Linux Audio

Check our new training course

Loading...
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 
 19
 20/* L: Logical segment # in volume, R: Relative segment # in main area */
 21#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 22#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 23
 24#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 25#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 
 
 
 
 
 
 
 26
 27#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 28#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 29#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 30
 31#define IS_CURSEG(sbi, seg)						\
 32	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 33	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 34	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 35	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 36	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 37	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 
 
 38
 39#define IS_CURSEC(sbi, secno)						\
 40	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 41	  (sbi)->segs_per_sec) ||	\
 42	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 43	  (sbi)->segs_per_sec) ||	\
 44	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 45	  (sbi)->segs_per_sec) ||	\
 46	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 47	  (sbi)->segs_per_sec) ||	\
 48	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 49	  (sbi)->segs_per_sec) ||	\
 50	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 51	  (sbi)->segs_per_sec))	\
 
 
 
 
 52
 53#define MAIN_BLKADDR(sbi)						\
 54	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 55		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 56#define SEG0_BLKADDR(sbi)						\
 57	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 58		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 59
 60#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 61#define MAIN_SECS(sbi)	((sbi)->total_sections)
 62
 63#define TOTAL_SEGS(sbi)							\
 64	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 65		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 66#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 67
 68#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 69#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 70					(sbi)->log_blocks_per_seg))
 71
 72#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 73	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 74
 75#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 76	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 77
 78#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 79#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 80	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 81#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 82	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 83
 84#define GET_SEGNO(sbi, blk_addr)					\
 85	((!__is_valid_data_blkaddr(blk_addr)) ?			\
 86	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 87		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 88#define BLKS_PER_SEC(sbi)					\
 89	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 
 
 
 90#define GET_SEC_FROM_SEG(sbi, segno)				\
 91	((segno) / (sbi)->segs_per_sec)
 92#define GET_SEG_FROM_SEC(sbi, secno)				\
 93	((secno) * (sbi)->segs_per_sec)
 94#define GET_ZONE_FROM_SEC(sbi, secno)				\
 95	((secno) / (sbi)->secs_per_zone)
 96#define GET_ZONE_FROM_SEG(sbi, segno)				\
 97	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 98
 99#define GET_SUM_BLOCK(sbi, segno)				\
100	((sbi)->sm_info->ssa_blkaddr + (segno))
101
102#define GET_SUM_TYPE(footer) ((footer)->entry_type)
103#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104
105#define SIT_ENTRY_OFFSET(sit_i, segno)					\
106	((segno) % (sit_i)->sents_per_block)
107#define SIT_BLOCK_OFFSET(segno)					\
108	((segno) / SIT_ENTRY_PER_BLOCK)
109#define	START_SEGNO(segno)		\
110	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111#define SIT_BLK_CNT(sbi)			\
112	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113#define f2fs_bitmap_size(nr)			\
114	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115
116#define SECTOR_FROM_BLOCK(blk_addr)					\
117	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118#define SECTOR_TO_BLOCK(sectors)					\
119	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120
121/*
122 * indicate a block allocation direction: RIGHT and LEFT.
123 * RIGHT means allocating new sections towards the end of volume.
124 * LEFT means the opposite direction.
125 */
126enum {
127	ALLOC_RIGHT = 0,
128	ALLOC_LEFT
129};
130
131/*
132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133 * LFS writes data sequentially with cleaning operations.
134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 
 
135 */
136enum {
137	LFS = 0,
138	SSR
 
139};
140
141/*
142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143 * GC_CB is based on cost-benefit algorithm.
144 * GC_GREEDY is based on greedy algorithm.
 
145 */
146enum {
147	GC_CB = 0,
148	GC_GREEDY,
 
149	ALLOC_NEXT,
150	FLUSH_DEVICE,
151	MAX_GC_POLICY,
152};
153
154/*
155 * BG_GC means the background cleaning job.
156 * FG_GC means the on-demand cleaning job.
157 * FORCE_FG_GC means on-demand cleaning job in background.
158 */
159enum {
160	BG_GC = 0,
161	FG_GC,
162	FORCE_FG_GC,
163};
164
165/* for a function parameter to select a victim segment */
166struct victim_sel_policy {
167	int alloc_mode;			/* LFS or SSR */
168	int gc_mode;			/* GC_CB or GC_GREEDY */
169	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
170	unsigned int max_search;	/*
171					 * maximum # of segments/sections
172					 * to search
173					 */
174	unsigned int offset;		/* last scanned bitmap offset */
175	unsigned int ofs_unit;		/* bitmap search unit */
176	unsigned int min_cost;		/* minimum cost */
 
177	unsigned int min_segno;		/* segment # having min. cost */
 
 
178};
179
180struct seg_entry {
181	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182	unsigned int valid_blocks:10;	/* # of valid blocks */
183	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184	unsigned int padding:6;		/* padding */
185	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186#ifdef CONFIG_F2FS_CHECK_FS
187	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188#endif
189	/*
190	 * # of valid blocks and the validity bitmap stored in the last
191	 * checkpoint pack. This information is used by the SSR mode.
192	 */
193	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194	unsigned char *discard_map;
195	unsigned long long mtime;	/* modification time of the segment */
196};
197
198struct sec_entry {
199	unsigned int valid_blocks;	/* # of valid blocks in a section */
200};
201
202struct segment_allocation {
203	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204};
205
206#define MAX_SKIP_GC_COUNT			16
207
208struct inmem_pages {
209	struct list_head list;
210	struct page *page;
211	block_t old_addr;		/* for revoking when fail to commit */
 
212};
213
214struct sit_info {
215	const struct segment_allocation *s_ops;
216
217	block_t sit_base_addr;		/* start block address of SIT area */
218	block_t sit_blocks;		/* # of blocks used by SIT area */
219	block_t written_valid_blocks;	/* # of valid blocks in main area */
220	char *bitmap;			/* all bitmaps pointer */
221	char *sit_bitmap;		/* SIT bitmap pointer */
222#ifdef CONFIG_F2FS_CHECK_FS
223	char *sit_bitmap_mir;		/* SIT bitmap mirror */
224
225	/* bitmap of segments to be ignored by GC in case of errors */
226	unsigned long *invalid_segmap;
227#endif
228	unsigned int bitmap_size;	/* SIT bitmap size */
229
230	unsigned long *tmp_map;			/* bitmap for temporal use */
231	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
232	unsigned int dirty_sentries;		/* # of dirty sentries */
233	unsigned int sents_per_block;		/* # of SIT entries per block */
234	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
235	struct seg_entry *sentries;		/* SIT segment-level cache */
236	struct sec_entry *sec_entries;		/* SIT section-level cache */
237
238	/* for cost-benefit algorithm in cleaning procedure */
239	unsigned long long elapsed_time;	/* elapsed time after mount */
240	unsigned long long mounted_time;	/* mount time */
241	unsigned long long min_mtime;		/* min. modification time */
242	unsigned long long max_mtime;		/* max. modification time */
 
