Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct pagevec;
20
21/*
22 * Bits in mapping->flags.
23 */
24enum mapping_flags {
25 AS_EIO = 0, /* IO error on async write */
26 AS_ENOSPC = 1, /* ENOSPC on async write */
27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
29 AS_EXITING = 4, /* final truncate in progress */
30 /* writeback related tags are not used */
31 AS_NO_WRITEBACK_TAGS = 5,
32};
33
34/**
35 * mapping_set_error - record a writeback error in the address_space
36 * @mapping: the mapping in which an error should be set
37 * @error: the error to set in the mapping
38 *
39 * When writeback fails in some way, we must record that error so that
40 * userspace can be informed when fsync and the like are called. We endeavor
41 * to report errors on any file that was open at the time of the error. Some
42 * internal callers also need to know when writeback errors have occurred.
43 *
44 * When a writeback error occurs, most filesystems will want to call
45 * mapping_set_error to record the error in the mapping so that it can be
46 * reported when the application calls fsync(2).
47 */
48static inline void mapping_set_error(struct address_space *mapping, int error)
49{
50 if (likely(!error))
51 return;
52
53 /* Record in wb_err for checkers using errseq_t based tracking */
54 __filemap_set_wb_err(mapping, error);
55
56 /* Record it in superblock */
57 if (mapping->host)
58 errseq_set(&mapping->host->i_sb->s_wb_err, error);
59
60 /* Record it in flags for now, for legacy callers */
61 if (error == -ENOSPC)
62 set_bit(AS_ENOSPC, &mapping->flags);
63 else
64 set_bit(AS_EIO, &mapping->flags);
65}
66
67static inline void mapping_set_unevictable(struct address_space *mapping)
68{
69 set_bit(AS_UNEVICTABLE, &mapping->flags);
70}
71
72static inline void mapping_clear_unevictable(struct address_space *mapping)
73{
74 clear_bit(AS_UNEVICTABLE, &mapping->flags);
75}
76
77static inline bool mapping_unevictable(struct address_space *mapping)
78{
79 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
80}
81
82static inline void mapping_set_exiting(struct address_space *mapping)
83{
84 set_bit(AS_EXITING, &mapping->flags);
85}
86
87static inline int mapping_exiting(struct address_space *mapping)
88{
89 return test_bit(AS_EXITING, &mapping->flags);
90}
91
92static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
93{
94 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
95}
96
97static inline int mapping_use_writeback_tags(struct address_space *mapping)
98{
99 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
100}
101
102static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
103{
104 return mapping->gfp_mask;
105}
106
107/* Restricts the given gfp_mask to what the mapping allows. */
108static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
109 gfp_t gfp_mask)
110{
111 return mapping_gfp_mask(mapping) & gfp_mask;
112}
113
114/*
115 * This is non-atomic. Only to be used before the mapping is activated.
116 * Probably needs a barrier...
117 */
118static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
119{
120 m->gfp_mask = mask;
121}
122
123void release_pages(struct page **pages, int nr);
124
125/*
126 * speculatively take a reference to a page.
127 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
128 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
129 *
130 * This function must be called inside the same rcu_read_lock() section as has
131 * been used to lookup the page in the pagecache radix-tree (or page table):
132 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
133 *
134 * Unless an RCU grace period has passed, the count of all pages coming out
135 * of the allocator must be considered unstable. page_count may return higher
136 * than expected, and put_page must be able to do the right thing when the
137 * page has been finished with, no matter what it is subsequently allocated
138 * for (because put_page is what is used here to drop an invalid speculative
139 * reference).
140 *
141 * This is the interesting part of the lockless pagecache (and lockless
142 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
143 * has the following pattern:
144 * 1. find page in radix tree
145 * 2. conditionally increment refcount
146 * 3. check the page is still in pagecache (if no, goto 1)
147 *
148 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
149 * following (with the i_pages lock held):
150 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
151 * B. remove page from pagecache
152 * C. free the page
153 *
154 * There are 2 critical interleavings that matter:
155 * - 2 runs before A: in this case, A sees elevated refcount and bails out
156 * - A runs before 2: in this case, 2 sees zero refcount and retries;
157 * subsequently, B will complete and 1 will find no page, causing the
158 * lookup to return NULL.
159 *
160 * It is possible that between 1 and 2, the page is removed then the exact same
161 * page is inserted into the same position in pagecache. That's OK: the
162 * old find_get_page using a lock could equally have run before or after
163 * such a re-insertion, depending on order that locks are granted.
164 *
165 * Lookups racing against pagecache insertion isn't a big problem: either 1
166 * will find the page or it will not. Likewise, the old find_get_page could run
167 * either before the insertion or afterwards, depending on timing.
168 */
169static inline int __page_cache_add_speculative(struct page *page, int count)
170{
171#ifdef CONFIG_TINY_RCU
172# ifdef CONFIG_PREEMPT_COUNT
173 VM_BUG_ON(!in_atomic() && !irqs_disabled());
174# endif
175 /*
176 * Preempt must be disabled here - we rely on rcu_read_lock doing
177 * this for us.
178 *
179 * Pagecache won't be truncated from interrupt context, so if we have
180 * found a page in the radix tree here, we have pinned its refcount by
181 * disabling preempt, and hence no need for the "speculative get" that
182 * SMP requires.
183 */
184 VM_BUG_ON_PAGE(page_count(page) == 0, page);
185 page_ref_add(page, count);
186
187#else
188 if (unlikely(!page_ref_add_unless(page, count, 0))) {
189 /*
190 * Either the page has been freed, or will be freed.
191 * In either case, retry here and the caller should
192 * do the right thing (see comments above).
193 */
194 return 0;
195 }
196#endif
197 VM_BUG_ON_PAGE(PageTail(page), page);
198
199 return 1;
200}
201
202static inline int page_cache_get_speculative(struct page *page)
203{
204 return __page_cache_add_speculative(page, 1);
205}
206
207static inline int page_cache_add_speculative(struct page *page, int count)
208{
209 return __page_cache_add_speculative(page, count);
210}
211
212/**
213 * attach_page_private - Attach private data to a page.
214 * @page: Page to attach data to.
215 * @data: Data to attach to page.
216 *
217 * Attaching private data to a page increments the page's reference count.
218 * The data must be detached before the page will be freed.
219 */
220static inline void attach_page_private(struct page *page, void *data)
221{
222 get_page(page);
223 set_page_private(page, (unsigned long)data);
224 SetPagePrivate(page);
225}
226
227/**
228 * detach_page_private - Detach private data from a page.
229 * @page: Page to detach data from.
230 *
231 * Removes the data that was previously attached to the page and decrements
232 * the refcount on the page.
233 *
234 * Return: Data that was attached to the page.
235 */
236static inline void *detach_page_private(struct page *page)
237{
238 void *data = (void *)page_private(page);
239
240 if (!PagePrivate(page))
241 return NULL;
242 ClearPagePrivate(page);
243 set_page_private(page, 0);
244 put_page(page);
245
246 return data;
247}
248
249#ifdef CONFIG_NUMA
250extern struct page *__page_cache_alloc(gfp_t gfp);
251#else
252static inline struct page *__page_cache_alloc(gfp_t gfp)
253{
254 return alloc_pages(gfp, 0);
255}
256#endif
257
258static inline struct page *page_cache_alloc(struct address_space *x)
259{
260 return __page_cache_alloc(mapping_gfp_mask(x));
261}
262
263static inline gfp_t readahead_gfp_mask(struct address_space *x)
264{
265 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
266}
267
268typedef int filler_t(void *, struct page *);
269
270pgoff_t page_cache_next_miss(struct address_space *mapping,
271 pgoff_t index, unsigned long max_scan);
272pgoff_t page_cache_prev_miss(struct address_space *mapping,
273 pgoff_t index, unsigned long max_scan);
274
275#define FGP_ACCESSED 0x00000001
276#define FGP_LOCK 0x00000002
277#define FGP_CREAT 0x00000004
278#define FGP_WRITE 0x00000008
279#define FGP_NOFS 0x00000010
280#define FGP_NOWAIT 0x00000020
281#define FGP_FOR_MMAP 0x00000040
282
283struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
284 int fgp_flags, gfp_t cache_gfp_mask);
285
286/**
287 * find_get_page - find and get a page reference
288 * @mapping: the address_space to search
289 * @offset: the page index
290 *
291 * Looks up the page cache slot at @mapping & @offset. If there is a
292 * page cache page, it is returned with an increased refcount.
293 *
294 * Otherwise, %NULL is returned.
295 */
296static inline struct page *find_get_page(struct address_space *mapping,
297 pgoff_t offset)
298{
299 return pagecache_get_page(mapping, offset, 0, 0);
300}
301
302static inline struct page *find_get_page_flags(struct address_space *mapping,
303 pgoff_t offset, int fgp_flags)
304{
305 return pagecache_get_page(mapping, offset, fgp_flags, 0);
306}
307
308/**
309 * find_lock_page - locate, pin and lock a pagecache page
310 * @mapping: the address_space to search
311 * @offset: the page index
312 *
313 * Looks up the page cache slot at @mapping & @offset. If there is a
314 * page cache page, it is returned locked and with an increased
315 * refcount.
316 *
317 * Otherwise, %NULL is returned.
318 *
319 * find_lock_page() may sleep.
