (unlikely(!page_ref_add_unless(page, count, 0))) {
189		/*
190		 * Either the page has been freed, or will be freed.
191		 * In either case, retry here and the caller should
192		 * do the right thing (see comments above).
193		 */
194		return 0;
195	}
196#endif
197	VM_BUG_ON_PAGE(PageTail(page), page);
198
199	return 1;
 
 
 
 
 
 
 
200}
201
202static inline int page_cache_get_speculative(struct page *page)
203{
204	return __page_cache_add_speculative(page, 1);
 
 
 
 
 
205}
206
207static inline int page_cache_add_speculative(struct page *page, int count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208{
209	return __page_cache_add_speculative(page, count);
 
 
 
210}
211
212/**
213 * attach_page_private - Attach private data to a page.
214 * @page: Page to attach data to.
215 * @data: Data to attach to page.
216 *
217 * Attaching private data to a page increments the page's reference count.
218 * The data must be detached before the page will be freed.
 
 
 
 
 
219 */
220static inline void attach_page_private(struct page *page, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221{
222	get_page(page);
223	set_page_private(page, (unsigned long)data);
224	SetPagePrivate(page);
 
225}
226
227/**
228 * detach_page_private - Detach private data from a page.
229 * @page: Page to detach data from.
230 *
231 * Removes the data that was previously attached to the page and decrements
232 * the refcount on the page.
233 *
234 * Return: Data that was attached to the page.
235 */
236static inline void *detach_page_private(struct page *page)
237{
238	void *data = (void *)page_private(page);
239
240	if (!PagePrivate(page))
241		return NULL;
242	ClearPagePrivate(page);
243	set_page_private(page, 0);
244	put_page(page);
245
246	return data;
247}
248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249#ifdef CONFIG_NUMA
250extern struct page *__page_cache_alloc(gfp_t gfp);
251#else
252static inline struct page *__page_cache_alloc(gfp_t gfp)
253{
254	return alloc_pages(gfp, 0);
255}
256#endif
257
 
 
 
 
 
258static inline struct page *page_cache_alloc(struct address_space *x)
259{
260	return __page_cache_alloc(mapping_gfp_mask(x));
261}
262
263static inline gfp_t readahead_gfp_mask(struct address_space *x)
264{
265	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
266}
267
268typedef int filler_t(void *, struct page *);
269
270pgoff_t page_cache_next_miss(struct address_space *mapping,
271			     pgoff_t index, unsigned long max_scan);
272pgoff_t page_cache_prev_miss(struct address_space *mapping,
273			     pgoff_t index, unsigned long max_scan);
274
275#define FGP_ACCESSED		0x00000001
276#define FGP_LOCK		0x00000002
277#define FGP_CREAT		0x00000004
278#define FGP_WRITE		0x00000008
279#define FGP_NOFS		0x00000010
280#define FGP_NOWAIT		0x00000020
281#define FGP_FOR_MMAP		0x00000040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282
283struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
284		int fgp_flags, gfp_t cache_gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286/**
287 * find_get_page - find and get a page reference
288 * @mapping: the address_space to search
289 * @offset: the page index
290 *
291 * Looks up the page cache slot at @mapping & @offset.  If there is a
292 * page cache page, it is returned with an increased refcount.
293 *
294 * Otherwise, %NULL is returned.
295 */
296static inline struct page *find_get_page(struct address_space *mapping,
297					pgoff_t offset)
298{
299	return pagecache_get_page(mapping, offset, 0, 0);
300}
301
302static inline struct page *find_get_page_flags(struct address_space *mapping,
303					pgoff_t offset, int fgp_flags)
304{
305	return pagecache_get_page(mapping, offset, fgp_flags, 0);
306}
307
308/**
309 * find_lock_page - locate, pin and lock a pagecache page
310 * @mapping: the address_space to search
311 * @offset: the page index
312 *
313 * Looks up the page cache slot at @mapping & @offset.  If there is a
314 * page cache page, it is returned locked and with an increased
315 * refcount.
316 *
317 * Otherwise, %NULL is returned.
318 *
319 * find_lock_page() may sleep.
320 */
321static inline struct page *find_lock_page(struct address_space *mapping,
322					pgoff_t offset)
323{
324	return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
325}
326
327/**
328 * find_or_create_page - locate or add a pagecache page
329 * @mapping: the page's address_space
330 * @index: the page's index into the mapping
331 * @gfp_mask: page allocation mode
332 *
333 * Looks up the page cache slot at @mapping & @offset.  If there is a
334 * page cache page, it is returned locked and with an increased
335 * refcount.
336 *
337 * If the page is not present, a new page is allocated using @gfp_mask
338 * and added to the page cache and the VM's LRU list.  The page is
339 * returned locked and with an increased refcount.
340 *
341 * On memory exhaustion, %NULL is returned.
342 *
343 * find_or_create_page() may sleep, even if @gfp_flags specifies an
344 * atomic allocation!
345 */
346static inline struct page *find_or_create_page(struct address_space *mapping,
347					pgoff_t index, gfp_t gfp_mask)
348{
349	return pagecache_get_page(mapping, index,
350					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
351					gfp_mask);
352}
353
354/**
355 * grab_cache_page_nowait - returns locked page at given index in given cache
356 * @mapping: target address_space
357 * @index: the page index
358 *
359 * Same as grab_cache_page(), but do not wait if the page is unavailable.
360 * This is intended for speculative data generators, where the data can
361 * be regenerated if the page couldn't be grabbed.  This routine should
362 * be safe to call while holding the lock for another page.
363 *
364 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
365 * and deadlock against the caller's locked page.
366 */
367static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
368				pgoff_t index)
369{
370	return pagecache_get_page(mapping, index,
371			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
372			mapping_gfp_mask(mapping));
373}
374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375/*
376 * Given the page we found in the page cache, return the page corresponding
377 * to this index in the file
378 */
379static inline struct page *find_subpage(struct page *head, pgoff_t index)
380{
381	/* HugeTLBfs wants the head page regardless */
382	if (PageHuge(head))
383		return head;
384
385	return head + (index & (thp_nr_pages(head) - 1));
386}
387
388struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
389struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
390unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
391			  unsigned int nr_entries, struct page **entries,
392			  pgoff_t *indices);
393unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
394			pgoff_t end, unsigned int nr_pages,
395			struct page **pages);
396static inline unsigned find_get_pages(struct address_space *mapping,
397			pgoff_t *start, unsigned int nr_pages,
398			struct page **pages)
399{
400	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
401				    pages);
402}
403unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
404			       unsigned int nr_pages, struct page **pages);
405unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
406			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
407			struct page **pages);
408static inline unsigned find_get_pages_tag(struct address_space *mapping,
409			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
410			struct page **pages)
411{
412	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
413					nr_pages, pages);
414}
415
416struct page *grab_cache_page_write_begin(struct address_space *mapping,
417			pgoff_t index, unsigned flags);
418
419/*
420 * Returns locked page at given index in given cache, creating it if needed.
421 */
422static inline struct page *grab_cache_page(struct address_space *mapping,
423								pgoff_t index)
424{
425	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
426}
427
428extern struct page * read_cache_page(struct address_space *mapping,
429				pgoff_t index, filler_t *filler, void *data);
 
 
 
 
430extern struct page * read_cache_page_gfp(struct address_space *mapping,
431				pgoff_t index, gfp_t gfp_mask);
432extern int read_cache_pages(struct address_space *mapping,
433		struct list_head *pages, filler_t *filler, void *data);
434
435static inline struct page *read_mapping_page(struct address_space *mapping,
436				pgoff_t index, void *data)
437{
438	return read_cache_page(mapping, index, NULL, data);
 
 
 
 
 
 
439}
440
441/*
442 * Get index of the page with in radix-tree
443 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
444 */
445static inline pgoff_t page_to_index(struct page *page)
446{
447	pgoff_t pgoff;
448
449	if (likely(!PageTransTail(page)))
450		return page->index;
451
 
