Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_PAGEMAP_H
  3#define _LINUX_PAGEMAP_H
  4
  5/*
  6 * Copyright 1995 Linus Torvalds
  7 */
  8#include <linux/mm.h>
  9#include <linux/fs.h>
 10#include <linux/list.h>
 11#include <linux/highmem.h>
 12#include <linux/compiler.h>
 13#include <linux/uaccess.h>
 14#include <linux/gfp.h>
 15#include <linux/bitops.h>
 16#include <linux/hardirq.h> /* for in_interrupt() */
 17#include <linux/hugetlb_inline.h>
 18
 19struct pagevec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21/*
 22 * Bits in mapping->flags.
 23 */
 24enum mapping_flags {
 25	AS_EIO		= 0,	/* IO error on async write */
 26	AS_ENOSPC	= 1,	/* ENOSPC on async write */
 27	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
 28	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
 29	AS_EXITING	= 4, 	/* final truncate in progress */
 30	/* writeback related tags are not used */
 31	AS_NO_WRITEBACK_TAGS = 5,
 
 
 
 
 
 
 
 
 32};
 33
 
 
 
 
 
 34/**
 35 * mapping_set_error - record a writeback error in the address_space
 36 * @mapping: the mapping in which an error should be set
 37 * @error: the error to set in the mapping
 38 *
 39 * When writeback fails in some way, we must record that error so that
 40 * userspace can be informed when fsync and the like are called.  We endeavor
 41 * to report errors on any file that was open at the time of the error.  Some
 42 * internal callers also need to know when writeback errors have occurred.
 43 *
 44 * When a writeback error occurs, most filesystems will want to call
 45 * mapping_set_error to record the error in the mapping so that it can be
 46 * reported when the application calls fsync(2).
 47 */
 48static inline void mapping_set_error(struct address_space *mapping, int error)
 49{
 50	if (likely(!error))
 51		return;
 52
 53	/* Record in wb_err for checkers using errseq_t based tracking */
 54	__filemap_set_wb_err(mapping, error);
 55
 56	/* Record it in superblock */
 57	if (mapping->host)
 58		errseq_set(&mapping->host->i_sb->s_wb_err, error);
 59
 60	/* Record it in flags for now, for legacy callers */
 61	if (error == -ENOSPC)
 62		set_bit(AS_ENOSPC, &mapping->flags);
 63	else
 64		set_bit(AS_EIO, &mapping->flags);
 65}
 66
 67static inline void mapping_set_unevictable(struct address_space *mapping)
 68{
 69	set_bit(AS_UNEVICTABLE, &mapping->flags);
 70}
 71
 72static inline void mapping_clear_unevictable(struct address_space *mapping)
 73{
 74	clear_bit(AS_UNEVICTABLE, &mapping->flags);
 75}
 76
 77static inline bool mapping_unevictable(struct address_space *mapping)
 78{
 79	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
 80}
 81
 82static inline void mapping_set_exiting(struct address_space *mapping)
 83{
 84	set_bit(AS_EXITING, &mapping->flags);
 85}
 86
 87static inline int mapping_exiting(struct address_space *mapping)
 88{
 89	return test_bit(AS_EXITING, &mapping->flags);
 90}
 91
 92static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
 93{
 94	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 95}
 96
 97static inline int mapping_use_writeback_tags(struct address_space *mapping)
 98{
 99	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
100}
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
103{
104	return mapping->gfp_mask;
105}
106
107/* Restricts the given gfp_mask to what the mapping allows. */
108static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
109		gfp_t gfp_mask)
110{
111	return mapping_gfp_mask(mapping) & gfp_mask;
112}
113
114/*
115 * This is non-atomic.  Only to be used before the mapping is activated.
116 * Probably needs a barrier...
117 */
118static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
119{
120	m->gfp_mask = mask;
121}
122
123void release_pages(struct page **pages, int nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125/*
126 * speculatively take a reference to a page.
127 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
128 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
129 *
130 * This function must be called inside the same rcu_read_lock() section as has
131 * been used to lookup the page in the pagecache radix-tree (or page table):
132 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
133 *
134 * Unless an RCU grace period has passed, the count of all pages coming out
135 * of the allocator must be considered unstable. page_count may return higher
136 * than expected, and put_page must be able to do the right thing when the
137 * page has been finished with, no matter what it is subsequently allocated
138 * for (because put_page is what is used here to drop an invalid speculative
139 * reference).
140 *
141 * This is the interesting part of the lockless pagecache (and lockless
142 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
143 * has the following pattern:
144 * 1. find page in radix tree
145 * 2. conditionally increment refcount
146 * 3. check the page is still in pagecache (if no, goto 1)
147 *
148 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
149 * following (with the i_pages lock held):
150 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
151 * B. remove page from pagecache
152 * C. free the page
153 *
154 * There are 2 critical interleavings that matter:
155 * - 2 runs before A: in this case, A sees elevated refcount and bails out
156 * - A runs before 2: in this case, 2 sees zero refcount and retries;
157 *   subsequently, B will complete and 1 will find no page, causing the
158 *   lookup to return NULL.
159 *
160 * It is possible that between 1 and 2, the page is removed then the exact same
161 * page is inserted into the same position in pagecache. That's OK: the
162 * old find_get_page using a lock could equally have run before or after
163 * such a re-insertion, depending on order that locks are granted.
164 *
165 * Lookups racing against pagecache insertion isn't a big problem: either 1
166 * will find the page or it will not. Likewise, the old find_get_page could run
167 * either before the insertion or afterwards, depending on timing.
168 */
169static inline int __page_cache_add_speculative(struct page *page, int count)
170{
171#ifdef CONFIG_TINY_RCU
172# ifdef CONFIG_PREEMPT_COUNT
173	VM_BUG_ON(!in_atomic() && !irqs_disabled());
174# endif
175	/*
176	 * Preempt must be disabled here - we rely on rcu_read_lock doing
177	 * this for us.
178	 *
179	 * Pagecache won't be truncated from interrupt context, so if we have
180	 * found a page in the radix tree here, we have pinned its refcount by
181	 * disabling preempt, and hence no need for the "speculative get" that
182	 * SMP requires.
183	 */
184	VM_BUG_ON_PAGE(page_count(page) == 0, page);
185	page_ref_add(page, count);
186
187#else
188	if (unlikely(!page_ref_add_unless(page, count, 0))) {
189		/*
190		 * Either the page has been freed, or will be freed.
191		 * In either case, retry here and the caller should
192		 * do the right thing (see comments above).
193		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194		return 0;
195	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196#endif
197	VM_BUG_ON_PAGE(PageTail(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199	return 1;
200}
201
202static inline int page_cache_get_speculative(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
203{
204	return __page_cache_add_speculative(page, 1);
 
 
 
205}
206
207static inline int page_cache_add_speculative(struct page *page, int count)
208{
209	return __page_cache_add_speculative(page, count);
210}
211
212/**
213 * attach_page_private - Attach private data to a page.
214 * @page: Page to attach data to.
215 * @data: Data to attach to page.
 
 
216 *
217 * Attaching private data to a page increments the page's reference count.
218 * The data must be detached before the page will be freed.
219 */
220static inline void attach_page_private(struct page *page, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221{
222	get_page(page);
223	set_page_private(page, (unsigned long)data);
224	SetPagePrivate(page);
 
225}
226
227/**
228 * detach_page_private - Detach private data from a page.
229 * @page: Page to detach data from.
230 *
231 * Removes the data that was previously attached to the page and decrements
232 * the refcount on the page.
233 *
234 * Return: Data that was attached to the page.
235 */
236static inline void *detach_page_private(struct page *page)
237{
238	void *data = (void *)page_private(page);
239
240	if (!PagePrivate(page))
241		return NULL;
242	ClearPagePrivate(page);
243	set_page_private(page, 0);
244	put_page(page);
245
246	return data;
247}
248
 
 
 
 
 
 
 
 
 
 
249#ifdef CONFIG_NUMA
250extern struct page *__page_cache_alloc(gfp_t gfp);
251#else
252static inline struct page *__page_cache_alloc(gfp_t gfp)
253{
254	return alloc_pages(gfp, 0);
255}
256#endif
257
258static inline struct page *page_cache_alloc(struct address_space *x)
 
 
 