 
243
244	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
245};
246
247struct free_segmap_info {
248	unsigned int start_segno;	/* start segment number logically */
249	unsigned int free_segments;	/* # of free segments */
250	unsigned int free_sections;	/* # of free sections */
251	spinlock_t segmap_lock;		/* free segmap lock */
252	unsigned long *free_segmap;	/* free segment bitmap */
253	unsigned long *free_secmap;	/* free section bitmap */
254};
255
256/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
257enum dirty_type {
258	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
259	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
260	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
261	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
262	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
263	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
264	DIRTY,			/* to count # of dirty segments */
265	PRE,			/* to count # of entirely obsolete segments */
266	NR_DIRTY_TYPE
267};
268
269struct dirty_seglist_info {
270	const struct victim_selection *v_ops;	/* victim selction operation */
271	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
272	unsigned long *dirty_secmap;
273	struct mutex seglist_lock;		/* lock for segment bitmaps */
274	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
275	unsigned long *victim_secmap;		/* background GC victims */
276};
277
278/* victim selection function for cleaning and SSR */
279struct victim_selection {
280	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
281							int, int, char);
282};
283
284/* for active log information */
285struct curseg_info {
286	struct mutex curseg_mutex;		/* lock for consistency */
287	struct f2fs_summary_block *sum_blk;	/* cached summary block */
288	struct rw_semaphore journal_rwsem;	/* protect journal area */
289	struct f2fs_journal *journal;		/* cached journal info */
290	unsigned char alloc_type;		/* current allocation type */
 
291	unsigned int segno;			/* current segment number */
292	unsigned short next_blkoff;		/* next block offset to write */
293	unsigned int zone;			/* current zone number */
294	unsigned int next_segno;		/* preallocated segment */
 
 
295};
296
297struct sit_entry_set {
298	struct list_head set_list;	/* link with all sit sets */
299	unsigned int start_segno;	/* start segno of sits in set */
300	unsigned int entry_cnt;		/* the # of sit entries in set */
301};
302
303/*
304 * inline functions
305 */
306static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
307{
308	if (type == CURSEG_COLD_DATA_PINNED)
309		type = CURSEG_COLD_DATA;
310	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
311}
312
313static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
314						unsigned int segno)
315{
316	struct sit_info *sit_i = SIT_I(sbi);
317	return &sit_i->sentries[segno];
318}
319
320static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
321						unsigned int segno)
322{
323	struct sit_info *sit_i = SIT_I(sbi);
324	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
325}
326
327static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
328				unsigned int segno, bool use_section)
329{
330	/*
331	 * In order to get # of valid blocks in a section instantly from many
332	 * segments, f2fs manages two counting structures separately.
333	 */
334	if (use_section && __is_large_section(sbi))
335		return get_sec_entry(sbi, segno)->valid_blocks;
336	else
337		return get_seg_entry(sbi, segno)->valid_blocks;
338}
339
340static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
341				unsigned int segno)
342{
 
 
 
 
 
 
 
 
 
 
 
 
343	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
344}
345
346static inline void seg_info_from_raw_sit(struct seg_entry *se,
347					struct f2fs_sit_entry *rs)
348{
349	se->valid_blocks = GET_SIT_VBLOCKS(rs);
350	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
351	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
353#ifdef CONFIG_F2FS_CHECK_FS
354	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
355#endif
356	se->type = GET_SIT_TYPE(rs);
357	se->mtime = le64_to_cpu(rs->mtime);
358}
359
360static inline void __seg_info_to_raw_sit(struct seg_entry *se,
361					struct f2fs_sit_entry *rs)
362{
363	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
364					se->valid_blocks;
365	rs->vblocks = cpu_to_le16(raw_vblocks);
366	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
367	rs->mtime = cpu_to_le64(se->mtime);
368}
369
370static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
371				struct page *page, unsigned int start)
372{
373	struct f2fs_sit_block *raw_sit;
374	struct seg_entry *se;
375	struct f2fs_sit_entry *rs;
376	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
377					(unsigned long)MAIN_SEGS(sbi));
378	int i;
379
380	raw_sit = (struct f2fs_sit_block *)page_address(page);
381	memset(raw_sit, 0, PAGE_SIZE);
382	for (i = 0; i < end - start; i++) {
383		rs = &raw_sit->entries[i];
384		se = get_seg_entry(sbi, start + i);
385		__seg_info_to_raw_sit(se, rs);
386	}
387}
388
389static inline void seg_info_to_raw_sit(struct seg_entry *se,
390					struct f2fs_sit_entry *rs)
391{
392	__seg_info_to_raw_sit(se, rs);
393
394	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
395	se->ckpt_valid_blocks = se->valid_blocks;
396}
397
398static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
399		unsigned int max, unsigned int segno)
400{
401	unsigned int ret;
402	spin_lock(&free_i->segmap_lock);
403	ret = find_next_bit(free_i->free_segmap, max, segno);
404	spin_unlock(&free_i->segmap_lock);
405	return ret;
406}
407
408static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
409{
410	struct free_segmap_info *free_i = FREE_I(sbi);
411	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
412	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
413	unsigned int next;
 
414
415	spin_lock(&free_i->segmap_lock);
416	clear_bit(segno, free_i->free_segmap);
417	free_i->free_segments++;
418
419	next = find_next_bit(free_i->free_segmap,
420			start_segno + sbi->segs_per_sec, start_segno);
421	if (next >= start_segno + sbi->segs_per_sec) {
422		clear_bit(secno, free_i->free_secmap);
423		free_i->free_sections++;
424	}
425	spin_unlock(&free_i->segmap_lock);
426}
427
428static inline void __set_inuse(struct f2fs_sb_info *sbi,
429		unsigned int segno)
430{
431	struct free_segmap_info *free_i = FREE_I(sbi);
432	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
433
434	set_bit(segno, free_i->free_segmap);
435	free_i->free_segments--;
436	if (!test_and_set_bit(secno, free_i->free_secmap))
437		free_i->free_sections--;
438}
439
440static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
441		unsigned int segno)
442{
443	struct free_segmap_info *free_i = FREE_I(sbi);
444	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
445	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
446	unsigned int next;
 