320 */
321static inline struct page *find_lock_page(struct address_space *mapping,
322 pgoff_t offset)
323{
324 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
325}
326
327/**
328 * find_or_create_page - locate or add a pagecache page
329 * @mapping: the page's address_space
330 * @index: the page's index into the mapping
331 * @gfp_mask: page allocation mode
332 *
333 * Looks up the page cache slot at @mapping & @offset. If there is a
334 * page cache page, it is returned locked and with an increased
335 * refcount.
336 *
337 * If the page is not present, a new page is allocated using @gfp_mask
338 * and added to the page cache and the VM's LRU list. The page is
339 * returned locked and with an increased refcount.
340 *
341 * On memory exhaustion, %NULL is returned.
342 *
343 * find_or_create_page() may sleep, even if @gfp_flags specifies an
344 * atomic allocation!
345 */
346static inline struct page *find_or_create_page(struct address_space *mapping,
347 pgoff_t index, gfp_t gfp_mask)
348{
349 return pagecache_get_page(mapping, index,
350 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
351 gfp_mask);
352}
353
354/**
355 * grab_cache_page_nowait - returns locked page at given index in given cache
356 * @mapping: target address_space
357 * @index: the page index
358 *
359 * Same as grab_cache_page(), but do not wait if the page is unavailable.
360 * This is intended for speculative data generators, where the data can
361 * be regenerated if the page couldn't be grabbed. This routine should
362 * be safe to call while holding the lock for another page.
363 *
364 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
365 * and deadlock against the caller's locked page.
366 */
367static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
368 pgoff_t index)
369{
370 return pagecache_get_page(mapping, index,
371 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
372 mapping_gfp_mask(mapping));
373}
374
375/*
376 * Given the page we found in the page cache, return the page corresponding
377 * to this index in the file
378 */
379static inline struct page *find_subpage(struct page *head, pgoff_t index)
380{
381 /* HugeTLBfs wants the head page regardless */
382 if (PageHuge(head))
383 return head;
384
385 return head + (index & (thp_nr_pages(head) - 1));
386}
387
388struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
389struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
390unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
391 unsigned int nr_entries, struct page **entries,
392 pgoff_t *indices);
393unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
394 pgoff_t end, unsigned int nr_pages,
395 struct page **pages);
396static inline unsigned find_get_pages(struct address_space *mapping,
397 pgoff_t *start, unsigned int nr_pages,
398 struct page **pages)
399{
400 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
401 pages);
402}
403unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
404 unsigned int nr_pages, struct page **pages);
405unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
406 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
407 struct page **pages);
408static inline unsigned find_get_pages_tag(struct address_space *mapping,
409 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
410 struct page **pages)
411{
412 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
413 nr_pages, pages);
414}
415
416struct page *grab_cache_page_write_begin(struct address_space *mapping,
417 pgoff_t index, unsigned flags);
418
419/*
420 * Returns locked page at given index in given cache, creating it if needed.
421 */
422static inline struct page *grab_cache_page(struct address_space *mapping,
423 pgoff_t index)
424{
425 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
426}
427
428extern struct page * read_cache_page(struct address_space *mapping,
429 pgoff_t index, filler_t *filler, void *data);
430extern struct page * read_cache_page_gfp(struct address_space *mapping,
431 pgoff_t index, gfp_t gfp_mask);
432extern int read_cache_pages(struct address_space *mapping,
433 struct list_head *pages, filler_t *filler, void *data);
434
435static inline struct page *read_mapping_page(struct address_space *mapping,
436 pgoff_t index, void *data)
437{
438 return read_cache_page(mapping, index, NULL, data);
439}
440
441/*
442 * Get index of the page with in radix-tree
443 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
444 */
445static inline pgoff_t page_to_index(struct page *page)
446{
447 pgoff_t pgoff;
448
449 if (likely(!PageTransTail(page)))
450 return page->index;
451
452 /*
453 * We don't initialize ->index for tail pages: calculate based on
454 * head page
455 */
456 pgoff = compound_head(page)->index;
457 pgoff += page - compound_head(page);
458 return pgoff;
459}
460
461/*
462 * Get the offset in PAGE_SIZE.
463 * (TODO: hugepage should have ->index in PAGE_SIZE)
464 */
465static inline pgoff_t page_to_pgoff(struct page *page)
466{
467 if (unlikely(PageHeadHuge(page)))
468 return page->index << compound_order(page);
469
470 return page_to_index(page);
471}
472
473/*
474 * Return byte-offset into filesystem object for page.
475 */
476static inline loff_t page_offset(struct page *page)
477{
478 return ((loff_t)page->index) << PAGE_SHIFT;
479}
480
481static inline loff_t page_file_offset(struct page *page)
482{
483 return ((loff_t)page_index(page)) << PAGE_SHIFT;
484}
485
486extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
487 unsigned long address);
488
489static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
490 unsigned long address)
491{
492 pgoff_t pgoff;
493 if (unlikely(is_vm_hugetlb_page(vma)))
494 return linear_hugepage_index(vma, address);
495 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
496 pgoff += vma->vm_pgoff;
497 return pgoff;
498}
499
500/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
501struct wait_page_key {
502 struct page *page;
503 int bit_nr;
504 int page_match;
505};
506
507struct wait_page_queue {
508 struct page *page;
509 int bit_nr;
510 wait_queue_entry_t wait;
511};
512
513static inline bool wake_page_match(struct wait_page_queue *wait_page,
514 struct wait_page_key *key)
515{
516 if (wait_page->page != key->page)
517 return false;
518 key->page_match = 1;
519
520 if (wait_page->bit_nr != key->bit_nr)
521 return false;
522
523 return true;
524}
525
526extern void __lock_page(struct page *page);
527extern int __lock_page_killable(struct page *page);
528extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
529extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
530 unsigned int flags);
531extern void unlock_page(struct page *page);
532
533/*
534 * Return true if the page was successfully locked
535 */
536static inline int trylock_page(struct page *page)
537{
538 page = compound_head(page);
539 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
540}
541
542/*
543 * lock_page may only be called if we have the page's inode pinned.
544 */
545static inline void lock_page(struct page *page)
546{
547 might_sleep();
548 if (!trylock_page(page))
549 __lock_page(page);
550}
551
552/*
553 * lock_page_killable is like lock_page but can be interrupted by fatal
554 * signals. It returns 0 if it locked the page and -EINTR if it was
555 * killed while waiting.
556 */
557static inline int lock_page_killable(struct page *page)
558{
559 might_sleep();
560 if (!trylock_page(page))
561 return __lock_page_killable(page);
562 return 0;
563}
564
565/*
566 * lock_page_async - Lock the page, unless this would block. If the page
567 * is already locked, then queue a callback when the page becomes unlocked.
568 * This callback can then retry the operation.
569 *
570 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
571 * was already locked and the callback defined in 'wait' was queued.
572 */
573static inline int lock_page_async(struct page *page,
574 struct wait_page_queue *wait)
575{
576 if (!trylock_page(page))
577 return __lock_page_async(page, wait);
578 return 0;
579}
580
581/*
582 * lock_page_or_retry - Lock the page, unless this would block and the
583 * caller indicated that it can handle a retry.
584 *
585 * Return value and mmap_lock implications depend on flags; see
586 * __lock_page_or_retry().
587 */
588static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
589 unsigned int flags)
590{
591 might_sleep();
592 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
593}
594
595/*
596 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
597 * and should not be used directly.
598 */
599extern void wait_on_page_bit(struct page *page, int bit_nr);
600extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
601
602/*
603 * Wait for a page to be unlocked.
604 *
605 * This must be called with the caller "holding" the page,
606 * ie with increased "page->count" so that the page won't
607 * go away during the wait..
608 */
609static inline void wait_on_page_locked(struct page *page)
610{
611 if (PageLocked(page))
612 wait_on_page_bit(compound_head(page), PG_locked);
613}
614
615static inline int wait_on_page_locked_killable(struct page *page)
616{
617 if (!PageLocked(page))
618 return 0;
619 return wait_on_page_bit_killable(compound_head(page), PG_locked);
620}
621
622extern void put_and_wait_on_page_locked(struct page *page);
623
624void wait_on_page_writeback(struct page *page);
625extern void end_page_writeback(struct page *page);
626void wait_for_stable_page(struct page *page);
627
628void page_endio(struct page *page, bool is_write, int err);
629
630/*
631 * Add an arbitrary waiter to a page's wait queue
632 */
633extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
634
635/*
636 * Fault everything in given userspace address range in.
637 */
638static inline int fault_in_pages_writeable(char __user *uaddr, int size)
639{
640 char __user *end = uaddr + size - 1;
641
642 if (unlikely(size == 0))
643 return 0;
644
645 if (unlikely(uaddr > end))
646 return -EFAULT;
647 /*
648 * Writing zeroes into userspace here is OK, because we know that if
649 * the zero gets there, we'll be overwriting it.