452	/*
453	 *  We don't initialize ->index for tail pages: calculate based on
454	 *  head page
455	 */
456	pgoff = compound_head(page)->index;
457	pgoff += page - compound_head(page);
458	return pgoff;
459}
460
461/*
462 * Get the offset in PAGE_SIZE.
463 * (TODO: hugepage should have ->index in PAGE_SIZE)
464 */
465static inline pgoff_t page_to_pgoff(struct page *page)
466{
467	if (unlikely(PageHeadHuge(page)))
468		return page->index << compound_order(page);
469
470	return page_to_index(page);
471}
472
473/*
474 * Return byte-offset into filesystem object for page.
475 */
476static inline loff_t page_offset(struct page *page)
477{
478	return ((loff_t)page->index) << PAGE_SHIFT;
479}
480
481static inline loff_t page_file_offset(struct page *page)
482{
483	return ((loff_t)page_index(page)) << PAGE_SHIFT;
484}
485
486extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
487				     unsigned long address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488
489static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
490					unsigned long address)
491{
492	pgoff_t pgoff;
493	if (unlikely(is_vm_hugetlb_page(vma)))
494		return linear_hugepage_index(vma, address);
495	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
496	pgoff += vma->vm_pgoff;
497	return pgoff;
498}
499
500/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
501struct wait_page_key {
502	struct page *page;
503	int bit_nr;
504	int page_match;
505};
506
507struct wait_page_queue {
508	struct page *page;
509	int bit_nr;
510	wait_queue_entry_t wait;
511};
512
513static inline bool wake_page_match(struct wait_page_queue *wait_page,
514				  struct wait_page_key *key)
515{
516	if (wait_page->page != key->page)
517	       return false;
518	key->page_match = 1;
519
520	if (wait_page->bit_nr != key->bit_nr)
521		return false;
522
523	return true;
524}
525
526extern void __lock_page(struct page *page);
527extern int __lock_page_killable(struct page *page);
528extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
529extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
530				unsigned int flags);
531extern void unlock_page(struct page *page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532
533/*
534 * Return true if the page was successfully locked
535 */
536static inline int trylock_page(struct page *page)
537{
538	page = compound_head(page);
539	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
540}
541
542/*
543 * lock_page may only be called if we have the page's inode pinned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544 */
545static inline void lock_page(struct page *page)
546{
547	might_sleep();
548	if (!trylock_page(page))
549		__lock_page(page);
550}
551
552/*
553 * lock_page_killable is like lock_page but can be interrupted by fatal
554 * signals.  It returns 0 if it locked the page and -EINTR if it was
555 * killed while waiting.
 
 
 
 
 
 
556 */
557static inline int lock_page_killable(struct page *page)
558{
 
559	might_sleep();
560	if (!trylock_page(page))
561		return __lock_page_killable(page);
562	return 0;
 
563}
564
565/*
566 * lock_page_async - Lock the page, unless this would block. If the page
567 * is already locked, then queue a callback when the page becomes unlocked.
568 * This callback can then retry the operation.
 
 
569 *
570 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
571 * was already locked and the callback defined in 'wait' was queued.
572 */
573static inline int lock_page_async(struct page *page,
574				  struct wait_page_queue *wait)
575{
576	if (!trylock_page(page))
577		return __lock_page_async(page, wait);
 
578	return 0;
579}
580
581/*
582 * lock_page_or_retry - Lock the page, unless this would block and the
583 * caller indicated that it can handle a retry.
584 *
585 * Return value and mmap_lock implications depend on flags; see
586 * __lock_page_or_retry().
587 */
588static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
589				     unsigned int flags)
590{
591	might_sleep();
592	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
 
 
593}
594
595/*
596 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
597 * and should not be used directly.
598 */
599extern void wait_on_page_bit(struct page *page, int bit_nr);
600extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
601
602/* 
603 * Wait for a page to be unlocked.
604 *
605 * This must be called with the caller "holding" the page,
606 * ie with increased "page->count" so that the page won't
607 * go away during the wait..
608 */
609static inline void wait_on_page_locked(struct page *page)
610{
611	if (PageLocked(page))
612		wait_on_page_bit(compound_head(page), PG_locked);
613}
614
615static inline int wait_on_page_locked_killable(struct page *page)
616{
617	if (!PageLocked(page))
618		return 0;
619	return wait_on_page_bit_killable(compound_head(page), PG_locked);
620}
621
622extern void put_and_wait_on_page_locked(struct page *page);
 
 
 
623
 
624void wait_on_page_writeback(struct page *page);
625extern void end_page_writeback(struct page *page);
 
 
 
626void wait_for_stable_page(struct page *page);
627
628void page_endio(struct page *page, bool is_write, int err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629
630/*
631 * Add an arbitrary waiter to a page's wait queue
632 */
633extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
634
635/*
636 * Fault everything in given userspace address range in.
637 */
638static inline int fault_in_pages_writeable(char __user *uaddr, int size)
639{
640	char __user *end = uaddr + size - 1;
641
642	if (unlikely(size == 0))
643		return 0;
644
645	if (unlikely(uaddr > end))
646		return -EFAULT;
647	/*
648	 * Writing zeroes into userspace here is OK, because we know that if
649	 * the zero gets there, we'll be overwriting it.
650	 */
651	do {
652		if (unlikely(__put_user(0, uaddr) != 0))
653			return -EFAULT;
654		uaddr += PAGE_SIZE;
655	} while (uaddr <= end);
656
657	/* Check whether the range spilled into the next page. */
658	if (((unsigned long)uaddr & PAGE_MASK) ==
659			((unsigned long)end & PAGE_MASK))
660		return __put_user(0, end);
661
662	return 0;
663}
664
665static inline int fault_in_pages_readable(const char __user *uaddr, int size)
666{
667	volatile char c;
668	const char __user *end = uaddr + size - 1;
669
670	if (unlikely(size == 0))
671		return 0;
672
673	if (unlikely(uaddr > end))
674		return -EFAULT;
675
676	do {
677		if (unlikely(__get_user(c, uaddr) != 0))
678			return -EFAULT;
679		uaddr += PAGE_SIZE;
680	} while (uaddr <= end);
681
682	/* Check whether the range spilled into the next page. */
683	if (((unsigned long)uaddr & PAGE_MASK) ==
684			((unsigned long)end & PAGE_MASK)) {
685		return __get_user(c, end);
686	}
687
688	(void)c;
689	return 0;
690}
691
692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693				pgoff_t index, gfp_t gfp_mask);
694int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
695				pgoff_t index, gfp_t gfp_mask);
696extern void delete_from_page_cache(struct page *page);
697extern void __delete_from_page_cache(struct page *page, void *shadow);
698int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
 
 
699void delete_from_page_cache_batch(struct address_space *mapping,
700				  struct pagevec *pvec);
 
 
 
 
 
 
 
701
702#define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
703
704void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
705		struct file *, pgoff_t index, unsigned long req_count);
706void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
707		struct file *, struct page *, pgoff_t index,
708		unsigned long req_count);
709void page_cache_readahead_unbounded(struct address_space *, struct file *,
710		pgoff_t index, unsigned long nr_to_read,
711		unsigned long lookahead_count);
712
713/*
714 * Like add_to_page_cache_locked, but used to add newly allocated pages:
715 * the page is new, so we can just run __SetPageLocked() against it.
716 */
717static inline int add_to_page_cache(struct page *page,
718		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
719{
720	int error;
721
722	__SetPageLocked(page);
723	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
724	if (unlikely(error))
725		__ClearPageLocked(page);
726	return error;
727}
728
729/**
730 * struct readahead_control - Describes a readahead request.
731 *
732 * A readahead request is for consecutive pages.  Filesystems which
733 * implement the ->readahead method should call readahead_page() or
734 * readahead_page_batch() in a loop and attempt to start I/O against
735 * each page in the request.
736 *
737 * Most of the fields in this struct are private and should be accessed
738 * by the functions below.
739 *
740 * @file: The file, used primarily by network filesystems for authentication.
741 *	  May be NULL if invoked internally by the filesystem.
742 * @mapping: Readahead this filesystem object.
 
743 */
744struct readahead_control {
745	struct file *file;
746	struct address_space *mapping;
 
747/* private: use the readahead_* accessors instead */
748	pgoff_t _index;
749	unsigned int _nr_pages;
750	unsigned int _batch_count;
 
 
751};
752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753/**
754 * readahead_page - Get the next page to read.
755 * @rac: The current readahead request.
756 *
757 * Context: The page is locked and has an elevated refcount.  The caller
758 * should decreases the refcount once the page has been submitted for I/O
759 * and unlock the page once all I/O to that page has completed.
760 * Return: A pointer to the next page, or %NULL if we are done.
761 */
762static inline struct page *readahead_page(struct readahead_control *rac)
763{
764	struct page *page;
765
766	BUG_ON(rac->_batch_count > rac->_nr_pages);
767	rac->_nr_pages -= rac->_batch_count;
768	rac->_index += rac->_batch_count;
769
770	if (!rac->_nr_pages) {
771		rac->_batch_count = 0;
772		return NULL;
773	}
774
775	page = xa_load(&rac->mapping->i_pages, rac->_index);
776	VM_BUG_ON_PAGE(!PageLocked(page), page);
777	rac->_batch_count = thp_nr_pages(page);
 
 
 
 
 
 
 
 
778
779	return page;
 
 
780}
781
782static inline unsigned int __readahead_batch(struct readahead_control *rac,
783		struct page **array, unsigned int array_sz)
784{
785	unsigned int i = 0;
786	XA_STATE(xas, &rac->mapping->i_pages, 0);
787	struct page *page;
788
789	BUG_ON(rac->_batch_count > rac->_nr_pages);
790	rac->_nr_pages -= rac->_batch_count;
791	rac->_index += rac->_batch_count;
792	rac->_batch_count = 0;
793
794	xas_set(&xas, rac->_index);
795	rcu_read_lock();
796	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
 