447
448	spin_lock(&free_i->segmap_lock);
449	if (test_and_clear_bit(segno, free_i->free_segmap)) {
450		free_i->free_segments++;
451
452		if (IS_CURSEC(sbi, secno))
453			goto skip_free;
454		next = find_next_bit(free_i->free_segmap,
455				start_segno + sbi->segs_per_sec, start_segno);
456		if (next >= start_segno + sbi->segs_per_sec) {
457			if (test_and_clear_bit(secno, free_i->free_secmap))
458				free_i->free_sections++;
459		}
460	}
461skip_free:
462	spin_unlock(&free_i->segmap_lock);
463}
464
465static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
466		unsigned int segno)
467{
468	struct free_segmap_info *free_i = FREE_I(sbi);
469	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
470
471	spin_lock(&free_i->segmap_lock);
472	if (!test_and_set_bit(segno, free_i->free_segmap)) {
473		free_i->free_segments--;
474		if (!test_and_set_bit(secno, free_i->free_secmap))
475			free_i->free_sections--;
476	}
477	spin_unlock(&free_i->segmap_lock);
478}
479
480static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
481		void *dst_addr)
482{
483	struct sit_info *sit_i = SIT_I(sbi);
484
485#ifdef CONFIG_F2FS_CHECK_FS
486	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
487						sit_i->bitmap_size))
488		f2fs_bug_on(sbi, 1);
489#endif
490	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
491}
492
493static inline block_t written_block_count(struct f2fs_sb_info *sbi)
494{
495	return SIT_I(sbi)->written_valid_blocks;
496}
497
498static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
499{
500	return FREE_I(sbi)->free_segments;
501}
502
503static inline int reserved_segments(struct f2fs_sb_info *sbi)
504{
505	return SM_I(sbi)->reserved_segments;
 
506}
507
508static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
509{
510	return FREE_I(sbi)->free_sections;
511}
512
513static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
514{
515	return DIRTY_I(sbi)->nr_dirty[PRE];
516}
517
518static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
519{
520	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
521		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
522		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
523		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
524		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
525		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
526}
527
528static inline int overprovision_segments(struct f2fs_sb_info *sbi)
529{
530	return SM_I(sbi)->ovp_segments;
531}
532
533static inline int reserved_sections(struct f2fs_sb_info *sbi)
534{
535	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
536}
537
538static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
 
539{
540	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
541					get_pages(sbi, F2FS_DIRTY_DENTS);
542	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
543	unsigned int segno, left_blocks;
544	int i;
545
546	/* check current node segment */
547	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
548		segno = CURSEG_I(sbi, i)->segno;
549		left_blocks = sbi->blocks_per_seg -
550			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
551
552		if (node_blocks > left_blocks)
553			return false;
554	}
555
556	/* check current data segment */
557	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
558	left_blocks = sbi->blocks_per_seg -
559			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
560	if (dent_blocks > left_blocks)
561		return false;
562	return true;
563}
564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
566					int freed, int needed)
567{
568	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
569	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
570	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
571
572	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
573		return false;
574
575	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
576			has_curseg_enough_space(sbi))
 
 
 
 
 
577		return false;
578	return (free_sections(sbi) + freed) <=
579		(node_secs + 2 * dent_secs + imeta_secs +
580		reserved_sections(sbi) + needed);
 
 
 
 
 
 
581}
582
583static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
584{
585	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
586		return true;
587	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
588		return true;
589	return false;
590}
591
592static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
593{
594	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
595}
596
597static inline int utilization(struct f2fs_sb_info *sbi)
598{
599	return div_u64((u64)valid_user_blocks(sbi) * 100,
600					sbi->user_block_count);
601}
602
603/*
604 * Sometimes f2fs may be better to drop out-of-place update policy.
605 * And, users can control the policy through sysfs entries.
606 * There are five policies with triggering conditions as follows.
607 * F2FS_IPU_FORCE - all the time,
608 * F2FS_IPU_SSR - if SSR mode is activated,
609 * F2FS_IPU_UTIL - if FS utilization is over threashold,
610 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
611 *                     threashold,
612 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
613 *                     storages. IPU will be triggered only if the # of dirty
614 *                     pages over min_fsync_blocks. (=default option)
615 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
616 * F2FS_IPU_NOCACHE - disable IPU bio cache.
617 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
 
 
618 */
619#define DEF_MIN_IPU_UTIL	70
620#define DEF_MIN_FSYNC_BLOCKS	8
621#define DEF_MIN_HOT_BLOCKS	16
622
623#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
624
 
 
 
625enum {
626	F2FS_IPU_FORCE,
627	F2FS_IPU_SSR,
628	F2FS_IPU_UTIL,
629	F2FS_IPU_SSR_UTIL,
630	F2FS_IPU_FSYNC,
631	F2FS_IPU_ASYNC,
632	F2FS_IPU_NOCACHE,
 
 
633};
634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
635static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
636		int type)
637{
638	struct curseg_info *curseg = CURSEG_I(sbi, type);
639	return curseg->segno;
640}
641
642static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
643		int type)
644{
645	struct curseg_info *curseg = CURSEG_I(sbi, type);
646	return curseg->alloc_type;
647}
648
649static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
650{
651	struct curseg_info *curseg = CURSEG_I(sbi, type);
652	return curseg->next_blkoff;
653}
654
655static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
656{
657	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
658}
659
660static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
661{
662	struct f2fs_sb_info *sbi = fio->sbi;
663
664	if (__is_valid_data_blkaddr(fio->old_blkaddr))
665		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
666					META_GENERIC : DATA_GENERIC);
667	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
668					META_GENERIC : DATA_GENERIC_ENHANCE);
669}
670
671/*
672 * Summary block is always treated as an invalid block
673 */
674static inline int check_block_count(struct f2fs_sb_info *sbi,
675		int segno, struct f2fs_sit_entry *raw_sit)
676{
677	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
678	int valid_blocks = 0;
679	int cur_pos = 0, next_pos;
 