259{
260	return __page_cache_alloc(mapping_gfp_mask(x));
261}
262
263static inline gfp_t readahead_gfp_mask(struct address_space *x)
264{
265	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
266}
267
268typedef int filler_t(void *, struct page *);
269
270pgoff_t page_cache_next_miss(struct address_space *mapping,
271			     pgoff_t index, unsigned long max_scan);
272pgoff_t page_cache_prev_miss(struct address_space *mapping,
273			     pgoff_t index, unsigned long max_scan);
274
275#define FGP_ACCESSED		0x00000001
276#define FGP_LOCK		0x00000002
277#define FGP_CREAT		0x00000004
278#define FGP_WRITE		0x00000008
279#define FGP_NOFS		0x00000010
280#define FGP_NOWAIT		0x00000020
281#define FGP_FOR_MMAP		0x00000040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282
283struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
284		int fgp_flags, gfp_t cache_gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286/**
287 * find_get_page - find and get a page reference
288 * @mapping: the address_space to search
289 * @offset: the page index
290 *
291 * Looks up the page cache slot at @mapping & @offset.  If there is a
292 * page cache page, it is returned with an increased refcount.
293 *
294 * Otherwise, %NULL is returned.
295 */
296static inline struct page *find_get_page(struct address_space *mapping,
297					pgoff_t offset)
298{
299	return pagecache_get_page(mapping, offset, 0, 0);
300}
301
302static inline struct page *find_get_page_flags(struct address_space *mapping,
303					pgoff_t offset, int fgp_flags)
304{
305	return pagecache_get_page(mapping, offset, fgp_flags, 0);
306}
307
308/**
309 * find_lock_page - locate, pin and lock a pagecache page
310 * @mapping: the address_space to search
311 * @offset: the page index
312 *
313 * Looks up the page cache slot at @mapping & @offset.  If there is a
314 * page cache page, it is returned locked and with an increased
315 * refcount.
316 *
317 * Otherwise, %NULL is returned.
318 *
319 * find_lock_page() may sleep.
320 */
321static inline struct page *find_lock_page(struct address_space *mapping,
322					pgoff_t offset)
323{
324	return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
325}
326
327/**
328 * find_or_create_page - locate or add a pagecache page
329 * @mapping: the page's address_space
330 * @index: the page's index into the mapping
331 * @gfp_mask: page allocation mode
332 *
333 * Looks up the page cache slot at @mapping & @offset.  If there is a
334 * page cache page, it is returned locked and with an increased
335 * refcount.
336 *
337 * If the page is not present, a new page is allocated using @gfp_mask
338 * and added to the page cache and the VM's LRU list.  The page is
339 * returned locked and with an increased refcount.
340 *
341 * On memory exhaustion, %NULL is returned.
342 *
343 * find_or_create_page() may sleep, even if @gfp_flags specifies an
344 * atomic allocation!
345 */
346static inline struct page *find_or_create_page(struct address_space *mapping,
347					pgoff_t index, gfp_t gfp_mask)
348{
349	return pagecache_get_page(mapping, index,
350					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
351					gfp_mask);
352}
353
354/**
355 * grab_cache_page_nowait - returns locked page at given index in given cache
356 * @mapping: target address_space
357 * @index: the page index
358 *
359 * Same as grab_cache_page(), but do not wait if the page is unavailable.
360 * This is intended for speculative data generators, where the data can
361 * be regenerated if the page couldn't be grabbed.  This routine should
362 * be safe to call while holding the lock for another page.
363 *
364 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
365 * and deadlock against the caller's locked page.
366 */
367static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
368				pgoff_t index)
369{
370	return pagecache_get_page(mapping, index,
371			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
372			mapping_gfp_mask(mapping));
373}
374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375/*
376 * Given the page we found in the page cache, return the page corresponding
377 * to this index in the file
378 */
379static inline struct page *find_subpage(struct page *head, pgoff_t index)
380{
381	/* HugeTLBfs wants the head page regardless */
382	if (PageHuge(head))
383		return head;
384
385	return head + (index & (thp_nr_pages(head) - 1));
386}
387
388struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
389struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
390unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
391			  unsigned int nr_entries, struct page **entries,
392			  pgoff_t *indices);
393unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
394			pgoff_t end, unsigned int nr_pages,
395			struct page **pages);
396static inline unsigned find_get_pages(struct address_space *mapping,
397			pgoff_t *start, unsigned int nr_pages,
398			struct page **pages)
399{
400	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
401				    pages);
402}
403unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
404			       unsigned int nr_pages, struct page **pages);
405unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
406			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
407			struct page **pages);
408static inline unsigned find_get_pages_tag(struct address_space *mapping,
409			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
410			struct page **pages)
411{
412	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
413					nr_pages, pages);
414}
415
416struct page *grab_cache_page_write_begin(struct address_space *mapping,
417			pgoff_t index, unsigned flags);
418
419/*
420 * Returns locked page at given index in given cache, creating it if needed.
421 */
422static inline struct page *grab_cache_page(struct address_space *mapping,
423								pgoff_t index)
424{
425	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
426}
427
428extern struct page * read_cache_page(struct address_space *mapping,
429				pgoff_t index, filler_t *filler, void *data);
 
 
 
 
430extern struct page * read_cache_page_gfp(struct address_space *mapping,
431				pgoff_t index, gfp_t gfp_mask);
432extern int read_cache_pages(struct address_space *mapping,
433		struct list_head *pages, filler_t *filler, void *data);
434
435static inline struct page *read_mapping_page(struct address_space *mapping,
436				pgoff_t index, void *data)
437{
438	return read_cache_page(mapping, index, NULL, data);
439}
440
441/*
442 * Get index of the page with in radix-tree
443 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
444 */
445static inline pgoff_t page_to_index(struct page *page)
446{
447	pgoff_t pgoff;
448
449	if (likely(!PageTransTail(page)))
450		return page->index;
451
452	/*
453	 *  We don't initialize ->index for tail pages: calculate based on
454	 *  head page
455	 */
456	pgoff = compound_head(page)->index;
457	pgoff += page - compound_head(page);
458	return pgoff;
459}
460
461/*
462 * Get the offset in PAGE_SIZE.
463 * (TODO: hugepage should have ->index in PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
464 */
465static inline pgoff_t page_to_pgoff(struct page *page)
 
466{
467	if (unlikely(PageHeadHuge(page)))
468		return page->index << compound_order(page);
469
470	return page_to_index(page);
471}
472
473/*
474 * Return byte-offset into filesystem object for page.
475 */
476static inline loff_t page_offset(struct page *page)
477{
478	return ((loff_t)page->index) << PAGE_SHIFT;
479}
480
481static inline loff_t page_file_offset(struct page *page)
 
 
 
 
482{
483	return ((loff_t)page_index(page)) << PAGE_SHIFT;
484}
485
486extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
487				     unsigned long address);
 
 
 
 
 
488
489static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
490					unsigned long address)
491{
492	pgoff_t pgoff;
493	if (unlikely(is_vm_hugetlb_page(vma)))
494		return linear_hugepage_index(vma, address);
495	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
496	pgoff += vma->vm_pgoff;
497	return pgoff;
498}
499
500/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
501struct wait_page_key {
502	struct page *page;
503	int bit_nr;
504	int page_match;
505};
506
507struct wait_page_queue {
508	struct page *page;
509	int bit_nr;
510	wait_queue_entry_t wait;
511};
512
513static inline bool wake_page_match(struct wait_page_queue *wait_page,
514				  struct wait_page_key *key)
515{
516	if (wait_page->page != key->page)
517	       return false;
518	key->page_match = 1;
519
520	if (wait_page->bit_nr != key->bit_nr)
521		return false;
522
523	return true;
524}
525
526extern void __lock_page(struct page *page);
527extern int __lock_page_killable(struct page *page);
528extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
529extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
530				unsigned int flags);
531extern void unlock_page(struct page *page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532
533/*
534 * Return true if the page was successfully locked
535 */
536static inline int trylock_page(struct page *page)
537{
538	page = compound_head(page);
539	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
540}
541
542/*
543 * lock_page may only be called if we have the page's inode pinned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544 */
545static inline void lock_page(struct page *page)
546{
547	might_sleep();
548	if (!trylock_page(page))
549		__lock_page(page);
550}
551
552/*
553 * lock_page_killable is like lock_page but can be interrupted by fatal
554 * signals.  It returns 0 if it locked the page and -EINTR if it was
555 * killed while waiting.
 
 
 
 
 
 
556 */
557static inline int lock_page_killable(struct page *page)
558{
 
559	might_sleep();
560	if (!trylock_page(page))
561		return __lock_page_killable(page);
562	return 0;
 
563}
564
565/*
566 * lock_page_async - Lock the page, unless this would block. If the page
567 * is already locked, then queue a callback when the page becomes unlocked.
568 * This callback can then retry the operation.
 
 
569 *
570 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
571 * was already locked and the callback defined in 'wait' was queued.
572 */
573static inline int lock_page_async(struct page *page,
574				  struct wait_page_queue *wait)
575{
576	if (!trylock_page(page))
577		return __lock_page_async(page, wait);
 
578	return 0;
579}
580
581/*
582 * lock_page_or_retry - Lock the page, unless this would block and the
583 * caller indicated that it can handle a retry.
584 *
585 * Return value and mmap_lock implications depend on flags; see
586 * __lock_page_or_retry().
587 */
588static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
589				     unsigned int flags)
590{
591	might_sleep();
592	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
 
 
593}
594
595/*
596 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
597 * and should not be used directly.
598 */
599extern void wait_on_page_bit(struct page *page, int bit_nr);
600extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
601
602/* 
603 * Wait for a page to be unlocked.
604 *
605 * This must be called with the caller "holding" the page,
606 * ie with increased "page->count" so that the page won't
607 * go away during the wait..
608 */
609static inline void wait_on_page_locked(struct page *page)
610{
611	if (PageLocked(page))
612		wait_on_page_bit(compound_head(page), PG_locked);
613}
614
615static inline int wait_on_page_locked_killable(struct page *page)
616{
617	if (!PageLocked(page))
618		return 0;
619	return wait_on_page_bit_killable(compound_head(page), PG_locked);
620}
621
622extern void put_and_wait_on_page_locked(struct page *page);
 
 
 
623
 
624void wait_on_page_writeback(struct page *page);
625extern void end_page_writeback(struct page *page);
 
 
 
626void wait_for_stable_page(struct page *page);
627
628void page_endio(struct page *page, bool is_write, int err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629
630/*
631 * Add an arbitrary waiter to a page's wait queue
632 */
633extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
634
635/*
636 * Fault everything in given userspace address range in.
637 */
638static inline int fault_in_pages_writeable(char __user *uaddr, int size)
639{
640	char __user *end = uaddr + size - 1;
641
642	if (unlikely(size == 0))
643		return 0;
644
645	if (unlikely(uaddr > end))
646		return -EFAULT;
647	/*
648	 * Writing zeroes into userspace here is OK, because we know that if
649	 * the zero gets there, we'll be overwriting it.
650	 */
651	do {
652		if (unlikely(__put_user(0, uaddr) != 0))
653			return -EFAULT;
654		uaddr += PAGE_SIZE;
655	} while (uaddr <= end);
656
657	/* Check whether the range spilled into the next page. */
658	if (((unsigned long)uaddr & PAGE_MASK) ==
659			((unsigned long)end & PAGE_MASK))
660		return __put_user(0, end);
661
662	return 0;
663}
664
665static inline int fault_in_pages_readable(const char __user *uaddr, int size)
666{
667	volatile char c;
668	const char __user *end = uaddr + size - 1;
669
670	if (unlikely(size == 0))
671		return 0;
672
673	if (unlikely(uaddr > end))
674		return -EFAULT;
675
676	do {
677		if (unlikely(__get_user(c, uaddr) != 0))
678			return -EFAULT;
679		uaddr += PAGE_SIZE;
680	} while (uaddr <= end);
681
682	/* Check whether the range spilled into the next page. */
683	if (((unsigned long)uaddr & PAGE_MASK) ==
684			((unsigned long)end & PAGE_MASK)) {
685		return __get_user(c, end);
686	}
687
688	(void)c;
689	return 0;
690}
691
692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693				pgoff_t index, gfp_t gfp_mask);
694int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
695				pgoff_t index, gfp_t gfp_mask);
696extern void delete_from_page_cache(struct page *page);
697extern void __delete_from_page_cache(struct page *page, void *shadow);
698int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
 