 
797		VM_BUG_ON_PAGE(!PageLocked(page), page);
798		VM_BUG_ON_PAGE(PageTail(page), page);
799		array[i++] = page;
800		rac->_batch_count += thp_nr_pages(page);
801
802		/*
803		 * The page cache isn't using multi-index entries yet,
804		 * so the xas cursor needs to be manually moved to the
805		 * next index.  This can be removed once the page cache
806		 * is converted.
807		 */
808		if (PageHead(page))
809			xas_set(&xas, rac->_index + rac->_batch_count);
810
811		if (i == array_sz)
812			break;
813	}
814	rcu_read_unlock();
815
816	return i;
817}
818
819/**
820 * readahead_page_batch - Get a batch of pages to read.
821 * @rac: The current readahead request.
822 * @array: An array of pointers to struct page.
823 *
824 * Context: The pages are locked and have an elevated refcount.  The caller
825 * should decreases the refcount once the page has been submitted for I/O
826 * and unlock the page once all I/O to that page has completed.
827 * Return: The number of pages placed in the array.  0 indicates the request
828 * is complete.
829 */
830#define readahead_page_batch(rac, array)				\
831	__readahead_batch(rac, array, ARRAY_SIZE(array))
832
833/**
834 * readahead_pos - The byte offset into the file of this readahead request.
835 * @rac: The readahead request.
836 */
837static inline loff_t readahead_pos(struct readahead_control *rac)
838{
839	return (loff_t)rac->_index * PAGE_SIZE;
840}
841
842/**
843 * readahead_length - The number of bytes in this readahead request.
844 * @rac: The readahead request.
845 */
846static inline loff_t readahead_length(struct readahead_control *rac)
847{
848	return (loff_t)rac->_nr_pages * PAGE_SIZE;
849}
850
851/**
852 * readahead_index - The index of the first page in this readahead request.
853 * @rac: The readahead request.
854 */
855static inline pgoff_t readahead_index(struct readahead_control *rac)
856{
857	return rac->_index;
858}
859
860/**
861 * readahead_count - The number of pages in this readahead request.
862 * @rac: The readahead request.
863 */
864static inline unsigned int readahead_count(struct readahead_control *rac)
865{
866	return rac->_nr_pages;
867}
868
 
 
 
 
 
 
 
 
 
869static inline unsigned long dir_pages(struct inode *inode)
870{
871	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
872			       PAGE_SHIFT;
873}
874
875/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876 * page_mkwrite_check_truncate - check if page was truncated
877 * @page: the page to check
878 * @inode: the inode to check the page against
879 *
880 * Returns the number of bytes in the page up to EOF,
881 * or -EFAULT if the page was truncated.
882 */
883static inline int page_mkwrite_check_truncate(struct page *page,
884					      struct inode *inode)
885{
886	loff_t size = i_size_read(inode);
887	pgoff_t index = size >> PAGE_SHIFT;
888	int offset = offset_in_page(size);
889
890	if (page->mapping != inode->i_mapping)
891		return -EFAULT;
892
893	/* page is wholly inside EOF */
894	if (page->index < index)
895		return PAGE_SIZE;
896	/* page is wholly past EOF */
897	if (page->index > index || !offset)
898		return -EFAULT;
899	/* page is partially inside EOF */
900	return offset;
901}
902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903#endif /* _LINUX_PAGEMAP_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PAGEMAP_H
   3#define _LINUX_PAGEMAP_H
   4
   5/*
   6 * Copyright 1995 Linus Torvalds
   7 */
   8#include <linux/mm.h>
   9#include <linux/fs.h>
  10#include <linux/list.h>
  11#include <linux/highmem.h>
  12#include <linux/compiler.h>
  13#include <linux/uaccess.h>
  14#include <linux/gfp.h>
  15#include <linux/bitops.h>
  16#include <linux/hardirq.h> /* for in_interrupt() */
  17#include <linux/hugetlb_inline.h>
  18
  19struct folio_batch;
  20
  21unsigned long invalidate_mapping_pages(struct address_space *mapping,
  22					pgoff_t start, pgoff_t end);
  23
  24static inline void invalidate_remote_inode(struct inode *inode)
  25{
  26	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  27	    S_ISLNK(inode->i_mode))
  28		invalidate_mapping_pages(inode->i_mapping, 0, -1);
  29}
  30int invalidate_inode_pages2(struct address_space *mapping);
  31int invalidate_inode_pages2_range(struct address_space *mapping,
  32		pgoff_t start, pgoff_t end);
  33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
  34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
  35
  36int write_inode_now(struct inode *, int sync);
  37int filemap_fdatawrite(struct address_space *);
  38int filemap_flush(struct address_space *);
  39int filemap_fdatawait_keep_errors(struct address_space *mapping);
  40int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
  41int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
  42		loff_t start_byte, loff_t end_byte);
  43
  44static inline int filemap_fdatawait(struct address_space *mapping)
  45{
  46	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
  47}
  48
  49bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
  50int filemap_write_and_wait_range(struct address_space *mapping,
  51		loff_t lstart, loff_t lend);
  52int __filemap_fdatawrite_range(struct address_space *mapping,
  53		loff_t start, loff_t end, int sync_mode);
  54int filemap_fdatawrite_range(struct address_space *mapping,
  55		loff_t start, loff_t end);
  56int filemap_check_errors(struct address_space *mapping);
  57void __filemap_set_wb_err(struct address_space *mapping, int err);
  58int filemap_fdatawrite_wbc(struct address_space *mapping,
  59			   struct writeback_control *wbc);
  60int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
  61
  62static inline int filemap_write_and_wait(struct address_space *mapping)
  63{
  64	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
  65}
  66
  67/**
  68 * filemap_set_wb_err - set a writeback error on an address_space
  69 * @mapping: mapping in which to set writeback error
  70 * @err: error to be set in mapping
  71 *
  72 * When writeback fails in some way, we must record that error so that
  73 * userspace can be informed when fsync and the like are called.  We endeavor
  74 * to report errors on any file that was open at the time of the error.  Some
  75 * internal callers also need to know when writeback errors have occurred.
  76 *
  77 * When a writeback error occurs, most filesystems will want to call
  78 * filemap_set_wb_err to record the error in the mapping so that it will be
  79 * automatically reported whenever fsync is called on the file.
  80 */
  81static inline void filemap_set_wb_err(struct address_space *mapping, int err)
  82{
  83	/* Fastpath for common case of no error */
  84	if (unlikely(err))
  85		__filemap_set_wb_err(mapping, err);
  86}
  87
  88/**
  89 * filemap_check_wb_err - has an error occurred since the mark was sampled?
  90 * @mapping: mapping to check for writeback errors
  91 * @since: previously-sampled errseq_t
  92 *
  93 * Grab the errseq_t value from the mapping, and see if it has changed "since"
  94 * the given value was sampled.
  95 *
  96 * If it has then report the latest error set, otherwise return 0.
  97 */
  98static inline int filemap_check_wb_err(struct address_space *mapping,
  99					errseq_t since)
 100{
 101	return errseq_check(&mapping->wb_err, since);
 102}
 103
 104/**
 105 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
 106 * @mapping: mapping to be sampled
 107 *
 108 * Writeback errors are always reported relative to a particular sample point
 109 * in the past. This function provides those sample points.
 110 */
 111static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
 112{
 113	return errseq_sample(&mapping->wb_err);
 114}
 115
 116/**
 117 * file_sample_sb_err - sample the current errseq_t to test for later errors
 118 * @file: file pointer to be sampled
 119 *
 120 * Grab the most current superblock-level errseq_t value for the given
 121 * struct file.
 122 */
 123static inline errseq_t file_sample_sb_err(struct file *file)
 124{
 125	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
 126}
 127
 128/*
 129 * Flush file data before changing attributes.  Caller must hold any locks
 130 * required to prevent further writes to this file until we're done setting
 131 * flags.
 132 */
 133static inline int inode_drain_writes(struct inode *inode)
 134{
 135	inode_dio_wait(inode);
 136	return filemap_write_and_wait(inode->i_mapping);
 137}
 138
 139static inline bool mapping_empty(struct address_space *mapping)
 140{
 141	return xa_empty(&mapping->i_pages);
 142}
 143
 144/*
 145 * mapping_shrinkable - test if page cache state allows inode reclaim
 146 * @mapping: the page cache mapping
 147 *
 148 * This checks the mapping's cache state for the pupose of inode
 149 * reclaim and LRU management.
 150 *
 151 * The caller is expected to hold the i_lock, but is not required to
 152 * hold the i_pages lock, which usually protects cache state. That's
 153 * because the i_lock and the list_lru lock that protect the inode and
 154 * its LRU state don't nest inside the irq-safe i_pages lock.
 155 *
 156 * Cache deletions are performed under the i_lock, which ensures that
 157 * when an inode goes empty, it will reliably get queued on the LRU.
 158 *
 159 * Cache additions do not acquire the i_lock and may race with this
 160 * check, in which case we'll report the inode as shrinkable when it
 161 * has cache pages. This is okay: the shrinker also checks the
 162 * refcount and the referenced bit, which will be elevated or set in
 163 * the process of adding new cache pages to an inode.
 164 */
 165static inline bool mapping_shrinkable(struct address_space *mapping)
 166{
 167	void *head;
 168
 169	/*
 170	 * On highmem systems, there could be lowmem pressure from the
 171	 * inodes before there is highmem pressure from the page
 172	 * cache. Make inodes shrinkable regardless of cache state.
 173	 */
 174	if (IS_ENABLED(CONFIG_HIGHMEM))
 175		return true;
 176
 177	/* Cache completely empty? Shrink away. */
 178	head = rcu_access_pointer(mapping->i_pages.xa_head);
 179	if (!head)
 180		return true;
 181
 182	/*
 183	 * The xarray stores single offset-0 entries directly in the
 184	 * head pointer, which allows non-resident page cache entries
 185	 * to escape the shadow shrinker's list of xarray nodes. The
 186	 * inode shrinker needs to pick them up under memory pressure.
 187	 */
 188	if (!xa_is_node(head) && xa_is_value(head))
 189		return true;
 190
 191	return false;
 192}
 193
 194/*
 195 * Bits in mapping->flags.
 196 */
 197enum mapping_flags {
 198	AS_EIO		= 0,	/* IO error on async write */
 199	AS_ENOSPC	= 1,	/* ENOSPC on async write */
 200	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
 201	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
 202	AS_EXITING	= 4, 	/* final truncate in progress */
 203	/* writeback related tags are not used */
 204	AS_NO_WRITEBACK_TAGS = 5,
 205	AS_LARGE_FOLIO_SUPPORT = 6,
 206	AS_RELEASE_ALWAYS,	/* Call ->release_folio(), even if no private data */
 207	AS_STABLE_WRITES,	/* must wait for writeback before modifying
 208				   folio contents */
 209	AS_UNMOVABLE,		/* The mapping cannot be moved, ever */
 210};
 211
 212/**
 213 * mapping_set_error - record a writeback error in the address_space
 214 * @mapping: the mapping in which an error should be set
 215 * @error: the error to set in the mapping
 216 *
 217 * When writeback fails in some way, we must record that error so that
 218 * userspace can be informed when fsync and the like are called.  We endeavor
 219 * to report errors on any file that was open at the time of the error.  Some
 220 * internal callers also need to know when writeback errors have occurred.
 221 *
 222 * When a writeback error occurs, most filesystems will want to call
 223 * mapping_set_error to record the error in the mapping so that it can be
 224 * reported when the application calls fsync(2).
 225 */
 226static inline void mapping_set_error(struct address_space *mapping, int error)
 227{
 228	if (likely(!error))
 229		return;
 230
 231	/* Record in wb_err for checkers using errseq_t based tracking */
 232	__filemap_set_wb_err(mapping, error);
 233
 234	/* Record it in superblock */
 235	if (mapping->host)
 236		errseq_set(&mapping->host->i_sb->s_wb_err, error);
 237
 238	/* Record it in flags for now, for legacy callers */
 239	if (error == -ENOSPC)
 240		set_bit(AS_ENOSPC, &mapping->flags);
 241	else
 242		set_bit(AS_EIO, &mapping->flags);
 243}
 244
 245static inline void mapping_set_unevictable(struct address_space *mapping)
 246{
 247	set_bit(AS_UNEVICTABLE, &mapping->flags);
 248}
 249
 250static inline void mapping_clear_unevictable(struct address_space *mapping)
 251{
 252	clear_bit(AS_UNEVICTABLE, &mapping->flags);
 253}
 254
 255static inline bool mapping_unevictable(struct address_space *mapping)
 256{
 257	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
 258}
 259
 260static inline void mapping_set_exiting(struct address_space *mapping)
 261{
 262	set_bit(AS_EXITING, &mapping->flags);
 263}
 264
 265static inline int mapping_exiting(struct address_space *mapping)
 266{
 267	return test_bit(AS_EXITING, &mapping->flags);
 268}
 269
 270static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
 271{
 272	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 273}
 274
 275static inline int mapping_use_writeback_tags(struct address_space *mapping)
 276{
 277	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 278}
 279
 280static inline bool mapping_release_always(const struct address_space *mapping)
 281{
 282	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
 283}
 284
 285static inline void mapping_set_release_always(struct address_space *mapping)
 286{
 287	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
 288}
 289
 290static inline void mapping_clear_release_always(struct address_space *mapping)
 291{
 292	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
 293}
 294
 295static inline bool mapping_stable_writes(const struct address_space *mapping)
 296{
 297	return test_bit(AS_STABLE_WRITES, &mapping->flags);
 298}
 299
 300static inline void mapping_set_stable_writes(struct address_space *mapping)
 301{
 302	set_bit(AS_STABLE_WRITES, &mapping->flags);
 303}
 304
 305static inline void mapping_clear_stable_writes(struct address_space *mapping)
 306{
 307	clear_bit(AS_STABLE_WRITES, &mapping->flags);
 308}
 309
 310static inline void mapping_set_unmovable(struct address_space *mapping)
 311{
 312	/*
 313	 * It's expected unmovable mappings are also unevictable. Compaction
 314	 * migrate scanner (isolate_migratepages_block()) relies on this to
 315	 * reduce page locking.
 316	 */
 317	set_bit(AS_UNEVICTABLE, &mapping->flags);
 318	set_bit(AS_UNMOVABLE, &mapping->flags);
 319}
 320
 321static inline bool mapping_unmovable(struct address_space *mapping)
 322{
 323	return test_bit(AS_UNMOVABLE, &mapping->flags);
 324}
 325
 326static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
 327{
 328	return mapping->gfp_mask;
 329}
 330
 331/* Restricts the given gfp_mask to what the mapping allows. */
 332static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
 333		gfp_t gfp_mask)
 334{
 335	return mapping_gfp_mask(mapping) & gfp_mask;
 336}
 337
 338/*
 339 * This is non-atomic.  Only to be used before the mapping is activated.
 340 * Probably needs a barrier...
 341 */
 342static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
 343{
 344	m->gfp_mask = mask;
 345}
 346
 347/**
 348 * mapping_set_large_folios() - Indicate the file supports large folios.
 349 * @mapping: The file.
 350 *
 351 * The filesystem should call this function in its inode constructor to
 352 * indicate that the VFS can use large folios to cache the contents of
 353 * the file.
 354 *
 355 * Context: This should not be called while the inode is active as it
 356 * is non-atomic.
 357 */
 358static inline void mapping_set_large_folios(struct address_space *mapping)
 359{
 360	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
 361}
 362
 363/*
 364 * Large folio support currently depends on THP.  These dependencies are
 365 * being worked on but are not yet fixed.
 366 */
 367static inline bool mapping_large_folio_support(struct address_space *mapping)
 368{
 369	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 370		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
 371}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373static inline int filemap_nr_thps(struct address_space *mapping)
 374{
 375#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 376	return atomic_read(&mapping->nr_thps);
 377#else
 378	return 0;
 