680
681	/* check bitmap with valid block count */
682	do {
683		if (is_valid) {
684			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
685					sbi->blocks_per_seg,
686					cur_pos);
687			valid_blocks += next_pos - cur_pos;
688		} else
689			next_pos = find_next_bit_le(&raw_sit->valid_map,
690					sbi->blocks_per_seg,
691					cur_pos);
692		cur_pos = next_pos;
693		is_valid = !is_valid;
694	} while (cur_pos < sbi->blocks_per_seg);
695
696	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
697		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
698			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
699		set_sbi_flag(sbi, SBI_NEED_FSCK);
 
700		return -EFSCORRUPTED;
701	}
702
 
 
 
 
 
703	/* check segment usage, and check boundary of a given segment number */
704	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
705					|| segno > TOTAL_SEGS(sbi) - 1)) {
706		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
707			 GET_SIT_VBLOCKS(raw_sit), segno);
708		set_sbi_flag(sbi, SBI_NEED_FSCK);
 
709		return -EFSCORRUPTED;
710	}
711	return 0;
712}
713
714static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
715						unsigned int start)
716{
717	struct sit_info *sit_i = SIT_I(sbi);
718	unsigned int offset = SIT_BLOCK_OFFSET(start);
719	block_t blk_addr = sit_i->sit_base_addr + offset;
720
721	check_seg_range(sbi, start);
722
723#ifdef CONFIG_F2FS_CHECK_FS
724	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
725			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
726		f2fs_bug_on(sbi, 1);
727#endif
728
729	/* calculate sit block address */
730	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
731		blk_addr += sit_i->sit_blocks;
732
733	return blk_addr;
734}
735
736static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
737						pgoff_t block_addr)
738{
739	struct sit_info *sit_i = SIT_I(sbi);
740	block_addr -= sit_i->sit_base_addr;
741	if (block_addr < sit_i->sit_blocks)
742		block_addr += sit_i->sit_blocks;
743	else
744		block_addr -= sit_i->sit_blocks;
745
746	return block_addr + sit_i->sit_base_addr;
747}
748
749static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
750{
751	unsigned int block_off = SIT_BLOCK_OFFSET(start);
752
753	f2fs_change_bit(block_off, sit_i->sit_bitmap);
754#ifdef CONFIG_F2FS_CHECK_FS
755	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
756#endif
757}
758
759static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
760						bool base_time)
761{
762	struct sit_info *sit_i = SIT_I(sbi);
763	time64_t diff, now = ktime_get_boottime_seconds();
764
765	if (now >= sit_i->mounted_time)
766		return sit_i->elapsed_time + now - sit_i->mounted_time;
767
768	/* system time is set to the past */
769	if (!base_time) {
770		diff = sit_i->mounted_time - now;
771		if (sit_i->elapsed_time >= diff)
772			return sit_i->elapsed_time - diff;
773		return 0;
774	}
775	return sit_i->elapsed_time;
776}
777
778static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
779			unsigned int ofs_in_node, unsigned char version)
780{
781	sum->nid = cpu_to_le32(nid);
782	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
783	sum->version = version;
784}
785
786static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
787{
788	return __start_cp_addr(sbi) +
789		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
790}
791
792static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
793{
794	return __start_cp_addr(sbi) +
795		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
796				- (base + 1) + type;
797}
798
799static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
800{
801	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
802		return true;
803	return false;
804}
805
806/*
807 * It is very important to gather dirty pages and write at once, so that we can
808 * submit a big bio without interfering other data writes.
809 * By default, 512 pages for directory data,
810 * 512 pages (2MB) * 8 for nodes, and
811 * 256 pages * 8 for meta are set.
812 */
813static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
814{
815	if (sbi->sb->s_bdi->wb.dirty_exceeded)
816		return 0;
817
818	if (type == DATA)
819		return sbi->blocks_per_seg;
820	else if (type == NODE)
821		return 8 * sbi->blocks_per_seg;
822	else if (type == META)
823		return 8 * BIO_MAX_PAGES;
824	else
825		return 0;
826}
827
828/*
829 * When writing pages, it'd better align nr_to_write for segment size.
830 */
831static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
832					struct writeback_control *wbc)
833{
834	long nr_to_write, desired;
835
836	if (wbc->sync_mode != WB_SYNC_NONE)
837		return 0;
838
839	nr_to_write = wbc->nr_to_write;
840	desired = BIO_MAX_PAGES;
841	if (type == NODE)
842		desired <<= 1;
843
844	wbc->nr_to_write = desired;
845	return desired - nr_to_write;
846}
847
848static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
849{
850	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
851	bool wakeup = false;
852	int i;
853
854	if (force)
855		goto wake_up;
856
857	mutex_lock(&dcc->cmd_lock);
858	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
859		if (i + 1 < dcc->discard_granularity)
860			break;
861		if (!list_empty(&dcc->pend_list[i])) {
862			wakeup = true;
863			break;
864		}
865	}
866	mutex_unlock(&dcc->cmd_lock);
867	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
868		return;
869wake_up:
870	dcc->discard_wake = 1;
871	wake_up_interruptible_all(&dcc->discard_wait_queue);
 
 
 
 
 
 
 
 
 