 
699void delete_from_page_cache_batch(struct address_space *mapping,
700				  struct pagevec *pvec);
 
 
 
 
 
 
 
701
702#define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
 
703
704void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
705		struct file *, pgoff_t index, unsigned long req_count);
706void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
707		struct file *, struct page *, pgoff_t index,
708		unsigned long req_count);
709void page_cache_readahead_unbounded(struct address_space *, struct file *,
710		pgoff_t index, unsigned long nr_to_read,
711		unsigned long lookahead_count);
712
713/*
714 * Like add_to_page_cache_locked, but used to add newly allocated pages:
715 * the page is new, so we can just run __SetPageLocked() against it.
716 */
717static inline int add_to_page_cache(struct page *page,
718		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
 
 
719{
720	int error;
721
722	__SetPageLocked(page);
723	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
724	if (unlikely(error))
725		__ClearPageLocked(page);
726	return error;
727}
728
729/**
730 * struct readahead_control - Describes a readahead request.
731 *
732 * A readahead request is for consecutive pages.  Filesystems which
733 * implement the ->readahead method should call readahead_page() or
734 * readahead_page_batch() in a loop and attempt to start I/O against
735 * each page in the request.
736 *
737 * Most of the fields in this struct are private and should be accessed
738 * by the functions below.
739 *
740 * @file: The file, used primarily by network filesystems for authentication.
741 *	  May be NULL if invoked internally by the filesystem.
742 * @mapping: Readahead this filesystem object.
 
743 */
744struct readahead_control {
745	struct file *file;
746	struct address_space *mapping;
 
747/* private: use the readahead_* accessors instead */
748	pgoff_t _index;
749	unsigned int _nr_pages;
750	unsigned int _batch_count;
 
 
751};
752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753/**
754 * readahead_page - Get the next page to read.
755 * @rac: The current readahead request.
756 *
757 * Context: The page is locked and has an elevated refcount.  The caller
758 * should decreases the refcount once the page has been submitted for I/O
759 * and unlock the page once all I/O to that page has completed.
760 * Return: A pointer to the next page, or %NULL if we are done.
761 */
762static inline struct page *readahead_page(struct readahead_control *rac)
763{
764	struct page *page;
765
766	BUG_ON(rac->_batch_count > rac->_nr_pages);
767	rac->_nr_pages -= rac->_batch_count;
768	rac->_index += rac->_batch_count;
769
770	if (!rac->_nr_pages) {
771		rac->_batch_count = 0;
772		return NULL;
773	}
774
775	page = xa_load(&rac->mapping->i_pages, rac->_index);
776	VM_BUG_ON_PAGE(!PageLocked(page), page);
777	rac->_batch_count = thp_nr_pages(page);
 
 
 
 
 
 
 
 
778
779	return page;
 
 
780}
781
782static inline unsigned int __readahead_batch(struct readahead_control *rac,
783		struct page **array, unsigned int array_sz)
784{
785	unsigned int i = 0;
786	XA_STATE(xas, &rac->mapping->i_pages, 0);
787	struct page *page;
788
789	BUG_ON(rac->_batch_count > rac->_nr_pages);
790	rac->_nr_pages -= rac->_batch_count;
791	rac->_index += rac->_batch_count;
792	rac->_batch_count = 0;
793
794	xas_set(&xas, rac->_index);
795	rcu_read_lock();
796	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
 
 
797		VM_BUG_ON_PAGE(!PageLocked(page), page);
798		VM_BUG_ON_PAGE(PageTail(page), page);
799		array[i++] = page;
800		rac->_batch_count += thp_nr_pages(page);
801
802		/*
803		 * The page cache isn't using multi-index entries yet,
804		 * so the xas cursor needs to be manually moved to the
805		 * next index.  This can be removed once the page cache
806		 * is converted.
807		 */
808		if (PageHead(page))
809			xas_set(&xas, rac->_index + rac->_batch_count);
810
811		if (i == array_sz)
812			break;
813	}
814	rcu_read_unlock();
815
816	return i;
817}
818
819/**
820 * readahead_page_batch - Get a batch of pages to read.
821 * @rac: The current readahead request.
822 * @array: An array of pointers to struct page.
823 *
824 * Context: The pages are locked and have an elevated refcount.  The caller
825 * should decreases the refcount once the page has been submitted for I/O
826 * and unlock the page once all I/O to that page has completed.
827 * Return: The number of pages placed in the array.  0 indicates the request
828 * is complete.
829 */
830#define readahead_page_batch(rac, array)				\
831	__readahead_batch(rac, array, ARRAY_SIZE(array))
832
833/**
834 * readahead_pos - The byte offset into the file of this readahead request.
835 * @rac: The readahead request.
836 */
837static inline loff_t readahead_pos(struct readahead_control *rac)
838{
839	return (loff_t)rac->_index * PAGE_SIZE;
840}
841
842/**
843 * readahead_length - The number of bytes in this readahead request.
844 * @rac: The readahead request.
845 */
846static inline loff_t readahead_length(struct readahead_control *rac)
847{
848	return (loff_t)rac->_nr_pages * PAGE_SIZE;
849}
850
851/**
852 * readahead_index - The index of the first page in this readahead request.
853 * @rac: The readahead request.
854 */
855static inline pgoff_t readahead_index(struct readahead_control *rac)
856{
857	return rac->_index;
858}
859
860/**
861 * readahead_count - The number of pages in this readahead request.
862 * @rac: The readahead request.
863 */
864static inline unsigned int readahead_count(struct readahead_control *rac)
865{
866	return rac->_nr_pages;
867}
868
 
 
 
 
 
 
 
 
 