 
 
 
 
 
 
 379#endif
 380}
 381
 382static inline void filemap_nr_thps_inc(struct address_space *mapping)
 383{
 384#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 385	if (!mapping_large_folio_support(mapping))
 386		atomic_inc(&mapping->nr_thps);
 387#else
 388	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
 389#endif
 390}
 391
 392static inline void filemap_nr_thps_dec(struct address_space *mapping)
 393{
 394#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 395	if (!mapping_large_folio_support(mapping))
 396		atomic_dec(&mapping->nr_thps);
 397#else
 398	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
 399#endif
 400}
 401
 402struct address_space *page_mapping(struct page *);
 403struct address_space *folio_mapping(struct folio *);
 404struct address_space *swapcache_mapping(struct folio *);
 405
 406/**
 407 * folio_file_mapping - Find the mapping this folio belongs to.
 408 * @folio: The folio.
 409 *
 410 * For folios which are in the page cache, return the mapping that this
 411 * page belongs to.  Folios in the swap cache return the mapping of the
 412 * swap file or swap device where the data is stored.  This is different
 413 * from the mapping returned by folio_mapping().  The only reason to
 414 * use it is if, like NFS, you return 0 from ->activate_swapfile.
 415 *
 416 * Do not call this for folios which aren't in the page cache or swap cache.
 417 */
 418static inline struct address_space *folio_file_mapping(struct folio *folio)
 419{
 420	if (unlikely(folio_test_swapcache(folio)))
 421		return swapcache_mapping(folio);
 422
 423	return folio->mapping;
 424}
 425
 426/**
 427 * folio_flush_mapping - Find the file mapping this folio belongs to.
 428 * @folio: The folio.
 