 
872}
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
 20
 21/* L: Logical segment # in volume, R: Relative segment # in main area */
 22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 24
 25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
 27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
 28
 29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
 30						unsigned short seg_type)
 31{
 32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
 33}
 34
 35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 38
 39#define IS_CURSEG(sbi, seg)						\
 40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
 46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
 47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
 48
 49#define IS_CURSEC(sbi, secno)						\
 50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 51	  SEGS_PER_SEC(sbi)) ||	\
 52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 53	  SEGS_PER_SEC(sbi)) ||	\
 54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 55	  SEGS_PER_SEC(sbi)) ||	\
 56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 57	  SEGS_PER_SEC(sbi)) ||	\
 58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 59	  SEGS_PER_SEC(sbi)) ||	\
 60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 61	  SEGS_PER_SEC(sbi)) ||	\
 62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
 63	  SEGS_PER_SEC(sbi)) ||	\
 64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
 65	  SEGS_PER_SEC(sbi)))
 66
 67#define MAIN_BLKADDR(sbi)						\
 68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 70#define SEG0_BLKADDR(sbi)						\
 71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 73
 74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 75#define MAIN_SECS(sbi)	((sbi)->total_sections)
 76
 77#define TOTAL_SEGS(sbi)							\
 78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 80#define TOTAL_BLKS(sbi)	(SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
 81
 82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 84					(sbi)->log_blocks_per_seg))
 85
 86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 87	 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
 88
 89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 91
 92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 94	(BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
 95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
 97
 98#define GET_SEGNO(sbi, blk_addr)					\
 99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define CAP_BLKS_PER_SEC(sbi)					\
103	(BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
104#define CAP_SEGS_PER_SEC(sbi)					\
105	(SEGS_PER_SEC(sbi) -					\
106	BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
107#define GET_SEC_FROM_SEG(sbi, segno)				\
108	(((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109#define GET_SEG_FROM_SEC(sbi, secno)				\
110	((secno) * SEGS_PER_SEC(sbi))
111#define GET_ZONE_FROM_SEC(sbi, secno)				\
112	(((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113#define GET_ZONE_FROM_SEG(sbi, segno)				\
114	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116#define GET_SUM_BLOCK(sbi, segno)				\
117	((sbi)->sm_info->ssa_blkaddr + (segno))
118
119#define GET_SUM_TYPE(footer) ((footer)->entry_type)
120#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122#define SIT_ENTRY_OFFSET(sit_i, segno)					\
123	((segno) % (sit_i)->sents_per_block)
124#define SIT_BLOCK_OFFSET(segno)					\
125	((segno) / SIT_ENTRY_PER_BLOCK)
126#define	START_SEGNO(segno)		\
127	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128#define SIT_BLK_CNT(sbi)			\
129	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130#define f2fs_bitmap_size(nr)			\
131	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133#define SECTOR_FROM_BLOCK(blk_addr)					\
134	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135#define SECTOR_TO_BLOCK(sectors)					\
136	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138/*
139 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
 
 
 
 
 
 
 
 
 
 
140 * LFS writes data sequentially with cleaning operations.
141 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143 * fragmented segment which has similar aging degree.
144 */
145enum {
146	LFS = 0,
147	SSR,
148	AT_SSR,
149};
150
151/*
152 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153 * GC_CB is based on cost-benefit algorithm.
154 * GC_GREEDY is based on greedy algorithm.
155 * GC_AT is based on age-threshold algorithm.
156 */
157enum {
158	GC_CB = 0,
159	GC_GREEDY,
160	GC_AT,
161	ALLOC_NEXT,
162	FLUSH_DEVICE,
163	MAX_GC_POLICY,
164};
165
166/*
167 * BG_GC means the background cleaning job.
168 * FG_GC means the on-demand cleaning job.
 
169 */
170enum {
171	BG_GC = 0,
172	FG_GC,
 
173};
174
175/* for a function parameter to select a victim segment */
176struct victim_sel_policy {
177	int alloc_mode;			/* LFS or SSR */
178	int gc_mode;			/* GC_CB or GC_GREEDY */
179	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
180	unsigned int max_search;	/*
181					 * maximum # of segments/sections
182					 * to search
183					 */
184	unsigned int offset;		/* last scanned bitmap offset */
185	unsigned int ofs_unit;		/* bitmap search unit */
186	unsigned int min_cost;		/* minimum cost */
187	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
188	unsigned int min_segno;		/* segment # having min. cost */
189	unsigned long long age;		/* mtime of GCed section*/
190	unsigned long long age_threshold;/* age threshold */
191};
192
193struct seg_entry {
194	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
195	unsigned int valid_blocks:10;	/* # of valid blocks */
196	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
197	unsigned int padding:6;		/* padding */
198	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
199#ifdef CONFIG_F2FS_CHECK_FS
200	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
201#endif
202	/*
203	 * # of valid blocks and the validity bitmap stored in the last
204	 * checkpoint pack. This information is used by the SSR mode.
205	 */
206	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
207	unsigned char *discard_map;
208	unsigned long long mtime;	/* modification time of the segment */
209};
210
211struct sec_entry {
212	unsigned int valid_blocks;	/* # of valid blocks in a section */
213};
214
 
 
 
 
215#define MAX_SKIP_GC_COUNT			16
216
217struct revoke_entry {
218	struct list_head list;
 
219	block_t old_addr;		/* for revoking when fail to commit */
220	pgoff_t index;
221};
222
223struct sit_info {
 
 
224	block_t sit_base_addr;		/* start block address of SIT area */
225	block_t sit_blocks;		/* # of blocks used by SIT area */
226	block_t written_valid_blocks;	/* # of valid blocks in main area */
227	char *bitmap;			/* all bitmaps pointer */
228	char *sit_bitmap;		/* SIT bitmap pointer */
229#ifdef CONFIG_F2FS_CHECK_FS
230	char *sit_bitmap_mir;		/* SIT bitmap mirror */
231
232	/* bitmap of segments to be ignored by GC in case of errors */
233	unsigned long *invalid_segmap;
234#endif
235	unsigned int bitmap_size;	/* SIT bitmap size */
236
237	unsigned long *tmp_map;			/* bitmap for temporal use */
238	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
239	unsigned int dirty_sentries;		/* # of dirty sentries */
240	unsigned int sents_per_block;		/* # of SIT entries per block */
241	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
242	struct seg_entry *sentries;		/* SIT segment-level cache */
243	struct sec_entry *sec_entries;		/* SIT section-level cache */
244
245	/* for cost-benefit algorithm in cleaning procedure */
246	unsigned long long elapsed_time;	/* elapsed time after mount */
247	unsigned long long mounted_time;	/* mount time */
248	unsigned long long min_mtime;		/* min. modification time */
249	unsigned long long max_mtime;		/* max. modification time */
250	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
251	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
252
253	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254};
255
256struct free_segmap_info {
257	unsigned int start_segno;	/* start segment number logically */
258	unsigned int free_segments;	/* # of free segments */
259	unsigned int free_sections;	/* # of free sections */
260	spinlock_t segmap_lock;		/* free segmap lock */
261	unsigned long *free_segmap;	/* free segment bitmap */
262	unsigned long *free_secmap;	/* free section bitmap */
263};
264
265/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266enum dirty_type {
267	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
268	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
269	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
270	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
271	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
272	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
273	DIRTY,			/* to count # of dirty segments */
274	PRE,			/* to count # of entirely obsolete segments */
275	NR_DIRTY_TYPE
276};
277
278struct dirty_seglist_info {
 