650 */
651 do {
652 if (unlikely(__put_user(0, uaddr) != 0))
653 return -EFAULT;
654 uaddr += PAGE_SIZE;
655 } while (uaddr <= end);
656
657 /* Check whether the range spilled into the next page. */
658 if (((unsigned long)uaddr & PAGE_MASK) ==
659 ((unsigned long)end & PAGE_MASK))
660 return __put_user(0, end);
661
662 return 0;
663}
664
665static inline int fault_in_pages_readable(const char __user *uaddr, int size)
666{
667 volatile char c;
668 const char __user *end = uaddr + size - 1;
669
670 if (unlikely(size == 0))
671 return 0;
672
673 if (unlikely(uaddr > end))
674 return -EFAULT;
675
676 do {
677 if (unlikely(__get_user(c, uaddr) != 0))
678 return -EFAULT;
679 uaddr += PAGE_SIZE;
680 } while (uaddr <= end);
681
682 /* Check whether the range spilled into the next page. */
683 if (((unsigned long)uaddr & PAGE_MASK) ==
684 ((unsigned long)end & PAGE_MASK)) {
685 return __get_user(c, end);
686 }
687
688 (void)c;
689 return 0;
690}
691
692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693 pgoff_t index, gfp_t gfp_mask);
694int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
695 pgoff_t index, gfp_t gfp_mask);
696extern void delete_from_page_cache(struct page *page);
697extern void __delete_from_page_cache(struct page *page, void *shadow);
698int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
699void delete_from_page_cache_batch(struct address_space *mapping,
700 struct pagevec *pvec);
701
702#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
703
704void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
705 struct file *, pgoff_t index, unsigned long req_count);
706void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
707 struct file *, struct page *, pgoff_t index,
708 unsigned long req_count);
709void page_cache_readahead_unbounded(struct address_space *, struct file *,
710 pgoff_t index, unsigned long nr_to_read,
711 unsigned long lookahead_count);
712
713/*
714 * Like add_to_page_cache_locked, but used to add newly allocated pages:
715 * the page is new, so we can just run __SetPageLocked() against it.
716 */
717static inline int add_to_page_cache(struct page *page,
718 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
719{
720 int error;
721
722 __SetPageLocked(page);
723 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
724 if (unlikely(error))
725 __ClearPageLocked(page);
726 return error;
727}
728
729/**
730 * struct readahead_control - Describes a readahead request.
731 *
732 * A readahead request is for consecutive pages. Filesystems which
733 * implement the ->readahead method should call readahead_page() or
734 * readahead_page_batch() in a loop and attempt to start I/O against
735 * each page in the request.
736 *
737 * Most of the fields in this struct are private and should be accessed
738 * by the functions below.
739 *
740 * @file: The file, used primarily by network filesystems for authentication.
741 * May be NULL if invoked internally by the filesystem.
742 * @mapping: Readahead this filesystem object.
743 */
744struct readahead_control {
745 struct file *file;
746 struct address_space *mapping;
747/* private: use the readahead_* accessors instead */
748 pgoff_t _index;
749 unsigned int _nr_pages;
750 unsigned int _batch_count;
751};
752
753/**
754 * readahead_page - Get the next page to read.
755 * @rac: The current readahead request.
756 *
757 * Context: The page is locked and has an elevated refcount. The caller
758 * should decreases the refcount once the page has been submitted for I/O
759 * and unlock the page once all I/O to that page has completed.
760 * Return: A pointer to the next page, or %NULL if we are done.
761 */
762static inline struct page *readahead_page(struct readahead_control *rac)
763{
764 struct page *page;
765
766 BUG_ON(rac->_batch_count > rac->_nr_pages);
767 rac->_nr_pages -= rac->_batch_count;
768 rac->_index += rac->_batch_count;
769
770 if (!rac->_nr_pages) {
771 rac->_batch_count = 0;
772 return NULL;
773 }
774
775 page = xa_load(&rac->mapping->i_pages, rac->_index);
776 VM_BUG_ON_PAGE(!PageLocked(page), page);
777 rac->_batch_count = thp_nr_pages(page);
778
779 return page;
780}
781
782static inline unsigned int __readahead_batch(struct readahead_control *rac,
783 struct page **array, unsigned int array_sz)
784{
785 unsigned int i = 0;
786 XA_STATE(xas, &rac->mapping->i_pages, 0);
787 struct page *page;
788
789 BUG_ON(rac->_batch_count > rac->_nr_pages);
790 rac->_nr_pages -= rac->_batch_count;
791 rac->_index += rac->_batch_count;
792 rac->_batch_count = 0;
793
794 xas_set(&xas, rac->_index);
795 rcu_read_lock();
796 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
797 VM_BUG_ON_PAGE(!PageLocked(page), page);
798 VM_BUG_ON_PAGE(PageTail(page), page);
799 array[i++] = page;
800 rac->_batch_count += thp_nr_pages(page);
801
802 /*
803 * The page cache isn't using multi-index entries yet,
804 * so the xas cursor needs to be manually moved to the
805 * next index. This can be removed once the page cache
806 * is converted.
807 */
808 if (PageHead(page))
809 xas_set(&xas, rac->_index + rac->_batch_count);
810
811 if (i == array_sz)
812 break;
813 }
814 rcu_read_unlock();
815
816 return i;
817}
818
819/**
820 * readahead_page_batch - Get a batch of pages to read.
821 * @rac: The current readahead request.
822 * @array: An array of pointers to struct page.
823 *
824 * Context: The pages are locked and have an elevated refcount. The caller
825 * should decreases the refcount once the page has been submitted for I/O
826 * and unlock the page once all I/O to that page has completed.
827 * Return: The number of pages placed in the array. 0 indicates the request
828 * is complete.
829 */
830#define readahead_page_batch(rac, array) \
831 __readahead_batch(rac, array, ARRAY_SIZE(array))
832
833/**
834 * readahead_pos - The byte offset into the file of this readahead request.
835 * @rac: The readahead request.
836 */
837static inline loff_t readahead_pos(struct readahead_control *rac)
838{
839 return (loff_t)rac->_index * PAGE_SIZE;
840}
841
842/**
843 * readahead_length - The number of bytes in this readahead request.
844 * @rac: The readahead request.
845 */
846static inline loff_t readahead_length(struct readahead_control *rac)
847{
848 return (loff_t)rac->_nr_pages * PAGE_SIZE;
849}
850
851/**
852 * readahead_index - The index of the first page in this readahead request.
853 * @rac: The readahead request.
854 */
855static inline pgoff_t readahead_index(struct readahead_control *rac)
856{
857 return rac->_index;
858}
859
860/**
861 * readahead_count - The number of pages in this readahead request.
862 * @rac: The readahead request.
863 */
864static inline unsigned int readahead_count(struct readahead_control *rac)
865{
866 return rac->_nr_pages;
867}
868
869static inline unsigned long dir_pages(struct inode *inode)
870{
871 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
872 PAGE_SHIFT;
873}
874
875/**
876 * page_mkwrite_check_truncate - check if page was truncated
877 * @page: the page to check
878 * @inode: the inode to check the page against
879 *
880 * Returns the number of bytes in the page up to EOF,
881 * or -EFAULT if the page was truncated.
882 */
883static inline int page_mkwrite_check_truncate(struct page *page,
884 struct inode *inode)
885{
886 loff_t size = i_size_read(inode);
887 pgoff_t index = size >> PAGE_SHIFT;
888 int offset = offset_in_page(size);
889
890 if (page->mapping != inode->i_mapping)
891 return -EFAULT;
892
893 /* page is wholly inside EOF */
894 if (page->index < index)
895 return PAGE_SIZE;
896 /* page is wholly past EOF */
897 if (page->index > index || !offset)
898 return -EFAULT;
899 /* page is partially inside EOF */
900 return offset;
901}
902
903#endif /* _LINUX_PAGEMAP_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct folio_batch;
20
21unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
24static inline void invalidate_remote_inode(struct inode *inode)
25{
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29}
30int invalidate_inode_pages2(struct address_space *mapping);
31int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35int filemap_invalidate_pages(struct address_space *mapping,
36 loff_t pos, loff_t end, bool nowait);
37
38int write_inode_now(struct inode *, int sync);
39int filemap_fdatawrite(struct address_space *);
40int filemap_flush(struct address_space *);
41int filemap_fdatawait_keep_errors(struct address_space *mapping);
42int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 loff_t start_byte, loff_t end_byte);
45int filemap_invalidate_inode(struct inode *inode, bool flush,
46 loff_t start, loff_t end);
47
48static inline int filemap_fdatawait(struct address_space *mapping)
49{
50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51}
52
53bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54int filemap_write_and_wait_range(struct address_space *mapping,
55 loff_t lstart, loff_t lend);
56int __filemap_fdatawrite_range(struct address_space *mapping,
57 loff_t start, loff_t end, int sync_mode);
58int filemap_fdatawrite_range(struct address_space *mapping,
59 loff_t start, loff_t end);
60int filemap_check_errors(struct address_space *mapping);
61void __filemap_set_wb_err(struct address_space *mapping, int err);
62int filemap_fdatawrite_wbc(struct address_space *mapping,
63 struct writeback_control *wbc);
64int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65
66static inline int filemap_write_and_wait(struct address_space *mapping)
67{
68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69}
70
71/**
72 * filemap_set_wb_err - set a writeback error on an address_space
73 * @mapping: mapping in which to set writeback error
74 * @err: error to be set in mapping
75 *
76 * When writeback fails in some way, we must record that error so that
77 * userspace can be informed when fsync and the like are called. We endeavor
78 * to report errors on any file that was open at the time of the error. Some
79 * internal callers also need to know when writeback errors have occurred.
80 *
81 * When a writeback error occurs, most filesystems will want to call
82 * filemap_set_wb_err to record the error in the mapping so that it will be
83 * automatically reported whenever fsync is called on the file.
84 */
85static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86{
87 /* Fastpath for common case of no error */
88 if (unlikely(err))
89 __filemap_set_wb_err(mapping, err);
90}
91
92/**
93 * filemap_check_wb_err - has an error occurred since the mark was sampled?
94 * @mapping: mapping to check for writeback errors
95 * @since: previously-sampled errseq_t
96 *
97 * Grab the errseq_t value from the mapping, and see if it has changed "since"
98 * the given value was sampled.
99 *
100 * If it has then report the latest error set, otherwise return 0.