 429 *
 430 * For folios which are in the page cache, return the mapping that this
 431 * page belongs to.  Anonymous folios return NULL, even if they're in
 432 * the swap cache.  Other kinds of folio also return NULL.
 433 *
 434 * This is ONLY used by architecture cache flushing code.  If you aren't
 435 * writing cache flushing code, you want either folio_mapping() or
 436 * folio_file_mapping().
 437 */
 438static inline struct address_space *folio_flush_mapping(struct folio *folio)
 439{
 440	if (unlikely(folio_test_swapcache(folio)))
 441		return NULL;
 442
 443	return folio_mapping(folio);
 444}
 445
 446static inline struct address_space *page_file_mapping(struct page *page)
 447{
 448	return folio_file_mapping(page_folio(page));
 449}
 450
 451/**
 452 * folio_inode - Get the host inode for this folio.
 453 * @folio: The folio.
 454 *
 455 * For folios which are in the page cache, return the inode that this folio
 456 * belongs to.
 457 *
 458 * Do not call this for folios which aren't in the page cache.
 459 */
 460static inline struct inode *folio_inode(struct folio *folio)
 461{
 462	return folio->mapping->host;
 463}
 464
 465/**
 466 * folio_attach_private - Attach private data to a folio.
 467 * @folio: Folio to attach data to.
 468 * @data: Data to attach to folio.
 469 *
 470 * Attaching private data to a folio increments the page's reference count.
 471 * The data must be detached before the folio will be freed.
 472 */
 473static inline void folio_attach_private(struct folio *folio, void *data)
 474{
 475	folio_get(folio);
 476	folio->private = data;
 477	folio_set_private(folio);
 478}
 479
 480/**
 481 * folio_change_private - Change private data on a folio.
 482 * @folio: Folio to change the data on.
 483 * @data: Data to set on the folio.
 484 *
 485 * Change the private data attached to a folio and return the old
 486 * data.  The page must previously have had data attached and the data
 487 * must be detached before the folio will be freed.
 488 *
 489 * Return: Data that was previously attached to the folio.
 490 */
 491static inline void *folio_change_private(struct folio *folio, void *data)
 492{
 493	void *old = folio_get_private(folio);
 494
 495	folio->private = data;
 496	return old;
 497}
 498
 499/**
 500 * folio_detach_private - Detach private data from a folio.
 501 * @folio: Folio to detach data from.
 502 *
 503 * Removes the data that was previously attached to the folio and decrements
 504 * the refcount on the page.
 505 *
 506 * Return: Data that was attached to the folio.
 507 */
 508static inline void *folio_detach_private(struct folio *folio)
 509{
 510	void *data = folio_get_private(folio);
 511
 512	if (!folio_test_private(folio))
 513		return NULL;
 514	folio_clear_private(folio);
 515	folio->private = NULL;
 516	folio_put(folio);
 517
 518	return data;
 519}
 520
 521static inline void attach_page_private(struct page *page, void *data)
 522{
 523	folio_attach_private(page_folio(page), data);
 524}
 525
 526static inline void *detach_page_private(struct page *page)
 527{
 528	return folio_detach_private(page_folio(page));
 529}
 530
 531/*
 532 * There are some parts of the kernel which assume that PMD entries
 533 * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
 534 * limit the maximum allocation order to PMD size.  I'm not aware of any
 535 * assumptions about maximum order if THP are disabled, but 8 seems like
 536 * a good order (that's 1MB if you're using 4kB pages)
 537 */
 538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 539#define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
 540#else
 541#define MAX_PAGECACHE_ORDER	8
 542#endif
 543
 544#ifdef CONFIG_NUMA
 545struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
 546#else
 547static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 548{
 549	return folio_alloc(gfp, order);
 550}
 551#endif
 552
 553static inline struct page *__page_cache_alloc(gfp_t gfp)
 554{
 555	return &filemap_alloc_folio(gfp, 0)->page;
 556}
 557
 558static inline struct page *page_cache_alloc(struct address_space *x)
 559{
 560	return __page_cache_alloc(mapping_gfp_mask(x));
 561}
 562
 563static inline gfp_t readahead_gfp_mask(struct address_space *x)
 564{
 565	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
 566}
 567
 568typedef int filler_t(struct file *, struct folio *);
 569
 570pgoff_t page_cache_next_miss(struct address_space *mapping,
 571			     pgoff_t index, unsigned long max_scan);
 572pgoff_t page_cache_prev_miss(struct address_space *mapping,
 573			     pgoff_t index, unsigned long max_scan);
 574
 575/**
 576 * typedef fgf_t - Flags for getting folios from the page cache.
 577 *
 578 * Most users of the page cache will not need to use these flags;
 579 * there are convenience functions such as filemap_get_folio() and
 580 * filemap_lock_folio().  For users which need more control over exactly
 581 * what is done with the folios, these flags to __filemap_get_folio()
 582 * are available.
 583 *
 584 * * %FGP_ACCESSED - The folio will be marked accessed.
 585 * * %FGP_LOCK - The folio is returned locked.
 586 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
 587 *   added to the page cache and the VM's LRU list.  The folio is
 588 *   returned locked.
 589 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 590 *   folio is already in cache.  If the folio was allocated, unlock it
 591 *   before returning so the caller can do the same dance.
 592 * * %FGP_WRITE - The folio will be written to by the caller.
 593 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
 594 * * %FGP_NOWAIT - Don't block on the folio lock.
 595 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
 596 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
 597 *   implementation.
 598 */
 599typedef unsigned int __bitwise fgf_t;
 600
 601#define FGP_ACCESSED		((__force fgf_t)0x00000001)
 602#define FGP_LOCK		((__force fgf_t)0x00000002)
 603#define FGP_CREAT		((__force fgf_t)0x00000004)
 604#define FGP_WRITE		((__force fgf_t)0x00000008)
 605#define FGP_NOFS		((__force fgf_t)0x00000010)
 606#define FGP_NOWAIT		((__force fgf_t)0x00000020)
 607#define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
 608#define FGP_STABLE		((__force fgf_t)0x00000080)
 609#define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
 610
 611#define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
 612
 613/**
 614 * fgf_set_order - Encode a length in the fgf_t flags.
 615 * @size: The suggested size of the folio to create.
 616 *
 617 * The caller of __filemap_get_folio() can use this to suggest a preferred
 618 * size for the folio that is created.  If there is already a folio at
 619 * the index, it will be returned, no matter what its size.  If a folio
 620 * is freshly created, it may be of a different size than requested
 621 * due to alignment constraints, memory pressure, or the presence of
 622 * other folios at nearby indices.
 623 */
 624static inline fgf_t fgf_set_order(size_t size)
 625{
 626	unsigned int shift = ilog2(size);
 627
 628	if (shift <= PAGE_SHIFT)
 629		return 0;
 630	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
 631}
 632
 633void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
 634struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
 635		fgf_t fgp_flags, gfp_t gfp);
 636struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
 637		fgf_t fgp_flags, gfp_t gfp);
 638
 639/**
 640 * filemap_get_folio - Find and get a folio.
 641 * @mapping: The address_space to search.
 642 * @index: The page index.
 643 *
 644 * Looks up the page cache entry at @mapping & @index.  If a folio is
 645 * present, it is returned with an increased refcount.
 646 *
 647 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
 648 * this index.  Will not return a shadow, swap or DAX entry.
 649 */
 650static inline struct folio *filemap_get_folio(struct address_space *mapping,
 651					pgoff_t index)
 652{
 653	return __filemap_get_folio(mapping, index, 0, 0);
 654}
 655
 656/**
 657 * filemap_lock_folio - Find and lock a folio.
 658 * @mapping: The address_space to search.
 659 * @index: The page index.
 660 *
 661 * Looks up the page cache entry at @mapping & @index.  If a folio is
 662 * present, it is returned locked with an increased refcount.
 663 *
 664 * Context: May sleep.
 665 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
 666 * this index.  Will not return a shadow, swap or DAX entry.
 667 */
 668static inline struct folio *filemap_lock_folio(struct address_space *mapping,
 669					pgoff_t index)
 670{
 671	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
 672}
 673
 674/**
 675 * filemap_grab_folio - grab a folio from the page cache
 676 * @mapping: The address space to search
 677 * @index: The page index
 678 *
 679 * Looks up the page cache entry at @mapping & @index. If no folio is found,
 680 * a new folio is created. The folio is locked, marked as accessed, and
 681 * returned.
 682 *
 683 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
 684 * and failed to create a folio.
 685 */
 686static inline struct folio *filemap_grab_folio(struct address_space *mapping,
 687					pgoff_t index)
 688{
 689	return __filemap_get_folio(mapping, index,
 690			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
 691			mapping_gfp_mask(mapping));
 692}
 693
 694/**
 695 * find_get_page - find and get a page reference
 696 * @mapping: the address_space to search
 697 * @offset: the page index
 698 *
 699 * Looks up the page cache slot at @mapping & @offset.  If there is a
 700 * page cache page, it is returned with an increased refcount.
 701 *
 702 * Otherwise, %NULL is returned.
 703 */
 704static inline struct page *find_get_page(struct address_space *mapping,
 705					pgoff_t offset)
 706{
 707	return pagecache_get_page(mapping, offset, 0, 0);
 708}
 709
 710static inline struct page *find_get_page_flags(struct address_space *mapping,
 711					pgoff_t offset, fgf_t fgp_flags)
 712{
 713	return pagecache_get_page(mapping, offset, fgp_flags, 0);
 714}
 715
 716/**
 717 * find_lock_page - locate, pin and lock a pagecache page
 718 * @mapping: the address_space to search
 719 * @index: the page index
 720 *
 721 * Looks up the page cache entry at @mapping & @index.  If there is a
 722 * page cache page, it is returned locked and with an increased
 723 * refcount.
 724 *
 725 * Context: May sleep.
 726 * Return: A struct page or %NULL if there is no page in the cache for this
 727 * index.
 728 */
 729static inline struct page *find_lock_page(struct address_space *mapping,
 730					pgoff_t index)
 731{
 732	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
 733}
 734
 735/**
 736 * find_or_create_page - locate or add a pagecache page
 737 * @mapping: the page's address_space
 738 * @index: the page's index into the mapping
 739 * @gfp_mask: page allocation mode
 740 *
 741 * Looks up the page cache slot at @mapping & @offset.  If there is a
 742 * page cache page, it is returned locked and with an increased
 743 * refcount.
 744 *
 745 * If the page is not present, a new page is allocated using @gfp_mask
 746 * and added to the page cache and the VM's LRU list.  The page is
 747 * returned locked and with an increased refcount.
 748 *
 749 * On memory exhaustion, %NULL is returned.
 750 *
 751 * find_or_create_page() may sleep, even if @gfp_flags specifies an
 752 * atomic allocation!
 753 */
 754static inline struct page *find_or_create_page(struct address_space *mapping,
 755					pgoff_t index, gfp_t gfp_mask)
 756{
 757	return pagecache_get_page(mapping, index,
 758					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
 759					gfp_mask);
 760}
 761
 762/**
 763 * grab_cache_page_nowait - returns locked page at given index in given cache
 764 * @mapping: target address_space
 765 * @index: the page index
 766 *
 767 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 768 * This is intended for speculative data generators, where the data can
 769 * be regenerated if the page couldn't be grabbed.  This routine should
 770 * be safe to call while holding the lock for another page.
 771 *
 772 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 773 * and deadlock against the caller's locked page.
 774 */
 775static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
 776				pgoff_t index)
 777{
 778	return pagecache_get_page(mapping, index,
 779			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 780			mapping_gfp_mask(mapping));
 781}
 782
 783#define swapcache_index(folio)	__page_file_index(&(folio)->page)
 784
 785/**
 786 * folio_index - File index of a folio.
 787 * @folio: The folio.
 788 *
 789 * For a folio which is either in the page cache or the swap cache,
 790 * return its index within the address_space it belongs to.  If you know
 791 * the page is definitely in the page cache, you can look at the folio's
 792 * index directly.
 793 *
 794 * Return: The index (offset in units of pages) of a folio in its file.
 795 */
 796static inline pgoff_t folio_index(struct folio *folio)
 797{
 798        if (unlikely(folio_test_swapcache(folio)))
 799                return swapcache_index(folio);
 800        return folio->index;
 801}
 802
 803/**
 804 * folio_next_index - Get the index of the next folio.
 805 * @folio: The current folio.
 806 *
 807 * Return: The index of the folio which follows this folio in the file.
 808 */
 809static inline pgoff_t folio_next_index(struct folio *folio)
 810{
 811	return folio->index + folio_nr_pages(folio);
 812}
 813
 814/**
 815 * folio_file_page - The page for a particular index.
 816 * @folio: The folio which contains this index.
 817 * @index: The index we want to look up.
 818 *
 819 * Sometimes after looking up a folio in the page cache, we need to
 820 * obtain the specific page for an index (eg a page fault).
 821 *
 822 * Return: The page containing the file data for this index.
 823 */
 824static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
 825{
 826	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
 827}
 828
 829/**
 830 * folio_contains - Does this folio contain this index?
 831 * @folio: The folio.
 832 * @index: The page index within the file.
 833 *
 834 * Context: The caller should have the page locked in order to prevent
 835 * (eg) shmem from moving the page between the page cache and swap cache
 836 * and changing its index in the middle of the operation.
 837 * Return: true or false.
 838 */
 839static inline bool folio_contains(struct folio *folio, pgoff_t index)
 840{
 841	return index - folio_index(folio) < folio_nr_pages(folio);
 842}
 843
 844/*
 845 * Given the page we found in the page cache, return the page corresponding
 846 * to this index in the file
 847 */
 848static inline struct page *find_subpage(struct page *head, pgoff_t index)
 849{
 850	/* HugeTLBfs wants the head page regardless */
 851	if (PageHuge(head))
 852		return head;
 853
 854	return head + (index & (thp_nr_pages(head) - 1));
 855}
 856
 857unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
 858		pgoff_t end, struct folio_batch *fbatch);
 859unsigned filemap_get_folios_contig(struct address_space *mapping,
 860		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
 861unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
 862		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863
 864struct page *grab_cache_page_write_begin(struct address_space *mapping,
 865			pgoff_t index);
 866
 867/*
 868 * Returns locked page at given index in given cache, creating it if needed.
 869 */
 870static inline struct page *grab_cache_page(struct address_space *mapping,
 871								pgoff_t index)
 872{
 873	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
 874}
 875
 876struct folio *read_cache_folio(struct address_space *, pgoff_t index,
 877		filler_t *filler, struct file *file);
 878struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
 879		gfp_t flags);
 880struct page *read_cache_page(struct address_space *, pgoff_t index,
 881		filler_t *filler, struct file *file);
 882extern struct page * read_cache_page_gfp(struct address_space *mapping,
 883				pgoff_t index, gfp_t gfp_mask);
 