869static inline unsigned long dir_pages(struct inode *inode)
870{
871	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
872			       PAGE_SHIFT;
873}
874
875/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876 * page_mkwrite_check_truncate - check if page was truncated
877 * @page: the page to check
878 * @inode: the inode to check the page against
879 *
880 * Returns the number of bytes in the page up to EOF,
881 * or -EFAULT if the page was truncated.
882 */
883static inline int page_mkwrite_check_truncate(struct page *page,
884					      struct inode *inode)
885{
886	loff_t size = i_size_read(inode);
887	pgoff_t index = size >> PAGE_SHIFT;
888	int offset = offset_in_page(size);
889
890	if (page->mapping != inode->i_mapping)
891		return -EFAULT;
892
893	/* page is wholly inside EOF */
894	if (page->index < index)
895		return PAGE_SIZE;
896	/* page is wholly past EOF */
897	if (page->index > index || !offset)
898		return -EFAULT;
899	/* page is partially inside EOF */
900	return offset;
901}
902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903#endif /* _LINUX_PAGEMAP_H */
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PAGEMAP_H
   3#define _LINUX_PAGEMAP_H
   4
   5/*
   6 * Copyright 1995 Linus Torvalds
   7 */
   8#include <linux/mm.h>
   9#include <linux/fs.h>
  10#include <linux/list.h>
  11#include <linux/highmem.h>
  12#include <linux/compiler.h>
  13#include <linux/uaccess.h>
  14#include <linux/gfp.h>
  15#include <linux/bitops.h>
  16#include <linux/hardirq.h> /* for in_interrupt() */
  17#include <linux/hugetlb_inline.h>
  18
  19struct folio_batch;
  20
  21unsigned long invalidate_mapping_pages(struct address_space *mapping,
  22					pgoff_t start, pgoff_t end);
  23
  24static inline void invalidate_remote_inode(struct inode *inode)
  25{
  26	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  27	    S_ISLNK(inode->i_mode))
  28		invalidate_mapping_pages(inode->i_mapping, 0, -1);
  29}
  30int invalidate_inode_pages2(struct address_space *mapping);
  31int invalidate_inode_pages2_range(struct address_space *mapping,
  32		pgoff_t start, pgoff_t end);
  33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
  34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
  35int filemap_invalidate_pages(struct address_space *mapping,
  36			     loff_t pos, loff_t end, bool nowait);
  37
  38int write_inode_now(struct inode *, int sync);
  39int filemap_fdatawrite(struct address_space *);
  40int filemap_flush(struct address_space *);
  41int filemap_fdatawait_keep_errors(struct address_space *mapping);
  42int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
  43int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
  44		loff_t start_byte, loff_t end_byte);
  45int filemap_invalidate_inode(struct inode *inode, bool flush,
  46			     loff_t start, loff_t end);
  47
  48static inline int filemap_fdatawait(struct address_space *mapping)
  49{
  50	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
  51}
  52
  53bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
  54int filemap_write_and_wait_range(struct address_space *mapping,
  55		loff_t lstart, loff_t lend);
  56int __filemap_fdatawrite_range(struct address_space *mapping,
  57		loff_t start, loff_t end, int sync_mode);
  58int filemap_fdatawrite_range(struct address_space *mapping,
  59		loff_t start, loff_t end);
  60int filemap_check_errors(struct address_space *mapping);
  61void __filemap_set_wb_err(struct address_space *mapping, int err);
  62int filemap_fdatawrite_wbc(struct address_space *mapping,
  63			   struct writeback_control *wbc);
  64int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
  65
  66static inline int filemap_write_and_wait(struct address_space *mapping)
  67{
  68	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
  69}
  70
  71/**
  72 * filemap_set_wb_err - set a writeback error on an address_space
  73 * @mapping: mapping in which to set writeback error
  74 * @err: error to be set in mapping
  75 *
  76 * When writeback fails in some way, we must record that error so that
  77 * userspace can be informed when fsync and the like are called.  We endeavor
  78 * to report errors on any file that was open at the time of the error.  Some
  79 * internal callers also need to know when writeback errors have occurred.
  80 *
  81 * When a writeback error occurs, most filesystems will want to call
  82 * filemap_set_wb_err to record the error in the mapping so that it will be
  83 * automatically reported whenever fsync is called on the file.
  84 */
  85static inline void filemap_set_wb_err(struct address_space *mapping, int err)
  86{
  87	/* Fastpath for common case of no error */
  88	if (unlikely(err))
  89		__filemap_set_wb_err(mapping, err);
  90}
  91
  92/**
  93 * filemap_check_wb_err - has an error occurred since the mark was sampled?
  94 * @mapping: mapping to check for writeback errors
  95 * @since: previously-sampled errseq_t
  96 *
  97 * Grab the errseq_t value from the mapping, and see if it has changed "since"
  98 * the given value was sampled.
  99 *
 100 * If it has then report the latest error set, otherwise return 0.
 101 */
 102static inline int filemap_check_wb_err(struct address_space *mapping,
 103					errseq_t since)
 104{
 105	return errseq_check(&mapping->wb_err, since);
 106}
 107
 108/**
 109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
 110 * @mapping: mapping to be sampled
 111 *
 112 * Writeback errors are always reported relative to a particular sample point
 113 * in the past. This function provides those sample points.
 114 */
 115static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
 116{
 117	return errseq_sample(&mapping->wb_err);
 118}
 119
 120/**
 121 * file_sample_sb_err - sample the current errseq_t to test for later errors
 122 * @file: file pointer to be sampled
 123 *
 124 * Grab the most current superblock-level errseq_t value for the given
 125 * struct file.
 126 */
 127static inline errseq_t file_sample_sb_err(struct file *file)
 128{
 129	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
 130}
 131
 132/*
 133 * Flush file data before changing attributes.  Caller must hold any locks
 134 * required to prevent further writes to this file until we're done setting
 135 * flags.
 136 */
 137static inline int inode_drain_writes(struct inode *inode)
 138{
 139	inode_dio_wait(inode);
 140	return filemap_write_and_wait(inode->i_mapping);
 141}
 142
 143static inline bool mapping_empty(struct address_space *mapping)
 144{
 145	return xa_empty(&mapping->i_pages);
 146}
 147
 148/*
 149 * mapping_shrinkable - test if page cache state allows inode reclaim
 150 * @mapping: the page cache mapping
 151 *
 152 * This checks the mapping's cache state for the pupose of inode
 153 * reclaim and LRU management.
 154 *
 155 * The caller is expected to hold the i_lock, but is not required to
 156 * hold the i_pages lock, which usually protects cache state. That's
 157 * because the i_lock and the list_lru lock that protect the inode and
 158 * its LRU state don't nest inside the irq-safe i_pages lock.
 159 *
 160 * Cache deletions are performed under the i_lock, which ensures that
 161 * when an inode goes empty, it will reliably get queued on the LRU.
 162 *
 163 * Cache additions do not acquire the i_lock and may race with this
 164 * check, in which case we'll report the inode as shrinkable when it
 165 * has cache pages. This is okay: the shrinker also checks the
 166 * refcount and the referenced bit, which will be elevated or set in
 167 * the process of adding new cache pages to an inode.
 168 */
 169static inline bool mapping_shrinkable(struct address_space *mapping)
 170{
 171	void *head;
 172
 173	/*
 174	 * On highmem systems, there could be lowmem pressure from the
 175	 * inodes before there is highmem pressure from the page
 176	 * cache. Make inodes shrinkable regardless of cache state.
 177	 */
 178	if (IS_ENABLED(CONFIG_HIGHMEM))
 179		return true;
 180
 181	/* Cache completely empty? Shrink away. */
 182	head = rcu_access_pointer(mapping->i_pages.xa_head);
 183	if (!head)
 184		return true;
 185
 186	/*
 187	 * The xarray stores single offset-0 entries directly in the
 188	 * head pointer, which allows non-resident page cache entries
 189	 * to escape the shadow shrinker's list of xarray nodes. The
 190	 * inode shrinker needs to pick them up under memory pressure.
 191	 */
 192	if (!xa_is_node(head) && xa_is_value(head))
 193		return true;
 194
 195	return false;
 196}
 197
 198/*
 199 * Bits in mapping->flags.
 200 */
 201enum mapping_flags {
 202	AS_EIO		= 0,	/* IO error on async write */
 203	AS_ENOSPC	= 1,	/* ENOSPC on async write */
 204	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
 205	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
 206	AS_EXITING	= 4, 	/* final truncate in progress */
 207	/* writeback related tags are not used */
 208	AS_NO_WRITEBACK_TAGS = 5,
 209	AS_RELEASE_ALWAYS = 6,	/* Call ->release_folio(), even if no private data */
 210	AS_STABLE_WRITES = 7,	/* must wait for writeback before modifying
 211				   folio contents */
 212	AS_INACCESSIBLE = 8,	/* Do not attempt direct R/W access to the mapping */
 213	/* Bits 16-25 are used for FOLIO_ORDER */
 214	AS_FOLIO_ORDER_BITS = 5,
 215	AS_FOLIO_ORDER_MIN = 16,
 216	AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
 217};
 218
 219#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
 220#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
 221#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
 222#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
 223
 224/**
 225 * mapping_set_error - record a writeback error in the address_space
 226 * @mapping: the mapping in which an error should be set
 227 * @error: the error to set in the mapping
 228 *
 229 * When writeback fails in some way, we must record that error so that
 230 * userspace can be informed when fsync and the like are called.  We endeavor
 231 * to report errors on any file that was open at the time of the error.  Some
 232 * internal callers also need to know when writeback errors have occurred.
 233 *
 234 * When a writeback error occurs, most filesystems will want to call
 235 * mapping_set_error to record the error in the mapping so that it can be
 236 * reported when the application calls fsync(2).
 237 */
 238static inline void mapping_set_error(struct address_space *mapping, int error)
 239{
 240	if (likely(!error))
 241		return;
 242
 243	/* Record in wb_err for checkers using errseq_t based tracking */
 244	__filemap_set_wb_err(mapping, error);
 245
 246	/* Record it in superblock */
 247	if (mapping->host)
 248		errseq_set(&mapping->host->i_sb->s_wb_err, error);
 249
 250	/* Record it in flags for now, for legacy callers */
 251	if (error == -ENOSPC)
 252		set_bit(AS_ENOSPC, &mapping->flags);
 253	else
 254		set_bit(AS_EIO, &mapping->flags);
 255}
 256
 257static inline void mapping_set_unevictable(struct address_space *mapping)
 258{
 259	set_bit(AS_UNEVICTABLE, &mapping->flags);
 260}
 261