101 */
102static inline int filemap_check_wb_err(struct address_space *mapping,
103 errseq_t since)
104{
105 return errseq_check(&mapping->wb_err, since);
106}
107
108/**
109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110 * @mapping: mapping to be sampled
111 *
112 * Writeback errors are always reported relative to a particular sample point
113 * in the past. This function provides those sample points.
114 */
115static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116{
117 return errseq_sample(&mapping->wb_err);
118}
119
120/**
121 * file_sample_sb_err - sample the current errseq_t to test for later errors
122 * @file: file pointer to be sampled
123 *
124 * Grab the most current superblock-level errseq_t value for the given
125 * struct file.
126 */
127static inline errseq_t file_sample_sb_err(struct file *file)
128{
129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130}
131
132/*
133 * Flush file data before changing attributes. Caller must hold any locks
134 * required to prevent further writes to this file until we're done setting
135 * flags.
136 */
137static inline int inode_drain_writes(struct inode *inode)
138{
139 inode_dio_wait(inode);
140 return filemap_write_and_wait(inode->i_mapping);
141}
142
143static inline bool mapping_empty(struct address_space *mapping)
144{
145 return xa_empty(&mapping->i_pages);
146}
147
148/*
149 * mapping_shrinkable - test if page cache state allows inode reclaim
150 * @mapping: the page cache mapping
151 *
152 * This checks the mapping's cache state for the pupose of inode
153 * reclaim and LRU management.
154 *
155 * The caller is expected to hold the i_lock, but is not required to
156 * hold the i_pages lock, which usually protects cache state. That's
157 * because the i_lock and the list_lru lock that protect the inode and
158 * its LRU state don't nest inside the irq-safe i_pages lock.
159 *
160 * Cache deletions are performed under the i_lock, which ensures that
161 * when an inode goes empty, it will reliably get queued on the LRU.
162 *
163 * Cache additions do not acquire the i_lock and may race with this
164 * check, in which case we'll report the inode as shrinkable when it
165 * has cache pages. This is okay: the shrinker also checks the
166 * refcount and the referenced bit, which will be elevated or set in
167 * the process of adding new cache pages to an inode.
168 */
169static inline bool mapping_shrinkable(struct address_space *mapping)
170{
171 void *head;
172
173 /*
174 * On highmem systems, there could be lowmem pressure from the
175 * inodes before there is highmem pressure from the page
176 * cache. Make inodes shrinkable regardless of cache state.
177 */
178 if (IS_ENABLED(CONFIG_HIGHMEM))
179 return true;
180
181 /* Cache completely empty? Shrink away. */
182 head = rcu_access_pointer(mapping->i_pages.xa_head);
183 if (!head)
184 return true;
185
186 /*
187 * The xarray stores single offset-0 entries directly in the
188 * head pointer, which allows non-resident page cache entries
189 * to escape the shadow shrinker's list of xarray nodes. The
190 * inode shrinker needs to pick them up under memory pressure.
191 */
192 if (!xa_is_node(head) && xa_is_value(head))
193 return true;
194
195 return false;
196}
197
198/*
199 * Bits in mapping->flags.
200 */
201enum mapping_flags {
202 AS_EIO = 0, /* IO error on async write */
203 AS_ENOSPC = 1, /* ENOSPC on async write */
204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
206 AS_EXITING = 4, /* final truncate in progress */
207 /* writeback related tags are not used */
208 AS_NO_WRITEBACK_TAGS = 5,
209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */
210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying
211 folio contents */
212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */
213 /* Bits 16-25 are used for FOLIO_ORDER */
214 AS_FOLIO_ORDER_BITS = 5,
215 AS_FOLIO_ORDER_MIN = 16,
216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217};
218
219#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223
224/**
225 * mapping_set_error - record a writeback error in the address_space
226 * @mapping: the mapping in which an error should be set
227 * @error: the error to set in the mapping
228 *
229 * When writeback fails in some way, we must record that error so that
230 * userspace can be informed when fsync and the like are called. We endeavor
231 * to report errors on any file that was open at the time of the error. Some
232 * internal callers also need to know when writeback errors have occurred.
233 *
234 * When a writeback error occurs, most filesystems will want to call
235 * mapping_set_error to record the error in the mapping so that it can be
236 * reported when the application calls fsync(2).
237 */
238static inline void mapping_set_error(struct address_space *mapping, int error)
239{
240 if (likely(!error))
241 return;
242
243 /* Record in wb_err for checkers using errseq_t based tracking */
244 __filemap_set_wb_err(mapping, error);
245
246 /* Record it in superblock */
247 if (mapping->host)
248 errseq_set(&mapping->host->i_sb->s_wb_err, error);
249
250 /* Record it in flags for now, for legacy callers */
251 if (error == -ENOSPC)
252 set_bit(AS_ENOSPC, &mapping->flags);
253 else
254 set_bit(AS_EIO, &mapping->flags);
255}
256
257static inline void mapping_set_unevictable(struct address_space *mapping)
258{
259 set_bit(AS_UNEVICTABLE, &mapping->flags);
260}
261
262static inline void mapping_clear_unevictable(struct address_space *mapping)
263{
264 clear_bit(AS_UNEVICTABLE, &mapping->flags);
265}
266
267static inline bool mapping_unevictable(struct address_space *mapping)
268{
269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270}
271
272static inline void mapping_set_exiting(struct address_space *mapping)
273{
274 set_bit(AS_EXITING, &mapping->flags);
275}
276
277static inline int mapping_exiting(struct address_space *mapping)
278{
279 return test_bit(AS_EXITING, &mapping->flags);
280}
281
282static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283{
284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285}
286
287static inline int mapping_use_writeback_tags(struct address_space *mapping)
288{
289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290}
291
292static inline bool mapping_release_always(const struct address_space *mapping)
293{
294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295}
296
297static inline void mapping_set_release_always(struct address_space *mapping)
298{
299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300}
301
302static inline void mapping_clear_release_always(struct address_space *mapping)
303{
304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305}
306
307static inline bool mapping_stable_writes(const struct address_space *mapping)
308{
309 return test_bit(AS_STABLE_WRITES, &mapping->flags);
310}
311
312static inline void mapping_set_stable_writes(struct address_space *mapping)
313{
314 set_bit(AS_STABLE_WRITES, &mapping->flags);
315}
316
317static inline void mapping_clear_stable_writes(struct address_space *mapping)
318{
319 clear_bit(AS_STABLE_WRITES, &mapping->flags);
320}
321
322static inline void mapping_set_inaccessible(struct address_space *mapping)
323{
324 /*
325 * It's expected inaccessible mappings are also unevictable. Compaction
326 * migrate scanner (isolate_migratepages_block()) relies on this to
327 * reduce page locking.
328 */
329 set_bit(AS_UNEVICTABLE, &mapping->flags);
330 set_bit(AS_INACCESSIBLE, &mapping->flags);
331}
332
333static inline bool mapping_inaccessible(struct address_space *mapping)
334{
335 return test_bit(AS_INACCESSIBLE, &mapping->flags);
336}
337
338static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
339{
340 return mapping->gfp_mask;
341}
342
343/* Restricts the given gfp_mask to what the mapping allows. */
344static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
345 gfp_t gfp_mask)
346{
347 return mapping_gfp_mask(mapping) & gfp_mask;
348}
349
350/*
351 * This is non-atomic. Only to be used before the mapping is activated.
352 * Probably needs a barrier...
353 */
354static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
355{
356 m->gfp_mask = mask;
357}
358
359/*
360 * There are some parts of the kernel which assume that PMD entries
361 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
362 * limit the maximum allocation order to PMD size. I'm not aware of any
363 * assumptions about maximum order if THP are disabled, but 8 seems like
364 * a good order (that's 1MB if you're using 4kB pages)
365 */
366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
367#define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
368#else
369#define PREFERRED_MAX_PAGECACHE_ORDER 8
370#endif
371
372/*
373 * xas_split_alloc() does not support arbitrary orders. This implies no
374 * 512MB THP on ARM64 with 64KB base page size.
375 */
376#define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1)
377#define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
378
379/*
380 * mapping_max_folio_size_supported() - Check the max folio size supported
381 *
382 * The filesystem should call this function at mount time if there is a
383 * requirement on the folio mapping size in the page cache.
384 */
385static inline size_t mapping_max_folio_size_supported(void)
386{
387 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
388 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
389 return PAGE_SIZE;
390}
391
392/*
393 * mapping_set_folio_order_range() - Set the orders supported by a file.
394 * @mapping: The address space of the file.
395 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
396 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
397 *
398 * The filesystem should call this function in its inode constructor to
399 * indicate which base size (min) and maximum size (max) of folio the VFS
400 * can use to cache the contents of the file. This should only be used
401 * if the filesystem needs special handling of folio sizes (ie there is
402 * something the core cannot know).
403 * Do not tune it based on, eg, i_size.
404 *
405 * Context: This should not be called while the inode is active as it
406 * is non-atomic.
407 */
408static inline void mapping_set_folio_order_range(struct address_space *mapping,
409 unsigned int min,
410 unsigned int max)
411{
412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
413 return;
414
415 if (min > MAX_PAGECACHE_ORDER)
416 min = MAX_PAGECACHE_ORDER;
417
418 if (max > MAX_PAGECACHE_ORDER)
419 max = MAX_PAGECACHE_ORDER;
420
421 if (max < min)
422 max = min;
423
424 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
425 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
426}
427
428static inline void mapping_set_folio_min_order(struct address_space *mapping,
429 unsigned int min)
430{
431 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
432}
433
434/**
435 * mapping_set_large_folios() - Indicate the file supports large folios.