 
 884
 885static inline struct page *read_mapping_page(struct address_space *mapping,
 886				pgoff_t index, struct file *file)
 887{
 888	return read_cache_page(mapping, index, NULL, file);
 889}
 890
 891static inline struct folio *read_mapping_folio(struct address_space *mapping,
 892				pgoff_t index, struct file *file)
 893{
 894	return read_cache_folio(mapping, index, NULL, file);
 895}
 896
 897/*
 898 * Get the offset in PAGE_SIZE (even for hugetlb pages).
 
 899 */
 900static inline pgoff_t page_to_pgoff(struct page *page)
 901{
 902	struct page *head;
 903
 904	if (likely(!PageTransTail(page)))
 905		return page->index;
 906
 907	head = compound_head(page);
 908	/*
 909	 *  We don't initialize ->index for tail pages: calculate based on
 910	 *  head page
 911	 */
 912	return head->index + page - head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914
 915/*
 916 * Return byte-offset into filesystem object for page.
 917 */
 918static inline loff_t page_offset(struct page *page)
 919{
 920	return ((loff_t)page->index) << PAGE_SHIFT;
 921}
 922
 923static inline loff_t page_file_offset(struct page *page)
 924{
 925	return ((loff_t)page_index(page)) << PAGE_SHIFT;
 926}
 927
 928/**
 929 * folio_pos - Returns the byte position of this folio in its file.
 930 * @folio: The folio.
 931 */
 932static inline loff_t folio_pos(struct folio *folio)
 933{
 934	return page_offset(&folio->page);
 935}
 936
 937/**
 938 * folio_file_pos - Returns the byte position of this folio in its file.
 939 * @folio: The folio.
 940 *
 941 * This differs from folio_pos() for folios which belong to a swap file.
 942 * NFS is the only filesystem today which needs to use folio_file_pos().
 943 */
 944static inline loff_t folio_file_pos(struct folio *folio)
 945{
 946	return page_file_offset(&folio->page);
 947}
 948
 949/*
 950 * Get the offset in PAGE_SIZE (even for hugetlb folios).
 951 */
 952static inline pgoff_t folio_pgoff(struct folio *folio)
 953{
 954	return folio->index;
 955}
 956
 957static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
 958					unsigned long address)
 959{
 960	pgoff_t pgoff;
 
 
 961	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
 962	pgoff += vma->vm_pgoff;
 963	return pgoff;
 964}
 965
 
 966struct wait_page_key {
 967	struct folio *folio;
 968	int bit_nr;
 969	int page_match;
 970};
 971
 972struct wait_page_queue {
 973	struct folio *folio;
 974	int bit_nr;
 975	wait_queue_entry_t wait;
 976};
 977
 978static inline bool wake_page_match(struct wait_page_queue *wait_page,
 979				  struct wait_page_key *key)
 980{
 981	if (wait_page->folio != key->folio)
 982	       return false;
 983	key->page_match = 1;
 984
 985	if (wait_page->bit_nr != key->bit_nr)
 986		return false;
 987
 988	return true;
 989}
 990
 991void __folio_lock(struct folio *folio);
 992int __folio_lock_killable(struct folio *folio);
 993vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
 994void unlock_page(struct page *page);
 995void folio_unlock(struct folio *folio);
 996
 997/**
 998 * folio_trylock() - Attempt to lock a folio.
 999 * @folio: The folio to attempt to lock.
1000 *
1001 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1002 * when the locks are being taken in the wrong order, or if making
1003 * progress through a batch of folios is more important than processing
1004 * them in order).  Usually folio_lock() is the correct function to call.
1005 *
1006 * Context: Any context.
1007 * Return: Whether the lock was successfully acquired.
1008 */
1009static inline bool folio_trylock(struct folio *folio)
1010{
1011	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1012}
1013
1014/*
1015 * Return true if the page was successfully locked
1016 */
1017static inline int trylock_page(struct page *page)
1018{
1019	return folio_trylock(page_folio(page));
 