 262static inline void mapping_clear_unevictable(struct address_space *mapping)
 263{
 264	clear_bit(AS_UNEVICTABLE, &mapping->flags);
 265}
 266
 267static inline bool mapping_unevictable(struct address_space *mapping)
 268{
 269	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
 270}
 271
 272static inline void mapping_set_exiting(struct address_space *mapping)
 273{
 274	set_bit(AS_EXITING, &mapping->flags);
 275}
 276
 277static inline int mapping_exiting(struct address_space *mapping)
 278{
 279	return test_bit(AS_EXITING, &mapping->flags);
 280}
 281
 282static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
 283{
 284	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 285}
 286
 287static inline int mapping_use_writeback_tags(struct address_space *mapping)
 288{
 289	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 290}
 291
 292static inline bool mapping_release_always(const struct address_space *mapping)
 293{
 294	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
 295}
 296
 297static inline void mapping_set_release_always(struct address_space *mapping)
 298{
 299	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
 300}
 301
 302static inline void mapping_clear_release_always(struct address_space *mapping)
 303{
 304	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
 305}
 306
 307static inline bool mapping_stable_writes(const struct address_space *mapping)
 308{
 309	return test_bit(AS_STABLE_WRITES, &mapping->flags);
 310}
 311
 312static inline void mapping_set_stable_writes(struct address_space *mapping)
 313{
 314	set_bit(AS_STABLE_WRITES, &mapping->flags);
 315}
 316
 317static inline void mapping_clear_stable_writes(struct address_space *mapping)
 318{
 319	clear_bit(AS_STABLE_WRITES, &mapping->flags);
 320}
 321
 322static inline void mapping_set_inaccessible(struct address_space *mapping)
 323{
 324	/*
 325	 * It's expected inaccessible mappings are also unevictable. Compaction
 326	 * migrate scanner (isolate_migratepages_block()) relies on this to
 327	 * reduce page locking.
 328	 */
 329	set_bit(AS_UNEVICTABLE, &mapping->flags);
 330	set_bit(AS_INACCESSIBLE, &mapping->flags);
 331}
 332
 333static inline bool mapping_inaccessible(struct address_space *mapping)
 334{
 335	return test_bit(AS_INACCESSIBLE, &mapping->flags);
 336}
 337
 338static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
 339{
 340	return mapping->gfp_mask;
 341}
 342
 343/* Restricts the given gfp_mask to what the mapping allows. */
 344static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
 345		gfp_t gfp_mask)
 346{
 347	return mapping_gfp_mask(mapping) & gfp_mask;
 348}
 349
 350/*
 351 * This is non-atomic.  Only to be used before the mapping is activated.
 352 * Probably needs a barrier...
 353 */
 354static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
 355{
 356	m->gfp_mask = mask;
 357}
 358
 359/*
 360 * There are some parts of the kernel which assume that PMD entries
 361 * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
 362 * limit the maximum allocation order to PMD size.  I'm not aware of any
 363 * assumptions about maximum order if THP are disabled, but 8 seems like
 364 * a good order (that's 1MB if you're using 4kB pages)
 365 */
 366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 367#define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
 368#else
 369#define PREFERRED_MAX_PAGECACHE_ORDER	8
 370#endif
 371
 372/*
 373 * xas_split_alloc() does not support arbitrary orders. This implies no
 374 * 512MB THP on ARM64 with 64KB base page size.
 375 */
 376#define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
 377#define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
 378
 379/*
 380 * mapping_max_folio_size_supported() - Check the max folio size supported
 381 *
 382 * The filesystem should call this function at mount time if there is a
 383 * requirement on the folio mapping size in the page cache.
 384 */
 385static inline size_t mapping_max_folio_size_supported(void)
 386{
 387	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
 388		return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
 389	return PAGE_SIZE;
 390}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392/*
 393 * mapping_set_folio_order_range() - Set the orders supported by a file.
 394 * @mapping: The address space of the file.
 395 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
 396 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
 397 *
 398 * The filesystem should call this function in its inode constructor to
 399 * indicate which base size (min) and maximum size (max) of folio the VFS
 400 * can use to cache the contents of the file.  This should only be used
 401 * if the filesystem needs special handling of folio sizes (ie there is
 402 * something the core cannot know).
 403 * Do not tune it based on, eg, i_size.
 404 *
 405 * Context: This should not be called while the inode is active as it
 406 * is non-atomic.
 407 */
 408static inline void mapping_set_folio_order_range(struct address_space *mapping,
 409						 unsigned int min,
 410						 unsigned int max)
 411{
 412	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
 413		return;
 414
 415	if (min > MAX_PAGECACHE_ORDER)
 416		min = MAX_PAGECACHE_ORDER;
 417
 418	if (max > MAX_PAGECACHE_ORDER)
 419		max = MAX_PAGECACHE_ORDER;
 420
 421	if (max < min)
 422		max = min;
 423
 424	mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
 425		(min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
 426}
 427
 428static inline void mapping_set_folio_min_order(struct address_space *mapping,
 429					       unsigned int min)
 430{
 431	mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
 432}
 433
 434/**
 435 * mapping_set_large_folios() - Indicate the file supports large folios.
 436 * @mapping: The address space of the file.
 437 *
 438 * The filesystem should call this function in its inode constructor to
 439 * indicate that the VFS can use large folios to cache the contents of
 440 * the file.
 441 *
 442 * Context: This should not be called while the inode is active as it
 443 * is non-atomic.
 444 */
 445static inline void mapping_set_large_folios(struct address_space *mapping)
 446{
 447	mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
 448}
 449
 450static inline unsigned int
 451mapping_max_folio_order(const struct address_space *mapping)
 452{
 453	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
 454		return 0;
 455	return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
 456}
 457
 458static inline unsigned int
 459mapping_min_folio_order(const struct address_space *mapping)
 460{
 461	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
 462		return 0;
 463	return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
 464}
 465
 466static inline unsigned long
 467mapping_min_folio_nrpages(struct address_space *mapping)
 468{
 469	return 1UL << mapping_min_folio_order(mapping);
 470}
 471
 472/**
 473 * mapping_align_index() - Align index for this mapping.
 474 * @mapping: The address_space.
 475 * @index: The page index.
 476 *
 477 * The index of a folio must be naturally aligned.  If you are adding a
 478 * new folio to the page cache and need to know what index to give it,
 479 * call this function.
 480 */
 481static inline pgoff_t mapping_align_index(struct address_space *mapping,
 482					  pgoff_t index)
 483{
 484	return round_down(index, mapping_min_folio_nrpages(mapping));
 485}
 486
 487/*
 488 * Large folio support currently depends on THP.  These dependencies are
 489 * being worked on but are not yet fixed.
 490 */
 491static inline bool mapping_large_folio_support(struct address_space *mapping)
 492{
 493	/* AS_FOLIO_ORDER is only reasonable for pagecache folios */
 494	VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
 495			"Anonymous mapping always supports large folio");
 496
 497	return mapping_max_folio_order(mapping) > 0;
 498}
 499
 500/* Return the maximum folio size for this pagecache mapping, in bytes. */
 501static inline size_t mapping_max_folio_size(const struct address_space *mapping)
 502{
 503	return PAGE_SIZE << mapping_max_folio_order(mapping);
 504}
 505
 506static inline int filemap_nr_thps(struct address_space *mapping)
 507{
 508#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 509	return atomic_read(&mapping->nr_thps);
 510#else
 511	return 0;
 512#endif
 513}
 514
 515static inline void filemap_nr_thps_inc(struct address_space *mapping)
 516{
 517#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 518	if (!mapping_large_folio_support(mapping))
 519		atomic_inc(&mapping->nr_thps);
 520#else
 521	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
 522#endif
 523}
 524
 525static inline void filemap_nr_thps_dec(struct address_space *mapping)
 526{
 527#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 528	if (!mapping_large_folio_support(mapping))
 529		atomic_dec(&mapping->nr_thps);
 530#else
 531	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
 532#endif
 533}
 534
 535struct address_space *folio_mapping(struct folio *);
 536struct address_space *swapcache_mapping(struct folio *);
 537
 538/**
 539 * folio_file_mapping - Find the mapping this folio belongs to.
 540 * @folio: The folio.
 541 *
 542 * For folios which are in the page cache, return the mapping that this
 543 * page belongs to.  Folios in the swap cache return the mapping of the
 544 * swap file or swap device where the data is stored.  This is different
 545 * from the mapping returned by folio_mapping().  The only reason to
 546 * use it is if, like NFS, you return 0 from ->activate_swapfile.
 547 *
 548 * Do not call this for folios which aren't in the page cache or swap cache.
 549 */
 550static inline struct address_space *folio_file_mapping(struct folio *folio)
 551{
 552	if (unlikely(folio_test_swapcache(folio)))
 553		return swapcache_mapping(folio);
 554
 555	return folio->mapping;
 556}
 557
 558/**
 559 * folio_flush_mapping - Find the file mapping this folio belongs to.
 560 * @folio: The folio.
 561 *
 562 * For folios which are in the page cache, return the mapping that this
 563 * page belongs to.  Anonymous folios return NULL, even if they're in
 564 * the swap cache.  Other kinds of folio also return NULL.
 565 *
 566 * This is ONLY used by architecture cache flushing code.  If you aren't
 567 * writing cache flushing code, you want either folio_mapping() or
 568 * folio_file_mapping().
 569 */
 570static inline struct address_space *folio_flush_mapping(struct folio *folio)
 571{
 572	if (unlikely(folio_test_swapcache(folio)))
 573		return NULL;
 574
 575	return folio_mapping(folio);
 576}
 577
 578static inline struct address_space *page_file_mapping(struct page *page)
 579{
 580	return folio_file_mapping(page_folio(page));
 581}
 582
 583/**
 584 * folio_inode - Get the host inode for this folio.
 585 * @folio: The folio.
 586 *
 587 * For folios which are in the page cache, return the inode that this folio
 588 * belongs to.
 589 *
 590 * Do not call this for folios which aren't in the page cache.
 