436 * @mapping: The address space of the file.
437 *
438 * The filesystem should call this function in its inode constructor to
439 * indicate that the VFS can use large folios to cache the contents of
440 * the file.
441 *
442 * Context: This should not be called while the inode is active as it
443 * is non-atomic.
444 */
445static inline void mapping_set_large_folios(struct address_space *mapping)
446{
447 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
448}
449
450static inline unsigned int
451mapping_max_folio_order(const struct address_space *mapping)
452{
453 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
454 return 0;
455 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
456}
457
458static inline unsigned int
459mapping_min_folio_order(const struct address_space *mapping)
460{
461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
462 return 0;
463 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
464}
465
466static inline unsigned long
467mapping_min_folio_nrpages(struct address_space *mapping)
468{
469 return 1UL << mapping_min_folio_order(mapping);
470}
471
472/**
473 * mapping_align_index() - Align index for this mapping.
474 * @mapping: The address_space.
475 * @index: The page index.
476 *
477 * The index of a folio must be naturally aligned. If you are adding a
478 * new folio to the page cache and need to know what index to give it,
479 * call this function.
480 */
481static inline pgoff_t mapping_align_index(struct address_space *mapping,
482 pgoff_t index)
483{
484 return round_down(index, mapping_min_folio_nrpages(mapping));
485}
486
487/*
488 * Large folio support currently depends on THP. These dependencies are
489 * being worked on but are not yet fixed.
490 */
491static inline bool mapping_large_folio_support(struct address_space *mapping)
492{
493 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */
494 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
495 "Anonymous mapping always supports large folio");
496
497 return mapping_max_folio_order(mapping) > 0;
498}
499
500/* Return the maximum folio size for this pagecache mapping, in bytes. */
501static inline size_t mapping_max_folio_size(const struct address_space *mapping)
502{
503 return PAGE_SIZE << mapping_max_folio_order(mapping);
504}
505
506static inline int filemap_nr_thps(struct address_space *mapping)
507{
508#ifdef CONFIG_READ_ONLY_THP_FOR_FS
509 return atomic_read(&mapping->nr_thps);
510#else
511 return 0;
512#endif
513}
514
515static inline void filemap_nr_thps_inc(struct address_space *mapping)
516{
517#ifdef CONFIG_READ_ONLY_THP_FOR_FS
518 if (!mapping_large_folio_support(mapping))
519 atomic_inc(&mapping->nr_thps);
520#else
521 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
522#endif
523}
524
525static inline void filemap_nr_thps_dec(struct address_space *mapping)
526{
527#ifdef CONFIG_READ_ONLY_THP_FOR_FS
528 if (!mapping_large_folio_support(mapping))
529 atomic_dec(&mapping->nr_thps);
530#else
531 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
532#endif
533}
534
535struct address_space *folio_mapping(struct folio *);
536struct address_space *swapcache_mapping(struct folio *);
537
538/**
539 * folio_file_mapping - Find the mapping this folio belongs to.
540 * @folio: The folio.
541 *
542 * For folios which are in the page cache, return the mapping that this
543 * page belongs to. Folios in the swap cache return the mapping of the
544 * swap file or swap device where the data is stored. This is different
545 * from the mapping returned by folio_mapping(). The only reason to
546 * use it is if, like NFS, you return 0 from ->activate_swapfile.
547 *
548 * Do not call this for folios which aren't in the page cache or swap cache.
549 */
550static inline struct address_space *folio_file_mapping(struct folio *folio)
551{
552 if (unlikely(folio_test_swapcache(folio)))
553 return swapcache_mapping(folio);
554
555 return folio->mapping;
556}
557
558/**
559 * folio_flush_mapping - Find the file mapping this folio belongs to.
560 * @folio: The folio.
561 *
562 * For folios which are in the page cache, return the mapping that this
563 * page belongs to. Anonymous folios return NULL, even if they're in
564 * the swap cache. Other kinds of folio also return NULL.
565 *
566 * This is ONLY used by architecture cache flushing code. If you aren't
567 * writing cache flushing code, you want either folio_mapping() or
568 * folio_file_mapping().
569 */
570static inline struct address_space *folio_flush_mapping(struct folio *folio)
571{
572 if (unlikely(folio_test_swapcache(folio)))
573 return NULL;
574
575 return folio_mapping(folio);
576}
577
578static inline struct address_space *page_file_mapping(struct page *page)
579{
580 return folio_file_mapping(page_folio(page));
581}
582
583/**
584 * folio_inode - Get the host inode for this folio.
585 * @folio: The folio.
586 *
587 * For folios which are in the page cache, return the inode that this folio
588 * belongs to.
589 *
590 * Do not call this for folios which aren't in the page cache.
591 */
592static inline struct inode *folio_inode(struct folio *folio)
593{
594 return folio->mapping->host;
595}
596
597/**
598 * folio_attach_private - Attach private data to a folio.
599 * @folio: Folio to attach data to.
600 * @data: Data to attach to folio.
601 *
602 * Attaching private data to a folio increments the page's reference count.
603 * The data must be detached before the folio will be freed.
604 */
605static inline void folio_attach_private(struct folio *folio, void *data)
606{
607 folio_get(folio);
608 folio->private = data;
609 folio_set_private(folio);
610}
611
612/**
613 * folio_change_private - Change private data on a folio.
614 * @folio: Folio to change the data on.
615 * @data: Data to set on the folio.
616 *
617 * Change the private data attached to a folio and return the old
618 * data. The page must previously have had data attached and the data
619 * must be detached before the folio will be freed.
620 *
621 * Return: Data that was previously attached to the folio.
622 */
623static inline void *folio_change_private(struct folio *folio, void *data)
624{
625 void *old = folio_get_private(folio);
626
627 folio->private = data;
628 return old;
629}
630
631/**
632 * folio_detach_private - Detach private data from a folio.
633 * @folio: Folio to detach data from.
634 *
635 * Removes the data that was previously attached to the folio and decrements
636 * the refcount on the page.
637 *
638 * Return: Data that was attached to the folio.
639 */
640static inline void *folio_detach_private(struct folio *folio)
641{
642 void *data = folio_get_private(folio);
643
644 if (!folio_test_private(folio))
645 return NULL;
646 folio_clear_private(folio);
647 folio->private = NULL;
648 folio_put(folio);
649
650 return data;
651}
652
653static inline void attach_page_private(struct page *page, void *data)
654{
655 folio_attach_private(page_folio(page), data);
656}
657
658static inline void *detach_page_private(struct page *page)
659{
660 return folio_detach_private(page_folio(page));
661}
662
663#ifdef CONFIG_NUMA
664struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
665#else
666static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
667{
668 return folio_alloc_noprof(gfp, order);
669}
670#endif
671
672#define filemap_alloc_folio(...) \
673 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
674
675static inline struct page *__page_cache_alloc(gfp_t gfp)
676{
677 return &filemap_alloc_folio(gfp, 0)->page;
678}
679
680static inline gfp_t readahead_gfp_mask(struct address_space *x)
681{
682 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
683}
684
685typedef int filler_t(struct file *, struct folio *);
686
687pgoff_t page_cache_next_miss(struct address_space *mapping,
688 pgoff_t index, unsigned long max_scan);
689pgoff_t page_cache_prev_miss(struct address_space *mapping,
690 pgoff_t index, unsigned long max_scan);
691
692/**
693 * typedef fgf_t - Flags for getting folios from the page cache.
694 *
695 * Most users of the page cache will not need to use these flags;
696 * there are convenience functions such as filemap_get_folio() and
697 * filemap_lock_folio(). For users which need more control over exactly
698 * what is done with the folios, these flags to __filemap_get_folio()
699 * are available.
700 *
701 * * %FGP_ACCESSED - The folio will be marked accessed.
702 * * %FGP_LOCK - The folio is returned locked.
703 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
704 * added to the page cache and the VM's LRU list. The folio is
705 * returned locked.
706 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
707 * folio is already in cache. If the folio was allocated, unlock it
708 * before returning so the caller can do the same dance.
709 * * %FGP_WRITE - The folio will be written to by the caller.
710 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
711 * * %FGP_NOWAIT - Don't block on the folio lock.
712 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
713 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
714 * implementation.
715 */
716typedef unsigned int __bitwise fgf_t;
717
718#define FGP_ACCESSED ((__force fgf_t)0x00000001)
719#define FGP_LOCK ((__force fgf_t)0x00000002)
720#define FGP_CREAT ((__force fgf_t)0x00000004)
721#define FGP_WRITE ((__force fgf_t)0x00000008)
722#define FGP_NOFS ((__force fgf_t)0x00000010)
723#define FGP_NOWAIT ((__force fgf_t)0x00000020)
724#define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
725#define FGP_STABLE ((__force fgf_t)0x00000080)
726#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
727
728#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
729
730/**
731 * fgf_set_order - Encode a length in the fgf_t flags.
732 * @size: The suggested size of the folio to create.
733 *
734 * The caller of __filemap_get_folio() can use this to suggest a preferred
735 * size for the folio that is created. If there is already a folio at
736 * the index, it will be returned, no matter what its size. If a folio
737 * is freshly created, it may be of a different size than requested
738 * due to alignment constraints, memory pressure, or the presence of
739 * other folios at nearby indices.