279	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280	unsigned long *dirty_secmap;
281	struct mutex seglist_lock;		/* lock for segment bitmaps */
282	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
283	unsigned long *victim_secmap;		/* background GC victims */
284	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
285	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
286	bool enable_pin_section;		/* enable pinning section */
 
 
 
287};
288
289/* for active log information */
290struct curseg_info {
291	struct mutex curseg_mutex;		/* lock for consistency */
292	struct f2fs_summary_block *sum_blk;	/* cached summary block */
293	struct rw_semaphore journal_rwsem;	/* protect journal area */
294	struct f2fs_journal *journal;		/* cached journal info */
295	unsigned char alloc_type;		/* current allocation type */
296	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
297	unsigned int segno;			/* current segment number */
298	unsigned short next_blkoff;		/* next block offset to write */
299	unsigned int zone;			/* current zone number */
300	unsigned int next_segno;		/* preallocated segment */
301	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
302	bool inited;				/* indicate inmem log is inited */
303};
304
305struct sit_entry_set {
306	struct list_head set_list;	/* link with all sit sets */
307	unsigned int start_segno;	/* start segno of sits in set */
308	unsigned int entry_cnt;		/* the # of sit entries in set */
309};
310
311/*
312 * inline functions
313 */
314static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315{
 
 
316	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
317}
318
319static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
320						unsigned int segno)
321{
322	struct sit_info *sit_i = SIT_I(sbi);
323	return &sit_i->sentries[segno];
324}
325
326static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
327						unsigned int segno)
328{
329	struct sit_info *sit_i = SIT_I(sbi);
330	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
331}
332
333static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
334				unsigned int segno, bool use_section)
335{
336	/*
337	 * In order to get # of valid blocks in a section instantly from many
338	 * segments, f2fs manages two counting structures separately.
339	 */
340	if (use_section && __is_large_section(sbi))
341		return get_sec_entry(sbi, segno)->valid_blocks;
342	else
343		return get_seg_entry(sbi, segno)->valid_blocks;
344}
345
346static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
347				unsigned int segno, bool use_section)
348{
349	if (use_section && __is_large_section(sbi)) {
350		unsigned int start_segno = START_SEGNO(segno);
351		unsigned int blocks = 0;
352		int i;
353
354		for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
355			struct seg_entry *se = get_seg_entry(sbi, start_segno);
356
357			blocks += se->ckpt_valid_blocks;
358		}
359		return blocks;
360	}
361	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
362}
363
364static inline void seg_info_from_raw_sit(struct seg_entry *se,
365					struct f2fs_sit_entry *rs)
366{
367	se->valid_blocks = GET_SIT_VBLOCKS(rs);
368	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
369	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
370	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371#ifdef CONFIG_F2FS_CHECK_FS
372	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373#endif
374	se->type = GET_SIT_TYPE(rs);
375	se->mtime = le64_to_cpu(rs->mtime);
376}
377
378static inline void __seg_info_to_raw_sit(struct seg_entry *se,
379					struct f2fs_sit_entry *rs)
380{
381	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
382					se->valid_blocks;
383	rs->vblocks = cpu_to_le16(raw_vblocks);
384	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
385	rs->mtime = cpu_to_le64(se->mtime);
386}
387
388static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
389				struct page *page, unsigned int start)
390{
391	struct f2fs_sit_block *raw_sit;
392	struct seg_entry *se;
393	struct f2fs_sit_entry *rs;
394	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
395					(unsigned long)MAIN_SEGS(sbi));
396	int i;
397
398	raw_sit = (struct f2fs_sit_block *)page_address(page);
399	memset(raw_sit, 0, PAGE_SIZE);
400	for (i = 0; i < end - start; i++) {
401		rs = &raw_sit->entries[i];
402		se = get_seg_entry(sbi, start + i);
403		__seg_info_to_raw_sit(se, rs);
404	}
405}
406
407static inline void seg_info_to_raw_sit(struct seg_entry *se,
408					struct f2fs_sit_entry *rs)
409{
410	__seg_info_to_raw_sit(se, rs);
411
412	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413	se->ckpt_valid_blocks = se->valid_blocks;
414}
415
416static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
417		unsigned int max, unsigned int segno)
418{
419	unsigned int ret;
420	spin_lock(&free_i->segmap_lock);
421	ret = find_next_bit(free_i->free_segmap, max, segno);
422	spin_unlock(&free_i->segmap_lock);
423	return ret;
424}
425
426static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
427{
428	struct free_segmap_info *free_i = FREE_I(sbi);
429	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
431	unsigned int next;
432	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
433
434	spin_lock(&free_i->segmap_lock);
435	clear_bit(segno, free_i->free_segmap);
436	free_i->free_segments++;
437
438	next = find_next_bit(free_i->free_segmap,
439			start_segno + SEGS_PER_SEC(sbi), start_segno);
440	if (next >= start_segno + usable_segs) {
441		clear_bit(secno, free_i->free_secmap);
442		free_i->free_sections++;
443	}
444	spin_unlock(&free_i->segmap_lock);
445}
446
447static inline void __set_inuse(struct f2fs_sb_info *sbi,
448		unsigned int segno)
449{
450	struct free_segmap_info *free_i = FREE_I(sbi);
451	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
452
453	set_bit(segno, free_i->free_segmap);
454	free_i->free_segments--;
455	if (!test_and_set_bit(secno, free_i->free_secmap))
456		free_i->free_sections--;
457}
458
459static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
460		unsigned int segno, bool inmem)
461{
462	struct free_segmap_info *free_i = FREE_I(sbi);
463	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
465	unsigned int next;
466	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
467
468	spin_lock(&free_i->segmap_lock);
469	if (test_and_clear_bit(segno, free_i->free_segmap)) {
470		free_i->free_segments++;
471
472		if (!inmem && IS_CURSEC(sbi, secno))
473			goto skip_free;
474		next = find_next_bit(free_i->free_segmap,
475				start_segno + SEGS_PER_SEC(sbi), start_segno);
476		if (next >= start_segno + usable_segs) {
477			if (test_and_clear_bit(secno, free_i->free_secmap))
478				free_i->free_sections++;
479		}
480	}
481skip_free:
482	spin_unlock(&free_i->segmap_lock);
483}
484
485static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
486		unsigned int segno)
487{
488	struct free_segmap_info *free_i = FREE_I(sbi);
489	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490
491	spin_lock(&free_i->segmap_lock);
492	if (!test_and_set_bit(segno, free_i->free_segmap)) {
493		free_i->free_segments--;
494		if (!test_and_set_bit(secno, free_i->free_secmap))
495			free_i->free_sections--;
496	}
497	spin_unlock(&free_i->segmap_lock);
498}
499
500static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
501		void *dst_addr)
502{
503	struct sit_info *sit_i = SIT_I(sbi);
504
505#ifdef CONFIG_F2FS_CHECK_FS
506	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
507						sit_i->bitmap_size))
508		f2fs_bug_on(sbi, 1);
509#endif
510	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
511}
512
513static inline block_t written_block_count(struct f2fs_sb_info *sbi)
514{
515	return SIT_I(sbi)->written_valid_blocks;
516}
517
518static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
519{
520	return FREE_I(sbi)->free_segments;
521}
522
523static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
524{
525	return SM_I(sbi)->reserved_segments +
526			SM_I(sbi)->additional_reserved_segments;
527}
528
529static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
530{
531	return FREE_I(sbi)->free_sections;
532}
533
534static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
535{
536	return DIRTY_I(sbi)->nr_dirty[PRE];
537}
538
539static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
540{
541	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
542		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
543		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
544		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
545		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
546		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
547}
548
549static inline int overprovision_segments(struct f2fs_sb_info *sbi)
550{
551	return SM_I(sbi)->ovp_segments;
552}
553
554static inline int reserved_sections(struct f2fs_sb_info *sbi)
555{
556	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
557}
558
559static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
560			unsigned int node_blocks, unsigned int dent_blocks)
561{
562
563	unsigned segno, left_blocks;
 