 591 */
 592static inline struct inode *folio_inode(struct folio *folio)
 593{
 594	return folio->mapping->host;
 595}
 596
 597/**
 598 * folio_attach_private - Attach private data to a folio.
 599 * @folio: Folio to attach data to.
 600 * @data: Data to attach to folio.
 601 *
 602 * Attaching private data to a folio increments the page's reference count.
 603 * The data must be detached before the folio will be freed.
 604 */
 605static inline void folio_attach_private(struct folio *folio, void *data)
 606{
 607	folio_get(folio);
 608	folio->private = data;
 609	folio_set_private(folio);
 610}
 611
 612/**
 613 * folio_change_private - Change private data on a folio.
 614 * @folio: Folio to change the data on.
 615 * @data: Data to set on the folio.
 616 *
 617 * Change the private data attached to a folio and return the old
 618 * data.  The page must previously have had data attached and the data
 619 * must be detached before the folio will be freed.
 620 *
 621 * Return: Data that was previously attached to the folio.
 622 */
 623static inline void *folio_change_private(struct folio *folio, void *data)
 624{
 625	void *old = folio_get_private(folio);
 626
 627	folio->private = data;
 628	return old;
 629}
 630
 631/**
 632 * folio_detach_private - Detach private data from a folio.
 633 * @folio: Folio to detach data from.
 634 *
 635 * Removes the data that was previously attached to the folio and decrements
 636 * the refcount on the page.
 637 *
 638 * Return: Data that was attached to the folio.
 639 */
 640static inline void *folio_detach_private(struct folio *folio)
 641{
 642	void *data = folio_get_private(folio);
 643
 644	if (!folio_test_private(folio))
 645		return NULL;
 646	folio_clear_private(folio);
 647	folio->private = NULL;
 648	folio_put(folio);
 649
 650	return data;
 651}
 652
 653static inline void attach_page_private(struct page *page, void *data)
 654{
 655	folio_attach_private(page_folio(page), data);
 656}
 657
 658static inline void *detach_page_private(struct page *page)
 659{
 660	return folio_detach_private(page_folio(page));
 661}
 662
 663#ifdef CONFIG_NUMA
 664struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
 665#else
 666static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
 667{
 668	return folio_alloc_noprof(gfp, order);
 669}
 670#endif
 671
 672#define filemap_alloc_folio(...)				\
 673	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
 674
 675static inline struct page *__page_cache_alloc(gfp_t gfp)
 676{
 677	return &filemap_alloc_folio(gfp, 0)->page;
 678}
 679
 680static inline gfp_t readahead_gfp_mask(struct address_space *x)
 681{
 682	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
 683}
 684
 685typedef int filler_t(struct file *, struct folio *);
 686
 687pgoff_t page_cache_next_miss(struct address_space *mapping,
 688			     pgoff_t index, unsigned long max_scan);
 689pgoff_t page_cache_prev_miss(struct address_space *mapping,
 690			     pgoff_t index, unsigned long max_scan);
 691
 692/**
 693 * typedef fgf_t - Flags for getting folios from the page cache.
 694 *
 695 * Most users of the page cache will not need to use these flags;
 696 * there are convenience functions such as filemap_get_folio() and
 697 * filemap_lock_folio().  For users which need more control over exactly
 698 * what is done with the folios, these flags to __filemap_get_folio()
 699 * are available.
 700 *
 701 * * %FGP_ACCESSED - The folio will be marked accessed.
 702 * * %FGP_LOCK - The folio is returned locked.
 703 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
 704 *   added to the page cache and the VM's LRU list.  The folio is
 705 *   returned locked.
 706 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 707 *   folio is already in cache.  If the folio was allocated, unlock it
 708 *   before returning so the caller can do the same dance.
 709 * * %FGP_WRITE - The folio will be written to by the caller.
 710 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
 711 * * %FGP_NOWAIT - Don't block on the folio lock.
 712 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
 713 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
 714 *   implementation.
 715 */
 716typedef unsigned int __bitwise fgf_t;
 717
 718#define FGP_ACCESSED		((__force fgf_t)0x00000001)
 719#define FGP_LOCK		((__force fgf_t)0x00000002)
 720#define FGP_CREAT		((__force fgf_t)0x00000004)
 721#define FGP_WRITE		((__force fgf_t)0x00000008)
 722#define FGP_NOFS		((__force fgf_t)0x00000010)
 723#define FGP_NOWAIT		((__force fgf_t)0x00000020)
 724#define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
 725#define FGP_STABLE		((__force fgf_t)0x00000080)
 726#define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
 727
 728#define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
 729
 730/**
 731 * fgf_set_order - Encode a length in the fgf_t flags.
 732 * @size: The suggested size of the folio to create.
 733 *
 734 * The caller of __filemap_get_folio() can use this to suggest a preferred
 735 * size for the folio that is created.  If there is already a folio at
 736 * the index, it will be returned, no matter what its size.  If a folio
 737 * is freshly created, it may be of a different size than requested
 738 * due to alignment constraints, memory pressure, or the presence of
 739 * other folios at nearby indices.
 740 */
 741static inline fgf_t fgf_set_order(size_t size)
 742{
 743	unsigned int shift = ilog2(size);
 744
 745	if (shift <= PAGE_SHIFT)
 746		return 0;
 747	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
 748}
 749
 750void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
 751struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
 752		fgf_t fgp_flags, gfp_t gfp);
 753struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
 754		fgf_t fgp_flags, gfp_t gfp);
 755
 756/**
 757 * filemap_get_folio - Find and get a folio.
 758 * @mapping: The address_space to search.
 759 * @index: The page index.
 760 *
 761 * Looks up the page cache entry at @mapping & @index.  If a folio is
 762 * present, it is returned with an increased refcount.
 763 *
 764 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
 765 * this index.  Will not return a shadow, swap or DAX entry.
 766 */
 767static inline struct folio *filemap_get_folio(struct address_space *mapping,
 768					pgoff_t index)
 769{
 770	return __filemap_get_folio(mapping, index, 0, 0);
 771}
 772
 773/**
 774 * filemap_lock_folio - Find and lock a folio.
 775 * @mapping: The address_space to search.
 776 * @index: The page index.
 777 *
 778 * Looks up the page cache entry at @mapping & @index.  If a folio is
 779 * present, it is returned locked with an increased refcount.
 780 *
 781 * Context: May sleep.
 782 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
 783 * this index.  Will not return a shadow, swap or DAX entry.
 784 */
 785static inline struct folio *filemap_lock_folio(struct address_space *mapping,
 786					pgoff_t index)
 787{
 788	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
 789}
 790
 791/**
 792 * filemap_grab_folio - grab a folio from the page cache
 793 * @mapping: The address space to search
 794 * @index: The page index
 795 *
 796 * Looks up the page cache entry at @mapping & @index. If no folio is found,
 797 * a new folio is created. The folio is locked, marked as accessed, and
 798 * returned.
 799 *
 800 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
 801 * and failed to create a folio.
 802 */
 803static inline struct folio *filemap_grab_folio(struct address_space *mapping,
 804					pgoff_t index)
 805{
 806	return __filemap_get_folio(mapping, index,
 807			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
 808			mapping_gfp_mask(mapping));
 809}
 810
 811/**
 812 * find_get_page - find and get a page reference
 813 * @mapping: the address_space to search
 814 * @offset: the page index
 815 *
 816 * Looks up the page cache slot at @mapping & @offset.  If there is a
 817 * page cache page, it is returned with an increased refcount.
 818 *
 819 * Otherwise, %NULL is returned.
 820 */
 821static inline struct page *find_get_page(struct address_space *mapping,
 822					pgoff_t offset)
 823{
 824	return pagecache_get_page(mapping, offset, 0, 0);
 825}
 826
 827static inline struct page *find_get_page_flags(struct address_space *mapping,
 828					pgoff_t offset, fgf_t fgp_flags)
 829{
 830	return pagecache_get_page(mapping, offset, fgp_flags, 0);
 831}
 832
 833/**
 834 * find_lock_page - locate, pin and lock a pagecache page
 835 * @mapping: the address_space to search
 836 * @index: the page index
 837 *
 838 * Looks up the page cache entry at @mapping & @index.  If there is a
 839 * page cache page, it is returned locked and with an increased
 840 * refcount.
 841 *
 842 * Context: May sleep.
 843 * Return: A struct page or %NULL if there is no page in the cache for this
 844 * index.
 845 */
 846static inline struct page *find_lock_page(struct address_space *mapping,
 847					pgoff_t index)
 848{
 849	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
 850}
 851
 852/**
 853 * find_or_create_page - locate or add a pagecache page
 854 * @mapping: the page's address_space
 855 * @index: the page's index into the mapping
 856 * @gfp_mask: page allocation mode
 857 *
 858 * Looks up the page cache slot at @mapping & @offset.  If there is a
 859 * page cache page, it is returned locked and with an increased
 860 * refcount.
 861 *
 862 * If the page is not present, a new page is allocated using @gfp_mask
 863 * and added to the page cache and the VM's LRU list.  The page is
 864 * returned locked and with an increased refcount.
 865 *
 866 * On memory exhaustion, %NULL is returned.
 867 *
 868 * find_or_create_page() may sleep, even if @gfp_flags specifies an
 869 * atomic allocation!
 870 */
 871static inline struct page *find_or_create_page(struct address_space *mapping,
 872					pgoff_t index, gfp_t gfp_mask)
 873{
 874	return pagecache_get_page(mapping, index,
 875					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
 876					gfp_mask);
 877}
 878
 879/**
 880 * grab_cache_page_nowait - returns locked page at given index in given cache
 881 * @mapping: target address_space
 882 * @index: the page index
 883 *
 884 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 885 * This is intended for speculative data generators, where the data can
 886 * be regenerated if the page couldn't be grabbed.  This routine should
 887 * be safe to call while holding the lock for another page.
 888 *
 889 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 890 * and deadlock against the caller's locked page.
 891 */
 892static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
 893				pgoff_t index)
 894{
 895	return pagecache_get_page(mapping, index,
 896			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 897			mapping_gfp_mask(mapping));
 898}
 899
 900extern pgoff_t __folio_swap_cache_index(struct folio *folio);
 901
 902/**
 903 * folio_index - File index of a folio.
 904 * @folio: The folio.
 905 *
 906 * For a folio which is either in the page cache or the swap cache,
 907 * return its index within the address_space it belongs to.  If you know
 908 * the page is definitely in the page cache, you can look at the folio's
 909 * index directly.
 910 *
 911 * Return: The index (offset in units of pages) of a folio in its file.
 912 */
 913static inline pgoff_t folio_index(struct folio *folio)
 914{
 915	if (unlikely(folio_test_swapcache(folio)))
 916		return __folio_swap_cache_index(folio);
 917	return folio->index;
 918}
 919
 920/**
 921 * folio_next_index - Get the index of the next folio.
 922 * @folio: The current folio.
 923 *
 924 * Return: The index of the folio which follows this folio in the file.
 925 */
 926static inline pgoff_t folio_next_index(struct folio *folio)
 927{
 928	return folio->index + folio_nr_pages(folio);
 929}
 930
 931/**
 932 * folio_file_page - The page for a particular index.
 933 * @folio: The folio which contains this index.
 934 * @index: The index we want to look up.
 935 *
 936 * Sometimes after looking up a folio in the page cache, we need to
 937 * obtain the specific page for an index (eg a page fault).
 938 *
 939 * Return: The page containing the file data for this index.
 940 */
 941static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
 942{
 943	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
 944}
 945
 946/**
 947 * folio_contains - Does this folio contain this index?
 948 * @folio: The folio.
 949 * @index: The page index within the file.
 950 *
 951 * Context: The caller should have the page locked in order to prevent
 952 * (eg) shmem from moving the page between the page cache and swap cache
 953 * and changing its index in the middle of the operation.
 954 * Return: true or false.
 955 */
 956static inline bool folio_contains(struct folio *folio, pgoff_t index)
 957{
 958	return index - folio_index(folio) < folio_nr_pages(folio);
 959}
 960
 961/*
 962 * Given the page we found in the page cache, return the page corresponding
 963 * to this index in the file
 964 */
 965static inline struct page *find_subpage(struct page *head, pgoff_t index)
 966{
 967	/* HugeTLBfs wants the head page regardless */
 968	if (PageHuge(head))
 969		return head;
 970
 971	return head + (index & (thp_nr_pages(head) - 1));
 972}
 973
 974unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
 975		pgoff_t end, struct folio_batch *fbatch);
 976unsigned filemap_get_folios_contig(struct address_space *mapping,
 977		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
 978unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
 979		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981struct page *grab_cache_page_write_begin(struct address_space *mapping,
 982			pgoff_t index);
 983
 984/*
 985 * Returns locked page at given index in given cache, creating it if needed.
 986 */
 987static inline struct page *grab_cache_page(struct address_space *mapping,
 988								pgoff_t index)
 989{
 990	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
 991}
 992
 993struct folio *read_cache_folio(struct address_space *, pgoff_t index,
 994		filler_t *filler, struct file *file);
 995struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
 996		gfp_t flags);
 997struct page *read_cache_page(struct address_space *, pgoff_t index,
 998		filler_t *filler, struct file *file);
 999extern struct page * read_cache_page_gfp(struct address_space *mapping,
1000				pgoff_t index, gfp_t gfp_mask);
 