740 */
741static inline fgf_t fgf_set_order(size_t size)
742{
743 unsigned int shift = ilog2(size);
744
745 if (shift <= PAGE_SHIFT)
746 return 0;
747 return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
748}
749
750void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
751struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
752 fgf_t fgp_flags, gfp_t gfp);
753struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
754 fgf_t fgp_flags, gfp_t gfp);
755
756/**
757 * filemap_get_folio - Find and get a folio.
758 * @mapping: The address_space to search.
759 * @index: The page index.
760 *
761 * Looks up the page cache entry at @mapping & @index. If a folio is
762 * present, it is returned with an increased refcount.
763 *
764 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
765 * this index. Will not return a shadow, swap or DAX entry.
766 */
767static inline struct folio *filemap_get_folio(struct address_space *mapping,
768 pgoff_t index)
769{
770 return __filemap_get_folio(mapping, index, 0, 0);
771}
772
773/**
774 * filemap_lock_folio - Find and lock a folio.
775 * @mapping: The address_space to search.
776 * @index: The page index.
777 *
778 * Looks up the page cache entry at @mapping & @index. If a folio is
779 * present, it is returned locked with an increased refcount.
780 *
781 * Context: May sleep.
782 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
783 * this index. Will not return a shadow, swap or DAX entry.
784 */
785static inline struct folio *filemap_lock_folio(struct address_space *mapping,
786 pgoff_t index)
787{
788 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
789}
790
791/**
792 * filemap_grab_folio - grab a folio from the page cache
793 * @mapping: The address space to search
794 * @index: The page index
795 *
796 * Looks up the page cache entry at @mapping & @index. If no folio is found,
797 * a new folio is created. The folio is locked, marked as accessed, and
798 * returned.
799 *
800 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
801 * and failed to create a folio.
802 */
803static inline struct folio *filemap_grab_folio(struct address_space *mapping,
804 pgoff_t index)
805{
806 return __filemap_get_folio(mapping, index,
807 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
808 mapping_gfp_mask(mapping));
809}
810
811/**
812 * find_get_page - find and get a page reference
813 * @mapping: the address_space to search
814 * @offset: the page index
815 *
816 * Looks up the page cache slot at @mapping & @offset. If there is a
817 * page cache page, it is returned with an increased refcount.
818 *
819 * Otherwise, %NULL is returned.
820 */
821static inline struct page *find_get_page(struct address_space *mapping,
822 pgoff_t offset)
823{
824 return pagecache_get_page(mapping, offset, 0, 0);
825}
826
827static inline struct page *find_get_page_flags(struct address_space *mapping,
828 pgoff_t offset, fgf_t fgp_flags)
829{
830 return pagecache_get_page(mapping, offset, fgp_flags, 0);
831}
832
833/**
834 * find_lock_page - locate, pin and lock a pagecache page
835 * @mapping: the address_space to search
836 * @index: the page index
837 *
838 * Looks up the page cache entry at @mapping & @index. If there is a
839 * page cache page, it is returned locked and with an increased
840 * refcount.
841 *
842 * Context: May sleep.
843 * Return: A struct page or %NULL if there is no page in the cache for this
844 * index.
845 */
846static inline struct page *find_lock_page(struct address_space *mapping,
847 pgoff_t index)
848{
849 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
850}
851
852/**
853 * find_or_create_page - locate or add a pagecache page
854 * @mapping: the page's address_space
855 * @index: the page's index into the mapping
856 * @gfp_mask: page allocation mode
857 *
858 * Looks up the page cache slot at @mapping & @offset. If there is a
859 * page cache page, it is returned locked and with an increased
860 * refcount.
861 *
862 * If the page is not present, a new page is allocated using @gfp_mask
863 * and added to the page cache and the VM's LRU list. The page is
864 * returned locked and with an increased refcount.
865 *
866 * On memory exhaustion, %NULL is returned.
867 *
868 * find_or_create_page() may sleep, even if @gfp_flags specifies an
869 * atomic allocation!
870 */
871static inline struct page *find_or_create_page(struct address_space *mapping,
872 pgoff_t index, gfp_t gfp_mask)
873{
874 return pagecache_get_page(mapping, index,
875 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
876 gfp_mask);
877}
878
879/**
880 * grab_cache_page_nowait - returns locked page at given index in given cache
881 * @mapping: target address_space
882 * @index: the page index
883 *
884 * Same as grab_cache_page(), but do not wait if the page is unavailable.
885 * This is intended for speculative data generators, where the data can
886 * be regenerated if the page couldn't be grabbed. This routine should
887 * be safe to call while holding the lock for another page.
888 *
889 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
890 * and deadlock against the caller's locked page.
891 */
892static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
893 pgoff_t index)
894{
895 return pagecache_get_page(mapping, index,
896 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
897 mapping_gfp_mask(mapping));
898}
899
900extern pgoff_t __folio_swap_cache_index(struct folio *folio);
901
902/**
903 * folio_index - File index of a folio.
904 * @folio: The folio.
905 *
906 * For a folio which is either in the page cache or the swap cache,
907 * return its index within the address_space it belongs to. If you know
908 * the page is definitely in the page cache, you can look at the folio's
909 * index directly.
910 *
911 * Return: The index (offset in units of pages) of a folio in its file.
912 */
913static inline pgoff_t folio_index(struct folio *folio)
914{
915 if (unlikely(folio_test_swapcache(folio)))
916 return __folio_swap_cache_index(folio);
917 return folio->index;
918}
919
920/**
921 * folio_next_index - Get the index of the next folio.
922 * @folio: The current folio.
923 *
924 * Return: The index of the folio which follows this folio in the file.
925 */
926static inline pgoff_t folio_next_index(struct folio *folio)
927{
928 return folio->index + folio_nr_pages(folio);
929}
930
931/**
932 * folio_file_page - The page for a particular index.
933 * @folio: The folio which contains this index.
934 * @index: The index we want to look up.
935 *
936 * Sometimes after looking up a folio in the page cache, we need to
937 * obtain the specific page for an index (eg a page fault).
938 *
939 * Return: The page containing the file data for this index.
940 */
941static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
942{
943 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
944}
945
946/**
947 * folio_contains - Does this folio contain this index?
948 * @folio: The folio.
949 * @index: The page index within the file.
950 *
951 * Context: The caller should have the page locked in order to prevent
952 * (eg) shmem from moving the page between the page cache and swap cache
953 * and changing its index in the middle of the operation.
954 * Return: true or false.
955 */
956static inline bool folio_contains(struct folio *folio, pgoff_t index)
957{
958 return index - folio_index(folio) < folio_nr_pages(folio);
959}
960
961/*
962 * Given the page we found in the page cache, return the page corresponding
963 * to this index in the file
964 */
965static inline struct page *find_subpage(struct page *head, pgoff_t index)
966{
967 /* HugeTLBfs wants the head page regardless */
968 if (PageHuge(head))
969 return head;
970
971 return head + (index & (thp_nr_pages(head) - 1));
972}
973
974unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
975 pgoff_t end, struct folio_batch *fbatch);
976unsigned filemap_get_folios_contig(struct address_space *mapping,
977 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
978unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
979 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
980
981struct page *grab_cache_page_write_begin(struct address_space *mapping,
982 pgoff_t index);
983
984/*
985 * Returns locked page at given index in given cache, creating it if needed.
986 */
987static inline struct page *grab_cache_page(struct address_space *mapping,
988 pgoff_t index)
989{
990 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
991}
992
993struct folio *read_cache_folio(struct address_space *, pgoff_t index,
994 filler_t *filler, struct file *file);
995struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
996 gfp_t flags);
997struct page *read_cache_page(struct address_space *, pgoff_t index,
998 filler_t *filler, struct file *file);
999extern struct page * read_cache_page_gfp(struct address_space *mapping,
1000 pgoff_t index, gfp_t gfp_mask);
1001
1002static inline struct page *read_mapping_page(struct address_space *mapping,
1003 pgoff_t index, struct file *file)
1004{
1005 return read_cache_page(mapping, index, NULL, file);
1006}
1007
1008static inline struct folio *read_mapping_folio(struct address_space *mapping,
1009 pgoff_t index, struct file *file)
1010{
1011 return read_cache_folio(mapping, index, NULL, file);
1012}
1013
1014/**
1015 * page_pgoff - Calculate the logical page offset of this page.
1016 * @folio: The folio containing this page.
1017 * @page: The page which we need the offset of.
1018 *
1019 * For file pages, this is the offset from the beginning of the file
1020 * in units of PAGE_SIZE. For anonymous pages, this is the offset from
1021 * the beginning of the anon_vma in units of PAGE_SIZE. This will
1022 * return nonsense for KSM pages.
1023 *
1024 * Context: Caller must have a reference on the folio or otherwise
1025 * prevent it from being split or freed.
1026 *
1027 * Return: The offset in units of PAGE_SIZE.
1028 */
1029static inline pgoff_t page_pgoff(const struct folio *folio,
1030 const struct page *page)
1031{
1032 return folio->index + folio_page_idx(folio, page);
1033}
1034
1035/*
1036 * Return byte-offset into filesystem object for page.
1037 */
1038static inline loff_t page_offset(struct page *page)
1039{
1040 return ((loff_t)page->index) << PAGE_SHIFT;
1041}
1042
1043/**
1044 * folio_pos - Returns the byte position of this folio in its file.
1045 * @folio: The folio.