 
564	int i;
565
566	/* check current node sections in the worst case. */
567	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
568		segno = CURSEG_I(sbi, i)->segno;
569		left_blocks = CAP_BLKS_PER_SEC(sbi) -
570				get_ckpt_valid_blocks(sbi, segno, true);
 
571		if (node_blocks > left_blocks)
572			return false;
573	}
574
575	/* check current data section for dentry blocks. */
576	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
577	left_blocks = CAP_BLKS_PER_SEC(sbi) -
578			get_ckpt_valid_blocks(sbi, segno, true);
579	if (dent_blocks > left_blocks)
580		return false;
581	return true;
582}
583
584/*
585 * calculate needed sections for dirty node/dentry
586 * and call has_curseg_enough_space
587 */
588static inline void __get_secs_required(struct f2fs_sb_info *sbi,
589		unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
590{
591	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
592					get_pages(sbi, F2FS_DIRTY_DENTS) +
593					get_pages(sbi, F2FS_DIRTY_IMETA);
594	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
595	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
596	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
597	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
598	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
599
600	if (lower_p)
601		*lower_p = node_secs + dent_secs;
602	if (upper_p)
603		*upper_p = node_secs + dent_secs +
604			(node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
605	if (curseg_p)
606		*curseg_p = has_curseg_enough_space(sbi,
607				node_blocks, dent_blocks);
608}
609
610static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
611					int freed, int needed)
612{
613	unsigned int free_secs, lower_secs, upper_secs;
614	bool curseg_space;
 
615
616	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
617		return false;
618
619	__get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
620
621	free_secs = free_sections(sbi) + freed;
622	lower_secs += needed + reserved_sections(sbi);
623	upper_secs += needed + reserved_sections(sbi);
624
625	if (free_secs > upper_secs)
626		return false;
627	if (free_secs <= lower_secs)
628		return true;
629	return !curseg_space;
630}
631
632static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
633					int freed, int needed)
634{
635	return !has_not_enough_free_secs(sbi, freed, needed);
636}
637
638static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
639{
640	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
641		return true;
642	if (likely(has_enough_free_secs(sbi, 0, 0)))
643		return true;
644	return false;
645}
646
647static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
648{
649	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
650}
651
652static inline int utilization(struct f2fs_sb_info *sbi)
653{
654	return div_u64((u64)valid_user_blocks(sbi) * 100,
655					sbi->user_block_count);
656}
657
658/*
659 * Sometimes f2fs may be better to drop out-of-place update policy.
660 * And, users can control the policy through sysfs entries.
661 * There are five policies with triggering conditions as follows.
662 * F2FS_IPU_FORCE - all the time,
663 * F2FS_IPU_SSR - if SSR mode is activated,
664 * F2FS_IPU_UTIL - if FS utilization is over threashold,
665 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
666 *                     threashold,
667 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
668 *                     storages. IPU will be triggered only if the # of dirty
669 *                     pages over min_fsync_blocks. (=default option)
670 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
671 * F2FS_IPU_NOCACHE - disable IPU bio cache.
672 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
673 *                            FI_OPU_WRITE flag.
674 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
675 */
676#define DEF_MIN_IPU_UTIL	70
677#define DEF_MIN_FSYNC_BLOCKS	8
678#define DEF_MIN_HOT_BLOCKS	16
679
680#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
681
682#define F2FS_IPU_DISABLE	0
683
684/* Modification on enum should be synchronized with ipu_mode_names array */
685enum {
686	F2FS_IPU_FORCE,
687	F2FS_IPU_SSR,
688	F2FS_IPU_UTIL,
689	F2FS_IPU_SSR_UTIL,
690	F2FS_IPU_FSYNC,
691	F2FS_IPU_ASYNC,
692	F2FS_IPU_NOCACHE,
693	F2FS_IPU_HONOR_OPU_WRITE,
694	F2FS_IPU_MAX,
695};
696
697static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
698{
699	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
700}
701
702#define F2FS_IPU_POLICY(name)					\
703static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
704{								\
705	return SM_I(sbi)->ipu_policy & BIT(name);		\
706}
707
708F2FS_IPU_POLICY(F2FS_IPU_FORCE);
709F2FS_IPU_POLICY(F2FS_IPU_SSR);
710F2FS_IPU_POLICY(F2FS_IPU_UTIL);
711F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
712F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
713F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
714F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
715F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
716
717static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
718		int type)
719{
720	struct curseg_info *curseg = CURSEG_I(sbi, type);
721	return curseg->segno;
722}
723
724static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
725		int type)
726{
727	struct curseg_info *curseg = CURSEG_I(sbi, type);
728	return curseg->alloc_type;
729}
730
731static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
732		unsigned int segno)
 