 
1001
1002static inline struct page *read_mapping_page(struct address_space *mapping,
1003				pgoff_t index, struct file *file)
1004{
1005	return read_cache_page(mapping, index, NULL, file);
1006}
1007
1008static inline struct folio *read_mapping_folio(struct address_space *mapping,
1009				pgoff_t index, struct file *file)
 
 
 
1010{
1011	return read_cache_folio(mapping, index, NULL, file);
 
 
 
 
 
 
 
 
 
 
 
1012}
1013
1014/**
1015 * page_pgoff - Calculate the logical page offset of this page.
1016 * @folio: The folio containing this page.
1017 * @page: The page which we need the offset of.
1018 *
1019 * For file pages, this is the offset from the beginning of the file
1020 * in units of PAGE_SIZE.  For anonymous pages, this is the offset from
1021 * the beginning of the anon_vma in units of PAGE_SIZE.  This will
1022 * return nonsense for KSM pages.
1023 *
1024 * Context: Caller must have a reference on the folio or otherwise
1025 * prevent it from being split or freed.
1026 *
1027 * Return: The offset in units of PAGE_SIZE.
1028 */
1029static inline pgoff_t page_pgoff(const struct folio *folio,
1030		const struct page *page)
1031{
1032	return folio->index + folio_page_idx(folio, page);
 
 
 
1033}
1034
1035/*
1036 * Return byte-offset into filesystem object for page.
1037 */
1038static inline loff_t page_offset(struct page *page)
1039{
1040	return ((loff_t)page->index) << PAGE_SHIFT;
1041}
1042
1043/**
1044 * folio_pos - Returns the byte position of this folio in its file.
1045 * @folio: The folio.
1046 */
1047static inline loff_t folio_pos(struct folio *folio)
1048{
1049	return page_offset(&folio->page);
1050}
1051
1052/*
1053 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1054 */
1055static inline pgoff_t folio_pgoff(struct folio *folio)
1056{
1057	return folio->index;
1058}
1059
1060static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1061					unsigned long address)
1062{
1063	pgoff_t pgoff;
 
 
1064	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1065	pgoff += vma->vm_pgoff;
1066	return pgoff;
1067}
1068
 
1069struct wait_page_key {
1070	struct folio *folio;
1071	int bit_nr;
1072	int page_match;
1073};
1074
1075struct wait_page_queue {
1076	struct folio *folio;
1077	int bit_nr;
1078	wait_queue_entry_t wait;
1079};
1080
1081static inline bool wake_page_match(struct wait_page_queue *wait_page,
1082				  struct wait_page_key *key)
1083{
1084	if (wait_page->folio != key->folio)
1085	       return false;
1086	key->page_match = 1;
1087
1088	if (wait_page->bit_nr != key->bit_nr)
1089		return false;
1090
1091	return true;
1092}
1093
1094void __folio_lock(struct folio *folio);
1095int __folio_lock_killable(struct folio *folio);
1096vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1097void unlock_page(struct page *page);
1098void folio_unlock(struct folio *folio);
1099
1100/**
1101 * folio_trylock() - Attempt to lock a folio.
1102 * @folio: The folio to attempt to lock.
1103 *
1104 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1105 * when the locks are being taken in the wrong order, or if making
1106 * progress through a batch of folios is more important than processing
1107 * them in order).  Usually folio_lock() is the correct function to call.
1108 *
1109 * Context: Any context.
1110 * Return: Whether the lock was successfully acquired.
1111 */
1112static inline bool folio_trylock(struct folio *folio)
1113{
1114	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1115}
1116
1117/*
1118 * Return true if the page was successfully locked
1119 */
1120static inline bool trylock_page(struct page *page)
1121{
1122	return folio_trylock(page_folio(page));
 
1123}
1124
1125/**
1126 * folio_lock() - Lock this folio.
1127 * @folio: The folio to lock.
1128 *
1129 * The folio lock protects against many things, probably more than it
1130 * should.  It is primarily held while a folio is being brought uptodate,
1131 * either from its backing file or from swap.  It is also held while a
1132 * folio is being truncated from its address_space, so holding the lock
1133 * is sufficient to keep folio->mapping stable.
1134 *
1135 * The folio lock is also held while write() is modifying the page to
1136 * provide POSIX atomicity guarantees (as long as the write does not
1137 * cross a page boundary).  Other modifications to the data in the folio
1138 * do not hold the folio lock and can race with writes, eg DMA and stores
1139 * to mapped pages.
1140 *
1141 * Context: May sleep.  If you need to acquire the locks of two or
1142 * more folios, they must be in order of ascending index, if they are
1143 * in the same address_space.  If they are in different address_spaces,
1144 * acquire the lock of the folio which belongs to the address_space which
1145 * has the lowest address in memory first.
1146 */
1147static inline void folio_lock(struct folio *folio)
1148{
1149	might_sleep();
1150	if (!folio_trylock(folio))
1151		__folio_lock(folio);
1152}
1153
1154/**
1155 * lock_page() - Lock the folio containing this page.
1156 * @page: The page to lock.
1157 *
1158 * See folio_lock() for a description of what the lock protects.
1159 * This is a legacy function and new code should probably use folio_lock()
1160 * instead.
1161 *
1162 * Context: May sleep.  Pages in the same folio share a lock, so do not
1163 * attempt to lock two pages which share a folio.
1164 */
1165static inline void lock_page(struct page *page)
1166{
1167	struct folio *folio;
1168	might_sleep();
1169
1170	folio = page_folio(page);
1171	if (!folio_trylock(folio))
1172		__folio_lock(folio);
1173}
1174
1175/**
1176 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1177 * @folio: The folio to lock.
1178 *
1179 * Attempts to lock the folio, like folio_lock(), except that the sleep
1180 * to acquire the lock is interruptible by a fatal signal.
1181 *
1182 * Context: May sleep; see folio_lock().
1183 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1184 */
1185static inline int folio_lock_killable(struct folio *folio)
 
1186{
1187	might_sleep();
1188	if (!folio_trylock(folio))
1189		return __folio_lock_killable(folio);
1190	return 0;
1191}
1192
1193/*
1194 * folio_lock_or_retry - Lock the folio, unless this would block and the
1195 * caller indicated that it can handle a retry.
1196 *
1197 * Return value and mmap_lock implications depend on flags; see
1198 * __folio_lock_or_retry().
1199 */
1200static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1201					     struct vm_fault *vmf)
1202{
1203	might_sleep();
1204	if (!folio_trylock(folio))
1205		return __folio_lock_or_retry(folio, vmf);
1206	return 0;
1207}
1208
1209/*
1210 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1211 * and should not be used directly.
1212 */
1213void folio_wait_bit(struct folio *folio, int bit_nr);
1214int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1215
1216/* 
1217 * Wait for a folio to be unlocked.
1218 *
1219 * This must be called with the caller "holding" the folio,
1220 * ie with increased folio reference count so that the folio won't
1221 * go away during the wait.
1222 */
1223static inline void folio_wait_locked(struct folio *folio)
1224{
1225	if (folio_test_locked(folio))
1226		folio_wait_bit(folio, PG_locked);
1227}
1228
1229static inline int folio_wait_locked_killable(struct folio *folio)
1230{
1231	if (!folio_test_locked(folio))
1232		return 0;
1233	return folio_wait_bit_killable(folio, PG_locked);
1234}
1235
1236static inline void wait_on_page_locked(struct page *page)
1237{
1238	folio_wait_locked(page_folio(page));
1239}
1240
1241void folio_end_read(struct folio *folio, bool success);
1242void wait_on_page_writeback(struct page *page);
1243void folio_wait_writeback(struct folio *folio);
1244int folio_wait_writeback_killable(struct folio *folio);
1245void end_page_writeback(struct page *page);
1246void folio_end_writeback(struct folio *folio);
1247void wait_for_stable_page(struct page *page);
1248void folio_wait_stable(struct folio *folio);
1249void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1250void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1251void __folio_cancel_dirty(struct folio *folio);
1252static inline void folio_cancel_dirty(struct folio *folio)
1253{
1254	/* Avoid atomic ops, locking, etc. when not actually needed. */
1255	if (folio_test_dirty(folio))
1256		__folio_cancel_dirty(folio);
1257}
1258bool folio_clear_dirty_for_io(struct folio *folio);
1259bool clear_page_dirty_for_io(struct page *page);
1260void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1261bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1262
1263#ifdef CONFIG_MIGRATION
1264int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1265		struct folio *src, enum migrate_mode mode);
1266#else
1267#define filemap_migrate_folio NULL
1268#endif
1269void folio_end_private_2(struct folio *folio);
1270void folio_wait_private_2(struct folio *folio);
1271int folio_wait_private_2_killable(struct folio *folio);
1272
1273/*
1274 * Add an arbitrary waiter to a page's wait queue
1275 */
1276void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1277
1278/*
1279 * Fault in userspace address range.
1280 */
1281size_t fault_in_writeable(char __user *uaddr, size_t size);
1282size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1283size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1284size_t fault_in_readable(const char __user *uaddr, size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285
 
 
1286int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1287		pgoff_t index, gfp_t gfp);
1288int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1289		pgoff_t index, gfp_t gfp);
1290void filemap_remove_folio(struct folio *folio);
1291void __filemap_remove_folio(struct folio *folio, void *shadow);
1292void replace_page_cache_folio(struct folio *old, struct folio *new);
1293void delete_from_page_cache_batch(struct address_space *mapping,
1294				  struct folio_batch *fbatch);
1295bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1296loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1297		int whence);
1298
1299/* Must be non-static for BPF error injection */
1300int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1301		pgoff_t index, gfp_t gfp, void **shadowp);
1302
1303bool filemap_range_has_writeback(struct address_space *mapping,
1304				 loff_t start_byte, loff_t end_byte);
1305
1306/**
1307 * filemap_range_needs_writeback - check if range potentially needs writeback
1308 * @mapping:           address space within which to check
1309 * @start_byte:        offset in bytes where the range starts
1310 * @end_byte:          offset in bytes where the range ends (inclusive)
1311 *
1312 * Find at least one page in the range supplied, usually used to check if
1313 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1314 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1315 * filemap_write_and_wait_range() before proceeding.
1316 *
1317 * Return: %true if the caller should do filemap_write_and_wait_range() before
1318 * doing O_DIRECT to a page in this range, %false otherwise.
1319 */
1320static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1321						 loff_t start_byte,
1322						 loff_t end_byte)
1323{
1324	if (!mapping->nrpages)
1325		return false;
1326	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1327	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1328		return false;
1329	return filemap_range_has_writeback(mapping, start_byte, end_byte);
 