1046 */
1047static inline loff_t folio_pos(struct folio *folio)
1048{
1049 return page_offset(&folio->page);
1050}
1051
1052/*
1053 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1054 */
1055static inline pgoff_t folio_pgoff(struct folio *folio)
1056{
1057 return folio->index;
1058}
1059
1060static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1061 unsigned long address)
1062{
1063 pgoff_t pgoff;
1064 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1065 pgoff += vma->vm_pgoff;
1066 return pgoff;
1067}
1068
1069struct wait_page_key {
1070 struct folio *folio;
1071 int bit_nr;
1072 int page_match;
1073};
1074
1075struct wait_page_queue {
1076 struct folio *folio;
1077 int bit_nr;
1078 wait_queue_entry_t wait;
1079};
1080
1081static inline bool wake_page_match(struct wait_page_queue *wait_page,
1082 struct wait_page_key *key)
1083{
1084 if (wait_page->folio != key->folio)
1085 return false;
1086 key->page_match = 1;
1087
1088 if (wait_page->bit_nr != key->bit_nr)
1089 return false;
1090
1091 return true;
1092}
1093
1094void __folio_lock(struct folio *folio);
1095int __folio_lock_killable(struct folio *folio);
1096vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1097void unlock_page(struct page *page);
1098void folio_unlock(struct folio *folio);
1099
1100/**
1101 * folio_trylock() - Attempt to lock a folio.
1102 * @folio: The folio to attempt to lock.
1103 *
1104 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1105 * when the locks are being taken in the wrong order, or if making
1106 * progress through a batch of folios is more important than processing
1107 * them in order). Usually folio_lock() is the correct function to call.
1108 *
1109 * Context: Any context.
1110 * Return: Whether the lock was successfully acquired.
1111 */
1112static inline bool folio_trylock(struct folio *folio)
1113{
1114 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1115}
1116
1117/*
1118 * Return true if the page was successfully locked
1119 */
1120static inline bool trylock_page(struct page *page)
1121{
1122 return folio_trylock(page_folio(page));
1123}
1124
1125/**
1126 * folio_lock() - Lock this folio.
1127 * @folio: The folio to lock.
1128 *
1129 * The folio lock protects against many things, probably more than it
1130 * should. It is primarily held while a folio is being brought uptodate,
1131 * either from its backing file or from swap. It is also held while a
1132 * folio is being truncated from its address_space, so holding the lock
1133 * is sufficient to keep folio->mapping stable.
1134 *
1135 * The folio lock is also held while write() is modifying the page to
1136 * provide POSIX atomicity guarantees (as long as the write does not
1137 * cross a page boundary). Other modifications to the data in the folio
1138 * do not hold the folio lock and can race with writes, eg DMA and stores
1139 * to mapped pages.
1140 *
1141 * Context: May sleep. If you need to acquire the locks of two or
1142 * more folios, they must be in order of ascending index, if they are
1143 * in the same address_space. If they are in different address_spaces,
1144 * acquire the lock of the folio which belongs to the address_space which
1145 * has the lowest address in memory first.
1146 */
1147static inline void folio_lock(struct folio *folio)
1148{
1149 might_sleep();
1150 if (!folio_trylock(folio))
1151 __folio_lock(folio);
1152}
1153
1154/**
1155 * lock_page() - Lock the folio containing this page.
1156 * @page: The page to lock.
1157 *
1158 * See folio_lock() for a description of what the lock protects.
1159 * This is a legacy function and new code should probably use folio_lock()
1160 * instead.
1161 *
1162 * Context: May sleep. Pages in the same folio share a lock, so do not
1163 * attempt to lock two pages which share a folio.
1164 */
1165static inline void lock_page(struct page *page)
1166{
1167 struct folio *folio;
1168 might_sleep();
1169
1170 folio = page_folio(page);
1171 if (!folio_trylock(folio))
1172 __folio_lock(folio);
1173}
1174
1175/**
1176 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1177 * @folio: The folio to lock.
1178 *
1179 * Attempts to lock the folio, like folio_lock(), except that the sleep
1180 * to acquire the lock is interruptible by a fatal signal.
1181 *
1182 * Context: May sleep; see folio_lock().
1183 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1184 */
1185static inline int folio_lock_killable(struct folio *folio)
1186{
1187 might_sleep();
1188 if (!folio_trylock(folio))
1189 return __folio_lock_killable(folio);
1190 return 0;
1191}
1192
1193/*
1194 * folio_lock_or_retry - Lock the folio, unless this would block and the
1195 * caller indicated that it can handle a retry.
1196 *
1197 * Return value and mmap_lock implications depend on flags; see
1198 * __folio_lock_or_retry().
1199 */
1200static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1201 struct vm_fault *vmf)
1202{
1203 might_sleep();
1204 if (!folio_trylock(folio))
1205 return __folio_lock_or_retry(folio, vmf);
1206 return 0;
1207}
1208
1209/*
1210 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1211 * and should not be used directly.
1212 */
1213void folio_wait_bit(struct folio *folio, int bit_nr);
1214int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1215
1216/*
1217 * Wait for a folio to be unlocked.
1218 *
1219 * This must be called with the caller "holding" the folio,
1220 * ie with increased folio reference count so that the folio won't
1221 * go away during the wait.
1222 */
1223static inline void folio_wait_locked(struct folio *folio)
1224{
1225 if (folio_test_locked(folio))
1226 folio_wait_bit(folio, PG_locked);
1227}
1228
1229static inline int folio_wait_locked_killable(struct folio *folio)
1230{
1231 if (!folio_test_locked(folio))
1232 return 0;
1233 return folio_wait_bit_killable(folio, PG_locked);
1234}
1235
1236static inline void wait_on_page_locked(struct page *page)
1237{
1238 folio_wait_locked(page_folio(page));
1239}
1240
1241void folio_end_read(struct folio *folio, bool success);
1242void wait_on_page_writeback(struct page *page);
1243void folio_wait_writeback(struct folio *folio);
1244int folio_wait_writeback_killable(struct folio *folio);
1245void end_page_writeback(struct page *page);
1246void folio_end_writeback(struct folio *folio);
1247void wait_for_stable_page(struct page *page);
1248void folio_wait_stable(struct folio *folio);
1249void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1250void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1251void __folio_cancel_dirty(struct folio *folio);
1252static inline void folio_cancel_dirty(struct folio *folio)
1253{
1254 /* Avoid atomic ops, locking, etc. when not actually needed. */
1255 if (folio_test_dirty(folio))
1256 __folio_cancel_dirty(folio);
1257}
1258bool folio_clear_dirty_for_io(struct folio *folio);
1259bool clear_page_dirty_for_io(struct page *page);
1260void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1261bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1262
1263#ifdef CONFIG_MIGRATION
1264int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1265 struct folio *src, enum migrate_mode mode);
1266#else
1267#define filemap_migrate_folio NULL
1268#endif
1269void folio_end_private_2(struct folio *folio);
1270void folio_wait_private_2(struct folio *folio);
1271int folio_wait_private_2_killable(struct folio *folio);
1272
1273/*
1274 * Add an arbitrary waiter to a page's wait queue
1275 */
1276void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1277
1278/*
1279 * Fault in userspace address range.
1280 */
1281size_t fault_in_writeable(char __user *uaddr, size_t size);
1282size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1283size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1284size_t fault_in_readable(const char __user *uaddr, size_t size);
1285
1286int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1287 pgoff_t index, gfp_t gfp);
1288int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1289 pgoff_t index, gfp_t gfp);
1290void filemap_remove_folio(struct folio *folio);
1291void __filemap_remove_folio(struct folio *folio, void *shadow);
1292void replace_page_cache_folio(struct folio *old, struct folio *new);
1293void delete_from_page_cache_batch(struct address_space *mapping,
1294 struct folio_batch *fbatch);
1295bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1296loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1297 int whence);
1298
1299/* Must be non-static for BPF error injection */
1300int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1301 pgoff_t index, gfp_t gfp, void **shadowp);
1302
1303bool filemap_range_has_writeback(struct address_space *mapping,
1304 loff_t start_byte, loff_t end_byte);
1305
1306/**
1307 * filemap_range_needs_writeback - check if range potentially needs writeback
1308 * @mapping: address space within which to check
1309 * @start_byte: offset in bytes where the range starts
1310 * @end_byte: offset in bytes where the range ends (inclusive)
1311 *
1312 * Find at least one page in the range supplied, usually used to check if
1313 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1314 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1315 * filemap_write_and_wait_range() before proceeding.
1316 *
1317 * Return: %true if the caller should do filemap_write_and_wait_range() before
1318 * doing O_DIRECT to a page in this range, %false otherwise.
1319 */
1320static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1321 loff_t start_byte,
1322 loff_t end_byte)
1323{
1324 if (!mapping->nrpages)
1325 return false;
1326 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1327 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1328 return false;
1329 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1330}
1331
1332/**
1333 * struct readahead_control - Describes a readahead request.
1334 *
1335 * A readahead request is for consecutive pages. Filesystems which
1336 * implement the ->readahead method should call readahead_page() or
1337 * readahead_page_batch() in a loop and attempt to start I/O against
1338 * each page in the request.
1339 *
1340 * Most of the fields in this struct are private and should be accessed
1341 * by the functions below.
1342 *
1343 * @file: The file, used primarily by network filesystems for authentication.
1344 * May be NULL if invoked internally by the filesystem.
1345 * @mapping: Readahead this filesystem object.
1346 * @ra: File readahead state. May be NULL.