1020}
1021
1022/**
1023 * folio_lock() - Lock this folio.
1024 * @folio: The folio to lock.
1025 *
1026 * The folio lock protects against many things, probably more than it
1027 * should.  It is primarily held while a folio is being brought uptodate,
1028 * either from its backing file or from swap.  It is also held while a
1029 * folio is being truncated from its address_space, so holding the lock
1030 * is sufficient to keep folio->mapping stable.
1031 *
1032 * The folio lock is also held while write() is modifying the page to
1033 * provide POSIX atomicity guarantees (as long as the write does not
1034 * cross a page boundary).  Other modifications to the data in the folio
1035 * do not hold the folio lock and can race with writes, eg DMA and stores
1036 * to mapped pages.
1037 *
1038 * Context: May sleep.  If you need to acquire the locks of two or
1039 * more folios, they must be in order of ascending index, if they are
1040 * in the same address_space.  If they are in different address_spaces,
1041 * acquire the lock of the folio which belongs to the address_space which
1042 * has the lowest address in memory first.
1043 */
1044static inline void folio_lock(struct folio *folio)
1045{
1046	might_sleep();
1047	if (!folio_trylock(folio))
1048		__folio_lock(folio);
1049}
1050
1051/**
1052 * lock_page() - Lock the folio containing this page.
1053 * @page: The page to lock.
1054 *
1055 * See folio_lock() for a description of what the lock protects.
1056 * This is a legacy function and new code should probably use folio_lock()
1057 * instead.
1058 *
1059 * Context: May sleep.  Pages in the same folio share a lock, so do not
1060 * attempt to lock two pages which share a folio.
1061 */
1062static inline void lock_page(struct page *page)
1063{
1064	struct folio *folio;
1065	might_sleep();
1066
1067	folio = page_folio(page);
1068	if (!folio_trylock(folio))
1069		__folio_lock(folio);
1070}
1071
1072/**
1073 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1074 * @folio: The folio to lock.
1075 *
1076 * Attempts to lock the folio, like folio_lock(), except that the sleep
1077 * to acquire the lock is interruptible by a fatal signal.
1078 *
1079 * Context: May sleep; see folio_lock().
1080 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1081 */
1082static inline int folio_lock_killable(struct folio *folio)
 
1083{
1084	might_sleep();
1085	if (!folio_trylock(folio))
1086		return __folio_lock_killable(folio);
1087	return 0;
1088}
1089
1090/*
1091 * folio_lock_or_retry - Lock the folio, unless this would block and the
1092 * caller indicated that it can handle a retry.
1093 *
1094 * Return value and mmap_lock implications depend on flags; see
1095 * __folio_lock_or_retry().
1096 */
1097static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1098					     struct vm_fault *vmf)
1099{
1100	might_sleep();
1101	if (!folio_trylock(folio))
1102		return __folio_lock_or_retry(folio, vmf);
1103	return 0;
1104}
1105
1106/*
1107 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1108 * and should not be used directly.
1109 */
1110void folio_wait_bit(struct folio *folio, int bit_nr);
1111int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1112
1113/* 
1114 * Wait for a folio to be unlocked.
1115 *
1116 * This must be called with the caller "holding" the folio,
1117 * ie with increased folio reference count so that the folio won't
1118 * go away during the wait.
1119 */
1120static inline void folio_wait_locked(struct folio *folio)
1121{
1122	if (folio_test_locked(folio))
1123		folio_wait_bit(folio, PG_locked);
1124}
1125
1126static inline int folio_wait_locked_killable(struct folio *folio)
1127{
1128	if (!folio_test_locked(folio))
1129		return 0;
1130	return folio_wait_bit_killable(folio, PG_locked);
1131}
1132
1133static inline void wait_on_page_locked(struct page *page)
1134{
1135	folio_wait_locked(page_folio(page));
1136}
1137
1138void folio_end_read(struct folio *folio, bool success);
1139void wait_on_page_writeback(struct page *page);
1140void folio_wait_writeback(struct folio *folio);
1141int folio_wait_writeback_killable(struct folio *folio);
1142void end_page_writeback(struct page *page);
1143void folio_end_writeback(struct folio *folio);
1144void wait_for_stable_page(struct page *page);
1145void folio_wait_stable(struct folio *folio);
1146void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1147static inline void __set_page_dirty(struct page *page,
1148		struct address_space *mapping, int warn)
1149{
1150	__folio_mark_dirty(page_folio(page), mapping, warn);
1151}
1152void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1153void __folio_cancel_dirty(struct folio *folio);
1154static inline void folio_cancel_dirty(struct folio *folio)
1155{
1156	/* Avoid atomic ops, locking, etc. when not actually needed. */
1157	if (folio_test_dirty(folio))
1158		__folio_cancel_dirty(folio);
1159}
1160bool folio_clear_dirty_for_io(struct folio *folio);
1161bool clear_page_dirty_for_io(struct page *page);
1162void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1163int __set_page_dirty_nobuffers(struct page *page);
1164bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1165
1166#ifdef CONFIG_MIGRATION
1167int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1168		struct folio *src, enum migrate_mode mode);
1169#else
1170#define filemap_migrate_folio NULL
1171#endif
1172void folio_end_private_2(struct folio *folio);
1173void folio_wait_private_2(struct folio *folio);
1174int folio_wait_private_2_killable(struct folio *folio);
1175
1176/*
1177 * Add an arbitrary waiter to a page's wait queue
1178 */
1179void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1180
1181/*
1182 * Fault in userspace address range.
1183 */
1184size_t fault_in_writeable(char __user *uaddr, size_t size);
1185size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1186size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1187size_t fault_in_readable(const char __user *uaddr, size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188
 
 
1189int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1190		pgoff_t index, gfp_t gfp);
1191int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1192		pgoff_t index, gfp_t gfp);
1193void filemap_remove_folio(struct folio *folio);
1194void __filemap_remove_folio(struct folio *folio, void *shadow);
1195void replace_page_cache_folio(struct folio *old, struct folio *new);
1196void delete_from_page_cache_batch(struct address_space *mapping,
1197				  struct folio_batch *fbatch);
1198bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1199loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1200		int whence);
1201
1202/* Must be non-static for BPF error injection */
1203int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1204		pgoff_t index, gfp_t gfp, void **shadowp);
1205
1206bool filemap_range_has_writeback(struct address_space *mapping,
1207				 loff_t start_byte, loff_t end_byte);
 
 
 
 
 
 
 
 
1208
1209/**
1210 * filemap_range_needs_writeback - check if range potentially needs writeback
1211 * @mapping:           address space within which to check
1212 * @start_byte:        offset in bytes where the range starts
1213 * @end_byte:          offset in bytes where the range ends (inclusive)
1214 *
1215 * Find at least one page in the range supplied, usually used to check if
1216 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1217 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1218 * filemap_write_and_wait_range() before proceeding.
1219 *
1220 * Return: %true if the caller should do filemap_write_and_wait_range() before
1221 * doing O_DIRECT to a page in this range, %false otherwise.
1222 */
1223static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1224						 loff_t start_byte,
1225						 loff_t end_byte)
1226{
1227	if (!mapping->nrpages)
1228		return false;
1229	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1230	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1231		return false;
1232	return filemap_range_has_writeback(mapping, start_byte, end_byte);
 