1330}
1331
1332/**
1333 * struct readahead_control - Describes a readahead request.
1334 *
1335 * A readahead request is for consecutive pages.  Filesystems which
1336 * implement the ->readahead method should call readahead_page() or
1337 * readahead_page_batch() in a loop and attempt to start I/O against
1338 * each page in the request.
1339 *
1340 * Most of the fields in this struct are private and should be accessed
1341 * by the functions below.
1342 *
1343 * @file: The file, used primarily by network filesystems for authentication.
1344 *	  May be NULL if invoked internally by the filesystem.
1345 * @mapping: Readahead this filesystem object.
1346 * @ra: File readahead state.  May be NULL.
1347 */
1348struct readahead_control {
1349	struct file *file;
1350	struct address_space *mapping;
1351	struct file_ra_state *ra;
1352/* private: use the readahead_* accessors instead */
1353	pgoff_t _index;
1354	unsigned int _nr_pages;
1355	unsigned int _batch_count;
1356	bool _workingset;
1357	unsigned long _pflags;
1358};
1359
1360#define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1361	struct readahead_control ractl = {				\
1362		.file = f,						\
1363		.mapping = m,						\
1364		.ra = r,						\
1365		._index = i,						\
1366	}
1367
1368#define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1369
1370void page_cache_ra_unbounded(struct readahead_control *,
1371		unsigned long nr_to_read, unsigned long lookahead_count);
1372void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1373void page_cache_async_ra(struct readahead_control *, struct folio *,
1374		unsigned long req_count);
1375void readahead_expand(struct readahead_control *ractl,
1376		      loff_t new_start, size_t new_len);
1377
1378/**
1379 * page_cache_sync_readahead - generic file readahead
1380 * @mapping: address_space which holds the pagecache and I/O vectors
1381 * @ra: file_ra_state which holds the readahead state
1382 * @file: Used by the filesystem for authentication.
1383 * @index: Index of first page to be read.
1384 * @req_count: Total number of pages being read by the caller.
1385 *
1386 * page_cache_sync_readahead() should be called when a cache miss happened:
1387 * it will submit the read.  The readahead logic may decide to piggyback more
1388 * pages onto the read request if access patterns suggest it will improve
1389 * performance.
1390 */
1391static inline
1392void page_cache_sync_readahead(struct address_space *mapping,
1393		struct file_ra_state *ra, struct file *file, pgoff_t index,
1394		unsigned long req_count)
1395{
1396	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1397	page_cache_sync_ra(&ractl, req_count);
1398}
1399
1400/**
1401 * page_cache_async_readahead - file readahead for marked pages
1402 * @mapping: address_space which holds the pagecache and I/O vectors
1403 * @ra: file_ra_state which holds the readahead state
1404 * @file: Used by the filesystem for authentication.
1405 * @folio: The folio which triggered the readahead call.
1406 * @req_count: Total number of pages being read by the caller.
1407 *
1408 * page_cache_async_readahead() should be called when a page is used which
1409 * is marked as PageReadahead; this is a marker to suggest that the application
1410 * has used up enough of the readahead window that we should start pulling in
1411 * more pages.
1412 */
1413static inline
1414void page_cache_async_readahead(struct address_space *mapping,
1415		struct file_ra_state *ra, struct file *file,
1416		struct folio *folio, unsigned long req_count)
1417{
1418	DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1419	page_cache_async_ra(&ractl, folio, req_count);
1420}
1421
1422static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1423{
1424	struct folio *folio;
1425
1426	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1427	ractl->_nr_pages -= ractl->_batch_count;
1428	ractl->_index += ractl->_batch_count;
1429
1430	if (!ractl->_nr_pages) {
1431		ractl->_batch_count = 0;
1432		return NULL;
1433	}
1434
1435	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1436	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1437	ractl->_batch_count = folio_nr_pages(folio);
1438
1439	return folio;
1440}
1441
1442/**
1443 * readahead_page - Get the next page to read.
1444 * @ractl: The current readahead request.
1445 *
1446 * Context: The page is locked and has an elevated refcount.  The caller
1447 * should decreases the refcount once the page has been submitted for I/O
1448 * and unlock the page once all I/O to that page has completed.
1449 * Return: A pointer to the next page, or %NULL if we are done.
1450 */
1451static inline struct page *readahead_page(struct readahead_control *ractl)
1452{
1453	struct folio *folio = __readahead_folio(ractl);
1454
1455	return &folio->page;
1456}
 
 
 
 
 
 
1457
1458/**
1459 * readahead_folio - Get the next folio to read.
1460 * @ractl: The current readahead request.
1461 *
1462 * Context: The folio is locked.  The caller should unlock the folio once
1463 * all I/O to that folio has completed.
1464 * Return: A pointer to the next folio, or %NULL if we are done.
1465 */
1466static inline struct folio *readahead_folio(struct readahead_control *ractl)
1467{
1468	struct folio *folio = __readahead_folio(ractl);
1469
1470	if (folio)
1471		folio_put(folio);
1472	return folio;
1473}
1474
1475static inline unsigned int __readahead_batch(struct readahead_control *rac,
1476		struct page **array, unsigned int array_sz)
1477{
1478	unsigned int i = 0;
1479	XA_STATE(xas, &rac->mapping->i_pages, 0);
1480	struct page *page;
1481
1482	BUG_ON(rac->_batch_count > rac->_nr_pages);
1483	rac->_nr_pages -= rac->_batch_count;
1484	rac->_index += rac->_batch_count;
1485	rac->_batch_count = 0;
1486
1487	xas_set(&xas, rac->_index);
1488	rcu_read_lock();
1489	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1490		if (xas_retry(&xas, page))
1491			continue;
1492		VM_BUG_ON_PAGE(!PageLocked(page), page);
1493		VM_BUG_ON_PAGE(PageTail(page), page);
1494		array[i++] = page;
1495		rac->_batch_count += thp_nr_pages(page);
 
 
 
 
 
 
 
 
 
 
1496		if (i == array_sz)
1497			break;
1498	}
1499	rcu_read_unlock();
1500
1501	return i;
1502}
1503
1504/**
1505 * readahead_page_batch - Get a batch of pages to read.
1506 * @rac: The current readahead request.
1507 * @array: An array of pointers to struct page.
1508 *
1509 * Context: The pages are locked and have an elevated refcount.  The caller
1510 * should decreases the refcount once the page has been submitted for I/O
1511 * and unlock the page once all I/O to that page has completed.
1512 * Return: The number of pages placed in the array.  0 indicates the request
1513 * is complete.
1514 */
1515#define readahead_page_batch(rac, array)				\
1516	__readahead_batch(rac, array, ARRAY_SIZE(array))
1517
1518/**
1519 * readahead_pos - The byte offset into the file of this readahead request.
1520 * @rac: The readahead request.
1521 */
1522static inline loff_t readahead_pos(struct readahead_control *rac)
1523{
1524	return (loff_t)rac->_index * PAGE_SIZE;
1525}
1526
1527/**
1528 * readahead_length - The number of bytes in this readahead request.
1529 * @rac: The readahead request.
1530 */
1531static inline size_t readahead_length(struct readahead_control *rac)
1532{
1533	return rac->_nr_pages * PAGE_SIZE;
1534}
1535
1536/**
1537 * readahead_index - The index of the first page in this readahead request.
1538 * @rac: The readahead request.
1539 */
1540static inline pgoff_t readahead_index(struct readahead_control *rac)
1541{
1542	return rac->_index;
1543}
1544
1545/**
1546 * readahead_count - The number of pages in this readahead request.
1547 * @rac: The readahead request.
1548 */
1549static inline unsigned int readahead_count(struct readahead_control *rac)
1550{
1551	return rac->_nr_pages;
1552}
1553
1554/**
1555 * readahead_batch_length - The number of bytes in the current batch.
1556 * @rac: The readahead request.
1557 */
1558static inline size_t readahead_batch_length(struct readahead_control *rac)
1559{
1560	return rac->_batch_count * PAGE_SIZE;
1561}
1562
1563static inline unsigned long dir_pages(struct inode *inode)
1564{
1565	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1566			       PAGE_SHIFT;
1567}
1568
1569/**
1570 * folio_mkwrite_check_truncate - check if folio was truncated
1571 * @folio: the folio to check
1572 * @inode: the inode to check the folio against
1573 *
1574 * Return: the number of bytes in the folio up to EOF,
1575 * or -EFAULT if the folio was truncated.
1576 */
1577static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1578					      struct inode *inode)
1579{
1580	loff_t size = i_size_read(inode);
1581	pgoff_t index = size >> PAGE_SHIFT;
1582	size_t offset = offset_in_folio(folio, size);
1583
1584	if (!folio->mapping)
1585		return -EFAULT;
1586
1587	/* folio is wholly inside EOF */
1588	if (folio_next_index(folio) - 1 < index)
1589		return folio_size(folio);
1590	/* folio is wholly past EOF */
1591	if (folio->index > index || !offset)
1592		return -EFAULT;
1593	/* folio is partially inside EOF */
1594	return offset;
1595}
1596
1597/**
1598 * page_mkwrite_check_truncate - check if page was truncated
1599 * @page: the page to check
1600 * @inode: the inode to check the page against
1601 *
1602 * Returns the number of bytes in the page up to EOF,
1603 * or -EFAULT if the page was truncated.
1604 */
1605static inline int page_mkwrite_check_truncate(struct page *page,
1606					      struct inode *inode)
1607{
1608	loff_t size = i_size_read(inode);
1609	pgoff_t index = size >> PAGE_SHIFT;
1610	int offset = offset_in_page(size);
1611
1612	if (page->mapping != inode->i_mapping)
1613		return -EFAULT;
1614
1615	/* page is wholly inside EOF */
1616	if (page->index < index)
1617		return PAGE_SIZE;
1618	/* page is wholly past EOF */
1619	if (page->index > index || !offset)
1620		return -EFAULT;
1621	/* page is partially inside EOF */
1622	return offset;
1623}
1624
1625/**
1626 * i_blocks_per_folio - How many blocks fit in this folio.
1627 * @inode: The inode which contains the blocks.
1628 * @folio: The folio.
1629 *
1630 * If the block size is larger than the size of this folio, return zero.
1631 *
1632 * Context: The caller should hold a refcount on the folio to prevent it
1633 * from being split.
1634 * Return: The number of filesystem blocks covered by this folio.
1635 */
1636static inline
1637unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1638{
1639	return folio_size(folio) >> inode->i_blkbits;
1640}
1641#endif /* _LINUX_PAGEMAP_H */