1347 */
1348struct readahead_control {
1349 struct file *file;
1350 struct address_space *mapping;
1351 struct file_ra_state *ra;
1352/* private: use the readahead_* accessors instead */
1353 pgoff_t _index;
1354 unsigned int _nr_pages;
1355 unsigned int _batch_count;
1356 bool _workingset;
1357 unsigned long _pflags;
1358};
1359
1360#define DEFINE_READAHEAD(ractl, f, r, m, i) \
1361 struct readahead_control ractl = { \
1362 .file = f, \
1363 .mapping = m, \
1364 .ra = r, \
1365 ._index = i, \
1366 }
1367
1368#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1369
1370void page_cache_ra_unbounded(struct readahead_control *,
1371 unsigned long nr_to_read, unsigned long lookahead_count);
1372void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1373void page_cache_async_ra(struct readahead_control *, struct folio *,
1374 unsigned long req_count);
1375void readahead_expand(struct readahead_control *ractl,
1376 loff_t new_start, size_t new_len);
1377
1378/**
1379 * page_cache_sync_readahead - generic file readahead
1380 * @mapping: address_space which holds the pagecache and I/O vectors
1381 * @ra: file_ra_state which holds the readahead state
1382 * @file: Used by the filesystem for authentication.
1383 * @index: Index of first page to be read.
1384 * @req_count: Total number of pages being read by the caller.
1385 *
1386 * page_cache_sync_readahead() should be called when a cache miss happened:
1387 * it will submit the read. The readahead logic may decide to piggyback more
1388 * pages onto the read request if access patterns suggest it will improve
1389 * performance.
1390 */
1391static inline
1392void page_cache_sync_readahead(struct address_space *mapping,
1393 struct file_ra_state *ra, struct file *file, pgoff_t index,
1394 unsigned long req_count)
1395{
1396 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1397 page_cache_sync_ra(&ractl, req_count);
1398}
1399
1400/**
1401 * page_cache_async_readahead - file readahead for marked pages
1402 * @mapping: address_space which holds the pagecache and I/O vectors
1403 * @ra: file_ra_state which holds the readahead state
1404 * @file: Used by the filesystem for authentication.
1405 * @folio: The folio which triggered the readahead call.
1406 * @req_count: Total number of pages being read by the caller.
1407 *
1408 * page_cache_async_readahead() should be called when a page is used which
1409 * is marked as PageReadahead; this is a marker to suggest that the application
1410 * has used up enough of the readahead window that we should start pulling in
1411 * more pages.
1412 */
1413static inline
1414void page_cache_async_readahead(struct address_space *mapping,
1415 struct file_ra_state *ra, struct file *file,
1416 struct folio *folio, unsigned long req_count)
1417{
1418 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1419 page_cache_async_ra(&ractl, folio, req_count);
1420}
1421
1422static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1423{
1424 struct folio *folio;
1425
1426 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1427 ractl->_nr_pages -= ractl->_batch_count;
1428 ractl->_index += ractl->_batch_count;
1429
1430 if (!ractl->_nr_pages) {
1431 ractl->_batch_count = 0;
1432 return NULL;
1433 }
1434
1435 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1436 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1437 ractl->_batch_count = folio_nr_pages(folio);
1438
1439 return folio;
1440}
1441
1442/**
1443 * readahead_page - Get the next page to read.
1444 * @ractl: The current readahead request.
1445 *
1446 * Context: The page is locked and has an elevated refcount. The caller
1447 * should decreases the refcount once the page has been submitted for I/O
1448 * and unlock the page once all I/O to that page has completed.
1449 * Return: A pointer to the next page, or %NULL if we are done.
1450 */
1451static inline struct page *readahead_page(struct readahead_control *ractl)
1452{
1453 struct folio *folio = __readahead_folio(ractl);
1454
1455 return &folio->page;
1456}
1457
1458/**
1459 * readahead_folio - Get the next folio to read.
1460 * @ractl: The current readahead request.
1461 *
1462 * Context: The folio is locked. The caller should unlock the folio once
1463 * all I/O to that folio has completed.
1464 * Return: A pointer to the next folio, or %NULL if we are done.
1465 */
1466static inline struct folio *readahead_folio(struct readahead_control *ractl)
1467{
1468 struct folio *folio = __readahead_folio(ractl);
1469
1470 if (folio)
1471 folio_put(folio);
1472 return folio;
1473}
1474
1475static inline unsigned int __readahead_batch(struct readahead_control *rac,
1476 struct page **array, unsigned int array_sz)
1477{
1478 unsigned int i = 0;
1479 XA_STATE(xas, &rac->mapping->i_pages, 0);
1480 struct page *page;
1481
1482 BUG_ON(rac->_batch_count > rac->_nr_pages);
1483 rac->_nr_pages -= rac->_batch_count;
1484 rac->_index += rac->_batch_count;
1485 rac->_batch_count = 0;
1486
1487 xas_set(&xas, rac->_index);
1488 rcu_read_lock();
1489 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1490 if (xas_retry(&xas, page))
1491 continue;
1492 VM_BUG_ON_PAGE(!PageLocked(page), page);
1493 VM_BUG_ON_PAGE(PageTail(page), page);
1494 array[i++] = page;
1495 rac->_batch_count += thp_nr_pages(page);
1496 if (i == array_sz)
1497 break;
1498 }
1499 rcu_read_unlock();
1500
1501 return i;
1502}
1503
1504/**
1505 * readahead_page_batch - Get a batch of pages to read.
1506 * @rac: The current readahead request.
1507 * @array: An array of pointers to struct page.
1508 *
1509 * Context: The pages are locked and have an elevated refcount. The caller
1510 * should decreases the refcount once the page has been submitted for I/O
1511 * and unlock the page once all I/O to that page has completed.
1512 * Return: The number of pages placed in the array. 0 indicates the request
1513 * is complete.
1514 */
1515#define readahead_page_batch(rac, array) \
1516 __readahead_batch(rac, array, ARRAY_SIZE(array))
1517
1518/**
1519 * readahead_pos - The byte offset into the file of this readahead request.
1520 * @rac: The readahead request.
1521 */
1522static inline loff_t readahead_pos(struct readahead_control *rac)
1523{
1524 return (loff_t)rac->_index * PAGE_SIZE;
1525}
1526
1527/**
1528 * readahead_length - The number of bytes in this readahead request.
1529 * @rac: The readahead request.
1530 */
1531static inline size_t readahead_length(struct readahead_control *rac)
1532{
1533 return rac->_nr_pages * PAGE_SIZE;
1534}
1535
1536/**
1537 * readahead_index - The index of the first page in this readahead request.
1538 * @rac: The readahead request.
1539 */
1540static inline pgoff_t readahead_index(struct readahead_control *rac)
1541{
1542 return rac->_index;
1543}
1544
1545/**
1546 * readahead_count - The number of pages in this readahead request.
1547 * @rac: The readahead request.
1548 */
1549static inline unsigned int readahead_count(struct readahead_control *rac)
1550{
1551 return rac->_nr_pages;
1552}
1553
1554/**
1555 * readahead_batch_length - The number of bytes in the current batch.
1556 * @rac: The readahead request.
1557 */
1558static inline size_t readahead_batch_length(struct readahead_control *rac)
1559{
1560 return rac->_batch_count * PAGE_SIZE;
1561}
1562
1563static inline unsigned long dir_pages(struct inode *inode)
1564{
1565 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1566 PAGE_SHIFT;
1567}
1568
1569/**
1570 * folio_mkwrite_check_truncate - check if folio was truncated
1571 * @folio: the folio to check
1572 * @inode: the inode to check the folio against
1573 *
1574 * Return: the number of bytes in the folio up to EOF,
1575 * or -EFAULT if the folio was truncated.
1576 */
1577static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1578 struct inode *inode)
1579{
1580 loff_t size = i_size_read(inode);
1581 pgoff_t index = size >> PAGE_SHIFT;
1582 size_t offset = offset_in_folio(folio, size);
1583
1584 if (!folio->mapping)
1585 return -EFAULT;
1586
1587 /* folio is wholly inside EOF */
1588 if (folio_next_index(folio) - 1 < index)
1589 return folio_size(folio);
1590 /* folio is wholly past EOF */
1591 if (folio->index > index || !offset)
1592 return -EFAULT;
1593 /* folio is partially inside EOF */
1594 return offset;
1595}
1596
1597/**
1598 * page_mkwrite_check_truncate - check if page was truncated
1599 * @page: the page to check
1600 * @inode: the inode to check the page against
1601 *
1602 * Returns the number of bytes in the page up to EOF,
1603 * or -EFAULT if the page was truncated.
1604 */
1605static inline int page_mkwrite_check_truncate(struct page *page,
1606 struct inode *inode)
1607{
1608 loff_t size = i_size_read(inode);
1609 pgoff_t index = size >> PAGE_SHIFT;
1610 int offset = offset_in_page(size);
1611
1612 if (page->mapping != inode->i_mapping)
1613 return -EFAULT;
1614
1615 /* page is wholly inside EOF */
1616 if (page->index < index)
1617 return PAGE_SIZE;
1618 /* page is wholly past EOF */
1619 if (page->index > index || !offset)
1620 return -EFAULT;
1621 /* page is partially inside EOF */
1622 return offset;
1623}
1624
1625/**
1626 * i_blocks_per_folio - How many blocks fit in this folio.
1627 * @inode: The inode which contains the blocks.
1628 * @folio: The folio.
1629 *
1630 * If the block size is larger than the size of this folio, return zero.
1631 *
1632 * Context: The caller should hold a refcount on the folio to prevent it
1633 * from being split.
1634 * Return: The number of filesystem blocks covered by this folio.
1635 */
1636static inline
1637unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1638{
1639 return folio_size(folio) >> inode->i_blkbits;
1640}
1641#endif /* _LINUX_PAGEMAP_H */