 
 
 
 
733{
734	return segno <= (MAIN_SEGS(sbi) - 1);
735}
736
737static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
738{
739	struct f2fs_sb_info *sbi = fio->sbi;
740
741	if (__is_valid_data_blkaddr(fio->old_blkaddr))
742		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
743					META_GENERIC : DATA_GENERIC);
744	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
745					META_GENERIC : DATA_GENERIC_ENHANCE);
746}
747
748/*
749 * Summary block is always treated as an invalid block
750 */
751static inline int check_block_count(struct f2fs_sb_info *sbi,
752		int segno, struct f2fs_sit_entry *raw_sit)
753{
754	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
755	int valid_blocks = 0;
756	int cur_pos = 0, next_pos;
757	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
758
759	/* check bitmap with valid block count */
760	do {
761		if (is_valid) {
762			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
763					usable_blks_per_seg,
764					cur_pos);
765			valid_blocks += next_pos - cur_pos;
766		} else
767			next_pos = find_next_bit_le(&raw_sit->valid_map,
768					usable_blks_per_seg,
769					cur_pos);
770		cur_pos = next_pos;
771		is_valid = !is_valid;
772	} while (cur_pos < usable_blks_per_seg);
773
774	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
775		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
776			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
777		set_sbi_flag(sbi, SBI_NEED_FSCK);
778		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
779		return -EFSCORRUPTED;
780	}
781
782	if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
783		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
784				BLKS_PER_SEG(sbi),
785				usable_blks_per_seg) != BLKS_PER_SEG(sbi));
786
787	/* check segment usage, and check boundary of a given segment number */
788	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
789					|| !valid_main_segno(sbi, segno))) {
790		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
791			 GET_SIT_VBLOCKS(raw_sit), segno);
792		set_sbi_flag(sbi, SBI_NEED_FSCK);
793		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
794		return -EFSCORRUPTED;
795	}
796	return 0;
797}
798
799static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
800						unsigned int start)
801{
802	struct sit_info *sit_i = SIT_I(sbi);
803	unsigned int offset = SIT_BLOCK_OFFSET(start);
804	block_t blk_addr = sit_i->sit_base_addr + offset;
805
806	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
807
808#ifdef CONFIG_F2FS_CHECK_FS
809	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
810			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
811		f2fs_bug_on(sbi, 1);
812#endif
813
814	/* calculate sit block address */
815	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
816		blk_addr += sit_i->sit_blocks;
817
818	return blk_addr;
819}
820
821static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
822						pgoff_t block_addr)
823{
824	struct sit_info *sit_i = SIT_I(sbi);
825	block_addr -= sit_i->sit_base_addr;
826	if (block_addr < sit_i->sit_blocks)
827		block_addr += sit_i->sit_blocks;
828	else
829		block_addr -= sit_i->sit_blocks;
830
831	return block_addr + sit_i->sit_base_addr;
832}
833
834static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
835{
836	unsigned int block_off = SIT_BLOCK_OFFSET(start);
837
838	f2fs_change_bit(block_off, sit_i->sit_bitmap);
839#ifdef CONFIG_F2FS_CHECK_FS
840	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
841#endif
842}
843
844static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
845						bool base_time)
846{
847	struct sit_info *sit_i = SIT_I(sbi);
848	time64_t diff, now = ktime_get_boottime_seconds();
849
850	if (now >= sit_i->mounted_time)
851		return sit_i->elapsed_time + now - sit_i->mounted_time;
852
853	/* system time is set to the past */
854	if (!base_time) {
855		diff = sit_i->mounted_time - now;
856		if (sit_i->elapsed_time >= diff)
857			return sit_i->elapsed_time - diff;
858		return 0;
859	}
860	return sit_i->elapsed_time;
861}
862
863static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
864			unsigned int ofs_in_node, unsigned char version)
865{
866	sum->nid = cpu_to_le32(nid);
867	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
868	sum->version = version;
869}
870
871static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
872{
873	return __start_cp_addr(sbi) +
874		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
875}
876
877static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
878{
879	return __start_cp_addr(sbi) +
880		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
881				- (base + 1) + type;
882}
883
884static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
885{
886	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
887		return true;
888	return false;
889}
890
891/*
892 * It is very important to gather dirty pages and write at once, so that we can
893 * submit a big bio without interfering other data writes.
894 * By default, 512 pages for directory data,
895 * 512 pages (2MB) * 8 for nodes, and
896 * 256 pages * 8 for meta are set.
897 */
898static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
899{
900	if (sbi->sb->s_bdi->wb.dirty_exceeded)
901		return 0;
902
903	if (type == DATA)
904		return BLKS_PER_SEG(sbi);
905	else if (type == NODE)
906		return SEGS_TO_BLKS(sbi, 8);
907	else if (type == META)
908		return 8 * BIO_MAX_VECS;
909	else
910		return 0;
911}
912
913/*
914 * When writing pages, it'd better align nr_to_write for segment size.
915 */
916static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
917					struct writeback_control *wbc)
918{
919	long nr_to_write, desired;
920
921	if (wbc->sync_mode != WB_SYNC_NONE)
922		return 0;
923
924	nr_to_write = wbc->nr_to_write;
925	desired = BIO_MAX_VECS;
926	if (type == NODE)
927		desired <<= 1;
928
929	wbc->nr_to_write = desired;
930	return desired - nr_to_write;
931}
932
933static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
934{
935	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936	bool wakeup = false;
937	int i;
938
939	if (force)
940		goto wake_up;
941
942	mutex_lock(&dcc->cmd_lock);
943	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
944		if (i + 1 < dcc->discard_granularity)
945			break;
946		if (!list_empty(&dcc->pend_list[i])) {
947			wakeup = true;
948			break;
949		}
950	}
951	mutex_unlock(&dcc->cmd_lock);
952	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
953		return;
954wake_up:
955	dcc->discard_wake = true;
956	wake_up_interruptible_all(&dcc->discard_wait_queue);
957}
958
959static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi)
960{
961	int devi;
962
963	for (devi = 0; devi < sbi->s_ndevs; devi++)
964		if (bdev_is_zoned(FDEV(devi).bdev))
965			return GET_SEGNO(sbi, FDEV(devi).start_blk);
966	return 0;
967}