1233}
1234
1235/**
1236 * struct readahead_control - Describes a readahead request.
1237 *
1238 * A readahead request is for consecutive pages.  Filesystems which
1239 * implement the ->readahead method should call readahead_page() or
1240 * readahead_page_batch() in a loop and attempt to start I/O against
1241 * each page in the request.
1242 *
1243 * Most of the fields in this struct are private and should be accessed
1244 * by the functions below.
1245 *
1246 * @file: The file, used primarily by network filesystems for authentication.
1247 *	  May be NULL if invoked internally by the filesystem.
1248 * @mapping: Readahead this filesystem object.
1249 * @ra: File readahead state.  May be NULL.
1250 */
1251struct readahead_control {
1252	struct file *file;
1253	struct address_space *mapping;
1254	struct file_ra_state *ra;
1255/* private: use the readahead_* accessors instead */
1256	pgoff_t _index;
1257	unsigned int _nr_pages;
1258	unsigned int _batch_count;
1259	bool _workingset;
1260	unsigned long _pflags;
1261};
1262
1263#define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1264	struct readahead_control ractl = {				\
1265		.file = f,						\
1266		.mapping = m,						\
1267		.ra = r,						\
1268		._index = i,						\
1269	}
1270
1271#define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1272
1273void page_cache_ra_unbounded(struct readahead_control *,
1274		unsigned long nr_to_read, unsigned long lookahead_count);
1275void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1276void page_cache_async_ra(struct readahead_control *, struct folio *,
1277		unsigned long req_count);
1278void readahead_expand(struct readahead_control *ractl,
1279		      loff_t new_start, size_t new_len);
1280
1281/**
1282 * page_cache_sync_readahead - generic file readahead
1283 * @mapping: address_space which holds the pagecache and I/O vectors
1284 * @ra: file_ra_state which holds the readahead state
1285 * @file: Used by the filesystem for authentication.
1286 * @index: Index of first page to be read.
1287 * @req_count: Total number of pages being read by the caller.
1288 *
1289 * page_cache_sync_readahead() should be called when a cache miss happened:
1290 * it will submit the read.  The readahead logic may decide to piggyback more
1291 * pages onto the read request if access patterns suggest it will improve
1292 * performance.
1293 */
1294static inline
1295void page_cache_sync_readahead(struct address_space *mapping,
1296		struct file_ra_state *ra, struct file *file, pgoff_t index,
1297		unsigned long req_count)
1298{
1299	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1300	page_cache_sync_ra(&ractl, req_count);
1301}
1302
1303/**
1304 * page_cache_async_readahead - file readahead for marked pages
1305 * @mapping: address_space which holds the pagecache and I/O vectors
1306 * @ra: file_ra_state which holds the readahead state
1307 * @file: Used by the filesystem for authentication.
1308 * @folio: The folio at @index which triggered the readahead call.
1309 * @index: Index of first page to be read.
1310 * @req_count: Total number of pages being read by the caller.
1311 *
1312 * page_cache_async_readahead() should be called when a page is used which
1313 * is marked as PageReadahead; this is a marker to suggest that the application
1314 * has used up enough of the readahead window that we should start pulling in
1315 * more pages.
1316 */
1317static inline
1318void page_cache_async_readahead(struct address_space *mapping,
1319		struct file_ra_state *ra, struct file *file,
1320		struct folio *folio, pgoff_t index, unsigned long req_count)
1321{
1322	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1323	page_cache_async_ra(&ractl, folio, req_count);
1324}
1325
1326static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1327{
1328	struct folio *folio;
1329
1330	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1331	ractl->_nr_pages -= ractl->_batch_count;
1332	ractl->_index += ractl->_batch_count;
1333
1334	if (!ractl->_nr_pages) {
1335		ractl->_batch_count = 0;
1336		return NULL;
1337	}
1338
1339	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1340	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1341	ractl->_batch_count = folio_nr_pages(folio);
1342
1343	return folio;
1344}
1345
1346/**
1347 * readahead_page - Get the next page to read.
1348 * @ractl: The current readahead request.
1349 *
1350 * Context: The page is locked and has an elevated refcount.  The caller
1351 * should decreases the refcount once the page has been submitted for I/O
1352 * and unlock the page once all I/O to that page has completed.
1353 * Return: A pointer to the next page, or %NULL if we are done.
1354 */
1355static inline struct page *readahead_page(struct readahead_control *ractl)
1356{
1357	struct folio *folio = __readahead_folio(ractl);
 
 
 
 
1358
1359	return &folio->page;
1360}
 
 
1361
1362/**
1363 * readahead_folio - Get the next folio to read.
1364 * @ractl: The current readahead request.
1365 *
1366 * Context: The folio is locked.  The caller should unlock the folio once
1367 * all I/O to that folio has completed.
1368 * Return: A pointer to the next folio, or %NULL if we are done.
1369 */
1370static inline struct folio *readahead_folio(struct readahead_control *ractl)
1371{
1372	struct folio *folio = __readahead_folio(ractl);
1373
1374	if (folio)
1375		folio_put(folio);
1376	return folio;
1377}
1378
1379static inline unsigned int __readahead_batch(struct readahead_control *rac,
1380		struct page **array, unsigned int array_sz)
1381{
1382	unsigned int i = 0;
1383	XA_STATE(xas, &rac->mapping->i_pages, 0);
1384	struct page *page;
1385
1386	BUG_ON(rac->_batch_count > rac->_nr_pages);
1387	rac->_nr_pages -= rac->_batch_count;
1388	rac->_index += rac->_batch_count;
1389	rac->_batch_count = 0;
1390
1391	xas_set(&xas, rac->_index);
1392	rcu_read_lock();
1393	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1394		if (xas_retry(&xas, page))
1395			continue;
1396		VM_BUG_ON_PAGE(!PageLocked(page), page);
1397		VM_BUG_ON_PAGE(PageTail(page), page);
1398		array[i++] = page;
1399		rac->_batch_count += thp_nr_pages(page);
 
 
 
 
 
 
 
 
 
 
1400		if (i == array_sz)
1401			break;
1402	}
1403	rcu_read_unlock();
1404
1405	return i;
1406}
1407
1408/**
1409 * readahead_page_batch - Get a batch of pages to read.
1410 * @rac: The current readahead request.
1411 * @array: An array of pointers to struct page.
1412 *
1413 * Context: The pages are locked and have an elevated refcount.  The caller
1414 * should decreases the refcount once the page has been submitted for I/O
1415 * and unlock the page once all I/O to that page has completed.
1416 * Return: The number of pages placed in the array.  0 indicates the request
1417 * is complete.
1418 */
1419#define readahead_page_batch(rac, array)				\
1420	__readahead_batch(rac, array, ARRAY_SIZE(array))
1421
1422/**
1423 * readahead_pos - The byte offset into the file of this readahead request.
1424 * @rac: The readahead request.
1425 */
1426static inline loff_t readahead_pos(struct readahead_control *rac)
1427{
1428	return (loff_t)rac->_index * PAGE_SIZE;
1429}
1430
1431/**
1432 * readahead_length - The number of bytes in this readahead request.
1433 * @rac: The readahead request.
1434 */
1435static inline size_t readahead_length(struct readahead_control *rac)
1436{
1437	return rac->_nr_pages * PAGE_SIZE;
1438}
1439
1440/**
1441 * readahead_index - The index of the first page in this readahead request.
1442 * @rac: The readahead request.
1443 */
1444static inline pgoff_t readahead_index(struct readahead_control *rac)
1445{
1446	return rac->_index;
1447}
1448
1449/**
1450 * readahead_count - The number of pages in this readahead request.
1451 * @rac: The readahead request.
1452 */
1453static inline unsigned int readahead_count(struct readahead_control *rac)
1454{
1455	return rac->_nr_pages;
1456}
1457
1458/**
1459 * readahead_batch_length - The number of bytes in the current batch.
1460 * @rac: The readahead request.
1461 */
1462static inline size_t readahead_batch_length(struct readahead_control *rac)
1463{
1464	return rac->_batch_count * PAGE_SIZE;
1465}
1466
1467static inline unsigned long dir_pages(struct inode *inode)
1468{
1469	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1470			       PAGE_SHIFT;
1471}
1472
1473/**
1474 * folio_mkwrite_check_truncate - check if folio was truncated
1475 * @folio: the folio to check
1476 * @inode: the inode to check the folio against
1477 *
1478 * Return: the number of bytes in the folio up to EOF,
1479 * or -EFAULT if the folio was truncated.
1480 */
1481static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1482					      struct inode *inode)
1483{
1484	loff_t size = i_size_read(inode);
1485	pgoff_t index = size >> PAGE_SHIFT;
1486	size_t offset = offset_in_folio(folio, size);
1487
1488	if (!folio->mapping)
1489		return -EFAULT;
1490
1491	/* folio is wholly inside EOF */
1492	if (folio_next_index(folio) - 1 < index)
1493		return folio_size(folio);
1494	/* folio is wholly past EOF */
1495	if (folio->index > index || !offset)
1496		return -EFAULT;
1497	/* folio is partially inside EOF */
1498	return offset;
1499}
1500
1501/**
1502 * page_mkwrite_check_truncate - check if page was truncated
1503 * @page: the page to check
1504 * @inode: the inode to check the page against
1505 *
1506 * Returns the number of bytes in the page up to EOF,
1507 * or -EFAULT if the page was truncated.
1508 */
1509static inline int page_mkwrite_check_truncate(struct page *page,
1510					      struct inode *inode)
1511{
1512	loff_t size = i_size_read(inode);
1513	pgoff_t index = size >> PAGE_SHIFT;
1514	int offset = offset_in_page(size);
1515
1516	if (page->mapping != inode->i_mapping)
1517		return -EFAULT;
1518
1519	/* page is wholly inside EOF */
1520	if (page->index < index)
1521		return PAGE_SIZE;
1522	/* page is wholly past EOF */
1523	if (page->index > index || !offset)
1524		return -EFAULT;
1525	/* page is partially inside EOF */
1526	return offset;
1527}
1528
1529/**
1530 * i_blocks_per_folio - How many blocks fit in this folio.
1531 * @inode: The inode which contains the blocks.
1532 * @folio: The folio.
1533 *
1534 * If the block size is larger than the size of this folio, return zero.
1535 *
1536 * Context: The caller should hold a refcount on the folio to prevent it
1537 * from being split.
1538 * Return: The number of filesystem blocks covered by this folio.
1539 */
1540static inline
1541unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1542{
1543	return folio_size(folio) >> inode->i_blkbits;
1544}
1545
1546static inline
1547unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1548{
1549	return i_blocks_per_folio(inode, page_folio(page));
1550}
1551#endif /* _LINUX_PAGEMAP_H */